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Abstract

This paper studies the estimation and specification testing in quantile threshold regression. First, we
put forward a new estimator of the threshold point, the integrated quantile threshold regression estima-
tor, derive its asymptotic distribution in both the fixed-threshold-effect framework and the shrinking-
threshold-effect framework. This new estimator integrates much of the quantile difference information
between the two regimes, so is more efficient than the existing estimators such as the least squares esti-
mator and the least absolute deviation estimator. It is actually comparable to the maximum likelihood
estimator, so can serve as a better starting point in the adaptive estimation of the threshold point.
Inference methods on the threshold point in both frameworks are also discussed. Second, based on the
usual conditional quantile threshold process, we define and estimate the marginal distributional threshold
process and the marginal quantile threshold process, and provide both the asymptotic and resampling
inference methods for these processes. Third, we propose a new score-type test in testing the existence
of any quantile threshold effect. This type of test is more powerful than the conventional tests based
solely on the least squares estimator or the least absolute deviation estimator. Comparing with the usual
Wald-type test, it is computationally less intensive, and its critical values are easier to obtain by the
simulation method. Simulation studies confirm the theoretical analysis, and the new estimation and

testing procedures are applied to an economic growth model.
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1 Introduction

Since the pioneering work by Tong (1978, 1983), threshold models get much popularity in current applied
statistical and econometric practice. An encyclopedic survey is available in Tong (1990) and a selective review
of the history is given by Tong (2011); see also Hansen (2011) for a summary of applications especially in
economics. The usual setup of the threshold regression model is
y:{ (La,g)br+er=xPi+er q<; (1)
(L,a".q) B2 te2 =x"Bi+e2 q>;

where ¢ is the threshold variable used to split the sample, z € R¥~2 and 3 = (8, 85)" € R?? are identified
by some conditional moment restrictions, e.g., F [eg]z,q] = 0, £ = 1,2, identifies 5 as the conditional mean
parameters and correspondingly, v is identified by the least squares estimator (LSE). In practice, quantile
threshold effects are also of interest; see, e.g., Section 2 of Oka and Qu (2011) for some empirical examples.
Quantile threshold regression explores a set of moment conditions: Q.[e¢lz,q] =0, 7 € T = [1,7] C (0,1)
with 7 > 0 and 7 < 1, where Q, [-] is the 7th quantile of the argument. Under such moment restrictions, it
is more convenient to rewrite as

_ { x'B1(1) +er, q<; @)

X'Ba2 (1) +e2r, q>7;

to allow both 3, and e, to depend on the quantile index 7. The parameters of interest are {~y,3(7)} 1
with 8 (1) = (81 (1)", B2 (7)").

A key observation in model is that although (5 (7) depends on 7, the threshold parameter -y is invariant
to 7. In other words, there is a shift in the conditional distribution of y at ¢ = -y, so all quantile differences
between these two regimes can be integrated to identify « or test whether there are threshold effects. This
of course will improve the efficiency of the usual quantile threshold estimator and the power of the usual
specification testing based on only one quantile difference. Also, the set of 3 differences, {2 (7) — 81 (7)}, <7
will provide a more complete picture about the threshold effects in the conditional distribution of y than a
single B difference resulting from the LSE.

The contributions of this paper are threefold. First, we put forward a new estimator of 7, called the
integrated quantile threshold regression estimator (IQTRE). We derive its asymptotic distribution in both
the fixed-threshold-effect framework of Chan (1993) and the shrinking-threshold-effect framework of Hansen
(2000). We also discuss the inference methods in both frameworks. To motivate our new estimator, consider
the following simple example. Suppose y = g1el(qg < ) + o2¢l(g > ), where 1(-) is the indicator function,
o1 # 09, e is independent of ¢, and Ele] = 0. In this simple model, there is no threshold effect in the
conditional mean of y given that E[y|q] = 0 for any ¢, so the least squares estimator (LSE) cannot identify
. If we further assume that e is symmetric about zero, then the least absolute deviation estimator (LADE)
cannot identify +y either since Qg 5[y|q] = 0 for any ¢. In a more general model like y = e11(g < v)+e21(g > 7)
with Q,le1lg = v—] = Q-[e2|l¢ = y+], even the Tth quantile regression estimator (QRE) cannot identify
~. In other words, any single characteristic of the conditional distribution of y, such as the conditional
mean or conditional quantile, cannot guarantee the identification of v without ex ante knowledge on the
conditional distribution of y. However, the only information available in practice is usually that there
are some differences between the two regimes in the conditional distribution of y. Based on such little
information, we can integrate enough many quantile differences to identify v, which does not require any

ex ante knowledge on the existence of the threshold effect at a specific 7. Even if v can be identified by a



single characteristic of the conditional distribution of y, we expect the IQTRE to be more efficient since it
uses more information to identify . Note that the collected conditional quantiles are the inverse function of
the conditional distribution, and they contain the same information, so integrating all quantile differences to
identify v is equivalent to identify  based on the conditional distribution of y. In other words, the IQTRE
would have similar efficiency as the maximum likelihood estimator (MLE) in Yu (2012). This result is
quite surprising since we do not specify the conditional distribution of y parametrically while obtain similar
efficiency as a parametric estimator. In summary, the IQTRE is expected to have more identification power
and be more efficient than the existing estimators. Furthermore, we treat the IQTRE as an intermediate
estimator, and use it as the starting point of the adaptive estimator of 7, the semiparametric empirical Bayes
estimator (SEBE) proposed in Yu (2008). Given that the IQTRE is more efficient than the LSE and the
LADE, we expect the new SEBE performs better in finite samples. As to the inference of v, we suggest
the nonparametric posterior interval (NPI) of Yu (2008) in Chan’s framework. In Hansen’s framework, we
suggest the likelihood-ratio-based confidence interval (LR-CI) of Hansen (2000), with the only difference
being that the likelihood ratio is based on the objective function of the IQTRE rather than the LSE.

Second, based on the conditional quantile (CQ) threshold process, we define the marginal distributional
(MD) threshold process and the associated marginal quantile (MQ) threshold process, provide estimators
for them and derive the corresponding weak limits. We also discuss both the asymptotic and resampling
inference methods for these stochastic processes. Third, we propose a new score-type test in testing whether
there is a threshold effect at some 7 € 7. This type of test is more powerful than the conventional tests based
solely on the LSE or the LADE. Comparing to the usual Wald-type test, this type of test is computationally
less intensive, and its critical values are easier to obtain by the simulation method of Hansen (1996).

There exists some literature on the estimation of v and conditional quantile threshold effects. In the
framework of Hansen (2000), Caner (2002) derives the asymptotic distribution of the LADE and argues that
the LADE of ~ is more efficient than the LSE when the error term has a heavy tail just as in the regular
parameter case. Cai and Stander (2008) consider the quantile self-exciting threshold autoregressive (Q-
SETAR) model within the Bayesian framework, but they are only interested in regular parameters {3 (1)}, 1
and do not derive the asymptotic properties of their estimators. Cai (2010) considers the forecasting problem
in the framework of Cai and Stander (2008). Galvao et al. (2011) discuss also the Q-SETAR model, but
their theoretical analyses focus mainly on the estimation and inference of {3 (7)} .. ,; for v, only consistency
is proved. In the related structural change literature, Bai (1995) discusses the asymptotic distribution of
the LADE in both frameworks with one break point, and Bai (1998) extends to the LADE with multiple
(possibly infinite many) break points in the framework of Hansen (2000). Chen (2008) extends Bai’s work to
a single QRE, and Oka and Qu (2011) extend further to the estimation based on multiple quantile changes
in Hansen’s framework and for repeated-sections. As to the inference of v, Caner (2002) suggests the LR-
CI based on the objective function of the LADE. In the structural change literature, all CIs of the break
dates are Wald-type; this type of Cls invert the t-statistic and are tractable in Hansen’s framework. There
is also some literature concentrating on the specification testing of threshold models. Su and Xiao (2008)
consider the sup-Wald test and Qu (2008) considers also the subgradient-based test for structural changes in
regression quantiles. Kato (2009) extends the scope of convexity arguments to the case where estimators are
obtained as stochastic processes and applies this technique to test the existence of median threshold effects
using the sup-Wald statistic.

The rest of this paper is organized as follows. Section 2 uses two examples to justify our specification of
and define all new estimators in this paper. Section 3 derives the asymptotic distribution of the IQTRE
and discuss the inference of v in both frameworks. Section 4 contains the weak limits for the CQ, MD and MQ

threshold processes, and also both the asymptotic and resampling inference methods for these three stochastic



processes. Section 5 constructs the new score-type test and simulates its critical values. Section 6 and 7
include some Monte Carlo simulation results and an application in the economic growth model, respectively,
and Section 8 concludes and proposes some future research plans. All proofs and lemmas are given in
Appendix A and B, respectively. A word on notation: ¢ is always used for indicating the two regimes in
, so is not written out explicitly as "¢ = 1,2" throughout the paper. ¢ (1) = (Be1 (1), 5), (7)), Beg (T))/ =
(6@1 (1) ,le (T))l and & (1) = B1 (1) — B2 (7). Parameters with superscript 0 (e.g., 8y (1)) or subscript 0
(e.g., 0w, Y0, 00) denote their true values. ~ signifies the weak convergence over a compact metric space.
¢ (F) is the space of real-valued bounded functions defined on the index set equipped with the supremum
norm ||| pee - lzlly = X2; [2i] is the ¢4 norm of a vector z, |lzf|, = V>, x7 is the Euclidean norm, and

|||, = max; |z;| is the sup-norm. [|-|| without subscript means the Euclidean norm.

2 The Setup and Estimators

We first consider two examples where the moment conditions Q[es,|x,q] =0, 7 € T, are satisfied. Suppose
first there is not heteroskedasticity in each regime, that is, e, = oge with e being independent of (2’,q)’.
Such a specification is considered in the original quantile regression literature such as Koenker and Bassett
(1978). For model identifiability, we assume that e has median zero and E[e?] = 1. In this case, B,(t) =8,
invariant of 7, B¢ (1) = B + 04€+, and ey = o4 (e — &;), where 3¢ is the intercept in the LAD estimation,
and &, is the Tth quantile of e. If there is heteroskedasticity in each regime, assume e, = (x'\¢) e with e
similarly specified as in the first example. Such a specification is considered in, e.g., Koenker and Bassett
(1982), Gutenbrunner and Jureckovd (1992), and Koenker and Xiao (2002). In this case, B¢ (7) = B¢ + Me&r
and e;r = XA (e — &) if X' Ay > 0 for all x in regime ¢, B (1) = Be + Me&i1—» and epr = x'Np (e — &1—1) if
x'\p < 0 for all x in regime £, where 3, is the parameter in the median regression. Note that it is possible
for x’\; to have the same sign in regime ¢ no matter (z’,¢)" is bounded or notﬂ Note also that if e has a
continuous distribution in both examples, then § (1) is a continuous function of 7. Although the quantile
threshold specification seems restrictive, it is actually far from it. For example, a subset of 8y (1) may
be restricted to be constant over the two regimes to allow for partial structural changes; x may include
functions (e.g., polynomials or B-splines) of the original covariates so that the conditional quantile of y may
be a nonlinear function of the original (z',¢q)’.

We next define the IQTRE of . For this purpose, we first define the QRE of v. Suppose a random
sample {w;};_, is observed, where w; = (y;, x}, qi)/ , the QRE of v is usually defined by a profiled procedure.

WT = arg H?E}H Qrn (7) ’

where

T
Qrn (7) = nin = E pr (i —x;B11(q < v) — x;B2l(q; > 7)),
1,P2 i=1

and
pr(z) = 2(1 —1(2 <0))

is the check function of quantile regression. Usually, there is an interval of 4 minimizing this objective

function. Most literature in threshold regression takes the left endpoint of the interval as the minimizer

Lf (2/,q)" is bounded, x’'\, is bounded, so it is possible for x’\; to maintain the same sign for all x in regime £ as long
as Ay is suitably defined. Even if (2’,¢)’ is unbounded, this assumption can still hold. For example, suppose x =z € Ry =
{z| z € R and z > 0}; then x’\; will have the same sign for all x no matter Ay is positive or negative. It is not hard to check
that this assumption may still hold when x includes other covariates.



and calls the estimator as the left-endpoint QRE (LQRE). Yu (2008a, 2012) shows in the least squares
estimation that the middle point of the interval is more efficient than the left endpoint in most cases, so we
will concentrate on the middle-point QRE (MQRE) in the following discussion. We now define the IQTRE
of v as

~ = argmin Qr, (7), where Qr, (v Zan ,and €7, t=1---,T. (3)
v

Due to a technical reason, T in the definition of IQTRE is finite. In practice, T' can be chosen freely to
capture the threshold effects at all possible quantiles. Also, if we have prior information on the magnitude of
0 (1), 7 € T, then we can put more weights on the 7' 's with § (7) being large, and the corresponding objective

function changes to ZtT_l (1¢) Qryn () with Z (1:) = 1. The objective function in 1) corresponds
tow(r)=1/Tforallt e {l---,T}.

We are now ready to estimate the MD threshold effects. For this purpose, we need first estimate the QR
processes B¢(+). Let

Pr(r) = argﬂéinz:ﬂr (yi —xiB1) L@ < 7),
1 .
Ba (1) =argmin ¥ pr (y; — x}32) 1(g > 7);
then we can estimate the conditional distribution of y given (2’,¢)’ in each regime, Fy(y|z,q), as

1—¢
Fg(y|$,q) = +/ 1 <X/ﬁ£ (T) S y) dTa (%37/7(1)/ S yZXZQZ)

where 7 is restricted as [g, 1 — €] for some small constant € > 0, and Y, X, Qp is the product space of Yy, X,
and Qp with V,, Xy, and Q, being the interested area of y, x and ¢. Usually, V1 X} and Yo X, are the same,
say, the support of y and x, and Q; = [g,7)], Q2 = [y0,q] with [g,g] being the support of g. Then the MD
threshold effect, which is defined as

Ap(y) = Fi(y) — Fa(y),

can be estimated by

where

Fi(y) = /X Bl ) ()

is the marginal distribution of y on the interested area of (z’,q)’, Fy(x, q) is the joint distribution of (z}, ¢;)’
truncated on X,Qy,

Fuy) = /X  Blale.dFite.0)
YA A4

and
/\ n
(2,q) —wlg M S 2,00 < g € Xooqi € Qo). (2,0)' € XeQ

n

with ny = g 4 11(31‘Z' € Xy, q; € Qy) is the empirical distributional function of (z,¢)" on XyQp. So the MD
1=

threshold effect covers the difference not only in the conditional distribution of y given (z’,¢)’ but also in

2We can estimate Fp(y) by the empirical distribution of y;’s such that (zf,q:) € XQy. However, incorporating the
information in the covariates can improve the efficiency of such estimation.



the marginal distribution of (2’,q)" between these two regimes. Note also that Ap(y) and Ap(y) are well
defined only on Y = Y, N Ys. Given A D, we can estimate the M(Q threshold effect

Ag(r)=Fy N (1) = Fy N (1) = Qi(7) — Qa(7), T €T
by
Aq(r) = F7 M (1) = Fy (1) = Qu(r) — Qa(r), 7 € T,

where F[l : Vo — T is the left-inverse function of Fy. Note here that ﬁg(y) is necessarily weakly increasing.

3 Asymptotics for the IQTRE

In this section, we derive the asymptotic distributions of 4 in two frameworks of the quantile threshold

effects. We also discuss some valid inference methods for ~.

3.1 Asymptotics with Fixed Threshold Effects

Before stating the asymptotic theory for the IQTRE, we first specify some regularity conditions.

Assumption D:

1. wi € W=R x X xQ C R? are i.i.d. sampled. v € I' = [y,7] C R with T' being compact. v, is in the

interior of I'.

2. B¢ (1) € B C R? with B being compact for all 7 € 7. 9 () is in the interior of B. Y (1) # 85 (1)

for at least one t, where # means at least one element of the vector is not equal.

3. The conditional density f(y|x,q) exists, and is bounded and uniformly continuous in y, uniformly in
x € Xand ¢ <7 (¢ > v)-

4. fq() is continuous, and 0 < iq < fo(v) < f,<ocforyeT. P(g<y)>0and P(qg>7)>0.

5. E [ fernln,q(0l2, )xx| q], E [ fes,|2,4(0lz,¢)xx'| q] and E[xx'| q] are bounded and continuous in ¢ for
q € N, where N, is a neighborhood of 7.

6. The minimum eigenvalue of E [ fe, |,.4(0|z, q)xx" | (B[ fesrjz,q(0lz, q)xx" q]) is bounded away from
zero uniformly over 7 € T and ¢ < 79 (¢ > 7), and the minimum eigenvalue of and E[xx'|q] is

bounded away from zero uniformly over q € T'.
7. E [||x\|2+6} < oo for some ¢ > 0.

