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Abstract

The assumption of rank preservation is important for causal interpretation of quantile treatment

e¤ects, but it is commonly believed that this assumption cannot be tested due to the missing data

problem of causal inference. In this paper, we propose Hausman-type tests to test unconditional rank

preservation under unconfoundedness when covariates are available. One key advantage of our tests

is that the powers can be intuitively detected by �gures. The basic idea is that unconditional rank

preservation implies conditional rank preservation but the converse is not true, so signi�cant di¤erence

between two statistics with one preserving conditional rank and the other preserving unconditional rank

is an indicator of rank nonpreservation. In other words, we are testing rank preservation across covariate

values rather than within a covariate value. We develop both parametric and nonparametric tests for

both the overall quantile treatment e¤ect and the quantile treatment e¤ect on the treated. Since the

asymptotic null distributions are nonstandard, we suggest to use the exchangeable bootstrap in the

parametric tests and simulation in the nonparametric tests to obtain critical values. We illustrate our

tests on data from the National Supported Work Program.
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1 Introduction

Quantile treatment e¤ects (QTEs), as an alternative of average treatment e¤ects, have attracted much

attention in recent developments of program evaluation; see Abbring and Heckman (2007) and Yu (2014) for

a summary of relevant literature. Let Y1 and Y0 be the potential outcomes under the treatment status and

the control status, respectively; then the QTE is the quantile of Y1�Y0, which involves the joint distribution
of Y1 and Y0. However, due to the fundamental problem of causal inference (Holland, 1986), i.e., Y1 and Y0
cannot be observed simultaneously, the QTE cannot be point identi�ed generally. Instead of studying the

quantile of di¤erences of Y1 and Y0, Lehmann (1974) and Doksum (1974) suggested to study the di¤erence

of quantiles of Y1 and Y0, which requires only the marginal distributions of Y1 and Y0 and so can be point

identi�ed. This solution is built on a key assumption - the ranks of Y1 and Y0 are the same; we label this

assumption as the rank preservation (RP) assumption. Although the marginal distributions of Y1 and Y0
have their independent roles in treatment e¤ects evaluation, e.g., testing stochastic dominance, it should

be emphasized that only under the RP assumption, the di¤erence of quantiles of Y1 and Y0 has a causal

interpretation. This paper is about testing this key assumption.

It is commonly believed that the RP assumption cannot be tested. This is partially true because Y1
and Y0 cannot be observed simultaneously neither can their ranks. Due to this missing data problem, it is

hard to judge whether the rank is preserved (see, e.g., Heckman et al., 1997). Figure 1 illustrates this point

intuitively. In Figure 1, the solid points represent observables, the circles represent unobservables, the arrows

match the identities of Y0 and Y1, and supp(Y1) =supp(Y0) = f0; 1; 2; 3g, where supp(Yd), d = 0; 1, is the

support of Yd. Obviously, given the same data set, the rank can be preserved, unpreserved, or unpreserved for

the population but preserved for the treated. Nevertheless, we show in this paper that when covariates are

available, as in most applications, we can test whether the rank is preserved in the population or among the

treated under unconfoundedness. In other words, our tests are unconditional tests rather than conditional

tests given each covariate value because the latter tests are not possible from Figure 1.

0 1 2 3

Rank Preserved

0 1 2 3

Rank Unpreserved

0 1 2 3

Rank Preserved for the Treated

Figure 1: Rank can be either Preserved or Unpreserved or Only Preserved for the Treated: Yd 2 f0; 1; 2; 3g

We �rst in Section 2 explain the role of the RP assumption in treatment e¤ects evaluation. It turns

out that combined with unconfoundedness, the RP assumption can fully determine the joint distribution of

(Y1; Y0; D), where D is the treatment status. More importantly, the RP assumption is not only su¢ cient but

necessary for the quantile of the impact distribution QY1�Y0(�) to be identi�ed solely from the di¤erence of

marginal quantiles QY1(�)�QY0(�), where for a random variable Y , QY (�) means its �th quantile. Further,
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even if QY1�Y0(�) can be identi�ed from QY1(�)�QY0(�), it need not equal QY1(�)�QY0(�).
We then in Section 3 overview our testing ideas. To facilitate our discussion, we introduce some notations

here. By the Skorohod representation, we can represent

Yd = Qd(U
X
d jX); d = 0; 1;

where Qd(� jx) is the �th conditional quantile of Yd given X = x, and Uxd is the rank variable of Yd for the

subpopulation X = x. Uxd represents some unobserved characteristic of YdjX=x, e.g., ability or proneness,
and Uxd � U(0; 1) for any x 2 supp(X), where YdjX=x represents the Yd values for the subpopulation
X = x.1 Here, UX0 need not equal UX1 if the conditional rank is unpreserved. We can also represent Yd in

the unconditional form,

Yd = qd(Ud);

where qd(�) is the �th unconditional quantile of Yd, and Ud � U(0; 1) is the rank variable of Yd.2 In other

words, we sort individuals among the whole population rather than within X = x. Given these notations,

we can state the null hypothesis of RP for the whole population as

H0 : U0 = U1

and the alternative hypothesis as

H1 : U0 6= U1;

where the equality and inequality are understood to hold only almost surely.

Suppose X is a set of observable covariates with support supp(X). If the ranks of Y1 and Y0 are preserved

for the whole population, then the ranks must be preserved for any subpopulation X = x, x 2supp(X). The
converse is not true, i.e., if the ranks for any subpopulation X = x are preserved, the unconditional rank

need not be preserved. This is the basis of the tests developed in this paper. As argued above, the RP within

the subpopulation X = x (or the conditional RP Ux0 = Ux1 ) cannot be tested, so any violation of RP we can

identify is only the violation across di¤erent subpopulations rather than within any subpopulation. Actually,

if we maintain conditional RP, then we can show that the unconditional RP is equivalent to RP across X

values. Given this observation, we construct a Hausman-type test statistic. Speci�cally, we construct the

counterfactuals of Y0 in the treatment status under U0 = U1 and under Ux0 = Ux1 , respectively. The former

is valid under both H0 and H1 while the latter is valid only under H1, so signi�cance of their di¤erence is

an indicator of the violation of H0. Moreover, we can show that the population version of our test statistic

equals zero if and only if the rank is preserved across X values. We further extend this testing idea to test

RP for the treated.

Note that our null hypothesis is refutable but nonveri�able; see Breusch (1986) for a general discussion and

Kitagawa (2015) for a recent example of this kind of hypothesis. In other words, if the null is rejected, then

we are sure that the unconditional rank is not preserved; while if the null is not rejected, the unconditional

rank may or may not be preserved (of course, the reason of nonpreservation must be attributed to within-X

nonpreservation rather than across-X nonpreservation).

Our test statistic involves estimators of the counterfactuals of Y0 under U0 = U1 and under Ux0 = Ux1 . In

Sections 4 and 5, we provide parametric and nonparametric estimators for these counterfactuals, respectively.

Both parametric and nonparametric test statistics are third-order degenerate V-statistics under H0, but
1Note that YdjX=x is a conditional random variable. Since X is not independent of Yd, this notation is di¤erent from the

potential outcome Yd when X is exogenously assigned as x, which is usually denoted as Ydx.
2Be cautious that Uxd 6= UdjX=x because the latter generally does not follow the U(0; 1) distribution. UdjX=x includes more

information than Uxd because it also includes the relative location of an individual in the whole population.
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their null asymptotic distributions are di¤erent. The parametric test statistic follows a mixed chi-square

distribution asymptotically, while the nonparametric test statistic is asymptotically normal with a positive

mean. The critical values for the former are hard to obtain, so we suggest to use the exchangeable bootstrap

to get them. The convergence rate to normal distribution in the latter statistic is slow, so we suggest to

use the simulation method to obtain its critical values. We also show that our bootstrap and simulation

schemes are valid. In Section 6, we extend our tests in Sections 4 and 5 to test RP among the treated.

Section 7 includes some further discussions on our tests, e.g., overidenti�cation interpretation of our tests,

modi�cations, alternative forms, and extensions. Section 8 provides some simulation results, Section 9 applies

our tests to a dataset from the National Supported Work Program, and Section 10 concludes. To save space,

we relegate some discussions to two supplementary materials S.1 and S.2. S.1 contains the proofs that are

not given in the main text and the associated lemmas, and S.2 contains some discussions that we do not

want to expand in the main text.

We close this introduction by discussing some recent related literature on RP testing. First, we distinguish

two terms - rank invariance and rank similarity (RS). These two terms are introduced by Chernozhukov

and Hansen (2005) to identify the QTE when endogeneity is present. The rank invariance assumption is

our RP assumption, and the RS assumption is a weaker version of the rank invariance assumption. The

term "rank preservation" is borrowed from Firpo (2007), where the author studies the estimation and

inference of the unconditional QTE and unconditional quantile treatment e¤ect on the treated (QTT) under

the "unconditional" RP assumption and unconfoundedness, so the tests developed in this paper can serve

as pretests to Firpo�s estimation. On the other hand, Chernozhukov and Hansen (2005) show that the

"conditional" RS assumption is enough to identify the marginal quantiles of Y1 and Y0 in the presence of

endogeneity. To verify the conditional RS assumption, a parallel paper by Yu (2016) proposes two tests

where, unlike in this paper, no covariates are required. These tests can serve as pretests to Chernozhukov

and Hansen�s estimation. Recently, an independent paper by Dong and Shen (2015) tests "unconditional"

RS under both unconfoundedness and confoundedness (i.e., endogeneity); see also Frandsen and Lefgren

(2015) for a regression-based implementation. Note that the unconditional RS assumption is weaker than

the unconditional RP assumption and is stronger than the conditional RS assumption. Since "unconditional"

RS is tested, covariates are also required as in this paper. As argued above, to have causal interpretation for

unconditional QTE, rank preservation or rank invariance is a must. So these authors are testing a weaker

version or an implication of the required condition, which is de�nitely interesting but di¤erent from the goals

of this paper and Yu (2016).3 Since the motivations and testing procedures of this paper and Yu (2016) are

di¤erent from those of these authors, our results are more complements than substitutes to theirs.

Some notations are collected here for future reference. The letter d is always used for indicating the

two treatment statuses, so is not written out explicitly as "d = 0; 1" throughout the paper. supp(X) for

a random variable X denotes the support of the distribution of X. The capital letters such as X denote

random variables and the corresponding lower case letters such as x denote the potential values they may

take. For two random vectors, Y and X, Y jX=x is the random vector Y restricted at X = x, FY X is the

joint cumulative distribution function (cdf) of (Y;X), and FY jX is the conditional cdf of Y given X. For

three random vectors, X;Y and Z, X ? Y jZ means X is independent of Y conditional on Z, where "?"
denotes independence (c.f., Dawid, 1979) and variables to the right of �j�are the conditioning variables. T
with a subscript or superscript is a compact subset of [�; 1� �] for some � > 0. p(�) is the propensity score.
fd(�), Fd(�) and qd(�) are the unconditional probability density function (pdf), cdf and quantile function, and
fd(�j�), Fd(�j�) and Qd(�j�) are the conditional pdf, cdf and quantile function, respectively. fd; Fd and qd with

3They did not consider the unconditional rank similarity for the treated. Their tests can serve as "weaker" pretests to
the QTE estimation of Firpo (2007) under unconfoundedness and the QTE estimation of Frölich and Melly (2013a) under
confoundedness.
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a superscript t represent the counterparts of fd; Fd and qd for the treated. �(�) and �(�) are the cdf and pdf
of the standard normal distribution.  and

� signify the weak convergence and the weak convergence in

probability, respectively, and objects with a superscript � indicate the samples or estimators based on the
bootstrap measure.4 VW is short for van der Vaart and Wellner (1996), HIR for Hirano, Imbens and Ridder

(2003), CFM for Chernozhukov, Fernández-Val and Melly (2013), and DH for Donald and Hsu (2014).

2 The Role of Rank Preservation in Treatment E¤ects Evaluation

To understand the role of rank preservation, we neglect the covariates X and assume Y is continuously

distributed in this section to ease the discussion. Recall that the potential outcome approach of Rubin (1974,

1978) augments the observed data (Y;D) by two potential outcomes (Y1; Y0). Since Y = DY1 + (1�D)Y0,

FY (y) = FY1jD (yj1) p+ FY0jD (yj0) (1� p) ;

which is a mixture distribution of FY1jD (yj1) and FY0jD (yj0), where p = P (D = 1). In other words, the

distribution of Y is determined by that of (D;Y1; Y0), so the "net" randomness in this framework comes

from (D;Y1; Y0). The joint distribution of (D;Y1; Y0) is

FY1;Y0;D (y1; y0; d) =

(
F(Y1;Y0)jD (y1; y0j1) p;
F(Y1;Y0)jD (y1; y0j0) (1� p) ;

if d = 1;

if d = 0;
(1)

The unknown in FY1;Y0;D (y1; y0; d) is the conditional distribution F(Y1;Y0)jD (y1; y0jd). By Sklar�s theo-

rem, F(Y1;Y0)jD (y1; y0jd) = Cd(FY1jD(y1jd); FY0jD(y0jd)), where Cd(�; �) is the copula for F(Y1;Y0)jD (y1; y0jd).
FY1jD(y1j1) and FY0jD(y0j0) can be identi�ed from the data, so the unidenti�ed are Cd (�; �), FY1jD(y1j0) and
FY0jD(y0j1).
The combination of unconfoundedness and rank preservation settles down the ambiguity in Cd (�; �),

FY1jD(y1j0) and FY0jD(y0j1). Recall that unconfoundedness assumes (Y1; Y0) ? D, i.e., F(Y1;Y0)jD (y1; y0j1) =
F(Y1;Y0)jD (y1; y0j0), which implies FY1jD(y1j0) = FY1jD(y1j1), FY0jD(y0j1) = FY0jD(y0j0) and C1(�; �) =
C0(�; �). To be more precise, FY1jD(y1j0) = FY1jD(y1j1) comes from Y1 ? D, FY0jD(y0j1) = FY0jD(y0j0)
comes from Y0 ? D, and C1(�; �) = C0(�; �) comes from the independence between D and the relationship of

Y1 and Y0. So the marginal distribution of Y1, FY1(y1) = FY1jD(y1j1)p+FY1jD(y1j0) (1� p) = FY1jD(y1j1) =
FY1jD(y1j0), and similarly, FY0(y0) = FY0jD(y0j1) = FY0jD(y0j0).5 As a result, unconfoundedness implies

FY1;Y0;D (y1; y0; d) = C(FY1(y1); FY0(y0))p
d (1� p)1�d = FY1;Y0 (y1; y0)P (D = d) ;

where C (�; �) is the common copula. So the only unidenti�ed in FY1;Y0;D (y1; y0; d) is C (�; �); this is where
rank preservation plays the role. In one word, unconfoundedness is about the relationship between D and

(Y1; Y0), while rank preservation is about the relationship between Y1 and Y0 and does not involve D.

Rank preservation implies C (u1; u0) = min (u1; u0), i.e., Y1 and Y0 are comonotone random variables.

Although other copula functions can be employed to identify FY1;Y0;D (y1; y0; d), min (u1; u0) is very special

in the sense of the following proposition.

Proposition 1 Under unconfoundedness, the distribution of the treatment e¤ect, FY1�Y0 (�), can be identi�ed
4Recall from Section 2.9 of VW that Z�n

� Z in a separable normed space (D; d) if suph2BL1(D) jE
� [h(Z�n)]� E [Z]j

p�! 0,
where BL1 = fh : D ! [0; 1]j jh(x)� h(y)j � kx� yk for all x; yg, and E� is the expectation with respect to the bootstrap
measure conditional on the original data.

5This implies FY (y) = FY1 (y) p+ FY0 (y) (1� p).
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solely from �(�) � QY1 (�)�QY0 (�) if and only if C (u1; u0) = min (u1; u0) or the rank is preserved.

Proof. For a general copula, denote CU1jU0 (u1ju0) as the conditional distribution of U1 = FY1 (Y1) given

U0 = FY0 (Y0). Then FY1�Y0 (y) =
R 1
0

R 1
0
1 (QY1 (u1)�QY0 (u0) � y) dCU1jU0 (u1ju0) du0.

Su¢ ciency: If the rank is preserved, CU1jU0 (u1ju0) is a point mass at u0, so FY1�Y0 (y) =
R 1
0
1 (�(�) � y) d� .

Necessity: If the rank is not preserved, the identi�cation of FY1�Y0 (y) requires the knowledge of CU1jU0 (u1ju0)
(i.e., the mapping of ranks under the control and treatmed statuses) and also QY1 (�) and QY0 (�) separately.

To illustrate the unidenti�ability of FY1�Y0 (�) by �(�) without RP and how it can be identi�ed by �(�)
under RP, consider the joint normality case of (Y1; Y0).

Example 1 Suppose (Y1; Y0) � N (�;�), where

� =

 
0

0

!
and � =

 
�21 ��1�0

��1�0 �20

!
:

Consider three cases. (i) �21 = �20 = 1. If � 6= 0, then

FY1�Y0 (y) = P (Y1 � Y0 � y) = �

�
yp
2� 2�

�
;

while �(�) = 0 for any � , i.e., Y1 � Y0 is a point mass at zero. Unless � = 1, �
�

yp
2�2�

�
cannot degenerate

to 1 (y � 0). (ii) �21 = 4 and �20 = 1. If � 6= 0, then

FY1�Y0 (y) = P (Y1 � Y0 � y) = �

�
yp
5� 4�

�
;

while �(�) = z� , where z� = ��1 (�) is the � th quantile of a standard normal. Unless � = 1, �
�

yp
5�4�

�
6=

�(y) =
R 1
0
1 (�(�) � y) d� . If � = 1, QY1�Y0(�) = �(�). (iii) �

2
1 = 1 and �

2
0 = 4. If � 6= 0, then

FY1�Y0 (y) = P (Y1 � Y0 � y) = �

�
yp
5� 4�

�
;

while �(�) = �z� . Unless � = 1, �
�

yp
5�4�

�
6= �(y) =

R 1
0
1 (�(�) � y) d� . Even if � = 1, QY1�Y0(�) =

��(�) 6= �(�).
Case (i) with � = 1 is the constant treatment e¤ect case, where QY1�Y0(�) can be identi�ed from �(�) for

any � . Case (ii) with � = 1 has a variable treatment e¤ect, and QY1�Y0(�) can be identi�ed as �(�). Case

(iii) with � = 1 also has a variable treatment e¤ect, but QY1�Y0(�) cannot be identi�ed as �(�). In short,

even under RP, QY1�Y0(�) need not equal QY1(�)�QY0(�) unless QY1(�)�QY0(�) is an increasing function
of � .

Now, we turn the way around - �rst impose the RP assumption and then the unconfoundedness assump-

tion. It is better now to decompose FY1;Y0;D (y1; y0; d) as

FY1;Y0;D (y1; y0; d) = FY1;Y0 (y1; y0)PDjY1;Y0 (djy1; y0)

= C(FY1(y1); FY0(y0))

8<:
pF(Y1;Y0)jD(y1;y0j1)

pF(Y1;Y0)jD(y1;y0j1)+(1�p)F(Y1;Y0)jD(y1;y0j0)
;

(1�p)F(Y1;Y0)jD(y1;y0j0)
pF(Y1;Y0)jD(y1;y0j1)+(1�p)F(Y1;Y0)jD(y1;y0j0)

;

if d = 1;

if d = 0;
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where the second equality uses Bayes�s rule. The RP assumption reduces C(FY1(y1); FY0(y0)) tomin (FY1(y1); FY0(y0)),

while the unconfounedness assumption reduces F(Y1;Y0)jD (y1; y0j1) and F(Y1;Y0)jD (y1; y0j0) to F(Y1;Y0) (y1; y0)
such that PDjY1;Y0 (djy1; y0) = PD (d) = pd (1� p)1�d.
We close this section by a delicate distinction between unconfoundedness and rank preservation. In

Matzkin (2003) and Imbens and Newey (2009), a key identi�cation assumption is Y = h (D;U), where

h (D;U) is strictly increasing in the scalar error U for any value of D, and U ? D. To simplify our

discussion, suppose D is binary. This assumption is implied by unconfoundedness but does not require rank

preservation. To see why, note that by the Skorohod representation,

Y = h (D;DU1 + (1�D)U0) ;

i.e., U = DU1 + (1 � D)U0, where Ud � U [0; 1]. Since U involves D, it seems that U and D cannot be

independent unless assuming U1 = U0 so that D disappears in U . This is not the case thanks to the special

form of U as a function of D and the identity of the distributions of U1 and U0. First, given D = d,

Y = h (d; Ud), so h (d; �) is strictly increasing in the second argument. Second, FU jD(ujd) = FUdjD (ujd), so
if Yd ? D, FUdjD (ujd) = FUd (u) = u does not depend on d, or, U ? D. Here we require only Y1 ? D and

Y0 ? D rather than (Y1; Y0) ? D.6 In other words, the assignment of D is allowed to depend on the rank

correlation between Y1 and Y0. Also, rank preservation does not play any role here. If only rank preservation

is imposed, then U1 = U0 = U and Y = h (D;U). Although the monotonicity condition is satis�ed, D may

depend on U . An archetype of Y = h (D;U) is Y = ��1 (D� + U) as in Horowitz (1996), where � (�) is an
unknown, strictly increasing function, and U ? D. This model imposes both unconfoundedness and rank

preservation.

3 An Overview of Testing Ideas

We introduce more notations to facilitate our discussion. De�ne

eY1(U0) = Q1(F0(q0(U0)jX)jX);

which is the counterfactual Y1 of Y0 = q0(U0) when the conditional rank is preserved (i.e., UX0 = UX1 ).

To see why, note that F0(q0(U0)jX) is the conditional rank UX0 of q0(U0), so if UX0 = UX1 , then eY1(U0) =
Q1(U

X
1 jX) = Y1. It is clear that unless the conditional rank is preserved, eY1 6= Y1. eY1 can be treated

as a monotone rearrangement of Y1 within each X value according to the rank of Y0, so is only a partial

rearrangement of Y1; whereas

Y 1(U0) = q1(U0)

is the full rearrangement. eY1 6= Y 1 unless the unconditional rank is preserved. Note here that eY1(U0) need
not be unique for a given value of U0 because XjU0 may be a genuine random variable. We therefore de�ne

eq1(�) = E
heY1(U0)jU0 = �

i
:

Of course, if XjU0 is a point mass, i.e., the U0 value can uniquely determine the X value, then eY1(U0) is
uniquely de�ned and eY1(U0) = eq1(U0).eY1 6= Y 1 is the basis of our tests. The rough idea is that if the unconditional rank is not preserved,

6To be more precise, we require only U1 ? D and U0 ? D since the value information in Y1 and Y0 has been embodied in
h (�; �).
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full monotone rearrangement and partial rearrangement of Y1 according to U0 will generate di¤erent results.

