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Abstract

Precise measurement of the forcing variable in regression discontinuity designs is critical to precise

evaluation of treatment e¤ects. Such evaluation can be sensitive to measurement errors, which are preva-

lent in many applications of regression discontinuity designs. The present paper studies identi�cation

of treatment e¤ects using local polynomial estimation in the presence of measurement error. The main

�ndings are as follows. In sharp designs, when the measurement error is �xed, the treatment e¤ect can

be identi�ed in some special cases if the treatment is based on the contaminated forcing variable, but

cannot be identi�ed if the treatment is based on the error free forcing variable. If the measurement error

is local to zero, the treatment e¤ect can be identi�ed with a small extra bias and without e¢ ciency loss

if the treatment is based on the contaminated forcing variable; the treatment e¤ect can be identi�ed

with e¢ ciency loss and a large bias if the treatment is based on the error free forcing variable and the

treatment status can be observed; the treatment e¤ect cannot be identi�ed if the treatment is based

on the error free forcing variable and the treatment status cannot be observed unless the measurement

error is extremely small. The results are extended to fuzzy designs. Monte Carlo results con�rm the

theoretical analysis.
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1 Introduction

Regression discontinuity designs (RDDs) are quasi-experimental designs where treatment is determined by

whether an observed forcing (running or assignment or selection) variable crosses a known threshold. As

shown in Hahn et al. (2001), in the left and right neighborhoods of the threshold, the treatment is assigned as

if in a randomized experimental design. So the individuals marginally below the threshold represent a valid

counterfactual for the treated group just above the threshold. Given that a genuinely randomized design

is rare in social science, RDDs have received much attention since their introduction by Thistlethwaite and

Campbell (1960). See Cook (2008) for a history of RDDs in three academic disciplines; see Imbens and

Lemieux (2008), van der Klaauw (2008) and Lee and Lemieux (2010) for excellent reviews on up-to-date

theoretical developments and applications.

As emphasized by Lee and Lemieux (2010), the key element in RDDs is that treatment is determined

solely by the forcing variable. In consequence, precise measurement of the forcing variable is critical to all

empirical applications of RDD methodology. As stated in their Section 7.1,

"even if there is perfect compliance of the discontinuous rule, it may be that the researcher

does not directly observe the assignment variable, but instead possesses a slightly noisy measure

of the variable. Understanding the e¤ects of this kind of measurement error could further expand

the applicability of RDDs".

A prototypical example of RDDs with measurement error is the pretest-posttest design in compensatory

educational programs considered in Goldberger (2008); see also Matsudaira (2008). In that example, pupils

are selected to take a compensatory program based on whether the forcing variable crosses the threshold.

So the treatment is the program, and the outcome is the posttest result. The forcing variable can take

two forms. In the �rst form, it is the pretest result. So the forcing variable can be observed by both the

program designer and the econometrician. In the second form, it is true ability, so the pretest result is only

a contaminated measure of the forcing variable, and can be precisely observed only by the program designer;

the econometrician can only observe a noisy measure. In either case, we are interested in the treatment

e¤ect on pupils with true ability just above the threshold relative to those whose ability is just below the

threshold. So the usual estimates must contain some bias for the true treatment e¤ect since some information

is unavailable to the econometrician. Even in the classical application of RDDs in U.S. house elections by

Lee (2008), there can be measurement error. In that example the forcing variable is the democratic vote

share margin of victory, the treatment is to be the incumbent party, and the outcome is the next election

result. The closer the two parties�contesting powers, the more likely there will be a measurement error on

the true ballot counting process �consider, for instance, the presidential election between Kennedy/Nixon

or Bush/Gore. But as argued in Lee (2008), the data in such elections are critical to evaluate some kind of

average treatment e¤ect, and of course are critical in evaluating the true treatment e¤ect - the treatment

e¤ect based on the true ballot counting process. More examples can be found in Pei (2011) where he

emphasizes that measurement errors may most likely arise when the forcing variable is based on survey data;

see Bound et al. (2001) for a summary on measurement error in survery data.

There are some preliminary results on the estimation of treatment e¤ects in this environment. To facilitate

exposition, we de�ne some notations. Following Trochim (1984), when there is no measurement error, we

classify RDDs into sharp designs and fuzzy designs. In both designs, the outcome equation is

y = m�(x
�) + �� (x

�)D + " � m(x�) + ";

where the forcing variable x� is some basic determinant of the outcome, D is the treatment status, " = "d
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when D = d, and E["djx�] = 0, for d = 0; 1. The treatment e¤ect is �� (x�) + "1 � "0. The di¤erence
between the sharp design and the fuzzy design is whether D is a deterministic function of x� or not. If D =

d�� � 1 (x� � �), then we get a sharp design; if D = p�(x
�) + ��(x

�)d�� + �, where E[�jx�] = 0, p�(x�) 6= 0
and ��(�) 6= 0, then we have a fuzzy design. In both cases, we are interested in the average treatment e¤ect
at x� = �, that is, �� (�). If x� is contaminated, we observe only x = x� + u instead of x�, where u is

a classical measurement error independent of all other random variables.1 When there is a measurement

error in x�, the design is termed the nonequivalent group design (NEGD) in Cook and Campbell (1979). For

future reference, we use the following classi�cation. "Case 1" refers to the sharp design where the forcing

variable is x (that is, D = d� � 1 (x � �)), "Case 2" is the sharp design where the forcing variable is x�

with the treatment status d�� observed, "Case 3" is the sharp design where the forcing variable is x
� with

d�� unobserved, "Case 4" is the fuzzy design where the forcing variable is x, "Case 5" is the fuzzy design

where the forcing variable is x�, and the "Oracle Case" is the design without measurement error. A closely

related concern with Case 1 in the literature is the so-called heaping problem in x�; see, e.g., Almond et al.

(2010), Almond et al. (2011), Barreca et al. (2011a) and Barreca et al. (2011b). In a heaping problem, x� is

recorded in multiples of some basic unit. Our analysis provides a benchmark for understanding estimation

bias in random heaping.2 Examples of Case 2 include de la Mata (2011), Hullegie and Klein (2010), Koch

(2010) and Schanzenbach (2009). The �rst form of the example in Goldberger (2008) and Lee (2008) both

belong to Case 1, and the second form of Golberger (2008) falls in Case 2. Case 3 is logically possible but

rarely happens in practice. We study it only because it is the building block of Case 5.

When there is a measurement error in x�, all the existing literature considers the sharp design with m�(�)
and �� (�) being linear and the distributions of x�, " and u being known (especially as Gaussian). The main
results in these special cases are summarized as follows. First, in Case 1, if �� (�) is a constant, then the least
squares estimator (LSE) of ��(�) obtained by regressing y on x and d� is unbiased although the intercept

and slope in m�(�) are biased. In other words, the bias introduced by measurement error is completely
absorbed in m�(�) and the unbiasedness of ��(�) remains as long as the treatment assignment is perfectly
controlled; see Cappelleri et al. (1991) and Goldberger (2008). Second, in Case 1, if the slope of �� (�) is not
zero, then the LSE of ��(�) is biased but converges to the treatment e¤ect at another point on the support

of x�; see Trochim et al. (1991). Third, in Case 2, the LSE of ��(�) by regressing y on x and d�� is biased;

see Goldberger (2008). A rough picture of these results is that Case 1 is easier to identify than Case 2. For

the e¤ect of measurement error in the average treatment e¤ect framework, see Cochran and Rubin (1973),

Rubin (1977) and Battistin and Chesher (2009).

A nonparametric framework rather than parametric framework is now commonly used in RDD analysis.

Correspondingly, the local polynomial estimator (LPE) rather than the LSE is used in the estimation of ��(�).

In the nonparametric framework, we extend the results in the above literature in three aspects. First, for a

�xed measurement error distribution, we re-analyze the identi�ability of ��(�) in the nonparametric model.

Speci�cally, in Case 1, ��(�) can be identi�ed only in some special cases, e.g., when �� (�) is constant, or
�� (�) is linear and the conditional distribution of u given x = � is symmetric; in Cases 2 and 3, ��(�)

cannot be identi�ed without further information. Second, by formulating a local measurement error that

shrinks to zero with the sample size, we are able to sharpen the results in the �rst point. Speci�cally, in

Case 1, ��(�) can be identi�ed, and compared to the Oracle Case, the LPE has a small extra bias but the

same variance. In Case 2, ��(�) can be identi�ed, and compared with the Oracle Case, the LPE has a larger

1Such a measurement error is called a non-di¤ erential measurement error, see Carroll et al. (2006). There may also be a
measurement error in y, but it should be absorbed in ".

2The emphasis of the debate in the papers mentioned above lies in the sorting problem in heaping, that is, the nonrandom
heaping. Without further clari�cation of the heaping mechanism, it is impossible to identify treatment e¤ects in a nonrandom
heaping.
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bias and also a larger variance unless the measurement error is extremely small. In Case 3, ��(�) cannot

be identi�ed unless the measurement error is extremely small. Third, we extend the analysis to the fuzzy

design. Speci�cally, ��(�) is easier to identify in Case 4 than in Case 5.

In passing, we mention that the usual measurement error literature assumes the distribution of u to be

known from some validation data set, so a deconvolution estimator such as that in Fan and Truong (1993)

can be used to recover the original conditional mean. Such a setup is not applicable to RDDs since data

collection is usually conducted only once and no validation data set is available. In Case 2, Pei (2012)

provides some interesting identi�cation results by exploring the convolution relationship of fxjD with fx�jD
and fu, but one of the key assumptions in this approach is that the supports of x� and u are discrete and

bounded, which may restrict its applicability.3

The rest of the paper is organized as follows. In Section 2, we de�ne the LPE with and without mea-

surement error. When the measurement error is �xed, Section 3 and 4 analyze the identi�cation of ��(�) by

the LPE when x is the forcing variable and when x� is the forcing variable, respectively. Section 5 extends

the analysis to the shrinking measurement error case. Section 6 turns to the analysis of the fuzzy design.

Section 7 includes some simulation results and section 8 concludes. A word on notation: for a generic ran-

dom variable y and a generic random vector x, fx;y(�; �) is their joint density, and fyjx(�j�) (Fyjx(�j�)) is the
conditional pdf (cdf) of y given x; for a generic random variable x, fx(�) (Fx(�)) is the pdf (cdf) of x.

2 Existing Solutions in the Measurement Error Literature

Most solutions to the mismeasurement problem for the linear speci�cation in econometrics depend on the

use of instrumental variables. Another solution to the measurement error problem is to �nd an independent

measure of the reliability of the variable, usually from a resampling approach. This solution can be given an

instrumental variables interpretation. Cov(z; x�) 6= 0 and Cov(z; u) = Cov(z; "d) = 0.
Reverse regression in Case 3.

Di¤erent from the literature, di(�) is dummy, and is correlated with the measurement error in other

regressors. The setup here is more or less close to that of Mahajan (2006) and Lewbel (2007), but in their

case, other covariates are not mismeasured.

In Case 2, consider another estimator

 !� (�) = !m+(�)� !m�(�);

where  !m+(�) is similarly de�ned as bm+(�) but replacing di (�) by d�i (�), and in
 !m�(�), 1 � di (�) is

replaced by (1� d�i (�)). In other words, we use treated individuals in both neighborhoods of � to estimate
m�
+(�), and controlled individuals in both neighborhoods of � to estimate m

�
�(�).

Consider two identi�cation schemes. First, when there are not further auxiliary information, we provide

a partial identi�cation result under the monotonicy assumption of Hausman, Abreveya, and Scott-Morton

(1998). Second, when auxiliary information available, we provide point identi�cation of the treatment e¤ect

and derive the asymptotic distribution of our estimator.

Hausman, Newey, Ichimura and Powell (1991, 1995) consider the polynomial setup. Ours is local poly-

nomial, also there is a bianry regressor.

3Pei also discusses identi�ability when x� and u are continuously distributed with u � N
�
0; �2

�
: But this parametric

assumption on the distribution of u is restrictive and may be questionable in practical work. For example, in Goldberger
(2008)�s example, u must have a bounded support.
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3 Local Polynomial Estimators

Suppose �rst that there is no measurement error in x�. Since Porter (2003), the benchmark estimator of

�� (�) is the LPE. In the sharp design, it is de�ned as

b��(�) = bm�
+(�)� bm�

�(�); (1)

where bm�
+(�) is the LPE of m

�
+(�) � E[yjx� = �+] and is determined by the minimizer ba in

min
a;b1;��� ;bp

1

n

nX
i=1

kh (x
�
i � �) d�i (�) [yi � a� b1 (x�i � �)� � � � � bp (x�i � �)

p
]
2
; (2)

where p is a nonnegative integer, d�i (�) = 1 (x
�
i � �), kh (�) = 1

hk
� �
h

�
, k (�) is a kernel function, and h is the

bandwidth. bm�
�(�) is the LPE of m

�
�(�) � E[yjx� = ��] and is similarly de�ned as bm�

+(�) but substituting

d�i (�) in (2) by 1� d�i (�). The most popular choice of p is 1, and the resulting LPE is called the local linear
smoother (LLS) which is popularized by Fan (1992, 1993). Under some regularity conditions, Porter (2003)

shows that p
nh (b��(�)� �� (�)�B�n) d�! N

�
0;
�21(�) + �

2
0(�)

fx�(�)
e01�

�1
+ 
+�

�1
+ e1

�
; (3)

where �� (�) = m�
+(�) � m�

�(�), B
�
n = hp+1

�(p+1)� (�)
(p+1)! e

0
1�

�1
+ �+p+1;2p+1(1 + op(1)) is a bias term, e1 =

(1; 0; � � � ; 0)0(p+1)�1, �2d(x�) � E
�
"2djx�

�
, d = 0; 1, and

�+ =

0BB@
+0 � � � +p
...

. . .
...

+p � � � +2p

1CCA
(p+1)�(p+1)

;
+ =

0BB@
!+0 � � � !+p
...

. . .
...

!+p � � � !+2p

1CCA
(p+1)�(p+1)

; �+r;q =

0BB@
+r
...

+q

1CCA ; (4)

with +j =
R1
0
k(u)ujdu, !+j =

R1
0
k2(u)ujdu, and r � q being nonnegative integers. In the fuzzy design,

the LPE of �� (�) is de�ned as b��f (�) = bm�
+(�)� bm�

�(�)bp�+(�)� bp��(�) ;
where bp�+(�) is the LPE of p�+(�) � E[Djx� = �+] and is similarly de�ned as in (2) with Di replacing

yi. bp��(�) is similarly de�ned as bp�+(�) but using Di in the left neighborhood of �. Under some regularity
conditions, b��f (�) is consistent and has an asymptotically normal distribution.
When there is a measurement error u in x�, only x = x�+u is observed. As mentioned in the introduction,

there are two ways to assign treatment, based on either x or x�. In the sharp design, if the forcing variable

is x, then D = d� = 1 (x � �) is always observed. The LPE of �� (�) is

b�(�) = bm+(�)� bm�(�);

where bm+(�) is the LPE of m+(�) � E[yjx = �+], and is de�ned as the minimizer ba in
min

a;b1;��� ;bp

1

n

nX
i=1

kh (xi � �) di (�) [yi � a� b1 (xi � �)� � � � � bp (xi � �)p]
2
; (5)

where di (�) = 1 (xi � �), and all other functions and variables are de�ned in (2). bm�(�) is similarly de�ned

as bm+(�) but replacing di (�) with 1 � di (�). If the forcing variable is x�, we consider two cases. In Case
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2, the treatment status d�i (�) can be observed. In this case, it is natural to estimate �� (�) by

e�(�) = em+(�)� em�(�);

where em+(�) is similarly de�ned as bm+(�) but replacing di (�) by di (�) d�i (�), and in em�(�), 1� di (�) is
replaced by (1� di (�)) (1� d�i (�)). In other words, we use treated individuals in the right neighborhood of
� to estimate m�

+(�), and controlled individuals in the left neighborhood of � to estimate m
�
�(�). In Case

3, d�i (�) cannot be observed, then we have to estimate �� (�) by b�(�).
In the fuzzy design, we assume the treatment status can be observed, otherwise the causal e¤ect cannot

be identi�ed even if x� is not contaminated. If the forcing variable is x, assume D = p�(x) + ��(x)d� + �,

where E[�jx] = 0, p�(x) 6= 0 and ��(�) 6= 0. Now, the LPE of �� (�) is

b�f (�) = bm+(�)� bm�(�)bp+(�)� bp�(�) ; (6)

where bp+(�) (bp�(�)) is an estimator of p+(�) � E[Djx = �+] (p�(�) � E[Djx = ��]) and is similarly
de�ned as in (5) but replacing yi by Di (1 � Di). When x� is the forcing variable, as in the case without
measurement error, D = p�(x

�) + ��(x
�)d�� + �. We still use b�f (�) to estimate �� (�).

The goal of this paper is to check whether the LPE can identify �� (�) in di¤erent cases. For future

reference, we de�ne some basic density or conditional density functions and state some properties of them.

Suppose the joint density of (x�; "d) is fdx�;"(x
�; "), then the joint density of (x; "d; u) is fdx�;"(x� u; ")fu(u),

and the joint density of (x; "d) is
R
fdx�;"(x � u; ")fu(u)du, d = 0; 1. Also, the joint density of (x; u) is

fx�(x� u)fu(u) and the marginal density of x is fx(x) =
R
fx�(x� u)fu(u)du. Note that

E["djx] =

Z
"

R
fdx�;" (x� u; ") fu(u)duR
fx�(x� u)fu(u)du

d" =

R R
"fdx�;" (x� u; ") d"fu(u)duR
fx�(x� u)fu(u)du

=

Z
E["djx� = x� u]

fx�(x� u)fu(u)R
fx�(x� u)fu(u)du

du =

Z
E["djx� = x� u]fujx(ujx)du = 0;

where the second equality is from Fubini�s theorem, and the last equality is from the assumption that

E["djx�] = 0.
In the measurement error literature, it usually assumes that E["djx; x�] = E["djx�] = 0 (referred as the

assumption of nondi¤erential measurement error by Mahajan (2006)), which implies E["djx] = 0. This

assumption excludes the placebo e¤ect and implies that the measurement error is not driven by the unob-

served bene�t. Bound, Brown, and Mathiowetz (2000) provide instances when such an assumption is likely

or unlikely to hold; see page 540 of Lewbel (2007) for futher discussions.

P (� + h � x � �jx� < �) =
R �
�1

R �+h
�

fu(x� x�)dxfx�(x�)dx�R �
�1 fx�(x

�)dx�

4 The Forcing Variable is x

If the treatment is based on x, y = m�(x
�)+�� (x

�) d�+". In the LPE b�(�), bm+(�) and bm�(�) are estimating

m+(�) and m�(�), respectively. The question is what m+(�) �m�(�) is identifying. As discussed at the

end of section 2, E ["jx] = 0, so we need only concentrate on E[m�(x
�)jx] and E[�� (x�) jx].

