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Abstract

This paper puts forward a uni�ed framework for asymptotically optimal tests in parametric models

and applies the new theory to two tests. The �rst test is a classical test in locally asymptotically normal

(LAN) models, but the assumptions are weakened and a lacuna in the literature is �lled. The second test

concerns the location of the threshold point. The main result here is that the optimal test in the weighted

average power sense is based on the posterior odds which depends on the prior on the local parameter

space and is not unique. Furthermore, the likelihood ratio test is not asymptotically equivalent to the

posterior odds and there is a discrete component in its asymptotic distribution. Since the asymptotic

distribution of the posterior odds is not pivotal to the true value under the null hypothesis, a parametric

bootstrap is used to �nd asymptotic critical values. The results in the second test are very di¤erent from

those in classical LAN models.
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1 Introduction

Optimal testing is part of classical statistical theory and has important applications throughout econometrics.

In the frequentist literature, the Neyman-Pearson lemma is the cornerstone for considering optimality, but

only applies for simple hypotheses. When the hypotheses are composite, the weighted average power (WAP)

criterion is often used. For example, Andrews and Ploberger (1994) consider parametric optimal tests using

WAP when a nuisance parameter is present only under the alternative. In the Bayes literature, Bayes

factors are the usual choice for testing. It is well known that Bayes factors have some optimality properties.

For example, Je¤reys (1961) shows the Bayes factor minimizes the sum of the Type I and Type II error

probabilities averaged over the prior.

It is standard to apply the decision theory to the testing problem in �nite samples; see, e.g., Section 8.1

of Chamberlain (2007). But the decision theory is not applied to optimal testing in large samples yet. This

paper tries to �nd the optimal tests in the asymptotic WAP sense by using the decision theory framework.

Such a uni�ed framework is given in Section 2. This framework is very powerful. It helps us to sort out the

key problems we need to answer when we try to �nd a test with the maximum WAP. The basic result is

that the posterior odds procedure is optimal in the WAP sense as long as it is asymptotically pivotal to the

local parameters under the null hypothesis.

There is considerable literature related to the topic discussed in this paper. Andrews (1994) builds the

large sample correspondence between classical hypothesis tests and Bayesian posterior odds tests in locally

asymptotically normal (LAN) models, but no optimality results are covered. See also his Section 7 for

the interaction of frequentist and Bayesian literature in hypothesis testing. Andrews and Ploberger (1994)

discuss optimal tests when a nuisance parameter can not be identi�ed under the null, but their Theorem

2 actually claims that the optimal tests there have the smallest weighted average type I and type II error

probabilities, not the maximum WAP. A classical test in LAN models is reconsidered in Section 3, but the

assumptions are weakened and the lacuna in Andrews and Ploberger (1994) is �lled.

A more interesting test about the location of the threshold point in threshold regression is discussed in

Section 4. The threshold regression model is speci�ed as

y =

(
x0�1 + �1e;

x0�2 + �2e;

q � 
;
q > 
:

(1)

where q is the threshold variable used to split the sample, x 2 R`, � � (�01; �02)0 2 R2` and � � (�1; �2)0 are
threshold parameters on mean and variance in the two regimes, E[ejx; q] = 0, E[e2] = 1 is a normalization
of the error variance and adopts conditional heteroskedasticity, and all the other variables are understood

as in the linear regression framework. In the parametric model, the density of e conditional on (x; q) is

fejx;q (ejx; q; �), � 2 Rd� is some nuisance parameter a¤ecting the shape of this error distribution only, the
joint distribution of (x; q) is fx;q (x; q), the marginal density of q is fq (q), and the unknown parameter is

� =
�

; �01; �

0
2; �1; �2; �

0�0 � (
; �). Threshold regression models of the type (1) have many applications in

economics; see the introduction of Yu (2007) or Lee and Seo (2008) for a summary.

The hypotheses of interest are
H0 : 
 = 
0;

H1 : 
 6= 
0:
(2)

This test is never considered independently although it appears as an intermediate step in the con�dence

interval construction literature such as Hansen (2000). The optimal tests depend on the weighting scheme

used, so are not unique and depend on user preferences. Furthermore, the likelihood ratio test is not
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asymptotically equivalent to the posterior odds as in the usual LAN model discussed in Andrews (1994),

and there is a discrete component in its asymptotic distribution. So the results in this test are very di¤erent

from those in classical LAN models. Since the asymptotic distribution of the posterior odds test is not

pivotal to the true value under H0, a parametric bootstrap procedure is used to �nd critical values. Section

5 concludes, and all assumptions, proofs, lemmas and algorithms are given in Appendices A, B, C and D,

respectively.

Before closing this introduction, it should be pointed out that the framework is essentially frequentist.

Decision theory is used to attack the optimal testing problem and some Bayes procedures are used in deriving

the test. But the randomness is con�ned to the data and does not include parameters. Throughout the paper,

the data are assumed to be randomly sampled to simplify the theory, but the central ideas and methods of

the paper may readily be applied to more general data generating processes. A word on notation: the letter

c is used as a generic positive constant, which need not be the same in each occurrence, e� is pi (more usually
�); and

�0 ; h0 signify weak convergence under �0 and h0 respectively. The code for �gures and tables is

available at

http://homes.eco.auckland.ac.nz/pyu013/research.html

2 A Uni�ed Framework for Asymptotically Optimal Tests

Suppose the model under consideration is P� with density f (�j�) for some � 2 �, where � � Rk is the
parameter space, and �0 is uniquely identi�ed in the interior of �. The dataWn = (w1; � � � ; wn) are randomly
sampled with support W � RK . This section seeks to provide a uni�ed framework for the following testing
problem:

H0 : � 2 �0;
H1 : � 2 �1;

where �1 = �c0. This problem is formulated in a decision framework. The actions are to accept H0 (d = 0)

or to reject H0 (d = 1). A conventional loss function is

L (�; d) =

8>>><>>>:
0;

b;

1;

0;

if � 2 �0; d = 0;
if � 2 �0; d = 1;
if � 2 �1; d = 0;
if � 2 �1; d = 1;

where b � 0 re�ects the importance of the type I error relative to the type II error and will be speci�ed

below.

2.1 Weighted Average Power Envelope

In the frequentist literature, much of the focus centers on the power function on the local parameter space

instead of the original parameter space. This is because the power generally converges to 1 for any �xed

� 2 �1; which makes the optimal testing problem trivial.

Suppose the appropriate normalization rate for � is 'n which converges to zero as n goes to in�nity, then

the local parameter space is Hn = '�1n (�� �0), which converges to Rk as n gets large since �0 is in the
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interior of �.1 Instead of imposing a prior on �, we put a prior distribution �(h) on the local parameter

space Hn. This speci�cation is not new, e.g., Andrews (1994) and Andrews and Ploberger (1994) take

this perspective. For a �xed prior �(h), the corresponding prior �(�) on the original parameter space �

changes. If �(h) is the prior density on Hn, then the prior density on � is � (�) = '�1n �
�
'�1n (� � �0)

�
which

concentrates around �0 when n gets large. Here, there is some abuse of notation from using �(�) and �(�)
for the priors on � and Hn. Speci�caton of �(h) depends on user objectives. From the discussion below,

� (h) plays a similar role to the loss function in estimation problems.

When the null hypothesis is simple, �0 is known, and Hn is known, so a prior can be placed on Hn. But

when the null hypothesis is composite, part of �0 is unknown and Hn is partly unknown, so the prior can

not be placed on Hn.2 In this case, the optimal test can not be found for an arbitrary prior. For many

problems, however, the optimal test is invariant to the nuisance unknown part of �0 for some special class

of reasonable priors, as discussed in the examples below.

For the given prior �(h), the average (Bayes) risk for the decision d (Wn; �), abbreviated as dn, is

Bn (dn; �) =

Z
�

Z
Wn

L (�; dn) dP
n
� (Wn) d�(�)

=

Z
Hn

Z
Wn

L (�0 + 'nh; dn) dP
n
�0+'nh

(Wn) d�(�0 + 'nh)

= j'nj
Z
Hn

�Z
Wn

L (�0 + 'nh; dn) dP
n
h (Wn)

�
�(h)dh

= j'nj
Z
Wn

"Z
Hn

L (�0 + 'nh; dn)
nY
i=1

fh (wi)�(h)dh

#
dWn

where j'nj is the determinant of the matrix 'n, Ph = P�0+'nh, fh (�) is the density function corresponding
to Ph (�), and the last equality is from Fubini�s theorem. Since Bn (dn; �) will converge to zero when n goes

to in�nity, Bn (dn; �) will be used for j'nj
�1
Bn (dn; �) in the following discussion. Interestingly, the e¤ect

of the prior on the decision procedure does not disappear even asymptotically. This is basically because this

prior is imposed on the local parameter space, not on the original parameter space. When n gets larger, �(�)

actually concentrates around �0. If a �xed prior � (�) is used, then Bn (dn; �) will asymptotically only depend

on � (�0), not the whole function �(�).3 The question left is to �nd the best dn to minimize Bn (dn; �).
From the last equality in Bn (dn; �), the expected posterior loss can be minimized for eachWn to minimize

1The matrix 'n is selected by letting nH2
�
P�0 ; P�n

�
� 1, where H2 (P0; P1) � 1

2

R hp
p1(x)�

p
p2(x)

i2
d�(x) is the

Hellinger distance between P0 and P1 with pi the density of Pi with respect to any measure � dominating P0 and P1, �n =
�0 + 'nh for some �xed h, and nH

2
�
P�0 ; P�n

�
� 1 means nH2

�
P�0 ; P�n

�
=1 is equal to some constant c: See Section 13.1 of

Lehmann and Romano (2005) for more details about the selection of 'n. Usually, 'n is known from the estimation problem
and makes P�n contiguous with respect to P�0 . In the examples considered below, P�n is indeed contiguous with respect to
P�0 . But nH

2
�
P�0 ; P�n

�
� 1 is not equivalent to the contiguity between P�n and P�0 ; see Oosterho¤ and van Zwet (1979) for

a sharp result on the relationship between contiguity and the Hellinger distance.
2 In this paper, we assume �0 "uniquely" exists in the "interior" of �, so Hn can be potentially constructed although we do

not know it exactly when �0 is not completely speci�ed in H0. This assumption excludes partially identi�ed models and the
case where �0 is on the boundary of � which is considered, for example, in Andrews (2001).

3This relies on 'n ! 0 as n!1. If 'n = 1 for some part of the parameter � such as 
 in the speci�cation test of threshold
regression in Hansen (1996), the whole prior function on the original parameter space of that component of parameters (not
only � (�0)) matters. The parameters with 'n = 1 are essentially localized parameters.
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Bn (dn; �):Z
Hn

L (�0 + 'nh; dn)
nY
i=1

fh (wi)�(h)dh

= (1� dn)
Z
Hn

L (�0 + 'nh; 0)
nY
i=1

fh (wi)�(h)dh+ dn

 Z
Hn

L (�0 + 'nh; 1)
nY
i=1

fh (wi)�(h)dh

!

= (1� dn)
Z
H1n

nY
i=1

fh (wi)�(h)dh+ dn

"
b

Z
H0n

nY
i=1

fh (wi)�(h)dh

#

where H0n = '�1n (�0 � �0), and H1n = '�1n (�1 � �0). So

d (Wn; �) =

8><>:
1;

0;

0 or 1;

if PO (Wn; �) > b;

if PO (Wn; �) < b;

if PO (Wn; �) = b

where

PO (Wn; �) =

R
H1n

nQ
i=1

fh (wi)�(h)dhR
H0n

nQ
i=1

fh (wi)�(h)dh
=

R
H1n

Ln (�0 + 'nh)� (h) dhR
H0n

Ln (�0 + 'nh)� (h) dh
(3)

is the posterior odds which measures the ratio of the posterior probability of H1 and H0, and Ln (�) =
nQ
i=1

f (wij�) is the likelihood function.4

Under dn, the average risk Bn (dn; �) is

b

Z
H0n

Pnh (dn = 1)�(h)dh+

Z
H1n

(1� Pnh (dn = 1))�(h)dh;

which is the prior-weighted sum of type I and type II error probabilities. The Neyman-Pearson framework

of testing is actually to select a speci�c b such that

sup
h2H0n

Pnh (dn = 1) � �: (4)

If b can be selected such that Pnh (dn = 1) = � for all h 2 H0n, where � is the prespeci�ed signi�cance level,
then minimizing the average risk is equivalent to maximizing the WAP on H1n:

WAP (dn; �) =

Z
H1n

Pnh0 (dn = 1)� (h0) dh0.
5

Here, we use h0 instead of h to distinguish the alternative h and the h in the integral of PO (Wn; �). If a

uniformly most powerful (UMP) test exists, then it maximizes WAP for all choices of �. Usually, b is hard

to �nd for a �xed n, but can be selected when n goes to in�nity.6

4Ln (�) is the joint density of the data when treated as a function of Wn. In the following discussion, Ln (�) is used for both
the joint density and the likelihood function without introducing new notations to distinguish them.

5That � (h) = 0 for h 2 H0n will also make the �rst term in Bn (dn; �) a constant, but it will induce PO (Wn; �) = 1,
which will further induce rejection for all Wn and b and make the testing problem trivial. This is understandable. Since only
the type II error is taken care of by using this weighting scheme, rejection is always the best choice.

6There is another chance to make the �rst term of Bn (dn; �) vanish asymptotically: lim
n!1

sup
h2H0n

Pnh (dn = 1) = 0, but this

will make b go to 1; that is, there is no rejection.
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Note that the speci�cation of � is related to punishment arising from the type I error. As � gets smaller,

a larger b is required to satisfy (4), so punishment on the type I error gets more severe. Consequently,

Pnh0 (PO (Wn; �) > b) is smaller, and the type II error is larger, so there is a trade-o¤ between type I and

type II errors.

2.2 Likelihood Ratio Process

For any testing in large samples, we must provide asymptotic critical values and give out local powers besides

�nding a test statistic. In a parametric framework, these two questions can be answered by utilizing the

likelihood ratio process.