8. Both z17; and zop; have continuous distributions, where z;p; follows the conditional distribution of

Z17; given g; = o with

T
Z1Ti = E Z1ryi =
t=1

and zop; follows the limiting conditional distribution of Zor; given ¢; = g with

[M]=

[p‘f't (ethi + X;B(l) (Tt) - Xiﬂg (Tt)) — P (617-”')]
t=1

T

T
Zori = Z@m = Z [pry (€2ms + X185 (1) = xiB7 (70)) — pr (€27,0)] -
t=1

t=1



T
Denote zpr; as Y, Zeri-

Assumption D1 is a standard assumption on the sample space and the parameter space of . Assumption
D2 implies that there is a quantile threshold effect among {1, -- ,7r} although this need not be true for
each 7. If 89 (1;) = Y (1) for some ¢, then z,,; will not appear in zyr;. Nevertheless, as long as there is one
7, such that 89 (1) # B3 (1¢), zers will not degenerate, and E [zp7] > 0 given that 0 is the unique minimizer
of E[pr, (err,i + Xi5) |¢i = o] which is implied by Assumption D6. Note that zp; is quite different from zy;

in least squares regression, where

21 = () (8Y — 8) + e1:)” — &% = {2x (8 — B9) exi + (8 — 48) xixd; (B - 89) }
Zoi = (x} (B9 — BY) + €2i)2 —e3; = {—2X§ (89 — B9) eai + (8 — 89) xix] (B — 53)} ,

see, e.g., Chan (1993). As long as x; is bounded, Zyr; is bounded. However, Zy; is unbounded as long as
eg; is unbounded. Since Zyp; and Zy; are the only difference in the asymptotic distributions of the IQTRE
and the LSE, the IQTRE is robust to outliers of y in the estimation of . This is understandable, since g
is identified by the quantile differences in its left and right neighborhoods, and the quantile estimation is
robust to outliers of y. Assumptions D3 and D7 are borrowed from Angrist et al. (2006) (Assumptions 2 and
4 of Theorem 3) and Chernozhukov et al. (2012) (Assumptions (b) and (d) of Condition QR) to facilitate
the derivation of the weak limits of the CQ, MD and MQ threshold processes. Assumption D4 implies that
~ is not on the boundary of the ¢’s support. Assumption D5 imposes some restrictions on the continuity
of fe, |2,4(012,q) fuq(2]q) for ¢ € N,. Assumption D6 is stronger than the usual assumptions in QR, e.g.,
Assumption 3 of Theorem 3 in Angrist et al. (2006) or Assumption (c) of Condition QR in Chernozhukov

et al. (2012). Combining with Assumption D4, it implies the usual assumptions in the current context, e.g.,

Ji(1) = B [xx'fe, 12,4012, 9)1 (¢ < 70)] and Ja(7) = E [xX fe,. 12,4012, 9)1 (¢ > 70)] (4)

are positive definite uniformly over 7 € 7. Also, E[xx'| ¢ = 70| > 0, combined with Assumption D2, excludes
the continuous threshold model of Chan and Tsay (1998) for all t = 1,--- ,T.

Assumption D8 need further explanation. This assumption guarantees that n (3 — 7o) is uniquely de-
fined even asymptotically. It is not obvious that zy7; has a continuous distribution. In the supplementary
materials, we show that when ¢ is the only covariate, the distribution of z.; is a mixture of discrete and
continuous, violating Assumption D8. We also provide some sufficient conditions to guarantee the unique-
ness of n (7 — o) in large samples when the distribution of zy,; has discrete components. However, these
conditions are not satisfied in a typical setup of this paper. Nevertheless, as long as x/ (ﬁ? (1) — B9 (T)) has
a continuous distribution, Z,-; will have a continuous distribution. Correspondingly, Z,r; will have a contin-
uous distribution. This is because, conditional on ey.;, Zys-; has a continuous conditional distribution, while
the distribution of Z,.; is just the average of these conditional distributions so is continuous. To guarantee
x; (8Y (1) — B3 (7)) to have a continuous distribution, we require only one element of x to be continuously
distributed. This of course allows x to include discrete covariates, e.g., the intercept or a dummy variable.
Since z¢r; is defined conditional on ¢; = 7o, the element associated with ¢; in x] (6? (1) — B9 (T)) becomes
constant, so we must require at least one element of x to be continuously distributed conditional on g = ~q.

We now state the asymptotic distribution of n (¥ — 7).

Theorem 1 Under Assumption D,

n (3 —70) <= argmin Dr (v) = Z,,



where
Ni(|v])
211, if v < 0;
DT (’U) = N;T’Ul)
> Zori, if v > 0;
i=1

is cadlag with Dr(0) = 0, and N;(-) is a Poisson process with intensity f,(v0), £ = 1,2. Furthermore,
{2179, 2211 };>1, N1(+) and Na(-) are independent of each other.

The simplest corollary of Theorem 1 is that when 7' = 1 and Y (1) # (3 (1), Dr (v) in the theorem
is changed to D, (v), where D, (v) is defined similar as Dy (v) except that zy,; replaces zyp;. In the
supplementary materials, we discuss the conditions to guarantee the symmetry of the distribution of arg mvin
D, (v). Also, given that E [z4,;] > 0 when 39 (1) # 83 (1), Elzeri] > E [247i], which implies that 7 is more
efficient than 7, which is based on a single quantile threshold regression.

In this framework, Yu (2008) shows that + can be adaptively estimated by the semiparametric empirical
Bayes estimator (SEBE) as long as an n-consistent estimator of « is available. In his Section 5.2, the author
also mentions that the initial estimator of 7 is very important for the performance of the SEBE in finite
samplesEI Given that the IQTRE is more efficient than the usual LSE and the LADE, we expect that the
SEBE started from the IQTRE performs better than that started from the LSE or LADE. The simulation

studies in Section 6 will convince this result.

3.2 Asymptotics with Shrinking Threshold Effects

Another popular asymptotic framework in quantile threshold regression is to assume the quantile threshold

effects d,, shrinking to zero asymptotically, where
On = (815, 0,)" with 8, = BY (1) — 55 (7).

This framework is suitable to the case where the quantile threshold effects are relatively small for the given

sample size.

Theorem 2 Under Assumptions D1-D7 and ||0,] — 0, v/n ||0,] — oo,

2
afato0) (222} =) - A©)

Tn
where
T /
T¢Tn = Zt:ldtnE |:feg.,.t|w,q(0‘$, q)XX ‘q = ’YO:| 5““
T T
Tin = Zt:lzt’:l(Tt ATy — 770 )01, B [xX'|q = 0] 47m,
o vl . <
A(§) = arg max Wal~) o] ifvs0,
v VV2(’U)7£77 Zf’l}>07
with

¢ = lim 222" € (0, 00),

nN—=00T|Tn

3The simulation studies in Oka and Qu (2011) show that the performance of Cls for d:n = BY (1¢) — B9 (7¢) also critically
depends on the precision of 7.



and Wy(v), £ = 1,2, being two independent standard Wiener processes defined on [0, 00).

This asymptotic result is parallel to Corollary 1 of Oka and Qu (2011) and Theorem 1 of Caner (2002).
However, we do not assume ||0, ||, t =1,---, T, to have the same convergence rate as in Oka and Qu (2011)
or even each component of d;, for a fixed ¢ to have the same convergence rate n=%, 0 < a < 1/2, as in Caner
(2002), so some |0z, || may be smaller (or even zero) than others. Given that E [fe,. (0]z, ¢)xx'|g = 7o) and
E [xx'|q = 7] are positive definite for any 7 € 7, the convergence rate is determined by nmax,—; ... 7 ||6, >
(or nd),6,,). In other words, the convergence rate is determined by the largest quantile threshold effect among
all g, t =1,---,T. If 8, = §;n~ % with §; # 0 for all t = 1,--- , T, then the convergence rate is n'=2%, the

same rate as in Theorem 1 of Caner (2002). In this case, we can calculate £ and the normalizing coefficient

2
n?o (?TT) for the two examples in Section 2. In the first example,

T
> OB [fF ) foaxkla = ] 6 gy

T
Zt:ﬂE [fe(F () Joroxx'|g = 7o) 6 720

2
2 E :T: fe(FZH(m)0L B [xx'|q = o] 5t>
n2e <7T1Tn> ( t=1

= T T b
TS ok Y S (7 AT = mer)SLE e lg = 0] O

i

and in the second example,

2
q= 70} 5t>

. S B B | 35

S S o 25
= 70] 0 2a <7T1T")2 i—pde\e \T)TE | %X
2o ((TTn

OTn

T , ’ = T T .
thlfe(Fefl(Tt))égE {%VJ = 70} Ot thlzt,zl(ﬁ ATy — T )0 E [xx'|q = 0] 0n

The distribution of A(§) can be found in Appendix B of Bai (1997). When & = 1, this distribution is
symmetric.

We now discuss the efficiency of 4 in this framework. First, different from the efficiency results in the
framework with fixed threshold effects, it is hard to compare the efficiency of 7 and 7,: n2® (%)2 need
not be an increasing functions of 7. Second, it is hard to compare the efficiency of 7, and 7 sg even for
7=0.5 and §,, = dn~ in the first example of Section 2. In this case,

2
910

g10
4£(0) f4(70)d"E [xx'|q = o] 5" (1’ 020) ’

_ ~ d
nt—2 (’Yo.5 - ’Yo) I

while

n172a (a ~ ) d O'%O K (O'%O 1)
LSE — R )
el fa(0)0'E [xx'|q = ] 6~ \ oy

where
Wl(ffu)f%, ifv <0,

ﬂWg(U)—{%, if v >0, 5)

K(d)a 5) = arg ngX {

~ ~ 2
The distributions of A (1, %) and A (%, 1) are not the same and hard to compare, e.g., the density of
10

2

10
the special case 019 = 09, the relative efficiency of the LADE and the LSE is determined by the relative
magnitude of Var(e) and (2f.(0)) "2, just as in the usual comparison between the LSE and the LADE in
regular models (see page 415 of Bai (1995) and page 805 of Caner (2002)).

A (1, %3) is continuous while A (Zi, 1)18 not unless 019 = g9 (see Appendix B of Bai (1997)). Only in



3.3 Inference Methods

In the framework with fixed threshold effects, Yu (2008) show that the nonparametric posterior interval
(NPI) started from any m-consistent estimator of v is a valid CI for v and performs the best among all
available CIs. Given that the IQTRE performs better than the LSE and the LADE, we expect that the
NPI started from the IQTRE should perform better than that started from the LSE or the LADE in finite
samples. The simulation studies in Section 6 convince this result. The algorithms for the SEBE and NPI
are included in the supplementary materials.

In the framework with shrinking threshold effects, we can construct the Wald-type CI by inverting the
asymptotic distribution of 4 in Theorem 2 as in Oka and Qu (2011). However, due to the identification failure
when 0, = 0, this Wald-type CI performs poorly, which is confirmed in the simulation studies of Yu (2008).
Hansen (2000) suggests to construct a CI for v in the least squares estimation by inverting the likelihood
ratio (LR) statistic; this method is also used in the LAD estimation of Caner (2002). The likelihood ratio

statistic can be used to test whether v = 7y, and is constructed in our context as

LR, () = 152 @1, () = Qra ()

Corollary 1 Under Assumptions D1-D7 and ||6,|| — 0, /1 ||0,] — oo,
LR” (’YU) i) M,
where M follows the distribution P (M < z) = (1 — e~ *)(1 — e=%%), where £ is defined in Theorem 2.

To construct a CI for v based on LR, (), we need to estimate i1y, 0%, and §H Along the lines of
Hansen (2000, Section 3.4), let r¢; = (8}, %;)° feer, (07i, ¢i), and 34 = (87, %:); then

T T T
TeTn = thlE [reeilai = 0], 070 = thlzt':l(Tt AN 1o =TT ) E [r3elg = o] -

So we can estimate w1, and a%n by standard nonparametric techniques such as kernel smoothing or series
approximation (see, e.g., Hiirdle and Linton (1994), Pagan and Ullah (1999), Ichimura and Todd (2007),

and Li and Racine (2007) for an introduction). For example, suppose the kernel smoothing is used; then in
N 2 N 2
finite samples, 7p; can be replaced by Ty = ((ﬁnxi) Kp,, (€er,i), Tati is replaced by Tg; = ((ﬁnxi) , and

~o is replaced by 7, where 0y, = B (1¢) — Bo (1¢), and K, (-) = K(-/h)/h with K() being a kernel function
2

2hy . .
) X Be(Tethes)—x) Be (T —het) where feht (leh ql)

is estimated by the difference quotient estimator. The kernel function is not crucial in kernel smoothing. As

~

and h being the bandwidth. Alternatively, 7y; can be ((5,§nxi

to the bandwidth selection, see Koenker (1994) for some practical suggestions. Given all these components,
the (1 — a) LR-CI for ~ is
{VZERTL(’Y)S&-R}7

where LR, (7) replaces miry, and 0%, in LR, () by their estimates, and crit is the (1 — @) quantile of M
with & being substituted by its estimate.

4Note that the LR-CI does not need to estimate fq(0) as in the Wald-type CI



4 Asymptotics for the CQ, MD and MQ Threshold Effects

To state the weak limits of the MD and MQ threshold processes, we first state the weak limit of B\()
The following theorem shows that the weak limit of B() is not affected by the estimation of 7, and is
actually independent of the asymptotic distribution of 4 in both frameworks. We first define the meaning
of the independence between a random variable (r.v.) and a stochastic process and between two stochastic

processes.

Definition 1 A r.v. X and a stochastic process Y (1) indexed by T € T are said to be independent if X is
independent of all the finite dimensional marginals (Y (11),--+,Y (1)) of Y (7). Two stochastic processes
X (1) and Y (1) indexed by 7 € T are said to be independent if all the finite dimensional marginals of the

two processes (X (11),--+, X (1)), Y (11),---,Y (1)) are two vector r.v.’s independent from each other.

Theorem 3 Under Assumption D and sup ||do(7)|| = O(||0,]]), no matter &, is fized or shrinks to zero,
TeT

VR (Bu() = B10)) ~ i),
ROV (B() = B50)) ~ (),
where Jy(-) is defined in ([{)), Z1(-) is a zero-mean Gaussian process with the covariance function
Y1 (1, 7)) = E[Z1(1)Z1(7")] = (min (1, 7") — 77") B [xx'1 (¢ < )],
and Z5(+) is similarly defined with the covariance function
S (1,7') = E[Z2(7) Z2(7)] = (min (7,7') — 77) E [xx'1 (¢ > 70)] -
Furthermore, Z., in Theorem 1 (or A(§) in Theorem 2), Z1(-) and Zs(-) are independent.

If 0,, is fixed, sup ||0o(7)]| = O(||0,]]) automatically holds. If |6, || — O, sup ||6o(7)|| = O(]|6||) means that
T€T T7€T

the threshold effects at {Tt}thl are the largest (in rate) possible threshold effects. An immediate corollary
of the Theorem above is the weak limit of the CQ threshold process, A() = Bl() - 32()

Corollary 2 Under Assumption D, no matter 6, is fixed or shrinks to zero,
Vi [50) = 0()] = AT 21() = B() T Za(0),
where the process on the right-hand side is a zero-mean Gaussian process with the covariance function
Y (r,7") = (min (1, 7') — 77') {Jl(T)*lE [xx'1(q < 70)] Ji(7") 7t + Jo (1) TLE [xx'1 (¢ > 70)] JQ(T’)*I} .

Proof. This result follows by the continuous mapping theorem and the independence between Z;(-) and
Zg() ]
We now state the weak limits of the MD and MQ threshold processes.

Theorem 4 Suppose Assumption D holds, Xy, Q¢ and Y are compact, and Ty = {7 : X'B¢ (1) € Y for some
x € Xy and g € Qp} CT. Then

vn (AD(ZJ) - AD(?J)) v G (r1y) = Ga (K2y),
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where Gi (K1,4) and Ga (K2y) are two independent zero-mean Gaussian processes with the the covariance

function

E[Gy(key) Ge (ke )] = [ Key(y,% q)key (y,x, a)dE(y|x, q)dFy(x,q)

\\

/W,y(y’ X, q)dF(y|Xa q)dFZ(Xv q)/”é,y’ (ya X, q)dF(y|X7 q)dFl(Xv q)v
and

H@,y(yvxa q) = /f(y‘xu q)x/wf,F(ym,q)(yvqu)dFZ(m7 q) + \/QF(ZAX?CI)?

¢1,T(Y7Xaq) = Jl(,r)il {T - 1(y S (1,x’,q)ﬂ1(7))} l(q S 70)(1axl,q)/a
¢2,T(y7xaq) = JQ(T)il {T - 1(y < (laxlvq)BQ(T))} l(q > 70)(15X/7q)/a

se 1s the probability limit of n/ne. If in addition Fy(y) admits a positive continuous density fo(y) on an

interval [a,b] containing an e-enlargement of the set {Q. (1) : 7 € T}, then

Vit (Ba(r) = Aq(7) ~ Gz (k2,0,) /£(Qa(7)) = G (1.0,() /F1(Qu (7).

Proof. The first part of this theorem is a direct corollary of Theorem 5.1 (3) in Chernozhukov et al.
(2012) and Theorem 3 above. The second part of the theorem is a direct corollary of Theorem 4.1 (2) of
Chernozhukov et al. (2012). m

The randomness in k¢ ,(y,X,q) includes two parts: the first part comes from the estimation of the
conditional quantile, and the second part comes from the estimation of the marginal distribution of (2’, q)’.

G1 (-) and Gy (+) are independent because the randomnesses in F} (-) and Fy(-) are independent.

4.1 Asymptotic Inference Methods

Inference on the QR process 5(7) is useful for testing basic hypotheses of the form
R(T)B(r) =r(r) forall T € T, (6)
where R (1) € RP*2? and r(7) € RPXL. We give a few examples here.

Example 1 We may be interested in whether a variable or a subset of variables j € {l+1,---,d} enters
models for all conditional quantiles with zero coefficients, i.e., whether Be;(T) = 0 for allT € T and j €
{l+1,---,d}. This corresponds to

O¢g— I, Ocg— Ocq— _

R(T)/ _ (d—1)x1 d—l (d—1)x1 (d—1)x(d—1) and T(T) = Ogq_1),

(d=1)
O@—nxi O@—nx@-1n Ow@—nxi Iy

where Og, xd, 15 @ d1 X do matriz with all elements being zero, and I is a d X d identity matrix.

