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Abstract

In this paper, we develop the asymptotic theory for threshold regression under misspecification, which
is especially useful in the regression tree analysis of machine learning. First, we provide a thorough
characterization of the asymptotic distribution of the least square estimator, which integrates some
fragmented asymptotic results of threshold regression in the literature into one unified framework of
misspecification. The asymptotic distribution depends on the fitted threshold regression model being
discontinuous or continuous and also on the rate of the limit objective function shrinking to zero in the
direction of threshold parameter. The partially identified and unidentified models are also discussed.
Second, we provide a LR-based inference method for the threshold point, which can be treated as a

misspecification-robust extension of the method in Hansen (2000, Econometrica, 68, 575-603).
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1 Introduction

Misspecification is a popular problem in econometrics. This problem got much attention since White (1982)
who examines the consequences and detection of model misspecification when using maximum likelihood
techniques for estimation and inference. Actually, the usual OLS estimator is a misspecified estimator since
the conditional mean may not take the linear form of the covariates, see, e.g., White (1980, 1981). In
quantile regression, Angrist et al. (2006) study the estimation and inference in a misspecified model. In
the GMM framework, Hall and Inoue (2003) study the consequences of misspecification and develop the
asymptotics for the pseudo-parameters. In treatment effects evaluation, Yu (2016) studies the pseudo-true
values of four estimators in the framework of Heckman and Vytlacil (2005) and also check two responses
to model misspecification: the local sensitivity analysis and the partial identification analysis. Following
these pioneers, this paper intends to develop the asymptotic theory for the least squares estimator (LSE) in
misspecified threshold regression (TR).

In fact, the threshold autoregressive regression (TAR) is initiated in misspecified time series models.
Tong and Lim (1980, p. 250) motivate the threshold model for approximating the dynamics of some time
series. Later, Petruccelli (1992) provides a rigorous argument that threshold autoregressive models can
approximate a general class of time series processes (e.g., exponential autoregressive and invertible bilinear
processes) almost surely. Tong (1982) gives some Bayesian underpinnings for the threshold approximation.
However, asymptotic results for the least squares estimation in the misspecified model are yet to be developed.

This paper is more motivated by the regression tree analysis in machine learning. In this sense, this paper
is close to Biithlmann and Yu (2002) (BY hereafter) and Banerjee and McKeague (2007) (BM hereafter) in
spirit. Decision tree learning is a basic approximation and predictive approach nowadays. Depending on the
predicted outcome is discrete or continuous, it is called classification tree and regression tree respectively,
and combined as so-called Classification And Regression Tree (CART). See Breiman et al. (1984) for an
early summary about CART, and Hastie et al. (2009) and Efron and Hastie (2016) for recent treatments at
the textbook level. In TR language, the regression at each step of regression tree is a discontinuous threshold
regression (DTR), i.e., the fitted model has a discontinuity at the threshold point. We focus on parametric
DTR in this paper although nonparametric DTR is also popular in the literature. For example, threshold
regression with endogeneity will reduce to a nonparametric DTR as shown in Yu and Phillips (2018a),
and regression discontinuity designs (RDDs) with unknown discontinuity points studied in Porter and Yu
(2015) are also special cases of nonparametric DTR. Besides DTR, continuous threshold regression (CTR)
introduced by Chan and Tsay (1998) (CT hereafter) in the context of autoregression is also a standard tool in
nonlinear econometric modeling; see also Feder (1975a) for early developments with triangular independent
samples. CTR imposes restrictions on DTR that guarantee the fitted model is continuous but has a kink (i.e.,
the slope of the threshold variable has a discontinuity) at the threshold point; consequently, the decisions
based on DTR and CTR are often called hardthresholding (or hard) and softthresholding (or soft) decision,
respectively. Many nonparametric techniques are essentially CTR under different guises. For example,
Multivariate Adaptive Regression Spline (MARS) proposed by Friedman (1991) is basically an extension of
CTR. Similar to nonparametric DTR, nonparametric CTR also has important applications in econometrics,
e.g., regression kink designs (RKD) popularized by Card et al. (2015) are actually nonparametric CTR, with
the threshold points known. This paper also studies parametric CTR but takes a different view. We do not
impose restrictions as in CT; rather, we run DTR but DTR degenerates to CTR, which is close to Hidalgo,
Lee and Seo (2019) (HLS hereafter) in spirit but they assume the model is correctly specified. For future
references, we label DTR as Case I and CTR as Case II. It turns out the asymptotic theories of LSE in these

two cases are dramatically different.