To �nd asymptotic critical values, notice that

PO (Wn; �) =

R
H1n

nQ
i=1

fh(wi)
f0(wi)

�(h)dhR
H0n

nQ
i=1

fh(wi)
f0(wi)

�(h)dh
=

R
H1n

Zn(h)�(h)dhR
H0n

Zn(h)�(h)dh

where Zn(�) is the likelihood ratio process. If Zn(�) weakly converges to Z1(�), the limit likelihood ratio
process, then by the continuous mapping theorem, PO (Wn; �) weakly converges toR

H11
Z1(h)�(h)dhR

H01
Z1(h)�(h)dh

� PO1 (�) ;

where H01 = lim
n!1

H0n and H11 = lim
n!1

H1n are usually subspaces, half subspaces or unions of them.7 Now,

the critical value b is determined by

P (PO1 (�) > b) = �:

To calculate power under the local parameter h0, we need the asymptotic distribution of Zn(h) under h0
instead of �0. Rewrite PO (Wn; �) as

PO (Wn; �; h0) =

R
H1n

nQ
i=1

fh(wi)
fh0 (wi)

�(h)dhR
H0n

nQ
i=1

fh(wi)
fh0 (wi)

�(h)dh
�
R
H1n

Zn(h; h0)�(h)dhR
H0n

Zn(h; h0)�(h)dh
;

which converges under h0 to

PO1 (�; h0) =

R
H11

Z1(h; h0)�(h)dhR
H01

Z1(h; h0)�(h)dh
(5)

by the continuous mapping theorem, where Z1(�; h0) is the limit likelihood ratio process under h0.8 Note
that PO1 (�) = PO1 (�; 0). Now, the local power at h0 2 H11 is

P1h0 (PO1 (�; h0) > b) ;

where P1h0 (�) is the asymptotic distribution under h0.
Come back to the discussion in the last subsection. If the distribution of PO1 (�) is pivotal to h 2 H01,

which is equivalent to PO1 (�; h0) not depending on h0 when h0 2 H01, then b can be found to maximize
7The notion of convergence of sets is used here, which is de�ned, for example, on page 101 of Van der Vaart (1998).
8From this form of the posterior odds, we need only know the conditional distribution of the data given weakly exogenous

variables.
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the WAP over H1n. In this case, the asymptotic WAP isZ
H11

P1h0 (PO1 (�; h0) > b)� (h0) dh0:

Usually, Z1(h; h0) is exponentially decaying at the tail of h, so PO1 (�; h0) is well de�ned as long as

�(h) has a polynomial majorant. But the power at h0 is usually greater than �, and converges to 1 when

jh0j goes to in�nity. To make the WAP a �nite number,
R
H11

� (h0) dh0 must be �nite. In other words,

� (h0) can be normalized as a density on H11. In the following discussion, we will focus on the case thatR
H01

� (h) dh =
R
H11

� (h) dh = 1.9

The Bayesian decision rule in Andrews (1994) is that the posterior odds is greater than 1. When we

assume
R
H01

� (h) dh =
R
H11

� (h) dh = 1, the posterior odds is equivalent to the Bayes factor statistic in

the Bayesian literature.10 Je¤reys (1961) provides critical values for the Bayes factor which can also apply

to the posterior odds. In the examples in Section 3 and 4, the performance of Je¤reys (1961)�s decision rule

is evaluated from a frequentist perspective.

2.3 Special Cases

There is a special case where b can be found even if n is �nite. In particular, the selection of b is possible

when the null hypothesis H0 is simple; that is, H0 : � = �0. In this case, H0n = f0g, a singleton, and H1n
converges to H11 = Rkn f0g. If �(h) is a density, then PO (Wn; �) always equals 1, and H0 is always
rejected. To make the problem nontrivial, assume there is a unit point mass at h = 0 and a density on

h 2 H1n.11 In other words, � is a mixture of a discrete component and a continuous component. This

makes testing di¤erent from estimation where a point mass in the prior is seldom assumed.12 Under this

assumption,

PO (Wn; �) =

Z
H1n

nY
i=1

fh (wi)

f0 (wi)
�(h)dh

=

Z
H1n

Zn(h)�(h)dh:

In �nite samples, b is selected such that Pn0
�R

H1n
Zn(h)�(h)dh > b

�
= �. In large samples, b is selected

such that P10
�R

Rknf0g Z1(h)�(h)dh > b
�
= �. The corresponding test statistic in practice is the integrated

likelihood ratio test statistic: Z
H1n

Ln (�0 + 'nh)

Ln (�0)
�(h)dh:

9This is equivalent to � = 1
2
in Andrews (1994).

10The key di¤erence between the Bayes factor statistic and posterior odds is that the posterior odds takes into account the prior

odds of H0 and H1. Since the Bayes factor BF =

R
�1

Ln(�)�(�jH1)d�R
�0

Ln(�)�(�jH0)d�
=

P (DatajH1)
P (DatajH0)

= Average L ikelihood Conditional on H1
Average L ikelihood Conditional on H0

=R
�1

Ln(�)�(�jH1)�(H1)d�R
�0

Ln(�)�(�jH0)�(H0)d�
=
�(H1)
�(H0)

=
PO(Wn;�)
�(H1)=�(H0)

= Posterior Odds
Prior Odds , only � (�jH1) and � (�jH0) appear in BF , which does not

depend on the prior beliefs concerning H0 and H1. So the extra information in the posterior odds beyond the Bayes factor is
the relative prior belief on H0 and H1. See Section 4.3.3 of Berger (1985) for an introduction to the Bayes Factor.
11 If �1 also includes only �nitely many points, then � is assumed to be discrete on H1n, but this is not the emphasis of this

paper.
12 In the estimation problem, �0 is unknown, so a prior can not be imposed on the localized parameter space. Also, �0 has the

same importance as any other point in � since any point in � can be the true value. But in the testing problem, the "point"
�0 has the same importance as the "set" �n f�0g since testing is a dichotomatic decision problem, so putting a point mass on
�0 is not unreasonable. In an AR(1) estimation problem, one might have a point and slab prior with mass point at unity and a
density over (�1; 1). A Bayesian could then update this prior based on sample data. But such a prior speci�cation is obviously
stimulated by unit root tests which make unity a special point.
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The power function becomes

P1h0

�Z
H11

Z1(h; h0)

Z1(0; h0)
�(h)dh > b

�
:

The cornerstone of testing in the frequentist literature is the Neyman-Pearson lemma, which is a special

case of the above argument. For a �xed h0, the prior �(h) is assumed to put unit point masses on 0 and

h0 and have no density elsewhere, then PO (Wn; �) reduces to the likelihood ratio Zn(h0) and Bn (dn; �)

reduces to b �+ 1�Powern(h0), where b is selected to guarantee the type I error to be �. So the likelihood
ratio test is equivalent to maximize Powern(h0) with the signi�cance level �. The asymptotic critical value

is determined by

P10 (Z1(h0) > b) = �,

and the asymptotic power is

P1h0

�
1

Z1(0; h0)
> b

�
:

In the literature (e.g., Andrews and Ploberger, 1994), H1 is formulated as a simple hypothesis when the

WAP criterion is used:

H1 :Wn �
Z
H1n

Ln (�0 + 'nh)�(h)dh.

When PO1 (�; h0) is pivotal to h0 2 H01, the Neyman-Pearson lemma can be used to �nd the optimal
test in the WAP sense, which is just PO (Wn; �). When PO1 (�; h0) is not pivotal to h0 2 H01, the WAP
maximizing test is typically found by the Neyman-Pearson test of

H0 :Wn �
Z
H0n

Ln (�0 + 'nh)�
0(h)dh

versus H1 above, where �0 is the least favorable distribution for h and is hard to identify in many problems;

see Section 3.8 of Lehmann and Romano (2005) for more discussion. Fortunately, the quantity PO1 (�; h0)

in the examples of Section 3 and 4 is pivotal to h0 2 H01. As mentioned in the introduction, Theorem 2 in

Andrews and Ploberger (1994) actually claims that their test has the smallest weighted average type I and

type II errors, not the maximum WAP. This is because the null hypothesis there is composite not simple as

they assumed when using the Neyman-Pearson Lemma. Fortunately, their test indeed maximizes the WAP

from the discussion in Section 3 below since it is pivotal to h0 2 H01.

2.4 Likelihood Ratio Tests

For completeness and comparison, we also report the asymptotic results for the general likelihood ratio test.

Usually, the test statistic

�n = 2 log
sup�2� Ln (�)

sup�2�0
Ln (�)

(6)

is used instead of e�n = sup�2�1
Ln (�)

sup�2�0
Ln (�)

:13

13�n = 2 log
�e�n _ 1� :
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De�ne

b�n;0 = arg max
�2�0

Ln (�) ;b�n = argmax
�2�

Ln (�) .

The asymptotic distribution of �n can be derived by a similar procedure as above. Note that

�n = 2 log
Ln

�b�n�
Ln

�b�n;0� = 2 log
suph2Hn

Ln(h)
Ln(0)

suph2H0n

Ln(h)
Ln(0)

= 2 log
suph2Hn

Zn(h)

suph2H0n
Zn(h)

�0 2 log
suph2H1 Z1(h)

suph2H01 Z1(h)
� �1

where Ln (h) =
nQ
i=1

fh (wi) is the local likelihood function. When H0 is simple,

�n = 2 log sup
h2Hn

Zn(h)
�0 2 log sup

h2H1

Z1(h):

An asymptotic critical value b is selected by

sup
h2H01

P1h (�1 > b) � �:

When H0 is simple, b is just selected by

P10 (�1 > b) = �:

The power calculation is also similar as above. For the alternative h0, rewrite �n as

�n (h0) = 2 log
suph2Hn

Ln(h)
Ln(h0)

suph2H0n

Ln(h)
Ln(h0)

= 2 log
suph2Hn

Zn(h; h0)

suph2H0n
Zn(h; h0)

h0 2 log
suph2H1 Z1(h; h0)

suph2H01 Z1(h; h0)
� �1 (h0) ;

so the power is

P1h0 (�1 (h0) > b) :

When H0 is simple,

�1 (h0) = 2 log sup
h2H1

Z1(h; h0)

Z1(0; h0)
:

Note that �1 = �1 (0) : Roughly speaking, the di¤erence between the likelihood ratio test statistic and

posterior odds is the substitution of an integral by a sup operator. The likelihood ratio test is Bahadur

e¢ cient as illustrated in Bahadur (1967).

In the discussion above, it is assumed that there is always a b such that the signi�cance level � can be

attained. This can happen if PO1 (�) and �1 are continuously distributed. Usually, the distribution of

PO1 (�) is continuous since PO (Wn; �) is an average, but this is not always true for �1. For example,

Cherno¤ (1954) showed that "if one tests whether � is on one side or the other of a smooth (k�1)-dimensional
surface in k-dimensional space and � lies on the surface, the asymptotic distribution of � (�n in this paper)

is that of a chance variable which is zero half the time and which behaves like �2 with one degree of freedom

the other half of the time". As we will show in Section 4, this also happens in the test on the location of

threshold point, although the reason for discreteness is di¤erent.

When there is a discrete component in the distribution of T1, where T1 is the asymptotic limit of some
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test statistic Tn, then there may not exist a b such that P10 (T1 > b) = � even in the simple H0 case.14 For

example, for a �xed �, it may happen that

P10 (T1 > b) < � and P10 (T1 � b) > �:

In this case, randomized tests are used, and the results above follow with minor modi�cation. A randomized

test is de�ned as

dn =

8><>:
1;

c;

0;

if Tn > b;

if Tn = b;

if Tn < b;

(7)

such that

E10 [d1] = P
1
0 (T1 > b) + cP10 (T1 = b) = �.

So

c =
�� P10 (T1 > b)

P10 (T1 = b)
2 (0; 1):

But En0 [dn] does not necessarily converge to �. Furthermore, the power under h0 does not necessarily

converge to

E1h0 [d1] = P
1
h0 (T1 (h0) > b) + cP

1
h0 (T1 (h0) = b) ;

where T1 (h0) follows the asymptotic distribution of Tn under h0 such as �1 (h0) above.

2.5 Summary

The most important element in the above discussion is the likelihood ratio process Zn(h; h0). This is

not a coincidence, since Zn(h; h0) includes all relevant information about the parameters. The asymptotic

representation theorem in Van der Vaart (1991) makes this more clear.15 The theory of limits of experiments

introduced by Le Cam (1972) and detailed in Van der Vaart (1996) underlies most of the optimality discussion,

and this paper is not an exception. See the examples in Section 3 and 4 to appreciate more about the power

of Le Cam�s theory. In both examples, the basic idea is the same. First, �nd the optimal test in the limit

experiment. Second, match the optimal test in �nite samples.

The above arguments for optimality are summarized in the following Theorem 1. To make the state-

ment of the theorem easier, we will simplify the testing structure discussed above although it can be easily

extended to a more general framework. This simpli�ed structure will be used in the examples below. Such

a simplication also appears in Andrews (1994) and Choi, Hall and Schick (1996). Suppose a reparame-

trization of � =
�
#0; � 0

�0
makes H0 : # = #0 and H1 : # 6= #0, where # 2 Rr. Assume further that

H1 � lim
n!1

'�1n

�
��

�
#00; �

0�0� = Rk does not depend on �, then H01 = 0 � Rk is a k dimensional space,
andH11 = Rrn f0g�Rk, where k = k�r. Denote the local parameters at (#; �) as (h#; h�) and h = (h#0 ; h�).

De�nition 1 A test dn is of asymptotic level � 2 (0; 1) at � if

lim
n!1

E(0;h�) [dn] � � for every h� 2 Rk;

where E(0;h�) [�] is the expectation under the local parameter h = (0; h�) :
14 In the composite null hypothesis case, there may not exist b such that suph2H01 P1h (T1 > b) = �.
15 In an estimation problem, only Zn(h) is relevant, but the theory of limits of experiments requires the convergence of

Zn(h; h0). The power calculation above makes up this gap.
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As mentioned in Choi, Hall and Schick (1996), this de�nition plays the role of a restriction to regular

estimates in estimation theory.

De�nition 2 A test dn is asymptotically �-averaged most powerful of level � at �, written in short form

as AAMP(�; �; �), if

lim
n!1

Z
H1n

Eh0 [�n]� (h0) dh0 � lim
n!1

Z
H1n

Eh0 [dn]� (h0) dh0 (8)

for every other asymptotic level � test �n at �. A test is AAMP(�; �) if it is AAMP(�; �; �) for every

nuisance parameter �.

De�nition 3 Two tests are asymptotically equivalent, or simply equivalent, if their di¤erence converges to
0 in probability under both H0 and H1.

Now, we state the theorem with high-level assumptions. The checking of these assumptions will be

illustrated in the examples of Section 3 and 4.

