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Abstract

Many industries are dominated by large and very profitable firms. We develop a
theory of firm dynamics, where competing firms operate a fixed-cost technology but
due to customer inertia can only slowly build up a customer base. We show how
the interaction between scale economies and customer inertia creates dynamic entry
barriers and persistent performance differences. Our model also resolves the ‘paradox of
entry barriers’: markets with higher fixed operating costs have higher long-run profits,
but are unambiguously less attractive to enter, except when firms can also invest in
product quality. In the latter case, early entrants can create persistent performance
differences through upgrading and may want to enter high-cost markets.
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1 Introduction

Many industries are increasingly dominated by large and very profitable firms. America’s
500 largest companies by revenue account for roughly a fifth of employment, half of sales,
and two-thirds of profits. At the same time, large firms are also increasingly entrenched:
only 52 of the 500 were born after 1990, and their average age has crept up from 75 to
90 years since then.1 Consistent with these observations, Autor et al. (2020) document
the growing dominance of “superstar firms” — highly productive companies that capture
disproportionate market shares. As they show, superstar firms are not only larger and more
profitable, they also tend to be more productive and invest more in R&D.

This raises several classic questions: Why does entry not limit profitability in these mar-
kets (Bain, 1956)? What allows firms to build up a persistent advantage over competitors
(Penrose, 2009; Porter, 1980)? How does firm concentration affect investment and product
quality (Bain, 1956; Sutton, 1991)? It also creates a strategic puzzle for start-ups looking to
enter new or growing markets that are not yet saturated. Industries with high entry barriers
tend to be more profitable in the long run, making them more attractive to entrants (Porter,
1980). However, high barriers should also make entry harder and less profitable in the short
run, thus reducing their attractiveness for new firms. How should an entrepreneur resolve
this ‘barriers to entry paradox’ when facing multiple entry opportunities?

To address these questions, we provide a theory of dynamic entry barriers, where com-
peting firms operate a fixed-cost technology but can only slowly build up a customer base.
A key distinction between established firms and new or recent entrants is that incumbents
already have customers. We follow a literature that emphasizes the role of such an estab-
lished customer base as a source of incumbency advantage (Dubé et al., 2010; Bronnenberg et
al., 2009, 2012). Customer inertia is pervasive: fewer than 10% of Americans switch banks
in a given year,2 and the market shares of Colgate or Crest toothpaste today still reflect
historical differences in when and where those brands entered (Bronnenberg et al., 2009).
The same result holds for consumer packaged goods more generally. Across manufacturing,
new plants sell barely 41% percent of the output of otherwise identical incumbent plants,
and a 27% percent demand shortfall persists even after a decade (Foster et al., 2016). In the
presence of such customer inertia or other product market frictions (search costs, imperfect
information), a firm’s customer base - its ‘customer capital’ - then becomes a state variable
that only slowly changes over time (Gourio and Rudanko, 2014; Foster et al., 2016). As such,

1America’s corporate giants are getting harder to topple, The Economist, August 2023.
2The real value of consumers switching banks: it’s more than you might think, Kearny, June 2023.
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it is an important type of ‘intangible capital’.

Relative to the literature on customer capital, we emphasize that scale economies are
essential for creating a persistent incumbency advantage. Without scale economies, new
entrants can slowly build up market share in dynamic environments where customers con-
stantly arrive and depart - their small size poses no disadvantage. Similarly, scale economies
without customer inertia do not favor large incumbents, as new entrants or smaller competi-
tors can quickly build up a large customer base. As we argue, it is the interaction between
scale economies and customer inertia that creates barriers to entry, high profitability and per-
sistent performance differences. Importantly, we also analyze the impact of scale economies
on the attractiveness of entry.

Formally, we consider a dynamic environment where both new customers and new firms
arrive each period. Firms sell an experience good and need to grow their customer base
by accumulating repeat customers. Production is characterized by exogenous fixed costs,
operational expenses that are necessary to operate in the market, as well as endogenous
fixed costs (Sutton, 1991): investments that firms can make to upgrade the quality of their
product or services. In this environment, we characterize the transition path from a nascent
market, where new firms enter, grow a customer base and invest, to a mature, steady state,
in which incumbents earn large profits yet entry ceases.

We derive the following insights:

Dynamic Barriers to Entry: The interaction between customer inertia and fixed costs
creates a powerful barrier to entry. New firms can only enter profitably if they build a
sufficiently large base of repeat customers quickly enough to cover their fixed operational
expenses. However, as an industry gets more crowded, it becomes increasingly hard for new
entrants to accumulate such a customer base. New firms then eventually stop entering, even
while existing firms are profitable, both in the steady state and from an NPV perspective at
entry. As we show, when there are only exogenous fixed costs, a firm’s value at any point in
time (its discounted profits) equals the life-time value of its customer base plus the value of
entry in the market (equal to zero in the steady state). While higher fixed operating costs
lower short-run profits, they also reduce entry and therefore increase the long-run customer
base of incumbents. Long-term profits, therefore, are strictly increasing in fixed operating
costs.

Persistent performance differences. When fixed, up-front investments can raise product
quality—as in Sutton (1991)—only firms with a sufficiently large or rapidly expanding cus-
tomer base find the expenditure worthwhile. Because the product is an experience good,
quality upgrades pay off chiefly by increasing repeat purchases, so firms wait until their
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installed base crosses a critical threshold before investing. Late movers often never attain
that scale and therefore settle for more basic offerings, remaining smaller and less profitable
than early entrants. The smartphone industry illustrates the logic: Apple’s vast user base
justifies heavy upfront capital spending on custom chips, advanced cameras, and premium
displays, whereas most smaller manufacturers skip such upgrades because the incremental
returns are too low, further entrenching Apple’s lead. A parallel can also be seen in agricul-
tural equipment: Deere leverages an installed base built over more than a century—and the
deep loyalty of multigenerational farming families—to invest heavily in precision-agriculture
technologies such as GPS-guided automation, telematics, and AI-enabled sprayers (Malnight
and Buche, 2022). These costly innovations raise yields for existing customers and lock them
into Deere’s ecosystem, advantages that smaller rivals, facing a thinner customer base and
lower marginal returns, cannot replicate.

In the long run, incumbents who invest in this way are more valuable than late entrants
who do not, for three reinforcing reasons: (i) they retain a larger customer base, thanks
to lower past attrition; (ii) the lifetime value of their existing customers is higher because
those customers are less likely to churn; and (iii) a superior product lowers future attrition,
boosting the expected value of yet-to-be-acquired customers. Consequently, an upgraded
incumbent’s net present value equals not only the lifetime value of its current customers plus
the value of entry (as with purely exogenous scale economies) but also the extra surplus it
can extract from future customers—surplus a non-upgraded entrant can never match.

Competition and Investment: Customers benefit from investments in quality. Barriers to
entry and competition, however, affect the incentives for upgrading. When fixed operating
costs are low, or the arrival rate of new firms is high, current or future competition may be
so fierce that no firm manages to accumulate a sufficiently large customer base that justifies
product quality investments. The industry may then be trapped in a low firm concentration,
low product quality equilibrium. Even when some firms eventually upgrade their products,
an increase in the barriers to entry in the industry may still benefit consumers by increasing
the fraction of firms that offer high-quality products and by speeding up the timing of these
investments.

The Paradox of Entry Barriers: While high fixed operating costs lead to higher long-run
profits and increase investments in quality, it is unclear if they also make entry more at-
tractive. To resolve this, we consider an entrepreneur who can be an early entrant in one
of two otherwise identical markets—one with low fixed costs and another with higher costs.
The following trade-off arises. On the one hand, at any time before the last entrant in the
high-cost market, the two markets will generate the same flow of new customers, yet a firm
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in the low-cost market bears a smaller cost burden. On the other hand, once entry stops
in the high-cost market, a firm operating in the latter market will see a higher in-flow of
customers.

With only exogenous fixed costs, the zero-profit condition for entry implies that those
higher customer inflows are more than off-set by the higher operating costs. Indeed, once
entry stops in the high-cost market, the value of a firm equals the life-time value of its
customer base (identical in both markets) plus the value of entry, which is zero in the high-
cost market but still positive in the low-cost market. As a result, entry in the low-cost
market is always more attractive.

The calculus changes once endogenous fixed costs — optional investments that perma-
nently raise product quality and customer retention — enter the picture. Early entrants who
upgrade can monetize future buyers better than late entrants who never upgrade. Because
the high-cost market experiences less subsequent entry, it delivers a larger stream of future
customers; for an upgrader, that larger stream now more than offsets the heavier cost burden
once entry stops. Hence, provided entry stops quickly enough, an early entrant who intends
to upgrade, optimally chooses the high-cost market. Conversely, late entrants or firms that
never upgrade still favor the low-cost market, because they cannot capture the extra value
embodied in the larger customer flow. As we show, the above results generalize to a general
equilibrium setting in which not just one entrepreneur, but all entrepreneurs, at any time,
can enter either market.

Taken together, the analysis highlights a nuanced “barriers-to-entry paradox”: high fixed
costs make industries more profitable in the long run, but whether they raise or lower the
attractiveness of entering depends on the entrant’s timing and strategy. Early movers plan-
ning to invest in quality may rationally seek out the tougher, high-cost markets, whereas
latecomers or firms that see no opportunity to generate persistent performance differences
through upgrading, rationally flee to low-cost markets that offer quicker but ultimately
smaller payoffs.

Outline. After discussing the related literature, Section 2 introduces our continuous-time
model of firm dynamics. Section 3 solves for the equilibrium, both the transition path and the
steady state, when there are only exogenous fixed operational costs and firms make only one
decision: whether or not to enter. Section 4 introduces endogenous fixed costs-investments
in product quality, where, in addition to the entry decision, firms also need to decide whether
and when to upgrade their product quality. Section 5 analyzes the paradox of entry barriers
by allowing for entry in two markets that differ in their level of fixed operational costs (and,
hence, future entry). We conclude in Section 6.
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1.1 Literature

Our paper contributes to several strands of literature, primarily on barriers to entry, asset
accumulation, firm dynamics, innovation, and industry concentration.

While our theory focuses primarily on entry barriers as sources of excess profits (Bain,
1956; Caves and Porter, 1977), it aligns closely with the resource-based view (Wernerfelt,
1984; Barney, 1986) in the strategic management literature, particularly the asset stock
accumulation theory of competitive advantage by Dierickx and Cool (1989). Consistent with
their argument, we posit that customer capital is non-tradeable and must be accumulated
internally over time. Crucially, however, we demonstrate that the costs of accumulating this
strategic asset vary dynamically: later entrants face significantly higher costs as markets
mature and competition intensifies, creating dynamic entry barriers. Moreover, smaller rivals
may forego substantial investments in quality improvements due to their limited customer
base, thereby reinforcing persistent performance differences.

Our paper is also closely related to the literature studying persistence of incumbency
advantages, beginning with the influential work of Gilbert and Newbery (1982), who argued
that incumbent firms have an incentive to maintain their monopoly power by pre-emptive
innovation or patenting. We are further related to a classic literature in industrial organi-
zation that has shown how, in markets for experience goods, early entrants enjoy a com-
petitive advantage relative to latecomers merely as a consequence of having entered sooner
(Schmalensee, 1982; Bagwell, 1990; Grossman and Horn, 1988). We add to this literature
the crucial interaction between demand advantages of early entrants, on the one hand, and
scale economies in the form of fixed operational costs and investments in product upgrades,
on the other hand. The presence of both ingredients is necessary for barriers to entry to
exist in a fully dynamic model (where new firms and new consumers arrive in each period)
and for long-term performance differences to survive in the steady state. As we consider a
continuum of firms, the strategic pricing incentives and pre-emptive innovation emphasized
in this literature are also absent in our model.

Our paper further contributes to the literature on firm dynamics. In many of the classic
papers, such as Jovanovic (1982), Hopenhayn (1992), Atkeson and Kehoe (2005) and Luttmer
(2007), firm-specific productivity shocks determine entry and exit rates and, hence, firm
dynamics. Much of this literature does not allow firms to make investments in quality or
innovation, addressing other questions instead. The literature on customer capital (Gourio
and Rudanko, 2014; Foster et al., 2016), for example, studies how the intangible capital
embodied in a firm’s customer base affects a firm’s pricing strategy, and how convex costs
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of customer acquisition limit firm expansion.

Papers that do endogenize innovation decisions typically focus on what happens in the
steady state or solve the dynamic innovation problem numerically. In contrast, our focus is
on the transitional dynamics of the industry, which we characterize analytically.3 Closest
related to us is Klepper (1996), who emphasizes the importance of firm size in appropriating
the returns from process innovation. Unlike in our paper, however, firms are myopic in
their investment decisions, and it is assumed that larger firms have a demand advantage
over smaller ones: at equal prices, firms capture a share of demand in proportion to their
(historical) size. This gives them more incentives for process innovation, as the value of a
unit cost reduction is proportional to a firm’s output. Also related is a recent literature
on firm reputation (Atkeson et al., 2015; Cabral, 2016; Board and Meyer-ter Vehn, 2022;
Vellodi, 2022). In the latter papers, consumers learn about quality from public information,
and a firm’s reputation acts as a state variable governing firm dynamics.4 In contrast, in our
model, consumers are repeat buyers and learn about quality from using a product, making
a firm’s customer base a state variable.

Finally, we contribute to the debate on the correlation between firm concentration and
investments in intangibles (R&D, Software, Brand value) (Crouzet and Eberly, 2019); and
more broadly, the impact of firm concentration on consumer welfare and productivity (see
Autor et al. (2020), and Syverson (2019) for an excellent overview). Compared to Crouzet
and Eberly (2019), who argue informally that investment in intangibles shifts market share
toward innovative firms,5 our model explicitly shows two-way causality: large incumbents
invest more in product quality because their returns are higher (due to a larger customer
base), and these investments further reinforce their growth and long-term advantage.

3Jovanovic and MacDonald (1994) also focuses on transitional dynamics, in particular shake-outs. But
they do not allow firms to make endogenous choices about investing in new technologies. A firm’s technology
evolves exogenously.

4Vellodi (2022), for example, studies how consumer reviews and rating design by a platform affect bar-
riers to entry and incumbency advantages. Atkeson et al. (2015) shows that entry restrictions (e.g. entry
taxes) may increase incentives for quality. They only focus on steady-state outcomes, however, and quality
investments must be made upon entry.

5Autor et al. (2020) present a formal model in which they link the rise of superstar firms to an increase
in the toughness of competition that shifts sales to the most productive firms. They also note that: “Sim-
ilar results could occur from any force that makes the industry more concentrated—more “winner takes
most”—such as an increased importance of network effects or scale-biased technological change from infor-
mation technology advances.” (p.656)
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2 Simple Model Setup

We consider a simple model of firm dynamics. Both entrepreneurs and customers arrive
at a constant rate in a market. Entrepreneurs decide whether to start a firm and enter.
Firms that enter operate a fixed cost technology and slowly grow their customer base. New
customers are randomly matched with firms, whereas existing customers decide whether to
stick with their match or leave. The attrition rate of customers is assumed to be fixed in
our baseline model. In Section 4, we allow firms to invest and upgrade the quality of their
product, which increases customer retention and reduces the attrition rate.

2.1 Model Primitives

Formally, we consider a continuous-time model over the interval [0, ∞). At any time t > 0,
µ new entrepreneurs arrive and decide whether to start a firm and enter. Firms can choose
to permanently leave the market at any time point. Let G(t) represent the total mass of
firms in the market at time t.

At any time t, N new customers arrive and are distributed equally across the existing
firms. Hence, at time t, each existing firm has an inflow of N/G(t) new customers. To
prevent firms from receiving an infinite number of customers at t = 0, we assume an initial
mass G0 > 0 of entrepreneurs, where G0 is sufficiently small so that all time 0 entrepreneurs
enter: G(0) = G0.

For each firm in the market, its size is given by the number of customers it serves. We
denote by m(t; te) the customer base at time t of a firm that entered at time te ≤ t. Each
firm starts with a zero customer base upon entry, m(te; te) = 0. Firms then slowly grow their
customer base by accumulating repeat customers. We posit that m(t; te) evolves as

dm(t; te)
dt

= −αm(t; te) + N

G(t) , (1)

where α ∈ (0, ∞) is the attrition rate of existing customers. Solving the ordinary differential
equation (1), we obtain

m(t; te) =
∫ t

te

N

G(s)e−α(t−s)ds. (2)

Note that as long as the customer inflow N/G(s) is bounded away from zero and t > te, the
customer base m(t, te) will be strictly positive for any attrition rate α ∈ (0, ∞).

In Section 3, we set the customer attrition rate α as an exogenous parameter. Section 4
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endogenizes α by allowing firms to make a one-time investment in product quality, I > 0, to
reduce α from αL to αH < αL. Both the choice to invest and its timing are optimally chosen
by the firm.

Firms that enter incur fixed operating costs, modeled as a flow cost c, regardless of the
amount of customers they have. Firms also earn one unit of revenue per customer. Hence,
the instantaneous profit of each firm is m(t; te) − c. If a firm never exits, its discounted
profits at entry (gross of any investment) are given by

V e(te) =
∫ ∞

te

e−ρ(t−te) (m(t; te) − c) dt, (3)

where ρ > 0 is the discount factor. More generally, the discounted payoffs from time t1 to t2

(gross of any investment) are
∫ t2

t1
e−ρ(t−te) (m(t; te) − c) dt.

2.2 Market equilibrium

Our goal is to describe the industry dynamics in which firms make their entry and exit
decisions optimally. For ease of exposition, again assume that firms that enter the market
never exit, then we say that {G(t), µ(t)}∞

t=0 is an industry equilibrium if two conditions are
satisfied. First, the mass of firms in the market at time t, G(t), is equal to the total mass of
firms that entered the market up to time t. Second, the discounted profits of the firms are
non-negative whenever a positive mass of firms enter. Formally, for each time t,

G(t) =
∫ t

0
µ(τ)dτ, 0 ≤ µ(t) ≤ µ, (4)

and V e(t) ≥ 0 whenever µ(t) > 0. The industry equilibrium where firms can exit can be
defined accordingly.

2.3 Discussion of the Model

We now discuss some key assumptions of our model.

First, firms incur a flow cost c rather than a one-time sunk entry cost C. These setups
are equivalent in our context since firms never exit (their flow payoffs remain non-negative),
allowing us to interpret c as an entry barrier.

Second, we posit an exogenous customer attrition rate α and assume that firms charge
a constant price (normalized to one). In Appendix B, we outline a simple continuous-time
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dynamic discrete choice model of consumers following Arcidiacono et al. (2016), which allows
us to microfound α and endogenize firms’ prices. Section 4.3 provides a detailed discussion
of these micro-foundations.

Third, we assume that new customers are randomly matched to firms. In Online Appendix
OA.3, we extend our model to allow higher-quality firms to not only have lower customer
attrition, but also have an advantage in attracting new customers. This extension is only
relevant in Section 4 when firms can invest in product quality.

Finally, our baseline model considers entry into a single market and assumes a constant
arrival rate µ of new firms. Section 5 shows that our framework naturally extends to multi-
market entry decisions. This also allows us to endogenize the entry rate µ in a given market,
and let it be time-varying, as we do in Section 5.3.

3 Industry Equilibrium with Exogenous Fixed Costs

We first consider the simplest version of our model in which entrepreneurs only decide
whether to enter/stay in the market (and incur the fixed operational cost c if they do so).
The customer attrition rate α is exogenously given. In Section 4, we will endogenize α by
letting firms invest in product quality.

3.1 Dynamic Barriers to Entry

Note first that new entrepreneurs cannot enter the market forever. If they did, the mass of
firms G(t) would grow without bound and the inflow of new customers for a new entrant
would converge to 0. Given the fixed operating cost c, this makes entry unprofitable. In
Appendix A, we also rule out cycles of entry and exit. Hence, there must exist a “last
entrant”.

Let T be the last time any firm enters the market. At T , the last entrant’s net present
value must equal 0. If not, from (3), an entrepreneur who arrives just after T would also find
it profitable to enter. Since no new firms enter after T , the last entrant experiences either a
constant inflow of new customers (if no firms exit) or an increasing inflow (if there is exit).
A direct consequence is that the last entrant’s customer base and net present value increase
over time and, hence, it never exits. But then also no other firms exit after T :6 the mass of
firms is constant after T .

6Indeed, the customer base and hence, flow profits, of firms that entered before T are always larger than
that of the last entrant for any given time.
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We conclude that for t ≥ T , G(t) = G(T ), and the last entrant has a constant inflow of
new customers N/G(T ). In turn, this implies that its customer base at t ≥ T is given by,

m(t, T ) =
∫ t

T

N

G(T )e−α(t−s)ds = N

G(T ) · 1 − e−α(t−T )

α
,

and its net present value at time of entry T equals:

V e(T ) =
∫ ∞

T
e−ρ(t−T ) (m(t, T ) − c) dt

= 1
ρ

· 1
(ρ + α)

N

G(T ) − c

ρ
.

Since 1/(ρ + α) is the life-time value of a new customer at the time of its arrival, the first
term in the above expression is the life-time value of all future new customers, discounted
to the time of entry. This life-time value depends both on the customer attrition rate α and
the firm’s discount factor ρ. The second term equals all future operational costs discounted
to the time of entry.

As the net present value of the last entrant’s entry V e(T ) must be equal to 0, it follows
that the steady state mass of firms is given by

G(T ) = N

(ρ + α) · c
.

For t < T , the mass of firms is given by G(t) < G(T ). Consequently, the entrepreneurs
who enter before T will obtain more customers, resulting in a net present value that strictly
exceeds 0. Every entrepreneur who has the chance to enter the market will then do so,
leading to an entry rate of µ. It follows that the last entrant enters at

T = G(T ) − G0

µ

The following proposition characterizes the equilibrium path of G(t):

Proposition 1 Dynamic Barriers to Entry There is a unique industry equilibrium: En-
trepreneurs enter at rate µ until t = T and the mass of firms in the market equals

G(T ) = N

(ρ + α)c, (5)

There is no exit; hence G(T ) is also the steady-state number of firms.
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Even though entry is strictly profitable prior to T and even though all firms will be making
strictly positive flow profits in the long run, there is no entry after T . Intuitively, given that
firms incur a fixed operating cost c regardless of their customer base, new entrepreneurs only
enter if they can build a sufficiently large customer base, sufficiently fast. This is increasingly
difficult as the market becomes more crowded and new customers need to be shared among
a larger mass of firms. As Proposition 1 shows, when G(t) = G(T ), the market is “full” and
there is no more entry.

The steady-state market size has a straightforward interpretation: It is directly propor-
tional to the life-time value of all new customers that arrive in the market, N/(ρ + α), and
inversely proportional to fixed operational costs (c). Thus, for a given fixed operational cost
c, customer arrival rate N and attrition rate α, the total number of firms increases as firms
are more patient. The latter finding arises because firms grow their customer base gradually.
New entrants start with few customers and operate at a loss, only becoming profitable as
their customer base expands over time. Since profits are backloaded, more patient firms
value these delayed returns more highly, leading to a larger equilibrium number of firms in
the market.

3.2 Temporary Performance Differences and Long-run Profits

Next, we compare the value of firms across cohorts. To do so, it is instructive to first
decompose the value of a firm as the value of its customer base plus the value of entry.
Denoting by V (t; te) the continuation value at time t of a firm that entered at time te, we
have that:

V (t; te) = m(t; te)
ρ + α

+
∫ ∞

t
e−ρ(t′−t)

(
1

ρ + α
· N

G(t′)

)
dt′ − c

ρ
, (6)

where the first term is the value of its current customer base mi(t; te), the second term is
the value of all its future customers, who will arrive at a rate N/G(t′) at time t′ > t, and
the third term is the total discounted cost of operating in the market.7 In turn, the last two
terms equal exactly the value of entry at time t, V e(t). It follows that at time t, the value

7The second term calculates the lifetime value of customers acquired at each instant t′ ≥ t and discounts
it back to the current time t. Alternatively, consistent with the calculation of the value of entry in equation
(3), we can calculate this term using the firm’s sales to new customers after t at each instant t′, i.e.,∫∞

t
e−ρ(t′−t)

[∫ t′

t
e−α(t′−s) N

G(s) ds
]

dt′. Switching the order of integration (Fubini’s theorem), we can verify
that the two integrals are identical.
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of a firm who entered a time te is given by

V (t; te) = m(t; te)
ρ + α

+ V e(t) (7)

where V e(t) = 0 for t ≥ T .