Example 2 Even if we reject the hypothesis that there is no quantile threshold effect (see the next section),
we may still be interested in whether B1;(T) = Po;(7) for allT € T and j € {l+1,---,d}, | > 1; e.g., when

Il =1, we are interested in whether all the slope parameters are equal. Correspondingly,

R(r)' = ( Oa—nyxt La—t O@—pyxi —la— ) and r(1) = 0.

11



Example 3 We may want to check whether the model is from a location shift model or a location-scale shift
model. In the former case,
_ Iq _ _ _ !
R(7) = O(a—1)x1 d-1 Oa—1yx1  O@@—1)x(a—1) and r(7) = (ﬁ;ﬂ;) '
Oa—1yx1 O@—1)x@-1 Ow@—1)x1 Iy =

It asserts simply that the quantile regression slopes are constant, independent of T. In the latter case,

diag (A3;') Odxd 146, _ ~ B o
R = i d = —+ A17.-.7 >\1’ >\1’...7 )\1 ,
(T) < 0d><d diag ()\2711) an T(T) 1df‘r (611 11 ﬁld 1d /821 21 62(1 2d )

where 14 is a d x 1 vector of ones Usually, & is unknown under the null and it is convenient to choose

one coordinate, typically the intercept coefficient, to play the role of numeraire. Then

R(r) = ( o1 —Iq1 O-1)x1 O@—1)x(@d-1) ) and #(r) = — < 1 ) ,

O@—1yx1 O@—1)x(d-1) o2 —141 2
where juo; = Boi — Bridei/Xer and oo = i/ A, i =2, d.

Example 3 is different from Example 1 and 2 since nuisance parameters are involved in R(7) and
r(7). Fortunately, as suggested by Koenker and Xiao (2002), the Khmaladze (1981)’s transformation can
be applied to deal with such Durbin problems. We concentrate on the case where R(7) and r(7) are
known. Especially, this case can be used to construct simultaneous (uniform) confidence intervals for lin-
ear functions of parameters R(7)'8(7) — r(r) for all 7 € T, e.g., the CQ threshold effect 81;(7) — £2,;(7),
j=1,---,d, for all 7 € T. The following corollary states the asymptotic distribution of the test statistic
Ko = subser V)2V (R B(r) = (7)) | for testing (6], where 1 can be [, I, or |-, V() =
R(7)' J(r) 'S (7, 7)J(7) LR (1) with J(7) =diag{J, (1), Jo(7)} and Z(7, 7) =diag{E [xx'1 (¢ < Y)], E [xx'1 (¢ > 0)])}-

Corollary 3 Under Assumption D, no matter 0,, is fized or shrinks to zero, K, converges in distribution
to sup,c1 || By (7)||, where By, is the standard p-dimensional Brownian bridge. The result is not affected by
replacing J(7) and X(1,7) with estimates that are consistent uniformly in T € T.

Proof. This result follows by the continuous mapping theorem in ¢*°(7). m

Thus, K, has a well-behaved limit distribution. In practice, by stochastic equicontinuity of the QR
process, we can replace any continuum of quantile indices 7 by a finite grid 7, where the distance between
adjacent grid points goes to zero as n — oo. The critical values of sup, < || B, (7)||; and sup, ¢ || By, (7)||, can
be found in the electronic appendix of Koenker and Xiao (2002) and Table 1 of Andrews (1993), respectivelyﬂ

Given the a quantile of sup,c || B, (7)]], say, (), the asymptotic simultaneous (1 — «) confidence band
is I, (1) = |R(7)'B(r) — (1) £ k(1 — a) - \/‘7(7')/ \/ﬁ} for a uniformly consistent estimator V (r) of V(7)
over 7 € 7.

The inference procedure above requires estimators of J(7) and ¥(7,7) that are uniformly consistent in
7 € T. For X(7,7), we need only estimate E [xx'1 (¢ < )] and E [xx'1 (¢ > 70)] by their sample analogs.

5Obviously, there is some difficulty if there are Ay; equal to zero. In such cases, we can take Ag; = 1, and set the corresponding
elements r;(7) = By;.

6Strictly speaking, the critical values in Koenker and Xiao (2002) are designed for sup, ¢4 |Wp (7)||, where W), (7) is the
standard p-dimensional Brownian motion, and the critical values in Andrews (1993) are for sup,c7 [|Qp (7)]|, where Qp (1) =
By, (1) /7(1 — 1) is the standard p-dimensional Bessel process. Nevertheless, the simulation method used in these papers can be
applied without any difficulty in our context to obtain the critical values. Also, the resampling methods in the next subsection
are very convenient in practice.
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As to J(7), a popular estimator is the kernel estimator

o~ o~

1o . - 1 ¢ . ~
Ji() = - ZKhl (€rri) X1 (qi <7), Ja(7) = -~ ZKhz (€2ri) xixi1 (g; > 7) (7)

i=1 i=1

where K}, () = K(-/h)/h with K(-) being a kernel function and h being the bandwidth, €1,; = y; — xgél (1)
for i such that ¢; <% and €3.; = y; — X0 (1) for i such that ¢; > 7. The following corollary states the

uniform consistency of this estimator.

Corollary 4 Suppose K(-) is a nonnegative, symmetric function of bounded variation (but not necessarily
continuous), and [ K(u)du =1, [|K(u)|du < oo, uK(u) — 0 as |u| — oo. hy — 0 and nhi — oco. Then
under Assumption D and the additional assumption that E [HX”ﬂ < oo and [|f(ylz,q)|dy < oo for a.s.

(z',q), j\z(T) is consistent uniformly in 7 € T.

Powell (1986) and Buchinsky and Hahn (1998) use the uniform kernel, and Buchinsky (1998) also con-
siders the normal kernel; see further discussions in Powell (1989). When K (-) has a bounded support, the
assumptions [ |K(u)|du < oo, uK(u) — 0 as |u| — oo, and [ |f(y|z,q)|dy < oo for a.s. (2/,q)" are not
required. As to the bandwidth, Koenker (1994) suggests hy = Cp - n21/37 where ny = > 1(q; < 7),
ng =Y, 1(g; >7), and Cy can be obtained from Hall and Sheather (1988). Another popular estimator of

Jeer12,q(0]z, ) in J(7) is the difference quotient estimator, but its uniform consistency is doubtful.

4.2 Resampling Inference Methods

The asymptotic methods in the last subsection may be useful for the uniform inference of the CQ threshold
effects. However, for the MD and MQ threshold effects, the asymptotic methods are not applicable since
the limit processes in Theorem 4 are non-pivotal and their covariance functions depend on complicated
unknown, though estimable, nuisance parameters. In other words, the Durbin problem appears again in
this context. A popular alternative of the asymptotic methods is the resampling methods, especially, the
exchangeable bootstrap. This procedure incorporates many popular forms of resampling as special cases,
namely the empirical bootstrap, weighted bootstrap, m out of n bootstrap, and subsampling, see Section
3.6.2 of van der Vaart and Wellner (1996) for concrete descriptions. Each bootstrap scheme is useful to a
specific application. For example, in small samples, we might want to use the weighted bootstrap to gain
good accuracy and robustness to "small cells", whereas in large samples, where computational tractability
can be an important consideration, we might prefer subsampling.

Previously, the bootstrap validity are only proved for pointwise cases (e.g., Hahn (1995), and Feng et al.
(2011)), and the process result was available only for subsampling (see, Chernozhukov and Ferndndez-Val
(2005), and Chernozhukov and Hansen (2006)). Chernozhukov et al. (2012) prove the validity of the general
exchangeable bootstrap for estimating the limit law of the entire QR coefficient process (see their Corollary
5.1) and the MD and MQ threshold processes (see their Theorem 5.1(2)). We will not repeat their results
in this paper, but only provide the bootstrap procedures in our context.

Let (w1, -+ ,wy) be a vector of nonnegative random variables that satisfy Condition EB in Chernozhukov
et al. (2012) or the conditions (3.6.8) of van der Vaart and Wellner (1996). For example, (w1, ,wy) is
a multinomial vector with dimension n and probabilities (1/n,---,1/n) in the empirical bootstrap. The
exchangeable bootstrap uses the components of (w1, -+ ,w,,) as random sampling weights in the construction

of the bootstrap version of the estimators. Thus the bootstrap version of the MD threshold effects is
Ap(y) = Fi'(y) — F5 (),
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where

Fi(y) = Fi (ylz, q)dFy (z, q).
Xe Qe

The component

~

Ff(z,q) = (nf) ™" Zizlwil(mi <w,q; < q,x € X, q; € Q) (2',9)" € X Qe

with nj = Zn 1wi1(xi € Xy, q; € Qy) is a bootstrap version of ﬁg(x, q). The component
i=

1l—¢
Ff(ylz,q) =€ +/ 1 (X/ﬁf (1) < y) dr, (y,2',q)" € YeXyQy
I

with

-~

Pi(r) = are I%in Zwipr (yi —x381) Hai <7),
b=l

Ba (7) = argn > wipr (yi — xiB2) 1(ai > 7),
? =

is a bootstrap version of F\g(y|x, q) Correspondingly, the MQ threshold effect
Ap(r) = Fy = (r) = F3 7M7),

Given 3}5 (y), we can conduct uniform inferences for Ap(y). An asymptotic simultaneous (1 — «) confi-

dence band for Ap(y) over y € ) is defined by the end-point functions

A5(y) = Ap(y) £ 1o ()? /v,

such that

o~

lim P (AD(y) € [AB(y), Ag(y)} for all y € y) =1-a. (8)

n— oo

Here, 3. (y) is a uniformly consistent estimator of X(y), the asymptotic variance function of \/n (ﬁ p(y) — A D(y)) .

In order to achieve the coverage property , we set the critical value ¢1_, as a consistent estimator of the

(1 — a)-quantile of the maximal ¢-statistic:

t = supy/n (y)_1/2 ‘ﬁp(y) —Ap(y)|-
yeY

It remains to obtain 3. (y) and t1_o. For this purpose, we first get Zf),b(y); b=1,---,B, as i.i.d. realization
of E}S(y) =n (K*D(y) — ﬁp(y)) for y € ). Then compute a bootstrap estimate of X (y)l/2 such as the

bootstrap interquartile rang rescaled with the normal distribution: 3 (y)l/2 = (q0.75(y) — qo.25(y)) /1.349
for y € Y, where g,(y) is the p-th quantile of {Zﬁb(y),b =1,--- ,B}. Finally, t1_, is set as the (1-a)

sample quantile of {tAb, b=1,--- ,B}, where &, = supf] (y)_l/2 ‘2}5 b(y)‘.
yey ’

"Note here that 7 is not replaced by its bootstrap counterpart 3* to simplify the bootstrap procedure. Actually, from Yu
(2013a), the invalidity of the bootstrap for v does not affect the bootstrap validity for regular parameters.

8Here, the interquartile range rather than the standard deviation is used to avoid technical complexities, see Remark 3.2 of
Chernozhukov et al. (2012).
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The uniform band for Ag(7) can be obtained similarly by replacing ﬁ’b(y) and Ap(y) by 36(7’) and

AQ(T). We can also estimate the critical value for K, in the last section by the (1 — «) sample quan-
tile of {sup, e |V (r)"2vmR(r) (B (r) - B(r))

~ ~ o~ /
estimator of V(7) over 7 € 7, and {ﬁg(r) = (ﬂfb (T)/,ng (7‘)’) b=1,--- ’B} are i.i.d. realizations of

,b=1,--- B }, where ‘7(7) is a uniformly consistent

~ ~ ~ !/
B*(r) = (ﬂf (), B3 (T)/> . For the construction of the uniform confidence band for a single element of

R(7)' B(r) — (1), \7(7)_1/2 can be substituted by the corresponding rescaled bootstrap interquartile range.

5 Specification Testing

To estimate v or the MD and MQ threshold processes in the previous sections, we must first guarantee that
there are CQ threshold effects. For such specification testing, it is more convenient to reparametrize the
model as

y=xPo(7) +x'0(1) 1(q < 70) + er, Qr [e-[x] =0,

where the true threshold point 7 is unknown. The null hypothesis is that there are not CQ threshold effects,
or
Hy:0(r)=0forall T €T,

and correspondingly, the alternative is
Hy:6(1)#0 for some 7 € T,

and the local alternative is
H{ 6 (1) =n~Y2¢(r) for some 7 € T.

To facilitate the development of our asymptotic results, we impose the following additional assumptions.

Assumption T:

1. The minimum eigenvalues of J(7) = E[fe_|2,4(0]zs, ¢:)x:x]] and J (v, 7) = E[fe. |2,4(0]zs, ¢i)x: (7)%:(7)']
are uniformly bounded away from zero uniformly over (7,7v) € 7 x I, where x;(7) = x;1(¢; < 7).

2. ¢(7) is uniformly bounded over 7 € 7.

3. f(er|z,q) is bounded and uniformly continuous in e, uniformly over (r,2’,¢) € T x X x Q.

From Assumption D3, ¢(7) should be uniformly continuous, but the proof does not require this assump-
tion.

5.1 Test Statistics

A straightforward test is the Wald-type test which is based on the estimate of § (7). The test statistics are
functionals of

— o~

Walror) = (B D)8 (1) Aar) ™ 4 Bl )82 (1) B ) VB (7).
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where 6 (v,7) = B1(v,7) — Ba(7,7), B1(7,7) is the 7th QR estimator using the data with ¢; < 7, Ji(7,7) =
n-! Z?:l Ky (@174) xix31 (g5 <) with €1ri = yi — XiBy (v,7), S (v, 7) = T(1 = 7)n L xix(1 (g5 <),
and Ba(v,7), Jo(v,7) and Xy (v, 7) are similarly defined but using the data with ¢; > ~. This test is hard
to apply in practice due to two reasons. First, many quantile regressions (indexed by (v,7)) should be
conducted, which is quite time-consuming. Second, the critical values are hard (although not impossible) to
obtain even by the simulation method in the next subsection.

In this paper, we suggest the score-type test which constructs the test statistics under the null rather
than under the alternative as in the Wald-type test. This type of test is based on the subgradient of p; (),
just like the CUSUM test which is based on the gradient of the objective function of least squares (see, inter
alia, Ploberger and Kramer (1992) and Bai (1996) in the structural change testing). Yu (2009) uses similar
ideas in the specification testing of threshold regression with endogeneity. The test statistics are functionals
of

~

n 1172
Tu(r,7) = [ru—r)-n—lz(xi(w T, 130 1x) (xi0) = T 7) <>—1xi)]

n 23 () = T )T ) o (B10).

i=1

where
n

~ 1

J(77T) = ﬁ;Kh (eTZ)xzx 1(q’L <’Y ZKh eTL XX
are similarly defined as in , or(u) =1(u<0)—71, €y =y — xgb\(r), and B(T) is the QR estimator
of y; on x; (so the null hypothesis is imposed). Different from W, (vy,7), we need only run one quantile

regression for each 7 to construct 7,,. Note here that although f(%T)j(T)_ln_l/? > xior (@) = 0p(1),
i=1

x;(7) is recentered by J(v,7)J(7)"'x;. This is because the effect of B () will not disappear asymptoti-
cally so the asymptotic distribution of n=1/2 3" | x;(7)p, (€5;) is different from n =2 3" | x;(7)p (€4) =
n~V23  xi(7)er (yi — X480 (1)) under Hp. In other words, the Durbin problem reappears in this context.
Recentering is to offset the effect of 3 (7).
Given fm we usually consider two test statistics. The first is the Kolmogorov-Smirnov sup-type statistic

~

n(7,7)

K,, = supsup
TeT~el

7

and the second is the Cramér—von Mises average-type statistic

|

where w; () and wy(7) in C,, are known positive weight functions with Jrwi(y)dy =1 and [;ws(r)dr =1.

(v, T ’wl Ywa (T)dvdT,

For example, wo(7) = 1/|7| with |7| being the length of 7; if we have some information on the quantile
indices where threshold effects are most likely to happen, we can impose larger weights on the neighborhoods
of such indices.

The choice of the norm ||-|| is also an issue. Euclidean norm [|-||, is obviously natural, but has the possibly
undesirable effect of accentuating extreme behavior in a few coordinates. Instead, we will employ the ¢; norm
in the simulations and the empirical application below. Also, |-|| . is used for K, in the structural change
test of Qu (2008). Define g, = g(fn), where g is the functional defined in K, or C,. The following theorem
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states the weak limits of g, under Hy.

Theorem 5 Suppose the same assumptions on K(-), h, and f(y,x,q) as in Corollary 4 are satisfied; then
under Assumptions T, D1 and D/,
d
gn — 9" = g(TC>7
where

T(vy,7) = H(y,7) "2 {S(v,7) = [T (¥ Ao, 7) — J(7, 1) () T (70, 7)] e(7) },

with S(y,T) being a zero-mean Gaussian process with the covariance kernel
H((y1,71), (v2,72)) = (M A2 —T172) B {(Xi(%) = J(y1, 1) (1) ' xq) (xi(72) — J(%,Tz)J(Tz)flxz’)l} ,

and H(v,7) = H((v, 1), (7,7)).

To understand S(v, 7), consider a simple case where x = (1,2')’, ¢ follows the uniform distribution on

0,1] and is independent of (2, e,)’. In this case,
[ p

H((y1,m1),(v2, ) = (M ATe —Tim2) (1 Ave —n172) B [XX'] ;

in other words, E [xx’]fl/ >S(v,7) is the standard p-dimensional Brownian Pillow (or tucked Brownian
Sheet). Now, the local power is generated by [J(y A v0,7) — J(7,7)J(7) " T (70, 7)] ¢ (T) = (v Ao — ¥70) E [xx] ¢ (7).
These results are similar to those in the structural change testing; see, e.g., Proposition 2 and Corollary 1

of Qu (2008). Of course, the construction of fn can be greatly simplified in this simple case, e.g.,

n —-1/2 n
To(y,7) = lnl ZX:-X&] 2N " xipy (4 — ) pr (i) 9)
i=1 =1
will converge to the standard p-dimensional Brownian Pillow under Hj.