Note that

E[m�(x
�)jx] = E[m�(x� u)jx] =

Z
m�(x� u)fujx(ujx)du � m�(x)
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is continuous if both m�(�) and fujx(uj�) are continuous. So if we de�ne

��(x) = E[��(x
�)jx] =

Z
��(x� u)fujx(ujx)du; (7)

then

m+(�)�m�(�)

= E[m�(x
�)jx = �+]� E[m�(x

�)jx = ��] + E [�� (x�) jx = �+]

=

Z
��(� � u)fujx(uj�)du = ��(�)

=

Z
��(� � u)

fxju(�ju)
fx(�)

f(u)du = Eu

�
��(� � u)

fxju(�ju)
fx(�)

�
:

where the second equality is from the continuity of ��(�) and fujx(uj�). So m+(�) �m�(�) is a weighted

average treatment e¤ect with weight fxju(�ju)fx(�)
which is directly proportional to the likelihood that the realiza-

tion of x corresponding to u will be close to the threshold �. If we interpret u as the unobserved component

of the outcome in Lee (2008), then from his Proposition 3, ��(� � u) plays the role of y(�+; u)� y(��; u),
where y (x; u) de�nes the relationship between y and (x; u).

We are interested in the cases where ��(�) = �� (�). Suppose �� (x�) is smooth enough, then ��(� �
u) � ��(�) � �0�(�)u + 1

2�
00
�(�)u

2 to the second-order polynomial. If both �0�(�) and �
00
�(�) are zero,

and ��(� � u) = ��(�), then ��(�) = �� (�); that is, in the common treatment e¤ect case, �� (�) can be
identi�ed. Cappelleri et al. (1991) and Goldberger (2008) show this result in a very special case as mentioned

in the introduction. Here, we show this result in the general setup where m�(x
�) is not necessarily linear and

the distributions of x� and u are not necessarily normal. If �0�(�) 6= 0, �00�(�) = 0, and fujx(uj�) is symmetric
about zero, then ��(�) is also equal to ��(�). In these two cases, although E[yjx] may be di¤erent from
m(x), the jump size at � remains. If �00�(�) 6= 0, because E[u2jx = �] > 0, it is hard to imagine when ��(�)
will equal �� (�). The following two examples provides more intuition on the identi�cation of �� (�).

Example 1: Suppose �� (x�) = �0 + �1x�, then

��(x) =

Z
(�0 + �1(x� u)) fujx(ujx)du = �0 + �1x� �1E[ujx];

where ��1E[ujx] is an extra term introduced by measurement error, which is equal to zero i¤ �1 = 0

or E[ujx] = 0. If E[ujx] takes a linear form such as in the case where both u and x� are normally dis-

tributed, then E[ujx] is the linear projection of u on x, and E[ujx] = � (1� �)E[x] + (1� �)x, where
� = V ar(x�)

V ar(x�)+V ar(u) is the reliability coe¢ cient. In consequence,

��(x) = �0 + �1 (1� �)E[x] + ��1x � e�0 + e�1x,
where E[x] = E[x�] when E[u] = 0. The estimate of the interaction e¤ect �1 is biased by a factor �.4

Similarly, if m�(x
�) = �0 + �1x

�, and E[ujx] is linear in x,

m�(x) = �0 + �1 (1� �)E[x] + ��1x � e�0 + e�1x.
4The term "interaction e¤ect" is used in the literature, e.g., Trochim et al. (1991), to refer the fact that the treatment e¤ect

is a function of x� rather than a constant.

6



As in the usual analysis of measurement error, the attenuation e¤ect appears:
���e�1��� � j�1j. In summary,

E[yjx] = e�0 + e�1x+ (e�0 + e�1x) d�
=

�e�0 + e�1x� 1(x < �) + h�e�0 + e�0�+ �e�1 + e�1�xi 1(x � �):
If we regress y on x, d� and xd�, we can recover e�0, e�1, e�0, and e�1. If � were known, then �0 and �1 can
be recovered from the spurious regression in an obvious way:

�1 =
e�1
�
; �0 = e�0 � �1(1� �)E[x] = e�0 � e�1 1� �

�
E[x]:5

In the general case, m�(�) need not be linear, so the usual linear regression of y on x and d� can introduce
bias to �� (�) even if �� (�) is constant. Trochim et al. (1991) noticed the harm of misspeci�cation of

m�(�), but did not dig further. Because nonparametric techniques are usually used in the RD analysis, the
misspeci�cation problem in m�(�) can be successfully conquered.
The left two panels of Figure 1 show E[yjx] and E[yjx�] when �1 = 0 and �1 6= 0, respectively. In both

panels, x� and u are normally distributed. x� � N (2; 1) and u � N
�
0; 37
�
, so the reliability coe¢ cient

� = 0:7. In the common treatment e¤ect case, �0 = �1 = 1, and �1 = �0 = 0; in the variable treatment

e¤ect case, �0 = �0 = 0, and �1 = �1 = 1. In both cases, � = 1, and �� (�) = 1. In the upper-left panel,

although E[yjx] gets �atter than E[yjx�], the jump sizes at � are the same. In the lower-left panel, the jump
sizes at � may not be the same, but the jump size of E[yjx] at �, ��(�), is equal to ��(�) evaluated at a
di¤erent point �. It is easy to show that ��(�) = ��(�) with � = E[x]� �(E[x]� �), which is equivalent to
the formula (4) in Trochim et al. (1991). This means that the estimated treatment e¤ect at � is the true

treatment e¤ect at

� = E[x]� �(E[x]� �):

Figure 2 shows why � 6= �. When � = 1, that is, there is no measurement error, E[x]� �(E[x]� �) = �. Of
course, when � = 1, u = 0 almost surely, and ��(x) =

R
��(x � u)fujx(ujx)du = ��(x) even in the general

case; see more analysis in Section 5.1 below. Also, when � = E[x], E[ujx = �] = 0, so � = �. �

Example 1 shows that when there is a measurement error in x� (� < 1) and �� (x�) is linear and

nonconstant, ��(�) is not equal to ��(�) if E[ujx] is linear unless � = E[x]. If E[ujx] is nonlinear, the
situation is more complicated.

Example 2: Suppose �� (x�) = �0 + �1x� and x� � U [0; 3]. The two upper panels of Figure 3 shows the
support of (x; u) and E[ujx] when u � U [�1; 1]. Since ��(x) = �0+�1x��1E[ujx], it is straightforward to
see that ��(�) = �� (�) when � 2 [1; 2] even if �1 6= 0. The two lower panels of Figure 3 shows the support
of (x; u) and E[ujx] when u � N(0; 1). In this case, only if � = 1:5 = E[x], ��(�) = �� (�) when �1 6= 0.
All relevant calculations are included in the supplementary materials. �

The theorem below rigorously states the asymptotic distribution of the LPE b�(�). First, we specify some
regularity conditions.

Assumption K: k(�) is a symmetric, bounded, Lipschitz function, zero outside a bounded set [�M;M ],
and

R
k(u)du = 1.

5Cappelleri et al. (1991) provide similar formulas for �0 and �1, but the corrected intercept estimator in their equation (5)
is wrong because �1 is lost. Since �1 = 1 in their simulations, �0 is not a¤ected and their simulation results are still valid.
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Figure 1: E[yjx�], E[yjx], E[yjd�� = 1; x] and E[yjd�� = 0; x] When x or x� is the Forcing Variable: � = 0:7
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Figure 2: Illustration of � 6= � When ��(x�) is not Constant, � 6= E[x] and � 6= 1
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Figure 3: Support of (x; u) and E[ujx] when u � U [�1; 1] or u � N(0; 1): x� � U [0; 3]

We assume k(�) to have a compact support to simplify the proof. In the discussion below, we let M = 1

without loss of generality.

Assumption F: fx� (x�) and fu(u) are continuous and uniformly bounded on their supports X � and U ,
respectively, and fx(�) is bounded away from 0.

Since fx(x) =
R
fx�(x� u)fu(u)du, Assumption F implies that fx(x) is continuous and uniformly bounded

on its support.

Assumption M: m�(x
�) and ��(x�) are continuous and uniformly bounded on X �. �� (�) 6= 0.

Assumption EY: For d = 0; 1,

(a) E["djx�] = 0.

(b) �2d(x
�) = E

�
"2djx�

�
is continuous and uniformly bounded on X �.

(c) For some � > 0, E
h
j"dj2+�

���x�i is uniformly bounded on X �.
Assumption B: h! 0 and nh!1.

All these assumptions are quite standard. The boundedness assumptions in EY, F and M are extended to

the whole support of x� instead of a neighborhood of � as in Porter (2003). This is obviously because the

measurement error contaminates the distribution of x�.

Theorem 1 Under Assumptions B, EY, F, K and M, in Case 1,

p
nh (b�(�)� �� (�)�B1n) d�! N

 
0;
E
�
"21jx = �

�
+ E

�
"20jx = �

�
fx (�)

e01�
�1
+ 
+�

�1
+ e1

!
;
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where �� (�) is de�ned in (7), B1n = op(1) is de�ned in (16), and �+ and 
+ are de�ned in (4).

A straightforward corollary of Theorem 1 is that b�(�) is a consistent estimator of �� (�) which may not
be equal to ��(�) except in some special cases. The asymptotic variance is similar as in the no-measurement-

error case (3), but in each term involving x�, x� is replaced by x.

5 The Forcing Variable is x�

In Case 2, we use e�(�) to estimate ��(�). e�(�) is estimating E[yjd�� = 1; x = �+]�E[yjd�� = 0; x = ��], so
we need only check whether it is equal to ��(�) or not. In Case 3, we use b�(�) to estimate ��(�), where we
check whether m+(�)�m�(�) is equal to �� (�) or not. Note that if the forcing variable is x�, m(x�) can

always be written as m�
�(x

�)+��(�)d
�
�, where m

�
�(x

�) is a continuous function de�ned as m(x�)��� (�) d��.
It is easy to see that m�

�(x
�) = m�(x

�) when x� < �, and m�
�(x

�) = m�(x
�)+��(x

�)���(�) when x� � �.
In the supplementary materials, we show that

E[yjd�� = 1; x]� E[yjd�� = 0; x]
= �� (�) + E[m

�
�(x

�)jd�� = 1; x]� E[m�
�(x

�)jd�� = 0; x]
= �� (�) +

R1
�
m�
�(x

�)fx�jx(x
�jx)dx�

1�Fx�jx(�jx) �
R �
�1m�

�(x
�)fx�jx(x

�jx)dx�

Fx�jx(�jx)

� �� (�) +m+
� (x)�m�

� (x) � �� (�) + �m�(x):

(8)

where the �rst equality is from E["jd�� = 1; x] = E["jd�� = 0; x] = 0. So we must have �m�(�) = 0 to identify

�� (�). Note that

�m�(�) =

R 0
�1m

�
�(� � u)fx�jx (� � uj�) duR 0
�1 fx�jx (� � uj�) du

�
R1
0
m�
�(� � u)fx�jx (� � uj�) duR1
0
fx�jx (� � uj�) du

is the di¤erence between the conditional mean of m�
�(x

�) given x = � with u < 0 and u > 0, so �m�(�) is

generally not zero unless m�
�(�) is constant. In Case 3,

E[yjx] = E [m(x�)jx] = E [m�
�(x

�)jx] + �� (�) p(x) (9)

= E [m(x�)jd�� = 0; x]P (d�� = 0jx) + E [m(x�)jd�� = 1; x; ]P (d�� = 1jx)
= E [m(x�)jd�� = 0; x] (1� p(x)) + E [m(x�)jd�� = 1; x] p(x)

which is an average of E [m(x�)jd�� = 0; x] and E [m(x�)jd�� = 1; x], where

p(x) = E [d��jx] = P (x� u � �jx) = Fujx (x� �)

is the propensity score. Because E [m�
�(x

�)jx] and p(x) are both continuous, E[yjx] is continuous. Therefore,
m+(�)�m�(�) is always 0 and cannot identify �� (�). Another observation is that this is a fuzzy design in

terms of Trochim (1984), so we can check whether m+(�)�m�(�)
p+(�)�p�(�) = �� (�), where p�(�) = E[d

�
� = 1jx = ��].

But both the numerator and denominator are zero since E[yjx] and p(x) are both continuous, so m+(�)�m�(�)
p+(�)�p�(�)

cannot equal �� (�). The following example, which uses a similar setup as in Example 1, illustrates the above

points intuitively.

Example 3: Suppose x� � N(�; �2), and u � N
�
0; 1��� �

2
�
, then the reliability coe¢ cient is �. Suppose

10



further that �� (x�) = �0 + �1x�, and m�(x
�) = �0 + �1x

�, then �� (�) = �0 + �1� and

m�
�(x

�) = (�0 + �1x
�) 1 (x� < �) +

�
�0 + �1x

�� 1 (x� � �) ;
where �0 = �0��1�, and �1 = �1+�1. In the supplementary materials, we extend the analysis in Appendix
C of Goldberger (2008) to show that

m+
� (x) = �0 + �1

�
a(x) + b�

�
a(x)� �

b

��
;

m�
� (x) = �0 + �1

�
a(x)� b�

�
� � a(x)

b

��
;

where a(x) = �x + (1� �)�, b =
p
1� ��, and �(z) = �(z)

�(z) is the inverse Mill�s ratio with �(�) and �(�)
being the pdf and cdf of the standard normal distribution, respectively. So

�m�(�) = �1

�
�+ b�

�
�

b

��
+ �1b

�
�

�
�

b

�
� �

�
��
b

��
where � = (1� �) (�� �). When � 6= 0 (that is, � < 1 and � 6= �), �m�(�) 6= 0 unless �1 = 0 and �1 = 0
which corresponds to a constant m�

�(�). But a constant m�
�(�) rarely happens in practice; see, e.g., Figure

2-5 of Lee (2008) to check this fact. Furthermore,

E[yjx] = [�0 + �1a(x)] + �1 (a(x)� �) �
�
a(x)� �

b

�
+ �1b�

�
a(x)� �

b

�
+ �� (�) p(x);

where p(x) = �
�
a(x)��

b

�
. The right two panels of Figure 1 show E[yjx�], E[yjx], E[yjd�� = 1; x], E[yjd�� =

0; x] and p(x) for the common and variable treatment e¤ect case, respectively, where all relevant parameter

values are the same as in Example 1. It is obvious that neither E[yjd�� = 1; x = �+]� E[yjd�� = 0; x = ��]
nor E[yjx = �+] � E[yjx = ��] can identify �� (�) even in the common treatment e¤ect case. In this
parametric model, nonlinear least squares or maximum likelihood can be used to identify �� (�), but they

are generally inapplicable in nonparametric settings. �

The following theorem rigorously states the probability limit of e�(�) and b�(�).
Theorem 2 Under Assumptions B, EY, F, K and M, in Case 2,

e�(�) p�! �� (�) + �m�(�);

and in Case 3, b�(�) p�! 0;

where �m�(�) is de�ned in (8).

Comparing with Theorem 1, the bias of e�(�) is also a¤ected by m� (�) besides �� (�), while the bias ofb�(�) in Case 1 is only a¤ected by �� (�).
5.1 Unidenti�ability of the Treatment E¤ect

When the forcing variable is x�, �� (�) cannot be identi�ed. To see why, rewrite the model in familiar

notations as

Y (D) = �D(x) + UD with D = 1 (x� � � u � 0) ; (10)

11



where

�0(x) = E [m�
�(x� u)jx;D = 0] ;

�1(x) = E [m�
�(x� u)jx;D = 1] + �� (�) ;

U0 = "0 +m
�
�(x� u)� E [m�

�(x� u)jx;D = 0] ;

U1 = "1 +m
�
�(x� u)� E [m�

�(x� u)jx;D = 1] :

Since both U0 and U1 include the component of u, they are correlated with D given x, so the unconfound-

edness condition fails, and �� (�) cannot be identi�ed. Actually, this is a model of essential heterogeneity in

terms of Heckman and Vytlacil (see, e.g., Heckman et al. (2006)), since

U1 � U0 = "1 � "0 + E [m�
�(x� u)jx; u > x� �]� E [m�

�(x� u)jx; u � x� �]

is correlated withD after controlling for x. Of course, there is also a selection bias becauseD is also correlated

with U0. This unidenti�ability result implies that the identi�cation technique in Pei (2011) critically relies

on the discreteness of x� and u. His identi�cation scheme cannot be extended to the general case where the

distribution of x� and u are continuous and nonparametrically unknown.6

For comparison, we review how a benchmark treatment model is speci�ed. Suppose we still use the

threshold crossing model to assign the treatment status, then D should be equal to 1 (x� � � + u � 0), and
x� is observed. In this case,

Y (D) = m� (x
�) + �� (x

�)D + UD with UD = "D; (11)

D = 1 (x� � � + u � 0) :

Now, (Y (0); Y (1)) are conditional independent of D given x�, since we assume that u is independent of

("0; "1). The average treatment e¤ect in this ideal case is E[�� (x�)]. In Case 1,

Y (D) = E [m�(x� u)jx] + E [��(x� u)jx]D + UD; (12)

D = 1 (x� � � 0) ;

where

U0 = "0 +m�(x� u)� E [m�(x� u)jx] ;
U1 = "1 +m�(x� u) + ��(x� u)� E [m�(x� u) + ��(x� u)jx] :

Conditional on x, D is a constant, so the unconfoundedness condition is satis�ed. The di¢ culty here is that

the overlap assumption is violated because given any x, we can observe either Y (0) or Y (1) but not both. Of

course, we can use the continuity of E [m�(x� u)jx] and E [��(x� u)jx] to extend E[Y jx] to the opposite
side of �, but the measured treatment e¤ect E [��(x� u)jx = �] may not be equal to the true treatment
e¤ect ��(�) unless in the neighborhood of x = �, ��(x� u) � ��(x)+ g(u) with E[g(u)jx] = 0; see Section
3 for some special cases such that this is satis�ed. The setup of Case 2, (10), deviates from the benchmark

(11) by assuming that the observed assignment covariate x is correlated with the assignment error u such

that the unconfoundedness condition fails. This is a more severe deviation from the benchmark model. In

Case 3, even the treatment status cannot be observed. In his postcript, Goldberger (2008) says that his

6Hullegie and Klein (2010) consider identi�cation of the treatment e¤ects in a parametric model where u is independent of
x (rather than x�) and follows N

�
0; �2u

�
.
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Figure 4: E[yjx�], E[yjx], E[yjd�� = 1; x] and E[yjd�� = 0; x] When x� or x is the Forcing Variable: � = 0:99

parametric analysis about Case 1 and Case 2 "is best viewed as making the distinction between selection on

observables and selection on unobservables". His comments obviously apply to the nonparametric setup of

this paper.

A common solution in Case 2 to identify �� (�) is to use an instrument variable that introduces extra

randomness in D and is independent of UD. For example, let the instrument variable be correlated with x�

and independent of u, "0 and "1. But this is against RDDs at the beginning since the key point of RDDs

is to avoid using the instrument variable to control endogeneity and assign the treatment based on a single

forcing variable.

