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Abstract

This paper studies the estimation and speci�cation testing in quantile threshold regression. First, we

put forward a new estimator of the threshold point, the integrated quantile threshold regression estima-

tor, derive its asymptotic distribution in both the �xed-threshold-e¤ect framework and the shrinking-

threshold-e¤ect framework. This new estimator integrates much of the quantile di¤erence information

between the two regimes, so is more e¢ cient than the existing estimators such as the least squares esti-

mator and the least absolute deviation estimator. It is actually comparable to the maximum likelihood

estimator, so can serve as a better starting point in the adaptive estimation of the threshold point.

Inference methods on the threshold point in both frameworks are also discussed. Second, based on the

usual conditional quantile threshold process, we de�ne and estimate the marginal distributional threshold

process and the marginal quantile threshold process, and provide both the asymptotic and resampling

inference methods for these processes. Third, we propose a new score-type test in testing the existence

of any quantile threshold e¤ect. This type of test is more powerful than the conventional tests based

solely on the least squares estimator or the least absolute deviation estimator. Comparing with the usual

Wald-type test, it is computationally less intensive, and its critical values are easier to obtain by the

simulation method. Simulation studies con�rm the theoretical analysis, and the new estimation and

testing procedures are applied to an economic growth model.
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1 Introduction

Since the pioneering work by Tong (1978, 1983), threshold models get much popularity in current applied

statistical and econometric practice. An encyclopedic survey is available in Tong (1990) and a selective review

of the history is given by Tong (2011); see also Hansen (2011) for a summary of applications especially in

economics. The usual setup of the threshold regression model is

y =

(
(1; x0; q)�1 + e1 � x0�1 + e1
(1; x0; q)�2 + e2 � x0�1 + e2

q � ;

q > ;
(1)

where q is the threshold variable used to split the sample, x 2 Rd�2, and � = (�01; �02)0 2 R2d are identi�ed
by some conditional moment restrictions, e.g., E [e`jx; q] = 0, ` = 1; 2, identi�es � as the conditional mean
parameters and correspondingly,  is identi�ed by the least squares estimator (LSE). In practice, quantile

threshold e¤ects are also of interest; see, e.g., Section 2 of Oka and Qu (2011) for some empirical examples.

Quantile threshold regression explores a set of moment conditions: Q� [e`jx; q] = 0, � 2 T = [� ; � ] � (0; 1)
with � > 0 and � < 1, where Q� [�] is the �th quantile of the argument. Under such moment restrictions, it
is more convenient to rewrite (1) as

y =

(
x0�1 (�) + e1� ;

x0�2 (�) + e2� ;

q � ;

q > ;
(2)

to allow both �` and e` to depend on the quantile index � . The parameters of interest are f; � (�)g�2T
with � (�) = (�1 (�)

0
; �2 (�)

0
)0.

A key observation in model (2) is that although � (�) depends on � , the threshold parameter  is invariant

to � . In other words, there is a shift in the conditional distribution of y at q = , so all quantile di¤erences

between these two regimes can be integrated to identify  or test whether there are threshold e¤ects. This

of course will improve the e¢ ciency of the usual quantile threshold estimator and the power of the usual

speci�cation testing based on only one quantile di¤erence. Also, the set of � di¤erences, f�2 (�)� �1 (�)g�2T ,
will provide a more complete picture about the threshold e¤ects in the conditional distribution of y than a

single � di¤erence resulting from the LSE.

The contributions of this paper are threefold. First, we put forward a new estimator of , called the

integrated quantile threshold regression estimator (IQTRE). We derive its asymptotic distribution in both

the �xed-threshold-e¤ect framework of Chan (1993) and the shrinking-threshold-e¤ect framework of Hansen

(2000). We also discuss the inference methods in both frameworks. To motivate our new estimator, consider

the following simple example. Suppose y = �1e1(q � ) + �2e1(q > ), where 1(�) is the indicator function,
�1 6= �2, e is independent of q, and E[e] = 0. In this simple model, there is no threshold e¤ect in the

conditional mean of y given that E[yjq] = 0 for any q, so the least squares estimator (LSE) cannot identify
. If we further assume that e is symmetric about zero, then the least absolute deviation estimator (LADE)

cannot identify  either since Q0:5[yjq] = 0 for any q. In a more general model like y = e11(q � )+e21(q > )

with Q� [e1jq = �] = Q� [e2jq = +], even the �th quantile regression estimator (QRE) cannot identify

. In other words, any single characteristic of the conditional distribution of y, such as the conditional

mean or conditional quantile, cannot guarantee the identi�cation of  without ex ante knowledge on the

conditional distribution of y. However, the only information available in practice is usually that there

are some di¤erences between the two regimes in the conditional distribution of y. Based on such little

information, we can integrate enough many quantile di¤erences to identify , which does not require any

ex ante knowledge on the existence of the threshold e¤ect at a speci�c � . Even if  can be identi�ed by a
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single characteristic of the conditional distribution of y, we expect the IQTRE to be more e¢ cient since it

uses more information to identify . Note that the collected conditional quantiles are the inverse function of

the conditional distribution, and they contain the same information, so integrating all quantile di¤erences to

identify  is equivalent to identify  based on the conditional distribution of y. In other words, the IQTRE

would have similar e¢ ciency as the maximum likelihood estimator (MLE) in Yu (2012). This result is

quite surprising since we do not specify the conditional distribution of y parametrically while obtain similar

e¢ ciency as a parametric estimator. In summary, the IQTRE is expected to have more identi�cation power

and be more e¢ cient than the existing estimators. Furthermore, we treat the IQTRE as an intermediate

estimator, and use it as the starting point of the adaptive estimator of , the semiparametric empirical Bayes

estimator (SEBE) proposed in Yu (2008). Given that the IQTRE is more e¢ cient than the LSE and the

LADE, we expect the new SEBE performs better in �nite samples. As to the inference of , we suggest

the nonparametric posterior interval (NPI) of Yu (2008) in Chan�s framework. In Hansen�s framework, we

suggest the likelihood-ratio-based con�dence interval (LR-CI) of Hansen (2000), with the only di¤erence

being that the likelihood ratio is based on the objective function of the IQTRE rather than the LSE.

Second, based on the conditional quantile (CQ) threshold process, we de�ne the marginal distributional

(MD) threshold process and the associated marginal quantile (MQ) threshold process, provide estimators

for them and derive the corresponding weak limits. We also discuss both the asymptotic and resampling

inference methods for these stochastic processes. Third, we propose a new score-type test in testing whether

there is a threshold e¤ect at some � 2 T . This type of test is more powerful than the conventional tests based
solely on the LSE or the LADE. Comparing to the usual Wald-type test, this type of test is computationally

less intensive, and its critical values are easier to obtain by the simulation method of Hansen (1996).

There exists some literature on the estimation of  and conditional quantile threshold e¤ects. In the

framework of Hansen (2000), Caner (2002) derives the asymptotic distribution of the LADE and argues that

the LADE of  is more e¢ cient than the LSE when the error term has a heavy tail just as in the regular

parameter case. Cai and Stander (2008) consider the quantile self-exciting threshold autoregressive (Q-

SETAR) model within the Bayesian framework, but they are only interested in regular parameters f� (�)g�2T
and do not derive the asymptotic properties of their estimators. Cai (2010) considers the forecasting problem

in the framework of Cai and Stander (2008). Galvao et al. (2011) discuss also the Q-SETAR model, but

their theoretical analyses focus mainly on the estimation and inference of f� (�)g�2T ; for , only consistency
is proved. In the related structural change literature, Bai (1995) discusses the asymptotic distribution of

the LADE in both frameworks with one break point, and Bai (1998) extends to the LADE with multiple

(possibly in�nite many) break points in the framework of Hansen (2000). Chen (2008) extends Bai�s work to

a single QRE, and Oka and Qu (2011) extend further to the estimation based on multiple quantile changes

in Hansen�s framework and for repeated-sections. As to the inference of , Caner (2002) suggests the LR-

CI based on the objective function of the LADE. In the structural change literature, all CIs of the break

dates are Wald-type; this type of CIs invert the t-statistic and are tractable in Hansen�s framework. There

is also some literature concentrating on the speci�cation testing of threshold models. Su and Xiao (2008)

consider the sup-Wald test and Qu (2008) considers also the subgradient-based test for structural changes in

regression quantiles. Kato (2009) extends the scope of convexity arguments to the case where estimators are

obtained as stochastic processes and applies this technique to test the existence of median threshold e¤ects

using the sup-Wald statistic.

The rest of this paper is organized as follows. Section 2 uses two examples to justify our speci�cation of

(2) and de�ne all new estimators in this paper. Section 3 derives the asymptotic distribution of the IQTRE

and discuss the inference of  in both frameworks. Section 4 contains the weak limits for the CQ, MD and MQ

threshold processes, and also both the asymptotic and resampling inference methods for these three stochastic
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processes. Section 5 constructs the new score-type test and simulates its critical values. Section 6 and 7

include some Monte Carlo simulation results and an application in the economic growth model, respectively,

and Section 8 concludes and proposes some future research plans. All proofs and lemmas are given in

Appendix A and B, respectively. A word on notation: ` is always used for indicating the two regimes in

(2), so is not written out explicitly as "` = 1; 2" throughout the paper. �` (�) = (�`1 (�) ; �0`x (�) ; �`q (�))
0 ��

�`1 (�) ; �
0
`
(�)
�0
and � (�) = �1 (�) � �2 (�). Parameters with superscript 0 (e.g., �0` (�)) or subscript 0

(e.g., �`0, 0, �0) denote their true values.  signi�es the weak convergence over a compact metric space.

`1(F) is the space of real-valued bounded functions de�ned on the index set equipped with the supremum
norm k�k`1(F). kxk1 =

P
i jxij is the `1 norm of a vector x, kxk2 =

pP
i x

2
i is the Euclidean norm, and

kxk1 = maxi jxij is the sup-norm. k�k without subscript means the Euclidean norm.

2 The Setup and Estimators

We �rst consider two examples where the moment conditions Q� [e`� jx; q] = 0, � 2 T , are satis�ed. Suppose
�rst there is not heteroskedasticity in each regime, that is, e` = �`e with e being independent of (x0; q)0.

Such a speci�cation is considered in the original quantile regression literature such as Koenker and Bassett

(1978). For model identi�ability, we assume that e has median zero and E[e2] = 1. In this case, �
`
(�) = �

`

invariant of � , �`1 (�) = �`1 + �`�� , and e`� = �` (e� �� ), where �`1 is the intercept in the LAD estimation,
and �� is the �th quantile of e. If there is heteroskedasticity in each regime, assume e` = (x0�`) e with e

similarly speci�ed as in the �rst example. Such a speci�cation is considered in, e.g., Koenker and Bassett

(1982), Gutenbrunner and Jureµcková (1992), and Koenker and Xiao (2002). In this case, �` (�) = �` + �`��

and e`� = x0`�` (e� �� ) if x0�` � 0 for all x in regime `, �` (�) = �` + �`�1�� and e`� = x0�` (e� �1�� ) if
x0�` < 0 for all x in regime `, where �` is the parameter in the median regression. Note that it is possible

for x0�` to have the same sign in regime ` no matter (x0; q)0 is bounded or not.1 Note also that if e has a

continuous distribution in both examples, then � (�) is a continuous function of � . Although the quantile

threshold speci�cation (2) seems restrictive, it is actually far from it. For example, a subset of �` (�) may

be restricted to be constant over the two regimes to allow for partial structural changes; x may include

functions (e.g., polynomials or B-splines) of the original covariates so that the conditional quantile of y may

be a nonlinear function of the original (x0; q)0.

We next de�ne the IQTRE of . For this purpose, we �rst de�ne the QRE of . Suppose a random

sample fwigni=1 is observed, where wi = (yi; x0i; qi)
0 , the QRE of  is usually de�ned by a pro�led procedure.

b� = argmin


Q�n () ;

where

Q�n () = min
�1;�2

1

n

nX
i=1

�� (yi � x0i�11(qi � )� x0i�21(qi > )) ,

and

�� (z) = z(� � 1 (z � 0))

is the check function of quantile regression. Usually, there is an interval of  minimizing this objective

function. Most literature in threshold regression takes the left endpoint of the interval as the minimizer

1 If (x0; q)0 is bounded, x0�` is bounded, so it is possible for x0�` to maintain the same sign for all x in regime ` as long
as �` is suitably de�ned. Even if (x0; q)0 is unbounded, this assumption can still hold. For example, suppose x = x 2 R+ �
fzj z 2 R and z � 0g; then x0�` will have the same sign for all x no matter �` is positive or negative. It is not hard to check
that this assumption may still hold when x includes other covariates.
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and calls the estimator as the left-endpoint QRE (LQRE). Yu (2008a, 2012) shows in the least squares

estimation that the middle point of the interval is more e¢ cient than the left endpoint in most cases, so we

will concentrate on the middle-point QRE (MQRE) in the following discussion. We now de�ne the IQTRE

of  as

b = argmin


QTn () ;where QTn () �
TX
t=1

Q�tn () , and �t 2 T ; t = 1 � � � ; T: (3)

Due to a technical reason, T in the de�nition of IQTRE is �nite. In practice, T can be chosen freely to

capture the threshold e¤ects at all possible quantiles. Also, if we have prior information on the magnitude of

� (�), � 2 T , then we can put more weights on the ��s with � (�) being large, and the corresponding objective
function changes to

XT

t=1
! (�t)Q�tn () with

XT

t=1
! (�t) = 1. The objective function in (3) corresponds

to ! (�t) = 1=T for all t 2 f1 � � � ; Tg.
We are now ready to estimate the MD threshold e¤ects. For this purpose, we need �rst estimate the QR

processes �`(�). Let

b�1 (�) = argmin
�1

nX
i=1

�� (yi � x0i�1) 1(qi � b);
b�2 (�) = argmin

�2

nX
i=1

�� (yi � x0i�2) 1(qi > b);
then we can estimate the conditional distribution of y given (x0; q)0 in each regime, F`(yjx; q), as

bF`(yjx; q) = "+

Z 1�"

"

1
�
x0b�` (�) � y

�
d�; (y; x0; q)0 2 Y`X`Q`;

where T is restricted as ["; 1� "] for some small constant " > 0, and Y`X`Q` is the product space of Y`, X`,
and Q` with Y`, X`, and Q` being the interested area of y , x and q. Usually, Y1X1 and Y2X2 are the same,
say, the support of y and x, and Q1 = [q; 0], Q2 = [0; q] with [q; q] being the support of q. Then the MD
threshold e¤ect, which is de�ned as

�D(y) = F1(y)� F2(y);

can be estimated by2 b�D(y) = bF1(y)� bF2(y);
where

F`(y) �
Z
X`Q`

F`(yjx; q)dF`(x; q)

is the marginal distribution of y on the interested area of (x0; q)0, F`(x; q) is the joint distribution of (x0i; qi)
0

truncated on X`Q`, bF`(y) � Z
X`Q`

bF`(yjx; q)d bF`(x; q);
and bF`(x; q) = n�1`

Xn

i=1
1(xi � x; qi � q; xi 2 X`; qi 2 Q`); (x0; q)0 2 X`Q`

with n` =
Xn

i=1
1(xi 2 X`; qi 2 Q`) is the empirical distributional function of (x0; q)0 on X`Q`. So the MD

threshold e¤ect covers the di¤erence not only in the conditional distribution of y given (x0; q)0 but also in

2We can estimate F`(y) by the empirical distribution of yi�s such that (x0i; qi)
0 2 X`Q`. However, incorporating the

information in the covariates can improve the e¢ ciency of such estimation.
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the marginal distribution of (x0; q)0 between these two regimes. Note also that �D(y) and b�D(y) are well
de�ned only on Y � Y1 \ Y2. Given b�D, we can estimate the MQ threshold e¤ect

�Q(�) = F�11 (�)� F�12 (�) � Q1(�)�Q2(�); � 2 T

by b�Q(�) = bF�11 (�)� bF�12 (�) � bQ1(�)� bQ2(�); � 2 T ;
where F�1` : Y` 7�! T is the left-inverse function of F`. Note here that bF`(y) is necessarily weakly increasing.
3 Asymptotics for the IQTRE

In this section, we derive the asymptotic distributions of b in two frameworks of the quantile threshold
e¤ects. We also discuss some valid inference methods for .

3.1 Asymptotics with Fixed Threshold E¤ects

Before stating the asymptotic theory for the IQTRE, we �rst specify some regularity conditions.

Assumption D:

1. wi 2W � R� X�Q � Rd are i.i.d. sampled.  2 � = [; ] � R with � being compact. 0 is in the
interior of �.

2. �` (�) 2 B � Rd with B being compact for all � 2 T . �0` (�) is in the interior of B. �01 (�t) 6= �02 (�t)

for at least one t, where 6= means at least one element of the vector is not equal.

3. The conditional density f(yjx; q) exists, and is bounded and uniformly continuous in y, uniformly in
x 2 X and q � 0 (q > 0).

4. fq(�) is continuous, and 0 < f
q
� fq() � fq <1 for  2 �. P

�
q < 

�
> 0 and P (q > ) > 0:

5. E
�
fe1� jx;q(0jx; q)xx0

�� q�, E �fe2� jx;q(0jx; q)xx0�� q� and E[xx0j q] are bounded and continuous in q for
q 2 N , where N is a neighborhood of 0.

6. The minimum eigenvalue of E
�
fe1� jx;q(0jx; q)xx0

�� q� (E �fe2� jx;q(0jx; q)xx0�� q�) is bounded away from
zero uniformly over � 2 T and q � 0 (q > 0), and the minimum eigenvalue of and E[xx0j q] is
bounded away from zero uniformly over q 2 �.

7. E
h
kxk2+"

i
<1 for some " > 0.

8. Both z1Ti and z2Ti have continuous distributions, where z1Ti follows the conditional distribution of

z1Ti given qi = 0 with

z1Ti =

TX
t=1

z1�ti =

TX
t=1

�
��t
�
e1�ti + x

0
i�
0
1 (�t)� x0i�02 (�t)

�
� ��t (e1�ti)

�
and z2Ti follows the limiting conditional distribution of z2Ti given qi = 0 with

z2Ti =
TX
t=1

z2�ti =
TX
t=1

�
��t
�
e2�ti + x

0
i�
0
2 (�t)� x0i�01 (�t)

�
� ��t (e2�ti)

�
:
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Denote z`T i as
PT

t=1 z`�ti.