Theorem 1 If there is a test statistic Tn such that

(i) Tn � PO (Wn; �; h0)
p�! 0 under any h0 2 H1, or they are equivalent;

(ii) PO (Wn; �; h0)
h0 

R
H11

Z1(h;h0)�(h)dhR
H01

Z1(h;h0)�(h)dh
� PO1 (�; h0), which has a continuous distribution, for any

h0 2 H1, where Z1(�; h0) is the limit likelihood ratio process under h0;

(iii) PO1 (�; h0) is pivotal to h0 2 H01;

Then dn de�ned by 1 (Tn > b) is AAMP(�; �; �), where b satis�es

P10 (PO1 (�) > b) = �

with PO1 (�) the common distribution of PO1 (�; h0) under h0 2 H01. If PO1 (�; h0) is pivotal to both
h0 2 H01 and � in (iii), then dn is AAMP(�; �). Furthermore,

Enh0 [dn]! P1h0 (PO1 (�; h0) > b) ;

for any h0 2 H11.

From Theorem 1, three questions should be answered to �nd the optimal test in the sense of (8).

(1) What is PO1 (�; h0)? Does PO1 (�; h0) satisfy (iii) in Theorem 1? If so, what is the power envelope?

(2) What is the feasible test statistic Tn such that (i) in Theorem 1 is satis�ed?

(3) How to �nd the critical value b in practice?

The asymptotic distribution of the likelihood ratio statistic is also stated in the following Theorem under

high-level conditions.

Theorem 2 Suppose the following four assumptions are satis�ed:

(i) b�n and b�n0 are both 'n-consistent under h0 2 H1.
10



(ii) There is an approximation logZan(h; h0) of logZn(h; h0) such that for any M <1,

sup
khk�M

jlogZn(h; h0)� logZan(h; h0)j
p�! 0

under h0.

(iii) There is a metric on the space of the sample path of Zan(h; h0) such that sup
khk�M

is a continuous operator

on that space and

Zan(h; h0)
h0 Z1(h; h0)

for h on any compact set.

(iv) lim
khk!1

Z1(h; h0) = 0 almost surly.

Then

�n (h0)
h0 �1 (h0)

for every h0 2 H1.

For comparative purposes, the following Table 1 provides some analogs between testing and estimation

problems in the decision framework.

Testing Estimation

Prior on the Local Parameter Space Loss Function on the Local Parameter Space

Asymptotic Average Power Asymptotic Average Risk

Likelihood Ratio Test Maximum Likelihood Estimator16

Posterior Odds Bayes Estimator

Table 1: Analogs Between Testing and Estimation

3 Tests in LAN Models

Suppose the sequence of models Pn� is LAN: in other words, there exist matrices 'n and I� and random

vectors �n� such that �
n
�

� N (0; I�) and for every converging sequence hn ! h,

ln
dPn�+'nhn
dPn�

= h0�n� �
1

2
h0I�h+ oPn

�
(1) :

Andrews (1994) proves the asymptotic equivalence between the posterior odds tests and the three asymptoti-

cally equivalent tests especially the likelihood ratio test under classical second-order smoothness assumptions

which imply the LAN models. The following discussion essentially follows Andrews (1994) and Andrews and

Ploberger (1994), but relaxes the required assumptions. The second purpose of the discussion is to provide

an intuitive explanation for why the equivalence holds in LAN models, which contrasts with the results in

the next section where such equivalence breaks down. The last purpose of this section is to �ll a logical gap

in Andrews and Ploberger (1994), as mentioned in the introduction.

16 The maximum likelihood estimator (MLE) can be treated as a special Bayes estimator, but the likelihood ratio test statistic
is hard to be treated as a special posterior odds.
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From chapter 7 of Van der Vaart (1998), a decision in a LAN model is equivalent to the decision based on

a single observation zh which follows N(h; I�1) in the limit experiment, where I = I (�0) is the information

matrix when the true value is �0. Now,

Zn(h; h0)
h0 Z1(h; h0) =

dN
�
h; I�1

�
dN (h0; I�1)

(zh0) = exp

�
�1
2
(h� h0)0 I (h� h0) + (h� h0)0 Iz

�
; (9)

for any h0 2 H1 = Rk, where z follows N(0; I�1).
Suppose there are r constraints in H0:

H0 : a(�0) = 0;

H1 : a(�0) 6= 0;

where a(�) : Rk ! Rr is a smooth function and r � k. Since a(�0) = 0 is locally equivalent to Ah = 0, where
A = @a(�0)

@�0 is of full row rank, the problem reduces to the test

H0 : Ah = 0;

H1 : Ah 6= 0:

Andrews (1994) considers the special case A =
�
Ir 0r�k

�
with Ir a r � r identity matrix. In this case,

# is the �rst r coordinates of � as in the simpli�ed framework at the end of Section 2, but the following

discussion applies to a general A.

We answer the three questions in Section 2 in an intuitive way and summarize the results rigorously in

the following Theorem 3. First, we �nd the WAP envelope. In this case,

�1 (h0) = 2 log
suph2H1 Z1(h; h0)

suph2H01 Zn(h; h0)

= 2 log
suph2Rk exp

�
� 1
2 (h� h0)

0
I (h� h0) + (h� h0)0 Iz

	
supAh=0 exp

�
� 1
2 (h� h0)

0
I (h� h0) + (h� h0)0 Iz

	
= z0Iz �

�
z0P 0IPz � h0P?0IP?h0 � 2h00P?0IP?z

�
= z0P?0IP?z + h0P

?0IP?h0 + 2h
0
0P

?0IP?z

= z0h0P
?0IP?zh0 ;

where arg supAh=0 exp
�
� 1
2 (h� h0)

0
I (h� h0) + (h� h0)0 Iz

	
=
h
I� I�1A0

�
AI�1A0

��1
A
i
(z + h0) � Pzh0

with I a k � k identity matrix, and P? = I�1A0
�
AI�1A0

��1
A satis�es P?0IP = P 0IP? = 0, P?0IP? =

P?0I = IP?, P 0IP = P 0I = IP . Actually, P is the projection matrix on the subspace fAh = 0g with
respect to the inner product hh1; h2i = h01Ih2, and P? is the projection matrix on the orthogonal space of
fAh = 0g.17 For any h such that Ah = 0, z0hP?0IP?zh follows the same �2r distribution, so the asymptotic
distribution of the likelihood ratio test is pivotal to h0 2 H01.18 Furthermore, the asymptotic distribution
does not depend on �0, so it is also pivotal to any true parameter �0 2 �0.
17 In the special case mentioned above, (4.3) of Andrews (1994) gives the basis for this orthogonal space.
18 If zh follows N

�
h; I�1

�
such that Ah = 0, then P?zh follows the same distribution as P?z. The �2r distribution follows

from, for example, Lemma 16.6 in Van der Vaart (1998).
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In this case, if �(h) is selected such that

PO1 (�; h0) =

R
Ah6=0 Z1(h; h0)�(h)dhR
Ah=0

Z1(h; h0)�(h)dh
= G

�
z0h0P

?0IP?zh0
�
;

where G (�) is an increasing function, then z0h0P
?0IP?zh0 is asymptotically su¢ cient for PO1 (�; h0). The

decision based on POn (Wn; �) is asymptotically equivalent to that based on �n. Such a �(h) indeed exists,

for example,

�(h)dh = 1 (Ah = 0) � �1 (Ph) d (Ph) + 1 (Ah 6= 0) � �2
�
P?h

�
d
�
P?h

�
� �1 (Ph) d (Ph) ;

with �1 (�) an arbitrary density function, and

�2
�
P?h

�
=

s
cr jIj
(2e�)r expn� c2h0P?0IP?ho :

The prior on H?
01, the orthogonal space of H01, is N

�
0; (cI)

�1
�
. The larger is c, the more weight is

given to alternatives for which P?h is large. It is noninformative when c = 0, and is a point mass at

0 when c = 1. Andrews (1994) takes �1 (�) as a point mass at 0, which makes sense only because the
asymptotic distribution of the test statistic is pivotal to �0 2 �0, but this is not generally true as shown in
next section.19The motivation for this speci�cation is that the power on H?

01 is of main interest, so the prior

is speci�ed in a separable way with respect to H01 and H?
01. We will see that this prior is conjugate to

Z1(h; h0) such that the common terms related to H01 in the numerator and denominator of PO1 (�; h0)

are canceled.

PO1 (�; h0)

=

R
Ah6=0 exp

�
� 1
2 (h� h0)

0
I (h� h0) + (h� h0)0 Iz

	q crjIj
(2e�)r exp�� c

2h
0P?0IP?h

	
d
�
P?h

�
� �1 (Ph) d (Ph)R

Ah=0
exp

�
� 1
2 (h� h0)

0
I (h� h0) + (h� h0)0 Iz

	
1 (Ah = 0) � �1 (Ph) d (Ph)

=

R
Ah6=0 exp

n
� 1
2 (h� h0)

0 �
P + P?

�0
I
�
P + P?

�
(h� h0) + (h� h0)0

�
P + P?

�0
I
�
P + P?

�
z
oq

crjIj
(2e�)r exp�� c

2h
0P?0IP?h

	
d
�
P?h

�
� �1 (Ph) d (Ph)R

Ah=0
expf� 1

2 (h� h0)
0 �
P + P?

�0
I
�
P + P?

�
(h� h0)

+ (h� h0)0
�
P + P?

�0
I
�
P + P?

�
zg1 (Ah = 0) � �1 (Ph) d (Ph)

=

R
Rr

q
crjIj
(2e�)r exp�� 1

2 (h� h0)
0
P?0IP? (h� h0) + (h� h0)0 P?0IP?z � c

2h
0P?0IP?h

	
d
�
P?h

�
exp

�
� 1
2h

0
0P

?0IP?h0 � h00P?0IP?z
	

=

Z
Rr

s
cr jIj
(2e�)r exp

�
�1
2

�
(h� h0)0 P?0IP? (h� h0)� h00P?0IP?h0 � 2h0P?0IP?z + ch0P?0IP?h

��
d
�
P?h

�
=

Z
Rr

s
cr jIj
(2e�)r exp

(
�1
2

"
(1 + c)

�
s� P

? (z + h0)

1 + c

�0
I

�
s� P

? (z + h0)

1 + c

�
� (z + h0)

0
P?0IP? (z + h0)

(1 + c)

#)
ds

=

�
c

1 + c

�r=2
exp

�
(z + h0)

0
P?0IP? (z + h0)

2 (1 + c)

�
� G

�
z0h0P

?0IP?zh0 jc; r
�

19See Assumption 5 in Andrews (1994) for a more general setup of the priors on H?
01.
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does not depend on Ph0 and shares the same power as �n.20 Now, b is set to G
�
�2r;1��jc; r

�
, where �2r;1��

is the 1� � quantile of �2r distribution, so b depends on �, and also on the prior through c. The larger the
signi�cance level, the smaller the weight on the type I error. But b need not depend on c in a monotonic

way, which depends on the value of r � �2r;1��.21 Push to extreme cases: c = 0, b = 0; c =1, b = 1; � = 0,

b =1; � = 1, b =
�

c
1+c

�r=2
> 0.

The local power based on POn (Wn; �) is

P (PO1 (�; h0) > b) = P
�
z0h0P

?0IP?zh0 > �
2
r;1��

�
= P

�
�2r (�) > �

2
r;1��

�
=

1X
j=0

e��=2
(�=2)

j

j!

�
�
j + r=2; �2r;1��=2

�
� (j + r=2)

where �2r (�) is the noncentral chi-square distribution with the noncentrality parameter �, � (a; x) =
R1
x
ta�1e�tdt

is the upper incomplete gamma function, and � (�) is the Gamma function.22 � = h00P?0IP?h0 only depends
on P?h0 not on Ph0, so the power is the same on the ellipsoid h00P

?0IP?h0 = c for a �x c. This phenomenon

is �rst observed in Wald (1943). For a �xed r, the larger the signi�cance level, the more powerful the test,

so there is a trade-o¤ between the type I error and the type II error as shown in Section 2. When � goes to

in�nity or � goes to 1, the power goes to 1. This power does not depend on the prior since the e¤ect of the

prior is o¤set by the choice of b.23 As discussed in Section 2, such a test maximizes the asymptotic WAP:R
Ah0 6=0 P (PO1 (�; h0) > b)�(h0)dh

=
R
Ah0 6=0 P

�
�2r (�) > �

2
r;1��

�
�(h0)dh0

=
R
Ah0 6=0 P

�
�2r (�) > �

2
r;1��

�q crjIj
(2e�)r exp�� c

2h
0
0P

?0IP?h0
	
d
�
P?h0

�
� �1 (Ph0) d (Ph0)

=
R
Rk �1 (Ph0) d (Ph0) �

R
Rrnf0g P

�
�2r (�) > �

2
r;1��

�q crjIj
(2e�)r exp�� c

2h
0
0P

?0IP?h0
	
d
�
P?h0

�
=
R
Rk �1 (Ph0) d (Ph0) �

R
Rrnf0g P

�
�2r (s

0Is) > �2r;1��
�
dN

�
0; (cI)

�1
�
(s);

depends on the priors on Ph and P?h in a separable way. Figure 1 shows the power of this testing procedure

when � = 5%. When r gets larger, or there are more constraints under H0, the power envelope is lower. This

makes sense because there are more directions to violate the null hypothesis when there are more constraints,

which makes rejecting H0 more di¢ cult.

20This form of PO1 is a little di¤erent from the form in Andrews (1994) because c plays the same role as 1
c
there.