6 Shrinking Measurement Error

When m� (�) and �� (�) take a parametric form, the unit of the measurement error should be the usual unit
and similar to the unit of x�. Just like in the linear regression, the unit of the error term is the same as the

regressors. In the nonparametric setup, m� (�) and �� (�) take a parametric form only in a h neighborhood

of each point on the support of x�, so it is natural to use h as the unit of the measurement error. In other

words, we should assume the measurement error shrinking to zero to check the identi�ability of the treatment

e¤ect.7 Figure 4 shows the same information as in Figure 1 except that � = 0:99 now. From Figure 4, it

seems that Case 1 is easier than Case 2 which is in turn easier than Case 3 in identi�cation of the treatment

e¤ect. The discussion below tries to strengthen this intuition by letting the measurement error shrink to

zero. To simplify our analysis, suppose u = n��� for some random variable � and � > 0. This form of

measurement error is easy to compare with h. For example, the usual bandwidth h = %n�1=5, % > 0, so we

can compare � with 1=5 to check the limit of n
��

h which will be used in the following theorems.

7Battistin and Chesher (2009) also assume the measure error shrinking to zero in the average treatment e¤ect framework
under the uncounfoundedness assumption.
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6.1 The Forcing Variable is x

Before stating the asymptotic distribution of the LPE, we adapt Assumption F to this new environment.

Assumption F0: u = n���, � > 0. fx� (x�) and f�(�) are continuous and uniformly bounded on their

supports, and fx�(�) is bounded away from 0.

Theorem 3 Under Assumptions B, EY, F0, K and M, in Case 1, b� (�) is consistent, and
p
nh (b� (�)� �� (�)�B1n) d�! N

�
0;
�21(�) + �

2
0(�)

fx�(�)
e01�

�1
+ 
+�

�1
+ e1

�
;

where B1n = op(1) is de�ned in (17), and �+ and 
+ are de�ned in (4).

When the measurement error shrinks to zero, we do not require the treatment e¤ect to be constant to

identify it. The asymptotic variance is the same as the Oracle Case (3) and is similar to that in Theorem

1 except that now x is replaced by x�. This is understandable: with a shrinking measurement error, x

converges to x� in some sense.

6.2 The Forcing Variable is x�

As in Section 4, when d�� can be observed, we consider e� (�); otherwise, we use b� (�).
Theorem 4 Under Assumptions B, EY, F0, K and M, in Case 2, e� (�) is consistent but its asymptotic
variance depends on the relative magnitude of n�� and h. If n

��

h ! 0, then

p
nh (e� (�)� �� (�)�B2n) d�! N

�
0;
�21(�) + �

2
0(�)

fx�(�)
e01�

�1
+ 
+�

�1
+ e1

�
;

if n
��

h !1, then

p
nh (e� (�)� �� (�)�B2n) d�! N

�
0;

1

fx�(�)

�
�21(�)

F�(0)
+

�20(�)

1� F�(0)

�
e01�

�1
+ 
+�

�1
+ e1

�
;

if n
��

h ! C 2 (0;1), then p
nh (e� (�)� �� (�)�B2n) d�! N (0; V (C)) ;

where B2n = op(1) is de�ned in (18), and

V (C) =
�21(�)

fx�(�)
e01
�
�+(C) + �+F�(0)

��1 �

+(C) + 
+F�(0)

� �
�+(C) + �+F�(0)

��1
e1

+
�20(�)

fx�(�)
e01
�
��(C) + �� (1� F�(0))

��1 �

�(C) + 
� (1� F�(0))

� �
��(C) + �� (1� F�(0))

��1
e1
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with

�+(C) =

0BB@
+0 (C) � � � +p (C)
...

. . .
...

+p (C) � � � +2p(C)

1CCA
(p+1)�(p+1)

; +j (C) =

Z 1

0

"Z M

C�

k(v)vjdv

#
f�(�)d�;


+(C) =

0BB@
!+0 (C) � � � !+p (C)
...

. . .
...

!+p (C) � � � !+2p(C)

1CCA
(p+1)�(p+1)

; !+j (C) =

Z 1

0

"Z M

C�

k2 (v) vjdv

#
f�(�)d�;

��(C) =

0BB@
�0 (C) � � � �p (C)
...

. . .
...

�p (C) � � � �2p(C)

1CCA
(p+1)�(p+1)

; �j (C) =

Z 0

�1

"Z C�

�M
k(v)vjdv

#
f�(�)d�;


�(C) =

0BB@
!�0 (C) � � � !�p (C)
...

. . .
...

!�p (C) � � � !�2p(C)

1CCA
(p+1)�(p+1)

; !�j (C) =

Z 0

�1

"Z C�

�M
k2 (v) vldv

#
f�(�)d�;

�� =

0BB@
�0 � � � �p
...

. . .
...

�p � � � �2p

1CCA
(p+1)�(p+1)

; �j = (�1)j
+
j ;


� =

0BB@
!�0 � � � !�p
...

. . .
...

!�p � � � !�2p

1CCA
(p+1)�(p+1)

; !�j = (�1)j!
+
j :

We now compare the data usage of b� (�) in Case 1 and e� (�) when n��

h ! C 2 (0;1). C = 0 and 1
can be treated as extreme cases. Consider only bm+(�) in b� (�) and em+(�) in e� (�) since similar analysis
applies to bm�(�) and em�(�). Pick x 2 [�; � + h). In em+(�), the x� corresponding to x must satisfy that

x� + u = x, and x� � �. So u can be positive but restricted such that x� u � �, which corresponds to the
terms �+ (C) and 
+(C) in V (C), or u is negative and unrestricted, which corresponds to the terms �+F�(0)

and 
+F�(0). However, in bm+(�), the measurement error u in x is not restricted as long as x� + u = x. As

a result, the density of � is truncated in V (C), while in the asymptotic variance of b� (�), it is integrated out
and disappears. The discussion above is intuitively illustrated in the upper two panels of Figure 5.

It is easy to check that V (C) converges to �21(�)+�
2
0(�)

fx� (�)
e01�

�1
+ 
+�

�1
+ e1 � V (0) when C ! 0 and converges

to V (1) � 1
fx� (�)

�
�21(�)
F�(0)

+
�20(�)
1�F�(0)

�
e01�

�1
+ 
+�

�1
+ e1 when C !1. The former is much expected since when

the measurement error is extremely small, the same part of data are used in estimating e� (�) and b� (�).
When C ! 1, only the part of data with � < 0 are used in em+(�), since the data with � > 0 cannot

be covered by the kernel with bandwidth h in em+(�). This is why F�(0) appears associated with �21(�).

Intuitively, the asymptotic variance of e� (�) should be larger than that of b� (�) since less data are used ine� (�). De�ne the relative e¢ ciency as
RE(C) =

V (C)

V (0)
:
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Figure 5: Data Usage in bm+(�), em+(�) and bp+ (�)� bp� (�)
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Figure 6: Relative E¢ ciency in Case 2 and 5 and Relative Bias in Case 3

To aid intuition, suppose � is symmetrically distributed, then V (C) reduces to

�21(�) + �
2
0(�)

fx�(�)
e01
�
�+(C) + �+=2

��1 �

+(C) + 
+=2

� �
�+(C) + �+=2

��1
e1;

and �21(�)
F�(0)

+
�20(�)
1�F�(0) in V (1) reduces to 2

�
�20(�) + �

2
1(�)

�
. Suppose further that p = 0, � follows a uniform

distribution on [�1; 1] and k(v) is the Epanechinikov kernel, then RE(C) as a function of C is shown in the
left panel of Figure 6.8 So when x� is the forcing variable and d�� can be observed, the treatment e¤ect can

be identi�ed but some e¢ ciency is lost unless n��

h ! 0.

Now, we state the consistency result of b� (�) in Case 3. Unlike the previous two cases, there are double
contaminations in the estimation. The �rst is from mismeasuring m(x�) as m(x) as in Case 1 and 2, and

the second is from mixing the treated group with the controlled group.

8For p = 1, RE(C) is not monotone as a function of C, but always greater than 1. For some range of C values, RE(C) can
even be larger than 10000.
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Theorem 5 Under Assumptions B, EY, F0, K and M, in Case 3, the consistency of b� (�) depends on the
relative magnitude of n�� and h:

b� (�) p�!

8><>:
�� (�) ;

�� (�)
�
e01�

�1
+ �+0;p(C) + e

0
1�

�1
� ��0;p(C)

�
;

0;

if n
��

h ! 0;

if n
��

h ! C 2 (0;1) ;
if n

��

h !1;

where

�+r;q(C) =

0BB@
+r (C)
...

+q (C)

1CCA and ��r;q(C) =

0BB@
�r (C)
...

�q (C)

1CCA
with r � q being nonnegative integers. When n��

h ! 0,

p
nh (b� (�)� �� (�)�B3n) d�! N

�
0;
�21(�) + �

2
0(�)

fx�(�)
e01�

�1
+ 
+�

�1
+ e1

�
;

where B3n = op(1) is de�ned in (19).

From Theorem 5, when d�� cannot be observed, b� (�) is not consistent unless n��

h ! 0. e01�
�1
+ �+0;p(C) +

e01�
�1
� ��0;p(C) converges to 1 when C ! 0 and converges to zero when C !1, so the bias gets larger when

C gets larger. When n��

h ! 1 (that is, the measurement error is large relative to the bandwidth), b� (�)
always converges to zero as in the case with �xed measurement error. The middle panel of Figure 6 shows

the bias as a function of C in the example following Theorem 4. Here, we de�ne the relative bias as

RB(C) = e01�
�1
+ �+0;p(C) + e

0
1�

�1
� ��0;p(C);

which is equal to 2e01�
�1
+ �+0;p(C) when � is symmetrically distributed.

It is interesting to note that the limit of b� (�) is proportional to �� (�) and contrast to Case 2, it is not
related to m� (�). This is easy to see from (9): E[yjx] = E [m�

�(x
�)jx] + �� (�) p(x). Since E [m�

�(x
�)jx] is

continuous, b� (�), as an estimator of E[yjx = �+]�E[yjx = ��], must converge to �� (�) (p+ (�)� p� (�)),
a proportion of �� (�). e01�

�1
+ �+0;p(C) + e

0
1�

�1
� ��0;p(C) is exactly the limit of bp+ (�) � bp� (�) when the

measurement error is shrinking. The third panel of Figure 5 shows the data usage in bp+ (�)� bp� (�). bp+ (�)
uses data associated with the solid blue line, and bp+ (�) uses data associated with the solid black line. Part
of the data used in bp+ (�) and bp+ (�) o¤set each other. The remaining data are associated with the (left)
solid blue line, corresponding to e01�

�1
+ �+0;p(C), and the dotted blue line, corresponding to e

0
1�

�1
� ��0;p(C).

6.3 Further Analysis of Biases

When the measurement error shrinks to zero, �� (�) can be identi�ed in many cases as stated in Theorem 3,

4 and 5. But we did not study the properties of B1n, B2n and B3n explicitly in these theorems except stating

that they are op(1). This is mainly because the exact bias properties depend on the converging process of
n��

h and also the smoothness of fx�(x�), m�(x
�) and ��(x�) in a complicated way in the general case. To

provide further insights on the biases, we will concentrate on some interesting cases below. First, we use

the LLS as in Hahn et al. (2001). Second, we assume n��

h = C 2 (0;1); that is, the measurement error is
comparable with the bandwidth in an exact ratio. We can treat a small measurement error as C close to

zero and a large measurement error as C close to 1, and neglect the converging process of n��h . We put
further restrictions on the distribution of � and the smoothness of fx�(x�), m�(x

�) and ��(x�) as follows.
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Assumption F00: u = n���, � > 0. � has a compact support, and f�(�) is continuous on its support. fx�(x�)
is continuously di¤erentiable on N , where N is a neighborhood of �, and fx�(�) is bounded away from 0.

Assumption CY: m�(x
�) and ��(x�) are twice continuously di¤erentiable on N .

The compact support of � in Assumption F00 is used to simplify proof. It can be treated as an approximation

of the real measurement error. In the pretest-posttest example or the U.S. house election example, this

assumption is reasonable since the recorded score or the democratic vote share margin of victory should be

in a bounded range. Assumption F00 and CY impose more smoothness on fx�(x�), m�(x
�) and ��(x�) than

Assumption F0 and M but only in a neighborhood of �, which is because we assume � has a compact support.

Theorem 6 Suppose Assumptions B, CY, F00 and K hold, and n��

h = C 2 (0;1). In Case 1, if the LLS is
used as b� (�),
B1n =

�
�n���0� (�)E [�] + n�2�

�
f 0x�(�)

fx�(�)
�0� (�)V ar(�) +

�00� (�)

2
E
�
�2
��
+ h2

�00� (�)

2
e01�

�1
+ �+2;3

�
(1 + op(1)):

In Case 2, if the LLS is used as e� (�),
B2n = �n��

n
(m0

� (�) + �
0
� (�)) e

0
1

�
�+ (C) + �+F�(0)

��1 h
�
+
0;1(C) + �

+
0;1E[�j� < 0]F�(0)

i
�m0

� (�) e
0
1

�
�� (C) + �� (1� F�(0))

��1 h
�
�
0;1(C) + �

�
0;1E[�j� > 0] (1� F�(0))

io
(1 + op(1))

where

�
+
r;q(C) =

0BB@

+
r (C)
...


+
q (C)

1CCA , +j (C) = Z 1

0

"Z M

C�

k(v)vjdv

#
�f�(�)d�;

�
�
r;q(C) =

0BB@

�
r (C)
...


�
q (C)

1CCA , �j (C) = Z 0

�1

"Z C�

�M
k(v)vjdv

#
�f�(�)d�;

with r � q being nonnegative integers.

A key di¤erence between B1n and B2n is that B1n is only related to �� (�), while B2n is also related to
m� (�). This is not surprising by noting the comment after Theorem 2: �� (�) is only a¤ected by �� (�),
while �m�(�) is also a¤ected by m� (�). This fact makes the behaviors of B1n and B2n very di¤erent. First
check B1n. h2

�00�(�)
2 e01�

�1
+ �+2;3 is the bias of the LLS without measurement error. The other two terms are

from the measurement error. So the measurement error indeed contributes to the bias of b� (�) although
does not a¤ect its variance. Since B2n is related to C in a complicated form, it is interesting to check some

special cases to sharpen our understanding. Let C =1, then

B2n =
�
�n�� [(m0

� (�) + �
0
� (�))E[�j� < 0]�m0

� (�)E[�j� > 0]]
	
(1 + op(1)); (13)

that is, all terms associated with C diminish. Now, it is quite clear that B2n is larger than B1n in many inter-

esting cases. For example, it is common to assume E [�] = 0. In this case, B1n = Op
�
n�2� + h2

�
= Op

�
n�2�

�
,

while B2n = Op
�
n��

�
. For another example, suppose �� (�) is constant, then B1n = op

�
n�2� + h2

�
=

op
�
n�2�

�
, but B2n is still Op(n��) unless m0

� (�) = 0. In other words, B2n is always in the magnitude of

the measurement error, while B1n can be much reduced in many cases encountered in practice.
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We brie�y explain why this can happen by following the discussion after Theorem 4. For bm+(�), the

measurement error u in x 2 [�; � + h) is not restricted, so the moments of � appearing in B1n are always
integrations on the whole support of �. In contrast, for em+(�), the positive u is restricted, corresponding to

the terms �+ (C) and �
+
0;1(C) in B2n, and the negative u is unrestricted, corresponding to the terms �+F�(0)

and �+0;1E[�j� < 0]F�(0). Even if we assume E [�] = 0, it is hard to believe that the truncated expectation of
� is zero. Reconsider the simpli�ed form of B2n, (13). Suppose � is symmetrically distributed (and �� (�) is
constant), then (13) reduces to

B2n =
�
2n��m0

� (�)E[�j� > 0]
	
(1 + op(1));

which should be Op(n��) in general. Combining with Theorem 5, it is reasonable to claim that the bias

property of Case 1 is better than Case 2, which is in turn better than Case 3.

In Case 1, we can assess the relative magnitude of the bias from the measurement error to the bias

without measurement error. For example, suppose E [�] = 0, then this relative magnitude equals

RM =
V ar(u)

h2

f 0x� (�)
fx� (�)

�0� (�) +
�00�(�)
2

�00�(�)
2 e01�

�1
+ �+2;3

:

f 0x�(�), fx�(�), �
0
� (�), and �

00
� (�) can be consistently estimated using the contaminated data if the mea-

surement error shrinks to zero just as in consistently estimating b� (�). Then by varying V ar(u)
h2 , we can

check the sensitivity of b� (�) to the measurement error. Anyway, because estimating derivatives of fx�(�)
and ��(�) will introduce extra biases, we do not pursue this point in this paper; see Battistin and Chesher
(2009) for parallel analysis in the average treatment framework. Also note that this relative magnitude in

Case 2 cannot be assessed due to the reason discussed in the last paragraph.

Shrinking Measurement Error Fixed Measurement Error

Case 1
Identi�ed With a Small Extra Bias,

and Without E¢ ciency Loss
Identi�ed in Special Cases

Case 2
Identi�ed With a Large Bias,

and With E¢ ciency Loss Unless n��

h ! 0
Unidenti�ed

Case 3 Unidenti�ed Unless n��

h ! 0 Unidenti�ed

Table 1: Identi�cation for the Treatment E¤ect in the Sharp Design

The identi�cation results for the treatment e¤ect in Section 3, 4 and 5 are summarized in Table 1. The

picture is clear: the identi�cation problem for the treatment e¤ect is harder when x� is the forcing variable

than when x is the forcing variable; when x� is the forcing variable, the problem is harder in the case where

d�� cannot be observed than in the case where d
�
� can be observed.

7 Fuzzy Design

In the fuzzy design, we use b�f (�) to estimate the treatment e¤ect ��(�) in both Case 4 and Case 5. Note
that Case 4 includes Case 1 as a special case and Case 5 includes Case 2 as a special case, so the identi�cation

results below also apply to Case 1 and Case 2 when b�f (�) (instead of b�(�) and e�(�)) is used to identify
��(�).
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The following assumptions are imposed in the fuzzy design in addition to the assumptions in the sharp

design. For ease of exposition, we de�ne � = �1 when x � � in Case 4 or x� � � in Case 5, and � = �0 when
x < � in Case 4 or x� < � in Case 5. Also, extend the conditional distribution of �1 and �0 continuously to

all x in Case 4 and for all x� in Case 5.

Assumption P: p�(x�) and ��(x
�) are continuous on X �. ��(�) 6= 0.

Assumption ED: E [�t ("1 � "0) jx�] = 0, E[�tjx�] = 0. E[�t"djx�], E[�t"2d
��x�], E[�t"0"1jx�], E[�2t "djx�]

and E
h
�2t ("1 � "0)

2
���x�i are continuous and bounded on X �, d = 0; 1, t = 0; 1. ��(�) 6= 0.

SinceD and �t are bounded, p�(x
�), ��(x

�), p�(x), ��(x), E
�
�2t jx

�
and E

�
�2t jx�

�
are automatically bounded,

so we do not include such boundedness assumptions in Assumption P and ED as in Assumption M and EY.