Especially, the full rearrangement quantile q1 (U0) is a further monotone rearrangement of eY1(U0) (across
di¤erent X values), so is di¤erent from eY1(U0) if the unconditional rank is not preserved. In other words,
the powers of our tests come from the rank nonpreservation across di¤erent X values rather than within

each X value.

3.1 Motivating Examples

We in this subsection use two examples to illustrate that when the unconditional rank is not preserved,eY1 6= Y 1. Suppose X follows a Bernoulli distribution with the success probability 1=2, and Y0 = X + �

with � independent of X. We assume the rank is preserved conditional on X, but the unconditional rank

is not preserved. In this case, let Y1 = (2 � a)X + a � �, a 2 (1; 2], where a = 1 corresponds to the case

with rank fully preserved, and a = 2 corresponds to the case with rank fully unpreserved. In Example 2,

� � U(0; 1) and in Example 3, � � N(0; 1). Note that Yd in Exmaple 3 follows a mixed normal distribution

unconditionally.

Example 2 In this example, eY1(U0) = eq1(U0) since U0 can uniquely determine X. It can be shown that
q0(�) = 2� ;

q1(�) =

8><>:
2a�;

a� � a=2 + 1;
2a� + 2� 2a;

if 0 < � < 1
a �

1
2 ;

if 1a �
1
2 � � < 3

2 �
1
a ;

if 32 �
1
a � � < 1;

and eq1(�) = ( 2a�;

2a� + 2� 2a;
if 0 < � � 0:5;
if 0:5 < � � 1:

The three lower panels of Figure 2 show the three functions when a = 1; 1:5 and 2, where we also show the

support of YdjX=x for x = 0; 1 and d = 0; 1 in the three upper panels. Obviously, when the unconditional

rank is not preserved, eq1(�) and q1(�) are di¤erent. Note here that when a = 2, q0(�) = q1(�), but the rank

is mostly unpreserved.

From Example 2, we can base our test on

To � E
h
(Q1(F0(q0(U0)jX)jX)� q1 (U0))2

i
; (2)

where the subscript o is for "oracle". Under H0, Q1(F0(q0(U0)jX)jX) = q1 (F0(q0 (U0))) for any value of U0
and XjU0 , so To = 0. Under H1, Q1(F0(q0(U0)jX)jX) 6= q1 (F0(q0 (U0))) for some U0 and XjU0 values, so
To > 0 which generates power.

In Example 2, eq1(�) is not monotone when a 2 (1; 2] while q1(�) is strictly increasing, so we expect To to
be strictly positive. Actually, this result is generally true.

Proposition 2 Suppose q0(�) and q1(�) are strictly increasing measurable functions on [0; 1], and q1 (�)
and Q1(F0(q0(�)jx)jx) are bounded almost surely for � 2 [0; 1] and x 2 supp(X). If there exist regions T0
and T 00 in [0; 1], each of Lebesgue measure greater than � > 0, such that for all � 2 T0 and � 0 2 T 00 we have
that (i) � 0 > � , (ii) eq1(�) > eq1(� 0) + � and (iii) q1(� 0) > q1(�) + � for some � > 0, then To > 0.

Proof. From Part 2 of Proposition 1 of Chernozhukov et al. (2009), we know

E
h
(eq1(U0)� q1(U0))2i > E

h
(q1(U0)� q1(U0))

2
i
� 0;
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Figure 2: q0(�); eq1(�) and q1(�) in Example 2 when a = 1; 1:5 and 2
where q1(�) is the rearranged eq1(�). By Jensen�s inequality, for each � 2 [0; 1],

(eq1(�)� q1(�))2 � E
h
(Q1(F0(q0(U0)jX)jX)� q1 (U0))2

���U0 = �
i
:

As a result,

0 < E
h
(eq1(U0)� q1(U0))2i � To:

This proposition provides an intuitive method to detect rank nonpreservation. In practice, we can plot an

estimate of q1(�) and eq1(�) and check whether they have signi�cant di¤erences on some region of � .
To is actually more powerful than the situation stated in Proposition 2. Even if eq1(�) is monotone and

close to q1(�), To will still have power because To is based on eY1 rather than eq1. Example 3 illustrates this
point.

Example 3 For � 2 (0; 1), qd(�) = F�1d (�), where

F0(y) = 0:5�(y) + 0:5�(y � 1);

F1(y) = 0:5�
�y
a

�
+ 0:5�

�
y � (2� a)

a

�
:

Given U0 = � , X can be either 0 or 1. By Bayes�rule,

P (X = 0jU0 = �) =
P (Y0 = q0(�)jX = 0)P (X = 0)

P (Y0 = q0(�)jX = 0)P (X = 0) + P (Y0 = q0(�)jX = 1)P (X = 1)
=

�(q0(�))

�(q0(�)) + �(q0(�)� 1)
:

8
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Figure 3: q0(�); q1(�); eq1(�) and eY1(�) in Example 3 when a = 1; 1:5 and 2
It can be shown that eY1(�) = ( aq0(�);

aq0(�) + 2� 2a;
if X = 0;

if X = 1;

so eq1(�) = aq0(�) � �(q0(�))
�(q0(�)) + �(q0(�)� 1)

+
[aq0(�) + 2� 2a]�(q0(�)� 1)

�(q0(�)) + �(q0(�)� 1)
:

Figure 3 shows q0(�); q1(�); eq1(�) and eY1(�) when a = 1; 1:5 and 2. In this example, eq1(�) is monotone.
When a = 1:5 and 2, although eq1 and q1 are quite close, eY1 and q1 are still far apart, which generates power.
3.2 Testing Ideas for the QTE

To rigorously state the testing idea implied in Examples 2 and 3, we �rst de�ne rank preservation across

X values and decompose U1 = U0 into within-X-value rank preservation Ux1 = Ux0 and across-X-value rank

preservation.

De�nition 1 The ranks of Y1 and Y0 are said to be preserved across X values if FXjU1 (xju) = FXjU0 (xju)
for PXU almost sure (x; u), where PXU is the common distribution of (X;U1) and (X;U0).

FXjU1 (xju) = FXjU0 (xju)means that the unconditional uth quantile individuals in the treatment and control
statuses are distributed balancedly across X values. Our de�nition of RP across X values allows the common

support of (X;U1) and (X;U0) to be di¤erent from supp(X) � [0; 1] as in Example 2. It also implies the
joint distributions of (X;U1) and (X;U0) are the same. To see why, note that

FXU1(u; x) = FXjU1(xju)FU1 (u) = FXjU1(xju)u = FXjU0(xju)FU0 (u) = FXU0(u; x);

where the second equality is from the fact that the marginal distribution of Ud is uniform, and the third

equality is from De�nition 1.

Suppose D does not a¤ect X, or X1 = X0,7 where Xd denotes a potential value of X if D is set to d;

then FXjU1 (xju) = FXjU0 (xju) combined with Ux1 = Ux0 implies U1 = U0.

7This is the "no feedback" condition of Heckman and Vytlacil (2005). Such X is often called "concomitants".
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Figure 4: U0 and U1 are Unbalanced Across X = 0 and 1 in Example 2 when a = 1:5 and 2

Theorem 1 If X1 = X0, then U1 = U0 almost surely if and only if Ux1 = Ux0 for PX almost sure x and

FXjU1 (xju) = FXjU0 (xju) for PXU almost sure (x; u).

Proof. First note that the joint distribution of (X;Ud),

FXUd(u; x) = FUdjX(ujx)FXd
(x) = FUdjX(ujx)FX(x) = FXjUd(xju)FUd (u) = FXjUd(xju)u; (3)

where the second equality is from X1 = X0. So FUdjX(ujx) =
FXjUd (xju)u

FX(x)
, i.e., FU1jX(ujx) = FU0jX(ujx) if

and only if FXjU1 (xju) = FXjU0 (xju).
Second, note that U1 = U0 is equivalent to Ux1 = Ux0 and U1jX=x = U0jX=x for PX almost sure x.

Given that FUdjX(ujx) is the cdf of UdjX=x, U1jX=x = U0jX=x is stronger than FU1jX(ujx) = FU0jX(ujx).
However, if Ux1 = Ux0 is maintained, then FU1jX(ujx) = FU0jX(ujx) implies U1jX=x = U0jX=x. This is
because FU1jX(ujx) = FU0jX(ujx) means the same (maybe unsorted) parts of U1 and U0 are allocated to
X = x, and Ux1 = Ux0 means these parts are then sorted, which is exactly the meaning of U1jX=x = U0jX=x.
Combining these two points, we can conclude the result in the theorem.

This theorem shows that if we maintain the following Assumption M, then testing U1 = U0 is equivalent to

testing FXjU1 (xju) = FXjU0 (xju) or FU1jX(ujx) = FU0jX(ujx).

Assumption M: X1 = X0, Ux1 = Ux0 for PX almost sure x.

Figure 4 shows how the distributions of U0 and U1 are unbalanced across X values when a = 1:5 and 2 in

Example 2, where the thickness of lines represents the magnitude of density.

From the discussion in the last subsection, we can use To to test the RP hypothesis. A natural question

is whether To exhausts the information in U1 = U0. The following theorem gives an a¢ rmative answer.

Theorem 2 Under Assumption M, FXjU1 (xju) = FXjU0 (xju) for PXU almost sure (x; u) if and only if

To = 0.

Proof. First, recall from Theorem 1, under Assumption M, FXjU1 (xju) = FXjU0 (xju) or FU1jX (ujx) =
FU0jX (ujx) for PXU almost sure (x; u) is equivalent to U1 = U0.

The necessity is obvious, so we concentrate on the proof of su¢ ciency. First note that FUdjX (ujx) is the
value that Uxd will take when UdjX=x = u. The opposite statement of FU1jX (ujx) = FU0jX (ujx) for PXU

10



almost sure (x; u) is FU1jX (ujx) 6= FU0jX (ujx) on a PXU0 positive set of (x; u). Since Q1(FU1jX (ujx) jx) =
q1 (u), FU1jX (ujx) 6= FU0jX (ujx) on a PXU0 positive set of (x; u) implies Q1(FU0jX (ujx) jx) 6= q1 (u) on this

set. Equivalently, E
h
(Q1(F0(q0(U0)jX)jX)� q1 (U0))2

i
6= 0. This contradiction implies the result to prove.

A straightforward coroallry of Theorem 1 and 2 is that the test based on To is optimal in the sense that it

exhausts the testable implication of the data distribution. In other words, if To = 0, then any other feature

of the data distribution cannot contribute to invalidate H0 further. Such an optimality problem is unsolved

in Dong and Shen (2015) and Frandsen and Lefgren (2015).

Corollary 1 Under Assumption M, if To = 0, then there exists a joint distribution of (Y1; Y0; D;X) that

satis�es H0 and generates the joint data distribution of (Y;D;X).

Proof. From Theorem 2, under Assumption M, To = 0 is equivalent to FU1jX (ujx) = FU0jX (ujx) = FU (ujx)
for PXU almost sure (x; u). The joint distribution of (Y1; Y0; D;X) is

FY1;Y0;D;X (y1; y0; d; x) = F(Y1;Y0)jD;X (y1; y0jd; x) p(x)d(1� p(x))1�dFX(x)
= F(Y1;Y0)jX (y1; y0jx) p(x)d(1� p(x))1�dFX(x);

and the joint data distribution of (Y;D;X) is

FY;D;X (y; d; x) = FY jD;X (yjd; x) p(x)d(1� p(x))1�dFX(x)
= FY1jX(yjx)dFY0jX(y0jx)1�dp(x)d(1� p(x))1�dFX(x):

Since p(x) and FX(x) are implied by the observable data distribution, we need only specify F(Y1;Y0)jX (y1; y0jx)
to generate FY1jX(y1jx) and FY0jX(y0jx) and satisfy H0. From the proof of Theorem 1, Assumption M plus

FU1jX (ujx) = FU0jX (ujx) = FU (ujx) for PXU almost sure (x; u) imply H0, so we can construct

F(Y1;Y0)jX (y1; y0jx) = min
�
FY1jX(y1jx); FY0jX(y0jx)

�
;

which satis�es F(Y1;Y0)jX (y1;1jx) = FY1jX(y1jx) and F(Y1;Y0)jX (1; y0jx) = FY0jX(y0jx).
Our formal test is based on a truncated version of To

T � E
h
(Q1(F0(q0(U0)jX)jX)� q1 (U0))2 1(U0 2 T0)

i
:

where T0, as mentioned at the end of Introduction, is a truncation set of quantile index.8 We truncate

the quantile index for three reasons. First, when the supports of Y1 and Y0 are not bounded, e.g., Y is

the weekly wage rate, we can avoid the techincal di¢ culties in estimating extremal quantiles (see, e.g.,

Chernozhukov, 2005, and Chernozhukov and Fernández-Val, 2011). Second, it is commonly believed that at

extremal quantiles, the RP assumption is easier to hold. For example, the extreme rich (poor) tends to be

extremely rich (poor) after a social program. Third, if Y is censored at bottom or top as in, e.g., weekly

wage rate, we can avoid the contribution from point masses of censored quantiles to T .9

T involves the joint distribution of (X;U0) which is unobservable since U0 is unobservable. We attack

this problem in two steps. First, replace U0 by F0(Y0); second, replace Y0 by Y with an adjustment factor

8Note that T0 can include only a single (e.g., 0.5) or a few quantile indices (e.g., the middle four quintiles).
9 If Y0 is known to be censored at a "middle" quantile � , we can also kick a small neighborhood of � out of T0.
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1�D
1�p(X) as suggested in HIR. Speci�cally,

T = E
h
(Q1(F0(Y0jX)jX)� q1 (F0 (Y0)))2 1(Y0 2 Y0)

i
= E

�
1�D
1� p(X) (Q1(F0(Y jX)jX)� q1 (F0 (Y )))

2
1(Y 2 Y0)

�
;

where Y0 = fq0(�)j� 2 T0g. Objects such as q1(F0(�)) also appear in, e.g., Theorem 3.1 of Athey and Imbens
(2006), but they are estimating the quantile treatment e¤ects under the RP assumption whereas we are

testing the RP assumption. Given the data fWigni=1 with W = (Y;D;X), the sample analog of T is

Tn =
1

n

nX
i=1

1(Yi 2 Y0)1(Xi 2 X )
1�Di

1� bp(Xi)

h bQ1 � bF0(YijXi)
���Xi

�
� bq1 � bF0(Yi)�i2 ; (4)

where the objects with hat are estimators of population counterparts. Allowance of truncating Xi on a

compact set X �supp(X) is for practical convenience. More generally, we can truncate (Yi; Xi) 2 A, where
A need not be a cartesian product of two sets such as Y0 �X . This general truncation scheme makes sense
in, e.g., Example 2 where there does not exist any product set on which (Y0; X) has a positive density. Such

a general truncation scheme a¤ects the asymptotics of Tn in a minor way, so we do not explicitly pursue it

in the main text. Note further that Tn implicitly employs the joint distribution of (X;Y0) because (Xi; Yi)

is from the same individual i.

3.3 Testing Ideas for the QTT

Practitioners are often interested in testing only RP for the treated. Such a RP hypothesis can be less

stringent, i.e., even if the rank is not preserved for the whole population, it may be preserved for the treated.

The corresponding null hypothesis is

Ht
0 : U

t
0 = U t1;

and the alternative is

Ht
1 : U

t
0 6= U t1;

where U td = F td (Y
t
d ) � U (0; 1) is the counterpart of Ud for the treated, Y td = YdjD=1, and F td (y) =

P (Yd � yjD = 1) is the cdf of Y td . Note here that U
t
d 6= UdjD=1 because UdjD=1 does not follow the uniform

distribution in general unless the assignment of D is random (i.e., p(x) is constant).

The testing ideas for the QTE can also be applied for the QTT; the only di¤erence is that the population

under consideration is not the whole population but the treated. The counterpart of Assumption M is

Assumption M0: X1 = X0, U tx1 = U tx0 for PX almost sure x, where U txd = F txd (Y txd ) � U (0; 1) with

F txd (y) = P (Yd � yjX = x;D = 1) and Y txd = YdjD=1;X=x.

Under Assumption M0, we can parallelly show that U t1 = U t0 if and only if FXjUt
1
(xju) = FXjUt

0
(xju) for

PXUt almost sure (x; u), where PXUt is the common distribution of (X;U t1) and (X;U
t
0). Also, FXjUt

1
(xju) =

FXjUt
0
(xju) for PXUt almost sure (x; u) if and only if

T to � E
h�
Q1(F0(q

t
0(U

t
0)jX)jX)� qt1

�
U t0
��2i

= 0;

and the test based on T to is optimal. Moreover, the intuitive method in Proposition 2 can be applied with
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qd(�) replaced by qtd(�) and eq1(�) replaced by
eqt1(�) = E

heY t1 (U t0)jU t0 = �
i
:

where eY t1 (U t0) � Q1(F0(q
t
0(U

t
0)jX)jX). As in T , we truncate the quantile index of T to and apply the inverse

probability weighting scheme of HIR to get

T t = E
h�
Q1(F0(q

t
0(U

t
0)jX)jX)� qt1

�
U t0
��2

1(U t0 2 T t0 )
���D = 1

i
= E

h�
Q1(F0(Y0jX)jX)� qt1

�
F t0(Y0)

��2
1(Y0 2 Yt0)

���D = 1
i

= E

�
p(X)

E[D]

1�D
1� p(X)

�
Q1(F0(Y jX)jX)� qt1

�
F t0(Y )

��2
1(Y 2 Yt0)

�
;

where Yt0 = fqt0(�)j� 2 T t0 g. The sample analog of T t is

T tn =
1Pn

i=1Di

nX
i=1

1(Yi 2 Yt0)1(Xi 2 X )
bp(Xi) (1�Di)

1� bp(Xi)

h bQ1 � bF0(YijXi)jXi

�
� bqt1 � bF t0(Yi)�i2 ; (5)

where as in Tn, we allow truncation on Xi.

In the following three sections, we will propose both parametric and nonparametric forms of bp(�); bF0(�); bq1(�),bF t0(�); bqt1(�); bF0(�j�) and bQ1 (�j�). The parametric test parallels Bierens (1982), while the nonparametric test
parallels Härdle and Mammen (1993). In practice, when the distribution of X is complicated, dim(X) is

large and/or the sample size n is not large, we suggest to use the parametric test; otherwise, when there are

only one or two continuous covariates and the sample size is large, the nonparametric test is preferable.

4 Parametric Test of Rank Preservation For the QTE

In the parametric setup, we estimate p(�) by

bp(x) = � (x0b
) ;
where �(�) is a known link function such as the logistic cdf L(�) = exp(�)=(1 + exp(�)), and

b
 = argmax



nX
i=1

[Di ln� (X
0
i
) + (1�Di) ln (1� � (X 0

i
))] :

F0(�) and q1(�) are estimated based on the inverse probability weighted (IPW) method of DH. Speci�cally,

bF0(y) =
1

n

nX
i=1

1�Di

1� bp(Xi)
1(Yi � y);

bF1(y) =
1

n

nX
i=1

Dibp(Xi)
1(Yi � y);

where we can reweight bF0(y) and bF1(y) by n�1Pn
i=1

1�Di

1�bp(Xi)
and n�1

Pn
i=1

Dibp(Xi)
without a¤ecting their

asymptotic properties.10 Given that bp(Xi) 2 (0; 1), bF1(y) is automatically (weakly) increasing with jumps
10This reweighting can guarantee that bFd(y) 2 [0; 1]. Tn and T tn can also be reweighted by n�1

Pn
i=1

1�Di
1�bp(Xi)

and
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at Y1i�s. So we de�ne bq1(�) = inf nyj bF1(y) � �
o
:

As to F0(�j�) and Q1 (�j�), our estimation scheme is based on the distribution regression (DR) proposed
by Foresi and Peracchi (1995) and extended by CFM. Speci�cally, we estimate Fd(yjx) by bFd(yjx) �
�
�
x0b�d(y)�, where for y 2 Yd,

b�d(y) = argmax
�

nX
i=1

1(Di = d) [1 (Yi � y) ln� (X 0
i�) + 1 (Yi > y) ln (1� � (X 0

i�))] :
11 (6)

We estimate Q1 (� jx) by inverting bF1(yjx). Because bF1(yjx) need not be monotone in y, following Cher-
nozhukov et al. (2010), we �rst monotonely rearrange it before the inversion. Note that for inversion, the

set of y values at which F1(y) and �1(y) are estimated need not be the same as Y1.
In summary, our test statistic is

Tn =
1

n

nX
i=1

1(Yi 2 Y0)1(Xi 2 X )
1�Di

1� bp(Xi)

h bQ1 ���X 0
i
b�0(Yi)� jXi

�
� bq1 � bF0(Yi)�i2 :

This is a Hausman-type test statistic because both bQ1 ���X 0
i
b�0(Y0i)� jXi

�
and bq1 � bF0(Y0i)� estimate the

counterfactual of Y0i in the treatment status under the null, but only bQ1 ���X 0
i
b�0(Yi)� jXi

�
estimates it

under the alternative.