Consider now two entrepreneurs who entered at time te and t′
e > te. At any time t ≥ t′

e,
the earlier entrant has a larger customer base (and thus higher profits/continuation value)
than the later entrant. Indeed, based on the expression in (2) of the customer base at time
t of a firm that entered at te, we have:

m(t; te) = m(t; t′
e) + m(t′

e; te)e−α(t−t′
e) > m(t; t′

e). (8)

The early entrant has an advantage over the late entrant because the former has accumulated
customer capital from te to t′

e, i.e., m(t′
e; te) > 0. The extra customer capital depreciates at

a rate α. By time t, it shrinks to m(t′
e; te)e−α(t−t′

e) but is still positive. Therefore, the early
entrant always has higher customer capital. It is also clear that this difference is decreasing
in α and converges to zero when t → ∞. In the long run, as t goes to infinity, the customer
base of all firms converges to

mlr =
∫ ∞

0

N

G(T )e−αsds = 1
α

· N

G(T ) = (1 + ρ

α
) · c,

and flow profits converge to
πlr = mlr − c = ρ · c

α
.

Proposition 2 (Temporary Performance Differences and Long-run Profits) Consider
two entrepreneurs who entered at time te and t′

e (te < t′
e). At any time t ≥ t′

e, the earlier
entrant has a larger customer base and profits than the later entrant. In the long run, when
t → ∞, this difference disappears and the profits of all firms converge to πlr = ρ·c

α
, and their

continuation value to c/α.

Proposition 2 shows that early entrants have a competitive advantage that slowly disap-
pears. Firms that enter earlier have accumulated a positive customer base when late entrants
enter. However, this advantage erodes over time: customers acquired earlier will eventually
leave. The profits of all firms, therefore, converge to the same level in the long run.

The formula for long-run profits in Proposition 2 highlights three necessary and comple-
mentary ingredients for firms to be strictly profitable in the long run: scale economies (fixed
operating costs c > 0), a positive level of customer inertia (α < ∞), and impatience (ρ > 0).
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Higher fixed operating costs c result in higher long-term profits as they reduce entry and
therefore result in a higher long-run customer base for firms that do enter. The formula
further indicates that long-run profits are higher when firms are less patient. This is due to
the backloaded nature of profits, which necessitates a higher long-run profit to compensate
less patient entrants for their incurred costs. As firms become infinitely patient, i.e. ρ → 0,
entry continues until mlr = c and long-run profits are 0. Note that impatience does not
matter as far as the continuation value of a firm is concerned.

Finally, while more repeat customers (a lower attrition α) increase long-run profitability,
more new customers (a higher N) do not: πlr is independent of N . Intuitively, new customers
do not provide an advantage to incumbents – they are equally distributed among all firms
in the market. As a result, they simply attract more entrants and do not increase long-
term profits. In contrast, more repeat customers do favor incumbents because they already
have a customer base and new entrants not yet. Incumbents, therefore, benefit more from a
reduction in customer attrition than new entrants.

4 Industry Equilibrium with Endogenous Fixed Costs

We now consider a more general scenario in which companies can make a one-time investment
in product quality. By making an investment I > 0 and upgrading its product, we assume a
firm can reduce its customer attrition rate from α = αL to α = αH < αL. The subscripts L
and H refer to a low quality (L-type) and a high quality (H-type) firm. The random utility
model in Appendix B, discussed in Section 4.3, provides a micro-foundation.

4.1 Investment in Quality and Persistent Performance Differences

What determines whether a firm invests in quality? And at what time is it optimal to do so?
The following lemma shows that if a firm ever upgrades, it always does so when its customer
base first reaches a critical size.

Lemma 1 If a firm ever invests in quality, it happens when its customer base m(t; te) first
reaches a cutoff

m∗ ≡ ρ(ρ + αH)
αL − αH

I. (9)

Lemma 1 shows that the customer base is a sufficient statistic for the timing of upgrade.
In particular, the timing does not depend on how many other firms are in the market.
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This might seem counterintuitive, as the number of competitors affects future customer
acquisition and should theoretically influence upgrade decisions. Indeed, the decision of
whether to upgrade or not does depend on the number of firms, as we will discuss in detail
below, but the timing does not.

The reason is that because the firm chooses the timing to maximize its profit, the marginal
benefit of updating earlier must equal its marginal cost. The marginal benefit of earlier
upgrading comes from increasing the retention of existing customers — customers the firm
already has. Since the magnitude of this benefit is completely determined by the size of
the existing customer base, competitive factors that affect future customer acquisition are
irrelevant to the timing calculation.

To calculate the cut-off level m∗, we use a perturbation argument that compares the
firm’s profits between two adjacent investment times, tu and tu + ∆t, for some small ∆t. By
investing earlier at tu, the firm benefits by having higher customer retention in the interval
[tu, tu + ∆t]. There are m(tu; te) such customers, and the total value of retaining them is

(αL − αH) · m(tu; te)
(ρ + αH) · ∆t,

where recall that 1/(ρ + αH) is the life-time value of a customer with attrition rate αH . The
cost of investing early is ρI∆t. It then follows that there is gain in upgrading earlier as long
as

(αL − αH) · m(tu; te)
(ρ + αH) ≥ ρI. (10)

Setting (10) to an equality, we obtain the expression for the cut-off customer base at which
the firm should upgrade (if it ever does so).

The formula for m∗ yields several intuitive comparative static results. When the reduction
in the attrition rate α is larger or the investment cost I is lower, firms require a smaller
customer base to justify the upgrade. The discount rate ρ also plays a role: a lower discount
rate reduces the required customer base because it increases the present value of keeping a
customer.

As a final observation, note that Lemma 1 states that the upgrade takes place when the
customer base first reaches the cutoff. It is possible that the cutoff is reached twice. This
occurs when customer numbers follow a hump-shaped pattern over time—a pattern typical
for early market entrants. These firms initially attract many customers due to limited
competition, but their customer base may later decline when high customer outflow (driven
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by their large customer base) exceeds the diminishing inflow (caused by increasing market
competition).

The following proposition shows how, in equilibrium, endogenous investments in quality
can create asymmetries between early movers who invest (upgrade), and late movers who do
not find it worthwhile to do so:

Proposition 3 (Investment and Persistent Performance Differences) In equilibrium,
firms enter at a constant rate µ until T and there is no exit. When G0 is sufficiently small,
there exist two cutoff investment costs I ≤ Ī such that

1. If I < I, all entrants upgrade.

2. If I > Ī, no entrants upgrade.

3. If I ∈ [I, Ī], there exists a cutoff Tu ∈ [0, T ), such that firms that enter at t ∈ [0, Tu]
upgrade and later entrants do not.

When firms upgrade, they do so at the earliest time t for which m(t, te) = m∗. When I ≥ I,
firms enter until the total mass of firms equals G(T ) = N

(ρ+αL)c

Proposition 3 shows how only early entrants choose to upgrade for intermediate investment
costs. Intuitively, an earlier entry enables firms to build a larger customer base, making
upgrading more valuable. Later entrants, despite having access to the same technology and
financial resources, rationally choose not to upgrade because their smaller customer base
makes the fixed investment cost unprofitable.
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Figure 1: Example paths of customer capital in the case of partial upgrading

Notes. This figure plots the customer base m(t; te) for three firms entering at different times (te). The earliest
entrant (red curve) upgrades, while the second and third entrants (purple and blue curves) do not. m∗ denotes
the threshold for upgrading in the necessary condition. mH,lr and mL,lr denote the long-run firm sizes for
H- and L-type firms. Parameters: ρ = 0.1, N = 1, c = 1, αH = 0.1, αL = 0.15, µ = 0.5, I = 5, G(0) = 0.05.

Figure 1 depicts customer dynamics for three firms entering the market at different times.
The red curve represents a firm entering before Tu. Upon reaching a customer base of m∗, this
firm upgrades, achieving a larger customer base mH,lr than its non-upgrading counterfactual
(shown by the dotted line). The other two curves represent firms entering after Tu. These
firms do not upgrade, and their customer sizes eventually converge to mL,lr, where

mL,lr = N

G(T )αL

<
N

G(T )αH

= mH,lr.

Notably, even when the customer size of one of these firms reaches m∗, it doesn’t upgrade,
because the net present value of doing so is negative. This illustrates how the upgrade
timing and the upgrade decision are distinct considerations: the decision of whether to
upgrade depends also on the competitive conditions the firm faces, which depend on the
time it enters the market.

A direct implication from Proposition 3 is that incumbents who invest in quality (early
entrants) have a persistent performance difference over late movers who do not: they are more
profitable not only in the short run but also in the long run, and this for three complementary
reasons. First, incumbents that upgrade retain a larger long-term customer base than late
movers who do not upgrade, thanks to lower past attrition: mH,lr > mL,lr. Second, the
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lifetime value of this customer base is higher because those customers are less likely to churn
(αH < αL). Finally, a superior product lowers future attrition, boosting the expected value
of yet-to-be-acquired customers. Consequently, as we show next, an upgraded incumbent’s
continuation value includes not only the lifetime value of its current customers plus the value
of entry (as for a firm who does not upgrade), but also the extra surplus it can extract from
future customers.

Formally, compare an incumbent who entered at time te and upgraded at time tu with a
late mover who entered at time t′

e > te and will never upgrade. From (7), the continuation
value of the non-upgraded late mover at time t > tu can again be decomposed as the value
of its customer base plus the value of entry:

V (t; t′
e) = m(t; t′

e)
ρ + αL

+ V e(t), (11)

In contrast, the continuation value of the upgraded incumbent can now be decomposed as

V (t; te) = m(t; te)
ρ + αH

+
∫ ∞

t
e−ρ(t′−t)

(
1

ρ + αH

· N

G(t′)

)
dt′ − c

ρ
.

As in (7), the first term is still the value of the firm’s customer base. Unlike in (7), however,
the last two terms do not equal the value of entry at time t > tu, as late entrants now have
a higher customer attrition rate αL > αH . In particular, we now have that

V (t; te) = m(t; te)
ρ + αH

+ V e(t) +
∫ ∞

t
e−ρ(t′−t)

(
αL − αH

(ρ + αH)(ρ + αL) · N

G(t′)

)
dt′, (12)

The last term is new and represents the added value that new customers generate to the
incumbent compared to late entrants. Due to its investment in upgrading the quality of
its product, the incumbent retains customers at a higher rate than new entrants at time t,
increasing their life-time value.

Our theory illuminates why early movers with established customer bases can sustain com-
petitive advantages through strategic quality investments, as exemplified by John Deere’s
dominance in agricultural equipment. With a customer base built over 150 years—including
multigenerational farming families exhibiting extraordinary loyalty—Deere has sufficient
scale to justify massive R&D investments in precision agriculture. The company pours
billions into GPS-guided automation, AI-enabled sprayers, and integrated data platforms
that can exceed $100,000 per tractor. These investments yield high returns precisely be-
cause Deere’s vast installed base ensures widespread adoption: existing Deere owners readily
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purchase compatible upgrades, while enhanced productivity further reduces churn. Smaller
competitors like AGCO cannot match this investment intensity—their thinner customer
bases mean identical R&D expenditures generate far lower returns.

Similarly, Apple demonstrates how massive scale transforms customer capital into per-
manent technological advantages through component innovation. With over 220 million
iPhones shipped annually, Apple amortizes enormous fixed costs across its base, justifying
investments no competitor can match: $450 million for Ceramic Shield glass with Corning,
exclusive access to TSMC’s first-year 3nm production, and $3 billion in micro-LED develop-
ment. These investments generate exceptional returns not simply because Apple can afford
them, but because each enhancement — from 5× tetraprism zoom lenses to custom Photonic
Engine processing — increases retention rates already exceeding 90%. When Apple devel-
ops exclusive features, it captures value across hundreds of millions of users for years, while
Android manufacturers with lower retention and smaller individual bases cannot justify sim-
ilar investments. This scale advantage — where higher retention rates and larger customer
bases enable increasingly ambitious quality upgrades — perpetuates Apple’s technological
leadership and strengthens its dynamic competitive position over time.

4.2 Competition and Investments in Quality

In this section, we examine how competition affects firms’ incentives to upgrade product
quality–a key policy consideration for understanding when market concentration may benefit
or harm consumers. In our model, more competition can be due to a lower fixed cost c and
thus lower barriers to entry (a larger T ) or due to an increase in the rate µ of new firms
entering the market at any time t < T .

To analyze these effects, we examine the investment threshold I below which all entrants
upgrade. This threshold serves as a measure of the firms’ incentive to upgrade. The higher
is I, the more likely firms are to upgrade. As shown in the proof of Proposition 3 (Appendix
A), this threshold has a closed-form expression given by

I = (αL − αH)(ρ + αL)c
ραL(ρ + αH) . (13)

Not surprisingly, this investment threshold is decreasing in ρ, as more impatient firms
are less likely to invest. Notably, this threshold is also increasing in the fixed operating
cost c. The reason for this is that as barriers-to-entry increase, firms anticipate less future
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competition and a larger future customer base. This makes upgrading more valuable.

Let us denote by GH(t) the mass of H-type firms at time t. Define gH(t) ≡ GH(t)/G(t),
the fraction of firms that have upgraded at any point in time t. Note that gH(t) is a proxy
for the consumer welfare. At any time t, new customers are randomly matched to firms in
the market. According to the random utility model in Appendix B, consumers must enjoy
a higher value when matched to an H-type firm. Consumer welfare, measured by the total
number of customers served at each instant, then increases with gH(t).

The next proposition studies the impact of competition on gH(t), the share of firms that
have upgraded at time t.

Proposition 4 (Competition and Investment) .

1. A higher market entry rate µ or a lower flow fixed cost c reduces the share of H-type
firms in the steady state. The decrease is strict when I ≥ I.

2. Assume I ≥ I. The share of H-type firms at any time t, gH(t), decreases in µ and
increases in c. The decrease/increase is strict for sufficiently large t.

Proposition 4 demonstrates how intensified competition can harm investment and con-
sumer welfare. The core mechanism is that excessive competition prevents firms from achiev-
ing the scale needed to justify technology upgrades. This can trap markets in equilibria
characterized by many small firms offering low-quality products.

Our model identifies two distinct channels through which competition affects upgrade
incentives. The first one is a more traditional competition effect, operated through the fixed
cost c, and reflects the degree of competition in the long run. When the fixed costs decrease,
more firms ultimately enter the market. This lower each firm’s customer base in the long
run, reducing the returns to upgrading. This effect operates through the equilibrium number
of firms — a standard result in industrial organization where lower barriers to entry lead to
more fragmented markets.

The second channel operates through the speed of entry (µ). This parameter affects how
quickly firms enter, not how many enter. When µ is low, early entrants enjoy a longer tran-
sient advantage: they have longer time to build substantial customer bases before facing full
competition, making upgrades profitable. However, when µ is high and all firms enter nearly
simultaneously, no firm gets this “first-mover” opportunity to grow large. Even though the
same number of firms eventually enter regardless of µ (when I > I), rapid entry eliminates
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the transient market power that makes upgrading worthwhile. This speed-of-entry effect rep-
resents a new insight: competition policies must consider not just how many firms compete,
but how quickly competition materializes.

Figure 2: The impact of entry rate µ and flow fixed cost c on the long-run market sizes

(a) Market Size and µ (b) Market Size and c

Notes. The two panels plot the number of customers served in the long run under different values of µ and
c. Each dot represents a long-run equilibrium. Mlr represents the total number of customers served, and
Mi,lr, i = H, L represents the number of customers served by the H- and L-type firms, respectively. Baseline
parameter values: ρ = 0.1, N = 1, µ = 0.5, c = 1, αH = 0.1, αL = 0.15, I = 5, G(0) = 0.05. The baseline
values of µ and c are irrelevant when the corresponding parameters are varied in the comparative statics.

The numerical examples in Panels (a) and (b) of Figure 2 illustrate the impact of µ and
c on the total number of customers, respectively. As shown in the proof of Proposition 4,
the total number of customers served is increasing in the steady-state fraction of H-type
firms, because customer attrition is lower when customers are served by H-type firms. With
stronger competition for customers either during the transition (higher µ) or after the steady
state (lower c), the fraction of H-type firms declines, and the total number of customers served
drops.

4.3 Microfoundations and Extensions

4.3.1 Consumer Choice

In Appendix B, we outline a simple continuous-time dynamic discrete choice model of con-
sumers following Arcidiacono et al. (2016). It provides a microfoundation of the customer
attrition rates, αH and αL, and a measure of consumer welfare. In particular, after customers
are matched with firms, they have the opportunity to choose whether to remain with their

20



current firm or opt for the outside option (leaving the market) permanently. A Poisson pro-
cess governs the arrival of these opportunities. The values of staying or leaving are affected
by choice-specific payoff shocks. The customer attrition rate decreases with the flow utility
of consuming the current firm’s product and increases with the Poisson arrival rate. If we
assume that the H-type firm provides a higher-quality product and consumers obtain higher
flow utility, we must have αH < αL. We can also show that the value of being matched with
H-type firms is higher than that of being matched with L-type firms. For a new consumer,
the probability of being matched with H-type firms equals the current fraction of H-type
firms, gH(t). Therefore, consumers have a higher expected value when gH(t) is higher.

4.3.2 Pricing

In our baseline model, we assume that firms charge a constant price (normalized to one) and
abstract away from optimal pricing. The consumer choice model allows us to discuss pricing.
We assume that firms cannot credibly commit to future prices as in many earlier works on
consumer lock-in (Farrell and Klemperer, 2007). The literature also assumes that firms
cannot commit to future quality, and we make a slightly different assumption: consumers
do not expect quality upgrades. With these assumptions, firms choose an optimal price to
maximize the value of a matched customer. They face a trade-off between extracting higher
profits from the customer now and a higher chance of losing him/her later. Under certain
parameter restrictions, a unique optimal price exists for H-type (L-type) firms, denoted as
pH (pL), with pH > pL. Despite the higher price, the value of being matched with an H-type
firm remains higher than that of an L-type firm, and consumer welfare continues to increase
strictly with gH(t).

When H-type firms charge a higher price than L-type firms, upgrading brings additional
benefits to the firm due to higher profits from existing customers. In Online Appendix
OA.2, we show that all our theoretical results are qualitatively unchanged in an extension
with two arbitrary prices pH > pL. For example, firms upgrade only when their customer
base reaches a critical size, with both prices affecting this threshold. Intuitively, other than
slower depreciation of the current customer capital, upgrading earlier also brings more sales,
proportional to (pH − pL)m(t; te). We can obtain a similar cutoff as in Lemma 1.

4.3.3 Discerning Customers

In the baseline model, we have assumed that the only benefit of upgrading is a lower customer
attrition rate. In contrast, we assumed that the customer arrival rate is the same between
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H- and L-type firms. In Online Appendix OA.3, we present an extension in which H-type
firms may have a higher customer arrival rate. This gives firms more incentives to upgrade.
More firms upgrade, and they upgrade earlier compared to the baseline case here. We show
that under certain parameter restrictions, we can still prove that less competition due to
lower entry rates µ and/or higher fixed costs c leads to a larger share of H-type firms in the
steady state.

5 Entry Choice with Multiple Markets.

We now apply our framework to a fundamental question in corporate strategy: which markets
should firms enter? Porter’s (1979) Five Forces framework has long guided firms in assessing
market attractiveness.8 The basic insight of Porter was that the competitive intensity of an
industry, such as current rivalry and the threat of future entrants, determines its profitability.
Consistent with this perspective, Section 3 has shown that long-run profits of firms are
increasing in fixed operational costs, as shown by πlr = ρ

α
· c. While higher fixed costs

reduce profitability for a given customer base, they also act as a barrier-to-entry, reducing
the number of future entrants, a key force in Porter’s framework.

This long-run perspective suggests that markets with higher fixed costs are more attrac-
tive, at least for firms that enter sufficiently early. But while high barriers promise greater
eventual profitability, they also impose immediate costs that reduce short-run profits. Hence
the paradox of entry barriers.

In what follows, we formally analyze the impact of barriers-to-entry, in the form of high
(exogenous) fixed costs, on the attractiveness of entry. To do so, we consider a setting with
two markets, 1 or 2, where c1 < c2 but all other features are identical. We ask which market
is more attractive to an entrepreneur arriving at some time t. Is it market 1 with lower
fixed operating costs or market 2 with higher barriers-to-entry and less future competition?
We also ask how this choice depends on the timing of entry, and whether there are also
endogenous fixed costs (opportunities to make investments to upgrade product quality).

5.1 Market choice with (only) exogenous fixed costs.

We start with analyzing the case where upgrading is not possible (as in Section 3) or equiv-
alently, I > Ī. We denote the customer attrition rate by αL. Note that in this case, firms

8According to HBS’s Institute for Strategy & Competitiveness, “A Five Forces analysis can help companies
assess which industries to compete in and how to position themselves for success.” (see https://www.isc.
hbs.edu/strategy/business-strategy/Pages/the-five-forces.aspx)
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only differ in their timing of entry. There is no quality difference between firms.

Consider two markets, 1 and 2, with c1 < c2 so that there is entry over a longer period
in market 1: T1 > T2, where Ti denotes the arrival time of the last entrant in market i. All
other market characteristics are identical. To build intuition, we first consider the market
choice of a single entrepreneur who arrives at some time t. Because of capacity constraints
(e.g. limited attention or financial resources), the entrepreneur can enter at most one market.
The arrival rate of other entrepreneurs is µ in each market: they only have expertise in one
specific market. In Section 5.3, we generalize our insights to the case where all entrepreneurs
optimize which market to enter.

Recall from (7) that the continuation value at time t of a firm that entered market
i ∈ {1, 2} at time te is given by the value of its customer base at time t plus the value of
entry in market i at time t:

Vi(t; te) = mi(t; te)
ρ + αL

+ V e
i (t) (14)

Note first that once there is no more entry in either market, t > T1, the continuation value
of a firm in market 2 with higher fixed costs is always higher than that of a firm in market
1. Indeed, since there is no more entry in market 2 for t ∈ [T2, T1], while there is in market
1, firms in market 2 will then have accumulated a larger customer base: m2(t; te) > m1(t; te)
for t > T1. Since the value of entry is 0 in both markets, it then follows immediately from
(14) that V2(t; te) > V1(t, te): firms in market 2 are more valuable going forward.

But we are interested in the value of entry, not in the continuation value of firms in the
mature phase of an industry. Consider therefore the value of entry at time te < T2 when
entry has a positive value in both markets.

Observe first that at any time t ∈ [te, T2], the firm has the same inflow of new customers
in each market, but incurs lower fixed costs in market 1. Indeed, as long as t < T2, both
markets experience the same rate of entry and, hence, competition. Next, observe that at
any time t ≤ T2, we have that

m1(t; te) = m2(t; te) = m(t; te)

since both markets have the same rate of entry up to T2. But since there is no more entry in
market 2 after T2, the value of entry must be zero at T2: V e

2 (T2) = 0. It then follows directly
from (14) that at T2, the continuation value is larger in market 1 than market 2:

V1(T2; te) = m(T2; te)
ρ + αL

+ V e
1 (T2) >

m(T2; te)
ρ + αL

= V2(T2; te).
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In sum, as long as there is entry in both markets, t < T2, the firm accumulates the same
customer base in both markets, but incurs lower operating costs in market 1: c1 < c2. Once
entry stops in the high-cost market, at T2, the continuation value equals the value of the
customer base at that time, identical in both markets, plus the value of entry, which is 0 in
the high-cost market. Both factors make entry more attractive in the low-cost market. We
obtain the following result:

Proposition 5 (Market attractiveness: exogenous fixed costs) Assume no upgrades
are possible. Whenever entry occurs in at least one market, the entrepreneur strictly prefers
to enter market 1 with low fixed costs.