E [�t ("1 � "0) jx�] = 0 is the local unconfoundedness condition in Theorem 2 of Hahn et al. (2001). In Case

4, E
�
�20jx

�
= p�(x) (1� p�(x)) and E

�
�21jx

�
= (p�(x) + ��(x)) (1� p�(x)� ��(x)), so E

�
�20jx

�
6= E

�
�21jx

�
in general. Analogously, we expect the cross moments of �t and "d in Assumption ED are not equal for t = 0

and t = 1.

Theorem 7 Suppose the measurement error u is �xed, and Assumptions B, ED, EY, F, K, M, and P hold.

(i) In Case 4, p
nh
�b�f (�)� ��(�)�Bfn� d�! N (0;�f ) ;

where Bfn = op(1) is de�ned in (20), and

�f =
e01�

�1
+ 
�1+ ��1+ e1

fx (�)�
2
�(�)

��
E
�
R20jx = �

�
+ E

�
R21jx = �

��
�2��(�) [E [R0�0jx = �] + E [R1�1jx = �]]
+��(�)

2
�
E
�
�20jx = �

�
+ E

�
�21jx = �

��	
:

with

Rt = �t ("1 � "0) + ��(x� u)�t + [p�(x) + ��(x)t] "1 + [1� p�(x)� ��(x)t] "0, t = 0; 1:

(ii) In Case 5, b�f (�) is not a consistent estimator of ��(�).
Suppose the measurement error u is shrinking, and Assumptions B, ED, EY, F0, K, M, and P hold.

(iii) In Case 4, p
nh (b�f (�)� ��(�)�B4n) d�! N (0;�4) ;

where B4n = op(1) is de�ned in (21), and

�4 =
e01�

�1
+ 
+�

�1
+ e1

fx� (�)�
2
�(�)

��
E
�
R�20 jx� = �

�
+ E

�
R�21 jx� = �

��
�2��(�) [E [R�0�0jx� = �] + E [R�1�1jx� = �]]
+��(�)

2
�
E
�
�20jx� = �

�
+ E

�
�21jx� = �

��	
:

with

R�t = �t ("1 � "0) + ��(x�)�t + [p�(x�) + ��(x�)t] "1 + [1� p�(x�)� ��(x�)t] "0, t = 0; 1:
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(iv) In Case 5, when n��

h ! C 2 [0;1),

p
nh (b�f (�)� ��(�)�B5n) d�! N (0;�5 (C)) ;

where B5n = op(1) is de�ned in (22), and

�5 (C) =
1

fx� (�)�
2
�(�)

�
e01�

�1
+ �+0;p(C) + e

0
1�

�1
� ��0;p(C)

�2�
E
�
R�20 jx� = �

�
(�+�(C) + ���(C)) + E

�
R�21 jx� = �

�
(�++(C) + ��+(C))

�2��(�) [E [R�0�0jx� = �] (�+�(C) + ���(C)) + E [R�1�1jx� = �] (�++(C) + ��+(C))]
+��(�)

2
�
E
�
�20jx� = �

�
+ E

�
�21jx� = �

��
e01�

�1
+ 
+�

�1
+ e1

	
with

�+�(C) = e01�
�1
+ 
+�(C)�

�1
+ e1;�++(C) = e

0
1�

�1
+ 
++(C)�

�1
+ e1;

��+(C) = e01�
�1
� 
�+(C)�

�1
� e1;���(C) = e

0
1�

�1
� 
��(C)�

�1
� e1;

and


+�(C) =

0BB@
!
+�
0 (C) � � � !

+�
p (C)

...
. . .

...

!
+�
p (C) � � � !

+�
2p (C)

1CCA
(p+1)�(p+1)

; !
+�
j (C) =

Z 1

0

Z 0

�C�
k2 (v + C�) (v + C�)

j
f�(�)dvd�;


++(C) =

0BB@
!
++
0 (C) � � � !

++
p (C)

...
. . .

...

!
++
p (C) � � � !

++
2p (C)

1CCA
(p+1)�(p+1)

;
!
++
j (C) =

R1
0

RM
0
k2 (v + C�) (v + C�)

j
f�(�)dvd�

+
R 0
�1

RM
�C� k

2 (v + C�) (v + C�)
j
f�(�)dvd�;


�+(C) =

0BB@
!
�+
0 (C) � � � !

�+
p (C)

...
. . .

...

!
�+
p (C) � � � !

�+
2p (C)

1CCA
(p+1)�(p+1)

; !
�+
j (C) =

Z 0

�1

Z �C�

0

k2 (v + C�) (v + C�)
j
f�(�)dvd�;


��(C) =

0BB@
!
��
0 (C) � � � !

��
p (C)

...
. . .

...

!
��
p (C) � � � !

��
2p (C)

1CCA
(p+1)�(p+1)

;
!
��
j (C) =

R1
0

R �C�
�M k2 (v + C�) (v + C�)

j
f�(�)dvd�

+
R 0
�1

R 0
�M k

2 (v + C�) (v + C�)
j
f�(�)dvd�;

when n��

h !1, b�f (�) is not a consistent estimator of ��(�).
From Theorem 3 and 5, the probability limits of b�f (�) are much expected except in (iv) when n��

h ! C 2
(0;1). From Theorem 5, the numerator of b�f (�) converges to ��(�)��(�) �e01��1+ �+0;p(C) + e

0
1�

�1
� ��0;p(C)

�
,

and the denominator converges to ��(�)(e
0
1�

�1
+ �+0;p(C) + e

0
1�

�1
� ��0;p(C)). So the biases in the numerator

and denominator o¤set each other, and we still get a consistent estimator. When the measurement error is

large, both the numerator and the denominator of b�f (�) converge to zero, so the limit of b�f (�) is unde�ned.
Comparing with the sharp designed case, the identi�cation power of b�f (�) is weaker than e�(�) in Case 2
but stronger than b�(�) in Case 3.
�4 is the asymptotic variance derived in Proposition 1 and Corollary 1(c) of Porter (2003). It reduces

to the asymptotic variance in Theorem 3 when the design is sharp. �5 (C) converges to �4 when C ! 0.
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When f� (�) is symmetric, �+�(C) = ��+(C), and ��+(C) = ���(C), so �5 (C) can be simpli�ed as

�5 (C) =
�+�(C) + �++(C)

4fx� (�)�
2
�(�)

�
e01�

�1
+ �+0;p(C)

�2 �E �R�20 jx� = ��+ E �R�21 jx� = ���
�2��(�) [E [R�0�0jx� = �] + E [R�1�1jx� = �]]g

+
e01�

�1
+ 
+�

�1
+ e1��(�)

2

4fx� (�)�
2
�(�)

�
e01�

�1
+ �+0;p(C)

�2 �E ��20jx� = ��+ E ��21jx� = ��	 :
To compare �5 (C) with �4, we assume "0, "1, �0 and �1 are independent of each other conditional on x

�,

and �20 (�) = �
2
1 (�) = �

2. Then by some tedious calculation in supplementary materials,

�5 (C) =
2�2 � �2�(�)

�
E
�
�20jx� = �

�
+ E

�
�21jx� = �

��
fx� (�)�

2
�(�)

�+�(C) + �++(C)

4
�
e01�

�1
+ �+0;p(C)

�2
+
��(�)

2
�
E
�
�20jx� = �

�
+ E

�
�21jx� = �

��
fx� (�)�

2
�(�)

e01�
�1
+ 
+�

�1
+ e1

4
�
e01�

�1
+ �+0;p(C)

�2 ;
�5 (0) = �4 =

2�2

fx� (�)�
2
�(�)

e01�
�1
+ 
+�

�1
+ e1:

It is obvious that �4 is greater than the asymptotic variance in the sharp design by a factor 1
�2�(�)

; see

Theorem 3. The right panel of Figure 6 shows the relative e¢ ciency RE(C) = �5(C)
�5(0)

in the example

following Theorem 4. Here, we further assume p�(�) = 0:25 and ��(�) = 0:5 to calculate E
�
�20jx� = �

�
and

E
�
�21jx� = �

�
, and �2

�2�(�)
is set as 1. Because e01�

�1
+ �+0;p(C) converges to 0 as C ! 1, RE(C) diverges to

in�nity very quickly.

As in Theorem 6, we study the bias properties of b�f (�) when the LLS is used. For this purpose, we
impose further restrictions on p�(�) and ��(�).

Assumption CD: p�(x�) and ��(x
�) are twice continuously di¤erentiable on N . ��(�) 6= 0.

Theorem 8 Suppose Assumptions B, CD, CY, F00 and K hold, n
��

h = C 2 (0;1) and the LLS is used asb�f (�). In Case 4,
B4n =

�
�n���0� (�)E [�] + n�2�

�
f 0x�(�)

fx�(�)
�0� (�)V ar(�) +

�00� (�)

2
E
�
�2
��

+h2
�
�00� (�)

2
+
�0�(�)�

0
�(�)

��(�)

�
e01�

�1
+ �+2;3

�
(1 + op(1)):

In Case 5,

B5n = �
0
�(�)

"
h
e01�

�1
+ �+1;2(C) + e

0
1�

�1
� ��1;2(C)

e01�
�1
+ �+0;1(C) + e

0
1�

�1
� ��0;1(C)

� n��
e01�

�1
+ �

+
0;1(C) + e

0
1�

�1
� �

�
0;1(C)

e01�
�1
+ �+0;1(C) + e

0
1�

�1
� ��0;1(C)

#
(1 + op(1))

The h2 term in B4n is the bias of the LLS without measurement error. It includes an extra term
�0�(�)�

0
�(�)

��(�)

relative to the sharp design case where ��(x) = 1. The other two terms are contributed by the measurement

error and are the same as in B1n, so the measurement error does not introduce extra biases in the fuzzy

design if x is the forcing variable. On the contrary, in B5n, e01�
�1
+ �+0;1(C)+e

0
1�

�1
� ��0;1(C) shrinks to zero very

quickly when C gets large, so B5n is expected to be large in practice. Table 2 summarizes the identi�cation

results in the fuzzy design.
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Shrinking Measurement Error Fixed Measurement Error

Case 4
Identi�ed With a Small Extra Bias,

and Without E¢ ciency Loss
Identi�ed in Special Cases

Case 5
Identi�ed Unless n��

h !1, But With
a Large Bias and a Large Variance

Unidenti�ed

Table 2: Identi�cation for the Treatment E¤ect in the Fuzzy Design

8 Monte Carlo Results

In practice, the main concern is whether the LPE is an unbiased estimator of ��(�) when there is a measure-

ment error in x�. The goal of this simulation study is to check the bias property of the LPE in a nonlinear

environment. Speci�cally, we consider two DGPs of y; the �rst one corresponds to common treatment ef-

fects, and the second one corresponds to variable treatment e¤ects. Similar setups are used in Porter and

Yu (2010).

DGP1 : y = m� (x
�) + ��(x

�)D + " with m� (x
�) = x�2 and ��(x�) = 1;

DGP2 : y = m� (x
�) + ��(x

�)D + " with m� (x
�) = x�2 and ��(x�) = �6x� + 7:

In both setups, "�s are i.i.d. sampled and follow N(0; 0:22), and x� is uniformly distributed on [0; 3]. x =

x� + u, u = s�, and � follows the standard normal distribution. The speci�cations of ��(x�) and the

distributions of x� and � are also used in Example 2 of Section 3. � = 1, so �� (�) = 1 in both setups.

n = 400, and the number of replications is set as 1000. Throughout the simulations, all estimators are based

on the LLS with the Epanechinikov kernel k(u) = 3
4

�
1� u2

�
1 (juj � 1).

Figure 7 and 8 show the biases as a function of s=h and s respectively for three bandwidths in the sharp

design. From these two �gures, three results of interest are summarized as follows. First, in Case 1, the bias

is close to zero when the treatment e¤ect is constant. Even when the treatment e¤ect is variable, the bias

is small for a large range of s=h (or s); for example, the bias is relatively small even when s = 0:5 which

is considerably large compared with the standard deviation of ". This con�rms the magnitude of B1n in

Theorem 6: since E[�] = 0, B1n = op(s2) in DGP1, and B1n = Op(s2) is quadratic in DGP2. Second, the

bias property of Case 1 is better than that of Case 2 which is in turn better than that of Case 3. The range of

s=h (or s) with small biases is much narrower in Case 2 than in Case 1. In Case 3, the bias deteriorates very

quickly when s=h (or s) gets large. This con�rms the consistency result in Theorem 5 and the magnitude

of B2n in Theorem 6. In Case 2, B2n = Op(s), so the bias is roughly a linear function of s. In Case 3, the

LLS is not even consistent. Because �� (�) = 1 and the bias converges to �1 in this case, b� (�) converges
to zero as expected. Third, comparing Figure 7 and 8, it seems that the bias in Case 1 and 2 is determined

by the absolute measurement error s, while in Case 3, it is determined by the relative measurement error

s=h. The former con�rms the form of B1n and B2n in Theorem 6: they depend on n�� not n��=h. The

latter con�rms the limit of b� (�) in Theorem 5: RB(C) is a function of C not n��. Furthermore, adding

1 to the bias curves in Case 3 generates similar curves as in the middle panel of Figure 6. Figure 9 shows

the performance of the bias approximation using the �xed measurement error framework in Section 3 and

4. In Case 1 and 2 under DGP1, both the �xed and shrinking measurement error framework provide good

approximations of the real biases. But in other scenarios, the prediction using the �xed measurement error

framework does not work well. For example, in case 1 under DGP2, the prediction is linear in s, but the

real bias is approximately quadratic in s; in case 2 under DGP2, the prediction can even be positive, but
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Figure 7: Bias of the LLS as a Function of s=h for Three Bandwidths in the Sharp Design

the real bias is always negative; in case 3 under both DGPs, the prediction is constant in s, but the real

bias is far from constant. In summary, the approximation under the �xed measurement error framework is

not useful in �nite samples especially when the treatment e¤ect is variable; on the contrary, the shrinking

measurement error framework provides quite precise predictions of the biases in practice.

In the fuzzy design, when x is the forcing variable, we let

D = �(x� 1:5) 1 (x < 1) + �
�
x� 0:3243
0:7744

�
1 (x � 1) + �

in DGP1, and

D = �(x� 1:5) 1 (x < 1) + � (x� 0:1275) 1 (x � 1) + �

in DGP2, where � (�) is the cdf of a standard normal distribution. The former corresponds to the case where
��(�) is constant (�0�(�) = 0), while the latter corresponds to the case where ��(�) is variable (�0�(�) 6= 0).
In both cases, ��(�) = 0:5, and � is independent of ". When x� is the forcing variable, we just change

x in the above speci�cations to x�. The same bandwidth is used in the estimation of the numerator and

denominator of b�f (�).
Figure 10 shows the bias as a function of s=h for two bandwidths in the fuzzy design. There is too much

variation in the bias when h = 0:25, and the bias as a function of s provides similar information, so both are

omitted. A few results of interest are as follows. First, from Figure 10, the bias in Case 5 is much larger than

that in Case 4. This is not surprising from Theorem 8. Second, comparing Case 4 in Figure 10 with Case

1 in Figure 7, although the bias does not increase much, there seems more variation in Case 4 as predicted

by (iii) of Theorem 7. Third, comparing Case 5 in Figure 10 with Case 3 in Figure 7, although b�f (�) is
consistent in Case 5 and b�(�) is not in Case 3, the large variance of b�f (�) completely ruins its performance.
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Figure 8: Bias of the LLS as a Function of s for Three Bandwidths in the Sharp Design
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Figure 9: The Biases Predicted Under the Fixed Measurement Error Framework (Red Dashed Line): Solid
Blue Lines For the Real Biases When h = 1 in Figure 7 and 8

25



0 0.5 1
1

0.5

0

0.5

1

s/h

B
ia

s

DGP1: Case 4

h=0.5
h=1

0 0.5 1
200

100

0

100

200

s/h

B
ia

s

DGP1: Case 5

h=0.5
h=1

0 0.5 1
1

0.5

0

0.5

1

s/h

B
ia

s

DGP2: Case 4

h=0.5
h=1

0 0.5 1
200

100

0

100

200

s/h

B
ia

s

DGP2: Case 5

h=0.5
h=1

Figure 10: Bias of the LLS as a Function of s=h for Two Bandwidths in the Fuzzy Design

9 Conclusion

Measure errors are prevalent in the RDD analysis. This paper studies the identi�cation of the treatment

e¤ect by the local polynomial estimator when the measurement error is present. The general result is that

the treatment e¤ect in the case where the treatment is based on the contaminated forcing variable is easier

to identify than in the case where the treatment is based on the error free forcing variable. In practice,

when the former happens, it is relatively safe to use the LPE to estimate the treatment e¤ect. But when the

latter happens, especially when the treatment status cannot be observed or in the fuzzy design, we must take

caution in interpreting our estimator. As emphasized in Section 3.5.3 of Lee and Lemieux (2010), regression

discontinuity should better be trearted as a "design" instead of a "method". So the analysis in this paper

implies that it is better for the designer to reveal to econometrians exactly which variable the treatment is

based on such that a more precise analysis on the treatment e¤ect can be conducted.
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Appendix: Proofs

Throughout the proofs, DCT means the dominated convergence theorem. Since the proofs are quite standard,

we provide details only in the proof of Theorem 1. For the other proofs, we only give out the key steps, and

omit tedious calculations.

Proof of Theorem 1. Note that

p
nh (b�(�)� �� (�)) = pnh (bm+(�)� bm�(�)� �� (�)) ; (14)

where

bm+(�) = e01

 
1

n

nX
i=1

Zi (�)Z
0
i (�) di(�)kh (xi � �)

!�1 
1

n

nX
i=1

Zi (�) di(�)kh (xi � �) yi

!
(15)

� e01S
�1
n+(�)er+ (y(�)) ;

bm�(�) = e01

 
1

n

nX
i=1

Zi (�)Z
0
i (�) (1� di(�)) kh (xi � �)

!�1 
1

n

nX
i=1

Zi (�) (1� di(�)) kh (xi � �) yi

!
� e01S

�1
n�(�)er� (y(�)) ;

with

Zi (x) =

�
1;
xi � x
h

; � � � ;
�
xi � x
h

�p�0
(p+1)�1

:

Since there is a measurement error in x�i , yi = m�(xi � ui) + �� (xi � ui) + "1i when di(�) = 1 and

yi = m�(xi � ui) + "0i when di(�) = 0. De�ne

B1n = e
0
1S

�1
n+(�)r+ (�)� e01S�1n�(�)r� (�)� �� (�) ; (16)

where

r+ (�) =
1

n

nX
i=1

Zi (�) di(�)kh (xi � �) (m�(xi � ui) + �� (xi � ui)) ;

r� (�) =
1

n

nX
i=1

Zi (�) (1� di(�)) kh (xi � �)m�(xi � ui):

We show B1n = op(1) as follows. For p = 0; � � � ; p,

E
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�
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�
m2
�(� + vh� u) + �2�(� + vh� u)

�
fx�(� + vh� u)fu(u)dvdu

= O

�
1

nh

�
= o(1):

by Assumption B, F, K, M, and the DCT. So r+ (�) = fx(�) [m�(�) + ��(�)]�
+
0;p + op(1). Similarly,

r� (�) = fx(�)m�(�)�
�
0;p + op(1). We then establish the probability limit for the denominator term Sn+.