5.2 Simulating the Critical Values

The asymptotic distribution of g, is not pivotal. Following Hansen (1996), we obtain the critical values by
simulating fn('y, 7). More specifically, let {¢};—, be i.i.d. N(0,1) random variables, and set

n 1712
Ti(h,m) = [n D= e (60 (%) = T 1) 7)) (x) = T 7)) ) ] (10)

n-1/2 Z [Xi(’Y) — J(v,7) (T)ilxz} or (€r:) & -

i=1

Here, 7(1 — 7) in T, (v, 7) is replaced by ¢, (€,;)%. This is because under Hj, B(T) is only an approximate

of the true conditional quantile function (see, e.g., Angrist et al. (2006)), and the asymptotic variance of
n ~ ~

n=1/2 3 [xi (v) = J (v, T)J(T)_lxl} ©r (€74) is not H (v, 7) any more. Since the true data generating process
i=1

(DGP) is unknown, we must use this robust asymptotic variance estimator to mimic the behavior under

HQE Given this observation, to make sure the conditional distribution of fr’[ (7, 7) given the original data is

90f course, under H§, 7(1 — 7) can be used in T
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close to the distribution of 7, (v, 7) under Hy, fn('y, 7) can be replaced by

~ ~

n , -1/2
T(r,7) = [n D s (@0)* (3i(7) = T, (1) 1) (i) = T, ) (7)) ]
w23 [10) = T ) e ),

and the corresponding K,, and C), are denoted as I?n and 5", respectively. The tests based on Tn may have
more precise sizes but lose some powers.

Our test is to reject Hy if gy, is greater than the (1 — a)th conditional quantile of g(f;) Equivalently,
the p-value transformation can be employed. Define pi = 1 — F*(g,), and p, = 1 — Fy(gn), where F is
the conditional distribution of g(f =) given the original data, and Fj is the asymptotic distribution of g(fn)
under the null. Our test is to reject Hy if p}, < . The following theorem states the validity of the above

procedure.

Theorem 6 Under the Assumptions of Theorem 5, p} = p, + 0,(1) under both Hy and Hf. Hence p}, 4,
p¢ =1— Fy(g°) under HY, and p}, 4, U, the uniform distribution on [0, 1], under Hy.

By the stochastic equicontinuity of the fn('y, 7) process, we can replace 7 and I' by finite grids with the
distance between adjacent grid points going to zero as n — OOE Also, the conditional distribution can be

approximated by standard simulation techniques. More specifically, the following procedure is used.

Step 1: generate {5;‘}}2;1 be i.i.d. N(0,1) random variables.

Step 2: set TJ*(y;,7) as in , where {’yl}lel and {Tt}thl are grid approximation of I' and 7. Note here
that the same {f;‘j}:;l are used for all (v, ), l=1,---,L,t=1,---,T.

Step 3: set gJ* = g(T7*).

Step 4: repeat Step 1-3 J times to generate {g%*}jzl.

Step 5: if p/* = J 7! ijl 1(gl* > gn) < a, we reject Ho; otherwise, accept Hy.

6 Monte Carlo Experiments

In this section, we conduct some Monte Carlo experiments to check the performance of the estimators and
tests in the previous sections. Given that the SEB procedure of Yu (2008) and simulating the critical values
of the score-type tests in Section 5 are very time-consuming, we will consider the following simple DGPs to

save simulation time.

Y= (1z)B1+o1e, q¢<m
(1z)Bs+o2e, q>;

where 2 ~ N(0,1), ¢ ~ U[0,1], e ~ N(0,1) or the double exponential distribution with scale 1/1/2 (which
has variance 1 and is denoted as DExp(1/v/2)), and z, q and e are independent of each other. The double
exponential distribution of e is also used in the simulation study of Bai (1995), corresponding to the heavy-
tailed error case. v = 0.5, 3 = (0 0), BY = n~Y%¢c- (1/V/2,1/y/2) for some positive numbers of c,
n = 200, and the number of repetitions is set as 500. We consider two setups for 019. In the first setup,
010 = 029 = 1, and in the second setup, 019 = 1 and o9 = 2. The first setup only considers the threshold

effect in conditional mean (or median), while the second setup also covers the threshold effect in variance

10 A natural choice of the grids for T is the ¢;’s in T, and for 7 is the breakpoints in 7 whose number is at most Op(nlnn)
from Portnoy (1991).
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(and other quantiles). We label the case with 019 = 099 = 1 and e ~ N(0, 1) as scenario 1, o19 = 20 = 1
and e ~ DExp(1/+/2) as scenario 2, 019 = 1,099 = 2 and e ~ N(0,1) as scenario 3, 019 = 1,090 = 2 and
e ~ DExp(1/y/2) as scenario 4, respectively. T' = [9(0.2n)> 9(0.8n)], Where q(;y is the ith order statistic of
{e:};—,. T =1[0.1,0.9].

6.1 Specification Testing

The specification testing is extremely time-consuming when a fine approximation of 7  is used. To save sim-
ulation time, we only check the performance of K » With a rough approximation of 7 being used. Specifically,
we use 11 approximation points {Tt}thl which are evenly distributed on 7. Such a rough approximation
is not suitable for C), or C,,. Also, given the special structure of the joint distribution of (e,z,q)’, we use
the simple form @ of fn to further save simulation time. For the tests based on the LSE, we only consider
the score-type tests for comparison; see Yu (2009) for descriptions on these tests. In simulating the critical
values, we let J = 400. The size and power is evaluated at the 5% nominal level. Totally, we consider only
three test statistics: I/(\'n with 7 = {Tt}thl or based on the LADE only, and the sup-form of the score-type
test based on the LSE.

We report the simulation results of specification testing in Figure [II From Figure [} a few results of
interest are summarized as follows. First, in scenario 1, the score-test based on the LSE performs best, and
in scenario 2, I/(\'n based on the LADE works best. This is understandable given that the threshold effect
appears only in conditional mean in scenario 1 and only in conditional median in scenario 2. Nevertheless,
the performance of K,, with 7 = {Tt}zzl is close to the best case in scenario 1 and is identical to the best
case in scenario 2. Second, in scenario 3 and 4, IA(,L with 7 = {Tt}tT:l performs much better than the other
two tests. Especially, the tests based on the LSE or the LADE do not have any power when ¢ = 0; however,
the tests based on I?n have significant powers even when ¢ = 0. Third, in scenario 3, the test based on
the LSE performs better than the test based on the LADE and in scenario 4, the converse conclusion can
be drawn. These results obviously parallel those in scenario 1 and 2. In summary, IA(n based on multiple
quantiles performs stably and among the best in all kinds of scenarios, no matter whether the error has a

heavy tail, or whether there is a threshold effect in variance.

6.2 Estimation

In the estimation, our first goal is to compare the efficiency of the IQTRE with the LSE, LADE and MLE and
also the SEBE started from the IQTRE with that started from the LSE and LADE. Note that in all setups,
E les|z, q] = 0, so the LSE can be applied. Also, since Med(es|x, ¢) = 0, the LADE can only identify 7 from
the threshold effect in 8y (rather than in o), and is comparable to the LSE. Given that e, has the maximum
density at its median, the LADE should be the most efficient among all QRE’s, so we only report the results
for the LADE. In the IQTRE, the same {Tt}z;l as in the specification testing are used. As to the MLE, the
algorithm can be found in Section 3.2 of Yu (2012). Our second goal is to compare the coverage and length
of various ClIs, including the LR-CIs in Section 3.3 based on the LSE, LADE and IQTRE, and the NPI

started from the LSE, LADE and IQTRE. In constructing LR, (7), we use the kernel smoother to estimate
1/3
fe(F-Y (7)) in mirn. The bandwidth A is set to be n=1/3,2/3 {1.5¢2 (@ 1(7))/ ((2@’1(7))2 + 1)} as

suggested in Hall and Sheather (1988), where ¢ and ® stand for the standard normal density and distribution
function and z, satisfies ® (z,) = 1—a/2. We let ¢ = 20 and the resulting 89 = (1,1)’. From the specification
testing in the last subsection, this value of ¢ should be out of the contiguous neighborhood of the null.
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Figure 1: Power Comparison with Different Specifications of 49 and Error Distributions

The performance of various estimators are summarized in Table 1. From Table 1, the following conclusions
can be drawn. First, among the LSE, LADE and IQTRE, the LSE performs best in scenario 1 and the LADE
performs best in scenario 2. They perform even better than the MLE since they are equivalent to the MLE
with the restriction 019 = 99 imposed. The performance of the IQTRE is the close to that of the MLE (and
the best semiparametric estimator) in these two scenarios. Second, the IQTRE performs best among the LSE,
LADE and IQTRE in scenario 3 and 4, so the threshold effects at other quantiles indeed provide information
for 7. On the other hand, by comparing the IQTRE and the MLE, we can see that the threshold effects at
only finite quantiles cannot cover the whole CQ threshold effects. Also, as expected from the specification
testing, the LSE performs better than the LADE in scenario 3 and the LADE performs better than the LSE
in scenario 4. This is understandable since the LADE is more robust to the heavy-tailed error than the LSE;
see Section 3.1. Third, the SEBE started from the best-performed estimator performs the best. This verifies
our expectation in Section 3.3: the starting value of the SEBE indeed affects the efficiency of the SEBE in
finite samples. In summary, it is safe to claim that the IQTRE performs stably well in all scenarios.

The performance of various Cls are summarized in Table 2. Four main conclusions from Table 2 are as
follows. First, the LR-CIs suffer from the overcoverage problem and the NPIs suffer from the undercoverage
problem. On the other hand, the NPI is much shorter than the corresponding LR-CI. Second, among the three
LR-ClIs, the CI based on the IQTRE performs best if taking both the coverage and length into consideration,
which matches the efficiency results in Table 1. Third, although all NPIs have the undercoverage problem,
the NPI based on the IQTRE suffers the least. Also, the NPI based on the IQTRE is shorter than the other
two NPIs, especially in scenario 3 and 4. Fourth, the NPI in the scenario with a heavy-tailed error generally
has a worse coverage than that in the scenario with a light-tailed error. In summary, for both the LR-CI
and the NPI, the CIs based on the IQTRE perform the best.
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oA 010:0'20:1 Ulozlal’ld 0'20:2

J. () N(0,1) DExp(1/v3) N(0,1) DExp(1/v2)
RiSk(Xlsz) RMSE MAD RMSE MAD RMSE MAD RMSE MAD
LSE 2.00 1.21 1.77 1.06 4.93 2.77 4.73 2.58
LADE 2.19 1.34 1.43 0.90 5.54 3.10 2.91 1.76
IQTRE 2.06 1.24 1.54 0.96 3.70 1.98 2.74 1.63
1.71 1.1 1.34 . . 1. A4 1.84

SEBE LSE 7 6 3 0.89 3.62 87 3.45 8
- 1.77 1.11 1.34 0.86 3.84 1.91 3.62 1.84
SEBE LADE 1.78 1.18 1.26 0.84 4.26 2.09 2.30 1.38
- 1.83 1.15 1.30 0.81 4.39 2.11 2.45 1.40
SEBE IQTRE 1.72 1.16 1.29 0.86 2.97 1.54 2.24 1.36
- 1.77 1.12 1.33 0.83 3.04 1.55 2.35 1.36
MLE 2.03 1.23 1.50 0.94 1.99 1.19 1.92 1.18

Table 1: Estimator Performance for « (Based on 500 Repetitions)
Note: MAD: mean absolute deviation, SEBE -: SEBE started from - (the upper value

is the posterior mean, and the lowe value is the posterior median)

g0 0'1020'20:1 Ulozland 0’20:2

7. () NO,1) [ DExp(1/v3) | N(0,1) | DExp(1/V3)
Coverage and Length (x1072) | Cov | Leng | Cov | Leng | Cov | Leng | Cov | Leng
LR_LSE 0.986 | 5.95 | 0.970 | 5.78 | 0.972 | 17.02 | 0.974 | 17.29
LR _LADE 0.996 | 9.86 | 0.992 | 5.85 | 0.976 | 21.01 | 0.978 | 11.57
LR_IQTRE 0.994 | 6.86 | 0.976 | 4.98 | 0.984 | 10.38 | 0.982 | 8.59
NPI_LSE 0.936 | 4.93 | 0.900 | 3.93 | 0.884 | 5.45 | 0.860 | 5.32
NPI _LADE 0.934 | 494 | 0.918 | 3.82 | 0.872 | 5.65 | 0.884 | 5.00
NPI_IQTRE 0.938 | 4.96 | 0.918 | 3.82 | 0.896 | 4.92 | 0.884 | 4.80

Table 2: Comparison of Inference Methods: Coverage and Average Length of
Nominal 95% Confidence Intervals for v (Based on 500 Repetitions)
Note: LR_ -: equal-tailed LR-CI based on -, NPI_-: NPI started from -

7 Application

In this section, we apply the estimation and testing procedures in Section 3, 4 and 5 to the growth data
used in Durlauf and Johnson (1995) and reanalyzed in Hansen (2000) and Yu (2008). A similar dataset is
used in Koenker and Machado (1999), but no threshold effects are considered there. The growth theory with
multiple equilibria motivates the following threshold regression model:

In (%)i,mgs —In (%)i,l%o
B { Bro+Br1ln (1), 1960 T Br21n (5), + Brsln (i + g +0) + BralnS; +oves,  if (), 1950 <05

(2

) ‘ ;
Ba0 + Ba1n (L), 1960 + Be2In (), + BasIn(ni + g +8) + Boa In Si + oei,  if (L), 1950 > -

For each country i, (%)“ is the real GDP per member of the population aged 15-64 in year ¢, (%)z is the
investment to GDP ratio, n; is the growth rate of the working-age population, and S; is the fraction of

working-age population enrolled in secondary schools. The variables not indexed by t are annual averages
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over the period 1960-1985. Following Durlauf and Johnson (1995), we set g+ 9 = 0.05. The data are assumed
to be i.i.d. sampled. This assumption is approximately true, since there are not many interactions, such
as trade, international capital flows, etc., between any two countries during this period. The objective is to
check whether the growth depends on the starting point.

The LSE, LADE, IQTRE and the corresponding LR-CIs, SEBEs and NPIs for v are summarized in Table
3, where ' = [q(0.1n), 9(0.9n)], 7 = [0.2,0.8], and T" = 11@ It is quite surprising that the three estimators
coincide for this data set. This indicates that the threshold point is indeed a lower (18.85%) percentile of
q, below which are mostly poor African countries. Nevertheless, the IQTRE is the most efficient since the
length of the corresponding LR-CI is the shortest. Anyway, the three LR-ClIs are not informative given that
they are all too wide. The length of the NPI improves a lot relative to the LR-CI. As expected, the NPI
based on the IQTRE is narrower than that based on the LSE. From the simulation study in Section 6.2, the
NPI may suffer from the undercoverage problem and the LR-CI may suffer from the overcoverage problem,

so a better CI should be in-between.

LSE | LADE | IQTRE

Original Estimators 871
LR-CI [594,1842) | [755,1842) | [755,1623)
Length of LR-CI 1248 1087 868
Ratio of Countries Covered by LR-CI 40/96 37/96 33/96
SEBE Posterior Mean 828.8 843.8

Posterior Median 831.7 863.7
NPI [756.4, 877.9] [778.9,878.3]
Length of NPIs 121.5 99.4
Ratio of Countries Covered by NPIs 6/96 4/96

Table 3: Comparison of Estimators and Inference Methods for v

Figure [2| shows the quantile processes in the two regimes generated by the threshold point 871@ Since
the sample size is relatively small, the uniform confidence bands are not informative, so are not drawn on.
The last graph of Figure [2| shows the MQ threshold effects. For comparison, the corresponding least squares
estimators are also shown in Figure 2] The quantile processes in Figure [2] reveal more information about
the growth patterns in the two regimes than the LSE. For example, schooling does not have any effect on
growth for poor countries below the median, while it has significant effects for all rich countries. For another
example, the effect of the starting point of growth is quite uniform among all quantiles for rich countries,
while for poor countries, its effects at all quantiles are below the mean effect, with the minimum reached
around the median. Another observation is that the error term e is not generated by (x’\) € with € being i.i.d.
sampled; otherwise, each component of B\g should be a location-scale transformation of any other component.
But this is obviously not the case from Figure|2] which means that there are complicated heteroskedasticities
in the error termE At last, the MQ threshold effects are negative over all 7 € 7, just as expected. The
MQ threshold effect is larger for a larger quantile index 7, which indicates that the marginal distribution of
(2',q)" is very important in the MQ threshold effect evaluation. From the estimation of 3 (-), the threshold
effects in the conditional distribution concentrates on the lower especially medium 7. However, the marginal
distributions of (z’,q)" are very different, e.g., the mean of x in the right regime is much larger than that in

the left regime.

HFor T = 3 to 22, the IQTRE is the same as the LADE.

12The quantile processes based on the SEBEs are qualitatively similar.

3 Durlauf and Johnson (1995) also observe the heteroskedasticity of the error term, so our results convince and refine their
results.
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Next, we conduct the specification testing on CQ threshold effects. the corresponding p;* for IA(n is 0.09,
so the null hypothesis is rejected by [A(n at 10% significance level, where J = 500. The corresponding p-values
for the sup-score test based on the LSE is 0.262, so the null hypothesis cannot be rejected. To explore further
which quantile contributes mostly to the quantile threshold effects, we calculate I?n for T ={r} and the
corresponding p; values, and then graph these p-values against 7 in Figure[3| From Figure [3| most threshold
effects concentrate on the lower especially medium indices of 7, just as predicted by Figure 2| Also, Figure
[ indicates that the specification test based solely on the LADE cannot reject the null hypothesis. From
these testing results, we can conclude that the test based on a range of quantile threshold effects indeed has
a larger power than that based solely on the LSE or the LADE.