Assumption D1 is a standard assumption on the sample space and the parameter space of . Assumption

D2 implies that there is a quantile threshold e¤ect among f�1; � � � ; �T g although this need not be true for
each �t. If �01 (�t) = �02 (�t) for some t, then z`�ti will not appear in z`T i. Nevertheless, as long as there is one

�t such that �01 (�t) 6= �02 (�t), z`T i will not degenerate, and E [z`T i] > 0 given that 0 is the unique minimizer

of E [��t (e`�ti + x
0
i�) jqi = 0] which is implied by Assumption D6. Note that z`T i is quite di¤erent from z`i

in least squares regression, where

z1i =
�
x0i
�
�01 � �02

�
+ e1i

�2 � e21i = n2x0i ��01 � �02� e1i + ��01 � �02�0i xix0i ��01 � �02�o ;
z2i =

�
x0i
�
�02 � �01

�
+ e2i

�2 � e22i = n�2x0i ��01 � �02� e2i + ��01 � �02�0 xix0i ��01 � �02�o ;
see, e.g., Chan (1993). As long as xi is bounded, z`T i is bounded. However, z`i is unbounded as long as

e`i is unbounded. Since z`T i and z`i are the only di¤erence in the asymptotic distributions of the IQTRE

and the LSE, the IQTRE is robust to outliers of y in the estimation of . This is understandable, since 0
is identi�ed by the quantile di¤erences in its left and right neighborhoods, and the quantile estimation is

robust to outliers of y. Assumptions D3 and D7 are borrowed from Angrist et al. (2006) (Assumptions 2 and

4 of Theorem 3) and Chernozhukov et al. (2012) (Assumptions (b) and (d) of Condition QR) to facilitate

the derivation of the weak limits of the CQ, MD and MQ threshold processes. Assumption D4 implies that

 is not on the boundary of the q�s support. Assumption D5 imposes some restrictions on the continuity

of fe`� jx;q(0jx; q)fxjq(xjq) for q 2 N . Assumption D6 is stronger than the usual assumptions in QR, e.g.,
Assumption 3 of Theorem 3 in Angrist et al. (2006) or Assumption (c) of Condition QR in Chernozhukov

et al. (2012). Combining with Assumption D4, it implies the usual assumptions in the current context, e.g.,

J1(�) = E
�
xx0fe1� jx;q(0jx; q)1 (q � 0)

�
and J2(�) = E

�
xx0fe2� jx;q(0jx; q)1 (q > 0)

�
(4)

are positive de�nite uniformly over � 2 T . Also, E[xx0j q = 0] > 0, combined with Assumption D2, excludes

the continuous threshold model of Chan and Tsay (1998) for all t = 1; � � � ; T .
Assumption D8 need further explanation. This assumption guarantees that n (b � 0) is uniquely de-

�ned even asymptotically. It is not obvious that z`T i has a continuous distribution. In the supplementary

materials, we show that when q is the only covariate, the distribution of z`�i is a mixture of discrete and

continuous, violating Assumption D8. We also provide some su¢ cient conditions to guarantee the unique-

ness of n (b � 0) in large samples when the distribution of z`�i has discrete components. However, these
conditions are not satis�ed in a typical setup of this paper. Nevertheless, as long as x0i

�
�01 (�)� �02 (�)

�
has

a continuous distribution, z`�i will have a continuous distribution. Correspondingly, z`T i will have a contin-

uous distribution. This is because, conditional on e`�i, z`�i has a continuous conditional distribution, while

the distribution of z`�i is just the average of these conditional distributions so is continuous. To guarantee

x0i
�
�01 (�)� �02 (�)

�
to have a continuous distribution, we require only one element of x to be continuously

distributed. This of course allows x to include discrete covariates, e.g., the intercept or a dummy variable.

Since z`�i is de�ned conditional on qi = 0, the element associated with qi in x0i
�
�01 (�)� �02 (�)

�
becomes

constant, so we must require at least one element of x to be continuously distributed conditional on q = 0.

We now state the asymptotic distribution of n (b � 0).
Theorem 1 Under Assumption D,

n (b � 0) d�! argmin
v

DT (v) � Z ;
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where

DT (v) =

8>><>>:
N1(jvj)P
i=1

z1Ti, if v � 0;
N2(v)P
i=1

z2Ti, if v > 0;

is cadlag with DT (0) = 0, and N` (�) is a Poisson process with intensity fq(0), ` = 1; 2. Furthermore,

fz1Ti; z2Tigi�1, N1(�) and N2(�) are independent of each other.

The simplest corollary of Theorem 1 is that when T = 1 and �01 (�) 6= �02 (�), DT (v) in the theorem

is changed to D� (v), where D� (v) is de�ned similar as DT (v) except that z`�i replaces z`T i. In the

supplementary materials, we discuss the conditions to guarantee the symmetry of the distribution of argmin
v

D� (v). Also, given that E [z`�i] > 0 when �01 (�) 6= �02 (�), E[z`T i] � E [z`�i], which implies that b is more
e¢ cient than b� which is based on a single quantile threshold regression.
In this framework, Yu (2008) shows that  can be adaptively estimated by the semiparametric empirical

Bayes estimator (SEBE) as long as an n-consistent estimator of  is available. In his Section 5.2, the author

also mentions that the initial estimator of  is very important for the performance of the SEBE in �nite

samples.3 Given that the IQTRE is more e¢ cient than the usual LSE and the LADE, we expect that the

SEBE started from the IQTRE performs better than that started from the LSE or LADE. The simulation

studies in Section 6 will convince this result.

3.2 Asymptotics with Shrinking Threshold E¤ects

Another popular asymptotic framework in quantile threshold regression is to assume the quantile threshold

e¤ects �n shrinking to zero asymptotically, where

�n = (�
0
1n; � � � ; �0Tn)

0 with �tn � �01 (�t)� �02 (�t) .

This framework is suitable to the case where the quantile threshold e¤ects are relatively small for the given

sample size.

Theorem 2 Under Assumptions D1-D7 and k�nk ! 0,
p
n k�nk ! 1,

nfq(0)

�
�1Tn
�Tn

�2
(b � 0) d�! �(�);

where

�`Tn =
XT

t=1
�0tnE

h
fe`�t jx;q(0jx; q)xx

0jq = 0

i
�tn;

�2Tn =
XT

t=1

XT

t0=1
(�t ^ �t0 � �t�t0)�0tnE [xx0jq = 0] �t0n;

�(�) = argmax
v

(
W1(�v)� jvj

2 ;

W2(v)� � jvj2 ;
if v � 0;
if v > 0;

with

� = lim
n!1

�2Tn
�1Tn

2 (0;1);

3The simulation studies in Oka and Qu (2011) show that the performance of CIs for �tn � �01 (�t) � �02 (�t) also critically
depends on the precision of b.
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and W`(v), ` = 1; 2, being two independent standard Wiener processes de�ned on [0;1).

This asymptotic result is parallel to Corollary 1 of Oka and Qu (2011) and Theorem 1 of Caner (2002).

However, we do not assume k�tnk, t = 1; � � � ; T , to have the same convergence rate as in Oka and Qu (2011)
or even each component of �tn for a �xed t to have the same convergence rate n��, 0 < � < 1=2, as in Caner

(2002), so some k�tnk may be smaller (or even zero) than others. Given that E [fe1� (0jx; q)xx0jq = 0] and

E [xx0jq = 0] are positive de�nite for any � 2 T , the convergence rate is determined by nmaxt=1;��� ;T k�tnk2

(or n�0n�n). In other words, the convergence rate is determined by the largest quantile threshold e¤ect among

all �t, t = 1; � � � ; T . If �tn = �tn
�� with �t 6= 0 for all t = 1; � � � ; T , then the convergence rate is n1�2�, the

same rate as in Theorem 1 of Caner (2002). In this case, we can calculate � and the normalizing coe¢ cient

n2�
�
�1Tn
�Tn

�2
for the two examples in Section 2. In the �rst example,

� =

XT

t=1
�0tE

�
fe(F

�1
e (�t))=�20xx

0jq = 0
�
�tXT

t=1
�0tE

�
fe(F

�1
e (�t))=�10xx0jq = 0

�
�t

=
�10
�20

,

n2�
�
�1Tn
�Tn

�2
=

�XT

t=1
fe(F

�1
e (�t))�

0
tE [xx

0jq = 0] �t

�2
�210
XT

t=1

XT

t0=1
(�t ^ �t0 � �t�t0)�0tE [xx0jq = 0] �t0

;

and in the second example,

� =

XT

t=1
fe(F

�1
e (�t))�

0
tE
h
xx0

x0�2

��� q = 0

i
�tXT

t=1
fe(F

�1
e (�t))�0tE

h
xx0

x0�1
jq = 0

i
�t

, n2�
�
�1Tn
�Tn

�2
=

�XT

t=1
fe(F

�1
e (�t))�

0
tE
h
xx0

x0�1

��� q = 0

i
�t

�2
XT

t=1

XT

t0=1
(�t ^ �t0 � �t�t0)�0tE [xx0jq = 0] �t0

:

The distribution of �(�) can be found in Appendix B of Bai (1997). When � = 1, this distribution is

symmetric.

We now discuss the e¢ ciency of b in this framework. First, di¤erent from the e¢ ciency results in the

framework with �xed threshold e¤ects, it is hard to compare the e¢ ciency of b and b� : n2� ��1Tn�Tn

�2
need

not be an increasing functions of T . Second, it is hard to compare the e¢ ciency of b� and bLSE even for
� = 0:5 and �n = �n�� in the �rst example of Section 2. In this case,

n1�2� (b0:5 � 0) d�! �210
4fe(0)2fq(0)�0E [xx0jq = 0] �

e��1; �10
�20

�
;

while

n1�2� (bLSE � 0) d�! �210
fq(0)�0E [xx0jq = 0] �

e���220
�210

; 1

�
;

where e�(�; �) = argmax
v

(
W1(�v)� jvj

2 ;p
�W2(v)� � jvj2 ;

if v � 0;
if v > 0;

(5)

The distributions of e��1; �10�20

�
and e���220

�210
; 1
�
are not the same and hard to compare, e.g., the density ofe��1; �10�20

�
is continuous while e���220

�210
; 1
�
is not unless �10 = �20 (see Appendix B of Bai (1997)). Only in

the special case �10 = �20, the relative e¢ ciency of the LADE and the LSE is determined by the relative

magnitude of V ar(e) and (2fe(0))
�2, just as in the usual comparison between the LSE and the LADE in

regular models (see page 415 of Bai (1995) and page 805 of Caner (2002)).
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3.3 Inference Methods

In the framework with �xed threshold e¤ects, Yu (2008) show that the nonparametric posterior interval

(NPI) started from any n-consistent estimator of  is a valid CI for  and performs the best among all

available CIs. Given that the IQTRE performs better than the LSE and the LADE, we expect that the

NPI started from the IQTRE should perform better than that started from the LSE or the LADE in �nite

samples. The simulation studies in Section 6 convince this result. The algorithms for the SEBE and NPI

are included in the supplementary materials.

In the framework with shrinking threshold e¤ects, we can construct the Wald-type CI by inverting the

asymptotic distribution of b in Theorem 2 as in Oka and Qu (2011). However, due to the identi�cation failure
when �n = 0, this Wald-type CI performs poorly, which is con�rmed in the simulation studies of Yu (2008).

Hansen (2000) suggests to construct a CI for  in the least squares estimation by inverting the likelihood

ratio (LR) statistic; this method is also used in the LAD estimation of Caner (2002). The likelihood ratio

statistic can be used to test whether  = 0, and is constructed in our context as

LRn () = n
�1Tn
�2Tn

(QTn ()�QTn (b))
Corollary 1 Under Assumptions D1-D7 and k�nk ! 0,

p
n k�nk ! 1,

LRn (0)
d�!M;

where M follows the distribution P (M � z) = (1� e�z)(1� e��z), where � is de�ned in Theorem 2.

To construct a CI for  based on LRn (), we need to estimate �1Tn, �2Tn and �.
4 Along the lines of

Hansen (2000, Section 3.4), let r`ti = (�0tnxi)
2
fe`�t (0jxi; qi), and r3ti = (�

0
tnxi)

2; then

�`Tn =
XT

t=1
E [r`tijqi = 0] , �2Tn =

XT

t=1

XT

t0=1
(�t ^ �t0 � �t�t0)E [r3tijq = 0] :

So we can estimate �`Tn and �2Tn by standard nonparametric techniques such as kernel smoothing or series

approximation (see, e.g., Härdle and Linton (1994), Pagan and Ullah (1999), Ichimura and Todd (2007),

and Li and Racine (2007) for an introduction). For example, suppose the kernel smoothing is used; then in

�nite samples, r`ti can be replaced by br`ti = �b�0tnxi�2Kh`t (be`�ti), r3ti is replaced by br3ti = �b�0tnxi�2, and
0 is replaced by b, where b�tn = b�1 (�t) � b�2 (�t), and Kh(�) = K(�=h)=h with K(�) being a kernel function
and h being the bandwidth. Alternatively, br`ti can be �b�0tnxi�2 2h`t

x0i
b�`(�t+h`t)�x0ib�`(�t�h`t) , where fe`�t (0jxi; qi)

is estimated by the di¤erence quotient estimator. The kernel function is not crucial in kernel smoothing. As

to the bandwidth selection, see Koenker (1994) for some practical suggestions. Given all these components,

the (1� �) LR-CI for  is n
 :dLRn () �dcrito ;

wheredLRn () replaces �1Tn and �2Tn in LRn () by their estimates, and dcrit is the (1 � �) quantile of M

with � being substituted by its estimate.

4Note that the LR-CI does not need to estimate fq(0) as in the Wald-type CI.
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4 Asymptotics for the CQ, MD and MQ Threshold E¤ects

To state the weak limits of the MD and MQ threshold processes, we �rst state the weak limit of b�(�).
The following theorem shows that the weak limit of b�(�) is not a¤ected by the estimation of , and is
actually independent of the asymptotic distribution of b in both frameworks. We �rst de�ne the meaning
of the independence between a random variable (r.v.) and a stochastic process and between two stochastic

processes.

De�nition 1 A r.v. X and a stochastic process Y (�) indexed by � 2 T are said to be independent if X is

independent of all the �nite dimensional marginals (Y (�1) ; � � � ; Y (�k)) of Y (�). Two stochastic processes
X (�) and Y (�) indexed by � 2 T are said to be independent if all the �nite dimensional marginals of the

two processes (X (�1) ; � � � ; X (�k)), (Y (� 01) ; � � � ; Y (� 0l )) are two vector r.v.�s independent from each other.

Theorem 3 Under Assumption D and sup
�2T

k�0(�)k = O(k�nk), no matter �n is �xed or shrinks to zero,

J1(�)
p
n
�b�1(�)� �01(�)� Z1(�);

J2(�)
p
n
�b�2(�)� �02(�)� Z2(�);

where J`(�) is de�ned in (4), Z1(�) is a zero-mean Gaussian process with the covariance function

�1 (�; �
0) � E [Z1(�)Z1(�

0)] = (min (�; � 0)� �� 0)E [xx01 (q � 0)] ;

and Z2(�) is similarly de�ned with the covariance function

�2 (�; �
0) � E [Z2(�)Z2(�

0)] = (min (�; � 0)� �� 0)E [xx01 (q > 0)] :

Furthermore, Z in Theorem 1 (or �(�) in Theorem 2), Z1(�) and Z2(�) are independent.

If �n is �xed, sup
�2T

k�0(�)k = O(k�nk) automatically holds. If k�nk ! 0, sup
�2T

k�0(�)k = O(k�nk)means that

the threshold e¤ects at f�tgTt=1 are the largest (in rate) possible threshold e¤ects. An immediate corollary
of the Theorem above is the weak limit of the CQ threshold process, b�(�) � b�1(�)� b�2(�).
Corollary 2 Under Assumption D, no matter �n is �xed or shrinks to zero,

p
n
hb�(�)� �0(�)i J1(�)�1Z1(�)� J2(�)�1Z2(�);

where the process on the right-hand side is a zero-mean Gaussian process with the covariance function

� (�; � 0) = (min (�; � 0)� �� 0)
�
J1(�)

�1E [xx01 (q � 0)] J1(�
0)�1 + J2(�)

�1E [xx01 (q > 0)] J2(�
0)�1

	
:

Proof. This result follows by the continuous mapping theorem and the independence between Z1(�) and
Z2(�).
We now state the weak limits of the MD and MQ threshold processes.

Theorem 4 Suppose Assumption D holds, X`, Q` and Y are compact, and T` � f� : x0�` (�) 2 Y for some
x 2 X` and q 2 Q`g � T . Then

p
n
�b�D(y)��D(y)� G1 (�1;y)�G2 (�2;y) ;
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where G1 (�1;y) and G2 (�2;y) are two independent zero-mean Gaussian processes with the the covariance
function

E [G` (�`;y)G` (�`;y0)] =
Z
�`;y(y; x; q)�`;y0(y; x; q)dF (yjx; q)dF`(x; q)

�
Z
�`;y(y; x; q)dF (yjx; q)dF`(x; q)

Z
�`;y0(y; x; q)dF (yjx; q)dF`(x; q);

and

�`;y(y; x; q) =

Z
f(yjx; q)x0 `;F (yjx;q)(y; x; q)dF`(x; q) +

p
s`F (yjx; q);

 1;� (y; x; q) = J1(�)
�1 f� � 1(y � (1; x0; q)�1(�))g 1(q � 0)(1; x

0; q)0;

 2;� (y; x; q) = J2(�)
�1 f� � 1(y � (1; x0; q)�2(�))g 1(q > 0)(1; x

0; q)0;

s` is the probability limit of n=n`. If in addition F`(y) admits a positive continuous density f`(y) on an

interval [a; b] containing an �-enlargement of the set fQ` (�) : � 2 T g, then

p
n
�b�Q(�)��Q(�)� G2

�
�2;Q2(�)

�
=f2(Q2(�))�G1

�
�1;Q1(�)

�
=f1(Q1(�)):

Proof. The �rst part of this theorem is a direct corollary of Theorem 5.1 (3) in Chernozhukov et al.

(2012) and Theorem 3 above. The second part of the theorem is a direct corollary of Theorem 4.1 (2) of

Chernozhukov et al. (2012).

The randomness in �`;y(y; x; q) includes two parts: the �rst part comes from the estimation of the

conditional quantile, and the second part comes from the estimation of the marginal distribution of (x0; q)0.

G1 (�) and G2 (�) are independent because the randomnesses in bF1(�) and bF2(�) are independent.
4.1 Asymptotic Inference Methods

Inference on the QR process �(�) is useful for testing basic hypotheses of the form

R(�)0�(�) = r(�) for all � 2 T , (6)

where R (�) 2 Rp�2d and r(�) 2 Rp�1. We give a few examples here.

Example 1 We may be interested in whether a variable or a subset of variables j 2 fl + 1; � � � ; dg enters
models for all conditional quantiles with zero coe¢ cients, i.e., whether �`j(�) = 0 for all � 2 T and j 2
fl + 1; � � � ; dg. This corresponds to

R(�)0 =

 
0(d�l)�l Id�l 0(d�l)�l 0(d�l)�(d�l)

0(d�l)�l 0(d�l)�(d�l) 0(d�l)�l Id�l

!
and r(�) = 02(d�l);

where 0d1�d2 is a d1 � d2 matrix with all elements being zero, and Id is a d� d identity matrix.

Example 2 Even if we reject the hypothesis that there is no quantile threshold e¤ect (see the next section),
we may still be interested in whether �1j(�) = �2j(�) for all � 2 T and j 2 fl + 1; � � � ; dg, l � 1; e.g., when
l = 1, we are interested in whether all the slope parameters are equal. Correspondingly,

R(�)0 =
�
0(d�l)�l Id�l 0(d�l)�l �Id�l

�
and r(�) = 0d�l:
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Example 3 We may want to check whether the model is from a location shift model or a location-scale shift

model. In the former case,

R(�)0 =

 
0(d�1)�1 Id�1 0(d�1)�1 0(d�1)�(d�1)

0(d�1)�1 0(d�1)�(d�1) 0(d�1)�1 Id�1

!
and r(�) =

�
�0
1
; �0

2

�0
:

It asserts simply that the quantile regression slopes are constant, independent of � . In the latter case,

R(�)0 =

 
diag

�
��11i

�
0d�d

0d�d diag
�
��12i

� ! and r(�) =

 
1d��

1d��

!
+
�
�11�

�1
11 ; � � � ; �1d��11d ; �21�

�1
21 ; � � � ; �2d��12d

�0
;

where 1d is a d � 1 vector of ones.5 Usually, �� is unknown under the null and it is convenient to choose
one coordinate, typically the intercept coe¢ cient, to play the role of numeraire. Then

R(�)0 =

 
�1 �Id�1 0(d�1)�1 0(d�1)�(d�1)

0(d�1)�1 0(d�1)�(d�1) �2 �Id�1

!
and r(�) = �

 
�1

�2

!
;

where �`i = �`i � �`1�`i=�`1 and �`i = �`i=�`1, i = 2; � � � ; d.