Intuitively, higher fixed costs reduce future competition and hence increase the inflow
of future customers. The zero-profit condition for entry, however, ensures that this higher
customer inflow is either exactly offset by higher operating costs (when there is no more
entry) or more than offset (when there is only entry in the low-cost market).9

5.2 Market entry choice with endogenous fixed costs

Consider now the possibility for firms to make fixed investments to upgrade their product
quality. As shown in Section 4, this may create permanent performance differences between
early entrants, whose large customer base gives them an incentive to make such investments,
and late entrants, who are smaller and do not find this profitable.

To develop some intuitions, we consider the market entry choice of an early entrant who
upgrades at time tu

i < T2 in market i when there is still entry in both markets. This implies
that this firm will upgrade at the same time in both markets, tu

1 = tu
2 = tu. Indeed, the

timing of upgrading only depends on mi(t; te) and m1(t; te) = m2(t; te) for t ≤ T2. Assume
further that late entrants, who enter after tu, never upgrade in either market. While our
main result does not rely on these two restrictions, this simplifies the exposition.

As shown in Section 4, the upgrader’s continuation value in market i at t > tu can be
decomposed as

Vi(t; te) = mi(t; te)
ρ + αH

+ V e
i (t) +

∫ ∞

t
e−ρ(t′−t)

(
αL − αH

(ρ + αH)(ρ + αL) · N

Gi(t′)

)
dt′, (15)

9Appendix A provides a more succinct but less instructive proof by taking the derivative of the value of
entry with respect to c.
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where the first term is the value of the firm’s customer base, with m1(t; te) = m2(t, te) for
t ≤ T2, and the second term is the value of entry in market i at time t. The third term,
which is absent in a setting without investments, is the extra value that future customers will
generate for the upgrader compared to what they yield to late entrants who do not upgrade
and therefore have a higher attrition rate.10

Importantly, the third term in the upgrader’s continuation value (15) is larger when it has
entered the high-cost market 2, as it then has a higher inflow of new customers for t > T2

(when there is no more entry in market 2):

N/G2(t′) > N/G1(t′). (16)

In the absence of upgrading, this higher customer inflow in market 2 was offset by higher
operating costs because of the no-entry condition. Because of upgrading, however, the early
entrant can now better monetize new customers than a late entrant who does not upgrade.

This creates a trade-off between entering market 1 versus 2: lower fixed costs in the short
run, but a higher inflow of new customers, which more than outweighs the higher fixed costs
needed to serve them in the long run.

The following proposition shows more generally, that for high µ, an entrepreneur who
enters early, will prefer to enter the high-cost market as that market experiences less entry
and hence will deliver a higher customer flow. Because of his investment in product quality,
the entrepreneur will value those customers more than new entrants who never upgrade.
Indeed, an entrepreneur who never upgrades always prefers to enter the low-cost market:11

Proposition 6 (Market attractiveness: endogenous fixed costs) Assume I ≥ I so
that the last entrant does not upgrade. For sufficiently large µ and small G(0), an early
entrant (when t is sufficiently small) prefers to enter the high-cost market 2 (and upgrades
his product when his customer base reaches the critical threshold). A late entrant who never
upgrades, prefers to enter the low-cost market 1.

A large µ does not affect the steady-state mass of firms that enter markets 1 and 2, nor
does it affect long-term profits. On the other hand, it shortens the time to reach market

10In our extension with endogenous prices, upgrading also allows the early entrant to charge higher prices.
For simplicity, we keep prices exogenous in this section, but this would further increase the additional value
future customers yield to early entrants.

11While we state the result for I ≥ I, entry in the high-cost market may be more attractive even when
I < I, and all entrepreneurs eventually upgrade. Intuitively, what matters for our result is that new entrants
do not immediately upgrade. Hence, their value of new customers will be smaller than that of early entrants
who upgrade before them, and are better at monetizing/retaining new customers.
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saturation. It therefore reduces the short-run cost benefits of market 1 and amplifies the
long-term revenue advantage of market 2 as future profits are less discounted. Therefore, a
sufficiently high µ makes market 2 more attractive for early entrants.12 A small initial mass
of entrants G(0), finally, ensures that it will be optimal for an early entrant to upgrade.

Figure 3: Value of entry in two separate markets

Notes. We plot the value of entry as a function of the time of entry for two markets with different fixed
costs, c1 = 0.95 (blue lines) and c2 = 1.05 (orange lines). Tj , j ∈ {1, 2}, indicates the time when entry stops,
and Tuj indicates the last upgrader’s time of entry. The other model parameters are: ρ = 0.1, N = 1, αH =
0.1, αL = 1.0, µ = 0.5, G(0) = 0.05, I = 55.

Figure 3 illustrates Proposition 6 with a numerical example. We plot the value of entry
as a function of time of entry in two markets that differ only in their fixed operating costs.
Market 1 has a lower cost c1 = 0.95, while market 2’s cost is higher at c2 = 1.05. The
values of entry of the two markets are in orange and blue colors, respectively. Note that
both curves have kinks, which coincide with the time of entry of the last upgrader. The
possibility of upgrading changes the attractiveness of the two markets. It is clear that for
entrants who are sufficiently close to T1, the value of entry is higher in low-cost market 1,
and an entrepreneur would prefer market 1 over market 2. This is reversed for early entrants
— upgrading amplifies the benefits of higher entry barriers and less future competition, and
it becomes more attractive to enter market 2.

12We provide a lower bound of µ for early entrants to choose market 2 over market 1 in the proof of
Proposition 6. See Appendix A.
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5.3 Market Entry Choice: General equilibrium analysis

So far, we have assumed that only one entrepreneur has flexibility in his market choice.
What if all entrepreneurs could choose?

Suppose again there are two markets with different entry barriers, c1 < c2. At t = 0, a
mass G(0) of entrepreneurs can enter either market. At any instant after t = 0, there are µ

new entrepreneurs who can enter one of the two markets. The following results hold:

Proposition 7 (Market choice in general equilibrium) Assume all entrepreneurs can
enter either market 1 or market 2:

1. Exogenous fixed costs: If no firms upgrade in either market, there is a unique equilib-
rium in which entrepreneurs are indifferent between entering either market at any time
and entry stops in both markets at the same time T . There are always strictly more
firms in the low-cost market 1 than in the high-cost market 2, and the entry rate in
market 1 is strictly higher before T .

2. Endogenous fixed costs: Given any parameter combinations N, ρ, αL, αH , c1 < c2 and
I > I(ρ, αL, αH , c2), entry stops in both markets at the same time t = T and the
equilibrium number of firms is higher in the low-cost market 1 for sufficiently large t.
However, when µ is sufficiently large and G(0) is sufficiently small, the equilibrium
number of firms is higher in the high-cost market 2 at an earlier time.

Proof. See Appendix Section A.

Our general equilibrium analysis generalizes the key findings of our partial equilibrium
analysis in Sections 5.1 and 5.2, with some key differences.

With only exogenous scale economies, there is more entry in the low-cost market 1 at any
time t. Both markets, however, yield the same NPV at entry. Intuitively, in equilibrium,
at any time t, the excess entry in market 1 from time 0 to T and, hence, the lower future
customer inflows in market 1, exactly offset its lower operating costs. Unlike in partial
equilibrium, both markets also reach saturation at the same time T1 = T2 = T . To see the
intuition for this, note that prior to Ti, when entry ends in market i, the value of entry must
be strictly positive in market i. The value entry at t = Ti, however, must be 0. In turn, this
implies that we must have T1 = T2.

With endogenous scale economies, dynamics can be quite rich, but some general results
can be obtained. As with exogenous scale economies, over the full period in which entry
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occurs, there is cumulatively more entry in the low cost market: G1(T ) > G2(T ). As in
section 5.2, however, there is a sense in which the high-cost market is more attractive for
early entrants who upgrade: given the same conditions, for some t′ < T , there will have been
more cumulative entry in the high cost market 2: G2(t′) > G2(t′).

Figure 4: General equilibrium with entry in two markets: an example

Notes. This figure illustrates an equilibrium when entrepreneurs can choose to enter one of the two markets at any instant.
Market 1 has lower fixed costs than market 2. The upper panel illustrates the equilibrium paths G(t) in both markets. The
lower panel plots the value of entry as a function of time. Parameter values: c1 = 0.95, c2 = 1.05, ρ = 0.1, N = 1, αH =
0.1, αL = 0, I = 55, G1(0) + G2(0) = 0.1, µ1 + µ2 = 0.1.

Figure 4 illustrates some of the rich dynamics that can occur with endogenous fixed costs.
Even though we consider a general equilibrium setting with a continuum of entrepreneurs
optimally choosing which market to enter, this example illustrates how it may be strictly
optimal to enter the high-cost market early on, and subsequently strictly optimal to enter
the low-cost market at a later time. Thus, unlike with exogenous fixed costs, entrants are
not necessarily indifferent in equilibrium.
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Concretely, in the equilibrium of Figure 4, there is initially entry in both markets: for
t < t′, V e

1 (t) = V e
2 (t). Note that this must be the case in any example, as otherwise profits

would be unlimited in the market with no entry, a contradiction. After an initial period of
simultaneous entry, however, there is subsequently only entry in the high-cost market 2: for
t ∈ (t′, t′′), V e

1 (t) < V e
2 (t). As more firms enter market 2, we eventually have again that

V e
1 (t) > V e

2 (t) at which point (at t′′) it becomes strictly optimal to enter the low-cost market
1. Finally, for t > t′′′, there is again entry in both markets. At this point, entrants never
upgrade in any market, so this mirrors the setting with exogenous scale economies.

5.4 Patient Entrepreneurs

In this section, we consider a scenario in which entrepreneurs have different discount rates.
Many factors can lead to such differences. For example, some entrepreneurs aim to build
a long-lasting and successful business, prioritizing long-term profits over short-term gains;
others may have more financial resources or better access to external financing. Should they
enter the market with higher fixed costs?

Consider a single ‘patient entrepreneur’ with a discount rate ρ who arrives at a time t < T ,
where T is decreasing in the fixed operating costs c. The discount rate of all future entrants
is ρ′ ≥ ρ. The following proposition states that the patient entrepreneur may prefer markets
with higher fixed operating costs:

Proposition 8 (Entrepreneur is more patient) Assume I ≥ I so that a late entrant
does not upgrade. The patient entrepreneur’s value of entry in a market increases with the
fixed operating cost c of that market, provided ρ is sufficiently small or ρ′ is sufficiently large.

To see this result formally, suppose the patient entrepreneur does not upgrade and entered
at time te. Applying equation (7), the entrepreneur’s continuation value at time T , when
entry stops, is given by

V (T ; te) = m(T ; te)
ρ + αL

+
∫ ∞

T
e−ρ(t′−T )

(
1

ρ + αL

· N

G(T )

)
dt′ − c

ρ
, (17)

where the second term can be rewritten as:
∫ ∞

T
e−ρ(t′−T )

(
ρ′ + αL

ρ + αL

· c

)
dt′ = ρ′ + αL

ρ + αL

· c

ρ
.

As one can see, the marginal benefit of a higher c can be arbitrarily large with ρ′ > ρ.
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In contrast, with ρ′ = ρ, the second and third terms in the value function cancel out.
Intuitively, for a typical (impatient) entrant, when c increases, the value of higher future
customer inflows (the second term in (17)) is exactly offset by the higher operating costs
(the third term). Since a patient entrepreneur values future customers more than a typical
entrepreneur, however, she then strictly benefits from an increase in c.

This result resonates with the discussions on capital requirements in Porter (1980). He
suggests that large corporations with financial resources have an advantage in entering high-
barrier industries, where such barriers limit the pool of other entrants. Here we model
financial resources as a lower discount rate rather than the capability of paying out a large
up-front cost. We find that entrepreneurs with a lower discount rate have an advantage in
entering the high-barrier market only when their discount rates are lower than the prevailing
ones.

5.5 Other factors that affect market choice

The purpose of this section was to formally study the paradox of entry barriers. As such, our
analysis has focused on the case where market 1 has higher barriers (operating costs) than
market 2, keeping all other parameters fixed. Markets may differ on many other dimensions,
however. Not surprisingly, one can show that, ceteris paribus, an entrepreneur will find entry
in market 1 more attractive than entry in market 2 when (i) demand is higher in market 1
(N1 > N2), (ii) the entry rate is lower in market 1 (µ1 < µ2), and/or (iii) the entrepreneur
is an earlier entrant in market 1 (te,1 < te,2).

6 Conclusion

This paper develops a theory of dynamic entry barriers and persistent performance differences
arising from the interaction between customer inertia and scale economies. Exogenous scale
economies create barriers to entry: New firms eventually stop entering markets even as
incumbents remain profitable, because entrants cannot accumulate customers quickly enough
to cover their fixed operational costs. Endogenous fixed costs create persistent performance
differences: Early entrants with large customer bases invest in quality upgrades, while late
movers, lacking such scale, cannot justify these investments. Ultimately, a firm’s value is
determined by the life-time value of its customer base (its customer capital which a firm
slowly builds up over time), the value of entry (zero after an initial phase of entry) and
the firm’s ability to generate superior value from future customer inflows (which requires
asymmetric investments in quality between early and late movers).
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Our analysis resolves the paradox of entry barriers. High-cost markets have higher future
customer inflows as they see less entry in the long run. Entrepreneurs generally prefer to en-
ter low-cost markets, however, because the zero-profit condition ensures that higher future
customer inflows in high-cost markets are more than offset by higher operating expenses.
Endogenous investments in quality may change this calculus, as we show. Early entrants
that can grow a customer base quickly enough to justify large investments in quality may
rationally choose high-cost markets: since upgraded firms retain customers at higher rates,
they can better monetize the larger stream of future customers in high-cost markets, making
higher barriers-to-entry worthwhile. This explains why some entrepreneurs seek out diffi-
cult markets while others flee to easier ones—timing and upgrade strategy determine which
barriers help versus hinder success.

Our insights may shed light on the expansion strategies of conglomerates. In many mar-
kets, large diversified firms have leveraged their existing customer base when entering new
markets, effectively lowering customer acquisition costs relative to de novo entrants. Classic
examples are Disney, Microsoft, Apple, Google, Netfix and Amazon– firms with very sticky
customer bases that have expanded the range of products and services offered to their cus-
tomers over time. Amazon, for example, is a gigantic e-commerce platform that started
as an online book store. Its prime membership program generates tremendous customer
loyalty and now also offers services such as video streaming, music streaming and at-home
grocery delivery. Netflix famously started as a DVD-by-mail company, focusing on logis-
tics but with an online subscription model. Its main asset, however, was its loyal customer
base who it gradually converted to video streaming and which justified the large invest-
ments required to transform Netflix into a technology and entertainment company.13 More
generally, pre-existing large customer bases allow conglomerates to make investments that
standalone entrants cannot justify, potentially accelerating their dominance across multiple
markets. However, this dynamic may also discourage innovative standalone entrants who,
despite potentially superior products, cannot overcome the customer accumulation disad-
vantage — resulting in markets dominated by large incumbents expanding laterally rather
than by specialized innovators. We leave the study of this trade-off and other applications
of our framework for future work.

13See, e.g., Shih, Willy, and Stephen Kaufman. ”Netflix in 2011.” Harvard Business School Case (2014):
615-007.

31



References

Arcidiacono, Peter, Patrick Bayer, Jason R. Blevins, and Paul B. Ellickson, “Estimation of
Dynamic Discrete Choice Models in Continuous Time with an Application to Retail Competition,” The
Review of Economic Studies, 2016, 83 (3 (296)), 889–931.

Atkeson, Andrew and Patrick J. Kehoe, “Modeling and Measuring Organization Capital,” Journal of
Political Economy, 2005, 113 (5), 1026–1053.
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Appendix

A Proofs

In this appendix, we provide proofs of the main propositions in the paper. We do not cover
Propositions 2 and 5 because we provide the relevant proofs in the paper. We omit detailed
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derivations of some useful expressions and relegate the complete proofs, as well as auxiliary
lemmas and corollaries, to the online appendix.

Proof of Proposition 1.

We first show that incumbents never exit in equilibrium. To see this, assume the first
exit happens at time tx for a firm that entered at te < tx (the firm would not have entered
if te = tx). We argue that there must be new entries between te and tx, i.e., G(tx) > G(te).
If not, G(t) = G(te), ∀t ∈ [te, tx]. We can derive a closed-form expression of m(t; te) on this
segment

m(t; te) =
∫ t

te

N

G(te)
e−α(t−s)ds = N

αG(te)
(
1 − e−α(t−te)

)
.

Therefore, m(t; te) strictly increases in [te, tx]. At the time of exit, the firm must make a
negative flow profit, i.e., m(tx; te) − c ≤ 0. Together with the monotonicity of m(t; te), the
firm makes negative profits at every instant between [te, tx], so it would not have entered.
Therefore, there must be new entries between te and tx.

Consider a new entrant that entered at t′
e ∈ (te, tx) and would optimally exit at t′

x, where
t′
x can potentially equal infinity (an incumbent that never exits). By construction, t′

x ≥ tx

because we have assumed the first exit happens at tx. Denoting the continuation value of a
firm with a customer base m at time t by Vt(m), we examine the continuation value of the
new entrant at tx. In particular,

Vtx(m(tx; t′
e)) =

∫ t′
x

tx

e−ρ(t−tx) (m(t; t′
e) − c) dt.

Proposition 2 implies that m(t; t′
e) < m(t; te), ∀t ≥ t′

e. Therefore, we must have

Vtx(m(tx; t′
e)) ≤

∫ t′
x

tx

e−ρ(t−tx) (m(t; te) − c) dt,

where equality is achieved only when t′
x = tx. The right-hand side of the above inequality is

the value of the earlier entrant (having entered at te) operating from tx to t′
x. We know that

this value cannot be positive; otherwise, this firm would not exit at tx. This implies that
Vtx(m(tx; t′

e)) ≤ 0 and the inequality is strict if t′
x > tx. We derive a contradiction: the later

entrant at t′
e would have exited no later than tx since Vtx(m(tx; t′

e)) < 0. This leaves us with
the only possibility that t′

x = tx.

We now show that t′
x = tx is also contradictory. First, since G(t) is bounded by G(0) and

G(0) + µG(tx) on t ∈ [0, tx], m(t; te) and m(t; t′
e) must be continuous. We know that at the
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time of exit, m(tx; te) − c ≤ 0. Therefore,

m(tx; t′
e) − c < m(tx; te) − c ≤ 0.

From Lemma OA.1.1, we know that m(t; t′
e) can either be increasing or hump-shaped on

t ∈ [t′
e, tx]. Therefore, it is either always below c or it reaches a peak and then hits c from

above at time t′′
x < tx. In the former case, the firm would not have entered because it always

makes negative profits before tx and the continuation value at tx is non-positive. In the latter
case, the firm would have exited before tx because it makes negative profits on t ∈ [t′′

x, tx].

Since we have shown that no firms exit in equilibrium, the mass of firms G(t) is weakly
increasing over time. The value of entry can be written as

V e(te) =
∫ ∞

te

e−ρ(t−te)
[∫ t

te

Ne−α(t−s)

G(s) ds − c

]
dt.

G(t) is weakly increasing, so later entrants face more competition over their life cycles and
V e(te) is weakly decreasing in te.

We now show that there exists a sufficiently large value of Ḡ such that the value of entry
V e(te) must be negative if G(t) ≥ Ḡ, ∀t ≥ te. We can calculate an upper bound

V e(te) ≤
∫ ∞

te

e−ρ(t−te)
[∫ t

te

Ne−α(t−s)

Ḡ
ds − c

]
dt = N

ρ(ρ + α)Ḡ
− c

ρ

Therefore, V e(te) must be negative if Ḡ > N
(ρ+α)c . One implication is that entry must stop

within a finite time. Otherwise, firms enter at a constant rate µ, and the mass of firms will
exceed N

(ρ+α)c at some point. Since we know that V e(T ) = 0 and G(t) = G(T ), ∀t ≥ T , we
can solve G(T ) as in equation (5).

Proof of Proposition 3. To show that firms never exit, we apply similar arguments as
in the proof of Proposition 1. The only complication now is that firms may upgrade, which
changes the path m(t; te). Consider the first exit that happens at tx for a firm entered at
te. We can show that, even if this firm upgrades between te and tx, without new entrants
in [te, tx], m(t; te) monotonically increases. The firm’s exit at tx implies that it has never
made positive profits in [te, tx], and it would not have entered. Therefore, there must be new
entries between te and tx.

Consider a firm that enters at t′
e ∈ (te, tx). Lemma OA.1.2 implies that the later entrant

upgrades later. Therefore, at any time t > t′
e, we still have m(t; t′

e) < m(t; te). This ensures
that the continuation value of the later entrant at time tx is non-positive and leaves us with
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the only possibility that t′
x = tx. To rule out t′

x = tx, we recognize that Lemma OA.1.1 still
holds with upgrading because firms always upgrade when m(t; t′

e) crosses m∗ from below.
Therefore, we have m(t; t′

e) < c on [t′
e, tx] or m(t; t′

e) < c on [t′′
x, tx]. In the former case, it

would not have entered, and in the latter case, it would have exited before tx. Therefore,
firms never exit.

We first consider the case where all firms upgrade. The last entrant faces a constant
number of competing firms, G(T ), after entry. Therefore, without upgrading,

m(t; T ) = N

G(T )αL

(
1 − e−αL(t−T )

)
, ∀t ≥ T,

we can solve for the optimal time for upgrading, tu(T ), by setting m(t; T ) = m∗

tu(T ) = T +
− log

(
1 − G(T )αL

N
m∗
)

αL

.

Note that this also implies a necessary condition of this case, involving an endogenous variable
G(T ): the steady-state customer capital of low-type firms, mL,lr ≡ N

G(T )αL
, is above the cutoff

customer capital, m∗. This ensures that the last entrant’s customer base will reach m∗ at
some point.

As derived in Online Appendix Section OA.1.1, the value of the last entrant can be written
as

F (x) ≡
(

max
tu

∆V (tu; T )
)

+ V e
L(T )

=

(
1 − αLm∗

x

) ρ
αL

ρ + αL

[
N(αL − αH)

G(T )ρ(ρ + αH) − αLI

]
+ x

ρ(ρ + αL) − c

ρ
, (A-1)

where x = N/G(T ) ∈ [αLm∗, ∞) is the steady-state customer arrival rate. It is clear that
F (x) is strictly increasing in x and

lim
x→∞

F (x) = ∞, lim
x→αLm∗

F (x) = αLm∗

ρ(ρ + αL) − c

ρ
.

Therefore, as long as αLm∗

ρ(ρ+αL) − c
ρ

< 0, there exists a unique solution x (thus G(T )) such
that F (x) = 0 in the corresponding range. This is equivalent to the inequality

I < I = (αL − αH)(ρ + αL)c
ραL(ρ + αL) .
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When I ≥ I, we know that we cannot find a solution x such that F (x) = 0. Therefore,
at least some entrants (later entrants) will not upgrade. To ensure that at least some firms
upgrade, we must ensure that the first entrant will upgrade, i.e., maxtu ∆V (tu; 0, I) ≥ 0. To
derive the range of I such that this holds, we first

We first show that maxtu ∆V (tu; 0, I) strictly decreases in I. To see this, consider I1 < I2

and denote the optimal upgrading time under different investment costs as tu(0, I). We have
the following relationship

∆V (tu(0, I2); 0, I2) < ∆V (tu(0, I2); 0, I1) ≤ ∆V (tu(0, I1); 0, I1),

where the first inequality can be obtained by observing equation (OA.1.1) and the relation-
ship between ∆V and ∆Ṽ , and the second inequality comes from the fact that ∆V (tu; 0, I1)
is maximized under tu(0, I1). Next, we show that limI→∞ maxtu ∆V (tu; 0, I) ≤ 0 and
maxtu ∆V (tu; 0, I)|I=I > 0 under sufficiently small G(0). The first inequality results from
the fact that ∆Ṽ (tu; 0) + I does not depend on I, and it is bounded from above by the value
of being a high type from t = 0. However, the value of being a high type is also bounded
from above because G(t) ≥ G(0), ∀t. Therefore, we can find sufficiently large I such that
∆V (tu; 0, I) < 0 for any tu. We obtain limI→∞ maxtu ∆V (tu; 0, I) ≤ 0. To prove the second
inequality, note that when I = 0, upgrading always results in positive value ∆V (tu; 0) > 0
as long as αH < αL. The monotonicity in I and the two bounds imply that there is a unique
Ī such that

max
tu

∆V (tu; 0, Ī) = 0,

and for I > Ī, firms that enter at t = 0 do not upgrade.