8 Conclusion

We have considered the estimation and specification testing in quantile threshold regression. First, we propose
the IQTRE for the threshold point, and derive its asymptotic distribution in two asymptotic frameworks.
This estimator is more efficient than the existing estimators based on a single characteristic of the conditional
distribution of the response variable, such as the LSE and LADE, and is comparable to the MLE, so can
serve as a better starting point in the adaptive estimation of the threshold point. Second, we estimate two
new threshold processes: the marginal distributional threshold process and the marginal quantile threshold
process, and provide both the asymptotic and resampling inference methods for these processes. Third, we
put forward a new score-type test in the specification testing of quantile threshold regression. This type of
test is more powerful than the tests based solely on the LSE or the LADE. Comparing with the usual Wald-
type test, it is computationally less intensive, and its critical values are easier to obtain by the simulation
method.

Possible extensions of the analyses in the paper can be along the following directions. First, the insights in
this paper are ready to extend to time series, repeated cross-sections, and panels. Second, we can extend the
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one-regime analysis to the multiple-regime case. Especially, the procedure to determine the number of breaks
in Section 6 of Oka and Qu (2011) can be extended to determine the number of threshold points. Third,
the analysis in this paper is based on quantile regression, and an alternative way is based on distribution
regression; see Section 3.2 of Chernozhukov et al. (2012) for an introduction. Fourth, we assume the model
is correctly specified in this paper. Actually, the application in Galvao et al. (2011) indicates that there may
exist misspecification in the setup since the QRE of the threshold point depends on the quantile index.

Extension to incorporate misspecification can be done along the line of Yu (2013b).
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Appendix A: Proofs

First, some notations are collected for reference in all lemmas and proofs. The letter C' is used as a generic

positive constant, which need not be the same in each occurrence. a,, = nd/,0,.
Qn (0) = Pr (m(-]0)),Q (0) = P (m (]0)),Gn (m (w]f)) = vn(Qn (6) — Q0)),

where m (w|f) = Zle pr, (Y —xX'B1(1e) Lqg < v) = xX'Ba (1) 1(q > 7)), 0 = (’%Bé’)/ with S = (51T7%T)/and
Ber = (Be (1) -+, Be (TT)/)/, and for a function f,

Pulf)] =n7 30" fwi), G (f(w)) =n~ 23" (f(wi) = BLf(wy)]),
G, (f(w)) = n~1/2 Z:;l (f(w;) — E[f(wi)])‘f:f, where [ is an estimated function,

Yr (u) =7 = L(u <0), 0 (u) = —r (u).

Proof of Theorem 1. The consistency of 7 is proved in Lemma 1, and the convergence rate is shown in

Lemma 3. From Lemma 5, n(y — 7p) has the same asymptotic distribution as arg min D, (v) with
v

Dry (v) = ;ZITil (70 + -~ <g < ’Yo) +;Z2Ti1 (Vo <q <+ ﬁ> .

Now, a modified version of the argmax continuous mapping theorem (Theorem 3.2.2 in van der Vaart and
Wellner (1996)) is used to derive the asymptotic distribution.

(i) Drn(v) ~ Dy (v) on any compact set of v. This is proved in Lemma 7.
(ii) n(¥ —v) = Op(1). This is proved in Lemma 3.

(iii) arg mvin Drp(v) = Op(1). This is shown in Appendix D of Yu (2012).
(iv) arg mvin Drp(v) is unique. This is guaranteed by Assumption D8.

|
Proof of Theorem 2. The consistency of 7 is proved in Lemma 2, and the convergence rate is shown in

Lemma 4. From Lemma 6, a,, (¥ — 7o) has the same asymptotic distribution as arg min Cr,(v), where
v

n

T
v fq( )7" n
T 0 | Sxvn e (0t 2 <a <) |+ B0 mm

CTn (”U) = =1

n

T .

fo>0.

7t21 51{n {leﬂlln (eQTti) 1 (’YO < g < Yo + a:un):| + w‘gig: U, n
= i=

We now apply Theorem 2.7 of Kim and Pollard (1990) to find the asymptotic distribution of a,, (¥ — 7o)-

(i) Crp(v) ~» Cr (v) € Cpin (R), where Cpin (R) is defined as the subset of continuous functions z(-) €
By, (R) for which (i) z(¢t) — oo as |[t| — oo and (ii) z(¢) achieves its minimum at a unique point in R,
and By, (R) is the space of all locally bounded real functions on R, endowed with the uniform metric
on compacta. The weak convergence is proved in Lemma 8. We now check Cr (v) € Cpin (R). Tt is
not hard to check Cr(v) is continuous, has a unique minimum (see Lemma 2.6 of Kim and Pollard

(1990)), and | l‘im Cr(v) = oo almost surely (which is true since llim We (v) / |v] = 0 almost surely).
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(i) an (¥ —0) = Op(1). This is proved in Lemma 4.

So
an(7 — ) <, argmin Cr(v).

Making the change-of-variables v = 7, noting the distributional equality Wy(a?r) = aW,(r), we can

7r1Tf ('Y )
rewrite the asymptotic distribution as

argmin Cr(v) = argmax {—Cr(v)}

9T
= argmax ¢ —Cp ( )}
mirfa(70) v { W%qu %)
0_2
A VR (o) < ke <o
=T i !
i fq(70) v —/fa(v0)orWs (Wr> - UTT:TT; Ir|, if r >0,
o TEY (—r) ~ L2E ||, ifr <0,
= argmax < 7 O_% o ]
mirfa(70) v TEWa (r) — 3 £ |r|, ifr>0,
7 Wy (—r)— 3 ifr<0
-7 arg max (=) 1 Tr22T|T| 7 1 T
7T1qu(70) v Wo (T) T 3mir |T| , ifr> 0,
2
9T
= A(¢)
mirfa(70)

By Slutsky’s theorem,

nfa(70) (““)2 7 = 70) —5 A(6).

OTn
]
Proof of Corollary 1. From the proof of Theorem 2 and the continuous mapping theorem,

1 (Qrn (10) — Qra (7)) — sup {~Cr(v)}
Note that

0.2
=V fa(r0)orWi (—Wr) —2%# Irl, ifr <o,
VIO (7 5) = FHE I, >0,
o 0_2 .
{ érWl( r) = ses ], ifr <o,

sup {—Cr(v)} = sup

s 27!‘1T

LW, () - G2, i >0,

m™T 2

_ o2, Wi (—r)—§|r|, if r <0,
Wo (r) — 2222 |p| | if > 0,

2 mr

2 2
sosup {—Cr(v)} = 7L max {My, My} = ZZ-M, where M, = sup,, {Wi (=r) = |r|}, M = sup,so {W2 (r) — 3¢ ||},
and M; and M are independent. From Bhattacharya and Brockwell (1976), M; follows the standard expo-

nential function, and M, follows an exponential distribution with mean 1/£. It follows that
PM<z)=P(M, <z,My<z)=P (M, <z)P(My<z)=(1-e%)(1—e ).
By Slutsky’s theorem, the result of the theorem follows. m
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Remark 1 In the least squares estimation, Cr(v) is changed to

= | VEDOVIWi(=0) + 25Dl ifo <0,
VI GoVaWa(v) + L2090 D o], ifv >0,

where D = lim &, E [xx'|q = 70} 6, /6,05, and V; = lim &, F [xx'e}lq = 0] 6,/8,,0,. So the asymptotic
distribution of the LSE is

~ d .
an(ALse —0) - argmin C(v),

and

D v
nfq(’Yo)W (JLsz —Y0) —= A (Vj’ 1> .

where /~\(¢,§) 18 defined in @), D, = 8, E [xx'|q = 70| 6n, and V1, = 8, E [xx'€%|q = 9] 6,,. Correspondingly,

N i Wi(=r)=35lrl,  ifr<o,
Sn (90) = Sn Brse) —= sup {~C(v)} = —sup .
i RN DY JEWa ()~ L, i >0,

T

SO

D, N
Vi (Sn (70) = Sn (VLsE)) -4 Mysg,

where Sp(y) = %E:n_l(yZ — ngl('y)l(qi <7 - ngg('y)l(qi > v))? is the profiled objective function of the

LSE for a given v, and
P(MLSE < x) = (1 — e—f'i)(l _ e—Vlm/Vz).

When e, = oge with e being independent of x, Vi /Va = 03 /03,.

Proof of Theorem 3. As in the proof of Theorem 3 of Angrist et al. (2006), we divide the proof of the
weak limit of Bg(') into two steps. For simplicity, take Bl() as an example.

Step 1: Uniform consistency of 31()

For each 7 in 7, B (-) minimizes Q, (7, 51,7) = P, [(or (y —x'B1) — pr (y —x'BY(7))) 1(q < 7)]. Define
Q (7, 81,7%) = E[(pr (y —x'B1) — pr (y —x'BY(7))) 1(q < 70)]. It is easy to show that E [||x||] < co implies
that E [|(pr (y — x'B1) — p- (y —x'BY(7)))| 1(q < 70)] < oo. Therefore, Q (7, 51,70) is finite and by the
stated assumptions (especially, Assumption D6), it is uniquely minimized at 39(7) for each 7 in 7.

We first show the uniform convergence, namely for any compact set B, @y, (T, 51,7) = Q (7, 51,7) +0p(1)
uniformly in (7,51,7) € T x B x I'. This statement holds pointwise by the weak law of large numbers
(WLLN). The empirical process (7, 81,7) — Q. (7, 51,7) is stochastic equicontinuous because

|Qn (7—/7/6137/) - Qn (7_7 51,7)‘
S |Qn (T/aﬁL’YI) - QTL (Ty /Bla'y,)‘ + |QTL (7-7 /817’}/) - QTL (Ta 517’7)‘

1Y Ay <qg<A' V)
< 2P, [|Ix[I] sup |81l 17" = 7] + 2P, [[Ix/[] 181 — Bull + 2Pn | |Ix|| ; sup [|B1]l V[ =
BiEB 1Y =l BB
=O0p(1) |7 = 7|+ O, (1) |18 = Bull + Op (1)Y= 7.

Hence, the convergence also holds uniformly.
Next, we show uniform consistency. Consider a collection of closed balls By (87(7)) of radius M and

center 4Y(7), and let Biar(7) = BY(7) + Sar(7) - v(7), where v(7) is a direction vector with unity norm
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[lo(7)|l = 1 and 0as(7) is a positive scalar such that dps(7) > M. Then uniformly in 7 € T,

(M 531(7)) - (@ (7. Burt(7).7) — @ (1. B25),3)) S Qo (72 By (7),7) — @ (72 B2().5)
Y QB () 70) — Q (7 BT)70) + 0p(1) = ear + 0p(1)

for some € > 0, where (1) follows by convexity in 3 for 8f,,(7) the point of the boundary of By (8Y(7))
on the line connecting (1a/(7) and BY(7); (2) follows by the uniform convergence established above and
7 =70 = 0,(1); and (3) follows because 3{(7) is the unique minimizer of @ (7, 8Y(7), o) uniformly in 7 € 7,
by convexity and Assumption D6. Hence for any M > 0, the minimizer El() must be in the radius-M ball
centered at 8Y(7) uniformly for all 7 € 7, with probability approaching 1.

Step 2: Asymptotic Gaussianity of y/n (31() - 5?())

First, by the computational properties of 31(-), for all 7 € T (cf. Theorem 3.3 in Koenker and Bassett
(1978)) we have that

|

Note that F [||Xi||2+€:| < 00, € > 0, implies sup ||x;|| = 0,(n'/?) because P (sup |Ix;]| > \/ﬁ> <nP(|xi] > vn) <
i<n i<n

P, (wf <y - x’31(7)> x1(g < ?)) H <d- Sup x| /n.

nFE [||x,;\\2+5}/n(2+5)/2 = o(1). Hence uniformly in 7 € 7,

ViR, (6 (v = xBi(n) x1(a £ 3)) = 0,(1). (11)

Second, (7, 81,7) — G, (V- (y — x'B1)) x1(q < 7)) is stochastic equicontinuous over 7 x B x I, where B
is any compact set, with respect to the Lo(P) pseudo-metric

JEL,---,

p (7, 81,7, (7, 81,7))" = ax B Wr/ (y—xB)x;1(q <v') — e (y = X'B1) x;1(q < 7))

for j =1,--- ,d indexing the components of x. Note that the functional class {¢, (y — x'81) x1(¢ < 7),7T €
7,61 € B,y €T} is formed as (7 — F)xQ, where F = {1(y <x'$1),61 € B} and Q = {1(¢ <),y €T}
is a VC subgraph class and hence a bounded Donsker class. Hence (7 — F) is also bounded Donsker and
(T — F)xQ is, therefore, Donsker with a square-integrable envelope 2 - maxjei ... 4|%x;| by Theorem 2.10.6
in van der Vaart and Wellner (1996). Stochastic equicontinuity then is part of being Donsker.

Third, by stochastic equicontinuity of (7, 81,7) — Gy, (¥, (y —x'31)) x1(g < 7)) we have that

G (vr (v = xBr(r)) x1(a £ 7)) = Gu (e (y = X'B(7))) X1 < 70)) + 0(1) in €2 (T),  (12)

which follows from sup, Hﬁl (1) — B?(T)H = 0,(1), ¥ — 70 = 0p(1), and resulting convergence with respect

~

2
to the pseudo-metric sup,c7 p ((T’, 1(7'),?) (7, ﬁ?(r),fyo)) = 0p(1). The last result is immediate from

sub, ez p (7 B(7). 1), (1, 1(7), 1) < €+ (sup,er I181(7) = Bu(D) 7+ + 17/ =) by the Holder’s in-

. L1\ 1/2 e/(2(24¢)) are]) 2/ (24e) . )
equality, where C' can take (f~ (E [||x|| D ) . (E {||x|| ED +2f,sup E [||x|| ’q = ’y},
yeEN,

f is the a.s. upper bound on f(y|z,q), and N, is a neighborhood of ~o.
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Furthermore, the following expansion is valid uniformly in 7 € 7

B (y =% 80) x1a < )]lg, _5,(r) 1oy = [=1(7) + 0p(D)] (Bi(7) = BY(7)) + 0p(n %), (13)

Indeed, by Taylor expansion,

E [wT (y - X/ﬁl))) Xl(q < ’y)”ﬂlzﬁl(r),'y:ﬁ = -k [fy‘ziq (X/bl (T)|$,q) XX/l(q < ’YO)] |b1 (m7)=B5(7) (B\l (T) - Blo(T))
B [ir (g — X' B xla =] Fo)]. .. G=10).

where 8§ (7) is on the line connecting By (1) and BY(7) for each 7 and can be different for each row of the Jaco-
bian matrix, and v* is between 7 and yo. E [ fyjz.q (x'b1(7)|z, ¢) xx'1(g < 70 ]|b1(T =B (7) = Ji(1)+0,(1) by
the uniform consistency of Bl (1), and the assumed uniform continuity and boundedness of the mapping y —
f (ylz, q), uniformly for ¢ <o and = € X. E [ (y —x'87(7)))) xlg = 7] fo(1)]._. (F = 70) = 0if v* < 50
and is Oy (|| 87 () — B3 (7)|| (F = 70)) if v > 70. In whatever case, E [¢r (y — x'BY(7)))) xla = 7] fo()|,_,. G =) =
Op([18nll ) = 0p(n=1/2).
Fourth, we have that

0p(1) = [(=h(7) + 0,(1) Vi (Bi(r) = A1) | + G (0 (y = XBUN) xUa < 0)),  (14)

because the left-hand side of (11)) is equal to the left-hand side of n'/2(13)) plus the left-hand side of .
Therefore, using the mineig[J1(7)] > A; > 0 uniformly in 7 € T,

sup |G (1 (y = X B0(7) %14 < 70)) + (V]| = (VA +0p(1) -supv/ [ (Bi) = 8 | (15)

where for a matrix A, mineig[A] denotes the minimum eigenvalue of A.

Fifth, the mapping 7 ~— A37(7) is continuous by the implicit function theorem and stated assump-
tions. In fact, because 5Y(7) solves E[(7 — 1 (y < x'B1)) 1(q < 70)] = 0, dB{(7)/dr = J1(7) 1 E[x]. Hence
7 Gy (¥ (y —x'B8Y(7))) x1(q < 70)) is stochastic equicontinuous over 7 for the pseudo-metric given by

p(r,7)=p ((T’, B?(T’),'yo) , (7’, BY(7), 'yo)). Stochastic equicontinuity of 7 — G, (@DT (y — X’B?(T))) x1(g < ’yo))
and a multivariate central limit theorem imply that

Gn (¢ (y —x'BY(-)) x1(q < 70)) ~ Z1() in £ (T), (16)
where Z1(+) is a Gaussian process with covariance function ¥ (-, -) specified in the statement of T heorem 3.
Therefore, the left-hand side of 1' is Op(n_l/z) implying Supf H ([31 )H =
Finally, the latter fact and (14)-(16) imply that in £ (T )

IOV (Bi() = BYC)) = G (& (y = X'BY)) X1{a < 20)) + 0p(1) = Za ()

The proof for the weak limit of Bg () does not rely on whether §,, is fixed or shrinking, so can be applied to
both cases.