21 If r � �2r;1�� � 0, then b increases from 0 to 1 as c increases from 0 to 1. When r � �2r;1�� < 0, then b increases for

c 2
�
0; r

�2r;1���r

�
, and decreases for c 2

�
r

�2r;1���r
;1
�
. The maximum of b is greater than 1 and is attained at c = r

�2r;1���r
.

r � �2r;1�� < 0 is equivalent to P
�
�2r � r

�
< 1� �. But P

�
�2r � r

�
=


(r=2;r=2)
�(r=2)

is a decreasing function with a limit 0.5 as r

goes to 1, where 
 (a; x) =
R x
0 t

a�1e�tdt is the lower incomplete gamma function, so as long as � < 1� P
�
�21 � 1

�
= 0:3173,

the second case above happens for all r. In this case, there are two c�s such that PO1 (�) = 1 instead of one solution in Table
1 of Andrews (1994).
22The asymptotic distribution under the alternative is derived by Le Cam�s third lemma in the classical literature, but it is

straightforward using the limits of experiments framework here.
23 If �2(h) is only bowl-shaped, the analysis above does not follow. In this sense, the testing problem is a little di¤er-

ent from the estimation problem, and �(h) is not completely equivalent to the loss function. For example, let �2(P?h) =q
cr

(2�)r
exp

�
� c
2
h0P?0P?h

	
; that is, the variance matrix is (cI)�1 instead of (cI)�1, where I is a r � r identity matrix, then

it can be shown that PO1 (�; h0) =
q

cr

jI+cIj exp
n
1
2
z0h0P

?0I (I + cI)�1 IP?zh0

o
. The decision based on POn (Wn; �) is

di¤erent from that based on the likelihood ratio statistic, since c can not be absorbed by b unless r = 1 or I = I. So for a
general prior, the likelihood ratio test need not be optimal in the weighted average power sense. This phenomenon is only
loosely parallel to the estimation theory in LAN models, where the MLE and the Bayes estimator are asymptotically equivalent
for a large class of loss functions, but not equivalent for every loss function.
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In Figure 1, the point-wise power envelope is also drawn. This power envelope is computed against

P?h0 = c for each c by the Neyman-Pearson lemma. Notice that

supP?h=c Z1(h; h0)

supAh=0 Z1(h; h0)

=
supP?h=c exp

�
� 1
2 (h� h0)

0
P 0IP (h� h0) + (h� h0)0 P 0IPz

	
supAh=0 exp

�
� 1
2 (h� h0)

0
P 0IP (h� h0) + (h� h0)0 P 0IPz

	
exp

�
� 1
2c
0Ic� c0IP?z

	
=

supAx=0 exp
�
� 1
2 (x� Ph0)

0
I (x� Ph0) + (x� Ph0)0 IPz

	
supAx=0 exp

�
� 1
2 (x� Ph0)

0
I (x� Ph0) + (x� Ph0)0 IPz

	
exp

�
� 1
2c
0Ic� c0IP?z

	
= exp

�
1

2
c0Ic+ c0IP?z

�
The critical value is determined by

P

�
exp

�
c0IP?z � 1

2
c0Ic

�
> b

�
= �;

so

b = exp

�p
c0Icz1�� �

1

2
c0Ic

�
:

The power envelope at P?h0 = c is

P

�
exp

�
c0I
�
P?z + c

�
� 1
2
c0Ic

�
> exp

�p
c0Icz1�� �

1

2
c0Ic

��
= 1��

�
z1�� �

p
c0Ic

�
= �

�p
c0Ic� z1��

�
which only depends on c0Ic:

­5 0 5
0

0.05

0.5

1

δ1/2
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Figure 1: Local Power in LAN Models
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To compare with the decision procedure of the Bayes factor proposed in Je¤reys (1961) and detailed in

Kass and Raftery (1995), we also copy the critical values of the Bayes factor in Table 2 below. In Table 2,

we also report the p values for the critical values. Note that the p values depend on both c and r; that is,

depends on the prior and the number of restrictions in H0. we only report the cases for c = 0:1; 1; 10 and

r = 1; � � � ; 9. From Table 1, the Bayes factor seems conservative in all cases compared to the frequentists

with the signi�cance level 5%.

The questions (2) and (3) in Section 2 are answered simultaneously in the above discussion, and no

randomization is required. Commonly, the likelihood ratio test is used instead of the posterior odds due to

the complexity of the Bayes integral evaluation in the posterior odds. Since the score test and the Wald test

are asymptotically equivalent to the likelihood ratio test, they are also optimal in the WAP sense with the

above weighting scheme.

The discussion above is summarized in the following Theorem 3.

Theorem 3 Under Assumptions C0-C4, PO (Wn; �) and
�

c
1+c

�r=2
exp

n
�n

2(1+c)

o
are equivalent, so �n is

AAMP(�; �).

Because �n is AAMP(�; �), Andrews and Ploberger (1994)�s test indeed maximizes the WAP.

p values (%)&
BF # r !

1 2 3 4 5 6 7 8 9
Strength of Evidence

against H0
c = 0:1

<1:1 10.44 7.15 4.78 3.21 2.17 1.47 1.00 0.69 0.47 Negative (supports H0)

1:1 to 3:1 2.46 2.14 1.60 1.14 0.81 0.57 0.40 0.28 0.19 Barely worth mentioning

3:1 to 10:1 0.55 0.57 0.47 0.36 0.26 0.19 0.14 0.10 0.07 Substantial

10:1 to 30:1 0.15 0.17 0.15 0.12 0.09 0.07 0.05 0.04 0.03 Strong

30:1 to 100:1 0.04 0.05 0.04 0.04 0.03 0.02 0.02 0.01 0.01 Very strong

>100:1 - - - - - - - - - Decisive

c = 1

<1:1 23.90 25.00 24.48 23.58 22.58 21.57 20.60 19.66 18.78 Negative (supports H0)

1:1 to 3:1 1.62 2.78 3.59 4.15 4.53 4.78 4.95 5.04 5.08 Barely worth mentioning

3:1 to 10:1 0.11 0.25 0.39 0.52 0.65 0.75 0.85 0.93 0.99 Substantial

10:1 to 30:1 0.01 0.03 0.05 0.07 0.10 0.13 0.15 0.18 0.20 Strong

30:1 to 100:1 0.00 0.00 0.00 0.01 0.01 0.02 0.02 0.03 0.03 Very strong

>100:1 - - - - - - - - - Decisive

c = 10

<1:1 30.59 35.05 36.98 38.04 38.71 39.15 39.45 39.66 39.81 Negative (supports H0)

1:1 to 3:1 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.01 Barely worth mentioning

3:1 to 10:1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Substantial

10:1 to 30:1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Strong

30:1 to 100:1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Very strong

>100:1 - - - - - - - - - Decisive

Table 2: Critical Values and p values of the Bayes Factor in Regular Cases

(p values are for the right end point of the ranges)
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4 Tests on the Location of a Threshold Point

In (1), if the hypotheses are (2) in the introduction, then # = 
, and � = � in the general framework of

Section 2. r = 1, k = 2`+ 2 + d�, and 'n =

 
1
n 0

0 1p
n
Ik

!
.

In this model,

Zn(h; h0) =
nY
i=1

fh (wi)

fh0 (wi)
= exp

 
nX
i=1

ln
fejx;q(wij�0 + 'nh)
fejx;q(wij�0 + 'nh0)

!
;

where

fejx;q(wj�) =
1

�1
fejx;q

�
y � x0�1
�1

jx; q; �
�
1 (q � 
) + 1

�2
fejx;q

�
y � x0�2
�2

jx; q; �
�
1 (q > 
) ;

and h = (v; u0)0, h0 = (v0; u00)
0 with v the local parameter for 
 and u the local parameters for �.

4.1 Weighted Average Power Envelope

From Yu (2007),

Z1(h; h0) = exp

�
�1
2
(u� u0)0 J (u� u0) + (u� u0)0 JW +Dv0 (v)

�
; (10)

where J = J (�0) is the information matrix for regular parameters at �0, W � N
�
0;J�1�, and

Dv0 (v) =

8>><>>:
N1(jv�v0j)P

i=1

z1i, if v � v0;
N2(v�v0)P

i=1

z2i, if v > v0;

is a compound Poisson process. In Dv0 (v),n
fz1igi�1 ; fz2igi�1 ; N1 (�) ; N2 (�)

o
are independent from each other, Ni (�), i = 1; 2, is a Poisson process with intensity fq(
0), z1i is the limiting

conditional distribution of ln
�10
�20

fejx;q

�
�10ei+x

0
i(�10��20)
�20

jxi;qi;�0
�

fejx;q(eijxi;qi;�0)
given 
0 + � < qi � 
0, � < 0 with � " 0,

and z2i is the limiting conditional distribution of ln
�20
�10

fejx;q

�
�20ei�x

0
i(�10��20)
�10

jxi;qi;�0
�

fejx;q(eijxi;qi;�0)
given 
0 < qi � 
0+�,

� > 0 with � # 0. Furthermore, W and Dv0 (�) are independent from each other and the process Dv0 (v) is

a cadlag process with Dv0 (v0) = 0.

Suppose �(h) = �1(u)�2(v), where �1(u) is an arbitrary density, and �2(v) puts a point mass at 0 and

a continuous density on Rn f0g. In other words, the priors on the regular and nonregular parameter spaces
are independent. Then

PO1 (�; h0) =

R
Rk exp

�
� 1
2 (u� u0)

0 J (u� u0) + (u� u0)0 JW
	
�1(u)du �

R
Rnf0g exp fDv0(v)g�2(v)dvR

Rk exp
�
� 1
2 (u� u0)

0 J (u� u0) + (u� u0)0 JW
	
�1(u)du �

R
f0g exp fDv0(v)g�2(v)dv

(11)

=

Z
Rnf0g

exp fDv0(v)�Dv0(0)g�2(v)dv � PO1 (�; v0)
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is pivotal to u0 2 Rk which is the nuisance local parameter under H0, so condition (iii) of Theorem 1 is

satis�ed. Notice that

PO1 (�) =

Z
Rnf0g

exp fD(v)g�2(v)dv;

where D(v) = D0 (v). If b is set such that P
�R

Rnf0g exp fD(v)g�2(v)dv > b
�
= �, then any test statistic

that is equivalent to PO (Wn; �) achieves the best asymptotic WAP with the asymptotic signi�cance level �.

Interestingly, PO1 (�) does not depend on �1(u) asymptotically if �(�) is separable as in the regular case.
This result is also parallel to the e¢ cient estimation result in Yu (2007), where the asymptotic distribution

of the Bayes estimator of 
 does not depend on the loss function on the regular parameters as long as the

loss function is separable. But PO1 (�) depends on the whole �2(�). This is di¤erent from the regular case

in Section 2, where PO1 (�) depends on �2(�) only through a constant c such that its e¤ect can be absorbed
by the selection of b. The best asymptotic WAPZ

H11

P1h0 (PO1 (�; h0) > b)�1(u0)�2(v0)du0dv0

=

Z
H11

P1v0 (PO1 (�; v0) > b)�1(u0)�2(v0)du0dv0

=

Z
Rk
�1(u0)du0 �

Z
Rnf0g

P1v0 (PO1 (�; v0) > b)�2(v0)dv0

depends on �1(�) and �2(�) in a separable way as in the regular case, where P1h0 reduces to P
1
v0 in the �rst

equality because PO1 (�; h0) is pivotal to u0. But the value of the WAP depends on the value of �0, since

Dv0(v) depends on �0. This result is parallel to the estimation result in Yu (2007), where the asymptotic risk

of the Bayes estimator depends on the loss function in a separable way when the loss function is separable,

and the asymptotic risk of the Bayes estimator of 
 depends on �0.

A natural class of prior functions �2(�) is �2(v) =
p

c
2e� exp�� c

2v
2
	
on v 6= 0; that is, a normal density

with mean zero and variance 1=c. Note that the optimal test is di¤erent for di¤erent c�s. The calculation of

asymptotic critical values and the local power function is nontrivial. An algorithm is developed in Appendix

D to carry out this kind of calculation.

To aid intuition, power functions for a simple threshold regression model are shown in Figure 2 and 3.

The model is speci�ed as

y =

(
�1 + �1e;

�2e;

q � 
;
q > 
:

; q � U [0; 1]; e � N(0; 1); and q is independent of e;

where �10 is set to be 1, and the only unknown parameter is 
. In this simple model,

z1i = ln

�
�10
�20

�
+
1

2

 
e�2i �

�
�10e

�
i + �10

�2
�220

!
;

z2i = ln

�
�20
�10

�
+
1

2

 
e+2i �

�
�20e

+
i � �10

�2
�210

!
;

where e�i and e
+
i have the same distribution as e, and Ni (jvj) � Poisson(jvj), i = 1; 2. Figure 2 illustrates

the power functions for �10 = 0:2, �20 = 0:4, and �2(v) =
p

c
2e� exp�� c

2v
2
	
with c = 0:1; 1 and 10. For

comparison, we also report the case with �2(v) = 1. Figure 3 considers the power function for �10 = �20 = 0:3

with the same priors as in Figure 2.
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Figure 2: Local Power with �10 = 0:2, �20 = 0:4 and Normal Priors
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Figure 3: Local Power with �10 = �20 = 0:3 and Normal Priors
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From Figure 2, the power functions are di¤erent for di¤erent c�s although the priors are all normally

distributed. This is very di¤erent from the regular case in Section 3. When c gets larger, more power is

gained for v0 in the neighborhood of 0, since a larger weight is put on the neighborhood of 0. But the

power gain in the neighborhood of 0 is not very signi�cant, and the power loss o¤ the neighborhood of 0 is

huge, so it seems a smaller c is preferable. Another observation is that the power function is not symmetric.

This is mainly because z1i and z2i have di¤erent distributions in this setup. When �10 = �20 as in Figure

3, the power functions are symmetric. Comparing Figure 2 and Figure 3, the threshold e¤ect in variance

provides substantial information on 
0 as shown in the estimation environment of Yu (2007), since the power

functions in Figure 2 are much higher than those in Figure 3.24

In the calculation of the WAP envelope above, no randomized tests are used. This is true even in extreme

cases. Suppose �10 = �20 = 0, then exp fD(v)g is a two-sided Bernoulli process as shown in Yu (2007). In
this case, Z

Rnf0g
exp fD(v)g�2(v)dv =

Z 0

�T1
�2(v)dv +

Z T2

0

�2(v)dv;

where T1 and T2 are independent standard exponential random variables. Suppose �2(v) = 1, thenZ
Rnf0g

exp fD(v)g�2(v)dv = T1 + T2

follows Gamma(2,1) distribution which is continuous, so no randomization is needed.