For l = 0; � � � ; 2p;
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by Assumption B, F, K, and the DCT. So Sn+ = fx(�)�+ + op(1). By the continuity of matrix inversion,

S�1n+
p�! f�1x (�)��1+ . Similarly, S�1n�

p�! f�1x (�)��1� . So

B1n
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�
e01�
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At last,
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. The Cramer-Wold de-

vice will be applied to derive the asymptotic normality, so let � be a nonzero, �nite vector and de�ne

Uni = k
�
xi��
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p
nh. E[Uni] = E[E[Unijxi]] = 0 is proved in the main text, and for
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where the second equality is from Fubini�s theorem, the convergence is from Assumption EY(b), F and the

DCT, and the last equality is from a direct calculation. So
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For � > 0 and constants C, C 0 > 0,

nX
i=1

E
h
jUnij2+�

i
=

nX
i=1

�
1

nh

��=2
1

nh
E

"����k�xi � �h
�����2+� di(�) ���0Zi (�)��2+� j"1ij2+�

#

� C

�
1

nh

��=2
1

h
E

"����k�x� �h
�����2+� d�E h j"1j2+����xi pX

p=0

�����p�x� �h
�p����2+�

#

� C 0
�
1

nh

��=2
sup
x2N

E
h
j"1j2+�

���xi Z M

0

jk(v)j2+� fx(� + vh)
pX
p=0

j�pvpj2+� dv

= O

 �
1

nh

��=2!
= o(1);

where N is a small neighborhood of �, and the second-to-last equality is from two facts: �rst,

sup
x2X

E
h
j"1j2+�

���xi = sup
x2N

Z
j"j2+�

R
f1x�;" (x� u; ") fu(u)duR
fx�(x� u)fu(u)du

d"

= sup
x2N

Z Z
j"j2+�

f1x�;" (x� u; ") fu(u)
fx(x)

d"du

= sup
x2N

Z
E
h
j"1j2+�

���x� = x� ui fx� (x� u) fu(u)
fx(x)

du

= sup
x2N

Z
E
h
j"1j2+�

���x� = x� ui f(ujx)du
< 1;

where the last inequality is from Assumption F and EY(c); second,

Z M

0

jk(v)j2+� fx(� + vh)
pX
p=0

j�pvpj2+� dv ! fx(�)

Z M

0

jk(v)j2+�
pX
p=0

j�pvpj2+� dv <1;

where the convergence is from the DCT and Assumption K, F. Application of Liapunov�s CLT and the

Cramer-Wold device complete the argument. Similarly, we can show 1p
nh

nX
i=1

Zi (�) (1� di(�)) k
�
xi��
h

�
"0i

d�!

N
�
0; fx (�)E

�
"20jx = �

�

�
�
, where 
� is similarly de�ned as 
+ with !

+
j replaced by !

�
j � (�1)j!

+
j .

In summary,

p
nh (b�(�)� �� (�)�B1n) d�! N

 
0;
E
�
"20jx = �

�
+ E

�
"21jx = �

�
fx (�)

e01�
�1
+ 
+�

�1
+ e1

!
;

by noting that

e01�
�1
+ 
+�

�1
+ e1 = e

0
1�

�1
� 
��

�1
� e1;

and 1p
nh

nX
i=1

Zi (�) di(�)k
�
xi��
h

�
"1i and 1p

nh

nX
i=1

Zi (�) (1� di(�)) k
�
xi��
h

�
"0i are independent.

Proof of Theorem 2. Note that e�(�) = em+(�)� em�(�);
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where

em+(�) = e01

 
1

n

nX
i=1

Zi (�)Z
0
i (�) di(�)d

�
i (�)kh (xi � �)

!�1 
1

n

nX
i=1

Zi (�) di(�)d
�
i (�)kh (xi � �) yi

!
� e01S

�1
n+(�)er+ (y(�)) ;

em�(�) = e01

 
1

n

nX
i=1

Zi (�)Z
0
i (�) (1� di(�)) (1� d�i (�)) kh (xi � �)

!�1
� 

1

n

nX
i=1

Zi (�) (1� di(�)) (1� d�i (�)) kh (xi � �) yi

!
� e01S�1n�(�)er� (y(�)) ; :

In this case, yi = m�
�(xi � ui) + �� (�) + "1i in em+(�), and yi = m�

�(xi � ui) + "0i in em�(�). Following the

same steps as in the proof of Theorem 1, we can �nd the probability limit of em+(�) and em�(�).

For p = 0; � � � ; p,

E

"
1

n

nX
i=1

�
xi � �
h

�p
di(�)d

�
i (�)kh (xi � �)m�

�(xi � ui)
#

=

Z 1

0

Z M

u
h

k(v)vpm�
�(� + vh� u)fx�(� + vh� u)fu(u)dvdu

+

Z 0

�1

Z M

0

k(v)vpm�
�(� + vh� u)fx�(� + vh� u)fu(u)dvdu

! +p

Z 0

�1
m�
�(� � u)fx�(� � u)fu(u)du

= +p

Z 1

�

m�
�(x

�)fx�(x
�)fu(� � x�)dx� = +p fx (�)

Z 1

�

m�
�(x

�)fx�jx(x
�j�)dx�;

and for l = 0; � � � ; 2p,

E

"
1

n

nX
i=1

kh (xi � �) di(�)d�i (�)
�
xi � �
h

�l#
! +l

Z 1

�

fx�(x
�)fu(� � x�)dx� = +l fx (�)

�
1� Fx�jx(�j�)

�
.

Furthermore, their variances converge to zero by the DCT, so the limits of the means are also their probability

limits. Symmetrically,

1

n

nX
i=1

�
xi � �
h

�p
(1� di(�)) (1� d�i (�)) kh (xi � �)m�

�(xi � ui)

p�! �p

Z �

�1
m�
�(x

�)fx�(x
�)fu(� � x�)dx� = �p fx (�)

Z �

�1
m�
�(x

�)fx�jx(x
�j�)dx�;

and

1

n

nX
i=1

kh (xi � �) (1� di(�)) (1� d�i (�))
�
xi � �
h

�l
p�! �l

Z �

�1
fx�(x

�)fu(��x�)dx� = �l fx (�)Fx�jx(�j�).
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Also, it can be shown that

1

n

nX
i=1

�
xi � �
h

�p
di(�)d

�
i (�)kh (xi � �) "1i

p�! 0;

1

n

nX
i=1

�
xi � �
h

�p
(1� di(�)) (1� d�i (�)) kh (xi � �) "0i

p�! 0:

In summary, e�(�) p�! �� (�) + e
0
1�

�1
+ �+0;pm

+
� (�)� e01��1� ��0;pm

�
� (�) = �� +�m�(�):

As to b�(�),
yi = d

�
i (�) (m

�
�(xi � ui) + ��(�) + "1i) + (1� d�i (�)) (m�

�(xi � ui) + "0i)

in both bm+(�) and bm�(�). For p = 0; � � � ; p, we can show

1

n

nX
i=1

�
xi � �
h

�p
di(�) (1� d�i (�)) kh (xi � �)m�

�(xi � ui)

p�! +p

Z �

�1
m�
�(x

�)fx�(x
�)fu(� � x�)dx� = +p fx(�)

Z �

�1
m�
�(x

�)fx�jx(x
�j�)dx�;

1

n

nX
i=1

�
xi � �
h

�p
di(�) (1� d�i (�)) kh (xi � �)m�

�(xi � ui)

p�! +p

Z �

�1
m�
�(x

�)fx�(x
�)fu(� � x�)dx� = +p fx(�)

Z �

�1
m�
�(x

�)fx�jx(x
�j�)dx�;

and

1

n

nX
i=1

�
xi � �
h

�p
di(�) [d

�
i (�)"1i + (1� d�i (�)) "0i]

p�! 0;

1

n

nX
i=1

�
xi � �
h

�p
(1� di(�)) [d�i (�)"1i + (1� d�i (�)) "0i]

p�! 0:

The limits of the denominators of bm+(�) and bm�(�) are shown in the proof of Theorem 1. So combining

all the limits above, we have

b�(�) p�! e01�
�1
+ �+0;p

�Z 1

�

m�
�(x

�)fx�jx(x
�j�)dx� + �� (�)

�
1� Fx�jx(�j�)

�
+

Z �

�1
m�
�(x

�)fx�jx(x
�j�)dx�

�
�e01��1� ��0;p

�Z 1

�

m�
�(x

�)fx�jx(x
�j�)dx� + �� (�)

�
1� Fx�jx(�j�)

�
+

Z �

�1
m�
�(x

�)fx�jx(x
�j�)dx�

�
= 0:

Proof of Theorem 3. The proof is quite close to that of Theorem 1. The bias

B1n = e
0
1S

�1
n+(�)r+ (�)� e01S�1n�(�)r� (�)� �� (�) : (17)

As in Theorem 1, we show B1n = op(1) as follows.
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For p = 0; � � � ; p,

E

"
1

n

nX
i=1

�
xi � �
h

�p
di(�)kh (xi � �) (m�(xi � ui) + ��(xi � ui))

#

=

Z Z M

0

k(v)vp
�
m�(� + vh� n���) + ��(� + vh� n���)

�
fx�(� + vh� n���)f�(�)dvd�

! +p fx�(�) [m�(�) + �� (�)] ;

where the �rst equality is obtained by changing variables, and the convergence is from the DCT and As-

sumption F0 and M.

V ar

 
1

n

nX
i=1

�
xi � �
h

�p
di(�)kh (xi � �) (m�(xi � ui) + ��(xi � ui))

!

� C

nh

Z Z M

0

k2(v)v2p
�
m2
�(� + vh� n���) + �2�(� + vh� n���)

�
fx�(� + vh� n���)f�(�)dvd�

= O

�
1

nh

�
= o(1):

by the DCT. So r+ (�) = fx�(�)m�(�)�
+
0;p + op(1). Similarly, r� (�) = fx�(�)m�(�)�

�
0;p + op(1). Turn to

the denominator term Sn+. For l = 0; � � � ; 2p;

E

"
1

n

nX
i=1

kh (xi � �) di(�)
�
xi � �
h

�l#
=

Z Z M

0

k(v)vlfx�(� + vh� n���)f�(�)dvd�! fx�(�)
+
l

and

V ar

 
1

n

nX
i=1

kh (xi � �) di(�)
�
xi � �
h

�l!
� 1

nh

Z Z M

0

k2(v)v2lfx�(� + vh� n���)f�(�)dvd�! 0

by the DCT. So Sn+ = fx�(�)�+ + op(1). By the continuity of matrix inversion, S
�1
n+

p�! f�1x� (�)�
�1
+ .

Similarly, S�1n�
p�! f�1x� (�)�

�1
� . So

B1n
p�! e01�

�1
+ �+0;p [m�(�) + �� (�)]� e01��1� ��0;pm�(�)� �� (�) = 0:

We now calculate the asymptotic variance. For l = 0; � � � ; 2p,

1

h
E

"
k2
�
xi � �
h

��
xi � �
h

�l
di(�)"

2
1i

#

=

Z M

0

Z
k2 (v) vl"2

�Z
f1x�;"

�
� + vh� n���; "

�
f�(�)d�

�
d"dv

=

Z M

0

k2 (v) vl
�Z

�21(� + vh� n���)fx�
�
� + vh� n���

�
f�(�)d�

�
dv

!
Z M

0

k2 (v) vldv�21(�)fx� (�) = fx� (�)�
2
1(�)!

+
l :
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The Liapunov�s CLT and the Cramer-Wold device can still apply to �nd that

1p
nh

nX
i=1

Zi (�) di(�)k

�
xi � �
h

�
"i

d�! N
�
0; fx� (�)�

2
1(�)
+

�
:

Simiarly,
1p
nh

nX
i=1

Zi (�) (1� di(�)) k
�
xi � �
h

�
"i

d�! N
�
0; fx� (�)E

�
"20jx� = �

�

�
�
:

So the asymptotic distribution of
p
nh (b� (�)� �� (�)�B1n) follows by Slutsky�s theorem.

Proof of Theorem 4. In this case, the bias

B2n = e
0
1S

�1
n+(�)r+ (�)� e01S�1n�(�)r� (�)� �� (�) ; (18)

where

r+ (�) =
1

n

nX
i=1

Zi (�) di(�)d
�
i (�)kh (xi � �) (m�(xi � ui) + ��(xi � ui)) ;

r� (�) =
1

n

nX
i=1

Zi (�) (1� di(�)) (1� d�i (�)) kh (xi � �)m�(xi � ui);

and Sn+(�) and Sn�(�) are de�ned in Theorem 2.

For p = 0; � � � ; p,

E

"
1

n

nX
i=1

�
xi � �
h

�p
di(�)d

�
i (�)kh (xi � �) (m�(xi � ui) + ��(xi � ui))

#

=

Z 1

0

Z M

n��
h �

k(v)vp
�
m�(� + vh� n���) + ��(� + vh� n���)

�
fx�(� + vh� n���)f�(�)dvd�

+

Z 0

�1

Z M

0

k(v)vp
�
m�(� + vh� n���) + ��(� + vh� n���)� �� (�)

�
fx�(� + vh� n���)f�(�)dvd�

! fx�(�) [m�(�) + �� (�)]

8><>:
+p ;

+p (C) + 
+
p F�(0);

+p F� (0) ;

if n
��

h ! 0;

if n
��

h ! C 2 (0;1) ;
if n

��

h !1;

by the DCT and Assumptions F0 and M.

V ar

 
1

n

nX
i=1

�
xi � �
h

�p
di(�)d

�
i (�)kh (xi � �) (m�(xi � ui) + ��(xi � ui))

!

� C

nh

Z Z M

�M
k2(v)v2p

�
m2
�(� + vh� n���) + �2�(� + vh� n���)

�
fx�(� + vh� n���)f�(�)dvd�

= O

�
1

nh

�
= o(1):

36



by Assumptions B, F0 and M. So

r+ (�)
p�! fx�(�) [m�(�) + �� (�)]

8><>:
�+0;p;

�+0;p(C) + �
+
0;pF�(0);

�+0;pF� (0) ;

if n
��

h ! 0;

if n
��

h ! C 2 (0;1) ;
if n

��

h !1:

Similarly,

r� (�)
p�! fx�(�)m�(�)

8><>:
��0;p;

��0;p(C) + �
�
0;p (1� F� (0)) ;

�+0;p (1� F� (0)) ;

if n
��

h ! 0;

if n
��

h ! C 2 (0;1) ;
if n

��

h !1:

Turn to the denominator Sn+. For l = 0; � � � ; 2p;

E

"
1

n

nX
i=1

kh (xi � �) di(�)d�i (�)
�
xi � �
h

�l#
! fx�(�)

8><>:
+l ;

+l (C) + 
+
l F�(0);

+l F� (0) ;

if n
��

h ! 0;

if n
��

h ! C 2 (0;1) ;
if n

��

h !1;

and

V ar

 
1

n

nX
i=1

kh (xi � �) di(�)d�i (�)
�
xi � �
h

�l!
! 0

by the DCT. So

Sn+
p�! fx�(�)

8><>:
�+;

�+(C) + �+F� (0) ;

�+F� (0) ;

if n
��

h ! 0;

if n
��

h ! C 2 (0;1) ;
if n

��

h !1:

By the continuity of matrix inversion,

S�1n+
p�! f�1x� (�)

8><>:
��1+ + op(1);�
�+(C) + �+F� (0)

��1
+ op(1);

��1+ F� (0)
�1
+ op(1);

if n
��

h ! 0;

if n
��

h ! C 2 (0;1) ;
if n

��

h !1:

Similarly,

S�1n�
p�! f�1x� (�)

8><>:
��1� ;�
��(C) + �� (1� F� (0))

��1
;

��1� (1� F� (0))�1 ;

if n
��

h ! 0;

if n
��

h ! C 2 (0;1) ;
if n

��

h !1:
:

In summary,

B2n
p�!

8>>>>>><>>>>>>:

e01�
�1
+ �+0;p [m�(�) + �� (�)]� e01��1� ��0;pm�(�)� �� (�) = 0, if n

��

h ! 0;

e01
�
�+(C) + �+F� (0)

��1 �
�+0;p(C) + �

+
0;pF�(0)

�
[m�(�) + �� (�)]

�e01
�
��(C) + �� (1� F� (0))

��1 �
��0;p(C) + �

�
0;p (1� F� (0))

�
m�(�)

��� (�) = 0, if n
��

h ! C 2 (0;1) ;
e01�

�1
+ �+0;p [m�(�) + �� (�)]� e01��1� ��0;pm�(�)� �� (�) = 0, if n

��

h !1:

The Liapunov�s CLT and the Cramer-Wold device can still apply to �nd the asymptotic distribution of
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1p
nh

nX
i=1

Zi (�) di(�)d
�
i (�)k

�
xi��
h

�
"i. First note that for Uni = k

�
xi��
h

�
di(�)d

�
i (�)�

0Zi (�) "i=
p
nh,

E[Uni] = E[E[Unijxi; x�i ]]

= E

�
k

�
xi � �
h

�
di(�)d

�
i (�)�

0Zi (�) =
p
nhE ["ijui; x�i ]

�
= E

�
k

�
xi � �
h

�
di(�)d

�
i (�)�

0Zi (�) =
p
nhE ["ijx�i ]

�
= 0:

We then calculate the asymptotic variance as follows. For l = 0; � � � ; 2p,

1

h
E

"
k2
�
xi � �
h

��
xi � �
h

�l
di(�)d

�
i (�)"

2
i

#

=

Z 1

0

Z M

n��
h �

Z
k2 (v) vl"2f1x�;"

�
� + vh� n���; "

�
f�(�)d"dvd�

+

Z 0

�1

Z M

0

Z
k2 (v) vl"2f1x�;"

�
� + vh� n���; "

�
f�(�)d"dvd�

! fx� (�)�
2
1(�)

8><>:
!+l ;

!+l (C) + !
+
l F� (0) ;

!+l F� (0) ;

if n
��

h ! 0;

if n
��

h ! C 2 (0;1) ;
if n

��

h !1:

So
1p
nh

nX
i=1

Zi (�) di(�)d
�
i (�)k

�
xi � �
h

�
"i

d�! N
�
0; fx� (�)�

2
1(�)

e
+� ;
where

e
+ =
8><>:

+;


+(C) + 
+F� (0) ;


+F� (0) ;

if n
��

h ! 0;

if n
��

h ! C 2 (0;1) ;
if n

��

h !1:

Similarly,

1p
nh

nX
i=1

Zi (�) di(�) (1� di(�)) (1� d�i (�)) k
�
xi � �
h

�
"i

d�! N
�
0; fx� (�)�

2
0(�)e
�� ;

where

e
+ =
8><>:

�;


�(C) + 
� (1� F� (0)) ;

� (1� F� (0)) ;

if n
��

h ! 0;

if n
��

h ! C 2 (0;1) ;
if n

��

h !1:

So the asymptotic distribution of
p
nh (b� (�)� �� (�)�B2n) follows by Slutsky�s theorem.