At last, we prove the asymptotic independence among 7, Bl() and BQ() From Lemma 5, n(¥ — ) has
the same asymptotic distribution as arg mvin Dry,(v). From the above proof, J1(-)v/n (Bl() - ﬁ?()) has the
same weak limit as G,, (¢. (y — x'8Y("))) x1(qg < v)), and Jo(-)y/n (32() - 58()) has the same weak limit
as G, (¢ (y — X’BS(-))) x1(q > 'yo)). We only prove the result for a pair of fixed v; and v, and fixed 7, and
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7o, or the Cramér-Wold device can be used. Define
_ (%1 _ V2
S1i = Z11il (’Yo to<as ’Yo) , Soi = Zaril (’70 <q <7+ ;) )

Ssi = —=tr, (y—x'BY(11))) x1(g < ) = f33za Su; = %1/%2 (y —x'BI(12))) x1(g > 7o) = %54%

1
Vn
where v; < 0 and v > 0. Since

exp {\/ —1t1811} =1 + 1 ("Y() + % < q; S ’Yo) [eXp {\/ _1t1§1Ti} — 1] s
exp {\/ 71152821'} = 1 + ]. (")/0 < q; § "}/0 —+ %) [exp {\/ *1t2§2Ti} — 1] 5

it follows

E [exp {\/jl tlSli + thgq; + 1%531' + t£154i]}]
=F [exp {Ft34834z/f}] - *fq ’Yo [exp {ﬁté4834¢/\/ﬁ} [exp {\/jltlflTi} — 1} ’ qi = ’YO]

+ 2 fq Y0) E [exp {V—1thys34i/v/n} [exp {V=1t2Zari} — 1]| ¢ = 70] + <i)

= 1 + % 7%15%42(7’1, Tg)tg4 — fq (’}/0) U1 (E [ [exp {\/jltlflTi}] | q; = ’)/0] — 1)

+ fq (0) vz (B [ [exp {V=1toZari}] | ai = 70] — 1) + 0 (Tll) ,

where tzq = (t5,t,)', s34i = (4;,5);), 0(1) in the first equality is a quantity going to zero uniformly over
i=1,---,n from Assumption D4, the last equality is from the Taylor expansion of exp {v/—1th,s34;/v/n},

and
2(7'1, Tg) =F [8341‘S§4i] = diag{El(ﬁ, 7'1)7 22(7'2,7'2)} .

So

E

exp {\/—71 [tl ZSM + 9 Zszi + t4 2532‘ + ty 25’41'] }
i=1 =1 i1 i1

= H E [exp {V—=1[t151; + t252; + t553; + t3.S4]}]
i=1

1 1
— exp {—Qtézl(nml)tg — §t’422(72, T2)t)

— fe () v1 (E [[exp {V=1t1Z11 }] | ¢s = 7] — 1)
+fq (v0) vz (E [ [exp {V—1t2Zori }]| @i = 0] — 1)} -

As a result, 7, Bl (1) and 32 (12) are asymptotically independent.
In the case with shrinking threshold effects, n(y¥ — 79) has the same asymptotic distribution as argmin
v

Cryn(v) from Lemma 6. Redefine

Z(s XU, 617}1) 1 ('71)1 <¢ < ’YO SZZ = Z(S Xz"/}n 627-”) 1 ('70 <@g < 71}2) ,
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where 7, = 7o + v/a,. Then

E [exp {\/ —1[t151; + t2S9; + téS&' + t£154i]}]

1 T T
§t§2t:12t’:1(7—t ATy — 147 )01, B [%iX(1 (o, < 65 < 70)] 6/

1 T T 11 1
,tgzt_lzt/_l(n ATy — 7T )0 B [xixi1 (0 < @i < Yoo )] O — - 2t342(71,72)t34 +o0 (n)
g, Sy
=1- fq 70) |tzzt 1Zt/ ) (e N TtTt/)—Hg”HE [(xixilai = 7o) 7“(; "H

fq (’YO o~ T Sin e — Ot'n L ! 1
2n U2t22t:12t’:1(7—t A Ty — TtTtl)mE [szi|q2 = ’}/0} m — %t342(7_1, 7—2)t34 4+ o0 ﬁ s

SO

E

eXP{\/i1 [tlzsli JFtQZS% thézse,i thﬁlzszu] }]

= H E [exp {\/ -1 [t151i + t9.59; + t/353i + tiS@}}]

i=1
_ 1 'y / 1 / /
= exp —2t3 1(71, 1)t — 2t422(r2,7'2)t4

fq '70 2 m - Orn
|t Zt 1Zt’ 1 Tt /\Tt’ Tt Ty )”5 ||E [XZ ‘ql - ’70] ||5n||

fe(0) o Ot / Or'n
JarT07 ¢ A Ty — N E|xx;|q; = s 1 1).
5 (o) 2Zt:12t’:1(7-t Ty — TiTy) 5, [xix;]gi = 0] [0 } +o(1)

As a result, 3, B1(71) and () are asymptotically independent. m
Proof of Corollary 4. Take J;(7) as an example. Recall that J; (1) = 1 Xn: (yZ - x’zﬁl (7‘)) x;ix:1(q; < 7).
We will show that -

J1(7) = J1(7) = 0p(1) uniformly in 7 € 7.

Note that hyJi(7) = P, [f,-(B} (1),7, hl)}, where f;(8,7,h) = K #) x;x%;1(q; < 7). For any compact
set B, I" and positive constant H, the functional class {f;(8,v,h),8 € B,y € I,y € (0, H]} is a Donsker class
with a square-integrable envelope by Theorem 2.10.6 in van der Vaart and Wellner (1996), because this is a

product of a square-integrable random matrix x;x; (recall £ [HXH } < 00 by assumption) and two VC classes

{K (W ,B€B,he (o,H]} (see Example 2.10 of Pakes and Pollard (1989)) and {1 (¢ <), € I'}.
Therefore, (3,7,h) — Gy, [fi(8,7, h)] converges to a Gaussian process in £>° (B x I" x (0, H]), which implies
that supse g rer e (0. | Pn [fi(B,7, B)] — E [fi(B,7, h)]|| = Op(n~'/2). Letting B be the parameter space of
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Bu(7), this implies sup, e || Pu [£i(By (7),3,h)] = B 18,7 h)lls_5, (1) s | = On(n™1/?). Hence,

sup [ 7:(r) = 1| = sup || -2 [7:Br (7)., )] — 1 7)
T€T T€T 1
1 =~ ~
< sup th (P [£B: ().5 )] = BU D)5y ) ‘
1
#sup [ (B85 1)1 — BB 005,00 |
+ sup hiE [fi(ﬁ,'yo,hl)]’ =S| =0y (n_l/thl) + 0,(1),
TeT 1 B=p1(7)

where the 0,(1) in the last equality is from two facts:

hIIE [fi(5777h1)”5231( =F |:XiX;1 (Qi S ’7) /K(u)fym,q(xglg + uh|xzan)du:|

= B=B1 (1) 1=7

=F [xixgl (¢;: < ’yg)/K(u)fy‘w,q(xgﬁ + uhl|z;, qi)du]

. +0P(1)7
B=p1(T)

and

= (7) +o0p(1)
B=P1(T)

h;lE[fi(ﬁ’V(]ahl)]‘[g:ﬁl(T) =K |:XiX;1 (Qi < A/(])/K(u)fyz,q(xgﬂ"FUhxia‘]i)du]

by the assumptions on K(-) and f(y|z,q); see (A.55) in Pagan and Ullah (1999). By nh? — oo, the result
follows. m
Proof of Theorem 5. This proof is based on T},(7,7); the proof for T}, (v,7) is easier.

First, 8 (7) is uniformly consistent to Sy (7) for 7 € 7. The proof is similar to Appendix A.1.1 of Angrist
et al. (2006). Given Assumption T1, we need only show that Q,, (7, 8) = P, [pr (v — x'B) — pr (y — X' Bo(7))]
converges to Qo (7,8) = Epr (Y —x'8) — pr (e;)] which is uniquely minimized at So(7), where ¥ =
x'Bo(7) + e,. For this purpose, we need only to show that

Qn (TaIB) - Pn [p‘r (Y - X/B) — Pr (6-,—)] =0p (1)
uniformly over (7, 3) € T x B. Note that

1Qn (1, 8) = Pu[pr (Y = %'B) — pr (e7)]] < 3n_1/28up xjc (1) 1(gi <o) = op (1),

i<n

given that E[||x||*] < 0o, and ¢ (7) is uniformly bounded on 7 € 7.

o~ ~

~ 2 ~ ~ /
Second, ™t S0 o (i = xiB(7))” (xi(1) = T(3,7) T (7)1 ) (xi(7) = T(7.7)T (7)1 ) converges to
H (v, 7) uniformly in (,~) € 7 x . From the proof of Corollary 4, J(v,7) and .J(7) are uniformly consistent
to J(v,7) and J(7), respectively, so we need only to show that n=1 > | g; (7, T, B\(’T) converges to H(~, )

uniformly, where

9i (1,7, 8) = @7 (i — Xi8)* (x:(7) = J(7, 7)J (1) 71%;) (3i(y) — S (7, 7) (1) X))

It is easy to verify that {g; (v, 7,8), (7, 8,7) € T x BxT'} is Donsker, and hence a Glivenko-Cantelli class, e.g.,
using Theorem 2.10.6 in van der Vaart and Wellner (1996). This implies that P,[g; (v, 7, 58)]—E[g; (7,7, 8)] =
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0p(1) uniformly in (7,8,7) € T x B x I'. This latter and continuity of E|g; (v, 7, 8)] in (7, 3,7), combined
with the uniformly consistency of 3 () and the definition of y;, imply the result.

Third, n=Y/2 Y0y [xiy) = T, 1) T() 7] o (i = %08 (7)) ~ S, 1)+ [T, 1) (7)1 (0,7) = T (37 A0, 7)) € (7)
in £°(7 xT).

% i;Xi(’Y)‘PT (yz - X;B(ﬂ) =G, (Xi(’y)soT (y2 — x;B(ﬂ)) +vn Exi(7)er (yi — xgﬁ)”ﬁ:ﬁ(‘r) )

By Assumption T2 and stochastic equlcontmulty f (1,8,7) — G, (x(7)er (y —x'B))), the first term on
the right hand side G, ( () er ( ifxzﬂ( ))) Gn (xi(7)er (€7i)) + 0p(1) in £°(7 x I'). By Taylor
expansion, the second term

v E [xi()er (i — xiBs—er)
=VnE [Xz‘(v)w (Xéﬁo(T) + 07 2xi(70) e (7) + eri — X8 )] ‘5:%)
= J(y,7)Vn (B(T) —Bo (T)) = J(y Ao, 7)e () 4 0p(1).

From the proof of Corollary 4, J (v,7) and J (1) are uniformly consistent to J(v,7) and J(7), respectively,
=)

~ ~ 1 & —~
J ,TJT_lf XiPr i—x;ﬁT
SR DY or (i —xB (7))
= (T, )0+ 0p(1) { G (k05 (e42)) = T (0, 7)e (1) + (Vi (B (7) = o (7)) + 0,(1)}
= J(v,7)J(T) G, (xi0r (€ri)) + T (v, T)Vn (B(T) — Bo (T)) — J(y,7)J(T) " T (0, T)e (T) + 0,(1)

in £°(7 x T'). As a result,

2y i) = T, )T ] o (v - xB ()
= Yn (Xi<’7)LPT (e-ri)) - J(V? T)J(T)_lGn (Xi@‘r (e'ri)) - [J<’7 A Yo, T) - J(’Ya T)J(T)_l‘](ryOv T)] c (T) )

where G,, (x;(7)pr (e:)) — J (v, 7)J (1) 1G,, (x50 (er:)) converges weakly to S(vy,7) in £>°(7 xI'). =

~

Proof of Theorem 6. First, conditional on the original sample path, n= /23" | [xi (v) = j(% T) (T)*lxl} or(yi—

x,0 (1))&; is a zero-mean Gaussian process with covariance function

Hy((y1,71), (72, 72))

=n"! isﬂn (yl - X;B(Tl)) P (yi - XQB(Tz)) (Xi(%) — J(y1,71) A(Tl)_lxi) (xz'(w) — J(72,72) A(Tz)_lxi)/-

Extending the second step in the proof of Theorem 5, we have H,,((v1,71), (Y2,72)) — H((71,71), (Y2,72))
uniformly over (71, 72,71,72) € 7 x 7 x I' x I'. Second, also by the second step in the proof of Theorem 5,

~ 2 ~ ~ ~ ~ l
n S e (= xB ) (ki) = T )T (0)x) (xa() = T ) T(r) xi) o Hy,7) wniformly
over (1,7) € T x T. In summary, 17 (v,7) ~> H(v,7)"Y25(y,7) = T°(v,7) in £>°(T x T), where ~> signifies

the weak convergence in probability. m
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Appendix B: Lemmas
Lemma 1 Under Assumption D, [ 0.
Proof. Theorem 2.1 of Newey and McFadden (1994) is used in this proof. The objective function is

n(7:B1) = Zzpn yi — %P1 (1) Wai <) —xiBa (1) Lai > 7)) -

zltl

It is convenient to consider the recentered version of @, (v, 8r):

Sn(lyaﬁT) = Qn(’y,ﬁT) - Qn(’yOaﬁg’)

We need only show that sup |S, (v, ) — S(7, fr)| = 0, where
0co

S(v,Br) = ZtT:l Epr, (yi — xif1 () Lai < ) + %382 (1) Lai > 7)) — pr, (€17, (a5 < 0) + €27, 1(ai > 70))]

is continuous in # and is uniquely minimized at 6.
Step 1: sup |Sn (v, Br) — S(7, Br)| 2, 0. We apply Lemma 2.8 of Pakes and Pollard (1989) to prove this
0cO

result. So we need to check the class of functions {ZtT=1 pr, (Y —x'B1 (1) Lg <) —x'Ba (1) 1(qg > 7)), 0 € @}
is Euclidean with an envelope that has a finite first moment.
Z; o7, (y = x'B1 (1) Lg < 7) + X'B2 (7¢) L > 7)) = pr, (€17, 1(q < 70) + €27, 1(¢ > 70))]
=1g<0AN Y, o (ern + X80 (1) = By (1)) — pr (e17,)]
T2 >7VA0) Y, [ (er + X8 (1) = xB2 (7)) — pr, (e21,)]
F1 A <090 Y [on (ean + X80 () =X B2 (7)) — pr, (e1r,)]
T

+1(70<q<7\/70)z
T

- [pr, (€27, +X'83 (1) = X'B1 (1)) = pr, (€27,)]

ATt Wth‘e Z Tt W27’t|9 +Z CTt W17t|0 +Z DTt WQTt‘H)

t=1

where wyr = (egr, %) {1(¢ <y A7),v €T} is Euclidean with envelope 1 by Lemma 2.4 of Pakes and
Pollard (1989). Zle[th (e1r, +x'BY (1) — x.B1 (11)) — pr, (€17,)] is Lipschitz by the following arguments:

S on (ern X80 () =X By () =0, o (e1m, X80 () =X (7)) < 2% 3, B () = B ()

where E[||x]|] < oo by Assumption D7. By Lemma 2.13 of Pakes and Pollard (1989), {3/, [o-, (e1r, +
x'8Y (1) — xiB1 (1)) — pr, (€17,)], 81 (7e) € B,t = 1,---T} is Euclidean with the envelope C'[|x|. So
{Zthl A, (Wir|0),v € T, 61, € B,t = 1,---T} is Euclidean with envelope C ||x|| by Lemma 2.14 (ii)
of Pakes and Pollard (1989). We can show other terms are Euclidean by similar arguments.

Step 2: S(v,Br) is continuous in € and is uniquely maximized at 6y. This continuity of S(v,Sr) is
obvious given that f(g) is bounded on I'. To show S(v, 87) is uniquely minimized at 6y, we consider four

cases. (i) v = 0, Br # B%. From standard arguments in quantile regression, Assumption D6 guarantees
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that S(vo, Br) is uniquely minimized at 8%. (i) v # 7o (say v < %), Br = 3.

Yo

S(v,8%) — S(v0, B7) =/ [ZtT_l /E [pr, (e1r, + X' B (1) = X'BY (11)) — pr, (e1r,) |2, 4] dF(xq)} fla)dq.

Assumptions D2 and D6 guarantee that ZtT:I [ E [pr(e1r, + X' BY (1) = X'B3 (1)) — pr, (e17,) |2, q] dF (z]q)
is strictly greater than zero. Given that f(q) is greater than zero on T, S(v, %) — S(70,8%) > 0 if v # 7.
(iii) v > Y0, Br # BY, Bir = B or v < yo, Br # BY, Bar = BYp. Take the former case as an example,

ol
S(V7ﬂT) - 5(7075’(1)“) Z /

{Zil /E [Prt (em +x'8Y (1) — x' B3 (Tt)) — pr, (e17,) |, q] dF(:c|q)} f(q)dg.

Given Assumptions D2, D4 and D6, S(v, Br) — S(70,8%) > 0if v > . (iv) ¥ > Y0, Bir # B9 or v < 7o,
Bor # V7. Similar arguments as in Case (i) lead to S(v, Br) — S(70,5%) > 0. =

Remark 2 This proof cannot be extend to the objective function \Tl'| [ Qrn (0) dr with & = (7', 3" (-))". This

is because B() can be any discontinuous function on T such that the parameter space for 5 (-) is not compact.
If we impose some smoothness assumptions on [3(-), it is quite possible to prove the consistency of ¥ under

such an objective function. However, this is not how 7 is defined.

Lemma 2 Under Assumptions D1-D7 and ||6,]] — 0, /n||6,] — oo, Bor — By = 0p(16,1]), and 7 — o =
op(1).