Suppose the true model is

y=m(x,q) + ¢, Ble|z,q] =0,

but we mistakenly fit the model as
y=xP11(q <) +xByl(g>7) +e=xB, +x'01(¢ <) +e, (1)

where x' = (1,2',¢) € R%!, 1(-) is the indicator function, and the parameter of interest is § = (’y, B/)/ with
8 = (B,,8,) or equivalently, = (v, 35,8') with § = 8; — 8, being the threshold effect. To distinguish
m(x,q) in the two regimes, we write

m(x,q) =m (2,q) 1(q < 7o) +ma (z,q) 1(g > 7,),

where we use the subscript 0 to indicate the pseudo-true value of a parameter of interest. Correspondingly,
the original error term € = €11(q < vy) +€21(¢ > () with e = y — my (z, ¢) and the pseudo-true error term
e=-e1l(q <o) +eal(qg > 7yy) with e, =y — X' 849, £ = 1,2. Besides the most general form of m(z,¢) in the

true model, we give two specific examples to show the possibility of misspecification. In the first example,

~

m(x7Q) = me(maq)l(’}/[—l <z S ’Yé)a (2)
(=1

where my(x, q) is a smooth function, z is a threshold variable which may be different from ¢, the number of
regimes L > 2, and —o0 = 75 < 7; < -+ < 7y, = 00. In other words, the true model is different from the
fitted model in at least three aspects: (i) the threshold variable may not be ¢; (ii) there may be more then
two regimes; (iii) the conditional mean in each regime may not be a linear function of covariates. The second
example is the varying coefficient model (VCM); see Fan and Zhang (2008) for a review on this model. The
VCM is specified as

m(z,q) = x'B(q),

where (q) is a smooth function of ¢. In the fitted TR model, 5(gq) takes a parametric discontinuous form:
B0l (g < o) + Bopl (¢ > 7p)- In other words, 5, is an average of 8(q) for ¢ < 7, and By is an average of
B(q) for ¢ > ~,.

For a possibly misspecified TR model, we can first conduct specification testing as in Yu et al. (2018)
before estimation. However, we will follow the spirit of White (1980, 1981, 1982) — estimate the misspecified
model directly but make the asymptotic theory robust to misspecification. The only estimator studied in
this paper is the LSE of 6, say 5, which is defined as the minimizer of

n

S y-xB1(g <7) - X By1lg > ), (3)

=1
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S0 =55
where the constant 1/2 is added to S, (6) for convenience in expressing the asymptotic distribution of LSE.
Besides the distinction of DTR and CTR, the asymptotic theory of LSE also critically depends on the
behavior of the probability limit of S, (0), say S (), in the neighborhood of «y,, especially the rate of S ()
shrinking to zero in the direction of . We will index this rate by «; in DTR, « is restricted in [1,2] and in
CTR, in [2,4]. Combining with the distinction of DTR and CTR, we will label a case in DTR with a = 1.5
as I(1.5) and a case in CTR with o = 2.7 as II(2.7), etc. Under this labeling, the correctly specified DTR
in Chan (1993) is a special case of I(1), the correctly specified DTR but degenerating to CTR in HLS is a
special case of II(3). All other cases can happen only in misspecified TR models. In other words, the two



cases in the correctly specified DTR are rare but become the focal points of research. It may be unexpected
that the asymptotic theory for LSE in misspecified TR is much more complicated than that in White (1980,
1981) given that only a threshold point is added in White’s linear approximation of the conditional mean.
Besides the correctly specified models, many misspecified TR models studied in the literature also fall
in the framework of this paper as special cases. First, the model studied in BY and BM is a special case
of I(2) with x = 1. As in this paper, their data are randomly sampled. Later, Seo (2015) extends BY and
BM to include nonconstant regressors and cover time series and Koo and Seo (2015) extend to structural
break models for forecasting purposes. Both Seo (2015) and Koo and Seo (2015) require S (6) to be the
second-order differentiable and €; = €5, while we do not impose such restrictions. Second, the structural
change model studied in Bai (1997a) (see also Chong (1995)) can be treated as a special case of I(1) with
x = 1. He assumes m(z, q) takes the piece-wise constant form. Later, Gonzalo and Pitarakis (2002) (GP
hereafter) extend Bai (1997a) to multiple-regime TR. Specifically, their m(z, q) takes the form of with
me(x,q) = x'B, and L > 3. Both Bai (1997a) and GP show that 5 must converge to one of the original
threshold points, 4, ,v,_;. Bai (1997a) develops the asymptotic theory of LSE in his simple setup, while
GP show that 7 is n-consistent but without any asymptotic distribution; this paper will fill this gap. Third,
Perron and Yamamoto (2015) use the LSE to estimate the structural break points when there is endogeneity,
so their model can be treated as a special case of with z = t and their estimator is constructed under
misspecification; see also Chong (2003) and Bai et al. (2008) for related setups. Actually, their model can
be treated as a special case of I(1). Yu (2015b) shows that their consistency proof is flawed but the LSE is
indeed consistent to the true structural break point because the threshold variable in the structural change
model is the time index ¢ which is independent of the rest components of the model. On the other hand,
Yu (2019) shows that their asymptotic distribution of 7 is correct only if the endogeneity takes the linear
form and is incorrect in general; Yu (2019) also provides the correct asymptotic theory for LSE under more
general endogeneity forms. This paper extends Yu (2019) to misspecified TR where the threshold variable
g need not be independent of the other elements of the model. Note that in misspecified TR, 7 need not
converge to any true threshold point as shown in Yu (2013). To the best of our knowledge, these are the
only misspecified TR models studied in the literature. Combining both correctly specified and misspecified
TR models in the literature, only some special cases of I(1), I(2) and II(3) are carefully studied until now.
It is well known that when the model is misspecified, the parameters of interest can be partially identified
or even unidentified. This also happens in misspecified TR. For example, Bai (1997a) studies the asymptotic
theory of ¥ when L = 3 and S (6) achieves the minimum at the two original break points. For another
example, Yu and Phillips (2019) derive the asymptotic distributions of 5 and B in correctly specified TR
models with g = 0, i.e., the model is fully unidentified. Note that in correctly specified TR models, 6 is
either point identified or fully unidentified, and no intermediate scenario can happen, while in misspecified TR
models, partial identification can indeed happen. We are not aware of any developments in the asymptotic
theory of 0 when 6 is not point identified in general misspecified TR models. This paper will fill this gap.
The asymptotic theory developed in this paper is very useful for prediction purposes as illustrated in BY,
Seo (2015) and Koo and Seo (2015), but we will focus our attention on inferences especially on the inference
of v as in Hansen (2000), BM and HLS. In all models regardless of point identified or not, we follow Feder
(1975b) and Hansen (2000, 2017) and use the likelihood ratio (LR) statistic to conduct inference on ; Feder
(1975b) and Hansen (2017) consider the LR test in correctly specified CTR and Hansen (2000) considers
correctly specified DTR with shrinking threshold effects. Particularly, we solve a long-standing question
since Hansen (2000) — how to conduct inference on v when the TR model is misspecified especially in I(1).
There is also some other literature related to this paper. First, Hansen (2017) develops the asymptotic