Before developing the asymptotic properties of Tn, we provide two comments on the construction pro-

cedure of Tn above. First, in estimating p(�); F0(�j�) and F1 (�j�), we use a parametric setup for the con-
ditional cdfs. As in HIR, we can use the Series Logit Estimator (SLE) to estimate p(�). Suppose the

power series are used. For K = 1; 2; � � � ; let RK(x) = (r1K(x); r2K(x); � � � ; rKK(x))0 be a K-vector of
functions. Let � = (�1; � � � ; �r)0 be an r-dimensional vector of nonnegative integers (multi-indices), with
norm j�j =

Pr
j=1 �j , let (�(k))

1
k=1 be a sequence that includes all distinct multi-indices and satis�es

j�(k)j � j�(k + 1)j, and let x� =
Qr
j=1 x

�j
j . For a sequence �(k) the series rkK(x) = x�(k).12 Similarly,

we can replace the regressors in (6) by a transformation of x such as polynomials or B-splines. Our test in

this section can be extended to the case where the number of series terms K is �xed, but not to the case

where K !1 as n!1 due to technical complications.1314 As an alternative to the nonparametric series

estimator, we suggest to use the goodness of �t tests to control for the misspeci�cation bias in p(�); F0(�j�)
and F1 (�j�);15 see the supplementary materials for more discussions and Horowitz (2011, p. 349) for a critical
view of this method. Second, the estimation of Fd(�j�) and Fd (�) can be based on other methods. For exam-Pn
i=1

bp(Xi)(1�Di)
1�bp(Xi)

, respectively; see more discussions in Section 7.
11Note that for d = 1, P (D = 1; Y � yjX = x) = p(x)F1(yjx) and P (D = 1; Y > yjX = x) = p(x) (1� F1(yjx)). So �

�
X0
i�
�

and 1��
�
X0
i�
�
in equation (6) should be replaced by p(X0

i
)�
�
X0
i�
�
and p(X0

i
)
�
1� �

�
X0
i�
��
, respectively. However, since


 and � are separable, we can estimate � by the objective function in (6) without loss of generality.
12When X is continuous, r1K(x) is usually set as 1; when the support of X is �nite, RK(x) just contains indicators of all

points of supp(X) and K is �xed. Also from footnote 12 of CFM, the choice of link function �(�) has some freedom, e.g., probit,
linear, log-log and Gosset functions are all �ne as long as K is large enough.
13Of course, p(�) can be estimated by the SLE with K ! 1, but because this section concentrates on the parametric test,

we use a parametric estimator of p(�) here. The next section will extend to the nonparametric form of bp(�). Note also that even
if p(X) is correctly parametrized, the e¢ cient estimators of Fd(y) require nonparametric estimates of p(�); see, e.g., MaCurdy
et al. (2011).
14Nonparametric tests such as Hong and White (1995) and Härdle and Mammen (1993) in the classical speci�cation testing

are based on the linear series and the kernel estimator, respectively. To my best knowledge, there is no literature on how to
extend the nonparametric test to base on nonlinear estimation procedures as in our case.
15 In some special cases, the goodness of �t tests are not necessary; e.g., when X is discrete, a fully saturated linear model

does not involve any misspeci�cation error.
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ple, q0(�) and q1(�) can be estimated by the IPW method of Firpo (2007), and F0 (�) is then estimated by
inverting the estimator of q0(�).16 Similarly, F0(�j�) and Q1(�j�) can be estimated based on quantile regression
rather than distribution regression, or F0(�j�) is estimated by distribution regression while Q1(�j�) is estimated
by quantile regression.17 Furthermore, Fd (�) can be estimated by integrating Fd(�j�) rather than based on
the IPW method.18 Our choice of estimation methods is based mainly on technical convenience,19 and by

no means indicates better performances in �nite samples.

4.1 Asymptotics for Tn

To derive the asymptotic distribution of Tn, we �rst impose the following assumptions.

Assumption U (Unconfoundedness): (Y0; Y1) ? DjX.

Assumption X (Distribution of X): supp(X) � Rr is compact.

Assumption Y (Distributions of Y0 and Y1): (i) f0(y) is bounded, positive and continuous on Y0, where
Y0 is compact. (ii) f1(y) is bounded, positive and continuously di¤erentiable on Y1 which is compact and
contains an �-enlargement of the set fq1 (F0(y)) : y 2 Y0g.

Assumption P (Propensity Score): p(x) = � (x0
0) for all x 2 X , where � is either the probit or logit link
function, and p(x) is bounded away from zero and one: 0 < p � p(x) � p < 1.

Assumption DR: (i) Fd(yjx) = � (x0�d(y)) for all y 2 Yd and x 2 X , where � is either the probit or logit
link function, YdX is compact, and Y1 contains an �-enlargement of the set fQ1(F0(yjx)jx)jx 2 X ; y 2 Y0g.
(ii) fd(yjx) is uniformly bounded, and is uniformly continuous for (y; x) 2 YdX , f1(yjx) is continuously
di¤erentiable in y, and f1(yjx) > 0 for (y; x) 2 Y1X . (iii) the minimum eigenvalue of

Jd(y) � E

"
1(D = d)� (X 0�d(y))

2

� (X 0�d(y)) (1� � (X 0�d(y))
XX 0

#

is bounded away from zero uniformly over y 2 Yd, where � is the derivative of �.

We also consider the local alternative H�
1 :

Ux0n = Ux1n for all x 2 X ;
pn(x) = (1� �
=

p
n)p�(x) +

�
�
=
p
n
�
}(x);

F dn(yjx) = (1� �d=
p
n)F d� (yjx) +

�
�d=
p
n
�
Fd(yjx);

where pn(x) satis�es Assumption P and F dn(yjx) satis�es Assumption DR, and Uxdn is the counterpart of Uxd
under F dn . p�(x) and F

d
� (yjx) satisfy Q1(F0(yjx)jx) � q1 (F0(y)) = 0 for yx 2 Y0X , but }(x) and Fd(yjx)

do not. This speci�cation of local alternative is indirect but more intuitive than the direct speci�cation

FU1njX(ujx) � FU0njX(ujx) = �(ujx)=
p
n because the unconditional rank Udn can only be generated from

F dn(yjx). We impose the following assumption on the data distribution under H�
1 .

16Speci�cally, bq0(�) = argminq0 n
�1Pn

i=1
1�Di

1�bp(Xi)
�� (Yi � q0); bq1(�) = argminq1 n

�1Pn
i=1

Dibp(Xi)
�� (Yi � q1) and bF0(y) =

"+
R 1�"
" 1(bq0(�) � y)d� , where �� (u) = u � 1(� � 1(u < 0)) is the check function, and " is a speci�ed small positive number to

avoid estimating tail quantiles.
17Speci�cally, bF0(yjx) = " +

R 1�"
" 1(x0b�0(�) � y)d� , and bQ1(� jx) = x0b�1(�), where b�d(�) = argmin�d

Pn
i=1 1(Di =

d)�� (Yi �X0
i�d).

18Speci�cally, bFd (y) = n�1Pn
i=1

bFd (yjXi).
19For example, the uniform consistency of the IPW estimator of qd(�) is not established in Firpo (2007) but the corresponding

result for the IPW estimator of Fd(�) is established in DH. Actually, because the former is numerically equivalent to the inverse
of the latter, uniform consistency of Firpo�s estimator of qd (�) is implied by DH.
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Assumption LA: The joint distribution of W implied by the local alternative is contiguous to that implied

by p�(�) and F d� (�j�).

We provide a few comments on the assumptions above. First, unconfoundedness is a strong assumption

but extensively used in theoretical analysis and applications; see Imbens (2004) for a summary of relevant

literature. Second, the distribution of X can be either continuous or discrete. Also, the support of X

can be unbounded as long as we add E
h
kXk2

i
< 1 in Assumption DR and specify X as a compact

subset of supp(X). Third, as noted by Khan and Tamer (2010), the assumption that the propensity score

is bounded away from zero and one plays an important role in determining the convergence rate of IPW

estimators. Fourth, Assumption DR is borrowed from CFM to guarantee the validity of uniform inference

for DR estimators. Fifth, our local alternative preserves the conditional rank, but violates the null through

perturbing the conditional distribution of (D;Y0; Y1). For future reference, de�ne F d� (y) = E
�
F d� (yjX)

�
, qd�(�)

is the inverse function of F d� (y), Q
d
�(�jx) is the inverse function of F d� (�jx), fd� (�jx) is the density associated

with F d� (�jx), and fd� (�) is the density associated with F d� (�). The corresponding objects associated with Fd

are similarly de�ned. Sixth, the requirement for the contiguity of the local alternative to the null is standard

in analyzing the local power. A su¢ cient condition for contiguity is that

sup
(y;x):fd� (yjx)>0

fd(yjx)=fd� (yjx) <1;

where fd(�j�) is the conditional density associated with Fd(�j�). Intuitively, this would be the case when Fd

has lighter tails than F d� .

The asymptotic null distribution of Tn is quite complicated due to the plug-in estimators bp(�); bQ1(�j�); bF0(�j�); bq1(�)
and bF0(�). To facilitate the statement of the asymptotic distribution of Tn, de�ne v = (y; x), and Z(v) as a
mean zero Gaussian process on Y0X with the covariance function

�(v1; v2) = E [Z(v1)Z(v2)] = E [(	c (W;x1; y1)�	u (W; y1)) (	c (W;x2; y2)�	u (W; y2))] ;

where

	c (W;x; y) =
�0 (W;x; y)� �1 (W;x;Q1 (F0(yjx)jx))

f1 (Q1 (F0(yjx)jx)jx)
;

	u (W; y) =
 0(W; y)�  1(W; q1(F0(y)))

f1(q1(F0(y)))
;

and

�0(W;x; y) = � (x0�0(y))x
0J�10 (y)

(1�D) [1(Y � y)� � (X 0�0(y))]

� (X 0�0(y)) (1� � (X 0�0(y))
� (X 0�0(y))X;

�1(W;x; y) = � (x0�1(y))x
0J�11 (y)

D [1(Y � y)� � (X 0�1(y))]

� (X 0�1(y)) (1� � (X 0�1(y))
� (X 0�1(y))X;

 0(W; y) =
1�D
1� p(X)1(Y � y)� F0(y)

+E

�
�(X 0
0)

1� p(X)F0(yjX)X
0
�
E

�
�(X 0
0)

2

p(X)(1� p(X))XX
0
��1

X
�(X 0
0)

p(X)

D � p(X)
1� p(X) ;

 1(W; y) =
D

p(X)
1(Y � y)� F1(y)

�E
�
�(X 0
0)

p(X)
F1(yjX)X 0

�
E

�
�(X 0
0)

2

p(X)(1� p(X))XX
0
��1

X
�(X 0
0)

1� p(X)
D � p(X)
p(X)

:
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The terms associated with �1; �0;  1 and  0 are the contribution of bQ1(�j�); bF0(�j�); bq1(�) and bF0(�), respec-
tively. The e¤ects of bp(�) on the in�uence function include two parts: (i) the direct e¤ect, i.e., the e¤ect
of bp(�) that appears in Tn, which is asymptotically neglectable; (ii) the indirect e¤ects, i.e., the e¤ects ofbp(�) in bF0(�) and bq1(�), are included in  0 and  1 as the terms associated with D � p(X). De�ne �i�s as

the eigenvalues of �(v1; v2); by Mercer�s theorem (see Lemma 1 of Bierens and Ploberger, 1997), there exist

orthonormal eigenfunctions 'i (v) such thatZ
�(v1; v2)'i (v2) d�(v2) = �i'i (v1) ;

where �(�) is a measure on Y0X such that for any measurable setA in supp(Y0X), �(A) =
R
A\Y0X dFY0jX(yjx)dFX(x),

20

�i � 0 need not be distinct, and
P1
i=1 �i <1.

Theorem 3 Under Assumptions DR, P, U, X and Y, the following statements hold:

(i) Under H0,

nTn  
1X
i=1

�i�
2
1i;

where �21i�s are iid �
2
1 random variables, and �i�s are eigenvalues of �(v1; v2).

(ii) Under H�
1 and Assumption LA,

nTn  
1X
i=1

�
bi + "i

p
�i

�2
=

1X
i=1

�i�
2
1i

�
b2i =�i

�
;

where the "i are iid N(0; 1), bi =
R
b (v)'i (v) d�(v) with

b(y; x) =
�0
�
F0(yjx)� F 0� (yjx)

�
� �1

�
F1(Q1�(F

0
� (yjx)jx)jx)� F 0� (yjx)

�
f1� (Q

1
�(F

0
� (yjx)jx)jx)

�
�0
�
F0(y)� F 0� (y)

�
� �1

�
F1(q1�(F

0
� (y)))� F 0� (y)

�
f1� (q

1
�(F

0
� (y)))

;

and �21i
�
b2i =�i

�
�s are independent noncentral �21 random variables with noncentral parameters b2i =�i.

Thus, for any c > 0, P
�
nTn > cjH�

1

�
� P (nTn > cjH0), where the equality holds if and only if bi = 0

for any i.

(iii) Under the �xed alternative H1 with plimn!1 Tn > 0,

lim
n!1

P (nTn > cn) = 1

for any sequence of random variables fcn : n � 1g with cn = Op(1).

We provide a few comments on Theorem 3. First, although Tn takes an average form, its asymptotic

distribution is not normal since Tn is nonnegative for any n. Actually, from the proof of Theorem 3, Tn is

asymptotically equivalent to a third-order V-statistic. However, this V-statistic is degenerate because the

�rst term of Hoe¤ding projection is zero. We must rely on the second term of Hoe¤ding projection to obtain

20�(�) is not a probability measure but a truncated measure on Y0X since �(Y0X ) =
R
Y0X dFY0jX(yjx)dFX(x) < 1, but

Mercer�s theorem can still be applied. �(y; x) is understood as �(Ayx) with Ayx = f(y; x) 2 Y0Xjy � y; x � xg. We can
actually normalize �(�) to be a probability measure; see the discussion in Section 7.
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a nondegenerate asymptotic distribution; this is why the mixed chi-square distribution emerges. Second,

the power comes from the perturbation of Fd(yjx) such that the conditional quantile and unconditional
quantile are not the same or U0 and U1 are distributed among X values in an unbalanced way. Speci�cally,
F0(yjx)�F 0

� (yjx)
f1� (Q

1
�(F

0
� (yjx)jx)jx)

6= F0(y)�F 0
� (y)

f1� (q
1
�(F

0
� (y)))

and F1(Q1
�(F

0
� (yjx)jx)jx)�F

0
� (yjx)

f1� (Q
1
�(F

0
� (yjx)jx)jx)

6= F1(q1�(F
0
� (y)))�F

0
� (y)

f1� (q
1
�(F

0
� (y)))

. Of course, if these

di¤erences disappear in some sense after averaging over (y; x) 2 Y0X , our test will not have power. Third,
letting c in (ii) and cn in (iii) be the critical value of our test, then (ii) implies that our test is asymptotically

locally unbiased and (iii) implies that our test is consistent.

4.2 Bootstrapping the Critical Values of Tn

The eigenvalues �i are necessary inputs to determine the critical values of Tn, but they depend on the data-

generating process under the null and are hard to estimate.21 To make our testing procedure more applicable,

we suggest to use the exchangeable bootstrap to obtain the critical values. We formally summarize the

bootstrap procedure in the following Algorithm B. First, let (!1; � � � ; !n) be a vector of nonnegative random
variables that satisfy the following Assumption EB. For example, (!1; � � � ; !n) is a multinomial vector with
dimension n and probabilities (1=n; � � � ; 1=n) in the empirical bootstrap. The exchangeable bootstrap uses
the components of (!1; � � � ; !n) as random sampling weights in the construction of the bootstrap version of

the samples and estimators.

Algorithm B:

Step 1: De�ne

bF �0 (y) =
1

n�

nX
i=1

!i
1�Di

1� bp�(Xi)
1(Yi � y);

bF �1 (y) =
1

n�

nX
i=1

!i
Dibp�(Xi)

1(Yi � y);

where n� =
Pn
i=1 !i, and bp�(x) = � (x0b
�)

with b
� = argmax



nX
i=1

!i [Di ln� (X
0
i
) + (1�Di) ln (1� � (X 0

i
))] :

Then bq�d(�) = inf nyj bF �d (y) � �
o
:

Step 2: De�ne

bF �d (yjx) = �
�
x0b��d(y)� ;bQ�d(� jx) = inf
n
y
��� bF �d (yjx) � �

o
;

21Nevertheless, Bierens and Ploberger (1997) provide case-independent upper bounds of the asymptotic critical values of
the ICM test; Horowitz (2006) and Blundell and Horowitz (2007) consistently estimate the asymptotic critical values in two
speci�cation tests. In either scenario, approximation of critical values involves estimation of the covariance function. In our
case, estimates of conditional density f1(�j�) and marginal density f1(�) are necessary inputs in estimation of �(�; �), which is
avoided in our bootstrap procedure.
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where

b��d(y) = argmax
�

nX
i=1

!i1(Di = d) [1 (Yi � y) ln� (X 0
i�) + 1 (Yi > y) ln (1� � (X 0

i�))] :

Step 3: De�ne the bootstrap counterpart of Tn as

T �n =
1
n�

nP
i=1

!i1(Yi 2 Y0)1(Xi 2 X ) 1�Di

1�bp�(Xi)

�
h� bQ�1 � bF �0 (YijXi)jXi

�
� bQ1 � bF0(YijXi)jXi

��
�
�bq�1 � bF �0 (Yi)�� bq1 � bF0(Yi)��i2 :

Step 4: Simulate T �n B times to get fT �nbg
B
b=1 for B large enough, and then reject H0 if nTn > bc�n(�), wherebc�n(�) is the (1� �)th quantile of fn�T �nbgBb=1 which approximates the (1� �)th quantile of n�T �n , say,

c�n(�). Of course, we can also check whether the p-value B
�1PB

b=1 1(n
�T �nb � nTn) is less than � to

decide whether to reject H0.

We now describe Assumption EB.

Assumption EB: (!1; � � � ; !n) is an exchangeable, nonnegative random vector, which is independent of the
data fWigni=1 such that for some � > 0,

E
�
!2+�1

�
<1; n�1

Xn

i=1
(!i � !)2

P�
�! 1; ! = n�1

Xn

i=1
!i

P�
�! 1;

where P�
�! signi�es the convergence in the probability of bootstrap measure.22

By appropriately selecting (!1; � � � ; !n), the exchangeable bootstrap covers many bootstrap schemes (besides
the empirical bootstrap) as special cases. For example, the weighted bootstrap corresponds to the case where

!1; � � � ; !n are iid nonnegative random variables with E[!1] = V ar(!1) = 1, e.g., standard exponential. The

m out of n bootstrap corresponds to the case where (!1; � � � ; !n) is equal to
p
n=m times a multinomial

vector with parameter m and probabilities (1=n; � � � ; 1=n). The subsampling bootstrap corresponds to the
case where (!1; � � � ; !n) is a row in which the number m(n�m)�1=2m�1=2 appears m times and 0 appears

n � m times ordered at random, independent of the data. See Section 3.6.2 of VW for more detailed

descriptions. Each bootstrap scheme is useful to a speci�c application. For example, in small samples with

categorical covariates, we might want to use the weighted bootstrap to gain good accuracy and robustness to

"small cells", whereas in large samples, where computational tractability can be an important consideration,

we might prefer subsampling.

The following theorem states the validity of the above bootstrap procedure.

Theorem 4 Under Assumptions DR, EB, P, U, X and Y, the following statements hold:

(i) Under H0,

lim
n!1

P (nTn > c�n(�)) = �:

(ii) Under H�
1 and Assumption LA,

lim
n!1

P (nTn > c�n(�)) � �:

22This assumption can be relaxed a little bit as in (3.6.8) of VW.
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(iii) Under the �xed alternative H1 with plimn!1 Tn > 0,

lim
n!1

P (nTn > c�n(�)) = 1:

(i) implies that under H0, c�n(�)
p�! c(�), where c(�) is the (1� �)th quantile of the asymptotic distribution

of nTn, and the randomness in the probability convergence includes both the randomness of the original

sample and the independent randomness of the bootstrap simulations (this also applies to other statements

in Theorem 4). (ii) states that Tn using c�n(�) as the critical value is asymptotically locally unbiased. (iii)

is a corollary of Theorem 3(iii) since c�n(�) is bounded in probability under the �xed alternative. Finally, it

can be shown that the quantiles of

1

n

nX
i=1

1(Yi 2 Y0)1(Xi 2 X )
1�Di

1� bp(Xi)

h� bQ�1 � bF �0 (YijXi)jXi

�
� bQ1 � bF0(YijXi)jXi

��
�
�bq�1 � bF �0 (Yi)�� bq1 � bF0(Yi)��i2

can also serve as valid critical values of Tn. This new bootstrap statistic is like the wild bootstrap statistic;

essentially, we do not bootstrap the measure �(�) here.

5 Nonparametric Test of Rank Preservation For the QTE

In the nonparametric setup, we estimate p(�); F0(�j�); Q1 (�j�) nonparametrically and F0(�); q1(�) semipara-
metrically. Speci�cally, let K(�) be a r-dimentional kernel function having support on [�1; 1]r, h = hn be a

sequence of bandwidth, and Kh(u) = K(u=h). Then for x 2 X and y 2 Y0

bF0(yjx) =
(nhr)

�1Pn
j=1 (1�Dj) 1(Yj � y)Kh(Xj � x)

(nhr)
�1Pn

j=1 (1�Dj)Kh(Xj � x)
;

bF1(yjx) =
(nhr)

�1Pn
j=1Dj1(Yj � y)Kh(Xj � x)

(nhr)
�1Pn

j=1DjKh(Xj � x)
;

bQ1(� jx) = inf
n
yj bF1(yjx) � �

o
:

The estimates of Fd(�) are the same as in the last section except that we use the SLE of HIR to estimate
p(�), where the number of series terms K ! 1 as n ! 1. Of course, other estimators of p(�) such as the
local polynomial estimator (LPE) in Ichimura and Linton (2005) and the higher order kernel estimator in

Abrevaya et al. (2015) can also be used, but the SLE seems most convenient in practice. We provide a

few comments on our nonparametric test statistic. First, we estimate Fd(�j�) by the local constant estimator
(LCE) to guarantee that bFd(yjx) is monotone in y, which seems convenient to obtain the quantile functions.
Theoretically, the LPE or the LCE based on a higher order kernel can also be used although then bFd(yjx)
may not stay in (0; 1) and/or be monotone in y in �nite samples.23 Second, 1(Yj � y) in bFd(yjx) can be
replaced by G

�
y�Yj
h0

�
where G(�) is a kernel CDF such as the standard normal CDF, and h0 may be di¤erent

from h. Third, we estimate p(�) by the SLE to guarantee bp(x) 2 (0; 1). Although the kernel-type estimator
can be used, it seems that the LPE or the LCE based on a higher order kernel must be used to control the

bias in semiparametric estimation, which may make bp(x) out of (0; 1) for some x values; see more discussions
in Donald et al. (2014) on why the SLE is preferred and how to specify the series when there are discrete

covariates.