We now show that Ī > I for sufficiently small G(0). In particular, we show that the first
entrant’s value of upgrading is arbitrarily large when G(0) is sufficiently small. Consider a
firm that enters at t = 0 and immediately upgrades (tu = 0). The net value of upgrading
can be written as

∆V (0; 0, I) =
∫ ∞

0
e−ρt

∫ t

0

N
(
e−αH(t−s) − e−αL(t−s)

)
G(0) + µs

ds

 dt − I.

In Online Appendix OA.1.1, we show that, for any t, the integral inside the first component
is unbounded when G(0) → 0. Therefore, we must have Ī > I.

Finally, the characterization of equilibrium when I ∈ [I, Ī] follows from the construction
of I and Ī as well as Lemma OA.1.2.
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Proof of Proposition 4. In this proof, we denote the steady-state mass of firms
G(T ) as Gss. Correspondingly, we denote the steady-state mass of H-type firms as GH,ss.
In this proof, we only consider the case of partial upgrading, i.e., I ∈ [I, Ī), or equivalently,
GH,ss/Gss ∈ (0, 1), in both markets. The “corner” cases in which one market has complete
or no upgrading, are generally easier to prove and we relegate them to Online Appendix
OA.1.1.

Part 1: Consider two different market entry rates µ1 < µ2. First, note that there is entry
at t = Tu(µ2) under µ1. This is because µ does not affect the firm’s profit after the last firm
enters therefore does not affect Gss. With lower market entry rates, it takes longer for the
economy to reach the steady state, T (µ1) > T (µ2). Since Tu(µ2) ≤ T (µ2), we must have
Tu(µ2) < T (µ1).

Next, we show that the value of upgrading under µ1 is non-negative for entrants at Tu(µ2).
To see this, note that the equilibrium under µ2 has GH,ss(µ2) entrants at t = Tu(µ2). Consider
an entrant who enters at

te = GH,ss(µ2) − G(0)
µ1

,

under the new entry rate µ1. At this point, the economy has GH,ss(µ2) firms, the same as the
number of firms up to Tu(µ2) in the equilibrium under µ2. In the equilibrium under µ1, G(t)
rises from GH,ss(µ2) to Gss at the rate µ1 from te onward, while in the equilibrium under
µ2, G(t) rises from GH,ss(µ2) to Gss at the rate µ2 from Tu(µ2) onward. Therefore, from the
perspective of the focal entrants at te, the future competition is stronger under µ2 and net
gains from upgrading are higher under µ1. Therefore, the entrant at time te will upgrade in
the equilibrium with µ1. By Lemma OA.1.2, we must have

GH,ss(µ1) ≥ GH,ss(µ2).

The inequality is strict if GH,ss(µ2) < Gss because in this case, the future path under µ2 has
a strictly increasing segment, and the focal entrant under µ1 has a strictly higher value of
upgrading.

Consider two different flow fixed costs, c1 < c2. Denote the entry time of the last upgrader
with te ≡ Tu(c1) < T (c1). There are three sub-cases: (2-a) there is no entry at te under c2, i.e.,
te ≥ T (c2), (2-b) there is still entry at te under c2, i.e., te < T (c2). In case (2-a), consider the
last entrant under c2. It faces constant G(t) = Gss(c2) from T (c2) onward. Under both c1 and
c2, the market entry rate is the same thus G(te) ≥ Gss(c2). Therefore, the firm that enters at
te under c1 faces tougher competition over its life cycle than the last entrant under c2. Since
the former upgrades, the latter must upgrade and GH,ss(c2)/Gss(c2) = 1 > GH,ss(c1)/Gss(c1).
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In case (2-b), since c1 < c2, and the last entrant does not upgrade, by equation (5), we must
have Gss(c1) > Gss(c2). Therefore, the firm that enters at te under c2 faces less competition
over its life cycle (for some part strictly less) than the firm that enters at te under c1.
This gives stronger incentives for it to upgrade. Therefore, GH,ss(c2) ≥ GH,ss(c1), and
GH,ss(c2)
Gss(c2) >

GH,ss(c1)
Gss(c1) .

To prove the remainder of the proposition, note that the steady-state market size can be
written as

Mlr = GH,ssmH,lr + GL,ssmL,lr = (αL − αH)N
αHαL

GH,ss

Gss

+ N

αL

,

where we have used mi,lr = N
Gssαi

, i ∈ {H, L}. The total market size (customers served) is
strictly increasing in GH,ss

Gss
. The average firm size equals Mlr

Gss
. Applying the formula of Gss

in equation (5), we obtain

Mlr

Gss

= (αL − αH)(ρ + αL)c
αHαL

GH,ss

Gss

+ (ρ + αL)c
αL

,

which also increases in GH,ss

Gss
.

Part 2: we first prove that ∂gH(t;µ)
∂µ

< 0 for t > tu0(µ), where tu0(µ) denotes the initial
entrants’ time of upgrading under entry rate µ. Denote the last upgrader’s time of upgrading
under entry rate µ as tu(µ). We know from Corollary OA.1.1 that tu(µ) < T (µ). Due to the
continuity of tu(µ) shown in Lemma OA.1.3, we can find sufficiently small ∆µ, such that
tu(µ − ∆µ) < T (µ). We consider two cases tu(µ − ∆µ) < tu(µ) and tu(µ − ∆µ) > tu(µ). The
knife edge case tu(µ − ∆µ) = tu(µ) can be proved similarly.

First, suppose tu(µ − ∆µ) < tu(µ). Note that tu0(µ) > tu0(µ − ∆µ) because it takes
more time to reach m∗ when entry is faster and market competition is stronger. We can
divide the entire range of time into four segments and discuss the relative size of gH(t; µ) and
gH(t; µ−∆µ), where the segments are divided using the cutoffs tu0(µ−∆µ), tu0(µ), t(µ−∆µ).
On each segment, we compare the incentives of upgrading, GH(t) and G(t) and conclude
that gH(t; µ − ∆µ) ≥ gH(t; µ). Second, suppose tu(µ − ∆µ) > tu(µ). We divide the entire
range of time into five segments using the cutoffs tu0(µ − ∆µ), tu0(µ), t(µ), t(µ − ∆µ) and
again show that gH(t; µ − ∆µ) ≥ gH(t; µ). The inequality is strict on some of the segments.
The detailed derivation is relegated to Online Appendix OA.1.1.

We have proved that in a small neighborhood of µ, gH(t; µ) is decreasing. To show that
the property holds “globally”, we apply the differentiability of gH(t; µ) with respect to µ

from Lemma OA.1.4. Therefore, we must have ∂gH(t; µ)/∂µ < 0. For two arbitrary values
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of µ1 and µ2, we know that gH(t; µ1) = gH(t; µ2) for t < tu0(µ2), and gH(t; µ1) > gH(t; µ2)
for t ∈ [tu0(µ1), tu0(µ2)]. For t > tu0(µ2), we can apply the negative derivative and obtain

gH(t; µ2) = gH(t; µ1) +
∫ µ2

µ1

∂gH(t; µ)
∂µ

dµ < gH(t; µ1).

We now compare the fraction of H-type firms under different flow fixed costs, c1 < c2. We
denote the entry and upgrading time of the last upgrader in market 1 as Tu(c1) and tu(c1),
respectively. We know that competition in market 1 is stronger than in market 2 (strictly
stronger after market 2 reaches its steady state at T (c2)). This has two implications. First,
the value of upgrading, ∆V (tu; te) is higher in market 2 for any (tu, te). Therefore, if an
entrant in market 1 upgrades, it must upgrade in market 2. Second, it takes less time for
any firm in market 2 to reach a customer base of m∗, the necessary condition for upgrading.
Therefore, if a firm in market 1 entered at time te and has upgraded by time tu, the entrant
at te in market 2 must have upgraded at or before tu. For t ≤ tu(c1), we must have

GH(t; c2) ≥ GH(t; c1).

For t > tu(c1), GH(t; c1) = GH,ss(c1) is constant and GH(t; c2) may further increase, so
GH(t; c2) ≥ GH(t; c1) also holds in this range.

On the other hand, G(t; c1) ≥ G(t; c2) and the inequality becomes strict when t > T (c2).
Therefore, we must have gH(t; c1) ≤ gH(t; c2) and the inequality is strict for some t.

Derivative-based Proof of Proposition 5. In the paper, we have provided a proof
of the proposition based on a decomposition of the continuation value. Here, we provide an
alternative proof based on the derivative of the value of a permanent L-type firm, V e

L , with
respect to the flow fixed cost, c. The value of entry of a permanent L-type firm is

V e
L(te) =

∫ ∞

te

e−ρ(t−te)
(∫ t

te

N

G(s)e−(1−αL)(t−s)ds

)
dt − c

ρ
. (A-2)

Its derivative with respect to c is

dV e
L(te)
dc

= d(N/G(T ))
dc

e−ρ(T −te)

ρ(ρ + 1 − αL) − 1
ρ

= e−ρ(T −te) − 1
ρ

≤ 0,

where we have applied N/G(T ) = (ρ + 1 − αL)c in the second equality. We provide a
detailed derivation of the first equality in Online Appendix OA.1.3. Therefore, the value of
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entry decreases with c, and the decrease is strict when te < T . When comparing the value
of entry in two markets with c1 < c2, we just need to integrate this derivative over c in
this range if both markets are not saturated yet. It is straightforward to prove the case in
which market 2 is saturated, but market 1 is not. We relegate the detailed proof to Online
Appendix OA.1.3.

Proof of Proposition 6. We derive the value of a permanently L-type firm and its
derivative with respect to c in the alternative, derivative-based proof of Proposition 5 in
Online Appendix Section OA.1.3. The additional value of upgrading (relative to being a
permanently L-type) at tu discounted to time te can be written as

∆V (tu; te) = αL − αH

(ρ + αH)(ρ + αL)e−ρ(tu−te)m(tu; te)

+
∫ ∞

tu

e−ρ(t−te)

∫ t

tu

N
(
e−αH(t−s) − e−αL(t−s)

)
G(s) ds

dt − e−ρ(tu−te)I

= αL − αH

(ρ + αH)(ρ + αL)e−ρt′
um(t′

u + te; te)

+
∫ ∞

t′
u

e−ρt

∫ t

t′
u

N
(
e−αH(t−s) − e−αL(t−s)

)
G(s + te) ds

dt − e−ρt′
uI, (A-3)

where we obtain the second equality by rewriting the integral defining t′
u = tu − te as the age

of the firm when it upgrades. We denote t′
u(te, c) as the age of a firm born at te in a market

with fixed cost c when it optimally upgrades.

Note that the cutoff I is linear in c following the formula (13), the assumption that the
last entrant does not upgrade implies that I ≥ I(c2) ≥ I(c) ≥ I(c1), ∀c ∈ [c1, c2]. Therefore,
we have the partial upgrading case for all c ∈ [c1, c2]. From Corollary OA.1.1, we know that
upgrading must happen at or before T (c2).

We now consider a firm that upgrades at tu ≤ T (c2). We can take the derivative of
∆V (t′

u(te, c), te; c) with respect to the parameter c:

d∆V (t′
u(te, c), te; c)

dc
= ∂∆V (t′

u, te; c)
∂c

∣∣∣∣
t′
u=t′

u(te,c)
= d(N/G(T ))

dc
× (αL − αH)e−ρ(T −te)

ρ(ρ + αH)(ρ + αL) .

where the first equality is the envelope theorem.14 We provide detailed derivations of the
second equality in Online Appendix OA.1.3. Combining this with the earlier expression of

14When we evaluate the derivative at c = c2, we calculate the left-hand derivative so that the breakdown
of the integral at T − te is well-defined: a smaller c ensures that tu(te, c) − te < T (c) − te for all upgraders.
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dV e
L(te)
dc

, we have

dV e(te)
dc

= d∆V (t′
u(te), te)
dc

+ dV e
L(te)
dc

=
ρ+αL

ρ+αH
e−ρ(T −te) − 1

ρ
. (A-4)

With G(0) sufficiently small as well as I > I, we can ensure that early entrants upgrade
and late ones do not. In Online Appendix OA.1.3, we show that as part of a sufficient
condition for the derivative to be positive, we need sufficiently large µ:

µ >
ρN

(ρ + αL)c · log
(

ρ+αL

ρ+αH

) .

Intuitively, a higher entry rate reduces T and shortens the period between te and T . The
future benefit of less competition is discounted less, and dV e(te)

dc
is more likely to be positive.

When the derivative is positive for all c ∈ [c1, c2], we integrate it over this range and can show
that the value of entry is higher in market 2 than in market 1. However, for a late entrant
that does not upgrade in either market, we apply Proposition 5 and show that market 1 is
more attractive.

Proof of Proposition 7.

Part 1 We first show that the time of entry of the last entrant, Tj, must be the same for
j = 1, 2. To see this, consider the case when T1 > T2. Then the last entrant in market 2
has a strictly lower value of entry at T2 compared to that in market 1. Therefore, it would
have entered market 1 instead of market 2. This leads to a contradiction. We can rule out
T1 < T2 similarly. Therefore, we must have T1 = T2.

In the no-upgrading case, the last entrant does not upgrade, and the steady-state mass
of firms in market j does not depend on the market-specific entry rates and must have the
following expression:

Gss,j = N

(ρ + αL)cj

, j = 1, 2.

We can also use the steady-state mass of firms and total entry rate to calculate Tj:

Tj = G(T ; c1) + G(T ; c2) − G(0)
µ

≡ T, j = 1, 2.
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In Online Appendix OA.1.3, we derive an expression for dV e
L(te)
dte

, which further implies

dV e(te; c2)
dte

− dV e(te; c1)
dte

= c2 − c1 −
(

N

(ρ + αL)G(te; c2)
− N

(ρ + αL)G(te; c1)

)
. (A-5)

We know that V e(te; c2) = V e(te; c1) = 0 at te = T . Substituting in the expressions of Gss,j,
we have dV e

L(te; c2)/dte = dV e
L(te; c1)/dte , so V e(te; c2) = V e(te; c1) in a small neighborhood

of T1. In fact, if we can maintain dV e
L(te; c2)/dte = dV e

L(te; c1)/dte thus firms are indifferent
between entering the two markets at any time point, together with G(te; c2) + G(te; c1) =
G(0) + µte, we obtain solutions to G(te; cj) for te ∈ [0, T ]. The analytical expression for this
solution can be found in Online Appendix equation (OA.1.8).

To show the uniqueness of the equilibrium, we now rule out the possibility of an equi-
librium in which one market has a strictly higher value of entry at some point. Since
T1 = T2, this has to occur before the steady state. Without loss of generality, we assume
that V e(te; c1) > V e(te; c2) for on te ∈ (s, t), s < t < T1, while V e(te; c1) = V e(te; c2) for all
te ≥ t. This implies that G′(te; c1) = µ, G′(te; c2) = 0 on the segment (s, t), and the value of
equation (A-5) becomes positive.

Suppose at some point at or before s, there is entry in market 2 again, which requires
V e(te; c1) ≤ V e(te; c2). Without loss of generality, we assume this happens exactly at
s. However, this leads to an immediate contradiction because V e(t; c1) = V e(t; c2) and
dV e(te;c2)

dte
− dV e(te;c1)

dte
> 0 for all te ∈ (s, t), which implies that V e(te; c1) > V e(te; c2) for all

te ∈ (s, t). Therefore, there is no entry at or before t in market 2. This leads to another
contradiction: according to equation (OA.1.8), we must have G(t; c2) > 0. We can obtain
similar contradictions if we assume V e(te; c2) > V e(te; c1) on a segment te ∈ (s, t). Therefore,
we conclude that there is a unique equilibrium in which entrepreneurs are indifferent between
entering either market at any time, characterized by equation (OA.1.8).

Setting the value of equation (A-5) to zero and taking derivative with respect to te, we
have

G′(te; c1)
G2(te; c1)

= G′(te; c2)
G2(te; c2)

.

Since G(te; c2) < G(te; c1), we establish the comparison of entry rates: G′(te; c2) < G′(te; c1).

Part 2 Since I > I(ρ, αL, αH , c2) > I(ρ, αL, αH , c1), the last entrant does not upgrade in
either market. The steady-state mass of firms, therefore, is the same as in Part 1. Since
G(t; cj) is continuous in t and G(T ; c1) > G(T ; c2), we must have G(t; c1) > G(t; c2) in a
neighborhood of (T − ϵ, T ]. Market 1 has more firms when t is sufficiently large.
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Now suppose G(t; c1) ≥ G(t; c2) for all t. We seek contradictions as well as parameter
combinations that lead to such contradictions. We also choose G(0) to be small enough such
that G(0) < G(T ; c2). We now construct a collection of paths to facilitate our proof. These
paths depend on a hypothetical fixed cost parameter c ∈ [c2, c1] and are defined as follows

Ĝ(t; c) ≡ min{G(t; c1), G(T ; c)},

where G(T ; c) = N
(ρ+αL)c is the steady-state mass of firms under fixed cost c. These paths

coincide with G(t; c1) until it reaches G(T ; c). Since G(T ; c2) ≤ G(T ; c) ≤ G(T ; c1), all these
paths are higher than G(t; c2) but lower than G(t; c1).

We now attempt to derive a contradiction by showing that the value of entry in market
2 is strictly higher than that in market 1 at t = 0 under certain parameter restrictions.
Consider a potential entrant at t = 0 facing a future path of firm mass Ĝ(t; c), and denote
its value of entry as V̂ e(0; c). We restrict G(0) to be sufficiently small so that the initial
entrants in all markets with c ∈ [c1, c2] upgrade. In Online Appendix OA.1.3, we show that
as long as

µ >
ρ(G(T ; c1) + G(T ; c2))

log
(

ρ+αL

ρ+αH

) ,

we can ensure that ∂V̂ e(0;c)
∂c

> 0 for all c ∈ [c1, c2]. Therefore, we have

V e(0; c1) = V̂ e(0; c1) < V̂ e(0; c2) ≤ V e(0; c2),

which implies that G(0; c1) = 0 < G(0; c2) and contradicts the hypothesis that G(t; c2) ≤
G(t; c1) for all t ≥ 0.

Proof of Proposition 8. We first prove a stronger result that when ρ′ is sufficiently
large or when ρ is sufficiently small, we must have the value of a permanent L-type firm
V e

L(te) increases with c. In the proof of Proposition 5, we have obtained

dV e
L(te)
dc

= d(N/G(T ))
dc

e−ρ(T −te)

ρ(ρ + αL) − 1
ρ

.

The steady-state customer arrival rate N/G(T ) is determined by the prevailing discount
factor in the market, ρ′, rather than the focal firm’s discount factor, ρ. Since we assume that
the last entrant does not upgrade, N/G(T ) equals (ρ′ + αL)c. We can simplify the above
expression as

dV e
L(te)
dc

=
ρ′+αL

ρ+αL
e−ρ(T −te) − 1

ρ
.
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When ρ′ → ∞, we have T − te <
N

(ρ′+αL)c
−G(0)

µ
→ 0. Therefore, dV e

L(te)
dc

> 0 when ρ′ is
sufficiently large. When ρ → 0, the numerator of the above expression converges to ρ′/αL,
which also implies dV e

L(te)
dc

> 0.

In the proof or Proposition 6, we have also shown that dV e(te)
dc

≥ dV e
L(te)
dc

. Therefore, dV e(te)
dc

is positive when ρ′ is sufficiently large. Therefore, the value of entry increases with c whether
the entrepreneur upgrades or not.15

B Continuous-time Dynamic Choices by Consumers

In this section, we provide a model of consumers’ dynamic choices in continuous time, which
microfounds the constant depreciation of customer capital at any instant. It also provides a
setup in which we can discuss the firm’s optimal pricing.

B.1 Model

We consider a typical customer of an incumbent firm. A Poisson arrival process determines
when the customer can change his/her consumption decision. At rate λ, the customer decides
whether to stay with the current firm (j = 1) or to take the outside option permanently
(j = 0). Denoting the consumer discount factor as ρc and the flow utility of being attached
to the current firm as u1, we can write the Bellman equation from time t to time t + h as

V c
1 = u1h + 1

1 + ρch
[(1 − λh)V c

1 + λhEmax {V c
1 + ε1, V c

0 + ε0}] , (B-1)

where εj is an instantaneous choice-specific payoff shock. The value of taking the outside
option is V c

0 = u0/ρ. Following Arcidiacono et al. (2016), we assume that the shocks are
i.i.d. across consumers and over time. We also assume Emax {ε1, ε0} is finite to ensure the
value function is bounded. Taking h → 0, we have

V c
1 = u1 + λEmax {V c

1 + ε1, V c
0 + ε0}

ρ + λ
≡ ΓV c

1 , (B-2)

15When c = c∗ is such that the patient entrant at te is indifferent between upgrading and not upgrading,
there is a kink in V e(te; c) as a function of c at c∗. Since a large c leads to upgrading, we have

V e(te; c∗+) = ∆V (tu(te), te; c∗) + V e
L(te; c∗) ≥ V e

L(te; c∗) = V e(te; c∗−).
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where we define the right-hand side of the above equation as a mapping Γ from V c
1 to ΓV c

1 .
Online Appendix Lemma OA.1.5 shows that Γ is a contraction mapping. Therefore, there
is a unique solution V c

1 to equation (B-2).

To obtain a constant customer attrition rate α, we need

α = λ Pr(V c
0 + ε0 ≥ V c

1 + ε1) (B-3)

As a normalization, we can set u0 = V c
0 = 0. Therefore, we can back out the value of V c

1

that is consistent with α, which depends on α, λ and the joint density of (ε0, ε1).

Proposition B-1 For two firms, if αH < αL, we must have V c
1,H > V c

1,L and uc
1,H > uc

1,L.

Proof. When αH < αL, it is immediate from equation (B-3) that V c
1,H > V c

1,L. To indicate
the dependence of the contraction mapping (B-1) on flow utility u1, we now write it as
Γ(V c

1 ; u1). Γ(V c
1 ; u1) strictly increases in u1. Therefore, V c

1,H > V c
1,L must imply that uc

1,H >

uc
1,L.

B.2 Optimal Pricing

We now consider firms’ optimal prices under the above microfoundation. We assume that
firms cannot commit to future prices and that consumers do not expect firms to upgrade.
We solve for a price p that maximizes the value of an existing customer. We assume that
consumers have quasi-linear utility, so we can rewrite the value function as

V c
1 = s + λEmax {V c

1 + ε1, V c
0 + ε0}

ρ + λ

where s ≡ u1 − p is the consumer surplus. The value of matching with a firm is now a
function of u1 − p instead of u1. Therefore, the customer attrition rate is α(u1 − p; · · · ),
where the dots represent other parameters such as λ and the joint distribution of (ε0, ε1).

A firm chooses p by trading off a higher flow profit against a higher rate of the consumer
leaving α(u1 − p). Consider the value of an old customer when the firm charges p,

v(p) = ph + 1
1 + ρh

[1 − α(u1 − p)h] v(p).

Taking h → 0, we have
v(p) = p

ρ + α(u1 − p) ,
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where α(u1 − p) ∈ [0, λ]. We impose a limit price p̄ above which the customer prefers not
to buy anything from the firm and v(p) = 0. This rules out the scenario where the firm
chooses to charge an infinitely high price to extract value from existing customers who do
not immediately have a chance to take the outside option.16

With the restriction that p ∈ (0, p̄], we search for an interior solution. The model predicts
that consumers would derive higher utility from a higher-quality firm, despite the possibility
of higher prices. In addition, we characterize the conditions under which a higher-quality
firm charges a higher price:

Proposition B-2 Suppose there exists p∗ ∈ (0, p̄) that maximizes v(p), we must have

d(u1 − p)
du1

∣∣∣∣
p=p∗

≥ 0.

If we further assume p∗α′′/α′ < −1, where the derivatives are taken with respect to u1 − p at
p = p∗, we have

dp∗

du1
> 0.

16We can also eliminate this scenario if we allow λ to be an increasing function of p and the increase is
fast enough.
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Online Appendix
OA.1 Additional Theoretical Results

In this section, we provide additional theoretical analysis of our main model. We provide
detailed proofs of the propositions along with lemmas and other theoretical results that are
needed for the proofs.