Proof of Theorem 5. The estimator is the same as (14), but now yi in bm+(�) contains also controlled

individuals, and yi in bm�(�) contains also treated individuals. In this case,

B3n = e
0
1S

�1
n+(�)r+ (�)� e01S�1n�(�)r� (�)� �� (�) ; (19)
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where

r+ (�) =
1

n

nX
i=1

Zi (�) di(�)d
�
i (�)kh (xi � �) (m�(xi � ui) + ��(xi � ui))

+
1

n

nX
i=1

Zi (�) di(�) (1� d�i (�)) kh (xi � �)m�(xi � ui) � r
t
+ (�) + r

c
+ (�) ;

r� (�) =
1

n

nX
i=1

Zi (�) (1� di(�)) d�i (�)kh (xi � �) (m�(xi � ui) + ��(xi � ui))

+
1

n

nX
i=1

Zi (�) (1� di(�)) (1� d�i (�)) kh (xi � �)m�(xi � ui) � r
t
� (�) + r

c
� (�) :

As in the proof of Theorem 4,

r
t
+ (�)

p�! fx�(�) [m�(�) + ��(�)]

8><>:
�+0;p;

�+0;p(C) + �
+
0;pF�(0);

�+0;pF� (0) ;

if n
��

h ! 0;

if n
��

h ! C 2 (0;1) ;
if n

��

h !1:

r
c
+ (�)

p�! fx�(�)m�(�)

8><>:
0;

�+0;p (1� F�(0))� �+0;p(C);
�+0;p (1� F�(0)) ;

if n
��

h ! 0;

if n
��

h ! C 2 (0;1) ;
if n

��

h !1;

and

r
t
� (�)

p�! fx� (�) [m�(�) + �� (�)]

8><>:
0;

��0;pF�(0)� ��0;p(C);
��0;pF�(0);

if n
��

h ! 0;

if n
��

h ! C 2 (0;1) ;
if n

��

h !1;

r
c
� (�)

p�! fx� (�)m�(�)

8><>:
��0;p;

��0;p(C) + �
�
0;p (1� F�(0)) ;

��0;p (1� F�(0)) ;

if n
��

h ! 0;

if n
��

h ! C 2 (0;1) ;
if n

��

h !1:

The limit of the denominator is the same as in Theorem 2:

S�1n+
p�! f�1x� (�)�

�1
+ , S�1n�

p�! f�1x� (�)�
�1
� :

In whatever cases,

1

n

nX
i=1

Zi (�) di(�)kh (xi � �) "i = op(1);

1

n

nX
i=1

Zi (�) (1� di(�)) kh (xi � �) "i = op(1):
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In summary,

b� (�) p�!

8>>>>>>>><>>>>>>>>:

[m�(�) + ��(�)] e
0
1�

�1
+ �+0;p �m�(�)e

0
1�

�1
� ��0;p = ��(�), if n

��

h ! 0;

[m�(�) + ��(�)]
�
e01�

�1
+

�
�+0;p(C) + �

+
0;pF�(0)

�
� e01��1�

�
��0;pF�(0)� ��0;p(C)

��
+m�(�)

�
e01�

�1
+

�
�+0;p (1� F�(0))� �+0;p(C)

�
� e01��1�

�
��0;p(C) + �

�
0;p (1� F�(0))

��
= ��(�)

�
e01�

�1
+ �+0;p(C) + e

0
1�

�1
� ��0;p(C)

�
, if n

��

h ! C 2 (0;1) ;
[m�(�) + ��(�)]

�
e01�

�1
+ �+0;pF� (0)� e01��1� ��0;pF�(0)

�
+m�(�)

�
e01�

�1
+ �+0;p (1� F�(0))� e01��1� ��0;p (1� F�(0))

�
= 0, if n

��

h !1:

When n��

h ! 0, the asymptotic variance is the same as in Theorem 3.

Proof of Theorem 6. Under Assumption CY and U,

m�(xi � ui) = m� (�) +m
0
� (�) (xi � � � ui) +

m00
� (�)

2
(xi � � � ui)2 +Rm (xi � ui; �) ;

��(xi � ui) = �� (�) + �
0
� (�) (xi � � � ui) +

�00� (�)

2
(xi � � � ui)2 +R� (xi � ui; �) ;

where Rm (xi � ui; �) and R� (xi � ui; �) are the remaining terms in the second-order Taylor expansion of
m�(xi � ui) and ��(xi � ui) at �, respectively. By the discrete orthogonality relation,

B1n � e01S
�1
n+(�)

1

n

nX
i=1

Zi (�) di(�)kh (xi � �)
�
� (m0

� (�) + �
0
� (�))ui +

m00
� (�) + �

00
� (�)

2
(xi � � � ui)2

�

�e01S�1n�(�)
1

n

nX
i=1

Zi (�) (1� di(�)) kh (xi � �)
�
�m0

� (�)ui +
m00
� (�)

2
(xi � � � ui)2

�
;

where � means higher-order terms are omitted. For p = 0; 1,

E

"
1

n

nX
i=1

�
xi � �
h

�p
di(�)kh (xi � �)ui

#

= n��
Z Z M

0

k(v)vp�fx�(� + vh� n���)f�(�)dvd�

� fx�(�)n
��+p E [�] + f

0
x�(�)

�
hn��+p+1E [�]� n�2�+p E

�
�2
��
;

and

E

"
1

n

nX
i=1

�
xi � �
h

�p
di(�)kh (xi � �) (xi � � � ui)2

#

=

Z Z M

0

k(v)vp
�
vh� n���

�2
fx�(� + vh� n���)f�(�)dvd�

� fx�(�)
�
h2+p+2 � 2hn��+p+1E [�] + n�2�+p E

�
�2
��
:
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For l = 0; 1; 2;

E

"
1

n

nX
i=1

kh (xi � �) di(�)
�
xi � �
h

�l#

=

Z Z M

0

k(v)vlfx�(� + vh� n���)f�(�)dvd�

� fx�(�)
+
l + f

0
x�(�)

�
h+l+1 � n

��+l E [�]
�
;

so

S�1n+(�) �
�
fx�(�)�+ + hf

0
x�(�)�(+1) � n��f 0x�(�)E [�] �+

��1
=

1

fx�(�)
��1+ � h

f 0x�(�)

f2x�(�)
��1+ �(+1)�

�1
+ + n��

f 0x�(�)E [�]

f2x�(�)
��1+ ;

where �(+1) =

 
+1 +2
+2 +3

!
. Similar analysis applies to the second term of B1n. In summary,

B1n � e01
�

1

fx�(�)
��1+ � h

f 0x�(�)

f2x�(�)
��1+ �(+1)�

�1
+ + n��

f 0x�(�)E [�]

f2x�(�)
��1+

�
"
� (m0

� (�) + �
0
� (�))

�
fx�(�)n

���+0;1E [�] + f
0
x�(�)

�
hn���+1;2E [�]� n�2��+0;1E

�
�2
���

+
m00
�(�)+�

00
�(�)

2 fx�(�)
�
h2�+2;3 � 2hn���+1;2E [�] + n�2��+0;1E

�
�2
�� #

�e01
�

1

fx�(�)
��1� � h

f 0x�(�)

f2x�(�)
��1� �(�1)�

�1
� + n��

f 0x�(�)E [�]

f2x�(�)
��1�

�
"
�m0

� (�)
�
fx�(�)n

����0;1E [�] + f
0
x�(�)

�
hn����1;2E [�]� n�2���0;1E

�
�2
���

+
m00
�(�)
2 fx�(�)

�
h2��2;3 � 2hn����1;2E [�] + n�2���0;1E

�
�2
�� #

� �n���0� (�)E [�] + n�2�
f 0x�(�)

fx�(�)
�0� (�)E

�
�2
�
+ h2

�00� (�)

2
e01�

�1
+ �+2;3 + n

�2� �
00
� (�)

2
E
�
�2
�

+hn��
f 0x�(�)

fx�(�)
E [�]

�
(m0

� (�) + �
0
� (�)) e

0
1�

�1
+ �(+1)�

�1
+ �+0;1 �m0

� (�) e
0
1�

�1
� �(�1)�

�1
� ��0;1

�

�n�2� f
0
x�(�)

fx�(�)
E [�]

2
�0� (�)

= �n���0� (�)E [�] + n�2�
�
f 0x�(�)

fx�(�)
�0� (�)V ar(�) +

�00� (�)

2
E
�
�2
��
+ h2

�00� (�)

2
e01�

�1
+ �+2;3:

where �(�1) is similarly de�ned as �(+1) with 
+
j replaced by 

�
j , and the last equality is from the fact that

e01�
�1
+ �(+1)�

�1
+ �+0;1 = e

0
1�

�1
� �(�1)�

�1
� ��0;1 = 0.

For B2n, we need only consider the �rst-order Taylor expansion of m�(xi � ui) and ��(xi � ui):

B2n � e01S
�1
n+(�)

1

n

nX
i=1

Zi (�) di(�)d
�
i (�)kh (xi � �) [� (m0

� (�) + �
0
� (�))ui]

�e01S�1n�(�)
1

n

nX
i=1

Zi (�) (1� di(�)) (1� d�i (�)) [�m0
� (�)ui] :
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For p = 0; 1,

E

"
1

n

nX
i=1

�
xi � �
h

�p
di(�)d

�
i (�)kh (xi � �)ui

#

=

Z 1

0

Z M

n��
h �

k(v)vpn���fx�(� + vh� n���)f�(�)dvd�

+

Z 0

�1

Z M

0

k(v)vpn���fx�(� + vh� n���)f�(�)dvd�

� n��fx�(�)

�

+
p (C) + 

+
p

Z 0

�1
�f�(�)d�

�
:

Similarly, E

"
1
n

nX
i=1

�
xi��
h

�p
(1� di(�)) (1� d�i (�)) kh (xi � �)ui

#
� n��fx�(�)

h

�
p (C) + 

�
p

R1
0
�f�(�)d�

i
.

The limit of the denominator is derived in Theorem 4. So

B2n � �n��e01
1

fx�(�)

�
�+ (C) + �+F�(0)

��1
[m0

� (�) + �
0
� (�)] fx�(�)

�
�
+
0;1(C) + �

+
0;1E[�j� < 0]F�(0)

�
�
�
�n��

�
e01

1

fx�(�)

�
�� (C) + �� (1� F�(0))

��1
m0
� (�) fx�(�)

�
�
�
0;1(C) + �

�
0;1E[�j� > 0] (1� F�(0))

�
= �n��

n
(m0

� (�) + �
0
� (�)) e

0
1

�
�+ (C) + �+F�(0)

��1 h
�
+
0;1(C) + �

+
0;1E[�j� < 0]F�(0)

i
�m0

� (�) e
0
1

�
�� (C) + �� (1� F�(0))

��1 h
�
�
0;1(C) + �

�
0;1E[�j� > 0] (1� F�(0))

io
:

Proof of Theorem 7. The estimator b�f (�) is de�ned in (6). In the fuzzy design,
yi = Di (m�(xi � ui) + ��(xi � ui) + "1i) + (1�Di) (m�(xi � ui) + "0i) :

When the forcing variable is x,

yi = (p�(xi) + ��(xi)di (�) + �i) (m�(xi � ui) + ��(xi � ui) + "1i)
+ (1� p�(xi)� ��(xi)di (�)� �i) (m�(xi � ui) + "0i)

= [p�(xi) + ��(xi)di (�)] [m�(xi � ui) + ��(xi � ui)]
+ [1� p�(xi)� ��(xi)di (�)]m�(xi � ui)
+ [p�(xi) + ��(xi)di (�)] "1i + [1� p�(xi)� ��(xi)di (�)] "0i
+��(xi � ui)�i + �i ("1i � "0i) ;

� yi +Ri

where

yi = [p�(xi) + ��(xi)di (�)] [m�(xi � ui) + ��(xi � ui)]
+ [1� p�(xi)� ��(xi)di (�)]m�(xi � ui)

= ��(xi)��(xi � ui)di (�) +m�(xi � ui) + p�(xi)��(xi � ui);
Ri = yi � yi;
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when the forcing variable is x�,

yi = (p�(xi � ui) + ��(xi � ui)d�i (�) + �i) (m�(xi � ui) + ��(xi � ui) + "1i)
+ (1� p�(xi � ui)� ��(xi � ui)d�i (�)� �i) (m�(xi � ui) + "0i)

= [p�(xi � ui) + ��(xi � ui)d�i (�)] [m�(xi � ui) + ��(xi � ui)]
+ [1� p�(xi � ui)� ��(xi � ui)d�i (�)]m�(xi � ui)
+ [p�(x

�
i ) + ��(x

�
i )d

�
i (�)] "1i ++ [1� p�(x�i )� ��(x�i )d�i (�)] "0i

+��(x
�
i )�i + �i ("1i � "0i)

� y�i +R
�
i ;

where

y�i = [p�(xi � ui) + ��(xi � ui)d�i (�)] [m�(xi � ui) + ��(xi � ui)]
+ [1� p�(xi � ui)� ��(xi � ui)d�i (�)]m�(xi � ui)

= ��(xi � ui)��(xi � ui)d�i (�) +m�(xi � ui) + p�(xi � ui)��(xi � ui);
R�i = y�i � y�i :

We analyze the four cases in sequence. First de�ne some notations,

B+m = e01S
�1
n+ (�)

 
1

n

nX
i=1

Zi (�) di(�)kh (xi � �) yi

!
;

V +m = e01S
�1
n+ (�)

 
1

n

nX
i=1

Zi (�) di(�)kh (xi � �)Ri

!
;

B+p = e01S
�1
n+ (�)

 
1

n

nX
i=1

Zi (�) di(�)kh (xi � �)Di

!
;

B+p = e01S
�1
n+ (�)

 
1

n

nX
i=1

Zi (�) di(�)kh (xi � �) �i

!
;

where Di = p�(xi) + ��(xi)di (�). B�m, V
�
m , B

�
p and V �p are similarly de�ned as B+m, V

+
m , B

+
p , V

+
p

but replacing di(�) by 1 � di(�). B�+m , V �+m , B�+p , V �+p , B��m , V ��m , B��p and V ��p are similarly de�ned

as B+m, V
+
m , B

+
p , V

+
p , B

�
m, V

�
m , B

�
p and V �p but replacing di(�), yi, Ri and Di by d�i (�), y

�
i , R

�
i and

D
�
i � p�(x�i ) + ��(x�i )d�i (�), respectively. Now, in Case 4,

b�f (�) = (B+m �B�m) + (V +m � V �m )�
B+p �B�p

�
+
�
V +p � V �p

� ;
and in Case 5, b�f (�) = (B�+m �B��m ) + (V �+m � V ��m )�

B�+p �B��p
�
+
�
V �+p � V ��p

� :
In Case (i) and (ii), the limits of the denominators Sn+ (�) and Sn� (�) are the same as in Theorem 1. In

Case (iii) and (iv), the limits of the denominators are the same as in Theorem 3. So we concentrate on the

numerators in each case.
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Case (i). De�ne

Bfn =
B+m �B�m
B+p �B�p

� ��(�); (20)

then

p
nh
�b�f (�)� ��(�)�Bfn� = �B+p �B�p �

p
nh (V +m � V �m )� (B+m �B�m)

p
nh
�
V +p � V �p

��
B+p �B�p

� �
B+p �B�p + V +p � V �p

� :

For p = 0; � � � ; p,

E

"
1

n

nX
i=1

�
xi � �
h

�p
di(�)kh (xi � �) yi

#

=

Z Z M

0

k(v)vp��(� + vh)��(� + vh� u)fx�(� + vh� u)fu(u)dvdu

+

Z Z M

0

k(v)vp [m�(� + vh� u) + p�(� + vh)��(� + vh� u)] fx�(� + vh� u)fu(u)dvdu

! +p fx(�) f[p�(�) + ��(�)]E [��(� � u)jx = �] + E [m�(� � u)jx = �]g ;

and V ar

 
1
n

nX
i=1

�
xi��
h

�p
di(�)kh (xi � �) yi

!
! 0 by the DCT. Similarly,

1

n

nX
i=1

�
xi � �
h

�p
(1� di(�)) kh (xi � �) yi

p�! �p fx(�) fp�(�)E [��(� � u)jx = �] + E [m�(� � u)jx = �]g :

SoB+m�B�m
p�! e01�

�1
+ �+0;p [m�(�) + (p�(�) + ��(�))�� (�)]�e01��1� ��0;p [m�(�) + p�(�)�� (�)] = ��(�)�� (�).

Similarly, B+p �B�p
p�! ��(�). So B

f
n = op(1).

Next, we derive the joint asymptotic distribution of
�p
nh (V +m � V �m ) ;

p
nh
�
V +p � V �p

��
.

 p
nh (V +m � V �m )p
nh
�
V +p � V �p

� ! =

 
e01S

�1
n+ (�) 0

0 e01S
�1
n+ (�)

!0BBB@
1p
nh

nX
i=1

Zi (�) di(�)k
�
xi��
h

�
Ri

1p
nh

nX
i=1

Zi (�) di(�)k
�
xi��
h

�
�i

1CCCA

�
 
e01S

�1
n� (�) 0

0 e01S
�1
n� (�)

!0BBB@
1p
nh

nX
i=1

Zi (�) (1� di(�)) k
�
xi��
h

�
Ri

1p
nh

nX
i=1

Zi (�) (1� di(�)) k
�
xi��
h

�
�i

1CCCA
�

 
e01S

�1
n+ (�) 0

0 e01S
�1
n+ (�)

!
A+ �

 
e01S

�1
n� (�) 0

0 e01S
�1
n� (�)

!
A�:

From Assumption ED, E [� ("1 � "0) jx] = 0 and E[�jx] = 0, so the means of A+ and A� are zero. We
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calculate their variances next. For l = 0; � � � ; 2p,

1

h
E

"
k2
�
xi � �
h

��
xi � �
h

�l
di(�)R

2
i

#

=
1

h
E

"
k2
�
x� �
h

��
x� �
h

�l
d�E

�
R2jx; u

�#

=

Z M

0

k2 (v) vl
Z
E
�
R2jx = � + vh; u

�
fx� (� + vh� u) fu(u)dudv

! fx (�)E
�
R2jx = �+

�
!+l ;

and similarly,

1

h
E

"
k2
�
xi � �
h

��
xi � �
h

�l
di(�)�

2
i

#
! fx (�)E

�
�2jx = �+

�
!+l ;

1

h
E

"
k2
�
xi � �
h

��
xi � �
h

�l
di(�)Ri�i

#
! fx (�)E [R�jx = �+]!+l ;

1

h
E

"
k2
�
xi � �
h

��
xi � �
h

�l
(1� di(�))R2i

#
! fx (�)E

�
R2jx = ��

�
!�l ;

1

h
E

"
k2
�
xi � �
h

��
xi � �
h

�l
(1� di(�)) �2i

#
! fx (�)E

�
�2jx = ��

�
!�l ;

1

h
E

"
k2
�
xi � �
h

��
xi � �
h

�l
(1� di(�))Ri�i

#
! fx (�)E [R�jx = ��]!�l :

So A+ and A� are independent, and

A+
d�! N

 
0; fx (�)

 
E
�
R2jx = �+

�
E [R�jx = �+]

E [R�jx = �+] E
�
�2jx = �+

� !
 