Figures 2 and 3 also graph the point-wise power envelope as a benchmark. Since we are only interested

in the power in the direction of v, �x a v0, then the limit likelihood ratio under H0 is

Z1((u; v0) ; (u; 0))

Z1((u; 0) ; (u; 0))
= exp fD (v0)g ;

independent of u, and under v0 is

Z1((u; v0) ; (u; v0))

Z1((u; 0) ; (u; v0))
= exp f�Dv0 (0)g :

Notice that there is a point mass e�fq(
0)jv0j at 1 in the distribution of exp fD (v0)g, so if

P (exp fD (v0)g > 1) < � and P (exp fD (v0)g � 1) > �;

then there is no b such that

P (exp fD (v0)g > b) = �:

In this case, the randomized test is used:

d1 =

8><>:
1;

��P (D(v0)>0)
e�fq(
0)jv0j

;

0;

if D (v0) > 0;

if D (v0) = 0;

if D (v0) < 0;

24The standard deviation 0.3 in Figure 3 is the average of �10 and �20 in Figure 2 to make the two �gures comparable,
although such a comparison is not rigorous.
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and the power envelope at v0 is

P (Dv0 (0) < 0) +
�� P (D (v0) > 0)

e�fq(
0)jv0j
P (Dv0 (0) = 0)

= �+ P (Dv0 (0) < 0)� P (D (v0) > 0) :

Otherwise, the critical value is determined by

P (exp fD (v0)g > b) = �;

and the power envelope is

P (exp f�Dv0 (0)g > b) :

When v0 goes to in�nity, exp fD (v0)g = 0 almost surely, so a purely randomized test is used.
For comparison, the power for the likelihood ratio test is also shown in Figure 2 and 3. In this nonregular

case, the Wald and LM tests are not well de�ned, so the usual trinity that applies in regular cases breaks

down. From Section 2,

�1 (h0) = 2 log
suph2H1 Z1(h; h0)

suph2H01 Z1(h; h0)
(12)

= 2 log
suph2Rk exp

�
� 1
2 (u� u0)

0 J (u� u0) + (u� u0)0 J�1W +Dv0 (v)
	

suph2H01 exp
�
� 1
2 (u� u0)

0 J (u� u0) + (u� u0)0 J�1W +Dv0 (v)
	

= 2 log sup
v2R

exp fDv0 (v)�Dv0 (0)g

= 2 sup
v2R

fDv0 (v)�Dv0 (0)g ;

and

�1 = �1 (0) = 2 sup
v2R

fD (v)g :

Notice that there is a point mass p10 at zero in the distribution of �1, where p10 = P (maxD (v) = 0). Such

a point mass appears because the value D (v) is �xed as 0 for v in a neighborhood of 0; see Yu (2007) for

more discussion about the process D (v). So if � > 1� p10, then there is no b such that

P

�
sup
v2R

fD (v)g > b
�
= �:

In this case, the randomized test is used again:

d1 =

(
1;

��(1�p10)
p10

;

if �1 > 0;

if �1 = 0:

From Appendix D, the power function under h0 is

P

�
sup
v2R

fDv0 (v)�Dv0 (0)g > 0
�
+
�� (1� p10)

p10
P

�
sup
v2R

fDv0 (v)�Dv0 (0)g = 0
�

=

8>><>>:
1� (1� �)

�
e�fq(
0)jv0j +

1P
k=1

e�fq(
0)jv0j(fq(
0)jv0j)k
k!

p2k
p10

�
; if v0 < 0;

1� (1� �)
�
e�fq(
0)v0 +

1P
k=1

e�fq(
0)jv0j(fq(
0)v0)
k

k!
p1k
p10

�
; if v0 > 0;
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where fp1k; p2kg1k=1 are de�ned in Appendix D. If � � 1� p10, then the critical value is determined by

P

�
sup
v2R

fD (v)g > b
�
= �;

and the power function under h0 is

P

�
sup
v2R

fDv0 (v)�Dv0 (0)g > b
�
:

To further appreciate why randomization is necessary when the likelihood ratio test is used, the extreme

case with �10 = �20 = 0 is considered. In this case, �1 = 0 almost surely, so randomization must be used

to let the type I error be �.

From Figure 2 and 3, the likelihood ratio test is not dominated by the posterior odds with any prior.

The powers are closer to the power envelope when �10 = 0:2, �20 = 0:4 than the case �10 = �20 = 0:3.

Table 3 reports the p values of the Bayes factor for the case when �2(�) is a density. The Bayes factor is
very conservative in the case �10 = 0:2, �20 = 0:4, but liberal in the case �10 = �20 = 0:3. Combining with

the results in Section 3, it seems that the performance of Bayes factor depends on the prior and nuisance

parameters of the model.

In the regular model, when there is no UMP test, some restrictions such as unbiasedness or similarity are

put on a test procedure to identify a unique power envelope. In this nonregular case, such restrictions will not

identify the unique power envelope. For example, in the simple setups of Figure 2 and 3, all PO (Wn; �) with

di¤erent ��s are similar with respect to the nuisance parameter u and unbiased.25 This is very di¤erent from

regular cases, where the WAP criterion, unbiasedness and similarity all identify the same power envelope.

Furthermore, in regular cases, e¢ cient estimation and optimal testing are essentially the same problem,

since the test based on the e¢ cient estimation is optimal in some sense as shown in, for example, chapter 13

of Lehmann and Romano (2005). But the duality between point estimation and hypothesis testing breaks

down in this nonregular case. In summary, the WAP criterion is a more natural criterion than the classical

ones when no UMP tests exist.

p values (%)& �10 = 0:2, �20 = 0:4 �10 = �20 = 0:3 Strength of Evidence

BF # c! 0:1 1 10 0:1 1 10 against H0
<1:1 2.94 4.38 4.61 62.53 57.80 44.05 Negative (supports H0)

1:1 to 3:1 1.22 1.51 0.92 57.98 50.77 30.90 Barely worth mentioning

3:1 to 10:1 0.38 0.49 0.31 53.67 45.68 26.66 Substantial

10:1 to 30:1 0.10 0.13 0.07 49.92 41.68 23.39 Strong

30:1 to 100:1 0.03 0.02 0.01 45.79 37.35 20.20 Very strong

>100:1 - - - - - - Decisive

Table 3: Critical Values and p values of the Bayes Factor in Tests on the Location of a Threshold

Point in Threshold Regression (p values are for the right end point of the ranges)

25Another popular restriction is invariance, which is not suitable in this case.
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4.2 Feasible Test Statistic and Critical Value

The question left is to �nd a test statistic equivalent to PO (Wn; �). The following test statistic is suggested:

Tn

�e�� = Z
n(��
0)nf0g

Ln

�e�; 
0 + n�1v�
Ln

�e�; 
0� � �2(v)dv;

where Ln (�; �) is the likelihood function, e� is a consistent estimator of � under both H0 and H1, e.g., e� could
be the MLE or Bayes estimator (BE) in Yu (2007), and � is the parameter space of 
. For simplicity, use

Tn for Tn
�e��. The following theorem shows that Tn is asymptotically equivalent to PO (Wn; �).

Theorem 4 Suppose Assumptions L0-L7 and L9 holds, then Tn and PO (Wn; �) are equivalent, so Tn is

AAMP(�; �; �), but not AAMP(�; �).

For completeness, the asymptotic distribution of �n is stated in the following theorem.

Theorem 5 Suppose Assumptions L0-L8 holds, then

�n (h0)
h0 �1 (h0)

for any h0 2 H1, where �1 (h0) is de�ned in (12).

Compared to PO1 (�) in regular cases, PO1 (�) in this section is only pivotal to h 2 H01, but not to

�0 2 �0, which makes the critical values of PO1 (�) hard to obtain. PO1 (�) =
R
Rnf0g exp fD(v)g�2(v)dv

depends on the nuisance parameter � and also on conditional random variables fz1i; z2ig1i=1 which we don�t
know how to simulate. The arguments in Section 3.3 of Yu (2008a) can still apply here.

From Yu (2008b), the parametric bootstrap works although the nonparametric bootstrap fails in the

estimation problem, so the parametric bootstrap is suggested for �nding the asymptotic critical values.

Following Hansen (1996), we use the p-value transformation to make the acceptance-rejection decision. Let

F 0 (�) denote the distribution of PO1 (�), and de�ne pn = 1 � F 0 (Tn). Tests based on Tn and pn are
equivalent since F 0 is monotonic and continuous. pn converges weakly to pv0 = 1 � F 0 (PO1 (�; v0)) from
Theorem 4. In particular, it converges to a uniform distribution U on [0; 1] under H0. Our test is to reject

H0 if pn � �. The asymptotic power function associated with this test is

lim
n!1

Pnh0 (pn � �) = P
1
v0

�
F 0 (PO1 (�; v0)) � 1� �

�
:

The task remaining is to estimate pn, and the following Algorithm B is used for this purpose.

Algorithm B:

Step B1: Find a consistent estimator e� of �0 under both H0 and H1. For example, the joint estimate of �
and 
 by maximum likelihood or Bayes estimation can serve this purpose.

Step B2: Simulate fwigni=1 from the joint distribution f
�
y; x; qje�; 
0�, where 
0 is the 
 value in H0.

Step B3: Calculate Tn using the data fwigni=1 in Step B2, where e� in Tn is the consistent estimator in Step
B1.
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Step B4: Repeat Step B2 and B3 J times to get
�
T 1n ; � � � ; T Jn

	
, and estimate pn by bpn � 1

J

PJ
j=1 1

�
T jn � Tn

�
.

The following theorem claims that bpn is a valid estimation of pn asymptotically.
Theorem 6 Suppose Assumptions L0-L7 and L9 holds, then

bpn = pn + op(1):
Hence, bpn h0 pv0 ;

and the asymptotic distribution of bpn is U under H0.

In the example of the last subsection, suppose �10 is unknown and is the only nuisance parameter. The

true 
0 is equal to 0.5. Table 4 reports the �nite-sample size using Algorithm B. When calculating the size,

H0 : 
 = 0:5:

� is estimated by maximum likelihood method in Step B1 to save simulation time, although Yu (2007) shows

the Bayes method has some e¢ ciency bene�t. Suppose the empirical distribution of
�
T 1n ; � � � ; T Jn

	
in Step

B4 is bFn, then the size of the test is estimated as P �1� bFn (Tn) � ��, where the 
0 in Tn and Step B2
is 0.5. Note that the asymptotic size is always � and is not reported in Table 4. In all simulations, 1000

simulated samples were drawn, and J = 1000. From Table 4, the parametric bootstrap works very well even

when the prior is improper.

n! 100 400

� (%)! 10 5 2:5 1 10 5 2:5 1

Size & �10 = 0:2, �20 = 0:4

c = 0:1 10.8 5.9 3.7 1.1 10.7 5.1 2.2 1.1

c = 1 10.7 5.3 3.1 1.1 9.9 5.3 2.8 1.2

c = 10 10.7 4.9 2.4 1.4 9.6 5.5 3.1 1.7

Constant 11.7 6.0 3.5 1.1 11.4 5.2 2.2 1.0

Size & �10 = �20 = 0:3

c = 0:1 9.1 4.4 2.2 1.2 9.6 5.5 3.0 1.4

c = 1 9.8 5.3 2.6 1.4 9.2 4.5 2.8 1.7

c = 10 9.5 4.3 2.8 1.2 9.5 5.3 3.1 1.3

Constant 10.2 4.8 2.4 1.2 10.2 5.6 3.4 1.4

Table 4: Size Using the Parametric Bootstrap (Based on 1000 Repetitions)

The power using the parametric bootstrap above is reported in Table 5. In this case,

H0 : 
 = 0:49:

When calculating power, the same formula P
�
1� bFn (Tn) � �� is used but the 
0 in Tn and Step B2 is

replaced by 0.49. The local parameter v0 is n (0:5� 0:49) = 1 when n = 100, and is 4 when n = 400,

so the asymptotic power is also reported for comparison. As expected, the power increases as the type I
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error increases and the sample size increases. When there is a threshold e¤ect in variance, the �nite-sample

power is close to the asymptotic power. When there is no threshold e¤ect in variance, the �nite-sample

power is comparable with the case with threshold e¤ect in variance, and much higher than the asymptotic

power. This suggests that there is signi�cant �nite-sample re�nement using parametric bootstrap when the

identi�cation of the threshold point is weak.

Based on these simulations, the parametric bootstrap is recommended for practical computation of the

critical values.

n! 100 400

� (%)! 10 5 2:5 1 10 5 2:5 1

Power (%) & �10 = 0:2, �20 = 0:4

c = 0:1 70.1 64.1 58.1 48.9 99.1 97.6 96.6 94.1

c = 1 71.3 65.3 60.7 52.5 94.1 93.0 88.1 83.0

c = 10 67.4 61.4 52.3 41.5 70.7 67.4 55.1 42.1

Constant 69.5 63.2 57.4 47.3 99.5 98.1 96.7 95.5

Asymptotic v0 = 1 v0 = 4

c = 0:1 67.4 62.5 58.2 49.5 99.1 98.1 97.1 95.1

c = 1 68.0 63.0 59.4 52.1 95.3 94.0 90.2 84.9

c = 10 64.9 59.6 53.1 41.7 71.6 69.0 55.3 43.6

Constant 66.7 61.9 57.6 48.3 99.5 98.4 97.4 96.0

Power (%) & �10 = �20 = 0:3

c = 0:1 67.0 62.9 58.8 55.3 98.7 97.6 97.0 96.0

c = 1 68.1 63.1 59.9 55.9 95.8 94.6 93.4 91.8

c = 10 66.0 61.0 56.9 50.9 75.3 72.9 63.8 56.8

Constant 66.6 61.6 58.4 54.8 98.9 98.0 97.2 96.4

Asymptotic v0 = 1 v0 = 4

c = 0:1 21.7 12.8 7.3 3.4 55.2 42.8 32.3 21.6

c = 1 25.2 16.0 10.0 5.5 55.1 44.1 34.8 25.4

c = 10 28.2 19.2 13.2 8.0 36.4 26.6 19.7 13.1

Constant 20.5 11.6 6.3 2.7 53.8 40.6 29.6 18.2

Table 5: Power Using the Parametric Bootstrap (Based on 1000 Repetitions)

5 Conclusion

This paper proposes a uni�ed framework for asymptotically optimal tests. The general framework is applied

to two speci�c tests. The �rst is a classical test in LAN models, where the posterior odds and the likelihood

ratio are asymptotically equivalent and both are optimal in the WAP sense. The second is a test about the

location of a threshold point. In this test, the likelihood ratio test is not optimal in the WAP sense, and the

optimal test is based on the posterior odds which depends on the prior on the local parameter space and is

not unique.
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Appendix A: Regularity Conditions

Tests in LAN Models

First, some notations are collected for reference in all assumptions, lemmas and proofs under the title "Tests

in LAN Models".

S (wj�) =
@ ln f (wj�)

@�
is the score function,

I (�) = E
�
S (wj�)S (wj�)0

�
is the information matrix, I = I (�0) ;

z = I�1
1p
n

nX
i=1

S (wij�0) ;

LRn (S; h; h0) = �1
2
(h� h0)0 I (h� h0) + (h� h0)0 Iz;

LRn (S; h) = LRn (S; h; 0)

Assumption C0: �0 is an interior point of �.