Example 3 is di¤erent from Example 1 and 2 since nuisance parameters are involved in R(�) and

r(�). Fortunately, as suggested by Koenker and Xiao (2002), the Khmaladze (1981)�s transformation can

be applied to deal with such Durbin problems. We concentrate on the case where R(�) and r(�) are

known. Especially, this case can be used to construct simultaneous (uniform) con�dence intervals for lin-

ear functions of parameters R(�)0�(�) � r(�) for all � 2 T , e.g., the CQ threshold e¤ect �1j(�) � �2j(�),

j = 1; � � � ; d, for all � 2 T . The following corollary states the asymptotic distribution of the test statistic
Kn � sup�2T

V (�)�1=2pn�R(�)0b�(�)� r(�) � for testing (6), where k�k can be k�k1, k�k2 or k�k1, V (�) �
R (�)

0 J(�)�1�(�; �)J(�)�1R (�) with J(�) �diagfJ1(�); J2(�)g and �(�; �) �diagfE [xx01 (q � 0)] ; E [xx
01 (q > 0)])g.

Corollary 3 Under Assumption D, no matter �n is �xed or shrinks to zero, Kn converges in distribution
to sup�2T kBp (�)k, where Bp is the standard p-dimensional Brownian bridge. The result is not a¤ected by
replacing J(�) and �(�; �) with estimates that are consistent uniformly in � 2 T .

Proof. This result follows by the continuous mapping theorem in `1(T ).
Thus, Kn has a well-behaved limit distribution. In practice, by stochastic equicontinuity of the QR

process, we can replace any continuum of quantile indices T by a �nite grid TKn
, where the distance between

adjacent grid points goes to zero as n!1. The critical values of sup�2T kBp (�)k1 and sup�2T kBp (�)k2 can
be found in the electronic appendix of Koenker and Xiao (2002) and Table 1 of Andrews (1993), respectively.6

Given the � quantile of sup�2T kBp (�)k, say, �(�), the asymptotic simultaneous (1 � �) con�dence band

is In (�) =
�
R(�)0b�(�)� r(�)� �(1� �) � qbV (�)�p

n

�
for a uniformly consistent estimator bV (�) of V (�)

over � 2 T .
The inference procedure above requires estimators of J(�) and �(�; �) that are uniformly consistent in

� 2 T . For �(�; �), we need only estimate E [xx01 (q � 0)] and E [xx01 (q > 0)] by their sample analogs.

5Obviously, there is some di¢ culty if there are �`i equal to zero. In such cases, we can take �`i = 1, and set the corresponding
elements ri(�) = �`i.

6Strictly speaking, the critical values in Koenker and Xiao (2002) are designed for sup�2T kWp (�)k, where Wp (�) is the
standard p-dimensional Brownian motion, and the critical values in Andrews (1993) are for sup�2T kQp (�)k, where Qp (�) =
Bp (�) =�(1� �) is the standard p-dimensional Bessel process. Nevertheless, the simulation method used in these papers can be
applied without any di¢ culty in our context to obtain the critical values. Also, the resampling methods in the next subsection
are very convenient in practice.
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As to J(�), a popular estimator is the kernel estimator

bJ1(�) = 1

n

nX
i=1

Kh1 (be1�i)xix0i1 (qi � b) ; bJ2(�) = 1

n

nX
i=1

Kh2 (be2�i)xix0i1 (qi > b) ; (7)

where Kh (�) = K(�=h)=h with K(�) being a kernel function and h being the bandwidth, be1�i = yi � x0ib�1 (�)
for i such that qi � b and be2�i = yi � x0ib�2 (�) for i such that qi > b. The following corollary states the
uniform consistency of this estimator.

Corollary 4 Suppose K(�) is a nonnegative, symmetric function of bounded variation (but not necessarily
continuous), and

R
K(u)du = 1,

R
jK(u)j du < 1, uK(u) ! 0 as juj ! 1. h` ! 0 and nh2` ! 1. Then

under Assumption D and the additional assumption that E
h
kxk4

i
< 1 and

R
jf(yjx; q)j dy < 1 for a.s.

(x0; q)
0, bJ`(�) is consistent uniformly in � 2 T .

Powell (1986) and Buchinsky and Hahn (1998) use the uniform kernel, and Buchinsky (1998) also con-

siders the normal kernel; see further discussions in Powell (1989). When K(�) has a bounded support, the
assumptions

R
jK(u)j du < 1, uK(u) ! 0 as juj ! 1, and

R
jf(yjx; q)j dy < 1 for a.s. (x0; q)0 are not

required. As to the bandwidth, Koenker (1994) suggests h` = C` � n�1=3` , where n1 =
Pn

i=1 1(qi � b),
n2 =

Pn
i=1 1(qi > b), and C` can be obtained from Hall and Sheather (1988). Another popular estimator of

fe`� jx;q(0jx; q) in J(�) is the di¤erence quotient estimator, but its uniform consistency is doubtful.

4.2 Resampling Inference Methods

The asymptotic methods in the last subsection may be useful for the uniform inference of the CQ threshold

e¤ects. However, for the MD and MQ threshold e¤ects, the asymptotic methods are not applicable since

the limit processes in Theorem 4 are non-pivotal and their covariance functions depend on complicated

unknown, though estimable, nuisance parameters. In other words, the Durbin problem appears again in

this context. A popular alternative of the asymptotic methods is the resampling methods, especially, the

exchangeable bootstrap. This procedure incorporates many popular forms of resampling as special cases,

namely the empirical bootstrap, weighted bootstrap, m out of n bootstrap, and subsampling, see Section

3.6.2 of van der Vaart and Wellner (1996) for concrete descriptions. Each bootstrap scheme is useful to a

speci�c application. For example, in small samples, we might want to use the weighted bootstrap to gain

good accuracy and robustness to "small cells", whereas in large samples, where computational tractability

can be an important consideration, we might prefer subsampling.

Previously, the bootstrap validity are only proved for pointwise cases (e.g., Hahn (1995), and Feng et al.

(2011)), and the process result was available only for subsampling (see, Chernozhukov and Fernández-Val

(2005), and Chernozhukov and Hansen (2006)). Chernozhukov et al. (2012) prove the validity of the general

exchangeable bootstrap for estimating the limit law of the entire QR coe¢ cient process (see their Corollary

5.1) and the MD and MQ threshold processes (see their Theorem 5.1(2)). We will not repeat their results

in this paper, but only provide the bootstrap procedures in our context.

Let (!1; � � � ; !n) be a vector of nonnegative random variables that satisfy Condition EB in Chernozhukov
et al. (2012) or the conditions (3.6.8) of van der Vaart and Wellner (1996). For example, (!1; � � � ; !n) is
a multinomial vector with dimension n and probabilities (1=n; � � � ; 1=n) in the empirical bootstrap. The
exchangeable bootstrap uses the components of (!1; � � � ; !n) as random sampling weights in the construction
of the bootstrap version of the estimators. Thus the bootstrap version of the MD threshold e¤ects is

b��D(y) = bF �1 (y)� bF �2 (y);
13



where bF �` (y) � Z
X`Q`

bF �` (yjx; q)d bF �` (x; q):
The component

bF �` (x; q) = (n�` )�1Xn

i=1
!i1(xi � x; qi � q; xi 2 X`; qi 2 Q`); (x0; q)0 2 X`Q`

with n�` =
Xn

i=1
!i1(xi 2 X`; qi 2 Q`) is a bootstrap version of bF`(x; q). The component

bF �` (yjx; q) = "+

Z 1�"

"

1
�
x0b��` (�) � y

�
d�; (y; x0; q)0 2 Y`X`Q`

with

b��1 (�) = argmin
�1

nX
i=1

!i�� (yi � x0i�1) 1(qi � b);
b��2 (�) = argmin

�2

nX
i=1

!i�� (yi � x0i�2) 1(qi > b);
is a bootstrap version of bF`(yjx; q).7 Correspondingly, the MQ threshold e¤ect

b��Q(�) = bF ��11 (�)� bF ��12 (�):

Given b��D(y), we can conduct uniform inferences for �D(y). An asymptotic simultaneous (1� �) con�-
dence band for �D(y) over y 2 Y is de�ned by the end-point functions

b��D(y) = b�D(y)� bt1��b� (y)1=2 =pn;
such that

lim
n!1

P
�
�D(y) 2

hb��D(y); b�+D(y)i for all y 2 Y� = 1� �: (8)

Here, b� (y) is a uniformly consistent estimator of �(y), the asymptotic variance function ofpn�b�D(y)��D(y)�.
In order to achieve the coverage property (8), we set the critical value bt1�� as a consistent estimator of the
(1� �)-quantile of the maximal t-statistic:

t = sup
y2Y

p
nb� (y)�1=2 ��� b�D(y)��D(y)��� :

It remains to obtain b� (y) and bt1��. For this purpose, we �rst get bZ�D;b(y), b = 1; � � � ; B, as i.i.d. realization
of bZ�D(y) = p

n
�b��D(y)� b�D(y)� for y 2 Y. Then compute a bootstrap estimate of � (y)1=2 such as the

bootstrap interquartile range8 rescaled with the normal distribution: b� (y)1=2 = (q0:75(y)� q0:25(y)) =1:349
for y 2 Y, where qp(y) is the p-th quantile of

nbZ�D;b(y); b = 1; � � � ; Bo. Finally, bt1�� is set as the (1 � �)

sample quantile of
�btb; b = 1; � � � ; B	, where btb = sup

y2Y
b� (y)�1=2 ��� bZ�D;b(y)���.

7Note here that b is not replaced by its bootstrap counterpart b� to simplify the bootstrap procedure. Actually, from Yu
(2013a), the invalidity of the bootstrap for  does not a¤ect the bootstrap validity for regular parameters.

8Here, the interquartile range rather than the standard deviation is used to avoid technical complexities, see Remark 3.2 of
Chernozhukov et al. (2012).
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The uniform band for �Q(�) can be obtained similarly by replacing b��D(y) and b�D(y) by b��Q(�) andb�Q(�). We can also estimate the critical value for Kn in the last section by the (1 � �) sample quan-

tile of
n
sup�2T

bV (�)�1=2pnR(�)0 �b��b (�)� b�(�))�  ; b = 1; � � � ; Bo, where bV (�) is a uniformly consistent
estimator of V (�) over � 2 T , and

�b��b (�) � �b��1b (�)0 ; b��2b (�)0�0 ; b = 1; � � � ; B� are i.i.d. realizations of

b��(�) � �b��1 (�)0 ; b��2 (�)0�0. For the construction of the uniform con�dence band for a single element of

R(�)0�(�)� r(�), bV (�)�1=2 can be substituted by the corresponding rescaled bootstrap interquartile range.
5 Speci�cation Testing

To estimate  or the MD and MQ threshold processes in the previous sections, we must �rst guarantee that

there are CQ threshold e¤ects. For such speci�cation testing, it is more convenient to reparametrize the

model as

y = x0�0 (�) + x
0� (�) 1(q � 0) + e� , Q� [e� jx] = 0;

where the true threshold point 0 is unknown. The null hypothesis is that there are not CQ threshold e¤ects,

or

H0 : � (�) = 0 for all � 2 T ,

and correspondingly, the alternative is

H1 : � (�) 6= 0 for some � 2 T ,

and the local alternative is

Hc
1 : � (�) = n�1=2c(�) for some � 2 T .

To facilitate the development of our asymptotic results, we impose the following additional assumptions.

Assumption T:

1. The minimum eigenvalues of J(�) � E[fe� jx;q(0jxi; qi)xix0i] and J(; �) � E[fe� jx;q(0jxi; qi)xi()xi()0]
are uniformly bounded away from zero uniformly over (�; ) 2 T � �, where xi() = xi1(qi � ).

2. c(�) is uniformly bounded over � 2 T .

3. f(e� jx; q) is bounded and uniformly continuous in e� uniformly over (�; x0; q)0 2 T � X�Q.

From Assumption D3, c(�) should be uniformly continuous, but the proof does not require this assump-

tion.

5.1 Test Statistics

A straightforward test is the Wald-type test which is based on the estimate of � (�). The test statistics are

functionals of

cWn(; �) =
� bJ1(; �)�1b�1 (; �) bJ1(; �)�1 + bJ2(; �)�1b�2 (; �) bJ2(; �)�1��1=2pnb� (; �) ;
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where b� (; �) � b�1(; �)� b�2(; �), b�1(; �) is the �th QR estimator using the data with qi � , bJ1(; �) =
n�1

Pn
i=1Kh1 (be1�i)xix0i1 (qi � ) with be1�i = yi � x0ib�1 (; �), b�1 (; �) = �(1� �)n�1

Pn
i=1 xix

0
i1 (qi � ),

and b�2(; �), bJ2(; �) and b�2 (; �) are similarly de�ned but using the data with qi > . This test is hard

to apply in practice due to two reasons. First, many quantile regressions (indexed by (; �)) should be

conducted, which is quite time-consuming. Second, the critical values are hard (although not impossible) to

obtain even by the simulation method in the next subsection.

In this paper, we suggest the score-type test which constructs the test statistics under the null rather

than under the alternative as in the Wald-type test. This type of test is based on the subgradient of �� (�),
just like the CUSUM test which is based on the gradient of the objective function of least squares (see, inter

alia, Ploberger and Krämer (1992) and Bai (1996) in the structural change testing). Yu (2009) uses similar

ideas in the speci�cation testing of threshold regression with endogeneity. The test statistics are functionals

of

bTn(; �) = "�(1� �) � n�1 nX
i=1

�
xi()� bJ(; �) bJ(�)�1xi��xi()� bJ(; �) bJ(�)�1xi�0#�1=2

� n�1=2
nX
i=1

h
xi()� bJ(; �) bJ(�)�1xii'� (be�i) ;

where bJ(; �) = 1

n

nX
i=1

Kh (be�i)xix0i1 (qi � ) ; bJ(�) = 1

n

nX
i=1

Kh (be�i)xix0i
are similarly de�ned as in (7), '� (u) = 1(u < 0) � � , be�i = yi � x0ib� (�), and b� (�) is the QR estimator

of yi on xi (so the null hypothesis is imposed). Di¤erent from cWn(; �), we need only run one quantile

regression for each � to construct bTn. Note here that although bJ(; �) bJ(�)�1n�1=2 nP
i=1

xi'� (be�i) = op(1),

xi() is recentered by bJ(; �) bJ(�)�1xi. This is because the e¤ect of b� (�) will not disappear asymptoti-
cally so the asymptotic distribution of n�1=2

Pn
i=1 xi()'� (be�i) is di¤erent from n�1=2

Pn
i=1 xi()'� (e�i) =

n�1=2
Pn

i=1 xi()'� (yi � x0i�0 (�)) under H0. In other words, the Durbin problem reappears in this context.

Recentering is to o¤set the e¤ect of b� (�).
Given bTn, we usually consider two test statistics. The �rst is the Kolmogorov-Smirnov sup-type statistic

bKn = sup
�2T

sup
2�

bTn(; �) ;
and the second is the Cramér�von Mises average-type statistic

bCn = Z
T

Z
�

bTn(; �)!1()!2(�)dd�;
where !1() and !2(�) in bCn are known positive weight functions with R� !1()d = 1 and RT !2(�)d� = 1.
For example, !2(�) = 1= jT j with jT j being the length of T ; if we have some information on the quantile
indices where threshold e¤ects are most likely to happen, we can impose larger weights on the neighborhoods

of such indices.

The choice of the norm k�k is also an issue. Euclidean norm k�k2 is obviously natural, but has the possibly
undesirable e¤ect of accentuating extreme behavior in a few coordinates. Instead, we will employ the `1 norm

in the simulations and the empirical application below. Also, k�k1 is used for bKn in the structural change

test of Qu (2008). De�ne gn = g( bTn), where g is the functional de�ned in bKn or bCn. The following theorem
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states the weak limits of gn under Hc
1 .

Theorem 5 Suppose the same assumptions on K(�), h, and f(y; x; q) as in Corollary 4 are satis�ed; then
under Assumptions T, D1 and D4,

gn
d�! gc = g(T c);

where

T c(; �) = H(; �)�1=2
�
S(; �)�

�
J( ^ 0; �)� J(; �)J(�)�1J(0; �)

�
c (�)

	
;

with S(; �) being a zero-mean Gaussian process with the covariance kernel

H((1; �1); (2; �2)) = (�1 ^ �2 � �1�2)E
h�
xi(1)� J(1; �1)J(�1)�1xi

� �
xi(2)� J(2; �2)J(�2)�1xi

�0i
;

and H(; �) = H((; �); (; �)).

To understand S(; �), consider a simple case where x = (1; x0)0, q follows the uniform distribution on

[0; 1] and is independent of (x0; e� )
0. In this case,

H((1; �1); (2; �2)) = (�1 ^ �2 � �1�2) (1 ^ 2 � 12)E [xx0] ;

in other words, E [xx0]�1=2 S(; �) is the standard p-dimensional Brownian Pillow (or tucked Brownian

Sheet). Now, the local power is generated by
�
J( ^ 0; �)� J(; �)J(�)�1J(0; �)

�
c (�) = ( ^ 0 � 0)E [xx0] c (�).

These results are similar to those in the structural change testing; see, e.g., Proposition 2 and Corollary 1

of Qu (2008). Of course, the construction of bTn can be greatly simpli�ed in this simple case, e.g.,
bTn(; �) = "n�1 nX

i=1

xix
0
i

#�1=2
� n�1=2

nX
i=1

xi' (qi � )'� (be�i) (9)

will converge to the standard p-dimensional Brownian Pillow under H0.

5.2 Simulating the Critical Values

The asymptotic distribution of gn is not pivotal. Following Hansen (1996), we obtain the critical values by

simulating bTn(; �). More speci�cally, let f��i gni=1 be i.i.d. N(0; 1) random variables, and set

bT �n(; �) =
"
n�1

nX
i=1

'� (be�i)2 �xi()� bJ(; �) bJ(�)�1xi��xi()� bJ(; �) bJ(�)�1xi�0#�1=2 (10)

n�1=2
nX
i=1

h
xi()� bJ(; �) bJ(�)�1xii'� (be�i) ��i :

Here, �(1 � �) in bTn(; �) is replaced by '� (be�i)2. This is because under H1, b� (�) is only an approximate
of the true conditional quantile function (see, e.g., Angrist et al. (2006)), and the asymptotic variance of

n�1=2
nP
i=1

h
xi()� bJ(; �) bJ(�)�1xii'� (be�i) is not H(; �) any more. Since the true data generating process

(DGP) is unknown, we must use this robust asymptotic variance estimator to mimic the behavior under

H0.9 Given this observation, to make sure the conditional distribution of bT �n(; �) given the original data is
9Of course, under Hc

1 , �(1� �) can be used in bT �n .
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close to the distribution of bTn(; �) under H0, bTn(; �) can be replaced by
eTn(; �) = "n�1 nX

i=1

'� (be�i)2 �xi()� bJ(; �) bJ(�)�1xi��xi()� bJ(; �) bJ(�)�1xi�0#�1=2

n�1=2
nX
i=1

h
xi()� bJ(; �) bJ(�)�1xii'� (be�i) ;

and the corresponding Kn and Cn are denoted as eKn and eCn, respectively. The tests based on eTn may have
more precise sizes but lose some powers.

Our test is to reject H0 if gn is greater than the (1 � �)th conditional quantile of g( bT �n). Equivalently,
the p-value transformation can be employed. De�ne p�n = 1 � F �n(gn), and pn = 1 � F0(gn), where F �n is

the conditional distribution of g( bT �n) given the original data, and F0 is the asymptotic distribution of g( bTn)
under the null. Our test is to reject H0 if p�n � �. The following theorem states the validity of the above

procedure.