Another speci�cation in Tn is X . We replace Assumption X by
23Alternative estimators that can guarantee these two conditions can be found in Section 6.2 of Li and Racine (2007).
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Assumption X0 (Distribution of X): (i) supp(X) =
Qr
j=1[xlj ; xuj ] is Cartesian product of compact inter-

vals; (ii) the density of X, f(x), is twice continuously di¤erentiable, bounded, and bounded away from 0, on

X .

Since supp(X) is compact, we need to use a boundary kernel in the estimation of Fd(yjx) when x falls in
the h neighborhood of a boundary point of supp(X). Also, a di¤erent bandwidth should be used when x

is near the boundary of supp(X). To avoid such complications in practice, we may let X be a subset of

Xh �
Qr
j=1[xlj + h; xuj � h].24 In Assumption X0, we assume X to be continuous, but our test can very

easily handle inclusion of discrete regressors as well. The nonparametric distribution function estimation

would simply include both types of regressors, either by doing a separate kernel regression for each discrete

cell, or by smoothing over cells as in, e.g., Li and Racine (2008). The rest of the test would then proceed

exactly as before.

5.1 Asymptotics for Tn

We �rst impose some assumptions on the kernel and bandwidth.

Assumption K (Kernel): K(�) is a nonnegative, bounded, symmetric, twice continuously di¤erentiable
function, zero outside a bounded set, and

R
K(u)du = 1.

Assumption H (Bandwidth): h! 0; nhr= lnn!1; nhr=2h4 ! 0:

In Assumption H, nhr= lnn ! 1 guarantees the uniform linear approximation of bFd(yjx) to be possible;
nhr=2h4 ! 0 guarantees the bias of bFd(yjx) to be asymptotically neglectable in Tn. These two restrictions on
h cannot be satis�ed simultaneously unless r < 8; if r � 8, our nonparametric test does not seem practical.

In theory, when r � 8, the LPE or the LCE based on a higher order kernel can be used. In this case, the
results in Kong et al. (2010) can be applied to guarantee the uniform linear approximation of bFd(yjx).
We next impose some assumptions on the propensity score and the conditional CDF of Yd, which are

relaxation of Assumptions P and DR in Section 4.1.

Assumption P0 (Propensity Score): For all x 2supp(X), p(x) is continuously di¤erentiable of order s � 7r,
and p(x) is bounded away from zero and one: 0 < p � p(x) � p < 1.

Assumption Fd (Conditional CDF): (i) Fd(yjx) is twice continuously di¤erentiable on X uniformly in

y 2 Yd, where YdX is compact, and Y1 contains an �-enlargement of the set fQ1(F0(yjx)jx)jx 2 X ; y 2 Y0g.
(ii) fd(yjx) is uniformly bounded, and is uniformly continuous for (y; x) 2 YdX , f1(yjx) is continuously
di¤erentiable in y, and f1(yjx) > 0 for (y; x) 2 Y1X .

We �nally impose some assumptions on the SLE of p(�) which are borrowed from HIR.

Assumption S (SLE): The SLE of p(x) uses a power series with K = an� for some a > 0 and r=4(s� r) <
� < 1=9.

As in Section 4.1, we also consider the local alternative H�0
1 :

Ux0n = Ux1n for all x 2 X ;
pn(x) = (1� �p=

p
nhr=2)p�(x) +

�
�p=
p
nhr=2

�
}(x);

F dn(yjx) = (1� �d=
p
nhr=2)F d� (yjx) +

�
�d=
p
nhr=2

�
Fd(yjx);

24 If we let X = Xh, then since Xh converges to supp(X) as n ! 1, the asymptotic distributions of our test statistics are
the same as when 1(Xi 2supp(X)) is used in the test statistic construction. Similarly, when boundary kernels are used as Xi is
close to the boundary of supp(X), the asymptotic distributions are not a¤ected because this part of data points are neglectable
asymptotically.
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where both p�(x) and }(x) satisfy Assumption P0, both F d� (yjx) and Fd(yjx) satisfy Assumption Fd, and
Uxdn is the counterpart of U

x
d under F

d
n . F

d
� (yjx) satis�es Q1(F0(yjx)jx)� q1 (F0(y)) = 0 for yx 2 Y0X , but

Fd(yjx) does not.

To facilitate the statement of the asymptotic distribution of Tn, de�ne

g0yx(U
0
yi; Xi) =

1

hr=2 (1� p(x)) f(x)U
0
yiKh(Xi � x);

g1yx(U
1
yi; Xi) =

1

hr=2p(x)f(x)
U1yiKh(Xi � x);

g01yx(U
0
yi; U

1
Q1(F0(yjx)jx)i; Xi) =

g0yx
�
U0yi; Xi

�
� g1Q1(F0(yjx)jx)x

�
U1Q1(F0(yjx)jx)i; Xi

�
f1 (Q1 (F0(yjx)jx)jx)

;

where

U1yi = Di [1(Yi � y)� F1(yjXi)] ; U
0
yi = (1�Di) [1(Yi � y)� F0(yjXi)] :

Note that g01yx is the in�uence function of
p
nhr

� bQ1 � bF0(yjx)jx��Q1 (F0(yjx)jx)� uniformly for x 2 X ; y 2
Y0. The sample analog of g01yx is

bg01yx(bU0yi; bU1bQ1( bF0(yjx)jx)i; Xi) =
bg0yx(bU0yi; Xi)� bg1bQ1( bF0(yjx)jx)x(bU1yi; Xi)bf1 � bQ1 � bF0(yjx)jx����x� ; (7)

where

bg0yx(bU0yi; Xi) =
1

hr=2 (1� bp(x)) bf(x) bU0yiKh(Xi � x),

bg1yx(bU1yi; Xi) =
1

hr=2bp(x) bf(x) bU1yiKh(Xi � x),

bf1(yjx) =

�
nhr+1

��1Pn
j=1DjKh (Yj � y)Kh(Xj � x)

(nhr)
�1Pn

j=1DjKh(Xj � x)

with

(1� bp(x)) bf(x) =
1

nhr

nX
j=1

(1�Dj)Kh(Xj � x); bp(x) bf(x) = 1

nhr

nX
j=1

DjKh(Xj � x);

bU0yi = (1�Di)
h
1(Yi � y)� bF0(yjXi)

i
; bU1yi = Di

h
1(Yi � y)� bF1(yjXi)

i
:

De�ne

a2 =
R
X

 R
Y0

1
f1(Q1(F0(yjXi)jXi)jXi)

2E

"�
U0
yi

1�p(Xi)
�

U1
Q1(F0(yjXi)jXi)i

p(Xi)

�2�����Xi

#
dFY0jX(yjXi)

!2
dXi;

b =
R
X
R
Y0

1
f1(Q1(F0(yjXi)jXi)jXi)

2E

"�
U0
yi

1�p(Xi)
�

U1
Q1(F0(yjXi)jXi)i

p(Xi)

�2�����Xi

#
dFY0jX(yjXi)dXi:

Theorem 5 Under Assumptions Fd, K, H, P0, S, U, X0 and Y, the following statements hold:

(i) Under H0,

nhr=2Tn �Bh  N
�
0; �2

�
;
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where �2 = 2
R
K(v)2dv � a2 with K(v) =

R
K (u)K (v + u) du being the twofold convolution kernel

derived from K(�), and Bh = h�r=2K(0)b can be consistently estimated by

bv2n = 2

n2hr

nX
j=1

X
l 6=j

bw2jl and bbn = 1

nhr=2

nX
j=1

bwjj
with

bwjl = n�1
Xn

i=1
1(Yi 2 Y0; Xi 2 X )

1�Di

1� bp(Xi)

� bg01YiXi

�bU0Yij ; bU1bQ1( bF0(YijXi)jXi)j
; Xj

�bg01YiXi

�bU0Yil; bU1bQ1( bF0(YijXi)jXi)l
; Xl

�
:

As a result, the test based on the studentized test statistic 1
�
nhr=2Tn�bbnbvn > z�

�
has the signi�cance

level �, where z� is the 1� � quantile of the standard normal distribution.25

(ii) Under H�0
1 and Assumption LA,

nhr=2Tn �Bh  N
�
�; �2

�
;
nhr=2Tn �bbnbvn  N

�
�

�
; 1

�
where

� =

Z
b(y; x)2d�(y; x)

b(y; x) and �(y; x) are de�ned in Theorem 3(ii).

(iii) Under the �xed alternative H1 with plimn!1 Tn > 0,

lim
n!1

P

 
nhr=2Tn �bbnbvn > cn

!
= 1

for any nonstochastic constant cn = o(nhr=2).

We provide a few comments on Theorem 5. First, the e¤ect of bq1 � bF0(y)� is asymptotically neglectable be-
cause as a semiparametric estimator it is

p
n-consistent. From DH, the in�uence function of

p
n
�bq1 � bF0(y)�� q1 (F0(y))�

uniformly in y 2 Y0 is

	uy (W ) =
 0y(W )�  1q1(F0(y))(W )

f1(q1(F0(y)))
;

where

 0y(W ) =
1�D
1� p(X)1(Y � y)� F0(y) + F0(yjX)

D � p(X)
1� p(X) ;

 1y(W ) =
D

p(X)
1(Y � y)� F1(y)� F1(yjX)

D � p(X)
p(X)

:

Comparing with the parametric case, E
h
�(X0
0)
1�p(X) F0(yjX)X

0
i
E
h

�(X0
0)
2

p(X)(1�p(X))XX
0
i�1

X �(X0
0)
p(X) in  0(W; y)

is replaced by F0(yjX). In other words, the parametric case projects F0(yjX) on the space spanned by
�(X0
0)
p(X) X along the orthogonal space spanned by �(X0
0)

1�p(X)X (see Chapter 3 of Ruud (2000) for the de�nition

25This is a one-side test because Tn is based on the L2-distance between Q1(F0(Y0jX)jX) and q1 (F0(Y0)).
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and characterization of projection along a subspace). Similarly, the parametric case projects F1(yjX) on
the space spanned by �(X0
0)

1�p(X)X along the orthogonal space spanned by �(X0
0)
p(X) X. It is well known that

Fd(yjX) is the projection of 1(Yd � y) on the space spanned by all functions of X that are square integrable,

so the parametric case projects Fd(yjX) further on a �nite-dimensional space along some speci�c direction.
Second, as in Proposition 1 of Härdle and Mammen (1993), nhr=2Tn has a positive bias Bh = O(h�r=2)

because Tn > 0 for any n. Third, di¤erent from Proposition 2 of Härdle and Mammen (1993), the bias in

estimating bFd(yjx) will not contribute to the local power due to undersmoothing. This not only simpli�es
the local power expression, but simpli�es the simulation of critical values as discussed in the next subsection;

such undersmoothing techniques are also used in Blundell and Horowitz (2007) and Chernozhukov et al.

(2013) for similar reasons. Finally, in both Theorems 3 and 5, the asymptotic distribution under H0 in (i)

is a special case of that under the local alternative, and the consistency of the test statistics in (iii) is well

understood, so we will state only the asymptotic distribution under the local alternative in the RP tests for

the QTT in the next section.

5.2 Simulating the Critical Values of Tn

As in the classical speci�cation testing (see, e.g., Li and Wang, 1998), the convergence rate of Tn to the

normal distribution is quite slow (O(hr=2)). To approximate the critical value more accurately, the usual

literature suggests to use the wild bootstrap (see, e.g., Härdle and Mammen, 1993). In our case, however, it

is hard to impose the null if a bootstrap scheme is used. As an alternative, we suggest to use a simulation

method to approximate the critical values. We formally summarize the simulation procedure in the following

Algorithm S.

Algorithm S:

Step 1: De�ne bg01yx as in (7) with
(nhr)

�1=2 1p
n
bg01YiXi

�bU0Yij ; bU1bQ1( bF0(YijXi)jXi)j
; Xj

�
= 1bf1( bQ1( bF0(YijXi)jXi)jXi)

�
[1(Yj�Yi)� bF0(YijXj)](1�Dj)Pn

l=1(1�Dl)Kh(Xl�Xi)
Kh(Xj �Xi)

� [1(Yj�
bQ1( bF0(YijXi)jXi))� bF1( bQ1( bF0(YijXi)jXi)jXj)]DjPn

l=1DlKh(Xl�Xi)
Kh(Xj �Xi)

�
:

(8)

Step 2: De�ne

T �n =
1

n

nX
i=1

1(Yi 2 Y0; Xi 2 X )
1�Di

1� bp(Xi)

24(nhr)�1=2 1p
n

nX
j=1

�jbg01YiXi

�bU0Yij ; bU1bQ1( bF0(YijXi)jXi)j
; Xj

�352 ;
where �j are iid N(0; 1), independent of the original data.

Step 3: Simulate T �n B times to get
n
T �nb

oB
b=1

for B large enough, and then reject H0 if Tn > bc�n(�), where
bc�n(�) is the (1� �)th quantile of nT �nboB

b=1
which approximates the (1� �)th quantile of T �n, say,

c�n(�). Of course, we can also check whether the p-value B
�1PB

b=1 1(T
�
nb � Tn) is less than � to decide

whether to reject H0.

The following theorem states the validity of approximating the critical value of Tn by the quantile of T �n.
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Theorem 6 Under Assumptions Fd, K, H, P0, S, U, X0 and Y,

sup
z2R

�����P
 
nhr=2T �n �bbnbvn � z

�����Fn
!
� �(z)

����� = op (1) ;

where bbn and bvn are de�ned in Theorem 5(i), and Fn = fWigni=1.

We provide a few comments on this simulation procedure. First, since the e¤ect of bq1 � bF0(y)� is asymp-
totically neglectable in Tn, we do not need to simulate its in�uence function.26 Second, although we did

not explicitly impose the null in Algorithm S, the simulation procedure is valid. This is because when we

simulate g01yx, the in�uence function of
p
nhr

� bQ1 � bF0(yjx)jx��Q1 (F0(yjx)jx)�, we implicitly impose the
null. Of course, if the original data are from the alternative, the probability limit of bbn and bvn may not
be the same as in Theorm 5(i) because the distribution of W would be di¤erent. However, studentization

of T �n ensures its asymptotic distribution invariant to the distribution of W just as in the studentization

of Tn in Theorem 5(i). Third, from the proof of Theorem 6, we can replace bbn and bv2n in the theorem bybb�n � 1
nhr=2

Pn
j=1 �

2
j bwjj and bv�2n � 2

n2hr

Pn
j=1

P
l 6=j �

2
j�
2
l bw2jl, respectively. Then we need to modify T �n to

nhr=2T �n�bb�nbv�n and compare it with nhr=2Tn�bbnbvn . Our formulation of the theorem avoids estimation of bbn; bv2n;bb�n
and bv�2n . Fourth, in nonparametric estimation of F0(yjx) and F1(yjx), all bandwidths are the same. We can
allow the bandwidth vectors h0 in bF0(yjx) and h1 in bF1(yjx) to be di¤erent without di¢ culty. The only
di¤erence in Algorithm S is that the h in the �rst term in the brace of (8) is changed to h0 and the h in the

second term is changed to h1.

6 Testing Rank Preservation For the QTT

Parametric and nonparametric constructions of bp(�), bQ1(�j�) and bF0(�j�) have been discussed in the last two
sections, so we concentrate on the construction of bqt1(�) and bF t0(�) here. Following DH,

bF t0(y) =
1

n

nX
i=1

bp(Xi) (1�Di)

1� bp(Xi)
1(Yi � y)

,bp0;
bF t1(y) =

1

n

nX
i=1

Di1(Yi � y)

,bp1;
where bp0 can be either n�1Pn

i=1
bp(Xi)(1�Di)
1�bp(Xi)

or n�1
Pn
i=1Di, and bp1 can be either n�1Pn

i=1Di or n�1
Pn
i=1 bp(Xi).

For the parametric test, bp(�) in bF td(�) takes the parametric form in Section 4 and for the nonparametric test,

it takes the nonparametric form in Section 5. Note that bF t1(y) is automatically (weakly) increasing with
jumps at Y1i�s, so we de�ne bqt1(�) = inf nyj bF t1(y) � �

o
:

To derive the asymptotic distribution of T tn, we replace Assumption Y by the following Assumption Y
0.

Assumption Y0 (Distributions of Y0 and Y1 on the Treated): (i) f t0(y) is bounded, positive and continuous

on Yt0, where Yt0 is compact. (ii) f t1(y) is bounded, positive and continuously di¤erentiable on Yt1 which is
compact and contains an �-enlargement of the set fqt1 (F t0(y)) : y 2 Yt0g.
26Based on limited simulation results (using the setup in the second simulation of Section 8), the performance of T �n with

	uy (W ) also simulated is worse.
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6.1 Asymptotics for the Parametric Test

To facilitate the statement of the asymptotic distribution of T tn, de�ne Z
t(v) as a mean zero Gaussian process

on Yt0X with the covariance function

�t(v1; v2) = E
�
Zt(v1)Z

t(v2)
�
= E

��
	c (W;x1; y1)�	tu (W; y1)

� �
	c (W;x2; y2)�	tu (W; y2)

��
;

where 	c is de�ned in Section 4.1,

	tu (W; y) =
 t0(W; y)�  t1(W; qt1(F t0(y)))

f t1(q
t
1(F

t
0(y)))

;

with

 t0(W; y) =
1

E[D]

(
E

�
�(X 0
0)

1� p(X)F0(yjX)X
0
�
E

�
�(X 0
0)

2

p(X)(1� p(X))XX
0
��1

X
�(X 0
0)

p(X)

D � p(X)
1� p(X)

+
p(X)(1�D)
1� p(X) 1(Y � y)� F t0(y)D

�
;

 t1(W; y) =
D

E[D]

�
1(Y � y)� F t1(y)

�
:

The terms associated with  t1 and  
t
0 are the contribution of bqt1(�) and bF t0(�), respectively. De�ne �ti�s as the

eigenvalues of �t(v1; v2), i.e., for orthonormal eigenfunctions 'ti (v),Z
�t(v1; v2)'

t
i (v2) d�

t(v2) = �ti'
t
i (v1) ;

where �t(�) is a measure on Yt0X such that for any measurable setA in supp(Y0X), �t(A) =
R
A\Yt0X

p(x)
E[D]dFY0jX(yjx)dFX(x),

27

and
P1
i=1 �

t
i <1.

Corollary 2 Suppose Assumptions DR, P, U, X and Y0 hold. Then under H�
1 and Assumption LA,

nT tn  
1X
i=1

�
bti + "i

q
�ti

�2
=

1X
i=1

�i�
2
1i

��
bti
�2
=�ti

�
;

where the "i are iid N(0; 1), �
t
i�s are eigenvalues of �

t(v1; v2), bti =
R
bt (v)'ti (v) d�

t(v) with

bt(y; x) =
�0
�
F0(yjx)� F 0� (yjx)

�
� �1

�
F1(Q1�(F

0
� (yjx)jx)jx)� F 0� (yjx)

�
f1� (Q

1
�(F

0
� (yjx)jx)jx)

� �
0t
F (y)��1tF (q1t� (F 0t� (y)))

f1t� (q
1t
� (F

0t
� (y)))

and

�dtF (y) =
�


E[p�(X)]

�
E
�
(}(X)� p�(X))F d� (yjX)

�
� E [}(X)� p�(X)]

E[p�(X)]
E
�
p�(X)F

d
� (yjX)

��
+

�d
E[p�(X)]

E
�
p�(X)

�
Fd(yjX)� F d� (yjX)

��
; d = 0; 1;

and �21i
�
(bti)

2
=�ti

�
�s are independent noncentral �21 random variables with noncentral parameters (bti)

2
=�ti.

Thus, for any c > 0, P
�
nT tn > cjH�

1

�
� P (nT tn > cjHt

0), where the equality holds if and only if b
t
i = 0 for

27 If de�ne Ax =
�
y 2 Yt0j (y; x) 2 A

	
, then �t(A) = E [P (Y0 2 AX jX) jD = 1]. �t(y; x) is understood as �t(Ayx) with

Ayx =
�
(y; x) 2 Yt0Xjy � y; x � x

	
.
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any i.

The contribution of the perturbation of F d(yjx) to the local power can be similarly analyzed as in Tn.
However, di¤erent from Tn, the local power of T tn also depends on the perturbation of the propensity score.

This is obviously due to the further weight p(X)=E[D] in estimating F td(y). To check the pure e¤ect of p(�)
on the local power, suppose �0 = �1 = 0. After some manipulation, we can show

bt(y; x) � f1t� (q1t� (F 0t� (y))) � E[p�(X)]2=�

= Cov

�
p�(X)

�
F 1� (q

1t
� (F

0t
� (y))jX)� F 0� (yjX)

�
; }(X)� p�(X)

�
�Cov

�
p�(X); (}(X)� p�(X))

�
F 1� (q

1t
� (F

0t
� (y))jX)� F 0� (yjX)

��
:

Recall that q1t� (F
0t
� (y)) = Q1�(F

0
� (yjx)jx) for x 2supp(Xj (Y t0 = y)) such that F 1� (q

1t
� (F

0t
� (y))jx) = F 0� (yjx) for

such x, so the power is contributed by the covariance di¤erence which is due to x 2 (supp(X) nsupp(Xj (Y t0 = y)))\
X . If supp(X) =supp(Xj (Y t0 = y)) for all y 2 Yt0, then misspeci�cation in p(�) will not contribute to the
power.