+! ;
A�

d�! N

 
0; fx (�)

 
E
�
R2jx = ��

�
E [R�jx = ��]

E [R�jx = ��] E
�
�2jx = ��

� !
 
�! ;
where 
 is the Kronecker product. As a result, p

nh (V +m � V �m )p
nh
�
V +p � V �p

� ! d�! N (0;�mp) ;

where

�mp =
1

fx (�)

 
e01�

�1
+ 0

0 e01�
�1
+

!" 
E
�
R2jx = �+

�
E [R�jx = �+]

E [R�jx = �+] E
�
�2jx = �+

� !
 
+# ��1+ e1 0

0 ��1+ e1

!

+
1

fx (�)

 
e01�

�1
� 0

0 e01�
�1
�

!" 
E
�
R2jx = ��

�
E [R�jx = ��]

E [R�jx = ��] E
�
�2jx = ��

� !
 
+# ��1� e1 0

0 ��1� e1

!

=
e01�

�1
+ 
+�

�1
+ e1

fx (�)

 
E
�
R2jx = �+

�
+ E

�
R2jx = ��

�
E [R�jx = �+] + E [R�jx = ��]

E [R�jx = �+] + E [R�jx = ��] E
�
�2jx = �+

�
+ E

�
�2jx = ��

� ! :
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At last, by Slutsky�theorem,

p
nh
�b�f (�)� ��(�)�Bfn� d�! N (0;�f ) :

Case (ii). For p = 0; � � � ; p,

E

"
1

n

nX
i=1

�
xi � �
h

�p
di(�)kh (xi � �) y�i

#

=

Z 1

0

Z M

u=h

k(v)vp��(� + vh� u)��(� + vh� u)fx�(� + vh� u)fu(u)dvdu

+

Z 0

�1

Z M

0

k(v)vp��(� + vh� u)��(� + vh� u)fx�(� + vh� u)fu(u)dvdu

+

Z Z M

0

k(v)vp [m�(� + vh� u) + p�(� + vh� u)��(� + vh� u)] fx�(� + vh� u)fu(u)dvdu

! +p fx(�)

Z 0

�1
��(� � u)��(� � u)fujx(uj�)du

++p fx(�) fE [p�(� � u)��(� � u)jx = �] + E [m�(� � u)jx = �]g ;

and

E

"
1

n

nX
i=1

�
xi � �
h

�p
(1� di(�)) kh (xi � �) y�i

#

! �p fx(�)

Z 0

�1
��(� � u)��(� � u)fujx(uj�)dvdu

+�p fx(�) fE [p�(� � u)��(� � u)jx = �] + E [m�(� � u)jx = �]g :

So bm+(�)� bm�(�)
p�! 0:

Similarly, bp+(�)� bp�(�) p�! 0. In summary, the probability limit of b�(�) is not well de�ned.
Case (iii). De�ne

B4n =
B+m �B�m
B+p �B�p

� ��(�); (21)

It can be shown that for p = 0; � � � ; p,

1

n

nX
i=1

�
xi � �
h

�p
di(�)kh (xi � �) yi

p�! +p fx�(�) f[p�(�) + ��(�)]��(�) +m�(�)g ;

1

n

nX
i=1

�
xi � �
h

�p
(1� di(�)) kh (xi � �) yi

p�! �p fx�(�) [p�(�)��(�) +m�(�)] ;

so B+m �B�m
p�! ��(�)��(�). Similarly, B

+
p �B�p

p�! ��(�). So B4n = op(1).

As to the asymptotic variance of
p
nh (b�f (�)� ��(�)�B4n), we can repeat the proof of Case (i) to show

that �4 is as speci�ed in the theorem.

Case (iv). De�ne

B5n =
B�+m �B��m
B�+p �B��p

� ��(�); (22)

46



then

p
nh (b�f (�)� ��(�)�B5n) = �B�+p �B��p �p

nh (V �+m � V ��m )� (B�+m �B��m )
p
nh
�
V �+p � V ��p

��
B�+p �B��p

� �
B�+p �B��p + V �+p � V ��p

� :

For p = 0; � � � ; p,

E

"
1

n

nX
i=1

�
xi � �
h

�p
di(�)kh (xi � �) y�i

#

=

Z 1

0

Z M

n��
h �

k(v)vp��(� + vh� n���)��(� + vh� n���)fx�(� + vh� n���)f�(�)dvd�

+

Z 0

�1

Z M

0

k(v)vp��(� + vh� n���)��(� + vh� n���)fx�(� + vh� n���)f�(�)dvd�

+

Z Z M

0

k(v)vp
�
m�(� + vh� n���) + p�(� + vh� n���)��(� + vh� n���)

�
fx�(� + vh� n���)f�(�)dvd�

! fx�(�)

8><>:
+p [��(�)��(�) +m�(�) + p�(�)��(�)] ;

+p (C)��(�)��(�) + 
+
p F�(0)��(�)��(�) + 

+
p [m�(�) + p�(�)��(�)] ;

+p F�(0)��(�)��(�) + 
+
p [m�(�) + p�(�)��(�)] ;

if n
��

h ! 0;

if n
��

h ! C 2 (0;1) ;
if n

��

h !1:

and

E

"
1

n

nX
i=1

�
xi � �
h

�p
(1� di(�)) kh (xi � �) y�i

#

=

Z 0

�1

Z 0

n��
h �

k(v)vp��(� + vh� n���)��(� + vh� n���)fx�(� + vh� n���)f�(�)dvd�

+

Z Z 0

�M
k(v)vp

�
m�(� + vh� n���) + p�(� + vh� n���)��(� + vh� n���)

�
fx�(� + vh� n���)f�(�)dvd�

! fx�(�)

8><>:
�p [m�(�) + p�(�)��(�)] ;�
�p (C)F�(0)� �p (C)

�
��(�)��(�) + 

�
p [m�(�) + p�(�)��(�)] ;

�p F�(0)��(�)��(�) + 
�
p [m�(�) + p�(�)��(�)] ;

if n
��

h ! 0;

if n
��

h ! C 2 (0;1) ;
if n

��

h !1:

So

B�+m �B��m
p�!

8><>:
��(�)��(�);

��(�)��(�)
�
e01�

�1
+ �+0;p(C) + e

0
1�

�1
� ��0;p(C)

�
;

0;

if n
��

h ! 0;

if n
��

h ! C 2 (0;1) ;
if n

��

h !1:

Similarly,

B�+p �B��p
p�!

8><>:
��(�);

��(�)
�
e01�

�1
+ �+0;p(C) + e

0
1�

�1
� ��0;p(C)

�
;

0;

if n
��

h ! 0;

if n
��

h ! C 2 (0;1) ;
if n

��

h !1:

In summary,

B5n
p�!

8<:
��(�)��(�)

��(�)
� ��(�) = 0;

��(�)��(�)[e01�
�1
+ �+0;p(C)+e

0
1�

�1
� ��0;p(C)]

��(�)[e01�
�1
+ �+0;p(C)+e

0
1�

�1
� ��0;p(C)]

� ��(�) = 0;
if n

��

h ! 0;

if n
��

h ! C 2 (0;1) :
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But when n��

h !1, the probability limit of B5n is not well de�ned.
As in Case 1, we need to derive the asymptotic variance of

�p
nh (V �+m � V ��m ) ;

p
nh
�
V �+p � V ��p

��
to

derive the asymptotic distribution of
p
nh (b�f (�)� ��(�)�B5n). Now p

nh (V +m � V �m )p
nh
�
V +p � V �p

� ! =  e01S
�1
n+ (�) 0

0 e01S
�1
n+ (�)

!
A�+ �

 
e01S

�1
n� (�) 0

0 e01S
�1
n� (�)

!
A��:

where

A�+ =

0BBB@
1p
nh

nX
i=1

Zi (�) di(�)k
�
xi��
h

�
R�i

1p
nh

nX
i=1

Zi (�) di(�)k
�
xi��
h

�
�i

1CCCA ; A�� =
0BBB@

1p
nh

nX
i=1

Zi (�) (1� di(�)) k
�
xi��
h

�
R�i

1p
nh

nX
i=1

Zi (�) (1� di(�)) k
�
xi��
h

�
�i

1CCCA :

For l = 0; � � � ; 2p,

1

h
E

"
k2
�
xi � �
h

��
xi � �
h

�l
di(�)R

�2
i

#

=
1

h
E

"
k2
�
x� + n���� �

h

��
x� + n���� �

h

�l
1
�
x� + n��� � �

�
E
�
R�2jx�

�#

=

Z Z M

�n��
h �

k2
�
v +

n��

h
�

��
v +

n��

h
�

�l
E
�
R�2jx� = � + vh

�
fx� (� + vh) f�(�)dvd�

! fx� (�)

Z 1

0

Z 0

�C�
k2 (v + C�) (v + C�)

l
E
�
R�2jx� = ��

�
f�(�)dvd�

+fx� (�)

Z 1

0

Z M

0

k2 (v + C�) (v + C�)
l
E
�
R�2jx� = �+

�
f�(�)dvd�

+fx� (�)

Z 0

�1

Z M

�C�
k2 (v + C�) (v + C�)

l
E
�
R�2jx� = �+

�
f�(�)dvd�

= fx� (�)
h
E
�
R�2jx� = ��

�
!
+�
l (C) + E

�
R�2jx� = �+

�
!
++
l (C)

i
:

and similarly,

1

h
E

"
k2
�
xi � �
h

��
xi � �
h

�l
di(�)�

2
i

#
! fx� (�)E

�
�2jx� = �+

�
!+l ;

1

h
E

"
k2
�
xi � �
h

��
xi � �
h

�l
di(�)R

�
i �i

#
! fx� (�)

h
E [R��jx� = ��]!+�l (C) + E [R��jx� = �+]!++l (C)

i
;

1

h
E

"
k2
�
xi � �
h

��
xi � �
h

�l
(1� di(�))R�2i

#
! fx� (�)

h
E
�
R�2jx� = ��

�
!
��
l (C) + E

�
R�2jx� = �+

�
!
�+
l (C)

i
;

1

h
E

"
k2
�
xi � �
h

��
xi � �
h

�l
(1� di(�)) �2i

#
! fx� (�)E

�
�2jx� = ��

�
!�l ;

1

h
E

"
k2
�
xi � �
h

��
xi � �
h

�l
(1� di(�))R�i �i

#
! fx� (�)

h
E [R��jx� = ��]!��l (C) + E [R��jx� = �+]!�+l (C)

i
:
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As a result,  p
nh (V �+m � V ��m )p
nh
�
V �+p � V ��p

� ! d�! N
�
0;��mp

�
;

where

fx� (�) �mp

=

 
E
�
R�2jx� = ��

�
�+�(C) + E

�
R�2jx� = �+

�
�++(C) E [R��jx� = ��] �+�(C) + E [R��jx� = �+]�++(C)

E [R��jx� = ��] �+�(C) + E [R��jx� = �+]�++(C) E
�
�2jx� = �+

�
�

!

+

 
E
�
R�2jx� = ��

�
���(C) + E

�
R�2jx� = �+

�
��+(C) E [R��jx� = ��] ���(C) + E [R��jx� = �+]��+(C)

E [R��jx� = ��] ���(C) + E [R��jx� = �+]��+(C) E
�
�2jx� = ��

�
�

!
:

At last, by Slutsky�s theorem

p
nh (b�f (�)� ��(�)�B5n) d�! N (0;�5 (C)) :

Proof of Theorem 8. yi = ��(xi)��(xi � ui)di (�) + m�(xi � ui) + p�(xi)��(xi � ui), and Di =

p�(xi) + ��(xi)di (�). To simplify notations, de�ne m (�) = m�(�) + ��(�) and p (�) = p�(�) + ��(�). Under
Assumption CD, CY and U,

��(xi)��(xi � ui) � ��(�)��(�) + �
0
�(�)��(�) (xi � �) + ��(�)�0�(�) (xi � � � ui)

+
1

2
�00�(�)��(�) (xi � �)

2
+
1

2
��(�)�

00
�(�) (xi � � � ui)

2
+ �0�(�)�

0
�(�) (xi � �) (xi � � � ui) ;

m�(xi � ui) � m� (�) +m
0
� (�) (xi � � � ui) +

m00
� (�)

2
(xi � � � ui)2 ;

p�(xi)��(xi � ui) � p�(�)��(�) + p
0
�(�)��(�) (xi � �) + p�(�)�0�(�) (xi � � � ui)

+
1

2
p00�(�)��(�) (xi � �)

2
+
1

2
p�(�)�

00
�(�) (xi � � � ui)

2
+ p0�(�)�

0
�(�) (xi � �) (xi � � � ui) ;

p�(xi) � p� (�) + p
0
� (�) (xi � �) +

p00� (�)

2
(xi � �)2 ;

��(xi) � �� (�) + �
0
� (�) (xi � �) +

�00� (�)

2
(xi � �)2 :

By the discrete orthogonality relation,

B+m �B�m � ��(�)��(�) + e
0
1S

�1
n+(�)

1

n

nX
i=1

Zi (�) di(�)kh (xi � �) [� (p(�)�0�(�) +m0
� (�))ui

+
1

2
p00(�)��(�) (xi � �)2 +

p(�)�00�(�) +m
00
� (�)

2
(xi � � � ui)2 + p0(�)�0�(�) (xi � �) (xi � � � ui)

�
�e01S�1n�(�)

1

n

nX
i=1

Zi (�) (1� di(�)) kh (xi � �) [� (p�(�)�0�(�) +m0
� (�))ui

+
1

2
p00�(�)��(�) (xi � �)

2
+
p�(�)�

00
�(�) +m

00
� (�)

2
(xi � � � ui)2 + p0�(�)�0�(�) (xi � �) (xi � � � ui)

�
;
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and

B+p �B�p � �� (�) + e
0
1S

�1
n+(�)

1

n

nX
i=1

Zi (�) di(�)kh (xi � �)
p00 (�)

2
(xi � �)2

�e01S�1n�(�)
1

n

nX
i=1

Zi (�) (1� di(�)) kh (xi � �)
p00� (�)

2
(xi � �)2 :

From the analysis in the proof of Theorem 6, we have

B+m �B�m � ��(�)��(�) + e
0
1

�
1

fx�(�)
��1+ � h

f 0x�(�)

f2x�(�)
��1+ �(+1)�

�1
+ + n��

f 0x�(�)E [�]

f2x�(�)
��1+

�
264 � (p(�)�0�(�) +m0

� (�))
�
fx�(�)n

���+0;1E [�] + f
0
x�(�)

�
hn���+1;2E [�]� n�2��+0;1E

�
�2
���

+ 1
2p

00(�)��(�)fx�(�)h
2�+2;3 +

p(�)�00�(�)+m
00
�(�)

2 fx�(�)
�
h2�+2;3 � 2hn���+1;2E [�] + n�2��+0;1E

�
�2
��

+p0(�)�0�(�)fx�(�)
�
h2�+2;3 � hn���+1;2E [�]

�
375

�e01
�

1

fx�(�)
��1� � h

f 0x�(�)

f2x�(�)
��1� �(�1)�

�1
� + n��

f 0x�(�)E [�]

f2x�(�)
��1�

�
264 � (p�(�)�0�(�) +m0

� (�))
�
fx�(�)n

����0;1E [�] + f
0
x�(�)

�
hn����1;2E [�]� n�2���0;1E

�
�2
���

+ 1
2p
00
�(�)��(�)fx�(�)h

2��2;3 +
p�(�)�

00
�(�)+m

00
�(�)

2 fx�(�)
�
h2��2;3 � 2hn����1;2E [�] + n�2���0;1E

�
�2
��

+p0�(�)�
0
�(�)fx�(�)

�
h2��2;3 � hn����1;2E [�]

�
375

= ��(�)��(�)� n����(�)�0�(�)E [�] + n�2�
f 0x�(�)

fx�(�)
��(�)�

0
� (�)E

�
�2
�
+ n�2�

��(�)�
00
� (�)

2
E
�
�2
�

�n�2� f
0
x�(�)

fx�(�)
E [�]

2
��(�)�

0
�(�) + h

2 �
00
�(�)��(�) + ��(�)�

00
� (�) + 2�

0
�(�)�

0
�(�)

2
e01�

�1
+ �+2;3

= ��(�)��(�)� n����(�)�0�(�)E [�] + n�2���(�)
�
f 0x�(�)

fx�(�)
�0� (�)V ar(�) +

�00� (�)

2
E
�
�2
��

+h2
�00�(�)��(�) + ��(�)�

00
� (�) + 2�

0
�(�)�

0
�(�)

2
e01�

�1
+ �+2;3;

and

B+p �B�p � �� (�) + h2
�00�(�)

2
e01�

�1
+ �+2;3:

So

B4n =
B+m �B�m
B+p �B�p

� ��(�)

� 1

�� (�)

�
�n����(�)�0�(�)E [�] + n�2���(�)

�
f 0x�(�)

fx�(�)
�0� (�)V ar(�) +

�00� (�)

2
E
�
�2
��

+h2
�00�(�)��(�) + ��(�)�

00
� (�) + 2�

0
�(�)�

0
�(�)

2
e01�

�1
+ �+2;3

�
� ��(�)�� (�)

�2� (�)
h2
�00�(�)

2
e01�

�1
+ �+2;3;

which simpli�es to the form stated in the theorem.

We now turn to the analysis of B5n. y�i = ��(xi�ui)��(xi�ui)d�i (�)+m�(xi�ui)+p�(xi�ui)��(xi�ui),
and D

�
i � p�(x�i ) + ��(x�i )d�i (�). We only use the �rst order Taylor expansion in this case.