Theorem 6 Under the Assumptions of Theorem 5, p�n = pn + op(1) under both H0 and Hc
1. Hence p

�
n

d�!
pc = 1� F0(gc) under Hc

1, and p
�
n

d�! U , the uniform distribution on [0; 1], under H0.

By the stochastic equicontinuity of the bTn(; �) process, we can replace T and � by �nite grids with the
distance between adjacent grid points going to zero as n ! 1.10 Also, the conditional distribution can be
approximated by standard simulation techniques. More speci�cally, the following procedure is used.

Step 1: generate
�
��ij
	n
i=1

be i.i.d. N(0; 1) random variables.

Step 2: set bT j�n (l; �t) as in (10), where flgLl=1 and f�tgTt=1 are grid approximation of � and T . Note here
that the same

�
��ij
	n
i=1

are used for all (l; �t), l = 1; � � � ; L, t = 1; � � � ; T .
Step 3: set gj�n = g( bT j�n ).
Step 4: repeat Step 1-3 J times to generate

�
gj�n
	J
j=1
.

Step 5: if pJ�n = J�1
PJ

j=1 1(g
j�
n � gn) � �, we reject H0; otherwise, accept H0.

6 Monte Carlo Experiments

In this section, we conduct some Monte Carlo experiments to check the performance of the estimators and

tests in the previous sections. Given that the SEB procedure of Yu (2008) and simulating the critical values

of the score-type tests in Section 5 are very time-consuming, we will consider the following simple DGPs to

save simulation time.

y =

(
(1 x)�1 + �1e;

(1 x)�2 + �2e;

q � ;

q > ;

where x � N(0; 1), q � U [0; 1], e � N(0; 1) or the double exponential distribution with scale 1=
p
2 (which

has variance 1 and is denoted as DExp(1=
p
2)), and x, q and e are independent of each other. The double

exponential distribution of e is also used in the simulation study of Bai (1995), corresponding to the heavy-

tailed error case. 0 = 0:5, �001 = (0 0), �002 = n�1=2c � (1=
p
2; 1=

p
2) for some positive numbers of c,

n = 200, and the number of repetitions is set as 500. We consider two setups for �0` . In the �rst setup,

�10 = �20 = 1, and in the second setup, �10 = 1 and �20 = 2. The �rst setup only considers the threshold

e¤ect in conditional mean (or median), while the second setup also covers the threshold e¤ect in variance

10A natural choice of the grids for � is the qi�s in �, and for T is the breakpoints in T whose number is at most Op(n lnn)
from Portnoy (1991).
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(and other quantiles). We label the case with �10 = �20 = 1 and e � N(0; 1) as scenario 1, �10 = �20 = 1

and e � DExp(1=
p
2) as scenario 2, �10 = 1; �20 = 2 and e � N(0; 1) as scenario 3, �10 = 1; �20 = 2 and

e � DExp(1=
p
2) as scenario 4, respectively. � = [q(0:2n); q(0:8n)], where q(i) is the ith order statistic of

fqigni=1. T = [0:1; 0:9].

6.1 Speci�cation Testing

The speci�cation testing is extremely time-consuming when a �ne approximation of T is used. To save sim-

ulation time, we only check the performance of bKn with a rough approximation of T being used. Speci�cally,
we use 11 approximation points f�tgTt=1 which are evenly distributed on T . Such a rough approximation
is not suitable for bCn or eCn. Also, given the special structure of the joint distribution of (e; x; q)0, we use
the simple form (9) of bTn to further save simulation time. For the tests based on the LSE, we only consider
the score-type tests for comparison; see Yu (2009) for descriptions on these tests. In simulating the critical

values, we let J = 400. The size and power is evaluated at the 5% nominal level. Totally, we consider only

three test statistics: bKn with T = f�tgTt=1 or based on the LADE only, and the sup-form of the score-type

test based on the LSE.

We report the simulation results of speci�cation testing in Figure 1. From Figure 1, a few results of

interest are summarized as follows. First, in scenario 1, the score-test based on the LSE performs best, and

in scenario 2, bKn based on the LADE works best. This is understandable given that the threshold e¤ect

appears only in conditional mean in scenario 1 and only in conditional median in scenario 2. Nevertheless,

the performance of bKn with T = f�tgTt=1 is close to the best case in scenario 1 and is identical to the best
case in scenario 2. Second, in scenario 3 and 4, bKn with T = f�tgTt=1 performs much better than the other
two tests. Especially, the tests based on the LSE or the LADE do not have any power when c = 0; however,

the tests based on bKn have signi�cant powers even when c = 0. Third, in scenario 3, the test based on

the LSE performs better than the test based on the LADE and in scenario 4, the converse conclusion can

be drawn. These results obviously parallel those in scenario 1 and 2. In summary, bKn based on multiple

quantiles performs stably and among the best in all kinds of scenarios, no matter whether the error has a

heavy tail, or whether there is a threshold e¤ect in variance.

6.2 Estimation

In the estimation, our �rst goal is to compare the e¢ ciency of the IQTRE with the LSE, LADE and MLE and

also the SEBE started from the IQTRE with that started from the LSE and LADE. Note that in all setups,

E [e`jx; q] = 0, so the LSE can be applied. Also, since Med(e`jx; q) = 0, the LADE can only identify  from
the threshold e¤ect in �` (rather than in �`), and is comparable to the LSE. Given that e` has the maximum

density at its median, the LADE should be the most e¢ cient among all QRE�s, so we only report the results

for the LADE. In the IQTRE, the same f�tgTt=1 as in the speci�cation testing are used. As to the MLE, the
algorithm can be found in Section 3.2 of Yu (2012). Our second goal is to compare the coverage and length

of various CIs, including the LR-CIs in Section 3.3 based on the LSE, LADE and IQTRE, and the NPI

started from the LSE, LADE and IQTRE. In constructing LRn (), we use the kernel smoother to estimate

fe(F
�1
e (�t)) in �1Tn. The bandwidth h is set to be n�1=3z

2=3
�

h
1:5�2

�
��1(�)

�
=
��
2��1(�)

�2
+ 1
�i1=3

as

suggested in Hall and Sheather (1988), where � and � stand for the standard normal density and distribution

function and z� satis�es � (z�) = 1��=2. We let c = 20 and the resulting �02 = (1; 1)0. From the speci�cation
testing in the last subsection, this value of c should be out of the contiguous neighborhood of the null.
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Figure 1: Power Comparison with Di¤erent Speci�cations of �`0 and Error Distributions

The performance of various estimators are summarized in Table 1. From Table 1, the following conclusions

can be drawn. First, among the LSE, LADE and IQTRE, the LSE performs best in scenario 1 and the LADE

performs best in scenario 2. They perform even better than the MLE since they are equivalent to the MLE

with the restriction �10 = �20 imposed. The performance of the IQTRE is the close to that of the MLE (and

the best semiparametric estimator) in these two scenarios. Second, the IQTRE performs best among the LSE,

LADE and IQTRE in scenario 3 and 4, so the threshold e¤ects at other quantiles indeed provide information

for . On the other hand, by comparing the IQTRE and the MLE, we can see that the threshold e¤ects at

only �nite quantiles cannot cover the whole CQ threshold e¤ects. Also, as expected from the speci�cation

testing, the LSE performs better than the LADE in scenario 3 and the LADE performs better than the LSE

in scenario 4. This is understandable since the LADE is more robust to the heavy-tailed error than the LSE;

see Section 3.1. Third, the SEBE started from the best-performed estimator performs the best. This veri�es

our expectation in Section 3.3: the starting value of the SEBE indeed a¤ects the e¢ ciency of the SEBE in

�nite samples. In summary, it is safe to claim that the IQTRE performs stably well in all scenarios.

The performance of various CIs are summarized in Table 2. Four main conclusions from Table 2 are as

follows. First, the LR-CIs su¤er from the overcoverage problem and the NPIs su¤er from the undercoverage

problem. On the other hand, the NPI is much shorter than the corresponding LR-CI. Second, among the three

LR-CIs, the CI based on the IQTRE performs best if taking both the coverage and length into consideration,

which matches the e¢ ciency results in Table 1. Third, although all NPIs have the undercoverage problem,

the NPI based on the IQTRE su¤ers the least. Also, the NPI based on the IQTRE is shorter than the other

two NPIs, especially in scenario 3 and 4. Fourth, the NPI in the scenario with a heavy-tailed error generally

has a worse coverage than that in the scenario with a light-tailed error. In summary, for both the LR-CI

and the NPI, the CIs based on the IQTRE perform the best.
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�`0 �10 = �20 = 1 �10 = 1 and �20 = 2

fe (�) N(0; 1) DExp(1=
p
2) N(0; 1) DExp(1=

p
2)

Risk(�10�2) RMSE MAD RMSE MAD RMSE MAD RMSE MAD

LSE 2.00 1.21 1.77 1.06 4.93 2.77 4.73 2.58

LADE 2.19 1.34 1.43 0.90 5.54 3.10 2.91 1.76

IQTRE 2.06 1.24 1.54 0.96 3.70 1.98 2.74 1.63

SEBE_LSE
1:71

1:77

1:16

1:11

1:34

1:34

0:89

0:86

3:62

3:84

1:87

1:91

3:45

3:62

1:84

1:84

SEBE_LADE
1:78

1:83

1:18

1:15

1:26

1:30

0:84

0:81

4:26

4:39

2:09

2:11

2:30

2:45

1:38

1:40

SEBE_IQTRE
1:72

1:77

1:16

1:12

1:29

1:33

0:86

0:83

2:97

3:04

1:54

1:55

2:24

2:35

1:36

1:36

MLE 2.03 1.23 1.50 0.94 1.99 1.19 1.92 1.18

Table 1: Estimator Performance for  (Based on 500 Repetitions)

Note: MAD: mean absolute deviation, SEBE_�: SEBE started from � (the upper value
is the posterior mean, and the lowe value is the posterior median)

�`0 �10 = �20 = 1 �10 = 1 and �20 = 2

fe (�) N(0; 1) DExp(1=
p
2) N(0; 1) DExp(1=

p
2)

Coverage and Length (�10�2) Cov Leng Cov Leng Cov Leng Cov Leng

LR_LSE 0.986 5.95 0.970 5.78 0.972 17.02 0.974 17.29

LR_LADE 0.996 9.86 0.992 5.85 0.976 21.01 0.978 11.57

LR_IQTRE 0.994 6.86 0.976 4.98 0.984 10.38 0.982 8.59

NPI_LSE 0.936 4.93 0.900 3.93 0.884 5.45 0.860 5.32

NPI_LADE 0.934 4.94 0.918 3.82 0.872 5.65 0.884 5.00

NPI_IQTRE 0.938 4.96 0.918 3.82 0.896 4.92 0.884 4.80

Table 2: Comparison of Inference Methods: Coverage and Average Length of

Nominal 95% Con�dence Intervals for  (Based on 500 Repetitions)

Note: LR_�: equal-tailed LR-CI based on �, NPI_�: NPI started from �

7 Application

In this section, we apply the estimation and testing procedures in Section 3, 4 and 5 to the growth data

used in Durlauf and Johnson (1995) and reanalyzed in Hansen (2000) and Yu (2008). A similar dataset is

used in Koenker and Machado (1999), but no threshold e¤ects are considered there. The growth theory with

multiple equilibria motivates the following threshold regression model:

ln
�
Y
L

�
i;1985

� ln
�
Y
L

�
i;1960

=

(
�10 + �11 ln

�
Y
L

�
i;1960

+ �12 ln
�
I
Y

�
i
+ �13 ln (ni + g + �) + �14 lnSi + �1ei;

�20 + �21 ln
�
Y
L

�
i;1960

+ �22 ln
�
I
Y

�
i
+ �23 ln (ni + g + �) + �24 lnSi + �2ei;

if
�
Y
L

�
i;1960

� ;

if
�
Y
L

�
i;1960

> :

For each country i,
�
Y
L

�
i;t
is the real GDP per member of the population aged 15-64 in year t,

�
I
Y

�
i
is the

investment to GDP ratio, ni is the growth rate of the working-age population, and Si is the fraction of

working-age population enrolled in secondary schools. The variables not indexed by t are annual averages
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over the period 1960-1985. Following Durlauf and Johnson (1995), we set g+� = 0:05. The data are assumed

to be i.i.d. sampled. This assumption is approximately true, since there are not many interactions, such

as trade, international capital �ows, etc., between any two countries during this period. The objective is to

check whether the growth depends on the starting point.

The LSE, LADE, IQTRE and the corresponding LR-CIs, SEBEs and NPIs for  are summarized in Table

3, where � = [q(0:1n); q(0:9n)], T = [0:2; 0:8], and T = 11.11 It is quite surprising that the three estimators

coincide for this data set. This indicates that the threshold point is indeed a lower (18.85%) percentile of

q, below which are mostly poor African countries. Nevertheless, the IQTRE is the most e¢ cient since the

length of the corresponding LR-CI is the shortest. Anyway, the three LR-CIs are not informative given that

they are all too wide. The length of the NPI improves a lot relative to the LR-CI. As expected, the NPI

based on the IQTRE is narrower than that based on the LSE. From the simulation study in Section 6.2, the

NPI may su¤er from the undercoverage problem and the LR-CI may su¤er from the overcoverage problem,

so a better CI should be in-between.

LSE LADE IQTRE

Original Estimators 871

LR-CI [594,1842) [755,1842) [755,1623)

Length of LR-CI 1248 1087 868

Ratio of Countries Covered by LR-CI 40/96 37/96 33/96

SEBE
Posterior Mean

Posterior Median

828:8

831:7

843:8

863:7

NPI [756:4; 877:9] [778:9; 878:3]

Length of NPIs 121.5 99.4

Ratio of Countries Covered by NPIs 6/96 4/96

Table 3: Comparison of Estimators and Inference Methods for 

Figure 2 shows the quantile processes in the two regimes generated by the threshold point 871.12 Since

the sample size is relatively small, the uniform con�dence bands are not informative, so are not drawn on.

The last graph of Figure 2 shows the MQ threshold e¤ects. For comparison, the corresponding least squares

estimators are also shown in Figure 2. The quantile processes in Figure 2 reveal more information about

the growth patterns in the two regimes than the LSE. For example, schooling does not have any e¤ect on

growth for poor countries below the median, while it has signi�cant e¤ects for all rich countries. For another

example, the e¤ect of the starting point of growth is quite uniform among all quantiles for rich countries,

while for poor countries, its e¤ects at all quantiles are below the mean e¤ect, with the minimum reached

around the median. Another observation is that the error term e is not generated by (x0�) � with � being i.i.d.

sampled; otherwise, each component of b�` should be a location-scale transformation of any other component.
But this is obviously not the case from Figure 2, which means that there are complicated heteroskedasticities

in the error term.13 At last, the MQ threshold e¤ects are negative over all � 2 T , just as expected. The
MQ threshold e¤ect is larger for a larger quantile index � , which indicates that the marginal distribution of

(x0; q)
0 is very important in the MQ threshold e¤ect evaluation. From the estimation of �` (�), the threshold

e¤ects in the conditional distribution concentrates on the lower especially medium � . However, the marginal

distributions of (x0; q)0 are very di¤erent, e.g., the mean of x in the right regime is much larger than that in

the left regime.
11For T = 3 to 22, the IQTRE is the same as the LADE.
12The quantile processes based on the SEBEs are qualitatively similar.
13Durlauf and Johnson (1995) also observe the heteroskedasticity of the error term, so our results convince and re�ne their

results.
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Figure 2: b�` (�) and b�Q(�)
Next, we conduct the speci�cation testing on CQ threshold e¤ects. the corresponding pJ�n for bKn is 0.09,

so the null hypothesis is rejected by bKn at 10% signi�cance level, where J = 500. The corresponding p-values

for the sup-score test based on the LSE is 0.262, so the null hypothesis cannot be rejected. To explore further

which quantile contributes mostly to the quantile threshold e¤ects, we calculate bKn for T = f�g and the
corresponding p�n values, and then graph these p-values against � in Figure 3. From Figure 3, most threshold

e¤ects concentrate on the lower especially medium indices of T , just as predicted by Figure 2. Also, Figure
3 indicates that the speci�cation test based solely on the LADE cannot reject the null hypothesis. From

these testing results, we can conclude that the test based on a range of quantile threshold e¤ects indeed has

a larger power than that based solely on the LSE or the LADE.

8 Conclusion

We have considered the estimation and speci�cation testing in quantile threshold regression. First, we propose

the IQTRE for the threshold point, and derive its asymptotic distribution in two asymptotic frameworks.

This estimator is more e¢ cient than the existing estimators based on a single characteristic of the conditional

distribution of the response variable, such as the LSE and LADE, and is comparable to the MLE, so can

serve as a better starting point in the adaptive estimation of the threshold point. Second, we estimate two

new threshold processes: the marginal distributional threshold process and the marginal quantile threshold

process, and provide both the asymptotic and resampling inference methods for these processes. Third, we

put forward a new score-type test in the speci�cation testing of quantile threshold regression. This type of

test is more powerful than the tests based solely on the LSE or the LADE. Comparing with the usual Wald-

type test, it is computationally less intensive, and its critical values are easier to obtain by the simulation

method.

Possible extensions of the analyses in the paper can be along the following directions. First, the insights in

this paper are ready to extend to time series, repeated cross-sections, and panels. Second, we can extend the
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one-regime analysis to the multiple-regime case. Especially, the procedure to determine the number of breaks

in Section 6 of Oka and Qu (2011) can be extended to determine the number of threshold points. Third,

the analysis in this paper is based on quantile regression, and an alternative way is based on distribution

regression; see Section 3.2 of Chernozhukov et al. (2012) for an introduction. Fourth, we assume the model

is correctly speci�ed in this paper. Actually, the application in Galvao et al. (2011) indicates that there may

exist misspeci�cation in the setup (2) since the QRE of the threshold point depends on the quantile index.

Extension to incorporate misspeci�cation can be done along the line of Yu (2013b).
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Appendix A: Proofs

First, some notations are collected for reference in all lemmas and proofs. The letter C is used as a generic

positive constant, which need not be the same in each occurrence. an = n�0n�n.

Qn (�) = Pn (m (�j�)) ; Q (�) = P (m (�j�)) ;Gn (m (wj�)) =
p
n (Qn (�)�Q(�)) ;

wherem (wj�) =
PT

t=1 ��t (y � x0�1 (�t) 1(q � )� x0�2 (�t) 1(q > )), � = (; �0T )
0 with �T = (�01T ; �

0
2T )

0and

�`T =
�
�` (�1)

0
; � � � ; �` (�T )0

�0
, and for a function f ,

Pn [f(w)] = n�1
Xn

i=1
f(wi);Gn (f(w)) = n�1=2

Xn

i=1
(f(wi)� E[f(wi)]) ;

Gn
� bf(w)� = n�1=2

Xn

i=1
(f(wi)� E[f(wi)])

���
f= bf , where bf is an estimated function,

 � (u) = � � 1(u � 0); '� (u) = � � (u) :

Proof of Theorem 1. The consistency of b is proved in Lemma 1, and the convergence rate is shown in
Lemma 3. From Lemma 5, n(b � 0) has the same asymptotic distribution as argmin

v
DTn(v) with

DTn (v) =
nX
i=1

z1Ti1
�
0 +

v

n
< qi � 0

�
+

nX
i=1

z2Ti1
�
0 < qi � 0 +

v

n

�
:

Now, a modi�ed version of the argmax continuous mapping theorem (Theorem 3.2.2 in van der Vaart and

Wellner (1996)) is used to derive the asymptotic distribution.

(i) DTn(v) DT (v) on any compact set of v. This is proved in Lemma 7.

(ii) n(b � 0) = Op(1). This is proved in Lemma 3.

(iii) argmin
v

DT (v) = Op(1). This is shown in Appendix D of Yu (2012).