We can also show that the exchangeable bootstrap is valid for T tn. To be speci�c, de�ne the bootstrap

counterpart of T tn as

T t�n = 1Pn
i=1 !iDi

nP
i=1

!i1(Yi 2 Yt0)
bp�(Xi)(1�Di)
1�bp�(Xi)

�
h bQ�1 � bF �0 (YijXi)jXi

�
� bQ1 � bF0(YijXi)jXi

�
�
�bqt�1 � bF t�0 (Yi)�� bqt1 � bF t0(Yi)��i2 ;

where bF �0 (�j�) and bQ�1(�j�) are de�ned in Section 4.2, and bF t�0 (�) and bqt�1 (�) are de�ned as follows:
bF t�0 (y) = 1

n

nX
i=1

!i
bp�(Xi) (1�Di)

1� bp�(Xi)
1(Yi � y)

,
1

n

nX
i=1

!iDi

with bp� de�ned in Section 4.2, and bqt�1 (�) = inf ny ��� bF t�1 (y) � �
o

with bF t�1 (y) = 1

n

nX
i=1

!iDi1(Yi � y)

,
1

n

nX
i=1

!iDi:

De�ne bc�tn (�) as the (1� �)th quantile of fn�T t�nbgBb=1, which approximates the (1� �)th quantile of n�T t�n ,
say, c�tn (�), and then reject H

t
0 if nT

t
n > bc�tn (�), where T t�nb is the bth resample of T t�n and B is large enough.

Alternatively, if the p-value B�1
PB
b=1 1(n

�T t�nb � nT tn) is less than � then rejectH
t
0. The validity of bootstrap

here can be parallelly stated as in Theorem 4, so omitted for simplicity.

6.2 Asymptotics for the Nonparametric Test

We state the asymptotic distribution of T tn without proof since the proof is similar to that of Theorem 5.

We �rst de�ne the counterparts of a2 and b in Theorem 5 as

(at)
2
=
R
X

 R
Yt0

1
f1(Q1(F0(yjXi)jXi)jXi)

2E

"�
U0
yi

1�p(Xi)
�

U1
Q1(F0(yjXi)jXi)i

p(Xi)

�2�����Xi

#
p(Xi)
E[D] dFY0jX(yjXi)

!2
dXi;

bt =
R
X
R
Yt0

1
f1(Q1(F0(yjXi)jXi)jXi)

2E

"�
U0
yi

1�p(Xi)
�

U1
Q1(F0(yjXi)jXi)i

p(Xi)

�2�����Xi

#
p(Xi)
E[D] dFY0jX(yjXi)dXi:
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Corollary 3 Suppose Assumptions Fd, K, H, P0, S, U, X0 and Y0 hold. Then under H�0
1 and Assumption

LA,

nhr=2T tn �Bth  N
�
�t;

�
�t
�2�

;
nhr=2T tn �bbtnbvtn  N

�
�t

�t
; 1

�
where (�t)2 = 2

R
K(v)2dv � (at)2 with K(v) de�ned in Theorem 5(i), and Bth = h�r=2K(0)bt can be consis-

tently estimated by �bvtn�2 = 2

n2hr

nX
j=1

X
l 6=j

� bwtjl�2 and bbtn = 1

nhr=2

nX
j=1

bwtjj
with

bwtjl =
1Pn

i=1Di

Xn

i=1
1(Yi 2 Yt0)1(Xi 2 X )

bp(Xi) (1�Di)

1� bp(Xi)

� bg01YiXi

�bU0Yij ; bU1bQ1( bF0(YijXi)jXi)j
; Xj

�bg01YiXi

�bU0Yil; bU1bQ1( bF0(YijXi)jXi)l
; Xl

�
;

and

�t =

Z
bt(y; x)2d�t(y; x)

with bt(y; x) and �t(�) de�ned in Corollary 2. As a result, the test based on the studentized test statistic
1
�
nhr=2T tn�bbtnbvtn > z�

�
has the signi�cance level �, where z� is the 1 � � quantile of the standard normal

distribution.

As in Tn, the e¤ect of bqt1 � bF t0(y)� is asymptotically neglectable. From DH, the in�uence function of
p
n
�bqt1 � bF t0(y)�� qt1 (F t0(y))� uniformly in y 2 Yt0 is

	tuy (W ) =
 t0y (W )�  t1qt1(F t

0 (y))
(W )

f t1(q
t
1(F

t
0(y)))

;

where

 t0y (W ) =
1

E[D]

�
p(X)(1�D)
1� p(X) 1(Y � y) + F0(yjX)

D � p(X)
1� p(X) � F

t
0(y)D

�
;

 t1y (W ) =
D

E[D]

�
1(Y � y)� F t1(y)

�
:

The only di¤erence between the asymptotic distribution of T tn and Tn is the weight p(Xi)=E [D] in Bth and

(�t)
2 which is inherited from the de�nition of �t(�).
We can also simulate the critical values of T tn as in Section 5.2. More speci�cally, de�ne

T t�n = 1Pn
i=1Di

Pn
i=1 1(Yi 2 Yt0)1(Xi 2 X ) bp(Xi)(1�Di)

1�bp(Xi)

"
(nhr)

�1=2 1p
n

nP
j=1

�jbg01YiXi

�
(bU0Yij ; bU1bQ1( bF0(YijXi)jXi)j

; Xj)

�#2
;

and adjust Algorithm S correspondingly, where �j and bg01yx are de�ned in T �n. The validity of simulation here
can be parallelly stated as in Theorem 6, so omitted for simplicity.
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7 Discussion

We in this section provide more comments on our tests. First, where is the power of our tests from? It turns

out that our tests are in fact overidenti�cation tests. From the proof of Theorem 2, U0 = U1 implies the

following moment conditions,

QY1jX(FY0jX(q0(U0)jx)jx)� q1 (U0) = 0; x 2 supp (X) :

Obviously, if supp(X) includes only a single point, then QY1jX(FY0jX(q0(U0)jx)jx) = Q1 (F0 (q0(U0))) =

Q1 (U0) by de�nition and no testing power is possible. So the power of our RP tests for the QTE comes from

the overidenti�cation information which originates from multiple (more than one) values of X. Similarly,

U t0 = U t1 implies Q1(F0(q
t
0(U

t
0)jx)jx)� qt1 (U t0) for x 2supp(X). If supp(X) includes only a single point, then

Q1(F0(q
t
0(U

t
0)jx)jx) = qt1(F

t
0(q

t
0(U

t
0))) = qt1 (U

t
0) and no power can be achieved.

Second, we discuss some modi�cations of our tests. Recall that the reweightings 1�D
1�p(X) in T and

p(X)
E[D]

1�D
1�p(X) in T t are used to generate the distribution F0(�) and F t0(�) respectively, but they may in-

duce inverse e¤ects in practice since bp(Xi) in Tn and T tn may be close to 1. To avoid such e¤ects, we

can replace both reweightings by 1 � D without changing the essential aspects of our tests; especially,

supp(Y0X) is still recovered. The di¤erences in the asymptotic distributions are (i) �(�) in Theorem
3 is rede�ned as �(A) =

R
A\Y0X (1 � p(x))dFY0jX(yjx)dFX(x) and �t(�) in Corollary 2 is rede�ned as

�t(A) =
R
A\Yt0X

(1� p(x))dFY0jX(yjx)dFX(x) for any measurable set A in supp(Y0X); (ii) the integrands of
a2 and b in Theorem 5 are multiplied by 1� p(Xi), and

p(Xi)
E[D] in (a

t)
2 and bt of Corollary 3 are replaced by

1 � p(Xi); (iii) 1�Di

1�bp(Xi)
in bwjl is replaced by 1 �Di and 1Pn

i=1Di

bp(Xi)(1�Di)
1�bp(Xi)

in bwtjl is replaced by 1�Di

n . In

bootstrapping critical values, 1�Di

1�bp�(Xi)
in T �n is replaced by 1 � Di and 1Pn

i=1 !iDi

bp�(Xi)(1�Di)
1�bp�(Xi)

in T t�n is re-

placed by 1�Di

n� . In simulating the critical values, 1�Di

1�bp(Xi)
in T �n is replaced by 1�Di and 1Pn

i=1Di

bp(Xi)(1�Di)
1�bp(Xi)

in T t�n is replaced by 1�Di

n . Another modi�cation is to normalize �(�) and �t(�) as probability measures.
For example, in Tn, we can replace 1

n by 1
.Pn

i=1 1(Yi 2 Y0)1(Xi 2 X ) 1�Di

1�bp(Xi)
, and in T tn, replace

1Pn
i=1Di

by 1
.Pn

i=1 1(Yi 2 Yt0)1(Xi 2 X ) bp(Xi)(1�Di)
1�bp(Xi)

. As a result, in the asymptotic distributions of Tn and T tn,

� (�) and �t (�) are replaced by their normalized counterparts, and the bootstrap (simulation) procedures are
adjusted correspondingly.

Third, we discuss a few alternative forms of our tests. For this purpose, we �rst state the following

corollary of Theorem 2.

Corollary 4 Under Assumption M, FXjU1 (xju) = FXjU0 (xju) for PXU almost sure (x; u) if and only if

E
h
(Q0(F1(q1(U1)jX)jX)� q0 (U1))2

i
= 0 or E

h
(F1 (q1 (U0) jX)� F0(q0(U0)jX))2

i
= 0, where U0 can be

replaced by U1.

Proof. The proof for this corollary is parallel to that of Theorem 2, so omitted here.

The �rst equivalent statement E
h
(Q0(F1(q1(U1)jX)jX)� q0 (U1))2

i
= 0 implies that our RP tests for

the QTE can base on

T 0 = E
h
D (Q0(F1(Y jX)jX)� q0 (F1(Y )))2 1(Y 2 Y1)

i
;

where Y1 = fq1(�)j� 2 T1g with T1 being a truncation set of quantile index, and the HIR weight D
p(X) is
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replaced by D as suggested in the second comment above. Similarly, the RP tests for the QTT can base on

T t0 = E
h
D
�
Q0(F1(Y jX)jX)� qt0

�
F t1(Y )

��2
1(Y 2 Yt1)

i
;

where Yt1 = fqt1(�)j� 2 T t1 g. Their sample analogs T 0n and T t0n can be constructed similarly as Tn and T tn.

Although T and T 0 are theoretically equivalent (when no truncation is involved), the sample sizes in their

truncation sets may be di¤erent, which may a¤ect the �nite-sample relative performance of T and T 0. As a

result, we can base our RP tests for the QTE on max fTn; T 0ng to robustify power in �nite samples. Note that
to make Tn and T 0n comparable in magnitude, it is better to use normalized Tn and T

0
n as mentioned in the

second comment above. By the continuous mapping theorem, the asymptotic distribution of max fTn; T 0ng
is the maximum of the corresponding asymptotic distributions of Tn and T 0n which are correlated. The

bootstrap and simulation procedures are adjusted correspondingly; only note that !i (�j) used in T
�
n and

T �0n (T �n and T
�0
n ) are the same to accommodate the correlation between Tn and T

0
n. Similarly, we can base

the RP tests for the QTT on max fT tn; T t0n g.
From the second equivalent statement E

h
(F1 (q1 (U0) jX)� F0(q0(U0)jX))2

i
= 0, one may suggest to

base our RP tests for the QTE on

eS = Z Z 1

0

E
h
(F1 (q1 (u) jx)� F0 (q0 (u) jx))2

i
dudFX(x);

whose sample analog is eSn = 1

n

nX
i=1

Z
T

� bF1(bq1 (u) jXi)� bF0(bq0 (u) jXi)
�2
du;

where T is a truncation set of quantile index. Since eSn involves the basic ingredients of Tn, bFd (�j�) andbqd (�), its asymptotic distribution can be derived based on the techniques used in deriving the asymptotic
distribution of Tn. Similarly, the RP tests for the QTT can base on

eSt = Z Z 1

0

E
h�
F1
�
qt1 (u) jX

�
� F0

�
qt0 (u) jX

��2i
dudFX(x);

whose sample analog is

eStn = 1

n

nX
i=1

Z
T t

� bF1(bqt1 (u) jXi)� bF0(bqt0 (u) jXi)
�2
du;

where T t is a truncation set of quantile index. We do not suggest to use eSn or eStn in practice for two reasons.
To simplify discussion, we take eSn as an example and similar comments apply to eStn. (i) it is not easy to
intuitively detect the quantile indices at which the null is violated especially when the distribution of X

is complicated. To see why, note �rst that F1 (q1 (u) jx) = P (Y1 � q1 (u) jX = x) = P (U1 � ujX = x) =

FU1jX(ujx) and similarly, F0 (q0 (u) jx) = FU0jX(ujx), so eS is comparing FU1jX(ujx) and FU0jX(ujx) for
u 2 [0; 1] and x 2supp(X). From (3), we can plot FXjU1 (xju) versus FXjU0(xju) as functions of u to detect
the violated quantile indices, where FXjUd can be estimated from

n
(Xi; bFd(Yi))on

i=1
by noting that bFd(Yi) is

unconditional rank of Yi under the treatment state d. However, if the distribution of X is complicated (e.g.,

dim(X) is high and/or supp(X) is large), we need to draw many pictures to detect the violation of H0; also,

it is not easy to integrate the information in all these pictures. On the contrary, as shown in Proposition

2, we can draw one picture (at most two if T 0 is also used) to detect the violated quantile indices. (ii) eS
implicitly assumes that U1 and U0 have the same support (which includes T as a subset) for all X values.

30



Under H0, U1jX=x and U0jX=x have the same support, but need not share a common area for all X values;

under H1, U1jX=x and U0jX=x may not even have the same support; see Figure 4 for an intuitive illustration.
One implied technical di¢ culty here is that F1 (q1 (u) jx) and F0 (q0 (u) jx) can take extreme values such as
0 and 1, which makes the asymptotic arguments quite hard. For example, in Example 2, F0 (q0 (0:5) j0) = 1
and F0 (q0 (0:5) j1) = 0. Actually,

E
h
(F1 (q1 (U0) jX)� F0(q0(U0)jX))2

i
=

Z Z 1

0

[F1 (q1 (u) jx)� F0 (q0 (u) jx)]2 dFU0jX(ujx)dFX(x)

6=
Z Z 1

0

E
h
(F1 (q1 (u) jx)� F0 (q0 (u) jx))2

i
dudFX(x)

unless U0 ? X, so eS is implicitly using this extra assumption.28 To incorporate the joint distribution of

(X;U0), as in T , we replace q0(U0) by Y0 in E
h
(F1 (q1 (U0) jX)� F0(q0(U0)jX))2

i
and truncate Y0 to get

S = E
h
(F1 (q1 (F0 (Y0)) jX)� F0 (Y0jX))2 1(Y0 2 Y0)

i
= E

�
1�D
1� p(X) (F1 (q1 (F0 (Y )) jX)� F0 (Y jX))

2
1(Y0 2 Y0)

�
:

Parallely, we can base the RP tests for the QTT on

St = E

�
p(X)

E[D]

1�D
1� p(X)

�
F1
�
qt1
�
F t0 (Y )

�
jX
�
� F0 (Y jX)

�2
1(Y 2 Yt0)

�
:

It is easy to notice the similarity between S and T and between St and T t.

Fourth, the testing ideas in this paper can also be extended to test some forms of conditional rank

preservation. As mentioned in the Introduction, the rank preservation within each X value cannot be tested.

However, if we want to test rank preservation in a coarser partition of X values, e.g., for each X1 value with

X1 being a subset of X, we can still apply our testing ideas and base the RP tests for the QTE on

E
h
(1�D) (Q1(F0(Y jX)jX)�Q1 (F0(Y jX1)jX1))

2
1(Y 2 Y0)

i
;

and base the RP tests for the QTT on

E
h
(1�D)

�
Q1(F0(Y jX)jX)�Qt1

�
F t0(Y jX1)jX1

��2
1(Y 2 Yt0)

i
;

where the formulas for bFd(y) and bF td(y) can still be used to estimate Fd(Y jX1 = x1) and F td(Y jX1 = x1)

except that the data employed are restricted to the X1 = x1 stratum; see, e.g., Abrevaya et al. (2015).

However, it seems that unconditional quantile treatment e¤ects are the most popular in practice, so it may

be enough to consider only unconditional rank preservation tests for empirical purposes.

8 Simulations

In this section, we use two simple examples to illustrate the performances of our RP tests for the QTE and

QTT. Suppose the relationship between Yd and X is the same as that in the example of Section 3.1, i.e.,

28 If the measure FU0jX(�jx) and the uniform measure on [0; 1] are dominated by each other for any x 2supp(X),
then

R R 1
0 E

h
(F1 (q1 (u) jx)� F0 (q0 (u) jx))2

i
dudFX(x) is also a valid test statistic. So the key point here is whether

supp(U0jX = x) = [0; 1] for any x 2supp(X).
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Y0 = X + �, Y1 = (2� a)X + a � �. To satisfy unconfoundedness, let D = 1(X + � > 0), where X; � and � are

independent of each other, � � N(0; 1), and � � N(0; 1). We will consider four a � 1 values, 0; 0:3; 0:6 and
0:9, indicating the null, small, medium and large local alternatives, respectively.

For the parametric tests, let X � Bernoulli(0:5). Because X is binary, the parametric estimation of

p(�); F0(�j�) and F1 (�j�) in Sections 4 and 6.1 does not include misspeci�cation error; choice of the link function
� (�) is irrelevant.
For the nonparametric tests, let X � U [�1; 1]. The kernel function is set as the quartic kernel K(u) =

15
16 (1 � u2)21(juj � 1). The bandwidth is set as in the conditional mean estimation in Section 7.3 of Cher-
nozhukov et al. (2013).29 As suggested at the end of Section 5.2, we use di¤erent bandwidths, h0 and h1, forbF0(�j�) and bF1(�j�), respectively. Take h1 as an example. Now, the data used in estimation are fYi; Xign1i=1
such that the associated Di = 1, where n1 =

Pn
i=1Di, and we assume the �rst n1 individuals are treated.

Then

h1 = bh1;ROT � bs1 � n1=51 � n�2=71 ;

where bs1 is the square root of the sample variance of the Xi and bh1;ROT , is the rule-of-thumb bandwidth for
estimation of m1(x) � E[YijXi = x;Di = 1] with studentized Xi, as prescribed in Section 4.2 of Fan and

Gijbels (1996). The exact form of bh1;ROT is
bh1;ROT = 2:036

264 e�21 R w1(x)dx
n�11

Pn1
i=1

nem(2)
1 ( eXi)

o2
w1( eXi)

375
1=5

n
�1=5
1 ;

where eXi�s are studentized Xi�s, em(2)
1 (�) is the second-order derivative of the global quartic parametric �t

of m1(x) with studentized Xi, e�21 is the simple average of squared residuals from the parametric �t, and

w1(�) is a uniform weight function that has value 1 for any eXi between the 0:10 and 0:90 sample quantiles

of eXi. The factor n
1=5
1 � n

�2=7
1 is multiplied in h1 to ensure that the bias is asymptotically negligible due

to undersmoothing. In simulating the critical values, the bandwidths used in bg0yx and bg1yx are h0 and h1,
respectively, and the estimation of bf1(yjx) is based on the algorithm kde2d.m of Botev et al. (2010). In

estimating the propensity score and the parametric Fd(�j�), � is set as the probit link function to avoid

model misspeci�cation and the probit �t is conducted by the matlab function glm�t. To improve the power
of nonparametric tests, we set X = supp(X). The simulation study in Müller (1991) shows that a bandwidth

without boundary adjustment works well, and we therefore use the same bandwidth for both interior and

boundary points.

In both experiments, we consider six test statistics for the QTE and �ve for the QTT, respectively.

As suggested in the second and third comments of Section 7, in the RP tests for the QTE, we con-

sider Tn; T 0n;max fTn; T 0ng and the no-p(X)-reweighting counterparts; in the RP tests for the QTT, we

consider T tn; T
t0
n ;max fT tn; T t0n g and the no-p(X)-reweighting counterparts, with T t0n the same as its no-p(X)-

reweighting counterpart. As suggested in the third comment of Section 7, all test statistics (i.e., Tn; T 0n; T
t
n; T

t0
n

and their no-p(X)-reweighting counterparts) are normalized to make them comparable. Yd and Ytd are cho-
sen as [qd(0:1); qd(0:9)], where qd(�) is the �th sample quantile of Yi with Di = d. 500 replications of both

experiments with sample size 400 and 1000 are considered. In bootstrapping or simulating the critical values,

the repetition number B = 399 for n = 400 and B = 199 for n = 1000. The signi�cance level � is set at 5%.