OA.1.1 Proofs of Propositions in Sections 3 and 4 and Additional
Results

The following lemma characterizes the shape of the path m(t; te) and is useful when proving
Proposition 1 and other results in the paper.

Lemma OA.1.1 If G(t) is weakly increasing on t ∈ [te, t1], m(t; te), t ∈ [te, t1] is either
increasing or hump-shaped.

Proof of Lemma OA.1.1. We first show that on any segment [te, t1] where G(t) is
weakly increasing, m(t; te) cannot first decrease and then increase. If this happens, there
exists a local minimum of m(t; te) at t0. We will show that the existence of t0 leads to a
contradiction.

Note that the solution to the law of motion for the customer base, (1), is

m(t; te) = m(te; te)e−α(t−te) +
∫ t

te

N

G(s)e−α(t−s)ds,

which is continuous in t. Since we have assumed G(t) to be weakly increasing, we rule out
mass exits, i.e., discontinuity in G(t) such that G(t−) > G(t+). Therefore, by construction,
G(t) =

∫ t
0 (µ(s) − x(s)) ds, where x(s) is a finite exit rate. Since G(t) is differentiable, it must

be continuous. Given the law of motion, dm(t;te)
dt

= −αm(t; te)+ N
G(t) ,

dm(t;te)
dt

is also continuous
in t. Since t0 is a local minimum, and dm(t;te)

dt
is continuous, we must have dm(t;te)

dt
< 0 for

a neighborhood on the left of t0 and dm(t;te)
dt

> 0 for a neighborhood on the right of t0. We
denote these two neighborhoods as (t0 − h, t0) and (t0, t0 + h) with h > 0. By the Mean
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Value Theorem, we can find h1, h2 ∈ (0, h) such that

m(t0 − h; te) − m(t0; te)
−h

= dm(t; te)
dt

|t=t0−h1 < 0,

mte(t0 + h) − m(t0; te)
h

= dm(t; te)
dt

|t=t0+h2 > 0.

This implies that

m(t0 − h; te) > m(t0; te), m(t0 + h; te) > m(t0; te).

By continuity of m(t; te), there exists h′
1, h′

2 ∈ (0, h) such that

m(t0 − h′
1; te) = m(t0 + h′

2; te) > m(t0; te).

Since G(t) is weakly decreasing, unless m(t; te) is a constant, we must have

N

G(t0 − h′
1)

< αm(t0 − h′
1; te) = αm(t0 + h′

2; te) <
N

G(t0 + h′
2)

.

We obtained a contradiction.

Now we have ruled out the possibility of m(t; te) first decreasing and then increasing,
m(t; te) can be either increasing, decreasing, or hump-shaped (first increasing and then de-
creasing). When m(te; te) = 0, m(t; te) can only be either increasing or hump-shaped. In
general, when m(te; te) can be positive, m(t; te) can be decreasing on t ∈ [te, t1].

Proof of Proposition 1.

We first show that incumbents never exit in equilibrium. To see this, assume the first
exit happens at time tx for a firm that entered at te < tx (the firm would not have entered
if te = tx). We argue that there must be new entries between te and tx, i.e., G(tx) > G(te).
If not, G(t) = G(te), ∀t ∈ [te, tx]. We can derive a closed-form expression of m(t; te) on this
segment

m(t; te) =
∫ t

te

N

G(te)
e−α(t−s)ds = N

αG(te)
(
1 − e−α(t−te)

)
.

Therefore, m(t; te) strictly increases in [te, tx]. At the time of exit, the firm must make a
negative flow profit, so

m(tx; te) − c ≤ 0.

Together with the monotonicity of m(t; te), the firm makes negative profits at every instant
between [te, tx], so it would not have entered. Therefore, there must be new entries between
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te and tx.

Consider a new entrant that entered at t′
e ∈ (te, tx) and would optimally exit at t′

x, where
t′
x can potentially equal infinity. By construction, t′

x ≥ tx because we have assumed the first
exit happens at tx. Denoting the continuation value of a firm with a customer base m at
time t by Vt(m), we examine the continuation value of the new entrant at tx. In particular,

Vtx(m(tx; t′
e)) =

∫ t′
x

tx

e−ρ(t−tx) (m(t; t′
e) − c) dt.

The law of motion of customer base (2) implies that

m(t; t′
e) < m(t; te), ∀t ≥ t′

e.

Therefore, we must have

Vtx(m(tx; t′
e)) ≤

∫ t′
x

tx

e−ρ(t−tx) (m(t; te) − c) dt,

where equality is achieved only when t′
x = tx. The right-hand side of the above inequality

is the value of the earlier entrant (having entered at te) operating from tx to t′
x. We know

that this value cannot be positive, otherwise this firm would not exit at tx. This implies
that Vtx(m(tx; t′

e)) ≤ 0 and the inequality is strict if t′
x > tx. It is contradictory since

Vtx(m(tx; t′
e)) < 0 and this later entrant will exit no later than tx. This leaves us with the

only possibility that t′
x = tx.

We now show that t′
x = tx is also contradictory. First, since G(t) is bounded by G(0) and

G(0) + µG(tx) on t ∈ [0, tx], m(t; te) and m(t; t′
e) must be continuous. We know that at the

time of exit, m(tx; te) − c ≤ 0. Therefore,

m(tx; t′
e) − c < m(tx; te) − c ≤ 0.

From Lemma OA.1.1, we know that m(t; t′
e) can either be increasing or hump-shaped on

t ∈ [t′
e, tx]. Therefore, it is either always below c or it reaches a peak and then hits c from

above at time t′′
x < tx. In the former case, the firm would not have entered because it always

makes negative profits before tx and the continuation value at tx is non-positive. In the latter
case, the firm would have exited before tx because it makes negative profits on t ∈ [t′′

x, tx].

Since we have shown that no firms exit in equilibrium, the mass of firms G(t) is weakly
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increasing over time. The value of entry can be written as

V e(te) =
∫ ∞

te

e−ρ(t−te)
[∫ t

te

Ne−α(t−s)

G(s) ds − c

]
dt.

G(t) is weakly increasing, so later entrants face more competition over their life cycles and
V e(te) is weakly decreasing in te.

We now show that there exists a sufficiently large value of Ḡ such that the value of entry
V e(te) must be negative if G(t) ≥ Ḡ, ∀t ≥ te. We can calculate an upper bound

V e(te) ≤
∫ ∞

te

e−ρ(t−te)
[∫ t

te

Ne−α(t−s)

Ḡ
ds − c

]
dt = N

ρ(ρ + α)Ḡ
− c

ρ

Therefore, V e(te) must be negative if Ḡ > N
(ρ+α)c . One implication is that entry must stop

within a finite time. Otherwise, firms enter at a constant rate µ, and the mass of firms will
exceed N

(ρ+α)c at some point. Since we know that V e(T ) = 0 and G(t) = G(T ), ∀t ≥ T , we
can solve G(T ) as in equation (5).

OA.1.2 Proof of Proposition 3

Before proving the proposition that characterizes the equilibrium when firms can upgrade
from αL to αH , we derive some useful expressions and a lemma. We first derive general
expressions for the customer base and the net gain of upgrading for firms that enter at te

and upgrade at tu. We use ∆m(t; te), t ≥ tu to denote the difference in customer base after
upgrading, ∆Ṽ (te, tu) to denote the net gain of upgrading evaluated at the time of upgrading
t = tu. We have the following:

∆m(t; te) = m(tu; te)
(
e−αH(t−tu) − e−αL(t−tu)

)
+
∫ t

tu

N
(
e−αH(t−s) − e−αL(t−s)

)
G(s) ds

∆Ṽ (tu; te) = αL − αH

(ρ + αH)(ρ + αL)m(tu; te)

+
∫ ∞

tu

e−ρ(t−tu)

∫ t

tu

N
(
e−αH(t−s) − e−αL(t−s)

)
G(s) ds

dt − I. (OA.1.1)

Since we define ∆V (te, tu) as the net gain of upgrading evaluated at the time entry t = te,
we have

∆V (tu; te) = e−ρ(tu−te)∆Ṽ (tu; te).

Taking the derivative of ∆V (tu; te) with respect to tu, we obtain the necessary condition for
upgrading (9). For the second component on the right-hand side of equation (OA.1.1), we
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can further simplify it if tu ≥ T :
∫ ∞

tu

e−ρ(t−tu)

[∫ t

tu

N
(
e−αH (t−s) − e−αL(t−s))

G(s) ds

]
dt = (αL − αH)N

ρ(ρ + αH)(ρ + αL)G(T )

Before we characterize the equilibrium regarding whether some or all entrants upgrade,
we first prove a useful property of the equilibrium:

Lemma OA.1.2 If the firms that entered at time te upgrade, then all firms that entered
before te also upgrade. Earlier entrants wait less time before upgrading.

Proof of Lemma OA.1.2. Suppose that a firm that entered at time te upgrades at tu,
and suppose t′

e < te. We know that

m(tu; t′
e) > m(tu; te)

because the earlier entrants accumulated customers in t ∈ [t′
e, te). From the expression of

∆Ṽ (tu; te), equation (OA.1.1), we obtain immediately

∆Ṽ (tu; t′
e) > ∆Ṽ (tu; te) ≥ 0,

where the last inequality holds because the firm that entered at time te finds it profitable
to upgrade at tu. Therefore, it is also profitable for the earlier entrants to upgrade at tu,
though upgrading at the optimal tu(t′

e) will bring them even larger discounted net gains
∆V (tu(t′

e); t′
e).

To show that earlier entrants wait less time before upgrading, we use the necessary con-
dition for upgrading in Lemma 1. Suppose two entrants enter at te and t′

e, and upgrade at
tu and t′

u, respectively, and te < t′
e. We know that

m(tu; te) = m(t′
u; t′

e) = m∗.

However, since te < t′
e, the competition faced by the later entrant over its life cycle is

strictly stronger than that of the earlier entrant. Therefore, the earlier entrant accumulates
customers at a faster rate compared to the later entrant when they are of the same age, i.e.,
t−te = t′ −t′

e. Therefore, m(t; te) must have crossed m∗ before te +(t′
u −t′

e) if m(t′
u; t′

e) = m∗.
The earlier entrant waits less before upgrading.

Proof of Proposition 3. To show that firms never exit, we apply similar arguments
as in the proof of Proposition 1. The only complication now is that firms may upgrade, and
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it changes the path m(t; te). Consider the first exit that happens at tx for a firm entered at
te. We can show that, even if this firm upgrades between te and tx, without new entrants
in [te, tx], m(t; te) monotonically increases. The firm exiting at tx implies that it has never
made positive profits in [te, tx], and it would not have entered. Therefore, there must be new
entries between te and tx.

Consider a firm that enters at t′
e ∈ (te, tx). Lemma OA.1.2 implies that the later entrant

upgrades later. Therefore, at any time t > t′
e, we still have m(t; t′

e) < m(t; te). This ensures
that the continuation value of the later entrant at time tx is non-positive and leaves us with
the only possibility that t′

x = tx. To rule out t′
x = tx, we recognize that Lemma OA.1.1 still

holds with upgrading because firms always upgrade when m(t; t′
e) crosses m∗ from below.

Therefore, we have m(t; t′
e) < c on [t′

e, tx] or m(t; t′
e) < c on [t′′

x, tx]. In the former case, it
would not have entered, and in the latter case, it would have exited before tx. Therefore,
firms never exit.

We first consider the case where all firms upgrade. The last entrant faces a constant
number of competing firms, G(T ), after entry. Therefore, without upgrading,

m(t; T ) = N

G(T )αL

(
1 − e−αL(t−T )

)
, ∀t ≥ T,

we can solve for the optimal time for upgrading, tu(T ), by setting m(t; T ) = m∗

tu(T ) = T +
− log

(
1 − G(T )αL

N
m∗
)

αL

.

Note that this also implies a necessary condition of this case, involving an endogenous variable
G(T ): the steady-state customer capital of low-type firms, mL,lr ≡ N

G(T )αL
, is above the cutoff

customer capital, m∗. This ensures that the last entrant’s customer base will reach m∗ at
some point.

In this case, the zero-profit condition for the last entrant becomes
(

max
tu

∆V (tu; T )
)

+ V e
L(T ) =

(
max

tu

∆V (tu; T )
)

+ N

G(T )ρ(ρ + αL) − c

ρ
= 0,

where we have explicitly calculated the value of being a low-type firm forever since T :

V e
L(T ) =

∫ ∞

T
e−ρ(t−T )(m(t; T ) − c)dt = N

G(T )ρ(ρ + αL) − c

ρ

6



The gains from optimal upgrading are

max
tu

∆V (tu; T ) =

(
1 − m∗ G(T )αL

N

) ρ
αL

ρ + αL

[
N(αL − αH)

G(T )ρ(ρ + αH) − αLI

]
, (OA.1.2)

where we have substituted in the expression of tu(T ). We now define the entry value of the
last entrant as

F (x) ≡
(

max
tu

∆V (tu; T )
)

+ V e
L(T )

=

(
1 − αLm∗

x

) ρ
αL

ρ + αL

[
N(αL − αH)

G(T )ρ(ρ + αH) − αLI

]
+ x

ρ(ρ + αL) − c

ρ
, (OA.1.3)

where x = N/G(T ) ∈ [αLm∗, ∞) is the steady-state customer arrival rate. It is clear that
F (x) is strictly increasing in N/G(T ) and

lim
x→∞

F (x) = ∞, lim
x→αLm∗

F (x) = αLm∗

ρ(ρ + αL) − c

ρ
.

Therefore, as long as αLm∗

ρ(ρ+αL) − c
ρ

< 0, there exists a unique solution x (thus G(T )) in the
corresponding range. This is equivalent to the inequality

I < I = (αL − αH)(ρ + αL)c
ραL(ρ + αH) .

When I ≥ I, we know that we cannot find a solution G(T ) such that F (G(T )) = 0.
Therefore, at least some entrants (later entrants) will not upgrade. To ensure that at least
some firms upgrade, we must also ensure that the first entrant upgrades. Formally, we need

max
tu

∆V (tu; 0, I) ≥ 0.

We can show that there is a unique Ī such that

max
tu

∆V (tu; 0, Ī) = 0,

and for I > Ī, firms that enter at t = 0 do not upgrade. We first show that maxtu ∆V (tu; 0, I)
strictly decreases in I. To see this, consider I1 < I2 and denote the optimal upgrading time
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under different investment costs as tu(0, I). We have the following relationship

∆V (tu(0, I2); 0, I2) < ∆V (tu(0, I2); 0, I1) ≤ ∆V (tu(0, I1); 0, I1),

where the first inequality can be obtained by observing equation (OA.1.1) and the relation-
ship between ∆V and ∆Ṽ , and the second inequality comes from the fact that ∆V (tu; 0, I1)
is maximized under tu(0, I1). Next, we show that limI→∞ maxtu ∆V (tu; 0, I) ≤ 0 and
maxtu ∆V (tu; 0, I)|I=I > 0 under sufficiently small G(0). The first inequality results from
the fact that ∆Ṽ (tu; 0) + I does not depend on I, and it is bounded from above by the value
of being a high type from t = 0. However, the value of being a high type is also bounded
from above because G(t) ≥ G(0), ∀t. Therefore, we can find sufficiently large I such that
∆V (tu; 0, I) < 0 for any tu. We obtain limI→∞ maxtu ∆V (tu; 0, I) ≤ 0. To prove the second
inequality, note that when I = 0, upgrading always results in positive value ∆V (tu; 0) > 0
as long as αH > αL. In sum, we have shown the existence and uniqueness of Ī.

We now show that Ī > I for sufficiently small G(0). In particular, we show that the first
entrant’s value of upgrading is arbitrarily large when G(0) is sufficiently small. Consider a
firm that enters at t = 0 and immediately upgrades (tu = 0). The net value of upgrading
can be written as

∆V (0; 0, I) =
∫ ∞

0
e−ρt

∫ t

0

N
(
e−αH(t−s) − e−αL(t−s)

)
G(0) + µs

ds

 dt − I.

For any t, the integral inside the first component is unbounded when G(0) → 0. To see this,

∫ t

0

e−αH(t−s) − e−αL(t−s)

G(0) + µs
ds ≥

∫ t1

0

e−αH(t−s) − e−αL(t−s)

G(0) + µs
ds

≥
(

min
s∈[0,t]

e−αH(t−s) − e−αL(t−s)
)

×
∫ t

0

1
G(0) + µs

ds,

where the first minimum exists and is strictly positive because e−αH(t−s) − e−αL(t−s) is a
positive continuous function on [0, t] bounded by (0,1]. In contrast, the second integral is
unbounded when G(0) → 0.

Finally, the characterization of equilibrium when I ∈ [I, Ī] follows from the construction
of I and Ī as well as Lemma OA.1.2.

Corollary OA.1.1 If I ∈ [I, Ī], firms that ever upgrade must do so no later than T . When
I = I, the last upgrader must upgrade at T . When I ∈ (I, Ī], the last upgrader upgrades
strictly before T .
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Proof. We now show that, if tu(te) is finite (i.e., the firm that entered at te upgrades), it
must be below T . Suppose at T , the firm has not upgraded yet, i.e., m(T ; te) < m∗. Since
I ≥ I, we must have

mL,lr = N

G(T )αL

≤ (ρ + αL)c
αL

< m∗ = ρ(ρ + αH)
αL − αH

I.

After T , m(t; te) converges monotonically to mL,lr either from above or below, depending on
whether m(T ; te) is larger or smaller than mL,lr. Therefore, m(t; te) can never reach m∗.

We denote the time of entry of the last upgrader by Tu and the time of upgrading of a
firm that entered at any time te as tu(te). Therefore, the last upgrader’s time of upgrading
is tu(Tu). When I = I, we have mL,lr = m∗. Therefore, m(t; Tu) crosses m∗ at tu(Tu) from
below. Because m∗ is also the steady-state value of m(t; Tu), m(t; Tu) continues to rise to its
peak and then converges monotonically to m∗. Since tu(Tu) < T , we have m(T ; Tu) > m∗.
It is straightforward from equation (2) that m(tu; te) is continuous in te (customer arrival
rates are bounded). Therefore, we can find δ > 0 such that

m(T ; Tu + δ) > m∗.

Therefore, the entrant who enters at Tu +δ will also upgrade. This contradicts the definition
of Tu. We must have tu(Tu) = T .

When I > I, G(T ) and mL,lr are unchanged but m∗ is strictly higher, so mL,lr < m∗.
Suppose that the last upgrader upgrades at T , which implies that m(T ; Tu) = m∗. We know
that after T , m(t; Tu) converges monotonically to mL,lr. Therefore, m(t; Tu) ≤ m∗ for all
t ≥ Tu, and T is a local minimum instead of a local maximum. We obtain a contradiction.
Therefore, tu(Tu) < T .

Before we prove (the second part of) Proposition 4, we prove the continuity of the up-
grading time of the last upgrader, tu(Tu), with respect to µ.

Lemma OA.1.3 Suppose I < Ī. The time of upgrading of the last upgrader, tu(Tu), is
continuous in µ.

Proof. We first show that the entry time of the last upgrader, Tu, is continuous in µ. We
discuss two cases, I < I and I ∈ [I, Ī). In the first case, Tu = T = G(T ;µ)−G(0)

µ
. Setting

F (G(T )) ≡ (maxtu ∆V (tu; T )) + V e
L(T ) = 0, we see that µ does not affect the solution to

G(T ). Therefore, Tu is continuous in µ.
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When I ∈ [I, Ī), we solve Tu by

∆V (tu(Tu, µ); Tu, µ) = 0,

where tu(te, µ) solves

f(tu; te, µ) ≡m(tu; te, µ) − m∗
(

1 − 1
(

dm(tu; te, µ)
dtu

< 0
))

=
∫ tu

te

Ne−αL(tu−s)

G(s) ds − ρ(ρ + αH)I
αL − αH

(
1 − 1

(
dm(tu; te, µ)

dtu

< 0
))

The multiplier to m∗ ensures that we solve for tu when m(tu; te, µ) crosses m∗ from below.
Note that we can write G(s) = G(0) + µs because we know tu ≤ T . Focusing on the rising
segment of m(t; te), the function f(tu; te, µ) is continuously differentiable in tu, te and µ.
Consider ranges of te and µ so that firms ever upgrade. There must be a solution tu(te, µ)
such that f(tu; te, µ) = 0. In addition, tu(te, µ) cannot be the single peak of the function
so ftu(tu; te, µ) > 0. We can then apply the implicit function theorem and conclude that
tu(te, µ) is continuously differentiable.

We can then express the “indirect” value of upgrading by ∆V (tu(te, µ); te, µ) as a function
of te and µ. Since tu(te, µ) is continuously differentiable in te and µ, the indirect value must
be continuously differentiable in the two variables due to the chain rule. In addition, we can
apply the chain rule and calculate

∂∆V (tu(te, µ); te, µ)
∂te

= ∂∆V (tu; te, µ)
∂tu

|tu=tu(te,µ) × ∂tu(te, µ)
∂te

+ ∂∆V (tu; te, µ)
∂te

|tu=tu(te,µ)

= ∂∆V (tu; te, µ)
∂te

|tu=tu(te,µ)

= e−ρ(tu−te)
(

ρ∆Ṽ (tu(te, µ); te, µ) + ∆Ṽ (tu; te, µ)
∂te

|tu=tu(te,µ)

)

= −e−ρ(tu−te) × αL − αH

(ρ + αH)(ρ + αL)
Ne−αL(tu(te,µ)−te)

G(te)
< 0

where we have applied an envelope theorem in the second equality, the relationship ∆V =
e−ρ(tu−te)∆Ṽ in the third inequality and the formula (OA.1.1) and the fact that ∆Ṽ (tu(te, µ); te, µ) =
0 at te = Tu in the fourth equality. Therefore, we can apply the implicit function theorem at
an open neighborhood of µ and obtain a continuously differentiable function Tu(µ). There-
fore, tu(Tu(µ), µ) must be a continuously differentiable (thus continuous) function of µ.

We also need to show the differentiability of the path gH(t; µ) ≡ GH(t; µ)/G(t; µ) with

10



respect to µ. Note that the G(0) initial entrants must simultaneously reach the threshold
customer base m∗. Therefore, if they upgrade, they will do it at the same time. We denote
this time point as tu0, which depends on model parameters such as µ. We prove the following
lemma:

Lemma OA.1.4 The share of H-type firms at any time point t, gH(t; µ), is differentiable
in µ for t > tu0(µ).

Proof. We first characterize the GH(t) as the solution to an ordinary differential equation.
We omit µ for now, but it is understood that equilibrium objects depend on µ. We consider
a firm that enters at te and upgrades at tu, and another firm that enters at t′

e ≥ te. Because
the later entrant faces more competition, it takes longer for it to reach m∗ and we must have
t′
u > tu. Denoting ∆te ≡ t′

e − te and ∆tu ≡ t′
u − tu, we have

m(tu; te) = m(t′
e; te)e−αL(tu−t′

e) + m(tu; t′
e) ⇒

m(tu; t′
e) ≈ m(tu; te) − Ne−αL(tu−te)

G(te)
∆te

m(t′
u; t′

e) = m(tu; t′
e)(1 − αL∆tu) + N

G(tu)∆tu ⇒

m(t′
u; t′

e) − m(tu; te) = −αLm(tu; te)∆tu − Ne−αL(tu−te)

G(te)
∆te + N

G(tu)∆tu (OA.1.4)

To obtain an ODE for GH(t), we use the following relationships

GH(tu) = G0 + µte, GH(t′
u) = G0 + µt′

e.

From these equations, we can easily back out te = GH(tu)−G0
µ

given GH(tu). When t′
e > te,

we can also express ∆te as

∆te = GH(t′
u) − GH(tu)

µ
≈ G′

H(tu)∆tu

µ
. (OA.1.5)

Since m(t′
u; t′

e) = m(tu; te) = m∗, we set the value of equation (OA.1.4) to zero and combine
it with equation (OA.1.5) and GH(tu) = G(te) to solve

G′
H(t)

[
Ne−αL(t−te)

µGH(t)

]
= N

G(t) − αL

αL − αH

(ρ(ρ + αH)I) . (OA.1.6)

where
te = G(te) − G(0)

µ
= GH(t) − G(0)

µ
,
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and the initial condition is GH(tu0(µ)) = G(0).