(iv) argmin
v

DT (v) is unique. This is guaranteed by Assumption D8.

Proof of Theorem 2. The consistency of b is proved in Lemma 2, and the convergence rate is shown in
Lemma 4. From Lemma 6, an(b � 0) has the same asymptotic distribution as argmin

v
CTn(v), where

CTn (v) =

8>><>>:
TP
t=1

�0tn

�
nP
i=1

xi �t (e1�ti) 1
�
0 +

v
an

< qi � 0

��
+

fq(0)
2

�1Tn
�0n�n

jvj ;

�
TP
t=1

�0tn

�
nP
i=1

xi �t (e2�ti) 1
�
0 < qi � 0 +

v
an

��
+

fq(0)
2

�2Tn
�0n�n

v;

if v � 0;
if v > 0:

We now apply Theorem 2.7 of Kim and Pollard (1990) to �nd the asymptotic distribution of an(b � 0).
(i) CTn(v)  CT (v) 2 Cmin (R), where Cmin (R) is de�ned as the subset of continuous functions x(�) 2

Bloc (R) for which (i) x(t)!1 as jtj ! 1 and (ii) x(t) achieves its minimum at a unique point in R,
and Bloc(R) is the space of all locally bounded real functions on R, endowed with the uniform metric

on compacta. The weak convergence is proved in Lemma 8. We now check CT (v) 2 Cmin (R). It is
not hard to check CT (v) is continuous, has a unique minimum (see Lemma 2.6 of Kim and Pollard

(1990)), and lim
jvj!1

CT (v) =1 almost surely (which is true since lim
jvj!1

W` (v) = jvj = 0 almost surely).
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(ii) an(b � 0) = Op(1). This is proved in Lemma 4.

So

an(b � 0) d�! argmin
v

CT (v):

Making the change-of-variables v = �2T
�21T fq(0)

r, noting the distributional equality W`(a
2r) = aW`(r), we can

rewrite the asymptotic distribution as

argmin
v

CT (v) = argmax
v
f�CT (v)g

=
�2T

�21T fq(0)
argmax

v

�
�CT

�
�2T

�21T fq(0)
r

��

=
�2T

�21T fq(0)
argmax

v

8<: �
p
fq(0)�TW1

�
� �2T
�21T fq(0)

r
�
� 1

2
�2T
�1T

jrj ;

�
p
fq(0)�TW2

�
�2T

�21T fq(0)
r
�
� �2T

2
�2T
�21T

jrj ;
if r � 0;
if r > 0;

=
�2T

�21T fq(0)
argmax

v

(
�2T
�1T

W1 (�r)� 1
2
�2T
�1T

jrj ;
�2T
�1T

W2 (r)� �2T
2
�2T
�21T

jrj ;
if r � 0;
if r > 0;

=
�2T

�21T fq(0)
argmax

v

(
W1 (�r)� 1

2 jrj ;
W2 (r)� 1

2
�2T
�1T

jrj ;
if r � 0;
if r > 0;

=
�2T

�21T fq(0)
�(�):

By Slutsky�s theorem,

nfq(0)

�
�1Tn
�Tn

�2
(b � 0) d�! �(�):

Proof of Corollary 1. From the proof of Theorem 2 and the continuous mapping theorem,

n (QTn (0)�QTn (b)) d�! sup
v
f�CT (v)g :

Note that

sup
v
f�CT (v)g = sup

r

8<: �
p
fq(0)�TW1

�
� �2T
�21T fq(0)

r
�
� 1

2
�2T
�1T

jrj ;

�
p
fq(0)�TW2

�
�2T

�21T fq(0)
r
�
� �2T

2
�2T
�21T

jrj ;
if r � 0;
if r > 0;

= sup
r

(
�2T
�1T

W1 (�r)� 1
2
�2T
�1T

jrj ;
�2T
�1T

W2 (r)� �2T
2
�T2
�21T

jrj ;
if r � 0;
if r > 0;

=
�2T
�1T

sup
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(
W1 (�r)� 1

2 jrj ;
W2 (r)� 1

2
�2T
�1T

jrj ;
if r � 0;
if r > 0;

so sup
v
f�CT (v)g = �2T

�1T
max fM1;M2g � �2T

�1T
M , whereM1 = supr�0

�
W1 (�r)� 1

2 jrj
	
,M2 = supr�0

�
W2 (r)� 1

2� jrj
	
,

and M1 and M2 are independent. From Bhattacharya and Brockwell (1976), M1 follows the standard expo-

nential function, and M2 follows an exponential distribution with mean 1=�. It follows that

P (M � x) = P (M1 � x;M2 � x) = P (M1 � x)P (M2 � x) = (1� e�x)(1� e��x):

By Slutsky�s theorem, the result of the theorem follows.
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Remark 1 In the least squares estimation, CT (v) is changed to

C(v) =

( p
fq(0)V1W1(�v) + fq(0)

2 D jvj ;p
fq(0)V2W2(v) +

fq(0)
2 D jvj ;

if v � 0;
if v > 0;

where D = lim
n!1

�0nE [xx
0jq = 0] �n=�

0
n�n, and V` = lim

n!1
�0nE

�
xx0e2` jq = 0

�
�n=�

0
n�n. So the asymptotic

distribution of the LSE is

an(bLSE � 0) d�! argmin
v

C(v),

and

nfq(0)
D2
n

V1n
(bLSE � 0) d�! e��V2

V1
; 1

�
:

where e�(�; �) is de�ned in (5), Dn = �0nE [xx
0jq = 0] �n, and V1n = �0nE

�
xx0e21jq = 0

�
�n. Correspondingly,

Sn (0)� Sn (bLSE) d�! sup
v
f�C(v)g = V1

D
sup
r

(
W1 (�r)� 1

2 jrj ;q
V2
V1
W2 (r)� 1

2 jrj ;
if r � 0;
if r > 0;

so
Dn

V1n
(Sn (0)� Sn (bLSE)) d�!MLSE,

where Sn() = 1
2

Xn

i=1
(yi � x0ib�1()1(qi � ) � x0ib�2()1(qi > ))2 is the pro�led objective function of the

LSE for a given , and

P (MLSE � x) = (1� e�x)(1� e�V1x=V2):

When e` = �`e with e being independent of x, V1=V2 = �210=�
2
20.

Proof of Theorem 3. As in the proof of Theorem 3 of Angrist et al. (2006), we divide the proof of the

weak limit of b�`(�) into two steps. For simplicity, take b�1(�) as an example.
Step 1: Uniform consistency of b�1(�).
For each � in T , b�1(�) minimizes Qn (�; �1; b) � Pn

��
�� (y � x0�1)� ��

�
y � x0�01(�)

��
1(q � b)�. De�ne

Q (�; �1; 0) � E
��
�� (y � x0�1)� ��

�
y � x0�01(�)

��
1(q � 0)

�
. It is easy to show that E [kxk] <1 implies

that E
������ (y � x0�1)� �� �y � x0�01(�)���� 1(q � 0)

�
< 1. Therefore, Q (�; �1; 0) is �nite and by the

stated assumptions (especially, Assumption D6), it is uniquely minimized at �01(�) for each � in T .
We �rst show the uniform convergence, namely for any compact set B, Qn (�; �1; ) = Q (�; �1; )+op(1)

uniformly in (�; �1; ) 2 T � B � �. This statement holds pointwise by the weak law of large numbers

(WLLN). The empirical process (�; �1; ) 7! Qn (�; �1; ) is stochastic equicontinuous because

jQn (� 0; �01; 0)�Qn (�; �1; )j
� jQn (� 0; �01; 0)�Qn (�; �1; 0)j+ jQn (�; �1; 0)�Qn (�; �1; )j

� 2Pn [kxk] sup
�12B

k�1k j� 0 � � j+ 2Pn [kxk] k�01 � �1k+ 2Pn

"
kxk 1 (

0 ^  < q � 0 _ )p
j0 � j

#
sup
�12B

k�1k
p
j0 � j

= Op(1) j� 0 � � j+Op(1) k�01 � �1k+Op(1)
p
j0 � j:

Hence, the convergence also holds uniformly.

Next, we show uniform consistency. Consider a collection of closed balls BM
�
�01(�)

�
of radius M and

center �01(�), and let �1M (�) = �01(�) + �M (�) � v(�), where v(�) is a direction vector with unity norm
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kv(�)k = 1 and �M (�) is a positive scalar such that �M (�) �M . Then uniformly in � 2 T ,

(M=�M (�)) �
�
Qn (�; �1M (�); b)�Qn ��; �01(�); b�� (1)� Qn (�; �

�
1M (�); b)�Qn ��; �01(�); b�

(2)

� Q (�; ��1M (�); 0)�Q
�
�; �01(�); 0

�
+ op(1)

(3)

� �M + op(1)

for some �M > 0, where (1) follows by convexity in �1 for ��1M (�) the point of the boundary of BM
�
�01(�)

�
on the line connecting �1M (�) and �01(�); (2) follows by the uniform convergence established above andb� 0 = op(1); and (3) follows because �01(�) is the unique minimizer of Q

�
�; �01(�); 0

�
uniformly in � 2 T ,

by convexity and Assumption D6. Hence for any M > 0, the minimizer b�1(�) must be in the radius-M ball

centered at �01(�) uniformly for all � 2 T , with probability approaching 1.
Step 2: Asymptotic Gaussianity of

p
n
�b�1(�)� �01(�)�.

First, by the computational properties of b�1(�), for all � 2 T (cf. Theorem 3.3 in Koenker and Bassett

(1978)) we have that Pn � � �y � x0b�1(�)�x1(q � b)� � d � sup
i�n

kxik =n:

Note that E
h
kxik2+"

i
<1, " > 0, implies sup

i�n
kxik = op(n

1=2) because P
�
sup
i�n

kxik >
p
n

�
� nP (kxik >

p
n) �

n E
h
kxik2+"

i.
n(2+")=2 = o(1). Hence uniformly in � 2 T ,

p
nPn

�
 �

�
y � x0b�1(�)�x1(q � b)� = op(1): (11)

Second, (�; �1; ) 7! Gn ( � (y � x0�1))x1(q � )) is stochastic equicontinuous over T �B � �, where B
is any compact set, with respect to the L2(P ) pseudo-metric

� ((� 0; �01; 
0) ; (�; �1; ))

2 � max
j21;��� ;d

E
h
( � 0 (y � x0�01)xj1(q � 0)�  � (y � x0�1)xj1(q � ))

2
i

for j = 1; � � � ; d indexing the components of x. Note that the functional class f � (y � x0�1)x1(q � ); � 2
T ; �1 2 B;  2 �g is formed as (T � F)xQ, where F = f1 (y � x0�1) ; �1 2 Bg and Q = f1(q � );  2 �g
is a VC subgraph class and hence a bounded Donsker class. Hence (T � F) is also bounded Donsker and
(T � F)xQ is, therefore, Donsker with a square-integrable envelope 2 �maxj21;��� ;d jxj j by Theorem 2.10.6

in van der Vaart and Wellner (1996). Stochastic equicontinuity then is part of being Donsker.

Third, by stochastic equicontinuity of (�; �1; ) 7! Gn ( � (y � x0�1))x1(q � )) we have that

Gn
�
 �

�
y � x0b�1(�))�x1(q � b)� = Gn � � �y � x0�01(�))�x1(q � 0)

�
+ op(1) in `1 (T ) ; (12)

which follows from sup�2T

b�1(�)� �01(�) = op(1), b � 0 = op(1), and resulting convergence with respect

to the pseudo-metric sup�2T �
��
� 0; b�1(�); b� ; ��; �01(�); 0��2 = op(1). The last result is immediate from

sup�2T � ((�
0; �01(�); 

0) ; (�; �1(�); ))
2 � C �

�
sup�2T k�01(�)� �1(�)k

"=(2+")
+ j0 � j

�
by the Hölder�s in-

equality, where C can take
�
f �
�
E
h
kxk2

i�1=2�"=(2(2+"))
�
�
E
h
kxk2+"

i�2=(2+")
+ 2fq sup

2N

E
h
kxk2

��� q = 
i
,

f is the a.s. upper bound on f(yjx; q), and N is a neighborhood of 0.
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Furthermore, the following expansion is valid uniformly in � 2 T :

E [ � (y � x0�1)))x1(q � )]j�1=b�1(�);=b = [�J1(�) + op(1)]
�b�1(�)� �01(�)�+ op(n�1=2): (13)

Indeed, by Taylor expansion,

E [ � (y � x0�1)))x1(q � )]j�1=b�1(�);=b = �E
�
fyjx;q (x

0b1(�)jx; q)xx01(q � 0)
���
b1(�)=��1 (�)

�b�1(�)� �01(�)�
+ E

�
 �
�
y � x0�01(�)))

�
xjq = 

�
fq()

��
=�

(b � 0) ;
where ��1(�) is on the line connecting b�1(�) and �01(�) for each � and can be di¤erent for each row of the Jaco-
bian matrix, and � is between b and 0. E �fyjx;q (x0b1(�)jx; q)xx01(q � 0)

���
b1(�)=��1 (�)

= J1(�)+op(1) by

the uniform consistency of b�1(�), and the assumed uniform continuity and boundedness of the mapping y 7!
f (yjx; q), uniformly for q � 0 and x 2 X. E

�
 �
�
y � x0�01(�)))

�
xjq = 

�
fq()

��
=�

(b � 0) = 0 if � � 0

and isOp(
�01(�)� �02(�) (b � 0)) if � > 0. In whatever case, E

�
 �
�
y � x0�01(�)))

�
xjq = 

�
fq()

��
=�

(b � 0) =
Op(k�nk a�1n ) = op(n

�1=2).

Fourth, we have that

op(1) =
h
(�J1(�) + op(1))

p
n
�b�1(�)� �01(�)�i+Gn � � �y � x0�01(�))�x1(q � 0)

�
; (14)

because the left-hand side of (11) is equal to the left-hand side of n1=2(13) plus the left-hand side of (12).

Therefore, using the mineig[J1(�)] � �1 > 0 uniformly in � 2 T ,

sup
�2T

Gn � � �y � x0�01(�))�x1(q � 0)
�
+ op(1)

 � �p�1 + op(1)� � sup
�2T

p
n
n�b�1(�)� �01(�)� ; (15)

where for a matrix A, mineig[A] denotes the minimum eigenvalue of A.

Fifth, the mapping � 7! �01(�) is continuous by the implicit function theorem and stated assump-

tions. In fact, because �01(�) solves E [(� � 1 (y � x0�1)) 1(q � 0)] = 0, d�01(�)=d� = J1(�)
�1E[x]. Hence

� 7! Gn
�
 �
�
y � x0�01(�))

�
x1(q � 0)

�
is stochastic equicontinuous over T for the pseudo-metric given by

� (� 0; �) = �
��
� 0; �01(�

0); 0
�
;
�
�; �01(�); 0

��
. Stochastic equicontinuity of � 7! Gn

�
 �
�
y � x0�01(�))

�
x1(q � 0)

�
and a multivariate central limit theorem imply that

Gn
�
 �
�
y � x0�01(�))

�
x1(q � 0)

�
 Z1(�) in `1 (T ) ; (16)

where Z1(�) is a Gaussian process with covariance function �1 (�; �) speci�ed in the statement of Theorem 3.

Therefore, the left-hand side of (15) is Op(n�1=2), implying sup
�2T

p
n
n�b�1(�)� �01(�)� = Op(1).

Finally, the latter fact and (14)-(16) imply that in `1 (T ) ;

J1(�)
p
n
�b�1(�)� �01(�)� = Gn � � �y � x0�01(�))�x1(q � 0)

�
+ op(1) Z1(�):

The proof for the weak limit of b�` (�) does not rely on whether �n is �xed or shrinking, so can be applied to
both cases.

At last, we prove the asymptotic independence among b, b�1(�) and b�2(�). From Lemma 5, n(b � 0) has
the same asymptotic distribution as argmin

v
DTn(v). From the above proof, J1(�)

p
n
�b�1(�)� �01(�)� has the

same weak limit as Gn
�
 �
�
y � x0�01(�))

�
x1(q � 0)

�
, and J2(�)

p
n
�b�2(�)� �02(�)� has the same weak limit

as Gn
�
 �
�
y � x0�02(�))

�
x1(q > 0)

�
. We only prove the result for a pair of �xed v1 and v2, and �xed �1 and
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�2, or the Cramér-Wold device can be used. De�ne

S1i = z1Ti1
�
0 +

v1
n
< qi � 0

�
; S2i = z2Ti1

�
0 < qi � 0 +

v2
n

�
;

S3i =
1p
n
 �1

�
y � x0�01(�1))

�
x1(q � 0) �

1p
n
s3i; S4i =

1p
n
 �2

�
y � x0�02(�2))

�
x1(q > 0) �

1p
n
s4i;

where v1 � 0 and v2 > 0. Since

exp
�p
�1t1S1i

	
= 1 + 1

�
0 +

v1
n
< qi � 0

� �
exp

�p
�1t1z1Ti

	
� 1
�
;

exp
�p
�1t2S2i

	
= 1 + 1

�
0 < qi � 0 +

v2
n

� �
exp

�p
�1t2z2Ti

	
� 1
�
;

it follows

E
�
exp

�p
�1 [t1S1i + t2S2i + t03S3i + t04S4i]

	�
= E

�
exp

�p
�1t034s34i=

p
n
	�
� v1
n
fq (0)E

�
exp

�p
�1t034s34i=

p
n
	 �
exp

�p
�1t1z1Ti

	
� 1
��� qi = 0

�
+
v2
n
fq (0)E

�
exp

�p
�1t034s34i=

p
n
	 �
exp

�p
�1t2z2Ti

	
� 1
��� qi = 0

�
+ o

�
1

n

�
= 1 +

1

n

�
�1
2
t034�(�1; �2)t

0
34 � fq (0) v1

�
E
��
exp

�p
�1t1z1Ti

	��� qi = 0
�
� 1
�

+ fq (0) v2
�
E
��
exp

�p
�1t2z2Ti

	��� qi = 0
�
� 1
�
+ o

�
1

n

�
;

where t34 = (t03; t
0
4)
0, s34i = (s03i; s

0
4i)

0, o (1) in the �rst equality is a quantity going to zero uniformly over

i = 1; � � � ; n from Assumption D4, the last equality is from the Taylor expansion of exp
�p
�1t034s34i=

p
n
	
,

and

�(�1; �2) = E [s34is
0
34i] = diag f�1(�1; �1);�2(�2; �2)g :

So

E

"
exp

(
p
�1
"
t1

nX
i=1

S1i + t2

nX
i=1

S2i + t
0
3

nX
i=1

S3i + t
0
4

nX
i=1

S4i

#)#

=

nY
i=1

E
�
exp

�p
�1 [t1S1i + t2S2i + t03S3i + t04S4i]

	�
! exp

�
�1
2
t03�1(�1; �1)t

0
3 �

1

2
t04�2(�2; �2)t

0
4

� fq (0) v1
�
E
��
exp

�p
�1t1z1Ti

	��� qi = 0
�
� 1
�

+fq (0) v2
�
E
��
exp

�p
�1t2z2Ti

	��� qi = 0
�
� 1
�	
:

As a result, b, b�1(�1) and b�2(�2) are asymptotically independent.
In the case with shrinking threshold e¤ects, n(b � 0) has the same asymptotic distribution as argmin

v

CTn(v) from Lemma 6. Rede�ne

S1i =
TX
t=1

�0tnxi �t (e1�ti) 1 (v1 < qi � 0) ; S2i = �
TX
t=1

�0tnxi �t (e2�ti) 1 (0 < qi � v2) ;

33



where v = 0 + v=an. Then

E
�
exp

�p
�1 [t1S1i + t2S2i + t03S3i + t04S4i]

	�
= 1� 1

2
t21
XT

t=1

XT

t0=1
(�t ^ �t0 � �t�t0)�0tnE [xix0i1 (v1 < qi � 0)] �t0n

� 1
2
t22
XT

t=1

XT

t0=1
(�t ^ �t0 � �t�t0)�0tnE [xix0i1(0 < qi � v2)] �t0n �

1

n

1

2
t034�(�1; �2)t

0
34 + o

�
1

n

�
= 1� fq (0)

2n
jv1j t21

XT

t=1

XT

t0=1
(�t ^ �t0 � �t�t0)

�0tn
k�nk

E [xix
0
ijqi = 0]

�t0n
k�nk

� fq (0)

2n
v2t

2
2

XT

t=1

XT

t0=1
(�t ^ �t0 � �t�t0)

�0tn
k�nk

E [xix
0
ijqi = 0]

�t0n
k�nk

� 1

2n
t034�(�1; �2)t

0
34 + o

�
1

n

�
;

so

E

"
exp

(
p
�1
"
t1

nX
i=1

S1i + t2

nX
i=1

S2i + t
0
3

nX
i=1

S3i + t
0
4

nX
i=1

S4i

#)#

=
nY
i=1

E
�
exp

�p
�1 [t1S1i + t2S2i + t03S3i + t04S4i]

	�
= exp

�
�1
2
t03�1(�1; �1)t

0
3 �

1

2
t04�2(�2; �2)t

0
4

� fq (0)

2
jv1j t21

XT

t=1

XT

t0=1
(�t ^ �t0 � �t�t0)

�0tn
k�nk

E [xix
0
ijqi = 0]

�t0n
k�nk

�fq (0)
2

v2t
2
2

XT

t=1

XT

t0=1
(�t ^ �t0 � �t�t0)

�0tn
k�nk

E [xix
0
ijqi = 0]

�t0n
k�nk

�
+ o(1):

As a result, b, b�1(�1) and b�2(�2) are asymptotically independent.
Proof of Corollary 4. Take bJ1(�) as an example. Recall that bJ1(�) = 1

n

nP
i=1

Kh1

�
yi � x0ib�1 (�)�xix0i1 (qi � b).