Proof. We use the notations in the last lemma to prove this result. Consider the case of v > vy without
loss of generality because of symmetry. By Step 1 of the last lemma, and ||d,|| — O,

sup |Sn(% 6T> - 5(77 ﬂT)l L} 07
0co

where S(7, fr) is redefined as

T

b [Zt—l [or, (€17, +X'BY () =X'B1 (12)) = pr, (€17,)] Lg < 70)}
+E {Zj_l [pr, (€2r, +X'BY (1) — X'Ba (1)) — pr, (€27,)] 1 (g > fy)]
E {Zu [or. (e2r, +X'BY () = X' By (12)) — pr, (€27,)] 1 (0 < ¢ < 7)} '

From Assumption D6, S(v,Br) is uniquely minimized at 8% for any v € T, so by Theorem 2.1 of Newey
and McFadden (1994), B is consistent for any v € I'. However, S(v,Br) is not uniquely minimized at 6.
For example, S(7y,3%) = 0 for any v € I. To prove the consistency of ¥, the normalization in Q. (7, 3r)
should be a,! rather than n~!. We denote the objective function still as Q, (7, 3r). Also, without loss of

generality, the parameter space can be restricted as {H Br — B%H <e € F} for a small positive number e.
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Write Qn (v, fr) as

Qn (v, Br) (17)

n T

i Z Z P, elﬂz + x; 51 (Tt) X;Bl (Tt)) — P (ethi)] 1(qi < ’YO)
=1 t=1
T

+ ai ZZ (o7, (e2ri + X183 (1) — Xi B2 (71)) — pr, (e27,0)] 1 (qi > )
=1 t=1
1 nl tT

+ - ZZ Py 627‘tl +x; ﬁQ (Tt) X;ﬁl (Tt)) — Pt (eQTti)] 1 (70 < ¢ < PY)
i=1 t=1
T1(0) and T»(0) can be similarly analyzed, so take T1(6) as an example. From Knight (1998),

P (ethi + X;ﬁ? (Tt) - X;ﬁl (Tt)) — Pr (61‘,—”‘)

(B1(0)—B7 (1))
= ¢r, (e17,0) X (B1 (1) — B (7)) +/0 (Le1ni < 8) — 1(e1r: < 0))ds.

Note that .
n71 ZZ%% elnz X, I(QZ < ’YO) Op(n71/2)7
i=1 t=1
and
n T (ﬁl(Tt) /61(7'1))
13y / (1esns < 5) = erni < 0))dsl(a: < 70)
i=1i=1.Jo
T
2
= tzl Op ( B (m) = BY (1)) Tr, (B (72) — BY (Tt))) =0p (||51T - B9z || )
uniformly for ||Bir — 80| < €, where J;,, t = 1,---, T, is positive definite from Assumption D6. As a
result,

T1(0) = Op(n™"?||Brr — B% || /6480) + Op(||Brr — BYr||” /6460)s

and the second part of T3 () dominates on HﬁlT — 6?TH > M ||, for any M > 0 given that n'/? |5, || — oc.
So for any M > 0, we can find a constant Cj; > 0 such that

P inf Ti(0) > Cur | — 1.
|| Bz =807 || =M |16,

Similar results apply to T5(6). As to T5(6), by a similar analysis as in T7(6), we can show
_ 2
TB(Q) = Op(” 1/2 ||61T - ﬁgTH /5;l5n) + Op(HBlT - BSTH /(S;L(Sn)

uniformly for ||Bi — BY7|| < €, and y—yo > €. |[|8Y — BI|| — [|Bir — BY||| < ||Brr — B3 || < ||Brr — B ||+
HB?T — ﬁgTH. Given that HB?T — ﬁgTH = ||6,||, for any M > 0, H,31T — ﬂgTH is either O(||,,]]) or o(||0,]])
when |17 — BY7|| = M ||8,]]. In the former case, for any € > 0 and M > 0, we can find a constant Cjze > 0

such that with probability approaching 1, inf T5(0) > Chye; in the later case, T5(0) is
1B =B || =M 1|5, ||, vo+e<y<7

dominated by T7(6) or T(0).
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The above arguments can be applied to v < 79, so in summary, for any € > 0 and M > 0, we can find a
constant Cjs. > 0 such that

inf Qn(’)/yﬂT) > CME - 17
|Ber =897 ||=M]|6n I, |7 =70 | =€

which implies the results of interest. m
Lemma 3 Under Assumption D, n (3 — o) = Op(1), and /n (Br — B3) = Op(1).

Proof. This proof uses Corollary 3.2.6 of van der Vaart and Wellner (1996). First define A,, B,, C, and
D, as in Lemma 1.

First, Q (0) — Q (6o) > Cd? (6, 6,), where Q (0) is the probability limit of Qy(0), d (6,60) = ||Br — BY|| +
\/W for § € N with N being an open neighborhood of 6.

Q(0) — Q (6)
O S By Wir 10) + Br, (o [6) + Coy (wir,[6) + Do, (wzr,[6)]

DS B{(pn (err +5 (8 () = By (7)) — pr (1)) 1 (0 < 7 A70)]
3 B [(or, (< (83 () — 2 (7)) + e2r,) — pr, (20)) 1a > 7V 70)]
+Zt B [(pr, (e1r, +% (8 () = B2 (7)) = pr (€12,)) 10y A0 < 4 < %0)]
+Zt:1E[(pn (e2r, +x (B3 (1) = B (1)) = pr, (e27,)) (70 < 7 <7V 0)]

T /

> thl (61 (1) — BY (1 )

E[fe,,,ja.q(0z, )xx'1 (¢ < v Ao)] (Br (1) — BY (7))
E feg.r,f|x q O|w7Q)XX 1 (q > \% 70))] (ﬂ ( t) - 68 (Tt))

)
)
)) Elfer,, 1200z, )xx'1 (v Ao < g < 70)] (B2 (1) — BY (7))
)

!

52 Tt
»31 )

!

+ Zt:l (ﬁl T¢) 62 ) El feznlx q (O], q)XX L(vo <g<7vV)l (ﬂ (1) — ﬁg (Tt))

2 {0, 1800 = 8 P + 180 () = B (I] + by = vl = C? 0,60,

where (1) and (2) are straightforward, and (3) is from the convexity of E [p,, (-)]. The first part of (4) is
from Assumptions D4 and D6, and the second part is from Assumptions D2, D4, D5 and D6.

Second, E | sup |G, (m (w|0) —m (w|y))|
d(0,00)<5

is a VC subgraph class. This is because

< C6 for any sufficiently small §. {A, (wy.|0) : d(6,00) < d}

A (wi-10) = [p- (617 +X’ (BY (1) = B1 (7)) — pr (e17)] L(g <7 A o)
7 [(err + %' (B) (7 (T))) Ly > x'B1 (1)) — e 1(y > x'BY (7))] (g < v A o)
+ (T - 1) [(err + ¥ (ﬂl (1) = B1 (7)) Wy <X'B1 (7)) — err1(y < XY (7))] g < v A o),

where {x’ (80 () — 81 (7)) : d(0,60) < 6} is VC subgraph from Example 2.9 of Pakes and Pollard (1989),
and {1(¢ <y A7) :d(0,00) <}, {L(y>x'B1(7)):d(0,0p) <0} and {1(y < x'B1 (7)) :d(0,0p) < 6} are
VC subgraph from Lemma 2.4 of Pakes and Pollard (1989), so by Lemma 2.4(i) and (ii) of Pakes and Pollard
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(1989), {Zthl A, (Wir,]0) - d(0,6p) < 5} is VC subgraph with the envelope

1(g < 7 A0) x| d(f’E%ZtTl 169 () — B2 (m).

Similarty, {21, Br, (war, 10) : d.(0,600) < 6}, {20, Co, (wir,[60) = d(6,00) < 8} and {20, D, (war,10) : d.(0,60) < 6 ]
are VC subgraph with the envelope

T
0
1(g > 7 V) x| d(@sjé?)’<5zt:1 185 (72) = B2 (7).,

T
0
1y Ao < 4 < 70) ] d(9§&§<6zt:1 187 () = B2 (72)]|
T
0
170 < a <7V 0) ] d(@fgdztﬂ 185 () = 61 (7o)

respectively, so by Lemma 2.4(i) of Pakes and Pollard (1989), {m (w|0) —m (w|fy) : d (0,6p) < 6} is VC
subgraph with the envelope

F=|x| sup Zil {1(qg <y Av0) ||BY () = Br (7)|| + 1(g > 7V 70) |89 (72) — Bz ()|
(0,00) <8 <=

+1(y A0 < q<70) |80 (1) = B2 (7o) || + 1 (h0 < ¢ <7V y0) ||83 (1) — B (10)]|} -

From Theorem 2.14.2 of van der Vaart and Wellner (1996),

E| sup |G, (m(w|d)—m(w|h))|| < CVPF2.

d(6,09)<é

By Assumptions D2 and D4, VPF? < C§. So ¢ (8) = ¢ in Corollary 3.2.6 of van der Vaart and Wellner
(1996) and 6/6“ is decreasing for all 1 < a < 2. Since 72¢ (%) = 1, V/nd (5— 90) = Op (1). By the
definition of d, the result follows. m

Lemma 4 Under Assumptions D1-D7 and ||8,|| — 0, /i ||, — 00, an (F — 70) = Op(1), and /n (Br — BY) =
Op(1).

Proof. Since 4,, depends on n, Corollary 3.2.6 of van der Vaart and Wellner (1996) cannot be used.
Nevertheless, we can apply the proof idea of Theorem 3.2.5 in van der Vaart and Wellner (1996) to prove
this result. Define d,, (0, 6y) = max {v/n (|8 — Bol| , an |7 — 70|} for 8 in a neighborhood of fy. For each n, the
parameter space (minus the point 6y) can be partitioned into the "shells" S, ,, = {9 1271 <d,, (0,6p) < 2j}

with j ranging over the integers. Given an integer J,

P (d (8.00) >27) < > P (9 inf (Qu(6) — Qu(0) < 0) (18)

sz’||ﬂT769“H<Ml|5n”7|’Y*WO\<n n

+ P (2]|Br = B2 = MI6a]l 2]y — v0l =),

where @, (0) is defined in , and M and 7 are small positive numbers. The second term on the right hand

side of converges to zero as n — oo for every > 0 and M > 0 by the Lemma 2, so we can concentrate
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on the first term.

P, inf (@ul) - Qulon)) 0)

<P ( sup |Qn(0) — Qn(fo) = E[Qn(0) — Qu(bo)]| 2 inf |E[Qn(0) — Qn(9o)]|>

0€S;) n €9j,n

3
<zp<sup T (6) — E[Te 0)]] > , in E[Tkw)])
1

P 0€S; ) 9€S).n

/ it E[TL )]

where the last equality is from Markov’s inequality, and Ty (0), k = 1,2, 3, is defined in ([17)).
From Lemma 2, it is not hard to see that for k = 1,2, . irslf |E [Ty (0)]] > 022;_2, and . igf |E[T5(0)]] >
€5j.n " €S5jn

IA
w ||

E
k=1

sup [Ty (0) — E [T (0)]]
0€S; n

C " given that Byp — BYr = 0p(||0n]]). From the last lemma, for k = 1,2,

J j
<2V _ o2

E =(C—.
Vdhs,

sup T (0) — E [T} (0)]]
0€S; 0

As to T3 (), applying a maximal inequality (e.g., Theorem 2.14.2 of van der Vaart and Wellner (1996)) we

can show that

V0.2 [ay _ 29/
922?71\3() [3()“ <C \/ﬁ&ﬁn —Can
In summary,
Z P <esup (Qn (8) — Qn (00)) > 0)

32| Br—B% || <M16n 1,7 =0l <n

2i/2 /) 9i-1 2] 2272
<r(&/ o/ g )

j>J

which can be made arbitrarily small by letting J large enough. m

Lemma 5 Under Assumption D, uniformly for h = (u,v)’ in any compact set of R24T+1,

: ﬁ%+\}%m+”) —m(~|ﬁ%mo)>

n T / n T !
uln u27't
= Prs <61‘rti - ) Prs (elnz):| 1(% < 'VO + |:th <62th - ) Prs (62Tti):| 1(% > 'VO)
2 [ i )2 . '

=1 t=

I _ /
where up = (ullﬁ T ’ull‘rT7u/2~rlv e ’U/QTT) = (ullTa U/2T) € RQdT} and
" v
D Ez ( + <q < )+§§ -1( <q < +7>.
Tn r 1T1 Yo i =Y et 2T Yo qi =Y n
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Proof. Note that
npP, (m (

89+ f,’)’() + - ) m (- |ﬁ%mo)>
n T
= 22: > {pn (elnz - 7; ) Pre (elni)] g <A+ %)

<
3

4
MH i

r m v
_pn <62m’ - % ) Pr (ezm)} 1 (q >+ =V 70)
/

[ U’QTt v
_Pn <€1m' +x;8) (¢) — xi89 (12) — \/ﬁxz> — Pry (elm)} 1 (’Yo + - <g; < 70)

@
Il
_
~
Il
—

I
]~

s
Il
—
o~
Il
o

i
M=

@
Il
-
~
Il
-

- /
Lo o ', ( v)
T Tt i - X; - T Tii 1 <q¢ < N E
_p . <62 +x; 05 (17¢) — %37 (7¢) \/ﬁ ) pr, (€2 )} % <@ <+

so we need to show fort =1,---,T,

NIE

[pn (eth’L - ulixz) — Pry ethl ] 1 ql < 7o A "0 + )
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where (1) is from the Lipschitzity of p-(-), (2) is from Assumption D7 which implies sup,<,, ||x;|| = o,(n'/?),
and (3) is from Assumption D4. Similarly,

i: [,07 (eQTi - :L//Q%XJ —pr (€2n‘)} (1 (Qi >0 + % \/70> — g > “Yo)) = op(1),

i=1

op(1),

I

ul v
o (cams 4088 (1) = X008 1) = 2 ) (evrs + X080 () = x5 )] 1 (0 + 2 < 5 = 20)
1

(2

I

o (cars 45088 (1) = X000 ) = Bz ) = (ears+ X8 () = X () 1 (0 < e 04 2) = o,

i=1

Lemma 6 Under Assumptions D1-D7 and ||6,| — 0, v/n||dn] — oo, uniformly for h = (u%,v) in any
u v

compact set of R24T+1,
e e ) o)

nh (m ( Nl
n T u/ n T u/
1T 27
= pr, | €1ri — —=Xi | — pr, (e1m)} 1(gi <) + [Pn <€2m' - —= Xz‘) = pr, (€2m)} 1(gi > 7o)
3% [ (e - ) >3 o

=1 t=

where ur is defined in the last lemma, and
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We need only to show the last two terms have an approximation of Cr, (v). Given that ||0,| — 0 and
V|6, — 00, uer, //n can be neglected. Now, from Knight (1998),

Py (617'ti + X;ﬁ(l) (Tt) - X;ﬁg (Tt)) — P (ethi)

—x,'iém
= 4, (€1r01) Blpi + / (L(erri < 5) — L(erns < 0)) ds,
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so the first term matches the first term of Cr,, (v). As to the second term, note that

ZZ/ (L(e1ri < 8) — 1leini <0))dsl (v +v/an < gi < Y0)

has a mean

fq(’VO)‘Sgin
2 2 onl

Oin
E [fer,, 1. 0lz, 9)xx'|q = 0] m +o(1),
t=1 n

and the deviation from the mean is uniformly small. m
Lemma 7 Under Assumption D, Dy, (v) ~ Dy (v) on any compact set of v.

Proof. This proof includes two parts: (i) the finite-dimensional limit distributions of D, (v) are the same
as specified in the theorem; (ii) the process D, (v) is stochastically equicontinuous.

Part (i): This is a direct corollary of the asymptotic limit of the characteristic function in the proof of
Theorem 3, so omitted here to avoid repetition.

Part (ii): Without loss of generality, we prove the result only for v > 0. Suppose 0 < v; < v are stopping
times in a compact set; then for any € > 0,

\vg—v1|<5 \vQ—v1|<5

/e@ cs,

where (1) is obvious, (2) is from Markov’s inequality, and C'in (3) can take f, sup  E[|Zaril| g = 7] < o0
Yo<v<7v0+e

1) n )
Vi ( sup  |Dry(v2) — Drp(v1)] > 6) <P (Z [Zoril - sup 1(vo+% <q <+ %2)> €>
=1

(2 n
< Y E|[Zoril sup 1(y+ %2 <q¢<v+%2)
i=1 |ve—v1]<d

from Assumptions D4 and D7. =

Lemma 8 Under Assumptions D1-D7 and ||6,| — 0, v/n||0,]] — o0, Dy (v) ~ Cr (v) on any compact set
of v, where
CT(’U) _ \/maTwl(_”) + wﬂ-lT |U‘ y va < 07
VI Go)orWa(v) + B9 mor o], if v >0

where mer = lim  mery, /006,, and 0% = lim 02, /5.6,.
n—o0 n—oo

Proof. Note that Dr, has the same weak limit as Cr,, by Lemma 6. By similar arguments as in the last
lemma, we need only check the stochastic equicontinuity of Dy, (v). Without loss of generality, we prove the
result only for v > 0. Suppose v; < vy are positive numbers in a compact set; then for any € > 0,

n

1)
P ( sup  |Drn(v2) — Dpp(v1)| > e) <P (Z |Zori| - sup 1 ('yo +t <@ <+ :f:) > e)

|[vg—v1|<d i=1 |vg —v1|<8

/-

) ’ 2 _ 2y @) 2
< Cndyd, vz = vi| B [l lai = 70] fo(10)/ (ane®) & C Jos = va] /€2,

(2) n
SZE |§2Ti|2 sup 1(70+%<Qi§70+%>

i=1 [vg—v1|<8

where (1) is obvious, (2) is from Markov’s inequality, (3) is from the Lipschitz continuity of p., (+), t =
1,---,T, and (4) is from Assumptions D4 and D7. m
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Supplementary Materials

1. Asymptotics When ¢ is the Only Covariate

In this section, we discuss the validity of Assumption D8 in the simple threshold regression with ¢ being the

only covariate. Suppose the population model is
y=pP1lg <) +e, qNU[071]ﬂeNN(O71)7 (19)

where e is independent of ¢, By = 1 and 79 = 0.5. To simplify notations, denote the pdf and cdf of e as f(+)
and F'(-), respectively. We first consider the asymptotic distribution of 4. From Theorem 1,

n(ﬁ‘r - '70) i) argmuin D.,—(’U),

where
Ni(Jv]) Ni(|v]) B .
2= 2 e+ ol = e + (21 = 1) o, if v < 0;
_ i=1 i=
DT(’U) - Na(v) N2(v)1

> 2=y el = Bo| —|ef| — (27— 1) By, if v > 0.
i=1 i=1

1=

Here {e;-, ef,i=1,- Ni(-), Ng(-)} are independent of each other, e_; and e follow the same distribu-
tion as e; — & with & = F~1(7), and Ny (-) and N (-) are standard Poisson processes. This asymptotic
distribution is also valid in a little more general model, y = (1,¢)811(q¢ <)+ (1,¢)B21(¢ > 7v) + e. We need

only redefine By = (1,70)(8 — 53).