��(xi � ui)��(xi � ui) � ��(�)��(�) +
�
�0�(�)��(�) + ��(�)�

0
�(�)

�
(xi � � � ui) ;

p�(xi � ui)��(xi � ui) � p�(�)��(�) + (p
0
�(�)��(�) + p�(�)�

0
�(�)) (xi � � � ui) ;

m�(xi � ui) � m� (�) +m
0
� (�) (xi � � � ui) :
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De�ne

�1 = ��(�)��(�), �
0
1 = �

0
�(�)��(�) + ��(�)�

0
�(�);

�00 = m0
� (�) + p

0
�(�)��(�) + p�(�)�

0
�(�);

then

B�+m �B��m � e01S
�1
n+(�)

1

n

nX
i=1

Zi (�) di(�)kh (xi � �) �

fd�i (�) [�1 + �01 (xi � � � ui)]� �00uig

�e01S�1n�(�)
1

n

nX
i=1

Zi (�) (1� di(�)) kh (xi � �) �

fd�i (�) [�1 + �01 (xi � � � ui)]� �00uig :

For p = 0; 1,

E

"
1

n

nX
i=1

�
xi � �
h

�p
di(�)d

�
i (�)kh (xi � �) (xi � � � ui)

#

=

Z 1

0

Z M

n��
h �

k(v)vp
�
vh� n���

�
fx�(� + vh� n���)f�(�)dvd�

+

Z 0

�1

Z M

0

k(v)vp
�
vh� n���

�
fx�(� + vh� n���)f�(�)dvd�

� hfx�(�)
�
+p+1(C) + 

+
p+1F�(0)

�
� n��fx�(�)

�

+
p (C) + 

+
p

Z 0

�1
�f�(�)d�

�
;

and

E

"
1

n

nX
i=1

�
xi � �
h

�p
kh (xi � �) di(�)d�i (�)

#

=

Z 1

0

Z M

n��
h �

k(v)vpfx�(� + vh� n���)f�(�)dvd�+
Z 0

�1

Z M

0

k(v)vpfx�(� + vh� n���)f�(�)dvd�

= fx�(�)
�
+p (C) + 

+
p F�(0)

�
+ f 0x�(�)

�
h
�
+p+1(C) + 

+
p+1F�(0)

�
� n��

�

+
p (C) + 

+
p

Z 0

�1
�f�(�)d�

��
:

Similarly,

E

"
1

n

nX
i=1

�
xi � �
h

�p
(1� di(�)) d�i (�) kh (xi � �) (xi � � � ui)

#

� fx�(�)

�
h
�
�p+1F�(0)� �p+1(C)

�
� n��

�
�p

Z 0

�1
�f�(�)d�� 

+
p (C)

��
;
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and

E

"
1

n

nX
i=1

�
xi � �
h

�p
kh (xi � �) (1� di(�)) d�i (�)

#

� fx�(�)
�
�p F�(0)� �p (C)

�
+ f 0x�(�)

�
h
�
�p+1F�(0)� �p+1(C)

�
� n��

�
�p

Z 0

�1
�f�(�)d�� 

�
p (C)

��
:

So

B�+m �B��m � e01

�
1

fx�(�)
��1+ � h

f 0x�(�)

f2x�(�)
��1+ �(+1)�

�1
+ + n��

f 0x�(�)E [�]

f2x�(�)
��1+

�
�
�1
�
fx�(�)

�
�+0;1(C) + �

+
0;1F�(0)

�
+ f 0x�(�)	R(h; n

��)
�

+�01fx�(�)	R(h; n
��)� �00fx�(�)n���+0;1E [�]

	
�e01

�
1

fx�(�)
��1� � h

f 0x�(�)

f2x�(�)
��1� �(�1)�

�1
� + n��

f 0x�(�)E [�]

f2x�(�)
��1�

�
�
�1
�
fx�(�)

�
��0;1F�(0)� ��0;1(C)

�
+ f 0x�(�)	L(h; n

��)
�

+�01fx�(�)	L(h; n
��)� �00fx�(�)n����0;1E [�]

	
;

where

	R(h; n
��) = h

�
�+1;2(C) + �

+
1;2F�(0)

�
� n��

�
�
+
0;1(C) + �

+
0;1

Z 0

�1
�f�(�)d�

�
;

	L(h; n
��) = h

�
��1;2F�(0)� �+1;2(C)

�
� n��

�
��0;1

Z 0

�1
�f�(�)d�� �

�
0;1(C)

�
:

B�+m �B��m can be further simpli�ed:

B�+m �B��m � �1
�
e01�

�1
+ �+0;1(C) + e

0
1�

�1
� ��0;1(C)

�
+

�
�1
f 0x�(�)

fx�(�)
+ �01

��
e01�

�1
+ 	R(h; n

��)� e01��1� 	L(h; n
��)
�

+�1
f 0x�(�)

fx�(�)

"
�h
�
e01�

�1
+ �(+1)�

�1
+ �+0;1(C) + e

0
1�

�1
� �(�1)�

�1
� ��0;1(C)

�
+n��E [�]

�
e01�

�1
+ �+0;1(C) + e

0
1�

�1
� ��0;1(C)

� #
= �1

�
e01�

�1
+ �+0;1(C) + e

0
1�

�1
� ��0;1(C)

�
+h�01

�
e01�

�1
+ �+1;2(C) + e

0
1�

�1
� ��1;2(C)

�
� n���01

�
e01�

�1
+ �

+
0;1(C) + e

0
1�

�1
� �

�
0;1(C)

�
+h�1

f 0x�(�)

fx�(�)

��
e01�

�1
+ �+1;2(C) + e

0
1�

�1
� ��1;2(C)

�
�
�
e01�

�1
+ �(+1)�

�1
+ �+0;1(C) + e

0
1�

�1
� �(�1)�

�1
� ��0;1(C)

��
�n���1

f 0x�(�)

fx�(�)

h�
e01�

�1
+ �

+
0;1(C) + e

0
1�

�1
� �

�
0;1(C)

�
� E [�]

�
e01�

�1
+ �+0;1(C) + e

0
1�

�1
� ��0;1(C)

�i
� �1

�
e01�

�1
+ �+0;1(C) + e

0
1�

�1
� ��0;1(C)

�
+	(h; n��; �1;�

0
1):

B�+p �B��p can be approximated by a similar form except that �1 and �01 are replaced by �� (�) and �
0
� (�),

respectively. Finally,

B5n =
B�+m �B��m
B�+p �B��p

� ��(�) �
	(h; n��; �1;�

0
1)� �� (�)	(h; n��;�� (�) ; �0� (�))

�� (�)
�
e01�

�1
+ �+0;1(C) + e

0
1�

�1
� ��0;1(C)

�
which simpli�es to the form stated in the theorem.
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Supplementary Materials

1. Calculation in Example 2

In Example 2, x� � U [0; 3]. If u � U [�1; 1], then

fx;u(x; u) =
1

3
1 (0 � x� u � 3) 1

2
1 (�1 � u � 1)

=

8><>:
1
61 (�1 � u � x)
1
61 (�1 � u � 1)
1
61 (x� 3 � u � 1)

if x � 1;
if 1 < x < 2;

if x > 2;

and

fx(x) =

Z
fx;u(x; u)du =

8><>:
x+1
6 ;
2
6 ;

4�x
6 ;

if x � 1;
if 1 < x < 2;

if x > 2:

So

E[ujx] =
R
ufx;u(x; u)du

fx(x)
=

8><>:
x�1
2 ;

0;
x�2
2 ;

x � 1;
1 < x < 2;

x > 2:

When u � N(0; 1),

fx;u(x; u) =
1

3
1 (0 � x� u � 3)�(u) = 1

3
1 (x� 3 � u � x)�(u);

fx(x) =

Z
fx;u(x; u)du =

1

3
(�(x)� �(x� 3)) ;

where �(u) and �(u) are the pdf and cdf of the standard normal distribution, respectively. So

E[ujx] =

R
ufx;u(x; u)du

fx(x)
=

R x
x�3 u�(u)du

�(x)� �(x� 3)

=
�(x� 3)� �(x)
�(x)� �(x� 3) ;

where the last equality is from the fact that
R1
x
u�(u)du = �(x).

2. Extension of Goldberger (2008)

Suppose the forcing variable is x� in the sharp design. First, we �nd E[yjd�� = 1; x = �+]�E[yjd�� = 0; x =
��]. For this purpose, we need to develop the conditional densities fx�jd��;x (x

�jd��; x) and f"jd��;x ("jd
�
�; x)
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since y = m�
�(x

�) + ��d
�
� + " is a function of x

� and ". For d�� = 1,

fx�jd��;x (x
�jd�� = 1; x) =

fx�;xjd�� (x
�; xjd�� = 1)

fxjd�� (xjd�� = 1)
=
fxjx�;d�� (xjx

�; d�� = 1) fx�jd�� (x
�jd�� = 1)

fxjd�� (xjd�� = 1)

=
fxjx� (xjx�) 1 (x� � �) fx�jd�� (x

�jd�� = 1)
fxjd�� (xjd�� = 1)

=
fu(x� x�)1 (x� � �) fx� (x�) =(1� Fx�(�))R1

�
fu(x� x�)fx� (x�) =(1� Fx�(�))dx�

=
fx� (x

�) fu(x� x�)R1
�
fx� (x�) fu(x� x�)dx�

1 (x� � �) ;

so

E [m�
�(x

�)jd�� = 1; x] =
R1
�
m�
�(x

�)fx� (x
�) fu(x� x�)dx�R1

�
fx� (x�) fu(x� x�)dx�

=

R1
�
m�
�(x

�)fx�jx (x
�jx) dx�

1� Fx�jx (�jx)
:

Symmetrically,

E [m�
�(x

�)jd�� = 0; x] =
R �
�1m

�
�(x

�)fx� (x
�) fu(x� x�)dx�R �

�1 fx� (x
�) fu(x� x�)dx�

=

R �
�1m

�
�(x

�)fx�jx (x
�jx) dx�

Fx�jx (�jx)
:

We then develop the conditional density f"jd��;x ("jd
�
�; x). For d

�
� = 1, " = "1, then

f"jd��;x ("jd
�
� = 1; x) =

f";xjd�� ("; xjd
�
� = 1)

fxjd�� (xjd�� = 1)
=

R1
�
f1x�;" (x

�; ") fu(x� x�)dx�=(1� Fx�(�))R1
�
fx�(x�)fu(x� x�)dx�=(1� Fx�(�))

=

R1
�
f1x�;" (x

�; ") fu(x� x�)dx�R1
�
fx�(x�)fu(x� x�)dx�

;

so

E["jd�� = 1; x] =

R R1
�
"f1x�;" (x

�; ") fu(x� x�)dx�d"R1
�
fx�(x�)fu(x� x�)dx�

=

R1
�
E ["1jx�] fx�(x�)fu(x� x�)dx�R1
�
fx�(x�)fu(x� x�)dx�

= 0;

where the second equality is from Fubini�s theorem, and the last equality is from E ["1jx�] = 0. Symmetrically,
E["jd�� = 0; x] = 0.
In Example 3,R1

�
m�
�(x

�)fu(x� x�)fx� (x�) dx�R1
�
fu(x� x�)fx� (x�) dx�

=

R1
�

�
�0 + �1x

���(x� x�; 0; 1��� �2)�(x�;�; �2)dx�R1
�
�(x� x�; 0; 1��� �2)�(x�;�; �2)dx�

= �0 + �1

R1
�
x��(x� x�; 0; 1��� �

2)�(x�;�; �2)dx�R1
�
�(x� x�; 0; 1��� �2)�(x�;�; �2)dx�

= �0 + �1

R1
�
x��

�
x�; a(x); b2

�
dx�R1

�
� (x�; a(x); b2) dx�

= �0 + �1

�
a(x) + b�

�
a(x)� �

b

��
;

where �
�
x;�; �2

�
is the density of a normal distribution with mean � and variance �2, � (x) = � (x; 0; 1),

54



the third equality uses the facts that

�

�
x� x�; 0; 1� �

�
�2
�
�(x�;�; �2) = �

�
x�; a(x); b2

�
�

�
x;�;

�2

�

�
;

and the fourth inequality uses the fact that E[XjX > �] = �+ ��(c), where X � N
�
�; �2

�
, and c = ���

� .

Similarly, R �
�1m

�
�(x

�)fu(� � x�)fx� (x�) dx�R �
�1 fu(� � x�)fx� (x�) dx�

= �0 + �1

�
a(x)� b�

�
� � a(x)

b

��
:

Appendix C of Goldberger (2008) shows the special case with � = � = �0 = �0 = �1 = 0 and �1 = 1.

In this example, ujx � N(x� a(x); b2) � N(�ujx; b2), so the propensity score

p(x) = Fujx (x� �) = �
�
x� � � �ujx

b

�
= �

�
a(x)� �

b

�
;

and

E[yjx] = E [m�
�(x

�) + ��d
�
�jx] = E [m�

�(x
�)jx] + ��p(x)

=

Z x��

�1

�
�0 + �1(x� u)

�
�
�
u;�ujx; b

2
�
du+

Z 1

x��
(�0 + �1(x� u))�

�
u;�ujx; b

2
�
du

+��

Z x��

�1
�
�
u;�ujx; b

2
�
du

=
�
�0 + �1x

�
�

�
x� � � �ujx

b

�
� �1

�
(x� a(x))�

�
x� � � �ujx

b

�
� b�

�
x� � � �ujx

b

��
+(�0 + �1x) �

�
�ujx � (x� �)

b

�
� �1

�
(x� a(x))�

�
�ujx � (x� �)

b

�
+ b�

�
x� � � �ujx

b

��
+���

�
x� � � �ujx

b

�
=

�
�0 + �1a(x)

�
�

�
a(x)� �

b

�
+ (�0 + �1a(x))

�
1� �

�
a(x)� �

b

��
+
�
�1 � �1

�
b�

�
a(x)� �

b

�
+ ��b�

�
a(x)� �

b

�
= [�0 + �1a(x)] + �1 (a(x)� �) �

�
a(x)� �

b

�
+ �1b�

�
a(x)� �

b

�
+ ���

�
a(x)� �

b

�
;

which is a continuous function of x.

3. Simpli�cation of the Asymptotic Variance in Case 5

This section can be treated as an example of many simpli�cations in the main text. Suppose f� (�) is
symmetric, then we can show !

+�
j (C) = (�1)j!�+j (C), and !

++
j (C) = (�1)j!��j (C). We only show
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!
+�
j (C) = (�1)j!�+j (C) for illustration.

!
+�
j (C) =

Z 1

0

Z 0

�C�
k2 (v + C�) (v + C�)

j
f�(�)dvd�

=

Z 0

�1

Z 0

C�

k2 (v � C�) (v � C�)j f�(��)dvd�

=

Z 0

�1

Z �C�

0

k2 (�v � C�) (�v � C�)j f�(��)dvd�

= (�1)j
Z 0

�1

Z �C�

0

k2 (v + C�) (v + C�)
j
f�(�)dvd� = (�1)j!

��
j (C):

where the second and third equalities are from changing variables, and the second to last equality is from

the symmetricity of k(�) and f� (�). Given that

�+�(C) = e01�
�1
+ 
+�(C)�

�1
+ e1;�++(C) = e

0
1�

�1
+ 
++(C)�

�1
+ e1;

��+(C) = e01�
�1
� 
�+(C)�

�1
� e1;���(C) = e

0
1�

�1
� 
��(C)�

�1
� e1;

and �j = (�1)j+j , it is easy to show �+�(C) = ��+(C), and �++(C) = ���(C) by the same steps in

showing e01�
�1
+ 
+�

�1
+ e1 = e

0
1�

�1
� 
��

�1
� e1.

When "0, "1, �0 and �1 are independent of each other conditional on x
�, we can simplify E

�
R�20 jx� = �

�
as follows:

E
�
R�20 jx� = �

�
= E

�
�20jx� = �

� �
�20 (�) + �

2
1 (�)

�
+ ��(�)

2E
�
�20jx� = �

�
+ p2�(�)�

2
1 (�) + (1� p�(�))

2
�20 (�)

= �2�(�)E
�
�20jx� = �

�
+
�
p2�(�) + E

�
�20jx� = �

��
�21 (�) +

h
(1� p�(�))2 + E

�
�20jx� = �

�i
�20 (�)

= �2�(�)E
�
�20jx� = �

�
+ p�(�)�

2
1 (�) + (1� p�(�))�20 (�)

where the last equality is from E
�
�20jx� = �

�
= p�(�) (1� p�(�)). Similarly,

E
�
R�21 jx� = �

�
= �2�(�)E

�
�21jx� = �

�
+ (p�(�) + ��(�))�

2
1 (�) + (1� p�(�)� ��(�))�20 (�)

E [R�0�0jx� = �] = ��(�)E
�
�20jx� = �

�
, E [R�1�1jx� = �] = ��(�)E

�
�21jx� = �

�
:

Now,

�4 =
e01�

�1
+ 
+�

�1
+ e1

fx� (�)�
2
�(�)

��
E
�
R�20 jx� = �

�
+ E

�
R�21 jx� = �

��
�2��(�) [E [R�0�0jx� = �] + E [R�1�0jx� = �]]
+��(�)

2
�
E
�
�20jx� = �

�
+ E

�
�21jx� = �

��	
=

e01�
�1
+ 
+�

�1
+ e1

fx� (�)�
2
�(�)

�
�2�(�)E

�
�20jx� = �

�
+ p�(�)�

2
1 (�) + (1� p�(�))�20 (�)

+�2�(�)E
�
�21jx� = �

�
+ (p�(�) + ��(�))�

2
1 (�) + (1� p�(�)� ��(�))�20 (�)

���(�)2
�
E
�
�20jx� = �

�
+ E

�
�21jx� = �

��	
=

e01�
�1
+ 
+�

�1
+ e1

fx� (�)�
2
�(�)

�
(2p�(�) + ��(�))�

2
1 (�) + (2� 2p�(�)� ��(�))�20 (�)

�
:
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If �20 (�) = �
2
1 (�) = �

2,

�4 =
2�2

fx� (�)�
2
�(�)

e01�
�1
+ 
+�

�1
+ e1:

�5 (C) =
�+�(C) + �++(C)

4fx� (�)�
2
�(�)

�
e01�

�1
+ �+0;p(C)

�2 �E �R�20 jx� = ��+ E �R�21 jx� = ���
�2��(�) [E [R�0�0jx� = �] + E [R�1�1jx� = �]]g

+
e01�

�1
+ 
+�

�1
+ e1��(�)

2

4fx� (�)�
2
�(�)

�
e01�

�1
+ �+0;p(C)

�2 �E ��20jx� = ��+ E ��21jx� = ��	
=

�+�(C) + �++(C)

4fx� (�)�
2
�(�)

�
e01�

�1
+ �+0;p(C)

�2 ��2�(�)E ��20jx� = ��+ p�(�)�21 (�) + (1� p�(�))�20 (�)
+�2�(�)E

�
�21jx� = �

�
+ (p�(�) + ��(�))�

2
1 (�) + (1� p�(�)� ��(�))�20 (�)

�2��(�)2
�
E
�
�20jx� = �

�
+ E

�
�21jx� = �

��	
+

e01�
�1
+ 
+�

�1
+ e1��(�)

2

4fx� (�)�
2
�(�)

�
e01�

�1
+ �+0;p(C)

�2��(�)2 �E ��20jx� = ��+ E ��21jx� = ���
=

�+�(C) + �++(C)

4fx� (�)�
2
�(�)

�
e01�

�1
+ �+0;p(C)

�2 �(2p�(�) + ��(�))�21 (�) + (2� 2p�(�)� ��(�))�20 (�)
���(�)2

�
E
�
�20jx� = �

�
+ E

�
�21jx� = �

��	
+

e01�
�1
+ 
+�

�1
+ e1��(�)

2

4fx� (�)�
2
�(�)

�
e01�

�1
+ �+0;p(C)

�2��(�)2 �E ��20jx� = ��+ E ��21jx� = ��� :
If �20 (�) = �

2
1 (�) = �

2,

�5 (C) =
2�2 � �2�(�)

�
E
�
�20jx� = �

�
+ E

�
�21jx� = �

��
fx� (�)�

2
�(�)

�+�(C) + �++(C)

4
�
e01�

�1
+ �+0;p(C)

�2
+
��(�)

2
�
E
�
�20jx� = �

�
+ E

�
�21jx� = �

��
fx� (�)�

2
�(�)

e01�
�1
+ 
+�

�1
+ e1

4
�
e01�

�1
+ �+0;p(C)

�2 :
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