We will show that bJ1(�)� J1(�) = op(1) uniformly in � 2 T .

Note that h1 bJ1(�) = Pn

h
fi(b�1 (�) ; b; h1)i, where fi(�; ; h) = K

�
yi�x0i�

h

�
xix

0
i1 (qi � ). For any compact

set B, � and positive constant H, the functional class ffi(�; ; h); � 2 B;  2 �;  2 (0;H]g is a Donsker class
with a square-integrable envelope by Theorem 2.10.6 in van der Vaart and Wellner (1996), because this is a

product of a square-integrable random matrix xix0i (recall E
h
kxk4

i
<1 by assumption) and two VC classesn

K
�
yi�x0i�

h

�
; � 2 B; h 2 (0;H]

o
(see Example 2.10 of Pakes and Pollard (1989)) and f1 (qi � ) ;  2 �g.

Therefore, (�; ; h) 7! Gn [fi(�; ; h)] converges to a Gaussian process in `1 (B � �� (0;H]), which implies
that sup�2B;2�;2(0;H] kPn [fi(�; ; h)]� E [fi(�; ; h)]k = Op(n

�1=2). Letting B be the parameter space of
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�1(�), this implies sup�2T
Pn hfi(b�1 (�) ; b; h1)i� E [fi(�; ; h1)]j�=b�1(�);=b

 = Op(n
�1=2). Hence,

sup
�2T

 bJ1(�)� J1(�) = sup
�2T

 1h1Pn
h
fi(b�1 (�) ; b; h1)i� J1(�)

� sup
�2T

 1h1
�
Pn

h
fi(b�1 (�) ; b; h1)i� E [fi(�; ; h1)]j�=b�1(�);=b

�
+ sup
�2T

 1h1
�
E [fi(�; ; h1)]j�=b�1(�);=b � E [fi(�; 0; h1)]j�=b�1(�)

�
+ sup
�2T

 1h1E [fi(�; 0; h1)]
����
�=b�1(�) � J1(�)

 = Op

�
n�1=2h�11

�
+ op(1);

where the op(1) in the last equality is from two facts:

h�11 E [fi(�; ; h1)]
��
�=b�1(�);=b = E

�
xix

0
i1 (qi � )

Z
K(u)fyjx;q(x

0
i� + uhjxi; qi)du

�����
�=b�1(�);=b

= E

�
xix

0
i1 (qi � 0)

Z
K(u)fyjx;q(x

0
i� + uhjxi; qi)du

�����
�=b�1(�) + op(1);

and

h�11 E [fi(�; 0; h1)]
��
�=b�1(�) = E

�
xix

0
i1 (qi � 0)

Z
K(u)fyjx;q(x

0
i� + uhjxi; qi)du

�����
�=b�1(�) = J1(�) + op(1)

by the assumptions on K(�) and f(yjx; q); see (A.55) in Pagan and Ullah (1999). By nh21 ! 1, the result
follows.

Proof of Theorem 5. This proof is based on eTn(; �); the proof for bTn(; �) is easier.
First, b� (�) is uniformly consistent to �0 (�) for � 2 T . The proof is similar to Appendix A.1.1 of Angrist

et al. (2006). Given Assumption T1, we need only show that Qn (�; �) � Pn [�� (y � x0�)� �� (y � x0�0(�))]
converges to Q1 (�; �) � E [�� (Y � x0�)� �� (e� )] which is uniquely minimized at �0(�), where Y =

x0�0(�) + e� . For this purpose, we need only to show that

Qn (�; �)� Pn [�� (Y � x0�)� �� (e� )] = op (1)

uniformly over (�; �) 2 T �B. Note that

jQn (�; �)� Pn [�� (Y � x0�)� �� (e� )]j � 3n�1=2sup
i�n

jx0ic (�)j 1(qi � 0) = op (1) ;

given that E[kxk4] <1, and c (�) is uniformly bounded on � 2 T .
Second, n�1

Pn
i=1 '�

�
yi � x0ib� (�)�2 �xi()� bJ(; �) bJ(�)�1xi��xi()� bJ(; �) bJ(�)�1xi�0 converges to

H(; �) uniformly in (�; ) 2 T ��. From the proof of Corollary 4, bJ(; �) and bJ(�) are uniformly consistent
to J(; �) and J(�), respectively, so we need only to show that n�1

Pn
i=1 gi

�
; �; b� (�)� converges to H(; �)

uniformly, where

gi (; �; �) = '� (yi � x0i�)
2 �
xi()� J(; �)J(�)�1xi

� �
xi()� J(; �)J(�)�1x0i

�
:

It is easy to verify that fgi (; �; �) ; (�; �; ) 2 T �B��g is Donsker, and hence a Glivenko-Cantelli class, e.g.,
using Theorem 2.10.6 in van der Vaart and Wellner (1996). This implies that Pn[gi (; �; �)]�E[gi (; �; �)] =
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op(1) uniformly in (�; �; ) 2 T � B � �. This latter and continuity of E[gi (; �; �)] in (�; �; ), combined
with the uniformly consistency of b� (�) and the de�nition of yi, imply the result.
Third, n�1=2

Pn
i=1

h
xi()� bJ(; �) bJ(�)�1xii'� �yi � x0ib� (�)� S(; �)+

�
J(; �)J(�)�1J(0; �)� J( ^ 0; �)

�
c (�)

in `1(T � �).

1p
n

nX
i=1

xi()'�

�
yi � x0ib� (�)� = Gn �xi()'� �yi � x0ib� (�)��+pn E [xi()'� (yi � x0i�)]j�=b�(�) :

By Assumption T2 and stochastic equicontinuity of (�; �; ) 7! Gn (x()'� (y � x0�))), the �rst term on

the right hand side Gn
�
xi()'�

�
yi � x0ib� (�)�� = Gn (xi()'� (e�i)) + op(1) in `1(T � �). By Taylor

expansion, the second term

p
n E [xi()'� (yi � x0i�)]j�=b�(�)
=
p
n E

h
xi()'�

�
x0i�0(�) + n

�1=2xi(0)
0c (�) + e�i � x0i�

�i���
�=b�(�)

= J(; �)
p
n
�b� (�)� �0 (�)�� J( ^ 0; �)c (�) + op(1):

From the proof of Corollary 4, bJ(; �) and bJ(�) are uniformly consistent to J(; �) and J(�), respectively,
so

bJ(; �) bJ(�)�1 1p
n

nX
i=1

xi'�

�
yi � x0ib� (�)�

=
�
J(; �)J(�)�1 + op(1)

�n
Gn (xi'� (e�i))� J(0; �)c (�) + J(�)

p
n
�b� (�)� �0 (�)�+ op(1)o

= J(; �)J(�)�1Gn (xi'� (e�i)) + J(; �)
p
n
�b� (�)� �0 (�)�� J(; �)J(�)�1J(0; �)c (�) + op(1)

in `1(T � �). As a result,

n�1=2
nX
i=1

h
xi()� bJ(; �) bJ(�)�1xii'� �yi � x0ib� (�)�

= Gn (xi()'� (e�i))� J(; �)J(�)�1Gn (xi'� (e�i))�
�
J( ^ 0; �)� J(; �)J(�)�1J(0; �)

�
c (�) ;

where Gn (xi()'� (e�i))� J(; �)J(�)�1Gn (xi'� (e�i)) converges weakly to S(; �) in `1(T � �).
Proof of Theorem 6. First, conditional on the original sample path, n�1=2

Pn
i=1

h
xi()� bJ(; �) bJ(�)�1xii'� (yi�

x0i
b� (�))��i is a zero-mean Gaussian process with covariance function

Hn((1; �1); (2; �2))

= n�1
nX
i=1

'�1

�
yi � x0ib� (�1)�'�2 �yi � x0ib� (�2)��xi(1)� bJ(1; �1) bJ(�1)�1xi��xi(2)� bJ(2; �2) bJ(�2)�1xi�0 :

Extending the second step in the proof of Theorem 5, we have Hn((1; �1); (2; �2))
p�! H((1; �1); (2; �2))

uniformly over (�1; �2; 1; 2) 2 T � T � �� �. Second, also by the second step in the proof of Theorem 5,

n�1
Pn

i=1 '�

�
yi � x0ib� (�)�2 �xi()� bJ(; �) bJ(�)�1xi��xi()� bJ(; �) bJ(�)�1xi�0 p�! H(; �) uniformly

over (�; ) 2 T ��. In summary, bT �n(; �) � H(; �)�1=2S(; �) = T 0(; �) in `1(T ��), where � signi�es

the weak convergence in probability.
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Appendix B: Lemmas

Lemma 1 Under Assumption D, b� p�! �0.

Proof. Theorem 2.1 of Newey and McFadden (1994) is used in this proof. The objective function is

Qn(; �T ) =
1

n

nX
i=1

TX
t=1

��t (yi � x0i�1 (�t) 1(qi � )� x0i�2 (�t) 1(qi > )) :

It is convenient to consider the recentered version of Qn(; �T ):

Sn(; �T ) = Qn(; �T )�Qn(0; �0T ):

We need only show that sup
�2�

jSn(; �T )� S(; �T )j
p�! 0, where

S(; �T ) =
XT

t=1
E [��t (yi � x0i�1 (�t) 1(qi � ) + x0i�2 (�t) 1(qi > ))� ��t (e1�t1(qi � 0) + e2�t1(qi > 0))]

is continuous in � and is uniquely minimized at �0.

Step 1: sup
�2�

jSn(; �T )� S(; �T )j
p�! 0. We apply Lemma 2.8 of Pakes and Pollard (1989) to prove this

result. So we need to check the class of functions
nPT

t=1 ��t (y � x0�1 (�t) 1(q � )� x0�2 (�t) 1(q > )) ; � 2 �
o

is Euclidean with an envelope that has a �nite �rst moment.XT

t=1
[��t (y � x0�1 (�t) 1(q � ) + x0�2 (�t) 1(q > ))� ��t (e1�t1(q � 0) + e2�t1(q > 0))]

= 1(q � 0 ^ )
XT

t=1

�
��t
�
e1�t + x

0�01 (�t)� x0�1 (�t)
�
� ��t (e1�t)

�
+ 1 (q >  _ 0)

XT

t=1

�
��t
�
e2�t + x

0�02 (�t)� x0�2 (�t)
�
� ��t (e2�t)

�
+ 1 ( ^ 0 < q � 0)

XT

t=1

�
��t
�
e1�t + x

0�01 (�t)� x0�2 (�t)
�
� ��t (e1�t)

�
+ 1 (0 < q �  _ 0)

XT

t=1

�
��t
�
e2�t + x

0�02 (�t)� x0�1 (�t)
�
� ��t (e2�t)

�
�
XT

t=1
A�t (w1�t j�) +

XT

t=1
B�t (w2�t j�) +

XT

t=1
C�t (w1�t j�) +

XT

t=1
D�t (w2�t j�) ;

where w`� = (e`� ;x
0)
0. f1 (q �  ^ 0) ;  2 �g is Euclidean with envelope 1 by Lemma 2.4 of Pakes and

Pollard (1989).
PT

t=1[��t(e1�t + x
0�01 (�t)� x0i�1 (�t))� ��t (e1�t)] is Lipschitz by the following arguments:XT

t=1
��t
�
e1�t + x

0�01 (�t)� x0�1 (�t)
�
�
XT

t=1
��t

�
e1�t + x

0�01 (�t)� x0e�1 (�t)� � 2 kxkXT

t=1

�1 (�t)� e�1 (�t) ;
where E [kxk] < 1 by Assumption D7. By Lemma 2.13 of Pakes and Pollard (1989), f

PT
t=1[��t(e1�t +

x0�01 (�t) � x0i�1 (�t)) � ��t (e1�t)]; �1 (�t) 2 B; t = 1; � � �Tg is Euclidean with the envelope C kxk. So

f
PT

t=1A�t (w1�t j�) ;  2 �; �1�t 2 B; t = 1; � � �Tg is Euclidean with envelope C kxk by Lemma 2.14 (ii)
of Pakes and Pollard (1989). We can show other terms are Euclidean by similar arguments.

Step 2: S(; �T ) is continuous in � and is uniquely maximized at �0. This continuity of S(; �T ) is

obvious given that f(q) is bounded on �. To show S(; �T ) is uniquely minimized at �0, we consider four

cases. (i)  = 0, �T 6= �0T . From standard arguments in quantile regression, Assumption D6 guarantees
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that S(0; �T ) is uniquely minimized at �0T . (ii)  6= 0 (say  < 0), �T = �0T :

S(; �0T )� S(0; �0T ) =
Z 0



�XT

t=1

Z
E
�
��t
�
e1�t + x

0�01 (�t)� x0�02 (�t)
�
� ��t (e1�t) jx; q

�
dF (xjq)

�
f(q)dq:

Assumptions D2 and D6 guarantee that
PT

t=1

R
E
�
��t(e1�t + x

0�01 (�t)� x0�02 (�t))� ��t (e1�t) jx; q
�
dF (xjq)

is strictly greater than zero. Given that f(q) is greater than zero on �, S(; �0T )� S(0; �
0
T ) > 0 if  6= 0.

(iii)  > 0, �T 6= �0T , �1T = �02T or  < 0, �T 6= �0T , �2T = �01T . Take the former case as an example,

S(; �T )�S(0; �0T ) �
Z 

�1

�XT

t=1

Z
E
�
��t
�
e1�t + x

0�01 (�t)� x0�02 (�t)
�
� ��t (e1�t) jx; q

�
dF (xjq)

�
f(q)dq:

Given Assumptions D2, D4 and D6, S(; �T ) � S(0; �
0
T ) > 0 if  > 0. (iv)  > 0, �1T 6= �02T or  < 0,

�2T 6= �01T : Similar arguments as in Case (ii) lead to S(; �T )� S(0; �0T ) > 0.

Remark 2 This proof cannot be extend to the objective function 1
jT j
R
T Q�n (�) d� with � = (

0; �0 (�))0. This
is because b� (�) can be any discontinuous function on T such that the parameter space for � (�) is not compact.
If we impose some smoothness assumptions on � (�), it is quite possible to prove the consistency of b under
such an objective function. However, this is not how b is de�ned.
Lemma 2 Under Assumptions D1-D7 and k�nk ! 0,

p
n k�nk ! 1, b�`T � �0`T = op(k�nk), and b � 0 =

op(1).

Proof. We use the notations in the last lemma to prove this result. Consider the case of  � 0 without

loss of generality because of symmetry. By Step 1 of the last lemma, and k�nk ! 0,

sup
�2�

jSn(; �T )� S(; �T )j
p�! 0;

where S(; �T ) is rede�ned as

E

�XT

t=1

�
��t
�
e1�t + x

0�01 (�t)� x0�1 (�t)
�
� ��t (e1�t)

�
1(q � 0)

�
+ E

�XT

t=1

�
��t
�
e2�t + x

0�02 (�t)� x0�2 (�t)
�
� ��t (e2�t)

�
1 (q > )

�
+ E

�XT

t=1

�
��t
�
e2�t + x

0�01 (�t)� x0�1 (�t)
�
� ��t (e2�t)

�
1 (0 < q � )

�
:

From Assumption D6, S(; �T ) is uniquely minimized at �0T for any  2 �, so by Theorem 2.1 of Newey

and McFadden (1994), b� is consistent for any  2 �. However, S(; �T ) is not uniquely minimized at �0.
For example, S(; �0T ) = 0 for any  2 �. To prove the consistency of b, the normalization in Qn(; �T )
should be a�1n rather than n�1. We denote the objective function still as Qn(; �T ). Also, without loss of

generality, the parameter space can be restricted as
��T � �0T � �,  2 �

	
for a small positive number �.
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Write Qn(; �T ) as

Qn(; �T ) (17)

=
1

an

nX
i=1

TX
t=1

�
��t
�
e1�ti + x

0
i�
0
1 (�t)� x0i�1 (�t)

�
� ��t (e1�ti)

�
1(qi � 0)

+
1

an

nX
i=1

TX
t=1

�
��t
�
e2�ti + x

0
i�
0
2 (�t)� x0i�2 (�t)

�
� ��t (e2�ti)

�
1 (qi > )

+
1

an

nX
i=1

TX
t=1

�
��t
�
e2�ti + x

0
i�
0
2 (�t)� x0i�1 (�t)

�
� ��t (e2�ti)

�
1 (0 < qi � )

� T1(�) + T2(�) + T3(�):

T1(�) and T2(�) can be similarly analyzed, so take T1(�) as an example. From Knight (1998),

��t
�
e1�ti + x

0
i�
0
1 (�t)� x0i�1 (�t)

�
� ��t (e1�ti)

= '�t (e1�ti)x
0
i

�
�1 (�t)� �01 (�t)

�
+

Z x0i(�1(�t)��
0
1(�t))

0

(1(e1�ti < s)� 1(e1�ti < 0)) ds:

Note that

n�1
nX
i=1

TX
t=1

'�t (e1�ti)x
0
i1(qi � 0) = Op(n

�1=2);

and

1
n

nP
i=1

TP
t=1

Z x0i(�1(�t)��
0
1(�t))

0

(1(e1�ti < s)� 1(e1�ti < 0)) ds1(qi � 0)

=
TP
t=1

Op

��
�1 (�t)� �01 (�t)

�0
J�t
�
�1 (�t)� �01 (�t)

��
= Op

��1T � �01T2�
uniformly for

�1T � �01T � �, where J�t , t = 1; � � � ; T , is positive de�nite from Assumption D6. As a

result,

T1(�) = Op(n
�1=2 �1T � �01T =�0n�n) +Op(�1T � �01T2 =�0n�n);

and the second part of T1(�) dominates on
�1T � �01T �M k�nk for anyM > 0 given that n1=2 k�nk ! 1.