Our simulation study is limited due to computational cost since a bootstrap or simulation cyle is embedded

29 Ideally, the bandwidth in bFd(yjx) should depend on y but selecting bandwidth in this way is too burdensome. Other methods
such as cross-validation is too time-consuming. Chernozhukov et al.�s method is designed for the local linear conditional mean
estimation. The purpose to use their bandwidth here is only to get the right rate such that undersmoothing is assured.
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inside a Monte Carlo cycle.

n 400 1000

a� 1 0 0:3 0:6 0:9 0 0:3 0:6 0:9

Tn 0.028 0.298 0.732 0.924 0.052 0.720 0.988 1.000

T 0n 0.012 0.252 0.660 0.874 0.032 0.686 0.986 1.000

max fTn; T 0ng 0.008 0.274 0.726 0.922 0.036 0.708 0.988 1.000

Tn (no-p(X)-reweighting) 0.024 0.330 0.748 0.932 0.046 0.754 0.990 1.000

T 0n 0.010 0.242 0.634 0.844 0.034 0.676 0.986 1.000

max fTn; T 0ng 0.008 0.288 0.740 0.932 0.034 0.726 0.990 1.000

T tn 0.028 0.328 0.744 0.938 0.052 0.726 0.990 1.000

T t0n 0.008 0.238 0.624 0.836 0.034 0.676 0.984 1.000

max fT tn; T t0n g 0.008 0.300 0.740 0.936 0.032 0.710 0.990 1.000

T tn (no-p(X)-reweighting) 0.028 0.374 0.770 0.946 0.050 0.762 0.992 1.000

max fT tn; T t0n g 0.014 0.368 0.768 0.946 0.042 0.758 0.992 1.000

Table 1: Power of Parametric Rank Preservation Tests for the QTE and QTT

n 400 1000

a� 1 0 0:3 0:6 0:9 0 0:3 0:6 0:9

Tn 0.022 0.108 0.484 0.782 0.016 0.474 0.970 0.998

T 0n 0.022 0.214 0.608 0.850 0.020 0.574 0.986 1.000

max fTn; T 0ng 0.022 0.116 0.482 0.782 0.014 0.476 0.970 0.998

Tn (no-p(X)-reweighting) 0.020 0.168 0.566 0.836 0.026 0.530 0.968 1.000

T 0n 0.012 0.196 0.608 0.842 0.006 0.500 0.964 1.000

max fTn; T 0ng 0.014 0.168 0.564 0.834 0.014 0.530 0.968 1.000

T tn 0.018 0.060 0.358 0.646 0.006 0.350 0.904 0.992

T t0n 0.014 0.150 0.476 0.758 0.006 0.408 0.924 0.998

max fT tn; T t0n g 0.006 0.064 0.358 0.646 0.002 0.348 0.904 0.992

T tn (no-p(X)-reweighting) 0.046 0.412 0.830 0.948 0.044 0.812 0.998 1.000

max fT tn; T t0n g 0.036 0.394 0.828 0.948 0.030 0.804 0.998 1.000

Table 2: Power of Nonparametric Rank Preservation Tests for the QTE and QTT

The simulation results for parametric RP tests are summarized in Table 1. From Table 1, the following

conclusions can be drawn. First, all tests perform satisfactorily well, which matches the prediction of

Theorem 2 and Corollary 4; as expected, the size and power when n = 1000 are better than those when

n = 400. Second, when n = 400, the sizes of all tests are smaller than the nominal level, so our tests

are relatively conservative when the sample size is small.30 This means that when the tests reject, it is a

strong signal that the rank is not preserved. Third, Tn (T tn) performs relatively better than T
0
n (T

t0
n ), and

the performance of max fTn; T 0ng (max fT tn; T t0n g) is in-between (closer to the better one), no matter p(X)
is included in reweighting or not. Fourth, no-p(X)-reweighting counterparts perform a little bit better than

the original tests. Fifth, the powers of the tests for the QTE and for the QTT are similar. The simulation

results for nonparametric RP tests are summarized in Table 2. The �rst, second and fourth conclusions from

Table 1 can still be applied here; actually, even when n = 1000, there is still the under-sized problem. The

third and �fth conclusions can be adjusted as follows. Third, T 0n (T
t0
n ) performs relatively better than Tn

30Conservative size is not nonstandard in the literature, see, e.g., Bierens and Ploberger (1997) for misspeci�cation testing,
Wang and Zivot (1998) for inferences in the weak instruments case, and Abadie (2002) for the stochastic dominance tests.
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(T tn), and the performance of max fTn; T 0ng is closer to the worse one (except the no-p(X)-reweighting tests
for the QTT). Fifth, the powers of the tests for the QTE are better than those for the QTT when p(X)

is included in reweighting but worse when p(X) is excluded. Based on these simulation results, we provide

two general suggestions to practitioners: (i) use no-p(X)-reweighting forms of our tests; (ii) conduct both

Tn (T tn) and T
0
n (T

t0
n ) to check the sensitivity of our tests.

9 Application

We apply our tests to the dataset from the National Supported Work Program (NSW). This dataset was �rst

analyzed by LaLonde (1986) and later by Heckman and Hotz (1989), Dehejia and Wahba (1999), Imbens

(2003), Smith and Todd (2001, 2005), Firpo (2007) and Abadie and Imbens (2011) among others. We refer

to LaLonde (1986) for detailed descriptions of this dataset. We actually use only subsamples of LaLonde�s

original sample, termed "RE74 subset" and "PSID-1" in Dehejia and Wahba (1999). RE74 subset contains

an experimental sample from a randomized evaluation of the NSW program with 185 individuals treated and

260 untreated. PSID-1 contains the experimental participants in the RE74 subset and a non-experimental

comparison group with 2490 individuals from the PSID. Summary statistics can be found in Table 1 of

Abadie and Imbens (2011). Because the composition of covariates is quite complicated, we apply only the

parametric tests to check rank preservation.

The outcome of interest Y is the earning in 1978 (in thousands of 1982 U.S. dollars). The treatment

status D is an indicator for participating in the job training or not. As to the speci�cation of X, we follow

the suggestion of DH. Speci�cally, for RE74 subset, X can be two con�gurations: (i) a constant, age and the

squared age; (ii) a constant, age, age squared, dummies for black, hispanic, married and high school dropout,

and earnings in 1974 and 1975. For PSID-1, X can be three con�gurations: (1) same as con�guration (ii) in

RE74 subset; (2) con�guration (ii) plus education, squared education, squared earnings in 1974 and 1975,

and the interaction term between the dummy for black and the dummy for unemployed in 1974; (3) same

as con�guration (2) except that the interaction terms are replaced by marital status with earnings in 1974

and marital status with the dummy for unemployed in 1974.

In RE74 subset, because the treatment is randomly assigned, Assumption U is satis�ed for any covariates

X. Under random designs, there is no di¤erence between T and T t, so we apply only the rank preservation

tests for the QTE to RE74 subset.31 Also, we do not need to adjust the di¤erence in the covariates distribution

of the two groups, i.e., bp(Xi) in bFd (�) can be replaced by n�1Pn
i=1Di. 35:4% Y0i�s are zero, so we specify

Y0 as [q0(0:4); q0(0:9)] which includes 130 Y0i�s; 24:3% Y1i�s are zero, so we specify Y1 as [q1(0:3); q1(0:9)]
which includes 112 Y1i�s. Because both Y0 and Y1 have a point mass at zero, distribution regresssion is a

more suitable method to estimate Q1(�j�) and F0(�j�) than quantile regression. For PSID-1, we apply only
the test for the QTT since the non-experimental comparison group is essentially di¤erent from the treated

group. The range of F t0(Y0) is [0:358; 1], so we specify Yt0 as [qt0(0:4); qt0(0:9)] which includes 332 Y0i�s, and
specify Yt1 = Y1. In bootstrapping the critical values, the repetition number B = 399.
As suggested by the simulations in Section 8, we use the no-p(X)-reweighting normalized tests and check

both Tn (T tn) and T
0
n (T

t0
n ). The results are summarized in Table 3. For RE74 subset, neither con�guration

of X rejects the null, so we report only the results for the second con�guration (which is more general)

for simplicity. For PSID-1, the algorithm for speci�cation (3) is not very stable, so we believe the results

from speci�cations (1) and (2) are more reliable. Since the results for these two speci�cations are similar,

we report only the results for speci�cation (2) here. Two general conclusions are (i) we cannot reject rank

31Note that D ? (X;Y0; Y1) does not restrict the relationship between X and (Y0; Y1), so Fd (�jX) need not equal Fd (�) and
our tests still have power.
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preservation for the QTE in RE74 at the 5% level; (ii) we can reject rank preservation for the QTT in PSID-1

at the 5% level. In other words, the QTE in the application of Firpo (2007) has a causal interpretation,

while the QTT does not. More speci�cally, the p-value for Tn is smaller than that for T 0n, the p-value for

max fTn; T 0ng stays in-between, and all p-values are much larger than 5%. On the other hand, the p-value for
T tn is larger than that for T

t0
n , the p-value for max fT tn; T t0n g is equal to that for T tn because T tn is much larger

than T t0n , and all p-values are smaller than 5%. These results match those in the simulations of Section 8.

Datasets RE74 PSID-1

Test Stat. p-value Test Stat. p-value

Tn (T tn) 8:10 0:68 64:76 0:045

T 0n (T
t0
n ) 3:28 0:93 23:03 0:030

max fTn; T 0ng (max fT tn; T t0n g) 8:10 0:74 64:76 0:045

Tn (T0 = [0:75; 0:9]) 12:48 0:52

Table 3: Parametric Rank Preservation Tests for the QTE in RE74 and for the QTT in PSID-1
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Figure 5: qd(�); eqd(�); eYd(�) in RE74 and qtd(�); eqtd(�); eY td (�) in PSID-1
The testing results of Table 3 are intuitively illustrated in Figure 5. The upper-left panel of Figure 5

shows q1(�); eq1(�) and eY1(�) in Tn and the lower-left panel shows q0(�); eq0(�) and eY0(�) in T 0n, where eqd(�) is
estimated by a local linear smoother. Similarly, the upper-right panel shows qt1(�); eqt1(�) and eY t1 (�) in T tn and
the lower-right panel shows qt0(�); eqt0(�) and eY t0 (�) in T t0n . From Figure 5, eqd and qd are close in RE74, whileeqt1 is lower than qt1 and eqt0 is higher than qt0 in PSID-1. In RE74, eq1(�) is lower than q1(�) for � 2 [0:75; 0:9],
but this part of information is dominated by the similarity of eq1(�) and q1(�) at other values of � . To check
whether rank preservation can be rejected for this range of � , we conduct Tn with T0 = [0:75; 0:9]. The

p-value is indeed smaller than that of Tn with T0 = [0:4; 0:9], but is still much larger than 5%. Also, there is
more randomness in eYd(�) than in eqd(�), but all the randomness seems due to �nite sample variations rather
than violation of rank preservation. From the right two panels, we can understand why both T tn and T

t0
n are
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much larger than max fTn; T 0ng and why T tn is much larger than T t0n . In summary, such �gures can provide
information that is buried in our test statistics, e.g., why the test statistics tend to be large, and which part

of � values contributes to the power.

Finally, let�s reemphasize that our testing results should be interpreted cautiously. First, the non-rejection

of rank preservation in RE74 may be due to the low power when the sample size is small as illustrated in the

�rst simulation of Section 8. Second, our tests are checking whether the rank is preserved across covariate

values, so non-rejection of the null does not exclude the possibility that the rank is unpreserved. However,

our testing results indicate that if the rank were not preserved, the only possibility is that the rank is not

preserved within some covariate values. Third, although the sample size of PSID-1 is so large that the

rejection of rank preservation is quite conclusive, it is still possible that the powers of our tests originate

from the violation of unconfoundedness because Y0 comes from an observational comparison group rather

than a random design.

10 Conclusion

Rank preservation is important for causal interpretation of quantile treatment e¤ects. In this paper, we

propose unconditional rank preservation tests for the QTE and QTT under unconfoundedness. Our tests

are Hausman-type tests which are based on the observation that if the unconditional rank is preserved then

the conditional rank is preserved but the converse is not true. One key advantage of our tests is that the

powers can be intuitively detected by �gures. We propose both the parametric and nonparametric tests.

Since the asymptotic null distributions are nonstandard, we suggest to use the exchangeable bootstrap in

the parametric tests and simulation in the nonparametric tests to obtain critical values. We apply our tests

to a dataset from a job training program.

The testing ideas in this paper are not easy to apply to test rank preservation when unconfoundedness

fails. For example, in the LATE framework, we may want to test whether the unconditional rank is preserved

for the compliers (e.g., to give a causal interpretation for the unconditional quantile treatment e¤ects under

endogeneity in Frölich and Melly (2013a)). However, our tests require the knowledge of the identity of a

subpopulation while the identity of compliers cannot be identi�ed.32 Another interesting problem that is not

solved in this paper is the power-optimal testing procedure of rank preservation; note that the optimality in

Corollary 1 is di¤erent from power optimality. Although the simulation studies in Section 8 provide some

information on the relative performance of a few tests in �nite samples, power-optimal tests in large samples

remain a challenge.

32 In the case of one-sided noncompliance (see, e.g., Frölich and Melly, 2013b), we can test rank preservation for the treated
(or equivalently, the treated compliers) because the identity of this subpopulation can be identi�ed. See also Dong and Shen
(2015) and Frandsen and Lefgren (2015) for testing unconditional rank similarity for the compliers and Yu (2016) for testing
conditional rank similarity when unconfoundedness fails.
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Supplementary Material S.1

S.1.1 Proofs

Proof of Theorem 3.

(i) Note that

nTn =
1

n

nX
i=1

1(Yi 2 Y0)1(Xi 2 X )
1�Di

1� bp(Xi)

24 p
n
� bQ1 ���X 0

i
b�0(Yi)� jXi

�
�Q1 (� (X 0

i�0(Yi)) jXi)
�

�
p
n
�bq1 � bF0(Yi)�� q1 (F0(Yi))�

352 :
We will show that nTn with bp(Xi) replaced by p(Xi) is Op(1). Given the uniform consistency of bp(�),
we can replace bp(Xi) by p(Xi) without a¤ecting the asymptotic distribution.

We �rst check the e¤ect of bq1(�) and bF0(�). From Lemma 1,

p
n
� bFd(y)� Fd(y)� = 1p

n

nX
i=1

 d(Wj ; y) + op(1);

where op(1) is uniform in y 2 Y0. q1(�), as the inverse function of F1(�), is Hadamard-di¤erentiable
with the derivative being continuous, so by the second part of Theorem 3.9.4 of VW,

sup
Yi2Y0

������pn
�bq1 � bF0(Yi)�� q1 � bF0(Yi)��� 1p

n

nX
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nX
j=1

 0(Wj ; Yi)

f1(q1(F0(Yi)))

������ = op(1):

Here, note the di¤erence in the Hadamard derivative of q1(�) with respect to F1(�) and � ; note also

that due to the random variation in bF0(Yi), we require f1(y) to be bounded, positive and continuous on
an interval [a; b] containing an �-enlargement of the set fq1 (F0(y)) : y 2 Y0g as imposed in Assumption
Y(ii). By Assumption Y and DR, Theorem 3 of Andrews (1994) implies that 1p

n

nP
j=1

 1(Wj ;y)
f1(y)

is sto-

chastically equicontinuous with respect to y. Combined with supYi2Y0

��� bF0(Yi)� F0(Yi)��� = op(1) and

the Hadamard di¤erentiability of q1(�) with respect to � , we have
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In summary,
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� 1p
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where op(1) is uniform in Yi 2 Y0.

We next check the e¤ect of bQ1(�j�) and bF0(�j�). From Corollary 5.4 of CFM,
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Q1(�j�), as the inverse function of F1(�j�), is Hadamard-di¤erentiable with the derivative being contin-
uous, so
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By the proof of Theorem 5.2 in CFM, �1(y) is continuously di¤erentiable with bounded derivative

on Y0. As a result, Theorem 3 of Andrews (1994) implies that 1p
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f1(Q1(F0(YijXi)jXi)jXi)

+ op(1)

� 1p
n

nP
j=1

	c (Wj ; Xi; Yi) + op(1);

2



where op(1) is uniform in Xi 2 X ; Yi 2 Y0.
Combining the approximations in the last two paragraphs, we have

Tn =
1

n2

nX
i=1

1(Yi 2 Y0)1(Xi 2 X )
1�Di

1� p(Xi)

24 1p
n

nX
j=1

(	c (Wj ; Xi; Yi)�	u (Wj ; Yi))

352 + op(n�1)
=

1

n3

nX
i=1

nX
j=1

nX
k=1

�(Wi;Wj ;Wk) + op(n
�1);

which is a V -statistic, where

�(Wi;Wj ;Wk) = 1(Yi 2 Y0)1(Xi 2 X )
1�Di

1� p(Xi)
(	c (Wj ; Xi; Yi)�	u (Wj ; Yi)) (	c (Wk; Xi; Yi)�	u (Wk; Yi)) :

From (3.57) of Shao (2003),

Tn =
1

n2

nX
j=1

nX
k=1

E [�(Wi;Wj ;Wk)jWj ;Wk] + op(n
�1)

=
1

n2

nX
j=1

nX
k=1

Z
(	c (Wj ; x; y)�	u (Wj ; y)) (	c (Wk; x; y)�	u (Wk; y)) d�(y; x) + op(n

�1)

=
1

n

Z 24 1p
n

nX
j=1

(	c (Wj ; x; y)�	u (Wj ; y))

352 d�(y; x) + op(n�1)
where �(�) is a measure on Y0X de�ned in the main text. Because n�1=2

Pn
j=1 (	c (Wj ; x; y)�	u (Wj ; y)) 

Z(y; x), by the continuous mapping theorem,

nTn  
Z
Z(x; y)2d�(y; x):

Following the arguments on pages 1133-1135 of Bierens and Ploberger (1997), we getZ
Z(y; x)2d�(y; x) �

1X
i=1

�i�
2
1i;

where �21i�s are iid �21 random variables, and �i�s are eigenvalues of �(v1; v2) with v = (y; x) and

�(v1; v2) = E [Z(v1)Z(v2)]. Speci�cally, there exist orthonormal eigenfunctions 'i (v) such thatZ
�(v1; v2)'i (v2) d�(v2) = �i'i (v1) ;

where �i � 0 need not be distinct, and
P1
i=1 �i <1.

(ii) Under H�
1 , bp(�) is uniformly consistent to p�(�), so nTn still has the same weak limit as nTn with bp(Xi)

replaced by p(Xi). Applying Lemma 2.8.7 of VW (p. 174), we know

p
n
� bQ1 ���X 0

i
b�0(y)� jx��Q1n �F 0n(yjx)jx���pn�bq1 � bF0(y)�� q1n �F 0n(y)��

has the same weak limit as 1p
n

nP
j=1

(	c (Wj ; x; y)�	u (Wj ; y)). Repeating the analysis in (i), we can

3



show that nTn has the same weak limit as

Z 24 1p
n

nX
j=1

(	c (Wj ; x; y)�	u (Wj ; y)) +
p
n
�
Q1n(F

0
n(yjx)jx)� q1n

�
F 0n(y)

��352 d�(y; x):
It remains to derive

p
n
�
Q1n(F

0
n(yjx)jx)� q1n

�
F 0n(y)

��
, so we need to �nd the relationship between

Q1n(�jx) and Q1�(�jx), F 0n(�) and F 0� (�), and q1n(�) and q1�(�). Given that F 1n(yjx) = (1��1=
p
n)F 1� (yjx)+

(�1=
p
n)F1(yjx) = F 1� (yjx) + n�1=2�1

�
F1(yjx)� F 1� (yjx)

�
,

Q1n(� jx) = Q1�(� jx)� n�1=2�1
�
F1(Q1�(� jx)jx)� F 1� (Q1�(� jx)jx)

�
=f1� (Q

1
�(� jx)jx) + o

�
n�1=2

�
;

where f1� (�j�) is the density associated with F 1� (�j�). Since F 1n(y) = E
�
F 1n(yjX)

�
= F 1� (y)+n

�1=2�1
�
F1(y)� F 1� (y)

�
,

where F1(y) = E
�
F1(yjX)

�
and F 1� (y) = E

�
F 1� (yjX)

�
, we have

q1n(�) = q1�(�)� n�1=2�1
�
F1(q1�(�))� F 1� (q1�(�))

�
=f1� (q

1
�(�)) + o

�
n�1=2

�
;

where f1� (�) is the density associated with F 1� (�). As a result,

p
n
�
Q1n(F

0
n(yjx)jx)� q1n

�
F 0n(y)

��
=

p
n
�
Q1n(F

0
n(yjx)jx)�Q1�(F 0n(yjx)jx) +Q1�(F 0n(yjx)jx)�Q1�(F 0� (yjx)jx)

�
�
p
n
�
q1n
�
F 0n(y)

�
� q1�(F 0n(y)) + q1�(F 0n(y))� q1�

�
F 0� (y)

��
�

�0
�
F0(yjx)� F 0� (yjx)

�
� �1

�
F1(Q1�(F

0
� (yjx)jx)jx)� F 0� (yjx)

�
f1� (Q

1
�(F

0
� (yjx)jx)jx)

�
�0
�
F0(y)� F 0� (y)

�
� �1

�
F1(q1�(F

0
� (y)))� F 0� (y)

�
f1� (q

1
�(F

0
� (y)))

� b(y; x);

where � means a higher order term is omitted. From the analysis on pages 1133-1135 of Bierens and

Ploberger (1997),

nTn  
1X
i=1

�
bi + "i

p
�i

�2
;

where the "i are iid N(0; 1), and bi =
R
b (v)'i (v) d�(v). The second part of the result follows from

Corollary 1 of Bierens and Ploberger (1997).

(iii) This result is because from the analysis in (ii),

nTn �
Z 24 1p

n

nX
j=1

�e	c (Wj ; x; y)� e	u (Wj ; y)
�
+
p
n (Q1(F0(yjx)jx)� q1 (F0(y)))

352 de�(y; x) = Op(n):

Here, e	c and e	u may be di¤erent from	c and	u due to the misspeci�cation inH1, and n�1=2
Pn
j=1(

e	c (Wj ; x; y)�e	u (Wj ; y)) eZ(y; x), where eZ(y; x) is a tight mean zero Gaussian process which is equal to Z(y; x) un-
derH0. e�(�) is a �nite measure on Y0X which is equal to �(�) underH0.

R
[(Q1(F0(yjx)jx)� q1 (F0(y)))]2 de�(y; x) =

limn!1 Tn > 0. So nTn is dominated by
R
[
p
n (Q1(F0(yjx)jx)� q1 (F0(y)))]2 de�(y; x) which is O(n).
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Proof of Theorem 4. We �rst de�ne `1 (F) as the space of real-valued bounded functions on the index
set equipped with the supremum norm k�k`1(F), and de�ne C(F) as the space of continuous function on F .

(i) From Corollary 5.4 of CFM, the bootstrap is valid for bF1(�j�) in `1 (Y1X ), and is valid for bF0(�j�) in
`1 (Y0X ). Also, the validity is joint for

� bF1(�j�); bF0(�j�)�. From Lemma E.3 of CFM, the bootstrap

is valid for bF0(�) in `1 (Y0) and bF1(�) in `1 (Y1) as they are Z-estimators. Q1(F0(�j�)j�) is Hadamard
di¤erentiable at (F1(�j�); F0(�j�)) tangentially to C(Y1X )� C(Y0X ), so by Theorem 3.9.11 of VW, the

bootstrap is valid for bQ1( bF0(�j�)j�). Similarly, since q1(F0(�)) is Hadamard di¤erentiable at (F1(�); F0(�))
tangentially to C(Y1)�C(Y0), the bootstrap is valid for bq1( bF0(�)). Note also that the bootstrap validity
for bQ1( bF0(�j�)j�) and bq1( bF0(�)) is joint.
To show the bootstrap is valid for Tn, we apply a generalized version of Proposition 7.27 of Kosorok

(2008).33 Specify in Proposition 7.27 that

Xn(y; x) = n�
h� bQ�1 � bF �0 (yjx)jx�� bQ1 � bF0(yjx)jx��� �bq�1 � bF �0 (y)�� bq1 � bF0(y)��i2 ;

Gn(y; x) =
1

n�

nX
i=1

!i1(Yi 2 Y0)1(Xi 2 X )
1�Di

1� bp�(Xi)
1(Xi � x; Yi � y);

and then

n�T �n =

Z
Xn(y; x)dGn(y; x):

By a multiplier Glivenko-Cantelli theorem (e.g., Lemma 3.6.16 of VW),

Gn(y; x)
P�
�! �(y; x) in `1 (Y0X ) :

By the continuous mapping theorem,

Xn(y; x)
� Z(y; x)2 in `1 (Y0X ) :

So by Proposition 7.27 of Kosorok (2008),

n�T �n
� 
Z
Z(y; x)2d�(y; x)

as desired. It follows that c�n(�) = c(�) + op(1) under H0, where c(�) is the (1 � �)th quantile ofPn
i=1 �i�

2
1i. This implies that nTn and nTn�(c�n(�)�c(�)) converges to the same limiting distribution

as n!1, and hence we have that P (nTn > c�n(�)) = �+ o(1).