We can rewrite the ODE as G′
H = f(t, GH , tu0(µ), µ) with the initial condition GH(tu0(µ)) =

G(0). We can first ignore the dependence of tu0 on µ and consider the less restrictive version:

G′
H = f(t, GH , tu0, µ), GH(tu0) = G(0).

Since f is continuously differentiable in all four elements, GH(t, tu0, µ) must be continuously
differentiable. In addition, tu0(µ) must be differentiable with respect to µ because tu0 is the
solution to

m(tu0; 0, µ) =
∫ tu0

0

Ne−αL(tu0−s)

G(s) ds = m∗.

Therefore, GH(t, GH , tu0(µ), µ) must be differentiable with respect to µ due to the chain rule.

Proof of Proposition 4. In this proof, we denote the steady-state mass of firms G(T )
as Gss. Correspondingly, we denote the steady-state mass of H-type firms as GH,ss.

Part 1: Consider two different market entry rates µ1 < µ2. We discuss the impact of
raising µ1 to µ2 in two scenarios: (1) GH,ss(µ2) = 0 and (2) GH,ss(µ2) > 0. In scenario (1),
since GH,ss(µ1) ≥ 0, it is trivial that GH,ss(µ1) ≥ GH,ss(µ2). In scenario (2), denote the entry
time of the last upgrader as Tu(µ2) ≥ 0. We prove that a firm that enters at the same time
under µ1 will upgrade.

First, note that there will be entry at t = Tu(µ2) under µ1. This is because mu does not
affect the firm’s profit after the last firm enters; therefore, it does not affect Gss, whether the
last firm upgrades or not. With lower market entry rates, it takes longer for the economy to
reach the steady state, T (µ1) > T (µ2). Since Tu(µ2) ≤ T (µ2), we must have Tu(µ2) < T (µ1).
Next, we show that the value of upgrading under µ1 is non-negative for entrants at Tu(µ2). To
see this, note that the equilibrium under µ2 has GH,ss(µ2) entrants at t = Tu(µ2). Consider
an entrant who enters at

te = GH,ss(µ2) − G(0)
µ1

,

under the new entry rate µ1. At this point, the economy has GH,ss(µ2) firms, the same as the
number of firms up to Tu(µ2) in the equilibrium under µ2. In the equilibrium under µ1, G(t)
rises from GH,ss(µ2) to Gss at the rate µ1 from te onward, while in the equilibrium under
µ2, G(t) rises from GH,ss(µ2) to Gss at the rate µ2 from Tu(µ2) onward. Therefore, from the
perspective of the focal entrants at te, the future competition is stronger under µ2 and net
gains from upgrading are higher under µ1. Therefore, the entrant at time te will upgrade in
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the equilibrium with µ1. By Lemma OA.1.2, we must have

GH,ss(µ1) ≥ GH,ss(µ2).

The inequality is strict if GH,ss(µ2) < Gss because in this case, the future path under µ2 has
a strictly increasing segment, and the focal entrant under µ1 has a strictly higher value of
upgrading.17

Consider two different flow fixed costs, c1 < c2. We compare the equilibrium in three
cases: (1) GH,ss(c1)/Gss(c1) = 1 (2) GH,ss(c1)/Gss(c1) ∈ (0, 1), and (3) GH,ss(c1) = 0. When
GH,ss(c1)/Gss(c1) = 1, we must have I < I(c1), where I(c1) is the same cutoff defined in
equation (13) with c1 as an explicit parameter. Since I(c) strictly increases with c, we must
have I < I(c1) < I(c2). Therefore, GH,ss(c2)/Gss(c2) = 1 = GH,ss(c1)/Gss(c1).

In the second scenario, early entrants upgrade while late ones do not under c1. We can
follow the same strategy when analyzing the comparative statics with respect to µ. Denote
the entry time of the last upgrader with te ≡ Tu(c1) < T (c1). There are three sub-cases:
(2-a) there is no entry at te under c2, i.e., te ≥ T (c2), (2-b) there is still entry at te under c2,
i.e., te < T (c2), and the last entrant does not upgrade, and (2-c) there is still entry at te and
the last entrant upgrades. In case (2-a), consider the last entrant under c2. It faces constant
G(t) = Gss(c2) from T (c2) onward. Under both c1 and c2, the market entry rate is the same
thus G(te) ≥ Gss(c2). Therefore, the firm that enters at te under c1 faces tougher competition
over its life cycle than the last entrant under c2. Since the former upgrades, the latter must
upgrade and GH,ss(c2)/Gss(c2) = 1 > GH,ss(c1)/Gss(c1). In case (2-b), since c1 < c2, and the
last entrant does not upgrade, by equation (5), we must have Gss(c1) > Gss(c2). Therefore,
the firm that enters at te under c2 faces less competition over its life cycle (for some part
strictly less) than the firm that enters at te under c1. This gives stronger incentive for it to
upgrade, maxtu ∆V (tu; te, c2) > 0. Therefore, GH,ss(c2) ≥ GH,ss(c1), and

GH,ss(c2)
Gss(c2)

>
GH,ss(c1)
Gss(c1)

.

Case (2-c) is trivial because by construction, GH,ss(c2)/Gss(c2) = 1 > GH,ss(c1)/Gss(c1).

In the third scenario, it is trivial that GH,ss(c2)/Gss(c2) ≥ 0 = GH,ss(c1)/Gss(c1). In
addition, since Gss(c2) < Gss(c1), it is possible that the reduction in GH,ss is large and gives

17Formally, the value of upgrading is positive if the entrant at time te under µ1 upgrades at the same age
as the entrant at time Tu(µ2), i.e., ∆V (te + tu(Tu(µ2); µ2) − Tu(µ2); te, µ1) > 0. Due to the continuity of
∆V (tu; te) in both tu and te, in a small neighborhood t′

e ∈ (te, te + ∆t), we have ∆V (te + tu(Tu(µ2); µ2) −
Tu(µ2); t′

e, µ1) > 0.
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firms enough incentives to upgrade so GH,ss(c2) > 0 and the inequality becomes strict.

To prove the remainder of the proposition, note that the steady-state market size can be
written as

Mlr = GH,ssmH,lr + GL,ssmL,lr = (αL − αH)N
αHαL

GH,ss

Gss

+ N

αL

,

where we have used mi,lr = N
Gssαi

, i ∈ {H, L}. The total market size (customers served) is
strictly increasing in GH,ss

Gss
. The average firm size equals Mlr

Gss
. Applying the formula of Gss

in equation (5), we obtain

Mlr

Gss

= (αL − αH)(ρ + αL)c
αHαL

GH,ss

Gss

+ (ρ + αL)c
αL

,

which also increases in GH,ss

Gss
.

Part 2: we first prove that ∂gH(t;µ)
∂µ

< 0 for t > tu0(µ). Denote the last upgrader’s time of
upgrading under entry rate µ as tu(µ). We know from Corollary OA.1.1 that tu(µ) < T (µ).
Due to the continuity of tu(µ) shown in Lemma OA.1.3, we can find sufficiently small ∆µ,
such that tu(µ − ∆µ) < T (µ). We consider two cases tu(µ − ∆µ) < tu(µ) and tu(µ − ∆µ) >

tu(µ). The knife edge case tu(µ − ∆µ) = tu(µ) can be proved similarly.

First, suppose tu(µ − ∆µ) < tu(µ). We can divide the entire range of time into four
segments and discuss the relative size of gH(t; µ) and gH(t; µ − ∆µ). Note that tu0(µ) >

tu0(µ − ∆µ) because it takes more time to reach m∗ when entry is faster and market com-
petition is stronger.

1. When t ∈ [0, tu0(µ − ∆µ)), we have gH(t; µ − ∆µ) = gH(t; µ) = 0.

2. When t ∈ [tu0(µ − ∆µ), tu0(µ)), we have gH(t; µ − ∆µ) > 0 and gH(t; µ) = 0 so
gH(t; µ − ∆µ) > gH(t; µ).

3. When t ∈ [tu0(µ), tu(µ − ∆µ), both GH(t; µ − ∆µ) and GH(t; µ) are rising. However,
since the accumulation of customer capital is faster under µ − ∆µ, it takes less time
for an entrant to reach m∗. Suppose the time of entry corresponding to an upgrader
at time t is t−1

u (t; µ) and t−1
u (t; µ − ∆µ), where t−1

u (·) is the inverse function of tu(te).
We must have

t−1
u (t; µ) < t−1

u (t; µ − ∆µ).

14



Therefore, at time t, we must have

gH(t; µ − ∆µ) = G(0) + (µ − ∆µ)t−1
u (t; µ − ∆µ)

G(0) + (µ − ∆µ)t

>
G(0) + (µ − ∆µ)t−1

u (t; µ)
G(0) + (µ − ∆µ)t >

G(0) + µt−1
u (t; µ)

G(0) + µt
= gH(t; µ)

4. When t ∈ [tu(µ − ∆µ), ∞), we have GH(t; µ − ∆µ) = GH,ss(µ − ∆µ) > GH,ss(µ) ≥
GH(t; µ). Meanwhile, G(t; µ − ∆µ) ≤ G(t; µ). Therefore,

gH(t; µ − ∆µ) > gH(t; µ).

Second, suppose tu(µ − ∆µ) > tu(µ). Figure OA.1.1 illustrates such a case. We divide
the entire range of time into five segments as

1. When t ∈ [0, tu0(µ − ∆µ)), we have gH(t; µ − ∆µ) = gH(t; µ) = 0.

2. When t ∈ [tu0(µ − ∆µ), tu0(µ)), we have gH(t; µ − ∆µ) > 0 and gH(t; µ) = 0 so
gH(t; µ − ∆µ) > gH(t; µ).

3. When t ∈ [tu0(µ), tu(µ)), both GH(t; µ − ∆µ) and GH(t; µ) are rising. We can apply
the same argument as in the previous case #3 for t ∈ [tu0(µ), tu(Tu(µ − ∆µ))) and
obtain gH(t; µ − ∆µ) > gH(t; µ).

4. When t ∈ [tu(µ), tu(µ − ∆µ), we have GH(t; µ) = GH,ss(µ) and GH(t; µ − ∆µ) >

GH(tu(µ); µ − ∆µ). At t = tu(µ), we have

gH(tu(µ); µ − ∆µ) = GH(tu(µ); µ − ∆µ)
G(tu(µ); µ − ∆µ) >

GH(tu(µ); µ)
G(tu(µ); µ) = gH(tu(µ); µ).

15



For t > tu(µ), we can write

gH(t; µ − ∆µ) > gH(tu(µ); µ − ∆µ) × G(tu(µ); µ − ∆µ)
G(t; µ − ∆µ)

= gH(tu(µ); µ − ∆µ) × G(0) + (µ − ∆µ)tu(µ)
G(0) + (µ − ∆µ)t

= gH(tu(µ); µ − ∆µ) × G(0) + µtu(µ)
G(0) + µt

= gH(tu(µ); µ − ∆µ) × G(tu(µ); µ)
G(t; µ)

> gH(tu(µ); µ) × G(tu(µ); µ)
G(t; µ)

> gH(t; µ) × G(tu(µ); µ)
G(t; µ)

The last inequality holds because GH(t; µ) has reached its steady state while G(t; µ)
is still rising.

5. When t ∈ [tu(µ−∆µ), ∞), both GH(t; µ−∆µ) and GH(t; µ) have reached their steady
states, with GH,ss(µ) < GH,ss(µ − ∆µ) according to Proposition 4. Meanwhile, we
know that G(t; µ) ≥ G(t; µ − ∆µ) for all t. Therefore, gH(t; µ − ∆µ) > gH(t; µ).

We have proved that in a small neighborhood of µ, gH(t; µ) is decreasing. To show that
the property holds “globally”, we apply the differentiability of gH(t; µ) with respect to µ

from Lemma OA.1.4. Therefore, we must have

∂gH(t; µ)
∂µ

< 0.

For two arbitrary values of µ1 and µ2, we know that gH(t; µ1) = gH(t; µ2) for t < tu0(µ2),
and gH(t; µ1) > gH(t; µ2) for t ∈ [tu0(µ1), tu0(µ2)]. For t > tu0(µ2), we can apply the negative
derivative and obtain

gH(t; µ2) = gH(t; µ1) +
∫ µ2

µ1

∂gH(t; µ)
∂µ

dµ < gH(t; µ1).

We now compare the fraction of H-type firms under different flow fixed costs, c1 < c2. We
denote the entry and upgrading time of the last upgrader in market 1 as Tu(c1) and tu(c1),
respectively. We know that competition in market 1 is stronger than in market 2 (strictly
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stronger after market 2 reaches its steady state at T (c2)). This has two implications. First,
the value of upgrading, ∆V (tu; te) is higher in market 2 for any (tu, te). Therefore, if an
entrant in market 1 upgrades, it must upgrade in market 2. Second, it takes less time for
any firm in market 2 to reach a customer base of m∗, the necessary condition for upgrading.
Therefore, if a firm in market 1 entered at time te and has upgraded by time tu, the entrant
at te in market 2 must have upgraded at or before tu. For t ≤ tu(c1), we must have

GH(t; c2) ≥ GH(t; c1).

For t > tu(c1), GH(t; c1) = GH,ss(c1) is constant and GH(t; c2) may further increase, so
GH(t; c2) ≥ GH(t; c1) also holds in this range.

On the other hand, G(t; c1) ≥ G(t; c2) and the inequality becomes strict when t > T (c2).
Therefore, we must have gH(t; c1) ≤ gH(t; c2) and the inequality is strict for some t.

In Figure OA.1.1, We compare the paths of GH(t), G(t) and gH(t) under two different
values of µ (µ1 = 0.3 < µ2 = 0.5). As is shown in Panel (b), gH(t) jumps from zero to
a positive value slightly earlier under the lower market entry rate. After that, gH(t; µ1) is
always higher than gH(t; µ2). After the last entrant enters under µ1, both paths converge to
their steady states, and gH,ss(µ1) > gH,ss(µ2), consistent with Proposition 4.
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Figure OA.1.1: Comparative dynamics with respect to entry rate, µ

(a) Mass of Firms and µ (b) Share of H-type Firms and µ

c
(c) Mass of Firms and c (d) Share of H-type Firms and c

Notes. Other parameter values ρ = 0.1, N = 1, αH = 0.1, αL = 0.15, I = 5, G0 = 0.05. We set c = 1 when
varying µ and µ = 0.5 when varying c. T (·) indicates the time of entry of the last entrant, and tu(·) indicates
the time of upgrading of the last upgrader.

OA.1.3 Proofs of Results Related to Entry

Derivative-based Proof of Proposition 5. We take the derivative of the value of a
permanent L-type firm, V e

L , with respect to the flow fixed cost, c. The value of entry of a
permanent L-type firm is

V e
L(te) =

∫ ∞

te

e−ρ(t−te)
(∫ t

te

N

G(s)e−αL(t−s)ds

)
dt − c

ρ
. (OA.1.1)

Alternatively, we can express the integration using firm age (time relative to entry) instead
of absolute time

V e
L(te) =

∫ ∞

0
e−ρt

(∫ t

0

Ne−αL(t−s)

G(te + s) ds

)
dt − c

ρ
.
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One immediate result from this expression is

∂V e
L(te)
∂te

≤ 0,

because G(s + te) decreases with te. The derivative with respect to te is strict before the
steady state, i.e., s < T − te.

We can further decompose the above expression into three terms, V e
L1, V e

L2 and V e
L3:

V e
L1 =

∫ T −te

0
e−ρt

(∫ t

0

N

G(s)e−αL(t−s)ds

)
dt,

V e
L2 =

∫ ∞

T −te

e−ρt

(∫ T −te

0

N

G(s)e−αL(t−s)ds

)
dt,

V e
L3 =

∫ ∞

T −te

e−ρt

(∫ t

T −te

N

G(T )e−αL(t−s)ds

)
dt.

Taking the derivative of each term with respect to c, we have

dV e
L1

dc
= dT

dc
· e−ρ(T −te)

∫ T −te

0

Ne−αL(T −te−s)

G(0) + µ(s + te)
ds

dV e
L2

dc
= −dT

dc
e−ρ(T −te)

∫ T −te

0

Ne−αL(T −te−s)

G(0) + µ(s + te)
ds +

∫ ∞

T −te

e−ρt dT

dc

Ne−αL(t−(T −te))

G(T ) dt

dV e
L3

dc
= −dT

dc
e−ρ(T −te) · 0 +

∫ ∞

T −te

e−ρt

(
−dT

dc

)
Ne−αL(t−(T −te))

G(T ) dt

+ d(N/G(T ))
dc

∫ ∞

T −te

e−ρt
(∫ t

T −te

e−αL(t−s)ds
)

dt

Therefore, we obtain

d(V e
L1 + V e

L2 + V e
L3)

dc
= d(N/G(T ))

dc

∫ ∞

T −te

e−ρt
(∫ t

T −te

e−αL(t−s)ds

)
dt = d(N/G(T ))

dc

e−ρ(T −te)

ρ(ρ + 1 − αL) .

The above derivation suggests that net benefits caused by a marginal change in T are zero.
Intuitively, a small increase in c induces a small reduction in T , but it reallocates profits
between V e

L1, V e
L2, and V e

L3, and has no first-order effect on the sum of the three, due to the
continuity of the firm’s revenue with respect to time. Eventually, the benefit of a higher c

solely comes from the higher profits after the market is saturated, t = T . This benefit is
discounted more when firms enter earlier.

We know that the steady-state customer arrival rate is N/G(T ) = (ρ + αL)c. Since
V e

L(te) = V e
L1 +V e

L2 +V e
L3 − c/ρ, we can show that the benefit from higher steady-state profits
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is dominated by the cost:
dV e

L(te)
dc

= e−ρ(T −te) − 1
ρ

≤ 0.

Therefore, the value of entry decreases with c, and the decrease is strict when te < T .

It is also straightforward to compare the value of entry in two markets with a large gap
in c. Suppose there are two markets, c1 < c2. We know that it takes longer for market 1 to
become saturated than market 2, i.e., T1 > T2. For te < T2, we must have

V e
L(te; c2) − V e

L(te; c1) =
∫ c2

c1

dV e
L(te; c)
dc

dc < 0,

because the integrand is negative on [c1, c2]. When te ∈ [T2; T1), we know that V e
L(te; c1) >

V e
L(T1; c1) = 0 = V e

L(te; c2), where the first inequality comes from the fact that the value of
entry decreases strictly with time before market saturation.

Proof of Proposition 6. In the proof of Proposition 5, we have shown how the value
of entry of a permanently L-type firm varies with c. We now examine the impact of c on the
actual value of entry, V e(te), when upgrading is possible.

The additional value of upgrading at tu discounted to time te can be written as

∆V (tu; te) = αL − αH

(ρ + αH)(ρ + αL)e−ρ(tu−te)m(tu; te)

+
∫ ∞

tu

e−ρ(t−te)

∫ t

tu

N
(
e−αH(t−s) − e−αL(t−s)

)
G(s) ds

dt − e−ρ(tu−te)I

= αL − αH

(ρ + αH)(ρ + αL)e−ρt′
um(t′

u + te; te)

+
∫ ∞

t′
u

e−ρt

∫ t

t′
u

N
(
e−αH(t−s) − e−αL(t−s)

)
G(s + te) ds

dt − e−ρt′
uI, (OA.1.2)

where we obtain the second equality by rewriting the integral in the first one using firm age,
and t′

u = tu − te is the age of the firm when it upgrades. We denote t′
u(te, c) as the age of a

firm born at te in a market with fixed cost c when it optimally upgrades.

Note that the cutoff I is linear in c following the formula (13), the assumption that the
last entrant does not upgrade implies that

I ≥ I(c2) ≥ I(c) ≥ I(c1), ∀c ∈ [c1, c2].

Therefore, we have the partial upgrading case for all c ∈ [c1, c2]. From Corollary OA.1.1, we
know that upgrading must happen at or before T (c2).
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We now consider a firm that upgrades at tu ≤ T (c2). We can take the derivative of
∆V (t′

u(te, c), te; c) with respect to the parameter c:

d∆V (t′
u(te, c), te; c)

dc
= ∂∆V (t′

u, te; c)
∂c

∣∣∣∣
t′
u=t′

u(te,c)
, (OA.1.3)

which is immediate from the envelope theorem.18 We can then calculate this derivative by
taking the derivative of each term on the RHS of equation (OA.1.2). The first and third
terms are not directly affected by c. For the second term, we use the same strategy when we
take the derivative of V e

L in the proof of Proposition 5. We decompose it into three terms,
∆V1, ∆V2, and ∆V3, by breaking the integral at t = T − te:

∆V1 ≡
∫ T −te

t′
u

e−ρt

∫ t

t′
u

N
(
e−αH(t−s) − e−αL(t−s)

)
G(s + te)

ds

 dt

∆V2 ≡
∫ ∞

T −te

e−ρt

∫ T −te

t′
u

N
(
e−αH(t−s) − e−αL(t−s)

)
G(s + te)

ds

 dt

∆V3 ≡
∫ ∞

T −te

e−ρt

∫ t

T −te

N
(
e−αH(t−s) − e−αL(t−s)

)
G(T ) ds

 dt (OA.1.4)

Similar to the earlier derivation of dV e
Li/dc , i = {1, 2, 3}, c does not directly affect

∆V (t′
u(te), te) through T − te. It directly affects ∆V (t′

u(te), te) only through the speed of
customer accumulation after T . Therefore, we have

d∆V (t′
u(te), te)
dc

= ∂

∂c

∫ ∞

T −te

e−ρt

∫ t

T −te

N
(
e−αH(t−s) − e−αL(t−s)

)
G(T ) ds

 dt

= d(N/G(T ))
dc

× (αL − αH)e−ρ(T −te)

ρ(ρ + αH)(ρ + αL) .

18When we evaluate the derivative at c = c2, we calculate the left-hand derivative so that the breakdown
of the integral at T − te is well-defined: a smaller c ensures that tu(te, c) − te < T (c) − te for all upgraders.
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Combining this with the earlier expression of dV e
L(te)
dc

, we have

dV e(te)
dc

= d∆V (t′
u(te), te)
dc

+ dV e
L(te)
dc

= d(N/G(T ))
dc

× (αL − αH)e−ρ(T −te)

ρ(ρ + αH)(ρ + αL) + d(N/G(T ))
dc

× e−ρ(T −te)

ρ(ρ + αL) − 1
ρ

=
ρ+αL

ρ+αH
e−ρ(T −te) − 1

ρ
. (OA.1.5)

Intuitively, less competition in the steady state increases the benefit of upgrading; however,
this benefit is only realized after the firm has actually upgraded.

We now find sufficient conditions for dV e(te)
dc

to be positive and ensure that there exists Ī

such that I < Ī. We set te = 0 so that the derivative must be positive for te ∈ (0, Tu]. Note
that

T = G(T ) − G(0)
µ

=
N

(ρ+αL)c − G(0)
µ

<
N

µ(ρ + αL)c.

Substituting this upper bound into dV e(te)
dc

and letting it be positive, we obtain a sufficient
condition assuming I < Ī

µ >
ρN

(ρ + αL)c · log
(

ρ+αL

ρ+αH

) .

We now need to find conditions such that I < Ī (partial upgrading). We know from Propo-
sition 3 that I is a function of (ρ, αL, αH , c). Given µ, we can find a sufficiently small G(0)
such that Ī > I. When this holds, all I ∈ [I, Ī) satisfy the restriction of partial upgrading
and we must have dV e(te)

dc
> 0.

Finally, the difference in the value of entry in markets 2 and 1 for an early entrant that
upgrades in both markets is

V e(te; c2) − V e(te; c1) =
∫ c2

c1

ρ+αL

ρ+αH
e−ρ(T (c)−te) − 1

ρ
dt > 0

under our parameter restrictions. However, for a late entrant that does not upgrade in either
market, we must have

V e(te; c2) − V e(te; c1) =
∫ c2

c1

e−ρ(T (c)−te) − 1
ρ

dt < 0.

Therefore, the early entrant enters the high-barrier market, while the late entrant prefers
the low-barrier one.
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Proof of Proposition 7.