Assumption C1: w has a density f (�j�) which is continuously di¤erentiable in a neighborhood of �0 for
almost every w.

Assumption C2: I (�) is continuous and nonsingular at �0.

Assumption C3: For every �1 and �2 in a neighborhood of �0, there exists a measurable function m(w)
such that E�0

�
m(w)2

�
<1;

jln f (wj�1)� ln f (wj�2)j � m(w) k�1 � �2k :

Assumption C4: b�n;0 and b�n are consistent under �0.
Remark 1 All assumptions are standard but weaker than those in Andrews (1994) since no twice continuous
di¤erentiability is assumed. For example, the Laplace density is covered in these assumptions but excluded

by Andrews (1994). The m function in Assumption C3 is called the slope function for the Lipschitz function

ln f (wj�). Assumption C4 can be veri�ed by, for example, Theorem 2.5 of Newey and McFadden (1994).

Only local Lipschitz condition is required in Assumption C3, which is because C4 has already constrained � in

a neighborhood of �0. Without C4, a global Lipschitz condition is usually required to prove the consistency.

Tests on the Location of a Threshold Point

First, some notations are collected for reference in all assumptions, lemmas and proofs under the title "Tests

on the Location of a Threshold Point".

Hvn = n (�� 
0) n f0g ;

Zdn (v; v0j�) = exp
(

nX
i=1

z1i (�)1
�

 +

v

n
< qi � 
 +

v0
n

�)

+ exp

(
nX
i=1

z2i (�)1
�

 +

v0
n
< qi � 
 +

v

n

�)

28



with

z1i (�) = z1 (wij�) , z1 (wj�) = ln
�1
�2
fejx;q

�
�1e+x

0(�1��2)
�2

jx; q; �
�

fejx;q (ejx; q; �)
, z1i = z1 (wij�0) ,

z2i (�) = z2 (wij�) , z2 (wj�) = ln
�2
�1
fejx;q

�
�2e�x0(�1��2)

�1
jx; q; �

�
fejx;q (ejx; q; �)

, z2i = z2 (wij�0) ,

Zdn (vj�) = Zdn (v; 0j�) , Zdn (v) = Zdn (v; 0j�0)

S (wj�) =

0BBBBBBB@

�@ ln fejx;q
@e (ejx; q; �) x0�11 (q � 
)

�@ ln fejx;q
@e (ejx; q; �) x0�21 (q > 
)

� 1
�1

�
1 +

@ ln fejx;q
@e (ejx; q; �) e

�
1 (q � 
)

� 1
�2

�
1 +

@ ln fejx;q
@e (ejx; q; �) e

�
1 (q > 
)

@ ln fejx;q
@� (ejx; q; �)

1CCCCCCCA
�

0BBBBBB@
S�1 (�)

S�2 (�)

S�1 (�)

S�2 (�)

S� (�)

1CCCCCCA
is the score function for �

J (�; 
0) � E [S (wj�; 
0)S0 (wj�; 
0)]

is the information matrix for regular parameters evaluated at �, and

J = J (�0)

z =
J�1
p
n

nX
i=1

S (wij�0)

LRn
�
S;Zdn; h; h0

�
= �1

2
(u� u0)0 J (u� u0) + (u� u0)0 J z + lnZdn (v; v0j�0)

and

LRn
�
S;Zdn; h

�
= LRn

�
S;Zdn; h; 0

�
Assumption L0: �0 is an interior point of � which is bounded. �10 6= �20, �10 6= �20, �10 and �20 are

bounded away from zero.

Assumption L1: (x; q) has a marginal density fx;q , and e has a conditional density fejx;q (ejx; q; �) which is
continuously di¤erentiable in both e and � for � in a neighborhood of �0 and for almost every (e; x; q).

Assumption L2: J (�; 
0) is continuous, nonsingular and �nite for � in an open neighborhood of �0.

Assumption L3: For every (�1; �1; �1) and (�2; �2; �2) with �1; �1, �2; �2 in a bounded set and �1 and �2
in a neighborhood of �0, there exists a slope function m(w) such that E�0

h
m (w)

4
i
<1,

��ln fejx;q (�1 + �1ejx; q; �1)� ln fejx;q (�2 + �2ejx; q; �2)�� � m (w) (j�1 � �2j+ j�1 � �2j+ k�1 � �2k) :
Assumption L4: E[kxk4] <1:

Assumption L5: fq(�) is continuous, and 0 < fq � fq(q) � fq <1 for q in a neighborhood of 
0.
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Assumption L6:

E

"
sup
�2N

jz1 (wj�)j
#

< 1,

E

"
sup
�2N

jz2 (wj�)j
#

< 1.

where N an open neighborhood of �0.

Assumption L7: Both z1i and z2i have absolutely continuous distributions.

Assumption L8: b�n is consistent under �0.
Assumption L9: e� is consistent under both H0 and H1.
Remark 2 These assumptions are weaker than those in Yu (2007). The assumptions on the regular parame-
ters are basically the same as those in LAN models. LRn

�
S;Zdn; h

�
is an approximation of the log likelihood

ratio statistic. S is the asymptotically su¢ cient statistic for regular parameters, and Zdn is the asymptotically

su¢ cient statistic for the nonregular parameter. Checking of Assumption L8 and L9 can be found in Yu

(2007).

In all proofs and lemmas related to a general h0, only the case for h0 = 0 is proved. The general case

only complicates notations without changing the essential idea.

Appendix B: Proofs

Proof of Theorem 1:. From the discussion in the main context,

lim
n!1

b

Z
H0n

Pnh (dn = 1)�(h)dh+

Z
H1n

(1� Pnh (dn = 1))�(h)dh (13)

� lim
n!1

b

Z
H0n

Pnh (�n = 1)�(h)dh+

Z
H1n

(1� Pnh (�n = 1))�(h)dh

for any test �n. From Assumptions (i) and (ii), Tn
h0 PO1 (�; h0) for any h0 2 H1, so the critical value b

and the the asymptotic power are valid. The left hand side (lhs) of (13) is

lim
n!1

b

Z
H0n

Pnh (dn = 1)�(h)dh+

Z
H1n

(1� Pnh (dn = 1))�(h)dh

= lim
n!1

b

Z
H0n

Pnh (Tn > b)�(h)dh+

Z
H1n

(1� Pnh (Tn > b))�(h)dh

= b

Z
H01

��(h)dh+ lim
n!1

Z
H1n

(1� Pnh (Tn > b))�(h)dh

where the �rst equality is from the de�nition of dn, and the second equality is from Fubini�s theorem. The

right hand side (rhs) is

lim
n!1

b

Z
H0n

Pnh (�n = 1)�(h)dh+

Z
H1n

(1� Pnh (�n = 1))�(h)dh

� b

Z
H01

��(h)dh+ lim
n!1

Z
H1n

(1� Pnh (�n = 1))�(h)dh;
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where the inequality is from Fubini�s theorem and the assumption that �n is of asymptotic level �. Combining

the above two formula with (13), we have

lim
n!1

Z
H1n

(1� Pnh (Tn > b))�(h)dh � lim
n!1

Z
H1n

(1� Pnh (�n = 1))�(h)dh; (14)

which reduces to the result we want. Actually, lim
n!1

on the lhs of (14) is lim
n!1

by Fubini�s theorem and the

continuity of the asymptotic distribution of Tn.

Remark 3 The proof critically depends on the continuity of the distribution of PO1 (�). If PO1 (�) is not
continuously distributed, Enh [dn] does not necessarily converge to � for h 2 H0n if b and c are de�ned in (7).

Proof of Theorem 2:. Since both b�n;0 and b�n are 'n-consistent, for any " > 0, there exists M which may

depend on " such that

P
�


'�1n b�n;0


 > M� < ", and P �


'�1n b�n


 > M� < ":

Fix arbitrary nonnegative number c such that P (�1 = c) = 0,

P (�n � c)
(1)
= P

�
2 suph2Hn

logZn(h)� 2 suph2H0n
logZn(h) � c

�
(2)
= P

�
2 supHn\khk�M logZn(h)� 2 supH0n\khk�M logZn(h) � c

�
+ �

(3)
= P

�
2 supHn\khk�M logZ

a
n(h)� 2 supH0n\khk�M logZ

a
n(h) + op(1) � c

�
+ �

(4)�! P
�
2 supH1\khk�M logZ1(h)� 2 supH01\khk�M logZ1(h) � c

�
+ �

where (1) is from the de�nition of �n, (2) follows by breaking the whole sample space into
n


'�1n b�n;0


 �M;


'�1n b�n


 �Mo

and its complement, � is some number no larger than 2", (3) is from Assumption (ii) with Zan(h) = Z
a
n(h; 0),

and (4) holds because of the continuous mapping theorem and Assumption (iii). Note also thatHn\khk �M
converges to H1 \ khk �M , and H0n \ khk �M converges to H01 \ khk �M .
From Assumption (iv),

P

 ����� sup
H1\khk�M

logZ1(h)� sup
H1

logZ1(h)

����� > "
!
< ";

and

P

 ����� sup
H01\khk�M

logZ1(h)� sup
H01

logZ1(h)

����� > "
!
< "

by taking " small and M large. Since c is a continuous point on the cdf of �1,

P

 
2 sup
H1\khk�M

logZ1(h)� 2 sup
H01\khk�M

logZ1(h) � c
!
� P (�1 � c) < ":

In the above argument, " can be arbitrarily small, so

P (�n � c)! P (�1 � c) .
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Proof of Theorem 3:. From Lemma 2,

PO (Wn; �; h0)�
R
H11

exp fLRn (S; h; h0)g�(h)dhR
H01

exp fLR (S; h; h0)g�(h)dh
p�! 0:

By a similar argument as in the main context,R
H11

exp fLRn (S; h; h0)g�(h)dhR
H01

exp fLR (S; h; h0)g�(h)dh
=

�
c

1 + c

�r=2
exp

�
(z + h0)

0
P?0IP? (z + h0)

2 (1 + c)

�
:

From Lemma 3,

�n (h0)� (z + h0)0 P?0IP? (z + h0)
p�! 0:

By the continuous mapping theorem, the result holds.

Proof of Theorem 4:. We only prove PO (Wn; �)� Tn
p�! 0 under �0 since all other models indexed by

h are contiguous to the model under �0 from Lemma 7. From the proof of Lemma 8,

PO (Wn; �)�
Z
0<kvk�M

Zdn (v)�2(v)dh = op(1)

for M large enough. When n is large enough,

Tn =

Z
Hvn

Ln

�e�; 
0 + n�1v�
Ln

�e�; 
0� � �2(v)dv

=

Z
0<kvk�M

Ln

�e�; 
0 + n�1v�
Ln

�e�; 
0� � �2(v)dv +
Z
Hvn\kvk>M

Ln

�e�; 
0 + n�1v�
Ln

�e�; 
0� � �2(v)dv:

So it is su¢ cient to prove that (i) for any ", there is M > 0 which may depend on " such that

P

�R
Hvn\kvk>M

Ln(e�;
0+n�1v)
Ln(e�;
0) � �2(v)dv > "

�
< "; (ii)

R
0<kvk�M Z

d
n (v)�2(v)dh �

R
0<kvk�M

Ln(e�;
0+n�1v)
Ln(e�;
0) �

�2(v)dv
p�! 0 for any M > 0.

We show (i) �rst.

Ln

�e�; 
0 + n�1v�
Ln

�e�; 
0� = Zdn

�
vje�; 
0�

= exp
nXn

i=1
z1i

�e��1�
0 + v

n
< qi � 
0

�
+
Xn

i=1
z2i

�e��1�
0 < qi � 
0 + v

n

�o
By Assumption L6 and the strict Jensen�s inequality,

1

n

nX
i=1

z1i

�e�� p�! E [z1i] < 0;

1

n

nX
i=1

z2i

�e�� p�! E [z2i] < 0;
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so
Pn

i=1 z1i

�e��1 �
0 + v
n < qi � 
0

�
+
Pn

i=1 z2i

�e��1 �
0 < qi � 
0 + v
n

�
= Op (1) even when v is large. For

any " > 0,

P

0@Z
Hvn\kvk>M

Ln

�e�; 
0 + n�1v�
Ln

�e�; 
0� � �2(v)dv > "

1A
= P

 
Op (1) �

Z
Hvn\kvk>M

�2(v)dv > "

!

= P

 
Op (1) > "=

Z
Hvn\kvk>M

�2(v)dv

!
:

The rhs can be made arbitrarily small by taking M large.

We now prove (ii). Note that for v on any compact set,

Ln

�e�; 
0 + n�1v�
Ln

�e�; 
0�
= exp

nXn

i=1
z1i (�0)1

�

0 +

v

n
< qi � 
0

�
+
Xn

i=1

�
z1i

�e��� z1i (�0)�1�
0 + v

n
< qi � 
0

�o
exp

nXn

i=1
z2i (�0)1

�

0 < qi � 
0 +

v

n

�
+
Xn

i=1

�
z2i

�e��� z2i (�0)�1�
0 < qi � 
0 + v

n

�o
= Zdn (v) exp fop(1)g
= Zdn (v) + op(1);

where the �rst equality is from breaking z1i
�e�� into z1i (�0)+�z1i �e��� z1i (�0)� and z2i �e�� into z2i (�0)+�

z2i

�e��� z2i (�0)�. The second equality deserves some explanation. From Lemma 4, z1i
�e�� � z1i (�0) �

m (wi)



e� � �0


 and z2i �e�� � z2i (�0) � m (wi)




e� � �0


, where m (w) is the slope function for z1i (�)
and z2i (�). So from Assumption L9, z1i

�e�� � z1i (�0) and z2i �e�� � z2i (�0) are op(1) for any i. Fur-
thermore,

Pn
i=1 1

�

0 +

v
n < qi � 
0

�
= Op(1) and

Pn
i=1 1

�

0 < qi � 
0 + v

n

�
= Op(1) by the famous

Poisson approximation and Assumption L5. So both
Pn

i=1

�
z1i

�e��� z1i (�0)�1 �
0 + v
n < qi � 
0

�
andPn

i=1

�
z2i

�e��� z2i (�0)�1 �
0 < qi � 
0 + v
n

�
are op(1) uniformly for all v on any compact set. The third

equality follows from the Taylor expansion. Now,

Z
0<kvk�M

Ln

�e�; 
0 + n�1v�
Ln

�e�; 
0� � �2(v)dv

=

Z
0<kvk�M

�
Zdn (v) + op(1)

�
�2(v)dv

=

Z
0<kvk�M

Zdn (v)�2(v)dv + op(1);

where the last equality is from the fact that op(1) here is uniform for all v such that 0 < kvk �M .
Proof of Theorem 5:. This involves checking the conditions of Theorem 2.