(ii) By Corollary 2.1 of Bickel and Ren (2001, p. 97), the bootstrap is valid for
� bF1(�j�); bF0(�j�)�, � bF1(�); bF0(�)�

and Gn (�) if H�
1 is contiguous to H0, and thus the arguments in (i) can still go through to show that

c�n(�) = c(�) + op(1) under H�
1 . By Theorem 3(ii), the result follows.

(iii) Under a �xed alternative, Xn(y; x)
� eZ(y; x)2 in `1 (Y0X ) and Gn(y; x) P�

�! e�(y; x) in `1 (Y0X ),
where eZ(y; x) and e�(y; x) are de�ned in the proof of Theorem 3(iii). So n�T �n

� 
R eZ(y; x)2de�(y; x),

and thus c�n(�) = Op(1). As a result, for any � > 0, there exists a constant M such that P (c�n(�) >

33Proposition 7.27 of Kosorok (2008) is stated as follows: Let Xn; Gn 2 D[a; b] be stochastic processes with Xn  X and

Gn
p�! G in D[a; b], where X is bounded with continuous sample paths, G is �xed, and Gn and G have total variation bounded

by K <1. Then
R (�)
a Xn(s)dGn(s) 

R (�)
a X(s)dG(s) in D[a; b].
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M) < �+ o(1). Using elementary inequalities, we also have that

P (nTn � c�n(�)) = P (nTn � c�n(�); c
�
n(�) �M)+P (nTn � c�n(�); c

�
n(�) > M) � P (nTn �M)+P (c�n(�) > M):

From Theorem 3(iii), we know that P (nTn � M) = o(1), and thus P (nTn � c�n(�)) < �+ o(1), which

implies the statement of the theorem since � can be chosen arbitrarily small.

Proof of Theorem 5.

(i) From Lemma 1 and 3, we can show that

nhr=2Tn = hr=2
nP
i=1

1(Yi 2 Y0; Xi 2 X ) 1�Di

1�p(Xi)h
(nhr)

�1=2Gn(g01YiXi
)
�
1 +Op

�p
lnn=nhr

��
+Op(h

2)� n�1=2Gn(	uYi) + op(n
�1=2)

i2
+ op(1)

= hr=2
nP
i=1

1(Yi 2 Y0; Xi 2 X ) 1�Di

1�p(Xi)

 
1

nhr=2

nP
j=1

g01YiXi
(U0Yij ; U

1
Q1(F0(YijXi)jXi)j

; Uj ; Xj))

!2

+ hr=2
nP
i=1

1(Yi 2 Y0; Xi 2 X ) 1�Di

1�p(Xi)

 
1
n

nP
j=1

	uYi(Wj)

!2
+ op(1)

+ 2hr=2
nP
i=1

1(Yi 2 Y0; Xi 2 X ) 1�Di

1�p(Xi)

"
1

nhr=2

nP
j=1

g01YiXi
(U0Yij ; U

1
Q1(F0(YijXi)jXi)j

; Uj ; Xj))

#"
1
n

nP
j=1

	uYi(Wj)

#
� J1 + J2 + J3 + op(1)

where the op(1) in the �rst equality acccounts for the replacement of bp(Xi) by p(Xi), the op(1) in the

second equality accounts also for the Op
�p

lnn=nhr
�
, Op(h2) and op(n�1=2) terms in the �rst equality,

and g01yx and 	
u
y are de�ned in the lemmas. By Assumption H, the Op(h

2) term is op(1). Since the

Op

�p
lnn=nhr

�
term is op(J1) by Assumption H and the op(n�1=2) term is op(J2), so we need only

show that J1 = Op(1) and J2 = Op(1): By the proof in Theorem 3, h�r=2J2 = Op(1), so J2 = op(1).

By the Cauchy-Schwarz inequality, h�r=2J3 � C
p
h�r=2J1h�r=2J2, so J3 = O

�p
J1J2

�
. As will be

shown below, J1 = Op(1), while J2 = op(1), so J3 = op(1). The remaining is to show that J1 = Op(1)

and �nd the asymptotic distribution of J1. It turns out that J1 is a third-order degenerate V-statistic.

Note that

J1 =
1

n2hr=2

nP
i=1

nP
j=1

nP
l=1

1(Yi 2 Y0; Xi 2 X ) 1�Di

1�p(Xi)
g01YiXi

(U0Yij ; U
1
Q1(F0(YijXi)jXi)j

; Xj))g
01
YiXi

(U0Yil; U
1
Q1(F0(YijXi)jXi)l

; Xl))

= 1
n2hr=2

nP
i 6=j 6=l

1(Yi 2 Y0; Xi 2 X ) 1�Di

1�p(Xi)
g01YiXi

(U0Yij ; U
1
Q1(F0(YijXi)jXi)j

; Xj))g
01
YiXi

(U0Yil; U
1
Q1(F0(YijXi)jXi)l

; Xl))

+ 1
n2hr=2

nP
i=1

P
j 6=i
1(Yi 2 Y0; Xi 2 X ) 1�Di

1�p(Xi)
g01YiXi

(U0Yij ; U
1
Q1(F0(YijXi)jXi)j

; Xj))
2 + op(1)

� J11 + J12 + op(1);

where the op(1) term includes the summands with subscripts j 6= l but either j or l equal to i (which

can be shown to be Op
��
nhr=2

��1�
) and the summands with subscripts i = j = l ((which can be

shown to be Op
�
(nhr)

�3=2
�
)). As long as we can show J11

d�! N(0; �2), and J12 � Bh = op(1), the

result follows.

6



To show J11
d�! N(0; �2), we will apply Lemma B.4 of Fan and Li (1996). Note that

J11 =

 
n

3

!
n3hr=2

24n n

3

!�1 X
1�i<j<l�n

Pn (Wi;Wj ;Wl)

35 ;
where

Pn (Wi;Wj ;Wl) =
X
3!

1(Yi 2 Y0; Xi 2 X )
1�Di

1� p(Xi)

g01YiXi
(U0Yij ; U

1
Q1(F0(YijXi)jXi)j

; Xj))g
01
YiXi

(U0Yil; U
1
Q1(F0(YijXi)jXi)l

; Xl))

with
P

3! extending over 3! = 6 di¤erent permutations of i; j; l. De�ne Pn(Wj ;Wl) = E [Pn (Wi;Wj ;Wl) jWj ;Wl].

Then

Pn(Wj ;Wl) = 2

Z
g01yx(U

0
yj ; U

1
Q1(F0(yjx)jx)j ; Xj))g

01
yx(U

0
yl; U

1
Q1(F0(yjx)jx)l; Xl))d�(y; x): (9)

Hence,

E
�
P 2n(Wj ;Wl)

�
= 4E

��R
g01yx(U

0
yj ; U

1
Q1(F0(yjx)jx)j ; Xj))g

01
yx(U

0
yl; U

1
Q1(F0(yjx)jx)l; Xl))d�(y; x)

�2�

= 4E

2664
0BB@
R R

Y0
1

f1(Q1(F0(yjXu
j )jXu

j )jXu
j )

2
f(Xu

j )
2

 
U0
yj

1�p(Xu
j )
�

U1

Q1(F0(yjXu
j )jXu

j )j
p(Xu

j )

! 
U0
yl

1�p(Xu
j )
�

U1

Q1(F0(yjXu
j )jXu

j )l
p(Xu

j )

!
K (u)K

�
Xl�Xj

h + u
�
fY0jX(yjXu

j )f(X
u
j )1(X

u
j 2 X )dydu

1CCA
23775

� 4
R 0B@ R R

Y0
1

f1(Q1(F0(yjXj)jXj)jXj)
2f(Xj)2

�
U0
yj

1�p(Xj)
�

U1
Q1(F0(yjXj)jXj)j

p(Xj)

��
U0
yl

1�p(Xj)
�

U1
Q1(F0(yjXj)jXj)l

p(Xj)

�
K (u)K

�
Xl�Xj

h + u
�
fY0jX(yjXj)f(Xj)1(Xj 2 X )dydu

1CA
2

dFDY jX(Dj ; Yj jXj)dFDY jX(Dl; YljXl)f(Xj)dXjf(Xl)dXl

� 4hr
R R

X
R 0B@ R R

Y0
1

f1(Q1(F0(yjXj)jXj)jXj)
2f(Xj)2

�
U0
yj

1�p(Xj)
�

U1
Q1(F0(yjXj)jXj)j

p(Xj)

�2
K (u)K (v + u) fY0jX(yjXj)f(Xj)dydu

dFDY jX(Dj ; Yj jXj)

1CA
2

f(Xj)
2dXjdv

= 4hr
R
X

 R R
Y0

1
f1(Q1(F0(yjXj)jXj)jXj)

2

�
U0
yj

1�p(Xj)
�

U1
Q1(F0(yjXj)jXj)j

p(Xj)

�2
dFY0jX(yjXj)dFDY jX(Dj ; Yj jXj)

!2
dXjR

K(v)2dv

= 4hr
R
K(v)2dv

R
X

 R
Y0

1
f1(Q1(F0(yjXj)jXj)jXj)

2E

"�
U0
yj

1�p(Xj)
�

U1
Q1(F0(yjXj)jXj)j

p(Xj)

�2�����Xj

#
dFY0jX(yjXj)

!2
dXj

= 4hr�2a;

where in the second equality Xu
j = Xj +uh, and K(v) =

R
K (u)K (v + u) du. By tedious calculation,

we can show
0B@ n

3

1CA
2

n6hr E
h
Pn (Wi;Wj ;Wl)

2
i
<1; E

h
Pn (Wi;Wj ;Wl)

2
i.
4hr�2a = o (n) ;

E[(E[Pn(Wj ;Wl)Pn(Wj ;Wk)jWl;Wk])
2]+n�1E[Pn(Wj ;Wl)

4]
�4a

! 0;
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so by Lemma B.4 of Fan and Li (1996),

J11  N
�
0; �2

�
;

where

�2 =

 
n

3

!2
n6hr

4hr2�132(3� 1)2�2a = 2�2a:

To derive the probability limit of J12, we need only calculate its mean and check its variance shrinks

to zero. For simplicity, calculate the mean only:

E

24 1

n2hr=2

nX
i=1

nX
j=1

1(Yi 2 Y0; Xi 2 X )
1�Di

1� p(Xi)
g01YiXi

(U0Yij ; U
1
Q1(F0(YijXi)jXi)j

; Xj))
2

35
= h�r=2

Z
E
h
g01yx(U

0
yj ; U

1
Q1(F0(yjx)jx)j ; Xj))

2
i
d�(y; x)

= h�r=2
Z Z

Y0
E

264 1

f1
�
Q1
�
F0(yjXu

j )jXu
j

���Xu
j

�2
f(Xu

j )
2

0@ U0yj
1� p(Xu

j )
�
U1
Q1(F0(yjXu

j )jXu
j )j

p(Xu
j )

1A2

K (u)
2

fY0jX(yjXu
j )f(X

u
j )1(X

u
j 2 X )

�
dydu

� h�r=2
Z
X

Z Z Z
Y0

1

f1 (Q1 (F0(yjXj)jXj)jXj)
2
f(Xj)

 
U0yj

1� p(Xj)
�
U1Q1(F0(yjXj)jXj)j

p(Xj)

!2
K (u)

2

fY0jX(yjXj)dydudFDY jX(Dj ; Yj jXj)f(Xj)dXj

= h�r=2K(0)

Z
X

Z
Y0

1

f1 (Q1 (F0(yjXj)jXj)jXj)
2E

24 U0yj
1� p(Xj)

�
U1Q1(F0(yjXj)jXj)j

p(Xj)

!2������Xj

35 dFY0jX(yjXj)dXj

= Bh:

By Lemma 4 and 5, �2 and Bh can be consistently estimated by bv2n and bbn, respectively.
(ii) Note that

nhr=2Tn

= hr=2
nP
i=1

1(Yi 2 Y0; Xi 2 X ) 1�Di

1�bp(Xi)

�
h bQ1 � bF0(YijXi)jXi

�
�Q1n(F 0n(YijXi)jXi)�

�bq1 � bF0(Yi)�� q1n �F 0n(y)��+ �Q1n(F 0n(YijXi)jXi)� q1n
�
F 0n(Yi)

��i2
= hr=2

nP
i=1

1(Yi 2 Y0; Xi 2 X ) 1�Di

1�p(Xi)

�
"

1
nhr=2

nP
j=1

g01YiXi
(Un0Yij ; U

n1
Q1(F0(YijXi)jXi)j

; Xj))� 1
n

nP
j=1

	nuYi (Wj) +
�
Q1n(F

0
n(YijXi)jXi)� q1n

�
F 0n(Yi)

��#2
+ op(1);

where Undyi is similarly de�ned as U
d
yi but replacing Fd(yjXi) by F dn(yjXi), and 	nuy (Wi) is similarly

de�ned as 	uy (Wi) but replacing Fd(yjXi), Fd(y) and p(Xi) by F dn(yjXi), F dn(y) and pn(Xi). nhr=2Tn
includes three terms: the squares of g01YiXi

, the squares of Q1n � q1n, and the cross term. By similar

arguments as in (i), we can show that the �rst term has the same asymptotic distribution as under the

null, where Assumption LA guarantees that the asymptotic variance and the bias Bh are the same as

under the hull. Also, the cross term can be shown to be op(1) by checking that its mean converges to

8



0 and its variance shrinks to 0. So the local power is only determined by

hr=2
nX
i=1

1(Yi 2 Y0; Xi 2 X )
1�Di

1� p(Xi)

��
Q1n(F

0
n(YijXi)jXi)� q1n

�
F 0n(Yi)

���2
: (10)

By similar calculations as in the proof of Theorem 3(ii), we can show (10) converges to
R
b(y; x)2d�(y; x),

where b(y; x) is de�ned in Theorem 3(ii).

(iii) UnderH1, following the analysis in (ii), nhr=2Tn minus the term (10) can be approximated byN
�
Bh; �

2
�
,

where Bh and �2 are de�ned using the distribution under H1, but the fact that Bh = O(h�r=2) =

o(nhr=2) and �2 is �nite remains. Note that the term (10) is Op(nhr=2) under H1 so it dominates

nhr=2Tn and the result follows.

Proof of Theorem 6. Note that � (z) is a continuous function. By Polya�s theorem, it su¢ ces to show

for any �xed value of z 2 R,
���P �nhr=2T �n�bbnbvn � zjFn

�
� �(z)

��� = op (1).

nhr=2T �n

� 1

nhr=2

nX
j=1

nX
l=1

�j�l

(
1

n

nX
i=1

1(Yi 2 Y0; Xi 2 X )
1�Di

1� bp(Xi)

� bg01YiXi

�bU0Yij ; bU1bQ1( bF0(YijXi)jXi)j
; Xj

�bg01YiXi

�bU0Yil; bU1bQ1( bF0(YijXi)jXi)l
; Xl

��
� 1

nhr=2

nX
j=1

X
l 6=j

�j�l bwjl + 1

nhr=2

nX
j=1

�2j bwjj � X
1�j<l�n

U�n;jl +
1

nhr=2

nX
j=1

�2j bwjj
� J�1 + J

�
2 ;

where U�n;jl = 2�j�l bwjl=nhr=2, J�1 is a second-order U-statistic as a function of �j and �l conditional on the
original data. To prove the result, we need to show that J�2 � bbn � 0, and J�1bvn � N (0; 1). We will use

Proposition 3.2 of de Jong (1987) to prove the result. For this purpose, we need to show that

GI =
X
i

X
j>i

E�
h
U�4n;ij

i
= op

�bv4n� ;
GII =

X
i

X
j>i

X
l>j>i

E�
h
U�2n;ijU

�2
n;il + U

�2
n;jiU

�2
n;jl + U

�2
n;liU

�2
n;lj

i
= op

�bv4n� ;
GIV =

X
i

X
j>i

X
k>j>i

X
l>k>j>i

E�
h
U�n;ijU

�
n;ikU

�
n;ljU

�
n;lk + U

�
n;ijU

�
n;ilU

�
n;kjU

�
n;kl + U

�
n;ikU

�
n;ilU

�
n;jkU

�
n;jl

i
= op

�bv4n� :
where E�[�] = E [�jFn] is the expectation conditional on the original data, and

bv2n = E�
��
J�1

�2�
=

2

n2hr

nX
j=1

X
l 6=j

bw2jl:
It is straightforward to show that

G�I = Op

��
n2hr

��1�
; G�II = Op(n

�1); G�IV = Op(h
r):

Since bv2n = Op(1), the result follows immediately.
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It remains to show that J�2 �bbn � 0. E�
h
J�2

i
= bbn, and V ar� �J�2� = op(1), which completes the proof.

Proof of Corollary 2. We brie�y describe the key steps of the proof given that it is similar to the proof

of Theorem 3.

nT tn =
1Pn

i=1Di

nX
i=1

1(Yi 2 Yt0)1(Xi 2 X )
bp(Xi) (1�Di)

1� bp(Xi)

hp
n
� bQ1 � bF0(YijXi)jXi

�
� bqt1 � bF t0(Yi)��i2

� 1

n

1

E[D]

nX
i=1

1(Yi 2 Yt0)1(Xi 2 X )
p(Xi) (1�Di)

1� p(Xi)

hp
n
� bQ1 � bF0(YijXi)jXi

�
� bqt1 � bF t0(Yi)��i2

� 1

n

1

E[D]

nX
i=1

1(Yi 2 Yt0)1(Xi 2 X )
p(Xi) (1�Di)

1� p(Xi)

24 1p
n

nX
j=1

�
	c (Wj ; Xi; Yi)�	tu (Wj ; Yi)

�352

� 1

n

Z 24 1p
n

nX
j=1

�
	c (Wj ; x; y)�	tu (Wj ; y)

�352 d�t(y; x)
 

Z
Zt(y; x)2d�t(y; x);

where the asymptotic expansion of bqt1 � bF t0(Yi)� is similar as that in the proof of Theorem 3 combined with

Lemma 2. By Mercer�s theorem, the weak limit can be expressed in the form as stated in the corollary.

Under H�
0 , we need to calculate

p
n
�
Q1n(F

0
n(yjx)jx)� q1tn

�
F 0tn (y)

��
. For this purpose, we must under-

stand F dtn (y). Recall that pn(x) = (1� �
=
p
n)p�(x) + (�
=

p
n)}(x), so

F 0tn (y) = En

�
pn(X)

En[D]
1(Y0 � y)

�
= E

�
pn(X)

En[D]
F 0n(yjX)

�
=

Z
X

p�(x) + (�
=
p
n) (}(x)� p�(x))

E�[D] + (�
=
p
n)E [}(X)� p�(X)]

�
F 0� (yjx) +

�
�0=
p
n
� �
F0(yjx)� F 0� (yjx)

��
dFX(x)

= F 0t� (y) +
�
=
p
n

E�[D]

�
E
�
(}(X)� p�(X))F 0� (yjX)

�
� E [}(X)� p�(X)]

E�[D]
E
�
p�(X)F

0
� (yjX)

��
+
�0=
p
n

E�[D]
E
�
p�(X)

�
F0(yjX)� F 0� (yjX)

��
= F 0t� (y) + n

�1=2�0tF (y);

and

F 1tn (y) = En

�
pn(X)

En[D]
1(Y1 � y)

�
= F 1t� (y) +

�
=
p
n

E�[D]

�
E
�
(}(X)� p�(X))F 1� (yjX)

�
� E [}(X)� p�(X)]

E�[D]
E
�
p�(X)F

1
� (yjX)

��
+
�1=
p
n

E�[D]
E
�
p�(X)

�
F1(yjX)� F 1� (yjX)

��
= F 1t� (y) + n

�1=2�1tF (y):

As a result,

q1tn (�) = q1t� (�)� n�1=2
�1tF (q

1t
� (�))

f1t� (q
1t
� (�))

:
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In summary,

p
n
�
Q1n(F

0
n(yjx)jx)� q1tn

�
F 0tn (y)

��
=

p
n

"
Q1�(F

0
� (yjx)jx)� n�1=2

�1
�
F1(Q1�(F

0
� (yjx)jx)jx)� F 0� (yjx)

�
f1� (Q

1
�(F

0
� (yjx)jx)jx)

+ n�1=2
�0
�
F0(yjx)� F 0� (yjx)

�
f1� (Q

1
�(F

0
� (yjx)jx)jx)

�
�
q1t� (F

0t
� (y))� n�1=2

�1tF (q
1t
� (F

0t
� (y)))

f1t� (q
1t
� (F

0t
� (y)))

+ n�1=2
�0tF (y)

f1t� (q
1t
� (F

0t
� (y)))

��
!

�0
�
F0(yjx)� F 0� (yjx)

�
� �1

�
F1(Q1�(F

0
� (yjx)jx)jx)� F 0� (yjx)

�
f1� (Q

1
�(F

0
� (yjx)jx)jx)

� �
0t
F (y)��1tF (q1t� (F 0t� (y)))

f1t� (q
1t
� (F

0t
� (y)))

:

S.1.2 Lemmas

Lemma 1
p
n
� bFd(y)� Fd(y)� = 1p

n

nP
j=1

 d(Wj ; y) + op(1), where op(1) is uniform in y 2 Yd.