So for any M > 0, we can �nd a constant CM > 0 such that

P

 
inf

k�1T��01Tk�Mk�nk
T1(�) > CM

!
! 1:

Similar results apply to T2(�). As to T3(�), by a similar analysis as in T1(�), we can show

T3(�) = Op(n
�1=2 �1T � �02T =�0n�n) +Op(�1T � �02T2 =�0n�n)

uniformly for
�1T � �01T � �, and �0 � �.

���01T � �02T� �1T � �01T�� � �1T � �02T � �1T � �01T+�01T � �02T. Given that �01T � �02T = k�nk, for any M > 0,
�1T � �02T is either O(k�nk) or o(k�nk)

when
�1T � �01T �M k�nk. In the former case, for any � > 0 and M > 0, we can �nd a constant CM� > 0

such that with probability approaching 1, inf
k�1T��01Tk�Mk�nk;0+���

T3(�) > CM�; in the later case, T3(�) is

dominated by T1(�) or T2(�).
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The above arguments can be applied to  < 0, so in summary, for any � > 0 and M > 0, we can �nd a

constant CM� > 0 such that

P

 
inf

k�`T��0`Tk�Mk�nk;j�0j��
Qn(; �T ) > CM�

!
! 1;

which implies the results of interest.

Lemma 3 Under Assumption D, n (b � 0) = Op(1), and
p
n
�
�T � �0T

�
= Op(1).

Proof. This proof uses Corollary 3.2.6 of van der Vaart and Wellner (1996). First de�ne A� , B� , C� and
D� as in Lemma 1.

First, Q (�)�Q (�0) � Cd2 (�; �0), where Q (�) is the probability limit of Qn(�), d (�; �0) =
�T � �0T+p

j � 0j for � 2 N with N being an open neighborhood of �0.

Q (�)�Q (�0)
(1)
=
XT

t=1
E [A�t (w1�t j�) +B�t (w2�t j�) + C�t (w1�t j�) +D�t (w2�t j�)]

(2)
=
XT

t=1
E
��
��t
�
e1�t + x

0 ��01 (�t)� �1 (�t)��� ��t (e1�t)� 1 (q �  ^ 0)
�

+
XT

t=1
E
��
��t
�
x0
�
�02 (�t)� �2 (�t)

�
+ e2�t

�
� ��t (e2�t)

�
1(q >  _ 0)

�
+
XT

t=1
E
��
��t
�
e1�t + x

0 ��01 (�t)� �2 (�t)��� ��t (e1�t)� 1( ^ 0 < q � 0)
�

+
XT

t=1
E
��
��t
�
e2�t + x

0 ��02 (�t)� �1 (�t)��� ��t (e2�t)� 1(0 < q �  _ 0)
�

(3)

�
XT

t=1

�
�1 (�t)� �01 (�t)

�0
E[fe1�t jx;q(0jx; q)xx

01 (q �  ^ 0)]
�
�1 (�t)� �01 (�t)

�
+
XT

t=1

�
�2 (�t)� �02 (�t)

�0
E[fe2�t jx;q(0jx; q)xx

01 (q >  _ 0))]
�
�2 (�t)� �02 (�t)

�
+
XT

t=1

�
�2 (�t)� �01 (�t)

�0
E[fe1�t jx;q(0jx; q)xx

01 ( ^ 0 < q � 0)]
�
�2 (�t)� �01 (�t)

�
+
XT

t=1

�
�1 (�t)� �02 (�t)

�0
E[fe2�t jx;q(0jx; q)xx

01 (0 < q �  _ 0)]
�
�1 (�t)� �02 (�t)

�
(4)

� C

�XT

t=1

h�1 (�t)� �01 (�t)2 + �2 (�t)� �02 (�t)2i+ j � 0j� = Cd2 (�; �0) ;

where (1) and (2) are straightforward, and (3) is from the convexity of E [��t (�)]. The �rst part of (4) is
from Assumptions D4 and D6, and the second part is from Assumptions D2, D4, D5 and D6.

Second, E

"
sup

d(�;�0)<�

jGn (m (wj�)�m (wj�0))j
#
� C� for any su¢ ciently small �. fA� (w1� j�) : d (�; �0) < �g

is a VC subgraph class. This is because

A� (w1� j�) =
�
��
�
e1� + x

0 ��01 (�)� �1 (�)��� �� (e1� )� 1(q �  ^ 0)
= �

��
e1� + x

0 ��01 (�)� �1 (�)�� 1(y > x0�1 (�))� e1�1(y > x0�01 (�))� 1(q �  ^ 0)
+ (� � 1)

��
e1� + x

0 ��01 (�)� �1 (�)�� 1(y � x0�1 (�))� e1�1(y � x0�01 (�))� 1(q �  ^ 0);

where
�
x0
�
�01 (�)� �1 (�)

�
: d (�; �0) < �

	
is VC subgraph from Example 2.9 of Pakes and Pollard (1989),

and f1(q �  ^ 0) : d (�; �0) < �g, f1(y > x0�1 (�)) : d (�; �0) < �g and f1(y � x0�1 (�)) : d (�; �0) < �g are
VC subgraph from Lemma 2.4 of Pakes and Pollard (1989), so by Lemma 2.4(i) and (ii) of Pakes and Pollard
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(1989),
nPT

t=1A�t (w1�t j�) : d (�; �0) < �
o
is VC subgraph with the envelope

1 (q �  ^ 0) kxk sup
d(�;�0)<�

XT

t=1

�01 (�t)� �1 (�t) :
Similarly,

nPT
t=1B�t (w2�t j�) : d (�; �0) < �

o
,
nPT

t=1 C�t (w1�t j�) : d (�; �0) < �
o
and

nPT
t=1D�t (w2�t j�) : d (�; �0) < �

o
are VC subgraph with the envelope

1(q >  _ 0) kxk sup
d(�;�0)<�

XT

t=1

�02 (�t)� �2 (�t) ;
1( ^ 0 < q � 0) kxk sup

d(�;�0)<�

XT

t=1

�01 (�t)� �2 (�t) ;
1(0 < q �  _ 0) kxk sup

d(�;�0)<�

XT

t=1

�02 (�t)� �1 (�t) ;
respectively, so by Lemma 2.4(i) of Pakes and Pollard (1989), fm (wj�)�m (wj�0) : d (�; �0) < �g is VC
subgraph with the envelope

F = kxk sup
d(�;�0)<�

XT

t=1

�
1 (q �  ^ 0)

�01 (�t)� �1 (�t)+ 1(q >  _ 0)
�02 (�t)� �2 (�t)

+1 ( ^ 0 < q � 0)
�01 (�t)� �2 (�t)+ 1 (0 < q �  _ 0)

�02 (�t)� �1 (�t)	 :
From Theorem 2.14.2 of van der Vaart and Wellner (1996),

E

"
sup

d(�;�0)<�

jGn (m (wj�)�m (wj�0))j
#
� C

p
PF 2:

By Assumptions D2 and D4,
p
PF 2 � C�. So � (�) = � in Corollary 3.2.6 of van der Vaart and Wellner

(1996) and �=�� is decreasing for all 1 < � < 2. Since r2n�
�
1
rn

�
= rn,

p
nd
�b� � �0� = OP (1). By the

de�nition of d, the result follows.

Lemma 4 Under Assumptions D1-D7 and k�nk ! 0,
p
n k�nk ! 1, an (b � 0) = Op(1), and

p
n
�
�T � �0T

�
=

Op(1).

Proof. Since �n depends on n, Corollary 3.2.6 of van der Vaart and Wellner (1996) cannot be used.

Nevertheless, we can apply the proof idea of Theorem 3.2.5 in van der Vaart and Wellner (1996) to prove

this result. De�ne dn (�; �0) = max f
p
n k� � �0k ; an j � 0jg for � in a neighborhood of �0. For each n, the

parameter space (minus the point �0) can be partitioned into the "shells" Sj;n =
�
� : 2j�1 < dn (�; �0) � 2j

	
with j ranging over the integers. Given an integer J ,

P
�
dn

�b�; �0� > 2J� � X
j�J;k�T��0Tk<Mk�nk;j�0j<�

P

�
inf

�2Sj;n
(Qn(�)�Qn(�0)) � 0

�
(18)

+ P
�
2
�T � �0T �M k�nk ; 2 j � 0j � �

�
;

where Qn(�) is de�ned in (17), and M and � are small positive numbers. The second term on the right hand

side of (18) converges to zero as n!1 for every � > 0 and M > 0 by the Lemma 2, so we can concentrate
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on the �rst term.

P

�
inf

�2Sj;n
(Qn(�)�Qn(�0)) � 0

�
� P

 
sup
�2Sj;n

jQn(�)�Qn(�0)� E [Qn(�)�Qn(�0)]j � inf
�2Sj;n

jE [Qn(�)�Qn(�0)]j
!

�
3X

k=1

P

 
sup
�2Sj;n

jTk (�)� E [Tk (�)]j � inf
�2Sj;n

jE [Tk (�)]j
!

�
3X

k=1

E

"
sup
�2Sj;n

jTk (�)� E [Tk (�)]j
#,

inf
�2Sj;n

jE [Tk (�)]j ;

where the last equality is from Markov�s inequality, and Tk (�), k = 1; 2; 3, is de�ned in (17).

From Lemma 2, it is not hard to see that for k = 1; 2, inf
�2Sj;n

jE [Tk (�)]j � C 22j�2

an
, and inf

�2Sj;n
jE [T3 (�)]j �

C 2j�1

an
given that b�`T � �0`T = op(k�nk). From the last lemma, for k = 1; 2,

E

"
sup
�2Sj;n

jTk (�)� E [Tk (�)]j
#
� C

2j=
p
np

n�0n�n
= C

2j

an
:

As to T3 (�), applying a maximal inequality (e.g., Theorem 2.14.2 of van der Vaart and Wellner (1996)) we

can show that

E

"
sup
�2Sj;n

jT3 (�)� E [T3 (�)]j
#
� C

p
�0n�n2

j=anp
n�0n�n

� C
2j=2

an
:

In summary,

X
j�J;k�T��0Tk<Mk�nk;j�0j<�

P

 
sup
�2Sj;n

(Qn (�)�Qn (�0)) � 0
!

� C
X
j�J

�
2j=2

an

�
2j�1

an
+
2j

an

�
22j�2

an

�
� C

X
j�J

�
1

2j=2
+
1

2j

�
;

which can be made arbitrarily small by letting J large enough.

Lemma 5 Under Assumption D, uniformly for h = (u0T ; v)
0 in any compact set of R2dT+1,

nPn

�
m

�
�
�����0T + up

n
; 0 +

v

n

�
�m

�
�
���0T ; 0 ��

=
nX
i=1

TX
t=1

�
��t

�
e1�ti �

u01�tp
n
xi

�
� ��t (e1�ti)

�
1(qi � 0) +

nX
i=1

TX
t=1

�
��t

�
e2�ti �

u02�tp
n
xi

�
� ��t (e2�ti)

�
1(qi > 0)

+DTn (v) + op (1) ;

where uT =
�
u01�1 ; � � � ; u

0
1�T ; u

0
2�1 ; � � � ; u

0
2�T

�0 � (u01T ; u02T )0 2 R2dT , and
DTn (v) =

nX
i=1

z1Ti1
�
0 +

v

n
< qi � 0

�
+

nX
i=1

z2Ti1
�
0 < qi � 0 +

v

n

�
:
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Proof. Note that

nPn

�
m

�
�
�����0T + up

n
; 0 +

v

n

�
�m

�
�
���0T ; 0 ��

=
nX
i=1

TX
t=1

�
��t

�
e1�ti �

u01�tp
n
xi

�
� ��t (e1�ti)

�
1(qi � 0 ^ 0 +

v

n
)

+
nX
i=1

TX
t=1

�
��t

�
e2�ti �

u02�tp
n
xi

�
� ��t (e2�ti)

�
1
�
q > 0 +

v

n
_ 0

�
+

nX
i=1

TX
t=1

�
��t

�
e1�ti + x

0
i�
0
1 (�t)� x0i�02 (�t)�

u02�tp
n
xi

�
� ��t (e1�ti)

�
1
�
0 +

v

n
< qi � 0

�
+

nX
i=1

TX
t=1

�
��t

�
e2�ti + x

0
i�
0
2 (�t)� x0i�01 (�t)�

u01�tp
n
xi

�
� ��t (e2�ti)

�
1
�
0 < qi � 0 +

v

n

�
;

so we need to show for t = 1; � � � ; T ,

nP
i=1

h
��t

�
e1�ti �

u01�tp
n
xi

�
� ��t (e1�ti)

i
1(qi � 0 ^ 0 + v

n )

=
nP
i=1

h
��t

�
e1�ti �

u01�tp
n
xi

�
� ��t (e1�ti)

i
1(qi � 0) + op(1);

nP
i=1

h
��t

�
e2�ti �

u02�tp
n
xi

�
� ��t (e2�ti)

i
1(qi > 0 +

v
n _ 0)

=
nP
i=1

h
��t

�
e2�ti �

u02�tp
n
xi

�
� ��t (e2�ti)

i
1(qi > 0) + op(1);

nP
i=1

h
��t

�
e1�ti + x

0
i�
0
1 (�t)� x0i�02 (�t)�

u02�tp
n
xi

�
� ��t (e1�ti)

i
1(0 +

v
n < qi � 0)

=
nP
i=1

�
��t
�
e1�ti + x

0
i�
0
1 (�t)� x0i�02 (�t)

�
� ��t (e1�ti)

�
1(0 +

v
n < qi � 0) + op(1);

nP
i=1

h
��t

�
e2�ti + x

0
i�
0
2 (�t)� x0i�01 (�t)�

u01�tp
n
xi

�
� ��t (e2�ti)

i
1
�
0 < qi � 0 +

v
n

�
=

nP
i=1

�
��t
�
e2�ti + x

0
i�
0
2 (�t)� x0i�01 (�t)

�
� ��t (e2�ti)

�
1
�
0 < qi � 0 +

v
n

�
+ op(1):

Actually, for � 2 T ,

nX
i=1

�
��

�
e1�i �

u01�p
n
xi

�
� �� (e1�i)

� h
1(qi � 0 ^ 0 +

v

n
)� 1(qi � 0)

i
(1)

� 1p
n

nX
i=1

kxik ku1�k 1
�
0 < qi � 0 ^ 0 +

v

n

�
(2)
= op

 
nX
i=1

1
�
0 < qi � 0 ^ 0 +

v

n

�!
(3)
= op(1)
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where (1) is from the Lipschitzity of �� (�), (2) is from Assumption D7 which implies supi�n kxik = op(n
1=2),

and (3) is from Assumption D4. Similarly,

nX
i=1

�
��

�
e2�i �

u02�p
n
xi

�
� �� (e2�i)

��
1
�
qi > 0 +

v

n
_ 0

�
� 1(qi > 0)

�
= op(1);

nX
i=1

�
��

�
e1�i + x

0
i�
0
1 (�)� x0i�02 (�)�

u02�p
n
xi

�
� ��

�
e1�i + x

0
i�
0
1 (�)� x0i�02 (�)

��
1
�
0 +

v

n
< qi � 0

�
= op(1);

nX
i=1

�
��

�
e2�i + x

0
i�
0
2 (�)� x0i�01 (�)�

u01�p
n
xi

�
� ��

�
e2�i + x

0
i�
0
2 (�)� x0i�01 (�)

��
1
�
0 < qi � 0 +

v

n

�
= op(1):

Lemma 6 Under Assumptions D1-D7 and k�nk ! 0,
p
n k�nk ! 1, uniformly for h = (u0T ; v)

0 in any

compact set of R2dT+1,

nPn

�
m

�
�
�����0T + up

n
; 0 +

v

an

�
�m

�
�
���0T ; 0 ��

=
nX
i=1

TX
t=1

�
��t

�
e1�ti �

u01�tp
n
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�
� ��t (e1�ti)

�
1(qi � 0) +

nX
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�
��t

�
e2�ti �

u02�tp
n
xi

�
� ��t (e2�ti)

�
1(qi > 0)

+ CTn (v) + op (1) ;

where uT is de�ned in the last lemma, and

CTn (v) =

8>><>>:
TP
t=1

�0tn

�
nP
i=1

xi �t (e1�ti) 1
�
0 +

v
an

< qi � 0

��
+

fq(0)
2

�1Tn
�0n�n
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�
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xi �t (e2�ti) 1
�
0 < qi � 0 +

v
an

��
+

fq(0)
2

�2Tn
�0n�n

v;

if v � 0;
if v > 0:

Proof. We decompose nPn
�
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����0T + up

n
; 0 +

v
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���0T ; 0 �� as
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i
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0
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u01�tp
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1
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v
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nP
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1
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0 < qi � 0 +

v
n

�
:

We need only to show the last two terms have an approximation of CTn (v). Given that k�nk ! 0 and
p
n k�nk ! 1, u`�t=

p
n can be neglected. Now, from Knight (1998),

��t
�
e1�ti + x

0
i�
0
1 (�t)� x0i�02 (�t)

�
� ��t (e1�ti)

=  �t (e1�ti) �
0
tnxi +

Z �x0i�tn

0

(1(e1�ti < s)� 1(e1�ti < 0)) ds;
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so the �rst term matches the �rst term of CTn (v). As to the second term, note that

TX
t=1

nX
i=1

Z �x0i�tn

0

(1(e1�ti < s)� 1(e1�ti < 0)) ds1 (0 + v=an < qi � 0)

has a mean
TX
t=1

fq(0)

2

�0tn
k�nk

E
�
fe1�t jx;q(0jx; q)xx

0jq = 0
� �tn
k�nk

+ o(1);

and the deviation from the mean is uniformly small.

Lemma 7 Under Assumption D, DTn(v) DT (v) on any compact set of v.

Proof. This proof includes two parts: (i) the �nite-dimensional limit distributions of DTn (v) are the same

as speci�ed in the theorem; (ii) the process DTn (v) is stochastically equicontinuous.

Part (i): This is a direct corollary of the asymptotic limit of the characteristic function in the proof of

Theorem 3, so omitted here to avoid repetition.

Part (ii): Without loss of generality, we prove the result only for v > 0. Suppose 0 < v1 < v2 are stopping

times in a compact set; then for any � > 0,

P

 
sup

jv2�v1j<�
jDTn(v2)�DTn(v1)j > �

!
(1)
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jz2Tij sup
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1
�
0 +

v1
n < qi � 0 +

v2
n

�#,
�
(3)

� C�
� ;

where (1) is obvious, (2) is from Markov�s inequality, and C in (3) can take fq sup
0<�0+�

E [ jz2Tijj qi = ] <1

from Assumptions D4 and D7.

Lemma 8 Under Assumptions D1-D7 and k�nk ! 0,
p
n k�nk ! 1, DTn(v) CT (v) on any compact set

of v, where

CT (v) =

( p
fq(0)�TW1(�v) + fq(0)

2 �1T jvj ;p
fq(0)�TW2(v) +

fq(0)
2 �2T jvj ;

if v � 0;
if v > 0;

where �`T = lim
n!1

�`Tn=�
0
n�n, and �

2
T = lim

n!1
�2Tn=�

0
n�n.