Part 1 We first show that the time of entry of the last entrant, Tj, must be the same for
j = 1, 2. To see this, consider the case when T1 > T2. Then the last entrant in market 2
has a strictly lower value of entry at T2 compared to that in market 1. Therefore, it would
have entered market 1 instead of market 2. This leads to a contradiction. We can rule out
T1 < T2 similarly. Therefore, we must have T1 = T2.

In the no-upgrading case, the last entrant does not upgrade, and the steady-state mass
of firms in market j does not depend on the market-specific entry rates and must have the
following expression:

Gss,j = N

(ρ + αL)cj

.

We can also use the steady-state mass of firms and total entry rate to calculate Tj:

Tj = G(T ; c1) + G(T ; c2) − G(0)
µ

≡ T. (OA.1.6)

To understand the equilibrium entry rates or the paths G(t; cj), we first check how the
value of entry changes with respect to the time of entry in each market by calculating
dV e

L(te)
dte

. Using the expression of V e
L(te) expressed in absolute time (see Online Appendix

equation (OA.1.1)), we have

dV e
L(te)
dte

= d
dte

[∫ ∞

te

e−ρ(t−te)
(∫ t

te

N

G(s)e−α(t−s)ds

)
dt − c

ρ

]

=
∫ ∞

te

ρe−ρ(t−te)
(∫ t

te

N

G(s)e−α(t−s)ds

)
dt −

∫ ∞

te

e−ρ(t−te) N

G(te)
e−α(t−te)dt

= ρ

(
V e

L(te) + c

ρ

)
− N

(ρ + α)G(te)

The difference in the value of the derivative in the two markets is

dV e(te; c2)
dte

− dV e(te; c1)
dte

= c2 − c1 −
(

N

(ρ + α)G(te; c2)
− N

(ρ + α)G(te; c1)

)
.

We know that V e(te; c2) = V e(te; c1) = 0 at te = T . Substituting in the expressions of Gss,j,
we have dV e

L(te; c2)/dte = dV e
L(te; c1)/dte , so V e(te; c2) = V e(te; c1) in a small neighborhood

of T1. In fact, if we can maintain dV e
L(te; c2)/dte = dV e

L(te; c1)/dte as long as

1
G(te; c2)

− 1
G(te; c1)

= (ρ + α)(c2 − c1)
N

. (OA.1.7)
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In an equilibrium in which entrepreneurs are indifferent between entering either market
at any time, we can solve the mass of firms in each market at time te combining equation
(OA.1.7) and the total mass of firms at time te:

G(te; c2) + G(te; c1) = G(0) + µte.

We can solve

G(te; c1) =
G(0) + µte − 2ξ +

√
(G(0) + µte)2 + 4ξ2

2 ,

G(te; c2) =
G(0) + µte + 2ξ −

√
(G(0) + µte)2 + 4ξ2

2 , (OA.1.8)

where ξ ≡ N
(ρ+α)(c2−c1) .

Taking derivative of equation (OA.1.7) with respect to te, we have

G′(te; c1)
G2(te; c1)

= G′(te; c2)
G2(te; c2)

.

Since G(te; c2) < G(te; c1), we establish the comparison of entry rates: G′(te; c2) < G′(te; c1).

Given the calculation above, it is straightforward that this is the only equilibrium in
which entrepreneurs are indifferent between entering either market at any time. We now
rule out the possibility of an equilibrium in which one market has a strictly higher value
of entry at some point. Since T1 = T2, this has to occur before the steady state. Without
loss of generality, we assume that V e(te; c1) > V e(te; c2) for on te ∈ (s, t), s < t < T1, while
V e(te; c1) = V e(te; c2) for all te ≥ t. This implies that G′(te; c1) = µ, G′(te; c2) = 0 on the
segment (s, t), and

dV e(te; c2)
dte

− dV e(te; c1)
dte

= c2 − c1 −
(

N

(ρ + α)G(te; c2)
− N

(ρ + α)G(te; c1)

)
> 0.

Suppose at some point at or before s, there is positive entry in market 2 again, which
requires V e(te; c1) ≤ V e(te; c2). Without loss of generality, we assume this happens exactly
at s. However, this leads to an immediate contradiction because V e(t; c1) = V e(t; c2) and
dV e(te;c2)

dte
− dV e(te;c1)

dte
> 0 for all te ∈ (s, t), which implies that V e(te; c1) > V e(te; c2) for all

te ∈ (s, t). Therefore, there is no entry at or before t in market 2. This leads to another
contradiction: according to equation (OA.1.8), we must have G(t; c2) > 0. We can obtain
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similar contradictions if we assume V e(te; c2) > V e(te; c1) on a segment te ∈ (s, t). Therefore,
we conclude that there is a unique equilibrium in which entrepreneurs are indifferent between
entering either market at any time, characterized by equation (OA.1.8).

Part 2 Since I > I(ρ, αL, αH , c2) > I(ρ, αL, αH , c1), the last entrant does not upgrade in
either market. The steady-state mass of firms, therefore, is the same as in Part 1. Since
G(t; cj) is continuous in t and G(T ; c1) > G(T ; c2), we must have G(t; c1) > G(t; c2) in a
neighborhood of (T − ϵ, T ]. Market 1 has more firms when t is sufficiently large.

Now suppose G(t; c1) ≥ G(t; c2) for all t. We seek contradictions as well as parameter
combinations that lead to such contradictions. We also choose G(0) to be small enough such
that G(0) < G(T ; c2). We now construct a collection of paths to facilitate our proof. These
paths depend on a hypothetical fixed cost parameter c ∈ [c2, c1] and are defined as follows

Ĝ(t; c) ≡ min{G(t; c1), G(T ; c)},

where G(T ; c) = N
(ρ+αL)c is the steady-state mass of firms under fixed cost c. These paths

coincide with G(t; c1) until it reaches G(T ; c). Since G(T ; c2) ≤ G(T ; c) ≤ G(T ; c1), all these
paths are higher than G(t; c2) but lower than G(t; c1).

We now try to derive a contradiction by showing that the value of entry in market 2 is
strictly higher than that in market 1 at t = 0 under certain parameter restrictions. Consider
a potential entrant at t = 0 facing a future path of firm mass Ĝ(t; c), and denote its value
of entry as V̂ e(0; c). When deriving ∂V e(te)/∂c in Proposition 6, we have calculated the
derivative as in equation (A-4). In addition, this derivation does not depend on the shape of
G(t) before the steady state, because the marginal benefit of a higher c comes solely from the
intensified competition (thus higher profit) after the steady state, which is further amplified
by upgrading. Therefore, equation (A-4) can be directly applied to V̂ e(0; c) and we have

∂V̂ e(0; c)
∂c

=
ρ+αL

ρ+αH
e−ρT (c) − 1

ρ
.

We now find parameter values such that this derivative is positive for all c ∈ [c2, c1]. We
first replace T (c) with its upper bound, T , as expressed in equation (OA.1.6), and also set
G(0) = 0 for simplicity. Setting ∂V̂ e(0;c)

∂c
> 0 with this relaxation, we have

µ >
ρ(G(T ; c1) + G(T ; c2))

log
(

ρ+αL

ρ+αH

) .

Given µ, we can find a sufficiently small G(0) such that the first entrant upgrades in both
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markets. If it upgrades in market 1, it also upgrades under the hypothetical equilibrium
paths Ĝ(t; c) because Ĝ(t; c) ≤ G(t; c1), ∀t. This, in turn, ensures that we can apply the
expression of ∂V̂ e(0; c)/∂c above. Therefore, we have

V e(0; c1) = V̂ e(0; c1) < V̂ e(0; c2) ≤ V e(0; c2),

which implies that G(0; c1) = 0 < G(0; c2) and contradicts the hypothesis that G(t; c2) ≤
G(t; c1) for all t ≥ 0.

OA.1.4 Proofs for Paper Appendix B

Lemma OA.1.5 ΓV c
1 is a contraction with modulus λ

λ+ρ
.

Proof. Note that it is straightforward to show that the mapping from V c
1 to ΓV c

1 satisfies
the monotonicity and discounting in Blackwell’s sufficient conditions for a contraction. To
show that V c

1 is finite, we first consider

V̂ c
0 =

(
1 − λ

ρ + λ

)−1
u0

ρ + λ
+ E(ε0) = u0

ρ
+ E(ε0),

which is the value of taking the outside option (permanently, as an absorbing state) in
discrete time with discount rate λ

ρ+λ
and flow utility u0

ρ+λ
+ ε0. Therefore, we first construct

a discrete-time dynamic choice problem with the solutions V̂ c
1 , V̂ c

0 where

V̂ c
1 =

u1 + λEmax

{
V̂ c

1 + ε1, V̂ c
0 + ε0

}
ρ + λ

, V̂ c
0 = u0

ρ
+ E(ε0).

Under finite Emax(εj), it is straightforward that V̂ c
0 is finite. To show V̂ c

1 is finite, we
consider an alternative problem in which j = 0 is not an absorbing state. In this alternative
problem, we can write the Bellman equation (with shocks) as

ṽc(ε) = max
j∈{0,1}

{
uj

ρ + λ
+ εj + λ

ρ + λ
Emax

{
Ṽ c

1 + ε1, Ṽ c
0 + ε0

}}

Taking expectations with respect to ε, we have a mapping Γ from the integrated value
function (Emax, Eṽc(ε)) to Eṽc(ε). With the assumption that Emax {ε1, ε0} is finite, we can
write

Eṽc(ε) ≤
max{uj}

ρ+λ
+ Emax{εj}

1 − λ
ρ+λ

,
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which is finite. This implies that Ṽ c
j is finite. Since this is a relaxed problem (no absorbing

state), we conclude that V̂ c
1 ≤ Ṽ c

1 is finite. If E(ε0) ≥ 0, then finite V̂ c
1 implies finite V c

1 . If
E(ε0) < 0, we have

V c
1 =

u1 + λEmax

{
V c

1 + ε1, V̂ c
0 − E(ε0) + ε0

}
ρ + λ

≤
u1 + λEmax

{
V c

1 + ε1, V̂ c
0 + ε0

}
− λE(ε0)

ρ + λ
.

It is easy to establish a lower bound for V c
1 , as

V c
1 ≥

u1 + λ
(

u0
ρ

+ E(ε0)
)

1 − λ
ρ+λ

Therefore, V c
1 must be bounded. We can then apply the Blackwell’s sufficient conditions and

conclude that Γ is a contraction mapping with modulus λ
λ+ρ

.

Proof of Proposition B-2. The first-order condition for p is

v′(p) = ρ + α + pα′

[ρ + α]2 = 0, (OA.1.1)

where the derivative of α is taken with respect to the consumer flow surplus u1 − p. For p

to be a local maximum, it needs to satisfy the second-order condition

v′′(p) =
∂
∂p

(ρ + α + pα′)
(ρ + α)2 = pα′′

(ρ + α)2 ≤ 0 ⇒ α′′(u1 − p) ≤ 0.

Taking derivative of equation (OA.1.1) with respect to u1 at p = p∗, we have

dp∗

du1
= 1 + α′

pα′′

∣∣∣∣
p=p∗

.

Using α′′ ≤ 0, we must have dp∗

du1
≤ 1 thus d(u1−p∗)

du1
≥ 0. Under the assumption that p∗α′′/α′ <

−1, we must have
dp∗

du1
> 0.
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OA.2 An Extension: Endogenous Upgrading with Price
Differences

We now consider an extension of the baseline model by allowing H- and L-type firms to
charge different prices, pH ≥ pL. The baseline model in the paper can be seen as the special
case where pH = pL = 1. We can always normalize pL = 1 without loss of generality. We
choose not to so that we can keep track of pL and pH in the formulas.

The following lemma characterizes the timing of upgrading if a firm ever upgrades:

Lemma OA.2.1 If a firm ever upgrades from L-type to H-type, it will happen

1. when m(t; te) first reaches m∗ if m(te; te) < m∗

2. at t = te if m(te; te) ≥ m∗

The cutoff m∗ has a closed-form expression:

m∗ ≡ ρ(ρ + αH)
(ρ + αH)(pH − pL) + (αL − αH)pH

I. (OA.2.1)

Proof. Consider a firm that enters at time te and contemplates whether to upgrade at tu or
tu + ∆t. The gains in profits from upgrading early have two components: (1) the gains in
profits in t ∈ [tu, tu + ∆t] and (2) the gains in profits in t ∈ [tu + ∆t, ∞). When ∆t is small,
we can use the following approximations for s ≤ ∆t

m(tu + s; te) = m(tu; te)[1 − αLs] + N

G(tu)s

m̃(tu + s; te) = m(tu; te)[1 − αHs] + N

G(tu)s

Since the firm charges customers pH instead of pL after upgrading, we write the difference
in flow profit as

pHm̃(tu + s; te) − pLm(tu + s; te) ≈ (pH − pL)m(tu; te),

where we have dropped all terms involving s because their impact on the extra profit between
tu and tu + ∆t is O(∆t2). The newly accrued customers after tu + ∆t generate the same
profits whether the firm upgrades at tu or tu + ∆t. From tu + ∆t onward, the gains in profits
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only come from the extra customer capital at tu + ∆t, ∆m(tu + ∆t; te), which depreciates at
the rate αH after time tu + ∆t. The gain in profits can be written as

∆Π =
∫ ∞

tu+∆t
e−ρ(t−tu−∆t)pHm(tu; te)(αL −αH)∆te−αH(t−tu−∆t)dt = pH

m(tu; te)(αL − αH)∆t

ρ + αH

,

which is O(∆t). The additional costs of upgrading early is I(1 − e−ρ∆t) ≈ ρ∆tI. Equaliz-
ing the additional profits and the additional costs, we obtain the cutoff m∗ as in equation
(OA.2.1):

(pH − pL)m(tu; te)∆t + pH
m(tu; te)(αL − αH)∆t

ρ + αH

= ρI∆t.

The first term in the additional profits is due to higher prices, and the second term is due
to higher customer retention.

Formally, denote the extra NPV of upgrading at time tu evaluated at time tu as ∆Ṽ (tu; te),
we can calculate it as

∆Ṽ (tu; te) =
∫ ∞

tu

e−ρ(t−tu) (pHm̃(t; te) − pLm̃(t; te)) dt

=
(

pH

ρ + αH

− pL

ρ + αL

)
m(tu; te)+∫ ∞

tu

e−ρ(t−tu)
(∫ t

tu

N

G(s)
[
pHe−αH(t−s) − pLe−αL(t−s)

]
ds

)
dt − I (OA.2.2)

The NPV of upgrading evaluated at time te is ∆V (tu; te) = e−ρ(tu−te)∆Ṽ (tu; te). Taking the
derivative with respect to tu, we have

∂∆V (tu; te)
∂tu

= e−ρ(tu−te)
[
ρI −

(
ρ + αL

ρ + αH

pH − pL

)
m(tu; te)

]
, (OA.2.3)

which is positive when m(tu; te) < m∗ and negative when m(tu; te) > m∗.

To ensure that tu is a global maximum of ∆V (tu; te), m(t; te) has to reach m∗ from below
(on its increasing segment), i.e., ∂∆V (t;te)

∂t
|t==t−

u
> 0, ∂∆V (t;te)

∂t
|t==t+

u
< 0. From Lemma OA.1.1

in the paper, we know m(t; te) is either increasing, decreasing or first increasing and then
decreasing. When m(t; te) is increasing on [te, ∞), the firm must upgrade when m(t; te) (first)
crosses m∗ if it ever upgrades. When m(t; te) is decreasing on [te, ∞), the value ∆V (tu; te)
is maximized when tu = te. Finally, when m(t; te) is hump-shaped and crosses m∗ twice at
t1 < t2. We know from equation (OA.2.3), the firm either upgrades at t1 or t = ∞ (t2 is
a local minimum). However, it is clear that limtu→∞ ∆V (tu; te) = 0. Therefore, ∆V (tu; te)
monotonically converges to zero from below in the range of t ∈ [t2, ∞). Therefore, if the

29



firm upgrades, it will only upgrade at t1.

Before proving Proposition OA.2.1, we derive some useful expressions and a lemma. that
characterizes the equilibrium when firms can upgrade from αL to αH , we derive some useful
expressions and a lemma.

For the second component on the right-hand side of equation (OA.2.2), we can further
simplify it if tu ≥ T, G(s) = G(T ), s ≥ tu:∫ ∞

tu

e−ρ(t−tu)
(∫ t

tu

N

G(s)

[
pHe−αH (t−s) − pLe−αL(t−s)

]
ds

)
dt = κ

ρ

N

G(T ) , (OA.2.4)

where κ is defined as
κ ≡ pH

ρ + αH

− pL

ρ + αL

(OA.2.5)

Note that κ can also be used to simplify the cutoff m∗ = ρI
(ρ+αL)κ .

When tu < T , we can perform the integration for t ∈ [tu, T ) and t ∈ [T, ∞) separately
∫ ∞

tu

e−ρ(t−tu)
(∫ t

tu

N

G(s)
[
pHe−αH (t−s) − pLe−αL(t−s)

]
ds

)
dt

=
∫ T

tu

e−ρ(t−tu)
(∫ t

tu

N

G(s)
[
pHe−αH (t−s) − pLe−αL(t−s)

]
ds

)
dt

+
∫ ∞

T

e−ρ(t−tu)
(∫ T

tu

N

G(s)
[
pHe−αH (t−s) − pLe−αL(t−s)

]
ds

)
dt

+
∫ ∞

T

e−ρ(t−tu)
(∫ ∞

T

N

G(s)
[
pHe−αH (t−s) − pLe−αL(t−s)

]
ds

)
dt (OA.2.6)

Note that the third term is the same as equation (OA.2.4) multiplied by e−ρ(T −tu). The
second term can be simplified as

∫ ∞

T

e−ρ(t−tu)
(∫ T

tu

N

G(s)
[
pHe−αH (t−s) − pLe−αL(t−s)

]
ds

)
dt

=pH

∫ ∞

T

e−ρ(t−tu) × e−αH (t−T )
[∫ T

tu

Ne−αH (T −s)

G(s)
ds

]
dt − pL

∫ ∞

T

e−ρ(t−tu) × e−αL(t−T )
[∫ T

tu

Ne−αL(T −s)

G(s)
ds

]
dt

=
e−ρ(T −tu)pH

ρ + αH

[∫ T

tu

Ne−αH (T −s)

G(s)
ds

]
−

e−ρ(T −tu)pL

ρ + αL

[∫ T

tu

Ne−αL(T −s)

G(s)
ds

]

This expression is useful for numerical implementation.

Lemma OA.2.2 If the firms that entered at time te upgrade, then all firms that entered
before te also upgrade.

Proof. Suppose that a firm that entered at time te upgrades at tu, and suppose t′
e < te. We
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know that
m(tu; t′

e) > m(tu; te)

because the earlier entrants accumulated customers in t ∈ [t′
e, te). From the expression of

∆Ṽ (tu; te), equation (OA.2.2), we obtain immediately

∆Ṽ (tu; t′
e) > ∆Ṽ (tu; te) ≥ 0,

where the second inequality holds because the firm that entered at time te finds it profitable
to upgrade at tu. Therefore, it is also profitable for the earlier entrants to upgrade at tu,
though upgrading at the optimal tu(t′

e) will bring them even larger discounted net gains
∆V (tu(t′

e); t′
e).

We characterize the equilibrium of entry and upgrading as follows

Proposition OA.2.1 In an equilibrium, firms enter at constant rate µ until T and no firm
exits. There exist two cutoff investment costs I and Ī such that

1. If I ≤ I, all entrants upgrade. This cutoff has a closed-form expression

I = (ρ + αL)2κc

ραLpL

. (OA.2.7)

2. If I > Ī, no entrants upgrade. This cutoff can be solved from

max
tu

∆V
(
tu; 0, Ī

)
= 0,

where we have written I as a parameter to indicate that the value of upgrading depends
on its cost.

3. When G(0) is sufficiently small, we have I < Ī. If I ∈ (I, Ī], there exists a cutoff
Tu ∈ [0, T ), such that firms that enter at t ∈ [0, Tu] will upgrade and later entrants will
not.

In the second and third cases, the steady-state mass of firms, G(T ), equals

G(T ) = NpL

(ρ + αL)c. (OA.2.8)
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Proof of Proposition OA.2.1. We first consider the case where all firms upgrade. For
the last entrant, it faces a constant number of competing firms, G(T ), after entry. Therefore,
without upgrading,

m(t; T ) = N

G(T )αL

(
1 − e−αL(t−T )

)
, ∀t ≥ T,

we can solve for the optimal time for upgrading, tu(T ), by setting m(t; T ) = m∗

tu(T ) = T +
− log

(
1 − G(T )αL

N
m∗
)

αL

.

Note that this also implies a necessary condition of this case, involving an endogenous variable
G(T ): the steady-state customer capital of low-type firms, mL,lr ≡ N

G(T )αL
, is above the cutoff

customer capital, m∗. This ensures that the last entrant’s customer base will reach m∗ at
some point.

In this case, the zero-profit condition for the last entrant becomes(
max

tu

∆V (tu; T )
)

+ V e
L(T ) = 0,

where the value of being a low-type firm forever since T can be calculated as:

V e
L(T ) =

∫ ∞

T
e−ρ(t−T )(pLm(t; T ) − c)dt = NpL

G(T )ρ(ρ + αL) − c

ρ
. (OA.2.9)

From equations (OA.2.2) and (OA.2.4), the gains from optimal upgrading is

∆V (tu(T ); T ) = e−ρ(tu(T )−T )∆Ṽ (tu(T ); T )

=
(

1 − m∗ G(T )αL

N

) ρ
αL

×
(

κm∗ + κN

ρG(T ) − I

)

=
(

1 − m∗ G(T )αL

N

) ρ
αL

×
(

κN

ρG(T ) − αL

ρ + αL

I

)

Denote F (G(T )) ≡ (maxtu ∆V (tu; T )) + V e
L(T ) where G(T ) ∈

(
0, N

αLm∗

)
. One can show that

F (G(T )) is strictly decreasing in G(T ) and

lim
G(T )→0

F (G(T )) = ∞, lim
G(T )→ N

αLm∗

F (G(T )) = V e
L(T ) = αLpLm∗

ρ(ρ + αL) − c

ρ
.

Note that maxtu ∆V (tu; T ) → 0 when G(T ) = N
αLm∗ . This holds because when G(T ) =
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N
(1−αL)m∗ , mL,lr = m∗ and m(t; T ) converges to m∗ from below. Therefore, ∆V (tu; T ) strictly
increases in tu and converges to its maximum when tu → ∞. In addition, ∆Ṽ (tu; T ) =
κm(tu; T ) + κN

ρG(T ) − I is bounded because m(tu; T ) ∈ [0, m∗). Therefore, ∆V (tu; T ) =
e−ρ(tu−T )∆Ṽ (tu; T ) → 0 when tu → ∞.

Therefore, as long as αLpLm∗

ρ(ρ+αL) − c
ρ

< 0, there exists a unique solution G(T ). This is
equivalent to mL,lr > m∗ under G(T ) = NpL

(ρ+αL)c , as well as the inequality

I < I ≡ (ρ + αL)2κc

ραLpL

.

When I ≥ I, we know that we cannot find a solution G(T ) such that F (G(T )) = 0.
Therefore, at least some entrants (later entrants) will not upgrade. To ensure that at least
some firms upgrade, we need to ensure that the first entrant will upgrade because of Lemma
OA.2.2. Formally, we need

max
tu

∆V (tu; 0, I) ≥ 0.