Proof. Note that

p
n
� bF0(y)� F0(y)� = 1p

n

nP
i=1

�
1�Di

1�bp(Xi)
1(Yi � y)� F0(y)

�
= 1p

n

nP
i=1

�
1�Di

1�bp(Xi)
1(Yi � y)� 1�Di

1�p(Xi)
1(Yi � y)

�
+ 1p

n

nP
i=1

�
1�Di

1�p(Xi)
1(Yi � y)� F0(y)

�
= 1

n

nP
i=1

� p
n(bp(Xi)�p(Xi))

(1�bp(Xi))(1�p(Xi))
(1�Di) 1(Yi � y)

�
+ 1p

n

nP
i=1

�
1�Di

1�p(Xi)
1(Yi � y)� F0(y)

�
= 1

n
p
n

nP
i=1

nP
j=1

�
�(X0

i
0)X
0
i

(1�p(Xi))
2 (1�Di) 1(Yi � y)E [�(X 0
0)H(X

0
0)XX
0]
�1
(Dj � p(Xj))H(X

0
j
0)Xj

�
+ 1p

n

nP
i=1

�
1�Di

1�p(Xi)
1(Yi � y)� F0(y)

�
+ op(1);

where the last equality is because

p
n (bp(Xi)� p(Xi)) = �(X 0

i
)X
0
i

p
n (b
 � 
0)

= �(X 0
i
0)X

0
iE [�(X

0
0)H(X
0
0)XX

0]
�1 1p

n

nX
j=1

(Dj � p(Xj))H(X
0
j
0)Xj + op(1)

where 
 is between b
 and 
0, H(�) = �(�)= f�(�) [1� �(�)]g, and op(1) is uniform in i given that supp(X) is

compact. By Hoe¤ding�s projection of U-statistic (see, e.g., Arcones and Giné, 1993),

1
n
p
n

nP
i=1

nP
j=1

�
�(X0

i
0)X
0
i

(1�p(Xi))
2 (1�Di) 1(Yi � y)E [�(X 0
0)H(X

0
0)XX
0]
�1
(Dj � p(Xj))H(X

0
j
0)Xj

�
= 1p

n

nP
j=1

E
h
�(X0

i
0)X
0
i

(1�p(Xi))
2 (1�Di) 1(Yi � y)E [�(X 0
0)H(X

0
0)XX
0]
�1
(Dj � p(Xj))H(X

0
j
0)Xj

���Wj

i
+ op(1)

= 1p
n

nP
j=1

E
h

�(X0
i
0)

(1�p(Xi))
2 (1�Di) 1(Yi � y)X 0

i

i
E [�(X 0
0)H(X

0
0)XX
0]
�1
(Dj � p(Xj))H(X

0
j
0)Xj + op(1)

= 1p
n

nP
j=1

E
h
�(X0
0)
1�p(X) F0(yjX)X

0
i
E [�(X 0
0)H(X

0
0)XX
0]
�1
Xj

�(X0
j
0)

�(X0
j
0)

Dj�p(Xj)
1�p(Xj)

+ op(1);
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where op(1) is uniform in y 2 Y0. In summary,

 0(Wj ; y) =
1�Dj

1� p(Xj)
1(Yj � y)� F0(y)

+E

�
�(X 0
0)

1� p(X)F0(yjX)X
0
�
E

�
�(X 0
0)

2

p(X)(1� p(X))XX
0
��1

Xj

�(X 0
j
0)

p(Xj)

Dj � p(Xj)

1� p(Xj)
:

Similarly,

 1(Wj ; y) =
Dj

p(Xj)
1(Yj � y)� F1(y)

�E
�
�(X 0
0)

p(X)
F1(yjX)X 0

�
E

�
�(X 0
0)

2

p(X)(1� p(X))XX
0
��1

Xj

�(X 0
j
0)

p(Xj)

Dj � p(Xj)

1� p(Xj)
:

Lemma 2
p
n
� bF td(y)� F td(y)� = 1p

n

nP
j=1

 td(Wj ; y) + op(1), where op(1) is uniform in y 2 Ytd.

Proof. Recall that

bF t0(y) =
1

n

nX
i=1

bp(Xi) (1�Di)

1� bp(Xi)
1(Yi � y)

,bp0;
bF t1(y) =

1

n

nX
i=1

Di1(Yi � y)

,bp1;
where bp0 = bp1 = n�1

Pn
i=1Di.

p
n
� bF t0(y)� F t0(y)� = 1p

n

nP
i=1

 bp(Xi)(1�Di)
1�bp(Xi) 1(Yi�y)bp0 � F t

0 (y)E[D]
E[D]

!
= 1p

n

nP
i=1

E[D]
bp(Xi)(1�Di)
1�bp(Xi) 1(Yi�y)�bp0F t

0 (y)E[D]bp0E[D]
= 1p

n

nP
i=1

E[D]

� bp(Xi)(1�Di)
1�bp(Xi) 1(Yi�y)�E[D]F t

0 (y)

�
�(bp0�E[D])F t

0 (y)E[D]bp0E[D]
� 1

E[D]
1p
n

nP
i=1

� bp(Xi)(1�Di)
1�bp(Xi)

1(Yi � y)� E[D]F t0(y)
�
� F t

0 (y)
E[D]

1p
n

nP
i=1

(Di � E[D]) ;

where the last equality is from Slutsky�s theorem. We derive the asymptotic expansion for the �rst term by

the Z-map technique of CFM. n�1
Pn
i=1

bp(Xi)(1�Di)
1�bp(Xi)

1(Yi � y) as an estimator of E[D]F t0(y) is de�ned by the

moment conditions

E

"
(�(X 0
)�D)H(X 0
)X

�(X0
)(1�D)
1��(X0
) 1(Y � y)� E[D]F t0(y)

#
= 0:

The derivative of this Z-map with respect to (
;E[D]F t0(y)) evaluated at the true value is

E

" 
�(X 0
0)H(X

0
0)XX
0 0

�(X0
0)(1�D)
(1��(X0
0))

2 X 01(Y � y) �1

!#
= E

" 
�(X 0
0)H(X

0
0)XX
0 0

�(X0
0)
1�p(X) F0(yjX)X

0 �1

!#
;
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so by Lemma E.3 of CFM,

1p
n

nP
i=1

� bp(Xi)(1�Di)
1�bp(Xi)

1(Yi � y)� E[D]F t0(y)
�

= 1p
n

nP
i=1

E
h
�(X0
0)
1�p(X) F0(yjX)X

0
i
E [�(X 0
0)H(X

0
0)XX
0]
�1
Xi

�(X0
i
0)

p(Xi)
Di�p(Xi)
1�p(Xi)

+ 1p
n

nP
i=1

�
�(X0

i
0)(1�Di)
1��(X0

i
0)
1(Yi � y)� E[D]F t0(y)

�
+ op(1):

In summary,

p
n
� bF t0(y)� F t0(y)� =

= 1
E[D]

1p
n

nP
i=1

n
E
h
�(X0
0)
1�p(X) F0(yjX)X

0
i
E [�(X 0
0)H(X

0
0)XX
0]
�1
Xi

�(X0
i
0)

p(Xi)
Di�p(Xi)
1�p(Xi)

+
�(X0

i
0)(1�Di)
1��(X0

i
0)
1(Yi � y)� E[D]F t0(y)� F t0(y) (Di � E[D])

o
+ op(1)

= 1p
n

nP
j=1

 t0(Wj ; y) + op(1):

bF t1(y) does not involves the estimation of p(�), so its asymptotic expansion is the same as that in Theorem
6.2 of DH.

Lemma 3 Under Assumptions K, H, P and Fd, ep(x), bFd(yjx) and bQ1 � bF0(yjx)jx� have asymptotic linear
expansions uniformly in y 2 Yd; x 2 X ,

ep(x)� p(x) = (nhr)
�1=2Gn(gx)

�
1 +Op

�p
lnn=nhr

��
+Op(h

2);

bF0(yjx)� F0(yjx) = (nhr)
�1=2Gn(g0yx)

�
1 +Op

�p
lnn=nhr

��
+Op(h

2);

bF1(yjx)� F1(yjx) = (nhr)
�1=2Gn(g1yx)

�
1 +Op

�p
lnn=nhr

��
+Op(h

2);

bQ1 � bF0(yjx)jx��Q1 (F0(yjx)jx) = (nhr)
�1=2Gn(g01yx)

�
1 +Op

�p
lnn=nhr

��
+Op(h

2);

where

ep(x) = (nhr)
�1Pn

j=1DjKh(Xj � x)
(nhr)

�1Pn
j=1Kh(Xj � x)

and

gx(Ui; Xi) =
1

hr=2f(x)
UiKh(Xi � x);

g0yx(U
0
yi; Xi) =

1

hr=2 (1� p(x)) f(x)U
0
yiKh(Xi � x);

g1yx(U
1
yi; Xi) =

1

hr=2p(x)f(x)
U1yiKh(Xi � x);

g01yx(U
0
yi; U

1
Q1(F0(yjx)jx)i; Xi) =

g0yx � g1Q1(F0(yjx)jx)x

f1 (Q1 (F0(yjx)jx)jx)
;

with Ui = Di � p(Xi), U1yi = Di [1(Yi � y)� F1(yjXi)], and U0yi = (1�Di) [1(Yi � y)� F0(yjXi)].
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Proof. We �rst check ep(x). Uniformly in x 2 X ,
ep(x)� p(x) =

(nhr)
�1Pn

j=1 (Dj � p(Xj))Kh(Xj � x)
(nhr)

�1Pn
j=1Kh(Xj � x)

+
(nhr)

�1Pn
j=1 (p(Xj)� p(x))Kh(Xj � x)

(nhr)
�1Pn

j=1Kh(Xj � x)

=
f(x)bf(x) 1

nhrf(x)

nX
j=1

UjKh(Xj � x) +Op(h2)

=
1

nhrf(x)

nX
j=1

UjKh(Xj � x)
�
1 +Op

�p
lnn=nhr

��
+Op(h

2);

where Op(h2) in the second equality is the bias (uniformly in x), and Op
�p

lnn=nhr
�
in the third equality

is the uniform approximation rate of f(x) by bf(x) (see, e.g., Lemma B.1 of Newey, 1994).
The proof for Fd(yjx) is similar; take F1(yjx) as an example.

bF1(yjx)� F1(yjx) = bF1(yjx)� F1(yjx) (nhr)�1
Pn
j=1DjKh(Xj � x)

(nhr)
�1Pn

j=1DjKh(Xj � x)

=
(nhr)

�1Pn
j=1Dj [1(Yj � y)� F1(yjx)]Kh(Xj � x)
(nhr)

�1Pn
j=1DjKh(Xj � x)

=
(nhr)

�1Pn
j=1Dj [1(Yj � y)� F1(yjx)]Kh(Xj � x)= (nhr)�1

Pn
j=1Kh(Xj � x)

(nhr)
�1Pn

j=1DjKh(Xj � x)= (nhr)�1
Pn
j=1Kh(Xj � x)

=
p(x)ep(x) 1

p(x)

24 1

nhrf(x)

nX
j=1

Dj [1(Yj � y)� F1(yjXj)]Kh(Xj � x)
�
1 +Op

�p
lnn=nhr

��
+Op(h

2)

35
=

1

p(x)

1

nhrf(x)

nX
j=1

U1yiKh(Xj � x)
�
1 +Op

�p
lnn=nhr

��
+Op(h

2);

where the second to last equality is from a similar analysis as in ep(x) and the last equality is from the

approximation rate of p(x) by ep(x). If we write U1yi as [Di1(Yi � y)� p(Xi)F1(yjXi)] � F1(yjXi)Ui, then

the �rst term is attributed to the variation in the numerator of bF1(yjx) and the second term is attributed

to the variation in the denominator.

Finally, we analyze the approximation of bQ1 � bF0(yjx)jx�:
bQ1 � bF0(yjx)jx��Q1 (F0(yjx)jx) = bQ1 � bF0(yjx)jx��Q1 � bF0(yjx)jx�+Q1 � bF0(yjx)jx��Q1 (F0(yjx)jx) :
By Hadamard di¤erentiability of Q1(�j�) at F1 (Q1(�j�)j�), we have

bQ1 � bF0(yjx)jx��Q1 � bF0(yjx)jx� � � 1

f1

�
Q1

� bF0(yjx)jx����x�
� bF1 �Q1 � bF0(yjx)jx����x�� F1 �Q1 � bF0(yjx)jx����x��

� � 1

f1 (Q1 (F0(yjx)jx)jx)

� bF1 (Q1 (F0(yjx)jx)jx)� F1 (Q1 (F0(yjx)jx)jx)�
= (nhr)

�1=2Gn

 
�g1Q1(F0(yjx)jx)x

f1 (Q1 (F0(yjx)jx)jx)

!�
1 +Op

�p
lnn=nhr

��
+Op(h

2);

where the �rst approximation is from the de�nition of Hadamard di¤erentiability, the second approximation

is from the uniform consistency of bF0(yjx), and the equality is from the approximation of F1(yjx) by bF1(yjx).
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Similarly,

Q1

� bF0(yjx)jx��Q1 (F0(yjx)jx) = (nhr)�1=2Gn g0yx
f1 (Q1 (F0(yjx)jx)jx)

!�
1 +Op

�p
lnn=nhr

��
+Op(h

2):

Combining these two results, we �nish the proof.

Lemma 4 bv2n = 2
n2hr

nP
j=1

P
l 6=j

bw2jl p�! �2, where bwjl is de�ned in the main text.
Proof. We need only to show that v2n =

2
n2hr

nP
j=1

P
l 6=j

w2jl
p�! �2, where wjl � n�1

Pn
i=1 aijl is the same asbwjl � n�1

Pn
i=1 baijl but replacing all hat estimators by their true values, because the di¤erence between bv2n

and v2n is op(1). As usual, we need show that E
�
v2n
�
! �2 and V ar

�
v2n
�
! 0. For simplicity, we only check

the former.

E
�
v2n=2

�
= E

�
w2jl
�
=hr =

1

n2hr

nX
i=1

nX
k=1

E [aijlakjl]

� 1

n2hr

nX
i=1

X
k 6=i

E [aijlakjl] ;

where l 6= j 6= k 6= i, and the last approximation is because the rest terms contribute only o(1) to E
�
v2n=2

�
.

Now,

E [aijlakjl] =h
r = E [E [aijljWj ;Wl]E [akjljWj ;Wl]] =h

r = E
h
(Pn(Wj ;Wl)=2)

2
i
=hr ! �2a;

where the �rst equality is due to the independence between Wi and Wk given Wj and Wl, Pn(Wj ;Wl) is

de�ned in (9), the convergence is from the proof of Theorem 5(i), and �2a = �2=2.

Lemma 5 bbn �Bh = 1
nhr=2

nP
j=1

bwjj �Bh p�! 0, where bwjj is de�ned in the main text.
Proof. As in the last lemma, we can replace bwjj by wjj = n�1

Pn
i=1 aijj without a¤ecting the probability

limit of bbn; denote bn = �nhr=2��1Pn
j=1 wjj =

�
n2hr=2

��1Pn
i=1

Pn
j=1 aijj . Since the sum of the terms with

i = j is op(1), bn = b0n + op(1) with b
0
n =

�
n2hr=2

��1Pn
i=1

Pn
j 6=i aijj . We only show E [b0n]�Bh �! 0 since

it can be shown that V ar (b0n) converges to 0. Note that

E [bn] � E [aijj ] =h
r=2 = h�r=2

Z
E
h
g01yx(U

0
yj ; U

1
Q1(F0(yjx)jx)j ; Xj))

2
i
d�(y; x) � Bh

from the proof of Theorem 5(i).

Supplementary Material S.2

Because our parametric test statistics are constructed under the parametric speci�cation of propensity score

and conditional cdfs, the power of our tests may come from the model misspeci�cation and the size may not

match the nominal level. We suggest here to combine our parametric tests with the goodness of �t tests to

alleviate the e¤ects of model misspeci�cation.
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Our goodness of �t tests for p(�) and Fd(�j�) are based on Andrews (1997) and Rothe and Wied (2013).
The former takes the Kolmogorov-Smirnov (KS) form and the latter takes the Cramer-von Mises (CM) form.

For simplicity, we describe the KS-type statistic only:

KSn =
p
n sup
Xi2X

��� bHn(Xi)� bFn(Xi)
���+pn sup

(Yi;Xi)2Y1X :Di=1

��� bH1
n(Yi; Xi)� bF 1n(Yi; Xi)

���
+
p
n sup
(Yi;Xi)2Y0X :Di=0

��� bH0
n(Yi; Xi)� bF 0n(Yi; Xi)

��� ;
where bHn(x) = n�1

Pn
i=1Di1(Xi � x); bFn(x) = n�1

nP
i=1

�(X 0
ib
)1(Xi � x);bHd

n(y; x) = n�1
Pn
i=1 1 (Di = d) 1(Yi � y)1(Xi � x);bF dn(y; x) = n�1

Pn
i=1 1 (Di = d) �(X 0

i
b�d(y))1(Xi � x):

(11)

bHn(x) and bFn(x) are estimating H(x) = P (D = 1; X � x) without and with the parametric restriction;

similarly, bHd
n(y; x) and bF dn(y; x) are estimating Hd(y; x) = P (D = d; Y � y;X � x) without and with

the parametric restriction. If there is no misspeci�cation, H(x) = F (x) and Hd(y; x) = F d(y; x), where

F (x) = E [1(X � x)�(X 0
0)] and F d(y; x) = E [1(D = d)1(X � x)�(X 0�d(y))]. To see why, note that

without misspeci�cation,

Hd(y; x) = P (D = d; Y � y;X � x)

= E [P (D = d; Yd � yjX) 1 (X � x)]

= E [p(X)�(X 0�d(y))1 (X � x)]

= E [1(D = d)1(X � x)�(X 0�d(y))] = F d(y; x);

where the third equality uses unconfoundedness and P (Yd � yjX) = �(X 0�d(y)). Similarly, we can show

H(x) = F (x) if without misspeci�cation. In summary, this test is to check whether the joint distributions

of (D;X) and (Yd; X) are correctly speci�ed.

The bootstrap can be used to obtain the critical values of KSn. Speci�cally, the following Algorithm G

can be used.

Algorithm G:

Step 1: Draw a bootstrap sample fX�
i ; 1 � i � ng with replacement from the realized values fXi; 1 � i �

ng.

Step 2: For every 1 � i � n, put D�
i as a simulation from the Bernoulli distribution with success probability

� (X�0
i b
). For every i with Di� = d, put

Y �i =

( bF�1d (U�i jX�
i );

Yi�;

if bF�1d (U�i jX�
i ) 2 Yd;

otherwise,

where (Di�; Yi�) is the (Di; Yi) corresponding to X�
i in the original sample, fU�i ; 1 � i � ng is a simu-

lated iid sequence of standard uniformly distributed random variables, and bFd(�j�) is de�ned in Section
4.

Step 3: Use the bootstrap data f(Y �i ; D�
i ; X

�
i ); 1 � i � ng to compute estimates bH�

n, bF �n , bHd�
n and bF d�n
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exactly as in (11), and compute the corresponding bootstrap realization of the test statistic:

KS
�

n =
p
n sup
Xi2X

��� bH�
n(Xi)� bF �n(Xi)

���+pn sup
(Yi;Xi)2Y1X :Di=1

��� bH1�
n (Yi; Xi)� bF 1�n (Yi; Xi)

���
+
p
n sup
(Yi;Xi)2Y0X :Di=0

��� bH0�
n (Yi; Xi)� bF 0�n (Yi; Xi)

��� :
Step 4: Repeat Step 1-3 B times to get

�
KS

�

nb

	B
b=1

which approximate the bootstrap distribution of the

test statistics, and use the (1 � �)th empirical quantile of
�
T
�

nb

	B
b=1

to approximate the asymptotic

critical value.

Since the bootstrap distribution in Step 2 mimics the distribution of (D;Y ) under the null, the bootstrap

procedure above is valid even though the data might be generated from an alternative distribution. If the

original data set is too large, we can use subsampling to approximate the distribution of KSn.

Eventually, in the parametric RP tests, we construct two test statistics, KSn and Tn (or KSn and T tn).

The size of the joint test is less than the sum of the sizes of the two tests. By choosing the two sizes

appropriately, we emphasize tests of misspeci�cation or rank preservation. For example, when the total size

� = 0:05, the misspeci�cation size �KS = 0:01 and the rank preservation size �T = 0:04 imply that we focus

on testing rank preservation.

Finally, as mentioned in Section 4, the parametric speci�cation allows functions of Xi as covariates, so

we need a benchmark speci�cation of the covariates for the misspeci�cation test. Of course, we hope the

model is correctly speci�ed so we can concentrate on the rank preservation test. Suppose the candidate

covariates are a subset of series sequence; then we need only select the number of series terms, K. As

in Firpo (2007), we suggest to use Hall (1987)�s likelihood cross-validation to choose K in estimating p(�)
and use least squares cross validation of the conditional mean estimation to choose K in estimating Fd(�j�).
Speci�cally, in estimating p(�), the benchmark K is chosen as the minimizer of

CV (K) =
1

n

nX
i=1

�
Di log bpK�i(Xi) + (1�Di) log(1� bpK�i(Xi))

�
;

where bpK�i(Xi) is the SLE of p(Xi) based on K series terms and with the ith data point deleted;34 in

estimating Fd(yjx), the benchmark K is chosen as the minimizer of

CVd(K) =
X

i:Di=d

(Yi � bmK
d;�i(Xi))

2;

where bmK
d;�i(Xi) is the linear series estimator of E[Y jX;D = d] based on K series terms and with the ith

data point among D = d deleted.

If dim(X) is too large or the distribution of X is too complicated (e.g., many discrete covariates in X

such that each cell contains few observations), we can test whether the marginal distribution of (D;Y0; Y1)

predicted by the speci�cation matches that calculated directly from the data. In this case, the test statistic

is modi�ed as

KSn =
p
n
��� bHn � bFn���+pn sup

Yi2Y1:Di=1

��� bH1
n(Yi)� bF 1n(Yi)���+pn sup

Yi2Y0:Di=0

��� bH0
n(Yi)� bF 0n(Yi)��� ;

34The K based on CV (K) can also be used in the semiparametric estimation of p(�) in Section 5.
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where bHn(x) = n�1
Pn
i=1Di; bFn = n�1

nP
i=1

�(X 0
ib
);bHd

n(y) = n�1
Pn
i=1 1 (Di = d) 1(Yi � y);bF dn(y; x) = n�1
Pn
i=1 1 (Di = d) �(X 0

i
b�d(y)):

The bootstrap procedure is adjusted correspondingly.
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