1.1. Distributions of z;, and zo,

We now check the distributions of z1,; and zs,;. First, the distribution of z1,; when 8 = By is the same as

that of zo,; when 8 = —fg, so we need only consider the case of 5y > 0.

2(7 — 1) o, if e; < —PBo;

21ri = 2760 + 26,;, if —pBy< [ <0
27 o, if e, > 0;
and
2(1 —7)Bo, if e, <0;
zori =1 2(1—7)Bo —2ef,, if0<el, <Py
—27’50, if ejl- > ﬁo;

have bounded supports. So the distribution of zq,; is

0, if t <2(7 —1)Bo;
< _ ieg _ .

Plm<n={ Dla=t BtO)’ e =20 - D
Pei <&+ 45—7h), if2(r—1)8y <t < 27f;
1, if t > 2780;

with the density
P(e; <& — fo), if t = 2(7 — 1)fo;
fa, @) =19 3f(&+5—760), if2(r—1)8p <t<27f;

Pe;>&)=1—71, ift=270;

46



z1r:T7=0.1 2177 =0.25 217 :T7=0.5 217 T =0.75 21 :7=0.9

0.9
0.75

0.61
0.5

0.37
0.16 02 H
: 01

0]
-1.8 0.2 2 -15 05 2 -2-1 01 2 -2 -05 15 -2 -02 18

Density

217 21T 217 21r 21T
2o :T7=0.1 z9r : 7=0.25 200 :T7=0.5 Zor :T7=0.75 29 :7=0.9
0.9
0.75
2061
g 05
a 0.37
0.25 H 016
0.1 :
Q 0 0.05
-2

0 0.01
-0.2 18 -2 -05 15 -2-1 01 2 -15 05 2 -18 0.2 2
227 227 227 227 227

Figure 4: Densities of z1, and zo, for Different 7’s

and the distribution of z9,; is

0, if t < —=270p;

Plaai <ty = Dl= &), = 2
Ple;>& —Lt+(1—7)B), if =278y <t<2(1—7)B;
1, if t > 2(1 —7)Bo;

with the density
P(€i>§7—+50), ift:—27'ﬂ();
fmq— (t) = %f (f‘r - % + (1 - T)ﬁo) , if =278y <t < 2(1 - T)BO;

Pe;<&)=m, if t =2(1—71)Bp.

Note that there are two point masses in the distributions of z1, and z2,, so Assumption D8 does not hold.
For different 7’s, the distances between the two point masses are the same: 25y. The differences are the
locations and magnitudes of the point masses. The distributions of z1,; and zs,; are shown in Figure
From Figure ] z1,; has a different distribution from zo,; unless 7 = 0.5. The distributions of z1, and 23,
are not symmetric even if the distribution of e is symmetric and when 7 = 0.5. When e is symmetric, the

distribution of 21, is the same as zy(;_,) but different from z;(;_;).

1.2. Distributions of z;7 and zor

2o = Zthl Zer,. Given that the distribution of z;;, has two point masses which are at different locations
for different 74’s, we expect the distribution of zyr to have 2T point masses. To avoid the arbitrariness in
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the selection of 74, we consider the limit case as T — oo. In this limit case,

ETIHI;TZ% 7] / i

where 7441 — 7 = |T| /T, T = [1,7], and |T| =7 — 7 is the length of 7.
Based on the distributions of zy, and zs,, we can derive the distributions of z; and z5. Note that the

distributions of zy, for different 7’s are correlated, and the only randomness is from e. As a result,
Pl <t =P ([ lle-&+ml-le-&l+@2r-1mbdr<IT]t).

Note that as e < & — Sy, the integrand equals 2(7 — 1)58p; as & — B < e < &, the integrand equals
27680 + 2 (e — &;); as e > &, the integrand equals 273;. So we can divide the domain of e into five areas:
e <& —Poér —Po<e<LEnE <e< &G —Po, & — Bo <e <& and e > &, and the integrations for e on
the five areas are

fT (1 — 1)Bodr = B [’7’ —T —2(7’—7’)],

JEC 200 + 2 (e — )] dr + [1 o gy 2(7 — 1)fodr
= 8o (F e+ Bo) = 2) +2e(Fle+Bo) — 1) = 2 [T ) erdr 4 8y [72 = F e+ Bo)’ = 2(7 = F (e + By))]
=By (?2 — 7'2) —2(te +7Bo) + 2F (e + Bo) (Bo + €) — 2ff(6+50) &rdr,

JE D 2 odr + [R5 [27-,60+2(e—§T )] dr + f;(e% 2(7 — 1)Bodr
= By (F(e+ Bo)® = 12) +2¢ (F (e + fo) = F () = 2 [ ™™ &edr + By [72 = F (e + o)’ = 2(7 = F (e + )|
— o (72— 12) — 2(cF (¢) + o) + 2 (e + Bo) (Bo+ ) — 2 [ ¢ ar,

f (e) QTﬁodT—i—fF( ) 2780 4+ 2 (e — &) dT = By (’T —T ) +2¢e(T— F(e)) — 2f;(e) &-dr,

f,[ 27 BodT = By (T — 72)

respectively, where the integration on the third area degenerates to
/ 2780 + 2 (e — &)] dm = B (?2 —12) +2¢e(T—1) 72/ &dr
T T

if & — Bo < & It is easy to see that 2, has a point mass F (& — o) at fo [7> — 72 —2(F—1)] /|7| and a
point mass 1—7 at Gy (?2 — 12) /17|, and is continuously distributed on other area as a complicated function
of e. Similarly, we can get the five areas for zo and the integrations on these areas. It is easy to see that zy
has a point mass 7 at —f3q [?2 -r2-2(7 - z)] /17| and a point mass 1 — F(& + o) at —f (?2 — 12) /171,
and is continuously distributed on other area. For both z; and z3, the point masses go to zero when 7 goes
to zero and T goes to 1.

Figure [5| shows the distributions of z; and zo when 7 = [0.1,0.9] based on 100000 simulated draws of e.
It seems that z; and z> has the same distribution. Compared with z,,, z; has less point masses and more
density on the positive axis, which implies that 7 is more efficient than 7,.. To compare with the MLE, we
also impose the densities of z; and 25 in the MLE on Figure 5] Since the MLE is maximizing the objective
function while the IQTRE is minimizing the objective function, the densities of z; and 25 associated with
the MLE in Figure [p| are actually the densities of —2z; and —z5 in the MLE. Note also that the MLE is the
same as the LSE in this simple case, so —z; and —z, in the MLE are the same as z; and zy in the LSE.
From Figure [f] the distributions of z; and 22 in the MLE are more spreading than those in the IQTRE.
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Figure 5: Comparison of the Densities of z; and z3 in the IQTRE and MLE

2. Conditions to Guarantee the Uniqueness of arg min D(v)
v

From the above discussion, either z, or z; has two point masses in their distribution when ¢ is the only
covariate, so argmin D(v) may not be unique in this case. To simplify notations, we discuss the uniqueness
v

of argmin D(v) for a generic compound Poisson process
v

Ni(|v])
>z, if v <0
D) =1 N
Z Zo;, if v > 0.
i=1

We first show that when the distribution of 2z, is absolutely continuous, argmin D(v) is unique. Note
v
that

P(E) = P(D(v) has at least two minimums)

=P K L’
> z1;= ) z9; for some K =1,2,---, and L=1,2,---
i=1 i=1

K L K L
Sz =Y 214, D 22 =y 29; for some K =0,1,--- ,L.=0,1,2,---, and K # L,
i=1 i=1 i=1 =1

=P(E1UEy,UE3),
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where

L
Elz{ZzliZOforsomeK:L---,L:l,2,~-~,andK§L},

L
Egz{E:z%:0f0rsomeK:1,---7L:1,27~-~,andK<L}7

K L
E3{ZZM Zz for some K =1,2--- andLl,Q’...}.

i=1 i=1
A sufficient condition for this probability being zero is that the probabilities of all three events are zero.

When the distribution of zy; is absolutely continuous, the distribution of i z¢; is absolutely continuous
for any K = 1,2,---,L = 1,2,---, and K < L, so either of these threelief\(/ents are union of countable
zero-probability events and has probability zero.

If zy; has discrete components in its distribution, a sufficient condition for P (E) = 0 is more messy. Let’s
start from easier cases. Suppose first that z, has only one discrete component, say, dy. For E; and Fj,
unless dy = 0, their probabilities are zero. dy = 0 is the relevant case in bootstrapping threshold regression,
see Yu (2013a). As to E3, we require Kdy # Lds for any K =1,2--- and L = 1,2,---, that is, d1/d2 # r
for r being any positive rational number. This obviously excludes the case that both d; and dy are rationals.

In summary, a sufficient condition for P(E) = 0 when zy; has only one discrete component is that
dy # 0 and dy /dy # r for r being any positive rational number.

Now, suppose zy; has two discrete components, say, dék), k = 1,2. This case is relevant in the simple example
above and in regression discontinuity designs with unknown discontinuity points (see footnote 35 of Porter
and Yu (2011)). For E; and Es, we require Adgl) + Bdf) # 0 for any A,B =0,1,--- and both A and B
are not zero. This is equivalent to dék) #0, k=1,2 and dgl)/ df) # r for r being any negative rational
number. For E3, we require Kdgk) #* Ldél) forany K =1,2---, L =1,2,---, k=1,2, and [ = 1,2, which
is equivalent to dgk) =+ ’I“dél) for r being any positive rational number, £ = 1,2, and [ = 1,2. In summary, a
sufficient condition for P(F) = 0 when zp; has two discrete components is that

dék) #0, dl(gl)/df) # r for r being any negative rational number,
dgk)/dél) # r for r being any positive rational number, k = 1,2 and [ = 1, 2.
For the IQTRE and all setups in Figure[d] this condition does not hold. It is quite possible to derive general

conditions to guarantee P (E) = 0 following the logic above, but we do not delve into it here. Nevertheless,

we mention that arg max, S;(v) in Theorem 6.1 of Lee and Seo (2008) is not unique.

3. Symmetry of the Distribution of argmin D, (v)

In this section, we briefly discuss the symmetry of Z, when x may include other nonconstant covariates,
where Z, = argmin D, (v). Suppose x does not include ¢; otherwise, the effect of ¢ in z4, is absorbed in
v

the constant term as zy; is defined as the conditional distribution given ¢ = 9. When ¢ is independent of

(:I:lv efT)/a
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217 = Z1r = |e1r + X (Bio — B20)| — lerr| + (27 — 1) X" (B10 — B20)
Zor = Zar = |ear — X' (B10 — B20)| — |ea-] — (27 — 1) X" (B10 — B20) -

Define x’ (810 — f20) as ¢, and suppose the joint distribution of (z’, ey, )" is continuous; then the distribution

of z1, is

P(217-<t)
_P(61T+C>0€1T>0C<t)+P(elT+<>0617<0617’§7_TC)
+ P (e + ggo,eh>o,e17_(7—1)4—7)+P(617 ¢<0,e1, <0,¢> 5 71))

(QP(—61T<(<2L,617>0)+P( e1r < ¢ <ok — 92 ey, <0)
+P 71T1+2( <C<*€17,€17>0)+P(( )§C§*€1n617§0>,
)

(%

=" P (e, >Inax{fC,0},§ <L)+ P(—(<e, <min{0,L —7(})
+ P (max {0,(r —1){ — £} <e1, < () +P(€17— < min {0, —C},¢ > ﬁ)’

and the distribution of zs, is

P (2, <)
:P(€27——<>0,617—>0,C2—%)+P(€QT—<>O,€27—<OEQTSL—FTC)
+P(€27*<§0,€2r>0,€272*(T*1)C*%)+P(627 <<0827<OC<2(1 T))
(;)P(*L<C<€2r,€27>0)+P(%*L<C<627-,627-<0)
+P(627<C< 4 ot T),e27>0)+P(eQT<g< ),eQTSO).
(**)P(engmm{O (}.¢< 3 ))+P(max{0 (1-7)¢—1} <esr <)
+P (¢ < ezr < min 0,§+TC})+P(egT>maX{0,(},C2—%),

To simplify these distributions, suppose e = es, = e, in the following discussion.

From Appendix D of Yu (2012), Z, is symmetric if and only if P (21, <t) = P (22, <) for all ¢. From
(%), if {|e; is symmetric about zero, then P (21, <t) = P (22, <t). From (xx), if e,|( is symmetric about
zero, then P (21, <t)=P (22(177) < t); especially, P (21,05 <t) = P (22,05 < t). If we further assume that
¢ is independent of e, then (|e, and e;|¢ can be replaced by ¢ and e,, respectively. Based on these facts, we
can understand the distributions in Figure[d For 7 # 0.5, since ( is a point mass at 3 # 0, the distributions
of z1, and zo, can not be the same. When 7 = 0.5, since ep 5 follows N(0,1) which is symmetric, the
distributions of z;, and 29, are the same.

Bai (1995) claims when x includes a constant, symmetry of Zg 5 requires the symmetry of eg5. This is

not right. For example, suppose x = (1,¢)" where ¢ follows N(— gi; gi; B ,822) 5); then ¢ = (811 — Bo1) +

(B12 — B22) € which follows N(0,1). From the above analysis, P (21, <t) = P (z2, <t), which guarantees

the symmetry of Zj 5.

4. Construction of the SEBE of v and the NPI

The following algorithm is adapted from Yu (2008).

Step 1: Get the IQTRE of v (), the LADE of g8 (ﬁ 5), and the corresponding residuals {€;}}_; in model
(Z)-
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Step 2: Get a uniformly consistent estimator of the joint density of (eg, z’, q)’, fe(es, z, q), based on {€;, z;,¢; } 1,
by kernel smoothing, and denote the estimator as fy(eg, x, q).

Step 3: Define the SEBE of « as

sz = argmin | L(t =) Eu()7 (7)d.
r

where 1,,(t —v) = l(n(t — 7)) is the loss function of 7, 7 () is the prior of v, e.g., 7 () can be the

uniform distribution on (gmin, gmax) With ¢min (¢max) being the minimum (maximum) of {¢;};_,, and

n
~

1T [J?l (yz - X 5175%%) Hai <7v)+ fo (yi _X{L‘B%xiaqi) g > 7)}

i=1

= il%<71nfl< 7X617x17q2>+i1(ql>7)lnf2( X527$17QZ>}

1 =1

= exp {En ('y)}
is the estimated likelihood function.

Step 4: Based on a MCMC algorithm, draw a Markov chain

S = (Wm, . ,7<B>)

whose marginal density is approximately the posterior distribution

exp {La() } 7 (7)
Jrexo {3} = () &5

~

() =

Then Ysgp is the mean of S when [(v) = v? and Ysgp is the median of S when [(v) = |v|. Also, the
100(1 — @)% NPI of v can be constructed by picking out the a/2 and 1 — /2 quantile of S.

In the SEB procedure above, a key step is to estimate the likelihood function. For the simulation study

in Section 6, we use the following algorithm.

Step 1: Obtain 7, and the associated Eg,o_s. Then the residuals €105, = y;i — X;EL()_E; when ¢; < 7 and

o~ /A o~
2,05, = ¥i — X,[2,0.5 when ¢; > 7.

Step 2: Since e 0.5, = 0¢ (e; — £o.5), estimate 020 by

n _ 2 n

= X1, (Bross—Bi0s) 1a <) [ 1 10 <9,
n

agzzi (6205’_6205 %>7/Z g > 7).

where €105 = > i1 €1,05:1(¢: <7)/ iy L(g <7), and €205 = >y €20.5:1(¢ > 7))/ iy g >

~

7)-
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Step 3: Get empirical counterparts of e; — &g 5,

€ —&os =€1,05,/01 if ¢; <7,

€ — o5 = €2,0.5,:/02 if ¢; > 7.
Step 4: Estimate the density of e; — &y.5 by kernel smoothing based on €; — & 5 and denote the estimator
as fe(')'
Step 5: The estimated likelihood is

~ N B 1~ [y — 'B.
Luoy =11 [alfe <yxﬁl05> g <)+ 5,7 (z;;%) (g > 7)] :

el
i=1 1 2

In kernel smoothing of Step 4, we use the Mablab function kde.m provided in Botev et al. (2010).
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