(i) From Yu (2007), b�n are 'n-consistent under �0. b�n;0 is a special b�n with 
0 known, so is also 'n-consistent
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under �0.26

(ii) From Lemma 5,

sup
khk�M

��lnZn (h)� LRn �S;Zdn; h��� p�! 0 for every M:

(iii) The Skorohod metric is used for this condition to satisfy. Lemma 6 shows the weak convergence on
any compact set.

(iv) lim
v!1

D (v) = �1 almost surely since E[z1i] < 0, E[z2i] < 0 and f(
0) > 0.

lim
kuk!1

�
�1
2
u0J u+ u0JW

�
= �1

almost surely since W is tight.

Proof of Theorem 6:. From Proposition 1.1 of Beran (1997) and Assumption L9, we need only check

that for every sequence �n converging to �0,

Tn (�n)
(�n;
0) PO1 (�) ;

where PO1 (�) is de�ned in (11).

By checking the proof of Theorem 4, Tn (�n)�PO (Wn; �)
p�! 0 under (�n; 
0). The only change in the

proof is to substitute op(1) by o(1). To prove PO (Wn; �)
(�n;
0) PO1 (�), the proof procedure of Lemma 8

and Corollary 1 can be used. The only change is to prove

lnZn (h) = LRn
�
S;Zdn; h

�
+ op (1) ;

where the op (1) is uniform for h on any compact set in Rk under (�n; 
0) instead of �0. But in the proof of
Lemma 5, Theorem 7.2 and Lemma 19.31 of Van der Vaart (1998) can be strengthened to (�n; 
0) instead

of a �xed point �0 by Theorem II.1.2 in Ibragimov and Has�minskii (1981).

Appendix C: Lemmas

In theorem 1, assumption (ii) is a very high-level assumption. The following Lemma 0 provides some primary

conditions and will be used in both examples.

Lemma 0 If

(i) there is an approximation logZan(h; h0) of logZn(h; h0) such that for any M <1,

sup
khk�M

jlogZn(h; h0)� logZan(h; h0)j
p�! 0

under h0.

(ii) for any " > 0, there is M > 0 which may depend on " and n� such that when n > n�, Zn(h; h0) and

Zan(h; h0) satisfy the following two conditions:

26b
n;0 = 
0, so is consistent at any rate.
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(1)

P

 Z
H1n\khk>M

Zn(h; h0)�(h)dh > "

!
< "; P

 Z
H0n\khk>M

Zn(h)�(h; h0)dh > "

!
< ";

P

 Z
H01\khk>M

Zan(h; h0)�(h)dh > "

!
< "; P

 Z
H11\khk>M

Zan(h; h0)�(h)dh > "

!
< ";

(2)

P

 Z
H01\khk�M

Zan(h; h0)�(h)dh < "

!
< ";

P

 �����
Z
H11\khk�M

Zan(h; h0)�(h)dh

����� > M
!

< ":

Then

PO (Wn; �; h0)�
R
H11

Zan(h; h0)�(h)dhR
H01

Zan(h; h0)�(h)dh

p�! 0:

If furthermore,

(iii) there is a metric on the space of the sample path of Zan(h; h0) such that
R
khk�M is a continuous operator

on that space and

Zan(h; h0)
h0 Z1(h; h0)

for h on any compact set.

(iv) for any " > 0, there is M > 0 which may depend on " such that

P

 Z
H11\khk>M

Z1(h; h0)�(h)dh > "

!
< "; P

 Z
H01\khk>M

Z1(h; h0)�(h)dh > "

!
< ";

Then

PO (Wn; �; h0)
h0 
R
H11

Z1(h; h0)�(h)dhR
H01

Z1(h; h0)�(h)dh
:

Proof. First, note that

PO (Wn; �) =

R
H1n

Zn(h)�(h)dhR
H0n

Zn(h)�(h)dh
=

R
H1n\khk�M Zn(h)�(h)dh+

R
H1n\khk�M Zn(h)�(h)dhR

H0n\khk�M Zn(h)�(h)dh+
R
H0n\khk�M Zn(h)�(h)dh

and R
H11

Zan(h)�(h)dhR
H01

Zan(h)�(h)dh
=

R
H11\khk�M Z

a
n(h)�(h)dh+

R
H11\khk�M Z

a
n(h)�(h)dhR

H01\khk�M Z
a
n(h)�(h)dh+

R
H01\khk�M Z

a
n(h)�(h)dh

:
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For n large enough, fH1n \ khk �Mg = fH11 \ khk �Mg. SoZ
H1n\khk�M

Zn(h)�(h)dh

=

Z
H11\khk�M

exp flnZan(h) + op(1)g�(h)dh

=

Z
H11\khk�M

Zan(h) exp fop (1)g�(h)dh

=

Z
H11\khk�M

Zan(h)�(h)dh+ op (1)

where the �rst equality is from assumption (i), and the third equality is because op (1) here is uniform

for M and a Taylor expansion exp fop (1)g = 1 + op (1) can apply. Similarly,
R
H0n\khk�M Zn(h)�(h)dh �R

H01\khk�M Z
a
n(h)�(h)dh = op (1).

For two nonnegative random sequences fXng and fYng, if Xn > " for some " > 0 with probability

approaching 1, Yn = Op(1), and there are two other sequences fXa
ng and fY an g such that Xn �Xa

n = op(1)

and Yn � Y an = op(1), then���� Yn + op(1)Xn + op(1)
� Y an + op(1)

Xa
n + op(1)

���� =

����YnXa
n � Y anXn + op(1) (Yn � Y an +Xa

n �Xn) + op(1)
(Xn + op(1)) (Xa

n + op(1))

����
=

����Xn (Yn � Y an ) + Yn (Xn �Xa
n) + op(1)

(Xn + op(1)) (Xa
n + op(1))

����
=

���� Yn � Y anXa
n + op(1)

+
Yn (Xn �Xa

n)

(Xn + op(1)) (Xa
n + op(1))

+ op(1)

����
= op(1):

Let Xn =
R
H0n\khk�M Zn(h)�(h)dh, Yn =

R
H1n\khk�M Zn(h)�(h)dh, X

a
n =

R
H01\khk�M Z

a
n(h)�(h)dh, and

Y an =
R
H11\khk�M Z

a
n(h)�(h)dh, we prove the �rst result.

To prove the second result, we need only to proveR
H11

Zan(h)�(h)dhR
H01

Zan(h)�(h)dh

�0 
R
H11

Z1(h)�(h)dhR
H01

Z1(h)�(h)dh
:

By the continuous mapping theorem and Assumption (iii),
R
H11\khk�M Z

a
n(h)�(h)dh

�0 
R
H11\khk�M Z1(h)�(h)dh,

and
R
H01\khk�M Z

a
n(h)�(h)dh

�0 
R
H01\khk�M Z1(h)�(h)dh. From Assumption (ii)(2), P

�R
H01\khk�M Z1(h)�(h)dh < "

�
< ", and P

����RH11\khk�M Z1(h)�(h)dh
��� > M� < ": Combining this fact with Assumption (iv), a similar

analysis as above reduces the problem to proveR
H11\khk�M Z

a
n(h)�(h)dhR

H01\khk�M Z
a
n(h)�(h)dh

�0 
R
H11\khk�M Z1(h)�(h)dhR
H01\khk�M Z1(h)�(h)dh

;

but this holds from an application of the continuous mapping theorem.

Remark 4 P
�R

H01\khk�M Z
a
n(h)�(h)dh < "

�
< " in (ii)(2) is satis�ed in two leading cases: (i) H01 =

f0g; that is, the null hypothesis is simple, then
R
H01\khk�M Z

a
n(h)�(h)dh = 1; (ii) the asymptotic distribution

of
R
H01\khk�M Z

a
n(h)�(h)dh is continuous, since

R
H01\khk�M Z

a
n(h)�(h)dh � 0 almost surely.
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Tests in LAN Models

Lemma 1 Suppose Assumptions C0-C3 hold, then

lnZn (h; h0) = LRn (S; h; h0) + op (1) ;

where the op (1) is uniform for h on any compact set in Rk under h0.

Proof. From Lemma 7.6 of Van der Vaart 1998), the model is di¤erentiable in quadratic mean (DQM) at

�0 by Assumptions C0-C2. Theorem 7.2 of Van der Vaart 1998) shows that,

lnZn (h) = LRn (S; h) + op (1) ;

where the residual is op (1) only under P�0 . But from Lemma 19.31 of Van der Vaart (1998) and Assumption

C3, this op (1) can be strengthened to be uniform for h on any compact set.

Remark 5 A corollary of Lemma 1 is that all models indexed by h are contiguous to each other from Example
6.5 of Van der Vaart (1998).

Lemma 2 Suppose Assumptions C0-C3 hold, then

PO (Wn; �; h0)�
R
H11

exp fLRn (S; h; h0)g�(h)dhR
H01

exp fLR (S; h; h0)g�(h)dh
p�! 0

under h0.

Proof. From Lemma 0, we need only check assumptions (i) and (ii). logZan(h) = LRn (S; h) in this case.

(i) is satis�ed by Lemma 1, so we concentrate on the proof of (ii).

We show (ii)(1) �rst. For any " > 0,

P

 Z
H1n\khk>M

Zn(h)�(h)dh > "

!

� "�1E

Z
H1n\khk>M

Zn(h)�(h)dh

= "�1
Z
H1n\khk>M

E [Zn(h)]�(h)dh

= "�1
Z
H1n\khk>M

�(h)dh;

where the inequality is from Markov�s inequality, the �rst equality holds by Fubini�s theorem, and the second

equality holds by E [Zn(h)] = 1. Since �(h) is a density on H1n, the rhs can be made arbitrarily small for

all n by taking M large. Similarly, P
�R

H0n\khk>M Zn(h)�(h)dh > "
�
< ".
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Next, Z
H11\khk>M

exp fLRn (S; h)g�(h)dh

=

Z
H11\khk>M

exp

�
�1
2
h0Ih+ h0Iz

�
�(h)dh

=

Z
H11\khk>M

exp

�
�1
2
(z � h)0 I (z � h)

�
exp

�
1

2
z0Iz

�
�(h)dh

�
Z
H11\khk>M

exp

(
1

2

 
1p
n

nX
i=1

S (wij�0)
!0
I�1

 
1p
n

nX
i=1

S (wij�0)
!)

�(h)dh

� exp

8<:12





 1p

n

nX
i=1

S (wij�0)






2 

I�1



9=;
Z
H11\khk>M

�(h)dh;

where the last inequality follows from Assumption C2. Since 1p
n

nP
i=1

S (wij�0) = Op (1) and I > 0, the rhs can

be made arbitrarily small by taking M large. Similarly, P
�R

H01\khk>M exp fLRn (S; h)g�(h)dh > "
�
< ".

We now establish (ii)(2). First, note that

exp fLRn (S; h)g

= exp

�
�1
2
h0
�
P + P?

�0
I
�
P + P?

�
h+ h0

�
P + P?

�0
I
�
P + P?

�
z

�
= exp

�
�1
2
(Ph)

0
I (Ph) + (Ph)

0
IPz

�
exp

�
�1
2

�
P?h

�0
I
�
P?h

�
+
�
P?h

�0
IP?z

�
= exp

�
�1
2
(Ph� Pz)0 I (Ph� Pz) + 1

2
(Pz)

0
IPz

�
exp

�
�1
2

�
P?h� P?z

�0
I
�
P?h� P?z

�
+
1

2

�
P?z

�0
IP?z

�
:

Since fH01 \ khk �Mg = fkPhk � cg for some c > 0,Z
H01\khk�M

exp fLRn (S; h)g�(h)dh

=

Z
kPhk�c

exp

�
�1
2
(Ph� Pz)0 I (Ph� Pz) + 1

2
(Pz)

0
IPz

�
�1 (Ph) d (Ph)

= exp

�
1

2
(Pz)

0
IPz

�Z
kPhk�c

exp

�
�1
2
(Ph� Pz)0 I (Ph� Pz)

�
�1 (Ph) d (Ph)

which has a continuous asymptotic distribution since z weakly converges to z under �0.Z
H11\khk�M

exp fLRn (S; h)g�(h)dh

�
Z
kPhk�M

exp

�
�1
2
(Ph� Pz)0 I (Ph� Pz) + 1

2
(Pz)

0
IPz

�
�1 (Ph) d (Ph)
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Z
kP?hk�M

exp

�
�1
2

�
P?h� P?z

�0
I
�
P?h� P?z

�
+
1

2

�
P?z

�0
IP?z

�s
cr jIj
(2e�)r expn� c2 �P?h�0 IP?ho d �P?h�

� exp

�
1

2
(Pz)

0
IPz

�
exp

�
1

2

�
P?z

�0
IP?z

�
= Op (1) ;

where the last equality is from the fact that both Pz and P?z are Op (1).

Remark 6 The convergence in probability to zero can be understood under any probability measure indexed
by h0, since they are all contiguous to each other from Remark 5.

Remark 7 A corollary of Lemma 2 is that PO (Wn; �; h0)
h0 

R
Ah6=0 Z1(h;h0)�(h)dhR
Ah=0

Z1(h;h0)�(h)dh
, where Z1(h; h0) is de-

�ned in (9). This is basically an application of the continuous mapping theorem, since
R
H11

LRn(S;h�h0)�(h)dhR
H01

LR(S;h�h0)�(h)dh
is a continuous function of z.

Lemma 3 Suppose Assumptions C0-C4 hold, then

�n (h0)� (z + h0)0 P?0IP? (z + h0)
p�! 0

under h0.

Proof. This is essentially Theorem 16.7 of Van der Vaart (1998).

Tests on the Location of a Threshold Point

Lemma 4 (Lipschitz Continuity) Under Assumptions L0-L1 and L3-L4, both z1 (wj�) and z2 (wj�) are
Lipschitz continuous in � for � in a neighborhood of �0 with the slope function in L

2 space.