We can show that there is a unique Ī such that

max
tu

∆V (tu; 0, Ī) = 0,

and for I > Ī, firms that enter at t = 0 do not upgrade. We first show that maxtu ∆V (tu; 0, I)
strictly decreases in I. To see this, consider I1 < I2 and denote the optimal upgrading time
under different investment costs as tu(0, I). We have the following relationship

∆V (tu(0, I2); 0, I2) < ∆V (tu(0, I2); 0, I1) ≤ ∆V (tu(0, I1); 0, I1),

where the first inequality can be obtained by observing equation (OA.2.2) and the relation-
ship between ∆V and ∆Ṽ , and the second inequality comes from the fact that ∆V (tu; 0, I1)
is maximized under tu(0, I1). Next, we show that limI→∞ maxtu ∆V (tu; 0, I) ≤ 0 and
maxtu ∆V (tu; 0, I)|I=0 > 0 under sufficiently small G(0). The first inequality results from
the fact that ∆Ṽ (tu; 0) + I does not depend on I, and it is bounded from above by the value
of being a high type from t = 0. However, the value of being a high type is also bounded
from above because G(t) ≥ G(0), ∀t. Therefore, we can find sufficiently large I such that
∆V (tu; 0, I) < 0 for any tu. We obtain limI→∞ maxtu ∆V (tu; 0, I) ≤ 0. To prove the second
inequality, note that when I = 0, upgrading always results in positive value ∆V (tu; 0) > 0
as long as αH > αL and/or pH > pL. In sum, we have shown the existence and uniqueness
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of Ī.

We now show that Ī > I for sufficiently small G(0). In particular, we show that the first
entrant’s value of upgrading is arbitrarily large when G(0) is sufficiently small. Consider a
firm that enters at t = 0 and immediately upgrades (tu = 0). The net value of upgrading
can be written as

∆V (0; 0, I) =
∫ ∞

0
e−ρt

[∫ t

0

N

G(0) + µs

(
pHe−αH(t−s) − pLe−αL(t−s)

)
ds

]
dt − I.

For any t, the integral inside the first component is unbounded when G(0) → 0. To see this,

∫ t

0

pHe−αH(t−s) − pLe−αL(t−s)

G(0) + µs
ds ≥

(
min

s∈[0,t]
pHe−αH(t−s) − pLe−αL(t−s)

)
×
∫ t

0

1
G(0) + µs

ds,

where the first minimum exists and is strictly positive because pHe−αH(t−s) − pLe−αL(t−s) is a
positive continuous function on [0, t], while the second integral is unbounded when G(0) → 0.

Finally, the characterization of equilibrium when I ∈ [I, Ī) follows from the construction
of I and Ī as well as Lemma OA.2.2.

Corollary OA.2.1 If I ∈ [I, Ī], firms that ever upgrade must do so no later than T . When
I = I, the last upgrader must upgrade at T . When I ∈ (I, Ī], the last upgrader upgrades
strictly before T .

Proof. The corollary and its proof are the same as Corollary OA.1.1, because the gener-
alization to different prices does not alter the equivalence between mL,lr = m∗ and I = I.

Lemma OA.2.3 Suppose I < Ī. The time of upgrading of the last upgrader, tu(Tu), is
continuous in µ.

Proof. The lemma is the same as OA.1.3, and the proof is also similar. As with the baseline
model, we can show that the entry time of the last upgrader, Tu, is continuous in µ in the
two cases, I < I and I ∈ [I, Ī). We use the same strategy to show that the indirect value
of upgrading ∆V (tu(te, µ); te, µ) is continuously differentiable in te and µ. Given equation
(OA.2.2), the derivative of ∆V (tu(te, µ); te, µ) with respect to te is now

∂∆V (tu(te, µ); te, µ)
∂te

= −e−ρ(tu−te) · κ
Ne−αL(tu(te,µ)−te)

G(te)
< 0
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Therefore, we can set ∆V (tu(te, µ); te, µ) = 0 and apply the implicit function theorem to an
open neighborhood of µ and obtain a continuously differentiable function Tu(µ). Therefore,
tu(Tu(µ), µ) must be a continuously differentiable (thus continuous) function of µ.

Lemma OA.2.4 The share of H-type firms at any time point t, gH(t; µ), is differentiable
in µ for t > tu0(µ).

Proof. The lemma is the same as Lemma OA.1.4. The proof is also the same because
allowing for different prices does not alter the expressions for m(t; te) and G(t), thus none
of the expressions in the proof for Lemma OA.1.4 changes. The only difference is that now
we have a different threshold m∗, which implies a different initial value tu0(µ).

Proposition OA.2.2 1. A higher market entry rate µ or a lower flow fixed cost c reduces
the share of H-type firms in the steady state. The decrease is strict when I ≥ I.

2. Assume I ≥ I. The share of H-type firms at any time t, gH(t), decreases in µ and
increases in c. The decrease/increase is strict for sufficiently large t.

Proof. The statements and proofs are the same as Proposition 4. The key to the proof
is that future competition reduces the incentives for upgrading, which remains unchanged
when we allow for different prices. The auxiliary lemma used in the proof, Lemma OA.2.4,
has also been proved earlier.
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OA.3 Discerning Customers

In this section, we extend our model to allow the H-type firms to have not only a lower
customer attrition rate but also an advantage in attracting new customers over L-type firms.
We assume that the customer arrival rate of the H-type firms is γ times that of the L-type
firms (γ ≥ 1). Denoting the mass of H- and L-type firms at time t as GH(t) and GL(t), the
customer arrival rates must satisfy

AH(t) = γN

γGH(t) + GL(t) , AL(t) = N

γGH(t) + GL(t) . (OA.3.1)

These rates ensures that AH(t)GH(t) + AL(t)GL(t) = N and AH(t) = γAL(t). One can
microfound these customer arrival rates assuming that each new customer chooses his/her
favorite product from all the H- and L-type firms in a random utility model (Train (2003)).
All firms of the same type deliver the same representative utility, and γ > 1 implies that
H-type firms deliver higher utility on average.19 We define the quality-adjusted mass of firms,

GQ(t) ≡ γGH(t) + GL(t) = (γ − 1)GH(t) + G(t). (OA.3.2)

This variable summarizes the competitiveness of the market at time t. Our baseline model
in Section 4 of the paper is a special case of the current model with γ = 1.

We make two assumptions, one rules out exits on the equilibrium path and one rules out
firm upgrading upon entry:

Assumption OA.3.1 No firms ever exit in equilibrium.

Assumption OA.3.2 The mass of initial entrants, G(0), is larger than a threshold G0:

G(0) > G0 ≡ (γ − 1)N
ρ(ρ + αH)I . (OA.3.3)

Note that the no-exit assumption also ensures that G(t) and GQ(t) weakly increase on [0, ∞).

19For example, we can assume that each new customer draws an idiosyncratic unobserved utility for each
variety provided by the current GH(t) H-type and GL(t) L-type firms. The shock is independently, identically
distributed extreme value. The common utility across consumers for a j-type variety is V c

1,j , j ∈ {H, L} as
derived in Appendix 4.3 of the paper. The probability that a new customer chooses a j-type firm becomes

Gj(t)e
V c

1,j

GH (t)e
V c

1,H +GL(t)e
V c

1,L
, which is consistent with (OA.3.1) if γ = eV c

1,H −V c
1,L .
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With these two assumptions, we can characterize a necessary condition for optimal up-
grading as follows:

Lemma OA.3.1 For each time t, there exists a cutoff customer capital level

m∗(t) ≡
ρ(ρ + αH)I − (γ−1)N

GQ(t)

αL − αH

(OA.3.4)

If a firm ever upgrades from L- to H-type, it will happen when m(t; te) crosses m∗(t) from
below, i.e., m(t; te) ≤ m∗(t) for a small neighborhood t ∈ (tu − ∆t, tu) and m(t; te) ≥ m∗(t)
for a small neighborhood t ∈ (tu, tu + ∆t), if m∗(te) > 0.

Proof. Consider a firm that enters at time te and contemplates whether to upgrade at tu

or tu + ∆t. The gains in profits from upgrading early have two components: (1) the gains in
profits in t ∈ [tu, tu + ∆t] and (2) the gains in profits in t ∈ [tu + ∆t, ∞). When ∆t is small,
we can use the following approximations for s ≤ ∆t

m(tu + s; te) = m(tu; te)[1 − αLs] + AL(tu)s

m̃(tu + s; te) = m(tu; te)[1 − αHs] + AH(tu)s

Therefore, the difference in profits due to upgrading is

∆m(tu + s; te) = m(tu; te)(αL − αH)s + (γ − 1)N
GQ(tu) s.

It is immediate that the gain in profits in t ∈ [tu, tu +∆t) is O(∆t2). This is because the time
length is ∆t and the maximum difference in instantaneous profit is m(tu; te)(αL − αH)∆t +
(γ−1)N
GQ(tu) ∆t (discount rate can be ignored due to small ∆t). The newly accrued customers
after tu + ∆t generate the same profits whether the firm upgrades at tu or tu + ∆t. From
tu + ∆t onward, the gains in profits only come from the extra customer capital at tu + ∆t,
∆m(tu + ∆t; te), which depreciates at the rate αH after time tu + ∆t. The gain in profits
can be written as

∆Π =
∫ ∞

tu+∆t
e−ρ(t−tu−∆t)∆m(tu + ∆t; te)e−(1−αH)(t−tu−∆t)dt

=
(

(αL − αH)m(tu; te)
ρ + αH

+ (γ − 1)N
(ρ + αH)GQ(tu)

)
∆t,

which is O(∆t). Therefore, we can ignore the gain in profits between tu and tu + ∆t. The
additional costs of upgrading early are I(1−e−ρ∆t) ≈ ρ∆tI. Equalizing the additional profits
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and the additional costs, we obtain the cutoff m∗ as in equation (OA.3.4).

Formally, denote the extra NPV of upgrading at time tu evaluated at time tu as ∆Ṽ (tu; te),
we can write

∆Ṽ (tu; te) = (αL − αH)m(tu; te)
(ρ + αL)(ρ + αH) +

∫ ∞

tu

e−ρ(t−tu)
∫ t

tu

AH(s)e−αH(t−s)dsdt

−
∫ ∞

tu

e−ρ(t−tu)
∫ t

tu

AL(s)e−αL(t−s)dsdt − I. (OA.3.5)

The derivative of the extra NPV of upgrading evaluated at time te, ∆V (tu; te) = e−ρ(tu−te)∆Ṽ (tu; te),
is as follows:

∂∆V (tu; te)
∂tu

= e−ρ(tu−te)

ρI −
(αL − αH)m(tu; te) + (γ−1)N

GQ(tu)

ρ + αH

 , (OA.3.6)

which is positive when m(tu; te) < m∗(tu) and negative when m(tu; te) > m∗(tu). To ensure
that tu is a global maximum of ∆V (tu; te), m(t; te) has to reach m∗ from below, i.e., ∂∆V (t;te)

∂t
≥

0 for a small neighborhood t ∈ (tu − ∆t, tu), and ∂∆V (t;te)
∂t

≤ 0 for a small neighborhood
t ∈ (tu, tu + ∆t).

Similar to our baseline model there is another possibility of local maximum: m(te; te) ≥
m∗(te) so the value of upgrading has a local maximum at te, which may lead to upgrading
upon entry. Since we assume m(te; te) = 0, this is equivalent to m∗(te) ≤ 0. Due to Assump-
tion OA.3.1, m∗(t) is weakly increasing. The restriction G(0) > G0 in equation (OA.3.3) is
equivalent to m∗(0) > 0, which implies m∗(te) > 0 = m(te; te) for all te. Therefore, we can
rule out this possibility.

When there is no quality difference between H- and L-type firms (γ = 1), the cutoff in
equation (OA.3.4) becomes the same as the cutoff in equation (9) of the paper. When γ > 1,
the cutoff becomes time-varying and weakly increasing as long as GQ(t) is weakly increasing.
Since upgrading is a one-time decision, GH(t) must be weakly increasing. From equation
(OA.3.2), a sufficient condition for GQ(t) to be weakly increasing is that no firm exits along
the transition path. Taking everything else as given, a larger quality difference between H-
and L-type firms (a higher γ) will lower the cutoff and give firms more incentives to upgrade.

Lemma OA.3.2 GH(t) and m∗(t) are continuous on [0, ∞).

Proof. This is a direct result of Lemma OA.3.1 and the fact that m(t; te) is continuous.
m(t; te) is continuous because it is a solution to the ODE (1) in the paper, where the arrival
rate of new customers is bounded – GQ(t) is bounded by [G(0), γG(Te)].
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Suppose GH(t) has a jump at t > 0, i.e., we have GH(t+) > GH(t−), which implies
m∗(t+) > m∗(t−) from equation (OA.3.4).

The jump in GH(t) implies a positive mass of firms upgrade at time t. Local optimality
requires that ∆V (t; te) increases before t and decreases after t. Therefore, for a sufficiently
small value of ∆t, we have m(s; te) ≤ m∗(s), s ∈ (t − ∆t, t) and m(s; te) ≥ m∗(s), s ∈ (t, t +
∆t). However, due to the gap m∗(t+) > m∗(t−), we must have m(s1; te) > m(s2; te), s1 ∈
(t, t + ∆t), s2 ∈ (t − ∆t, t). This is contradictory to the fact that m(t; te) is continuous.

We have proved that GH(t) is continuous. It is immediate that m∗(t) is continuous from
equations (OA.3.2) and (OA.3.4).

Assumption OA.3.3 For a firm that enters after t = 0, if it ever upgrades, it upgrades at
the earliest time when the conditions in Lemma OA.3.1 are met.

This assumption restricts the set of optimal upgrading time to be a singleton for firms with
te > 0. In general, we need to know more about the functions m(t; te) and m∗(t) to prove
the set is a singleton.

Lemma OA.3.3 If late entrants upgrade, early entrants must upgrade. Among upgrading
firms, earlier entrants upgrade strictly earlier.

Proof. Consider the value of upgrading of a firm that enters at te < t′
e at the time when

the later entrant optimally upgrades, denoted as t′
u. Using equation (OA.3.5), we have

∆Ṽ (t′
u; te) = (αL − αH)m(t′

u; te)
(ρ + αH)(ρ + αL) − I +

[
∆Ṽ (t′

u; t′
e) − (αL − αH)m(t′

u; t′
e)

(ρ + αH)(ρ + αL) + I

]

= (αL − αH)[m(t′
u; te) − m(t′

u; t′
e)]

(ρ + αH)(ρ + αL) + ∆Ṽ (t′
u; t′

e)

where the terms in the bracket in the first equation represent the additional value accumu-
lated due to new customers after t′

u, which does not depend on the history before t′
u, thus

independent of the time of entry. In addition, we can write the customer base at time t′
u

m(t′
u; te) = m(t′

e; te)e−αL(t′
u−t′

e) + m(t′
u; t′

e) > m(t′
u; t′

e).

Therefore,
∆Ṽ (t′

u; te) > ∆Ṽ (t′
u; t′

e) ≥ 0.
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This ensures that the earlier entrant will upgrade, though the optimal upgrading time can
differ from t′

u.

We now prove that t′
u > tu. We rely on Assumption OA.3.3. Because the earlier entrant

enters at te and upgrades at tu, we know that m(t; te) ≤ m∗(t) for all t ∈ [te, tu]. Given the
law of motion for the customer capital, we know that

m(t; t′
e) < m(t; te) ≤ m∗(t), ∀t ∈ [t′

e, tu]

Therefore, the later entrant does not upgrade between [t′
e, tu] and t′

u > tu.

Lemma OA.3.4 Under the assumptions OA.3.1, OA.3.2 and OA.3.3, the path of GH(t)
can be characterized by three cutoffs tu0,0, tu0,1 and t̄u and two ODEs

1. t ∈ [0, tu0,0], no firm upgrades so GH(t) = 0.

2. t ∈ (tu0,0, tu0,1], initial entrants are indifferent between upgrading earlier and later.
GH(t) can be characterized by the following ODE:

G′
H(tu) × (γ − 1)2N

(αL − αH)GQ(tu)2

= N

GQ(tu) − αL

αL − αH

(
ρ(ρ + αH)I − (γ − 1)N

GQ(tu)

)
− (γ − 1)Nµ1(tu ≤ Te)

(αL − αH)GQ(tu)2 . (OA.3.7)

3. t ∈ (tu0,1, t̄u), GH(t) can be characterized by the following ODE:

G′
H(tu)

[
(γ − 1)2N

(αL − αH)GQ(tu)2 + Ne−αL(tu−te)

µGQ(te)

]

= N

GQ(tu) − αL

αL − αH

(
ρ(ρ + αH)I − (γ − 1)N

GQ(tu)

)
− (γ − 1)Nµ1(tu ≤ Te)

(αL − αH)GQ(tu)2 . (OA.3.8)

where

te = G(te) − G(0)
µ

= GH(tu) − G(0)
µ

, GQ(te) = (γ − 1)GH(te) + GH(tu).

The initial condition is GH(tu0,1) = G(0).

4. t ∈ [t̄u, ∞), no firm upgrades and GH(t) = GH,ss

Proof. To derive GH(t) after tu0,0, we consider a firm that enters at te and upgrades at tu,
and another firm that enters at t′

e ≥ te and upgrades at t′
u > tu (see Lemma OA.3.3). Note
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that we have ruled out multiplicity in optimal upgrading time using Assumption OA.3.3
when t′

e > te. Denoting ∆te ≡ t′
e − te and ∆tu ≡ t′

u − tu, we have

m(tu; te) = m(t′
e; te)e−αL(tu−t′

e) + m(tu; t′
e) ⇒

m(tu; t′
e) ≈ m(tu; te) − Ne−αL(tu−te)

GQ(te)
∆te

m(t′
u; t′

e) = m(tu; t′
e)(1 − αL∆tu) + N

GQ(tu)∆tu ⇒

m(t′
u; t′

e) − m(tu; te) = −αLm(tu; te)∆tu − Ne−αL(tu−te)

GQ(te)
∆te + N

GQ(tu)∆tu (OA.3.9)

To obtain an ODE for GH(t), we use the following relationships

GH(tu) = G0 + µte, GH(t′
u) = G0 + µt′

e.

From these equations, we can easily back out te = GH(tu)−G0
µ

given tu, GH(tu). When t′
e > te,

we can also express ∆te as

∆te = GH(t′
u) − GH(tu)

µ
≈ G′

H(tu)∆tu

µ
. (OA.3.10)

Applying the cutoff equation (OA.3.4), we have

m(t′
u; t′

e) − m(tu; te) = (γ − 1)N
αL − αH

(
1

GQ(tu) − 1
GQ(t′

u)

)
=

(γ − 1)NG′
Q(tu)

(αL − αH)GQ(tu)2 ∆tu (OA.3.11)

where
G′

Q(tu) = µ1(tu ≤ Te) + (γ − 1)G′
H(tu)

Assuming te = t′
e, we combine equations (OA.3.9) and (OA.3.11) and obtain the ODE in

(OA.3.7). Assuming t′
e > te, we combine equations (OA.3.9), (OA.3.10) and (OA.3.11) and

obtain the ODE in (OA.3.8).

We can compare the equilibrium paths of GH(t) and G(t) when γ > 1 and γ = 1 (baseline
model). In the baseline model, all initial entrants upgrade at a particular time tu0 so GH(t)
has a jump to G(0) there. This is consistent with setting γ = 1 in equation (OA.3.7), which
implies G′

H(tu0) → ∞. We can also set γ = 1 in equation (OA.3.8) and obtain the path
of GH(t) in the baseline model. In Figure OA.3.1, we illustrate the impact of γ on the
equilibrium paths. The grey solid and dashed lines represent G(t) and GH(t) in our baseline
model, respectively. We then raise γ from 1 to 1.02, and plot the corresponding G(t) and
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GH(t) with red solid and red dashed lines. When γ is higher, we see upgrading happens
earlier and there are more steady-state H-type firms. More H-type firms also “crowd-out”
L-type firms and the total mass of firms is lower when γ is higher.

Figure OA.3.1: Compare γ > 1 and γ = 1
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Notes: Base set of parameters c = 1, N = 1, ρ = 0.1, αH = 0.1, αL = 0.15, µ = 0.5, I = 4.5.

Figure OA.3.2, we present comparative statics of steady-state mass of firms and total
customers served with respect to market entry rate µ and flow fixed cost c. As we increase
µ, firms face stronger competition from higher G(t) at any time point, which reduces steady-
state share and mass of H-type firms. The reduction in the share of H-type firms also reduces
the total number of customers served, Mlr. A reduction in flow fixed cost c has a similar
effect to an increase µ, since a lower c would support more firms in the market, thus raises
Gss and lowers GH,ss. This eventually reduces the total number of customers served. In sum,
we confirm that the comparative statics results are similar to the baseline model, at least
within the range of parameters considered in Figure OA.3.1.
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Figure OA.3.2: Comparative statics with respect to µ and c

(a) mass of firms and µ (b) customers served and µ

(c) mass of firms and c (d) customers served and c

Notes: Base set of parameters ρ = 0.1, N = 1, c = 1, αH = 0.1, αL = 0.15, µ = 0.5, I = 5.25, γ = 1.1, G0 =
1.5.

In general, it is difficult to prove comparative statics as in our baseline model. However,
we can compare the cases with sufficiently large and small market entry rates as follows

Proposition OA.3.1 Suppose the upgrading cost is larger than a threshold value

I >
ρ + αL

ρ(ρ + αH)

(
γ − 1 + αL − αH

αL

)
c.

No firm upgrades when µ is sufficiently large and some firms upgrade when µ is sufficiently
small.

Proof. We first consider the extreme case that all firms enter at t = 0, which corresponds
to µ = ∞. Since we assume that no firms exit, we have G(t) = Gss for all t. The value
of G(0) becomes irrelevant. We examine whether a typical firm’ customer capital will reach
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the cutoff m∗(t) assuming that no firms upgrade. In this case, we have GQ(t) = Gss for all
t and

m∗(t) =
ρ(ρ + αH)I − (γ−1)N

Gss

αL − αH

.

The steady-state customer capital is

mL,lr = N

GssαL

.

The zero-profit condition at t = 0 implies that Gss is the same as the expression (5) in
the paper. Substitute Gss into m∗(t) and mL,lr, we see that the restriction stated in the
proposition ensures that

m∗(t) > mL,lr.

We know that m(t; 0) increases and converges to mL,lr. Therefore, m(t; 0) never crosses
m∗(t). According to Lemma OA.3.1, no firm upgrades.

This result applies to all µ that are sufficiently large. Under large but finite µ, G(t)
reaches Gss at an arbitrarily small Te. Therefore, the customer capital at Te can be bounded
as

m(Te; 0) =
∫ Te

0

Ne−αLt

G(t) dt <
∫ Te

0

N

G(0)dt = NTe

G(0) < mL,lr.

Therefore, m(t; 0) does not cross m∗(t) with sufficiently large µ, and no firm will upgrade.

When µ is sufficiently small, we search for a sufficient condition for the initial entrants
to have positive value of upgrading. Assume that these firms upgrade at tu = 0. We can
re-write (OA.3.5) as

∆Ṽ (0; 0) =
∫ ∞

0
e−ρt

∫ t

0

(
AH(s)e−αH(t−s) − AL(s)e−αL(t−s)

)
dsdt − I.

We now perform the integration up to T instead of ∞. Since the integrand is always positive,
we have

∆Ṽ (0; 0) >
∫ T

0
e−ρt

∫ t

0

(
AH(s)e−αH(t−s) − AL(s)e−αL(t−s)

)
dsdt − I

>
∫ T

0
e−ρt

∫ t

0

(
γNe−αH(t−s)

G(t) − Ne−αL(t−s)

G(t)

)
dsdt − I

>
∫ T

0
e−ρt

∫ t

0

(
Ne−αH(t−s)

G(T ) − Ne−αL(t−s)

G(T )

)
dsdt − I
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For any value of T and ε, we can find sufficiently small µ such that

G(T ) − G(0) < ε.

Therefore,

∆Ṽ (0; 0) >
N

G(0) + ε

[
1 − eρT

ραH

− 1 − e−(ρ+αH)T

αH(ρ + αH) − 1 − e−ρT

ραL

+ 1 − e−(ρ+αL)T

αL(ρ + αL)

]
.

When T is sufficiently large, the term in the bracket will be sufficiently close to its limit,
αL−αH

ρ(ρ+αL)(ρ+αH) . Suppose we set ε = G(0), we can restrict G(0) < (αL−αH)N
2ρ(ρ+αL)(ρ+αH)I so that for

sufficiently small µ, initial entrants find positive value of upgrading. Note that this restriction
can be fully consistent with G(0) > G0. This requires

(γ − 1)N
ρ(ρ + αH)I <

(αL − αH)N
2ρ(ρ + αL)(ρ + αH)I ⇔ γ − 1 <

ρ(αL − αH)
2(ρ + αL) .
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