Proof. Note that DTn has the same weak limit as CTn by Lemma 6. By similar arguments as in the last

lemma, we need only check the stochastic equicontinuity of DTn(v). Without loss of generality, we prove the

result only for v > 0. Suppose v1 < v2 are positive numbers in a compact set; then for any � > 0,

P

 
sup

jv2�v1j<�
jDTn(v2)�DTn(v1)j > �

!
(1)
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1
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v1
an
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an

�#,
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� Cn�n�
0
n jv2 � v1jE

h
kxik2 jqi = 0

i
fq(0)=

�
an�

2
� (4)
= C jv2 � v1j =�2;

where (1) is obvious, (2) is from Markov�s inequality, (3) is from the Lipschitz continuity of ��t (�), t =
1; � � � ; T , and (4) is from Assumptions D4 and D7.
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Supplementary Materials

1. Asymptotics When q is the Only Covariate

In this section, we discuss the validity of Assumption D8 in the simple threshold regression with q being the

only covariate. Suppose the population model is

y = �1(q � ) + e; q � U [0; 1]; e � N(0; 1); (19)

where e is independent of q, �0 = 1 and 0 = 0:5. To simplify notations, denote the pdf and cdf of e as f(�)
and F (�), respectively. We �rst consider the asymptotic distribution of b� . From Theorem 1,

n (b� � 0) d�! argmin
v

D� (v);

where

D� (v) =

8>><>>:
N1(jvj)P
i=1

z1�i =
N1(jvj)P
i=1

��e��i + �0��� ��e��i��+ (2� � 1)�0, if v � 0;
N2(v)P
i=1

z2�i =
N2(v)P
i=1

��e+�i � �0��� ��e+�i��� (2� � 1)�0, if v > 0:
Here

�
e��i; e

+
�i; i = 1; � � � ; N1(�); N2(�)

	
are independent of each other, e��i and e

+
�i follow the same distribu-

tion as ei � �� with �� � F�1(�), and N1 (�) and N2 (�) are standard Poisson processes. This asymptotic
distribution is also valid in a little more general model, y = (1; q)�11(q � )+ (1; q)�21(q > )+ e. We need

only rede�ne �0 = (1; 0)(�01 � �02).

1.1. Distributions of z1� and z2�

We now check the distributions of z1�i and z2�i. First, the distribution of z1�i when � = �0 is the same as

that of z2�i when � = ��0, so we need only consider the case of �0 > 0.

z1�i =

8><>:
2(� � 1)�0;
2��0 + 2e

�
�i;

2��0;

if e��i � ��0;
if � �0 < e��i � 0;
if e��i > 0;

and

z2�i =

8><>:
2(1� �)�0;
2(1� �)�0 � 2e+�i;
�2��0;

if e+�i � 0;
if 0 < e+�i � �0;

if e+�i > �0;

have bounded supports. So the distribution of z1�i is

P (z1�i � t) =

8>>><>>>:
0;

P (ei � �� � �0) ;
P
�
ei � �� +

t
2 � ��0

�
;

1;

if t < 2(� � 1)�0;
if t = 2(� � 1)�0;
if 2(� � 1)�0 < t < 2��0;

if t � 2��0;

with the density

fz1� (t) =

8><>:
P (ei � �� � �0) ;
1
2f
�
�� +

t
2 � ��0

�
;

P (ei > �� ) = 1� �;

if t = 2(� � 1)�0;
if 2(� � 1)�0 < t < 2��0;

if t = 2��0;
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Figure 4: Densities of z1� and z2� for Di¤erent ��s

and the distribution of z2�i is

P (z2�i � t) =

8>>><>>>:
0;

P (ei > �� + �0) ;

P
�
ei � �� � t

2 + (1� �)�0
�
;

1;

if t < �2��0;
if t = �2��0;
if � 2��0 < t < 2(1� �)�0;
if t � 2(1� �)�0;

with the density

fz2� (t) =

8><>:
P (ei > �� + �0) ;
1
2f
�
�� � t

2 + (1� �)�0
�
;

P (ei � �� ) = �;

if t = �2��0;
if � 2��0 < t < 2(1� �)�0;
if t = 2(1� �)�0:

Note that there are two point masses in the distributions of z1� and z2� , so Assumption D8 does not hold.

For di¤erent ��s, the distances between the two point masses are the same: 2�0. The di¤erences are the

locations and magnitudes of the point masses. The distributions of z1�i and z2�i are shown in Figure 4.

From Figure 4, z1�i has a di¤erent distribution from z2�i unless � = 0:5. The distributions of z1� and z2�
are not symmetric even if the distribution of e is symmetric and when � = 0:5. When e is symmetric, the

distribution of z1� is the same as z2(1��) but di¤erent from z1(1��).

1.2. Distributions of z1T and z2T

z`T =
PT

t=1 z`�t . Given that the distribution of z`�t has two point masses which are at di¤erent locations

for di¤erent �t�s, we expect the distribution of z`T to have 2T point masses. To avoid the arbitrariness in
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the selection of �t, we consider the limit case as T !1. In this limit case,

z` � lim
T!1

1

T

TX
t=1

z`�t !
1

jT j

Z
T
z`�d�

where �t+1 � �t = jT j =T , T = [� ; � ], and jT j = � � � is the length of T .
Based on the distributions of z1� and z2� , we can derive the distributions of z1 and z2. Note that the

distributions of z`� for di¤erent ��s are correlated, and the only randomness is from e. As a result,

P (z1 � t) = P

�Z
T
fje� �� + �0j � je� �� j+ (2� � 1)�0g d� � jT j t

�
:

Note that as e � �� � �0, the integrand equals 2(� � 1)�0; as �� � �0 < e � �� , the integrand equals

2��0 + 2 (e� �� ); as e > �� , the integrand equals 2��0. So we can divide the domain of e into �ve areas:

e � �� � �0; �� � �0 < e � �� ; �� < e � �� � �0, �� � �0 < e � �� and e > �� , and the integrations for e on

the �ve areas areR
T 2(� � 1)�0d� = �0

�
�2 � �2 � 2 (� � �)

�
;R F (e+�0)

�
[2��0 + 2 (e� �� )] d� +

R �
F (e+�0)

2(� � 1)�0d�
= �0

�
F (e+ �0)

2 � �2
�
+ 2e (F (e+ �0)� �)� 2

R F (e+�0)
�

��d� + �0

h
�2 � F (e+ �0)2 � 2 (� � F (e+ �0))

i
= �0

�
�2 � �2

�
� 2 (�e+ ��0) + 2F (e+ �0) (�0 + e)� 2

R F (e+�0)
�

��d�;R F (e)
�

2��0d� +
R F (e+�0)
F (e)

[2��0 + 2 (e� �� )] d� +
R �
F (e+�0)

2(� � 1)�0d�
= �0

�
F (e+ �0)

2 � �2
�
+ 2e (F (e+ �0)� F (e))� 2

R F (e+�0)
F (e)

��d� + �0

h
�2 � F (e+ �0)2 � 2 (� � F (e+ �0))

i
= �0

�
�2 � �2

�
� 2 (eF (e) + ��0) + 2F (e+ �0) (�0 + e)� 2

R F (e+�0)
F (e)

��d�;R F (e)
�

2��0d� +
R �
F (e)

[2��0 + 2 (e� �� )] d� = �0
�
�2 � �2

�
+ 2e (� � F (e))� 2

R �
F (e)

��d�;R
T 2��0d� = �0

�
�2 � �2

�
;

respectively, where the integration on the third area degenerates toZ
T
[2��0 + 2 (e� �� )] d� = �0

�
�2 � �2

�
+ 2e (� � �)� 2

Z
T
��d�

if �� � �0 < �� . It is easy to see that z1 has a point mass F
�
�� � �0

�
at �0

�
�2 � �2 � 2 (� � �)

�
= jT j and a

point mass 1�� at �0
�
�2 � �2

�
= jT j, and is continuously distributed on other area as a complicated function

of e. Similarly, we can get the �ve areas for z2 and the integrations on these areas. It is easy to see that z2
has a point mass � at ��0

�
�2 � �2 � 2 (� � �)

�
= jT j and a point mass 1�F (�� +�0) at ��0

�
�2 � �2

�
= jT j,

and is continuously distributed on other area. For both z1 and z2, the point masses go to zero when � goes

to zero and � goes to 1.

Figure 5 shows the distributions of z1 and z2 when T = [0:1; 0:9] based on 100000 simulated draws of e.
It seems that z1 and z2 has the same distribution. Compared with z`� , z` has less point masses and more

density on the positive axis, which implies that b is more e¢ cient than b� . To compare with the MLE, we
also impose the densities of z1 and z2 in the MLE on Figure 5. Since the MLE is maximizing the objective

function while the IQTRE is minimizing the objective function, the densities of z1 and z2 associated with

the MLE in Figure 5 are actually the densities of �z1 and �z2 in the MLE. Note also that the MLE is the
same as the LSE in this simple case, so �z1 and �z2 in the MLE are the same as z1 and z2 in the LSE.
From Figure 5, the distributions of z1 and z2 in the MLE are more spreading than those in the IQTRE.
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Figure 5: Comparison of the Densities of z1 and z2 in the IQTRE and MLE

2. Conditions to Guarantee the Uniqueness of argmin
v
D(v)

From the above discussion, either z`� or z` has two point masses in their distribution when q is the only

covariate, so argmin
v

D(v) may not be unique in this case. To simplify notations, we discuss the uniqueness

of argmin
v

D(v) for a generic compound Poisson process

D(v) =

8>><>>:
N1(jvj)P
i=1

z1i, if v � 0;
N2(v)P
i=1

z2i, if v > 0:

We �rst show that when the distribution of z` is absolutely continuous, argmin
v

D(v) is unique. Note

that

P (E) � P (D(v) has at least two minimums)

= P

0BB@
KP
i=1

z1i =
LP
i=1

z1i,
KP
i=1

z2i =
LP
i=1

z2i for some K = 0; 1; � � � ; L = 0; 1; 2; � � � , and K 6= L;

KP
i=1

z1i =
LP
i=1

z2i for some K = 1; 2; � � � ; and L = 1; 2; � � �

1CCA
= P (E1 [ E2 [ E3) ;
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where

E1 =

(
LX

i=K

z1i = 0 for some K = 1; � � � ; L = 1; 2; � � � , and K � L

)
;

E2 =

(
LX

i=K

z2i = 0 for some K = 1; � � � ; L = 1; 2; � � � , and K � L

)
;

E3 =

(
KX
i=1

z1i =
LX
i=1

z2i for some K = 1; 2 � � � and L = 1; 2; � � �
)
:

A su¢ cient condition for this probability being zero is that the probabilities of all three events are zero.

When the distribution of z`i is absolutely continuous, the distribution of
LP

i=K

z`i is absolutely continuous

for any K = 1; 2; � � � ; L = 1; 2; � � � , and K � L, so either of these three events are union of countable

zero-probability events and has probability zero.

If z`i has discrete components in its distribution, a su¢ cient condition for P (E) = 0 is more messy. Let�s

start from easier cases. Suppose �rst that z`i has only one discrete component, say, d`. For E1 and E2,

unless d` = 0, their probabilities are zero. d` = 0 is the relevant case in bootstrapping threshold regression,

see Yu (2013a). As to E3, we require Kd1 6= Ld2 for any K = 1; 2 � � � and L = 1; 2; � � � , that is, d1=d2 6= r

for r being any positive rational number. This obviously excludes the case that both d1 and d2 are rationals.

In summary, a su¢ cient condition for P (E) = 0 when z`i has only one discrete component is that

d` 6= 0 and d1=d2 6= r for r being any positive rational number.

Now, suppose z`i has two discrete components, say, d
(k)
` , k = 1; 2. This case is relevant in the simple example

above and in regression discontinuity designs with unknown discontinuity points (see footnote 35 of Porter

and Yu (2011)). For E1 and E2, we require Ad
(1)
` + Bd

(2)
` 6= 0 for any A;B = 0; 1; � � � and both A and B

are not zero. This is equivalent to d(k)` 6= 0, k = 1; 2 and d(1)` =d
(2)
` 6= r for r being any negative rational

number. For E3, we require Kd
(k)
1 6= Ld

(l)
2 for any K = 1; 2 � � � , L = 1; 2; � � � , k = 1; 2, and l = 1; 2, which

is equivalent to d(k)1 6= rd
(l)
2 for r being any positive rational number, k = 1; 2, and l = 1; 2. In summary, a

su¢ cient condition for P (E) = 0 when z`i has two discrete components is that

d
(k)
` 6= 0, d(1)` =d

(2)
` 6= r for r being any negative rational number,

d
(k)
1 =d

(l)
2 6= r for r being any positive rational number, k = 1; 2 and l = 1; 2:

For the IQTRE and all setups in Figure 4, this condition does not hold. It is quite possible to derive general

conditions to guarantee P (E) = 0 following the logic above, but we do not delve into it here. Nevertheless,

we mention that argmaxv eS1(v) in Theorem 6.1 of Lee and Seo (2008) is not unique.

3. Symmetry of the Distribution of argmin
v
D�(v)

In this section, we brie�y discuss the symmetry of Z� when x may include other nonconstant covariates,

where Z� � argmin
v

D� (v). Suppose x does not include q; otherwise, the e¤ect of q in z`� is absorbed in

the constant term as z`� is de�ned as the conditional distribution given q = 0. When q is independent of

(x0; e`� )
0,

50



z1� = z1� = je1� + x0 (�10 � �20)j � je1� j+ (2� � 1)x0 (�10 � �20) ;
z2� = z2� = je2� � x0 (�10 � �20)j � je2� j � (2� � 1)x0 (�10 � �20) :

De�ne x0 (�10 � �20) as �, and suppose the joint distribution of (x0; e`� )0 is continuous; then the distribution
of z1� is

P (z1� � t)

= P
�
e1� + � > 0; e1� > 0; � � t

2�

�
+ P

�
e1� + � > 0; e1� � 0; e1� � t

2 � ��
�

+ P
�
e1� + � � 0; e1� > 0; e1� � (� � 1) � � t

2

�
+ P

�
e1� + � � 0; e1� � 0; � � t

2(��1)

�
(�)
= P

�
�e1� < � � t

2� ; e1� > 0
�
+ P

�
�e1� < � � t

2� �
e1�
� ; e1� � 0

�
+ P

�
e1�
��1 +

t
2(��1) � � � �e1� ; e1� > 0

�
+ P

�
t

2(��1) � � � �e1� ; e1� � 0
�
;

(��)
= P

�
e1� > max f��; 0g ; � � t

2�

�
+ P

�
�� < e1� � min

�
0; t2 � ��

	�
+ P

�
max

�
0; (� � 1) � � t

2

	
< e1� � ��

�
+ P

�
e1� � min f0;��g ; � � t

2(��1)

�
;

and the distribution of z2� is

P (z2� � t)

= P
�
e2� � � > 0; e1� > 0; � � � t

2�

�
+ P

�
e2� � � > 0; e2� � 0; e2� � t

2 + ��
�

+ P
�
e2� � � � 0; e2� > 0; e2� � � (� � 1) � � t

2

�
+ P

�
e2� � � � 0; e2� � 0; � � t

2(1��)

�
(�)
= P

�
� t
2� � � < e2� ; e2� > 0

�
+ P

�
e2�
� � t

2� � � < e2� ; e2� � 0
�

+ P
�
e2� � � � e2�

1�� +
t

2(1��) ; e2� > 0
�
+ P

�
e2� � � � t

2(1��) ; e2� � 0
�
:

(��)
= P

�
e2� � min f0; �g ; � � t

2(1��)

�
+ P

�
max

�
0; (1� �) � � t

2

	
< e2� � �

�
+ P

�
� < e2� � min

�
0; t2 + ��

	�
+ P

�
e2� > max f0; �g ; � � � t

2�

�
:

To simplify these distributions, suppose e1� = e2� = e� in the following discussion.

From Appendix D of Yu (2012), Z� is symmetric if and only if P (z1� � t) = P (z2� � t) for all t. From

(�), if �je� is symmetric about zero, then P (z1� � t) = P (z2� � t). From (��), if e� j� is symmetric about
zero, then P (z1� � t) = P

�
z2(1��) � t

�
; especially, P (z1;0:5 � t) = P (z2;0:5 � t). If we further assume that

� is independent of e, then �je� and e� j� can be replaced by � and e� , respectively. Based on these facts, we
can understand the distributions in Figure 4. For � 6= 0:5; since � is a point mass at � 6= 0, the distributions
of z1� and z2� can not be the same. When � = 0:5, since e0:5 follows N(0; 1) which is symmetric, the

distributions of z1� and z2� are the same.

Bai (1995) claims when x includes a constant, symmetry of Z0:5 requires the symmetry of e0:5. This is

not right. For example, suppose x = (1; ")0 where " follows N(��11��21
�12��22 ;

1
(�12��22)2

); then � = (�11 � �21) +
(�12 � �22) " which follows N(0; 1). From the above analysis, P (z1� � t) = P (z2� � t), which guarantees

the symmetry of Z0:5.

4. Construction of the SEBE of  and the NPI

The following algorithm is adapted from Yu (2008).

Step 1: Get the IQTRE of  (b), the LADE of � (b�0:5), and the corresponding residuals fbeigni=1 in model
(1).
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Step 2: Get a uniformly consistent estimator of the joint density of (e`; x0; q)0, f`(e`; x; q), based on fbei; xi; qigni=1
by kernel smoothing, and denote the estimator as bf`(e`; x; q).

Step 3: De�ne the SEBE of  as

bSEB = argmin
t

Z
�

ln(t� ) bLn()� () d:
where ln(t � ) = l (n (t� )) is the loss function of , � () is the prior of , e.g., � () can be the
uniform distribution on (qmin; qmax) with qmin (qmax) being the minimum (maximum) of fqigni=1, and

bLn() = nY
i=1

h bf1 �yi � x0ib�1; xi; qi� 1(qi � ) + bf2 �yi � x0ib�2; xi; qi� 1(qi > )
i

= exp

(
nX
i=1

1(qi � ) ln bf1 �yi � x0ib�1; xi; qi�+ nX
i=1

1(qi > ) ln bf2 �yi � x0ib�2; xi; qi�
)

� exp
nbLn()o ;

is the estimated likelihood function.

Step 4: Based on a MCMC algorithm, draw a Markov chain

S =
�
(1); � � � ; (B)

�
whose marginal density is approximately the posterior distribution

bpn() = exp
nbLn()o� ()R

�
exp

nbLn(e)o� (e) de ;
Then bSEB is the mean of S when l(v) = v2 and bSEB is the median of S when l(v) = jvj. Also, the
100(1� �)% NPI of  can be constructed by picking out the �=2 and 1� �=2 quantile of S.

In the SEB procedure above, a key step is to estimate the likelihood function. For the simulation study

in Section 6, we use the following algorithm.

Step 1: Obtain b, and the associated b�`;0:5. Then the residuals be1;0:5;i = yi � x0ib�1;0:5 when qi � b andbe2;0:5;i = yi � x0ib�2;0:5 when qi > b.
Step 2: Since e`;0:5;i = �` (ei � �0:5), estimate �2`0 by

b�21 = Xn

i=1

�be1;0:5;i � be1;0:5�2 1(qi � b)�Xn

i=1
1(qi � b);

b�22 = Xn

i=1

�be2;0:5;i � be2;0:5�2 1(qi > b)�Xn

i=1
1(qi > b):

where be1;0:5 = Pn
i=1 be1;0:5;i1(qi � b)/Pn

i=1 1(qi � b), and be2;0:5 = Pn
i=1 be2;0:5;i1(qi > b)/Pn

i=1 1(qi >b).
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Step 3: Get empirical counterparts of ei � �0:5,

bei � �0:5 = be1;0:5;i=b�1 if qi � b,bei � �0:5 = be2;0:5;i=b�2 if qi > b.
Step 4: Estimate the density of ei � �0:5 by kernel smoothing based on bei � �0:5 and denote the estimator

as bfe(�).
Step 5: The estimated likelihood is

bLn() = nY
i=1

"
1b�1 bfe

 
yi � x0ib�1;0:5b�1

!
1(qi � ) +

1b�2 bfe
 
yi � x0ib�2;0:5b�2

!
1(qi > )

#
:

In kernel smoothing of Step 4, we use the Mablab function kde.m provided in Botev et al. (2010).
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