Proof. Only the result for z1 (wj�) are proved, since the proof for z2 (wj�) is similar.
For � and � in a neighborhood of �0, by Assumptions L3 and L0,��������ln

�1
�2
fejx;q

�
�1e+x

0(�1��2)
�2

jx; q; �
�

fejx;q (ejx; q; �)
� ln

�1
�2
fejx;q

�
�1e+x

0(�1��2)
�2

jx; q; �
�

fejx;q (ejx; q; �)

��������
� m (w)

�
�2 + �1
�2�2

(j�1 � �1j+ j�2 � �2j) +
kxk
�2

�

�1 � �1

+ 

�2 � �2

�+ k�1k+ k�2k�2�2
kxk j�2 � �2j+ k� � �k

�
+

j�1 � �1j
min f�1; �1g

+
j�2 � �2j
min f�2; �2g

� c (1 +m (w) +m (w) kxk)
��� � ��� :

From the Cauchy-Schwarz inequality, 1 +m (w) +m (w) kxk is in L2 from Assumption L3 and L4.

Lemma 5 Suppose Assumptions L0-L5 hold, then

lnZn (h; h0) = LRn
�
S;Zdn; h; h0

�
+ op (1) ;

where the op (1) is uniform for h on any compact set in Rk under h0.
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Proof. The proof follows from Lemma 2 of Yu (2007).

Lemma 6 Suppose Assumptions L0-L7 hold, then

lnZn (h; h0)
h0 Z1 (h; h0)

for h on any compact set in Rk, where Z1 (h; h0) is speci�ed in (10).

Proof. The result follows from Lemma 6 of Yu (2007).

Lemma 7 Suppose Assumption L0-L7 holds, then the densities fLn (�0 + 'nh) : n � 1g of Wn at a �xed

h 2 Hn is contiguous to the null densities fLn (�0) : n � 1g.

Proof. The proof uses Lemma 6.4 (iii) of Van der Vaart (1998). We need only prove that E [Z1 (h)] = 1.
Only the case with v < 0 is proved, and the case with v > 0 is similar.

E

�
exp

�
�1
2
u0J u+ u0JW +D (v)

��
= exp

�
�1
2
u0J u

�
E [exp fu0JWg]E [exp fD (v)g]

= exp

�
�1
2
u0J u

�
exp

�
1

2
u0JJ�1J u

�
E

24exp
8<:
N1(jvj)X
i=1

ln

�10
�20
fejx;q

�
�10ei+x

0
i(�10��20)
�20

jxi; qi; �0
�

fejx;q (eijxi; qi;�0)
jqi = 
0�

9=;
35

= E

24E
24N1(jvj)Y

i=1

�10
�20
fejx;q

�
�10ei+x

0
i(�10��20)
�20

jxi; qi; �0
�

fejx;q (eijxi; qi;�0)
jqi = 
0�

������N1(jvj)
3535

= E

24N1(jvj)Y
i=1

E

24 �10
�20
fejx;q

�
�10ei+x

0
i(�10��20)
�20

jxi; qi; �0
�

fejx;q (eijxi; qi; �0)

3535
= 1

where the second equality is from the moment generating function of a multivariate normal distribution, the

third equality is from the law of iterated expectation (LIE), the fourth equality is from the independence of

fz1igi�1 and N1 (�) and the LIE, and the last equality is from the fact that the integral of a density function

is always 1.

Lemma 8 Suppose Assumption L0-L5 holds, then

PO (Wn; �; h0)�
R
(Rnf0g)�Rk exp

�
LRn

�
S;Zdn; h; h0

�	
�(h)dhR

f0g�Rk exp fLRn (S;Zdn; h; h0)g�(h)dh
p�! 0

under h0.

Proof. In this proof, we use an equivalent norm with Euclidean norm as kxk = max
i
xi for a vector x 2 Rk.

Lemma 0 is used again. Now, logZan(h) = LRn
�
S;Zdn; h

�
. (i) follows from Lemma 5, so we concentrate on

the checking of (ii).

(ii)(1). P
�R

H1n\khk>M Zn(h)�(h)dh > "
�
< " and P

�R
H0n\khk>M Zn(h)�(h)dh > "

�
< " can be proved
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similarly as in Lemma 2.Z
H11\khk>M

exp
�
LRn

�
S;Zdn; h

�	
�(h)dh

=

Z
kuk>M

exp

�
�1
2
u0J u+ u0J z

�
�1(u)du �

Z
kvk>M

Zdn(v)�2(v)dv:

The �rst term on the rhs is op (1) by a similar argument as in Lemma 2. As to the second term on the rhs,

�rst note that E[z1i] < 0, E[z2i] < 0 by the strict Jensen�s inequality. Second, from Assumption L5, the

interarrival time between jumps is Op(1). So Zdn(v) is exponentially decaying and is uniformly Op (1) for all

v. In consequence,
R
kvk>M Z

d
n(v)�2(v)dv = Op (1)

R
kvk>M �2(v)dv can be made arbitrarily small by taking

M large. Similarly, P
�R

H01\khk>M exp
�
LRn

�
S;Zdn; h

�	
�(h)dh > "

�
< ".

(ii)(2). The �rst part can be proved similarly as the checking of (ii)(2) in Lemma 2 since it is only an

integration on the regular parameters. To prove
R
H11\khk�M exp

�
LRn

�
S;Zdn; h

�	
�(h)dh = Op (1), we need

only to prove
R
kvk�M Z

d
n(v)�2(v)dh = Op (1) by (ii)(2) of Lemma 2. As argued in Step (i), Z

d
n(v) = Op(1)

uniformly for v, the result follows.

Corollary 1 Suppose Assumption L0-L7 holds, then

PO (Wn; �; h0)
h0 
Z
Rnf0g

exp fDv0(v)�Dv0(0)g�2(v)dv.

Proof. From Lemma 0, we need only check assumptions (iii) and (iv). From Lemma 8,R
(Rnf0g)�Rk exp

�
LRn

�
S;Zdn; h

�	
�(h)dhR

f0g�Rk exp fLRn (S;Zdn; h)g�(h)dh
=

Z
Rnf0g

Zdn(v)�2(v)dv.

(iii) follows from Lemma 6 with the Skorohod metric used. For (iv), we need only check P
�R

jvj>M exp fD(v)g�2(v)dv > "
�

< ". A similar argument as in Lemma 8 shows that exp fD(v)g is uniformlyOp (1) for all v, so
R
jvj>M exp fD(v)g�2(v)dv

can be made arbitrarily small by taking M large.

Appendix D: PO1 (�; h0) and �1 (h0) in Section 4

In this appendix, the power function is derived by calculating PO1 (�; h0) and �1 (h0) explicitly.

PO1 (�; h0)

In this case, �nding b and the local power is reduced to the derivation of the distribution ofR
Rnf0g exp fDv0(v)�Dv0(0)g�2(v)dv for any v0 2 R.
Suppose the interarrival times of Dv0(v) are i.i.d. exponential random variables fT1ig1i=0 and fT2ig

1
i=0
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with mean 1
fq(
0)

starting from v0, thenZ
Rnf0g

exp fDv0(v)�Dv0(0)g�2(v)dv

=

Z v0

�1
exp fDv0(v)�Dv0(0)g�2(v)dv +

Z 1

v0

exp fDv0(v)�Dv0(0)g�2(v)dv

=
1

exp fDv0(0)g

24Z v0

v0�T10
�2(v)dv +

1X
i=1

exp

0@ iX
j=1

z1j

1AZ v0�
Pi�1

j=0 T1i

v0�
Pi

j=0 T1i

�2(v)dv

+

Z v0+T20

v0

�2(v)dv +
1X
i=1

exp

0@ iX
j=1

z2j

1AZ v0+
Pi

j=0 T2i

v0+
Pi�1

j=0 T2i

�2(v)dv

35
where the point mass in �2(v) is substituted by any denisty value.

When �2(v) =
p

c
2e� exp�� c

2v
2
	
,Z

Rnf0g
exp fDv0(v)�Dv0(0)g�2(v)dv

=
1

exp fDv0(0)g

24� ���pcv0p
c(v0�T10) +

1X
i=1

exp

0@ iX
j=1

z1j

1A� ����pc(v0�Pi�1
j=0 T1i)p

c(v0�
Pi

j=0 T1i)

+�
���pc(v0+T20)p
cv0

+

1X
i=1

exp

0@ iX
j=1

z2j

1A� ����pc(v0+Pi
j=0 T2i)p

c(v0+
Pi�1

j=0 T2i)

35 ;
where �

��v2
v1 � � (v2)� � (v1) and � (�) is the cdf of a standard normal distribution.

When �2(v) = 1;Z
Rnf0g

exp fDv0(v)�Dv0(0)g�2(v)dv

=
1

exp fDv0(0)g

24T10 + 1X
i=1

exp

0@ iX
j=1

z1j

1AT1i + T20 + 1X
i=1

exp

0@ iX
j=1

z2j

1AT2i
35

depends on v0 only through exp fDv0(0)g.
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�1 (h0)

First, we will derive the point-wise power envelope. For this purpose, the distributions ofD (v0) and �Dv0 (0)
are developed. If v0 < 0, then for any � 2 R,

P (D (v0) � �)

= P

0@N1(jv0j)X
i=1

z1i � �

1A
=

1X
k=0

P

0@N1(jv0j)X
i=1

z1i � �

������N1(jv0j) = k
1AP (N1(jv0j) = k)

=
1X
k=0

P

 
kX
i=1

z1i � �
!
P (N1(jv0j) = k)

=

1X
k=0

e�fq(
0)jv0j (fq (
0) jv0j)
k

k!
P

 
kX
i=1

z1i � �
!
:

If z1i follows a nonstable distribution, then the cdf of
kP
i=1

z1i is hard to derive. In practice, the simulation

method can be used to derive this cdf. If z1i follows N
�
� �21
2s2 ;

�21
s2

�
as in the example of Section 4 without

threshold e¤ect in variance, then P
�

kP
i=1

z1i � �
�
= �

�
�p
k�1=s

+
p
k �12s

�
. The case of v0 > 0 can be

similarly developed with z1i substituted by z2i in the �nal equality above. As mentioned in the main

test, there is a point mass at zero in the distribution of D (v0). The probability of this point mass is

P (N1(jv0j) = 0) = e�fq(
0)jv0j:For a �xed v0, there may be no b such that P (D (v0) � ln b) = � and the

randomized test is used. Usually, such v0 falls into an interval around 0, but this is not a general result.27

As to �Dv0 (0), a similar procedure can be used. If v0 < 0, then for any � 2 R,

P (�Dv0 (0) � �)

= P

0@N2(jv0j)X
i=1

z2i � ��

1A
=

1X
k=0

P

 
kX
i=1

z2i � ��
!
P (N2(jv0j) = k)

=
1X
k=0

e�fq(
0)jv0j (fq (
0) jv0j)
k

k!
P

 
kX
i=1

z2i � ��
!
:

If z1i follows N
�
� �21
2s2 ;

�21
s2

�
; then P

�
kP
i=1

z2i � ��
�
= �

�
�p
k�1=s

�
p
k �12s

�
. For the case v0 > 0, z2i is

substituted by z1i in the last equality.

For the likelihood ratio test, the distribution of �1 is derived to �nd the critical value. Notice that there

is a point mass at zero and no density on � < 0 in the distribution of �12 . The probability of the point

27Note that P (D (v0) > 0) =
1P
k=1

e�fq(
0)jv0j(fq(
0)jv0j)
k

k!
P

 
kP
i=1

z1i > 0

!
is not generally a decreasing function of jv0j.
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mass is p10 from Yu (2007). When � > 0,

P

�
�1
2
� �

�
= p10 + P (0 < max fZ1; Z2g � �)

= F1 (0)F2 (0) +

Z �

0

dF1 (x)F2 (x)

= F1 (0)F2 (0) + F1 (�)F2 (�)� F1 (0)F2 (0)
= F1 (�)F2 (�)

where F1 (�) is the cdf of the random variable Z1 � max

�
kP
i=1

z1i, k = 1; 2; � � �
�
, and F2 (�) is similarly

understood. From Yu (2007), F1 (�) satis�es a homogeneous Wiener-Hopf equation of the second kind with
boundary condition F1(�1) = 0, F1(1) = 1. So the density of �12 on the positive axis is f1 (x)F2(x) +

F1(x)f2(x). When the distributions of z1i and z2i are the same, then F1 (�) = F2 (�) and P
�
�1
2 � �

�
reduces

to F1 (�)
2, so the density on the positive axis is 2f1 (x)F1(x). When � � 1 � p10, then the critical value

b � 0 is determined by
F1 (b)F2 (b) = 1� �.

The power function for v0 < 0 is

P

�
sup
v2R

fDv0 (v)�Dv0 (0)g > b
�

=
1X
j=0

P

�
sup
v2R

fDv0 (v)�Dv0 (0)g > b;N2 (jv0j) = j
�

=

1X
j=0

e�fq(
0)jv0j (fq(
0 jv0j)
j

j!
P

 
sup
v2R

Dv0 (v)�
jX
i=1

z2i > b

!
;

where

P

 
sup
v2R

Dv0 (v)�
jX
i=1

z2i > b

!

= P

 
jX
i=1

z2i < �b; sup
v2R

Dv0 (v) = 0

!
+

1X
k=1

P

 
kX
i=1

z1i �
jX
i=1

z2i > b;MaxL = k

!

+
1X
k=1

P

 
kX
i=1

z2i �
jX
i=1

z2i > b;MaxR = k

!
;

MaxL = k means the maximum of Dv0 (v) is attained at the kth jump on the left of v0, and MaxR = k

can be similarly understood. There is a recursion form for the above probabilities. Such a recursion solution

is a natural extension of Appendix D in Yu (2007). The power on v0 > 0 can be similarly derived. But

when � > 1 � p10, no such a b exists and the randomized test is used. The power in this case requires the
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calculation of P (supv2R fDv0 (v)�Dv0 (0)g = 0). Note that for v0 < 0;

P

�
sup
v2R

fDv0 (v)�Dv0 (0)g = 0
�

=
1X
k=0

P (MaxR = k;N2 (jv0j) = k)

=
1X
k=0

e�fq(
0)jv0j (fq(
0) jv0j)
k

k!
P (MaxR = k)

= e�fq(
0)jv0jp10 +
1X
k=1

e�fq(
0)jv0j (fq(
0) jv0j)
k

k!
p2k

where the second equality follows from the independence between the two events fMax = kg and fN2 (jv0j) = kg,
and p2k = P (MaxR = k). A similar result applies to v0 > 0 with p2k substituted by p1k.
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