distribution of the LSE with the CTR restrictions imposed as in CT. His asymptotic distribution is robust to



misspecification, but because the objective function is continuous in parameters, the asymptotic distribution
of 0 is jointly normal, which is similar to White (1980, 1981). Second, this paper pays special attentions to
how the rates of S (6) shrinking to zero in the direction of v affect the asymptotic distribution of 5, and Yu
and Zhao (2013) (YZ hereafter) also study the effects of S () shrinking to zero in correctly specified DTR
but the reasons of shrinking to zero are different. Intuitively, this paper assumes the jump size of S, (0) in the
direction of « shrinks to zero while YZ assume the jump intensity shrinks to zero (technically, they assume
the density of ¢ shrinks to zero as v converge to 7,). Of course, because YZ consider correctly specified DTR
models, it is impossible for the jump size to go to zero. As a result, the asymptotic distributions of 0 are very
different. Specifically, for @ € (1,2] in DTR (a = 1 is excluded because the jump size is positive when o = 1),
our asymptotic distribution of 7 is always related to a Gaussian process while YZ’s asymptotic distribution
is always related to a compound Poisson process although the Poisson process need not be homogeneous as
in the o = 1 case; B and 7 in YZ are always asymptotically independent and estimating 7 will not affect the
asymptotic distribution of B, while B and 7 can be perfectly collinear or partially correlated in this paper.

The rest of this paper is organized as follows. In Section 2, we make the necessary preparations for
the developments of our asymptotic theory. In Section 3, we use a simple example with ¢ being the only
covariate to illustrate how to derive the convergence rates of 7 and B In Section 4, we discuss the asymptotic
theory in I(1) where the threshold effect do can be either fixed or shrinking to zero. Sections 5 and 6 discuss
the asymptotic theories in DTR, with other « values (i.e., a € (1,2]), and in CTR, respectively. Section
7 includes the asymptotic theory with identification failure. Section 8 covers some possible extensions of
previous sections and some unsolved problems in this paper. Section 9 presents some numerical examples,
and Section 9 concludes. All proofs and lemmas are collected in four supplementary appendices.

A word on notation: [|-|| denotes the Euclidean norm. For a matrix A, A > 0 means it is positive definite.
Ula,b] is the uniform distribution on an interval [a,b] and N (i, X) is the multivariate normal distribution
with mean vector u and variance-covariance matrix . The symbol £ is used to indicate the two regimes in
and, to simplify notation in what follows, the explicit values "/ = 1,2" are often omitted. The subscripts
"< A" and "> " signify use of the indicator functions 1(¢ < 7) and 1(g > 7), so that x; <, = x;1(g; < )
and X; >, = x;1(g; > 7). For a real number a, ag = max(a,0) and ag = min(a,0). For two real numbers
a and b, a A b = min (a,b) and a V b = max (a,b). For two sequences of real numbers a,, and b, a, < by,
means a, = o (b,), an, < b, means a,, = O (b,), a, ~ b, means a, and b, have the same rate as n — oo,
and if they are random variables, a,, < b, means a,, = 0, (b,), and a,, < b, means a,, = O, (b,); an > by
and a, = b, are similarly understood. =~ means higher-order terms are neglected. Subscripts are used to

2
indicate the arguments of differentiation, e.g., S;{,Y = %Bsﬁ’(vei) is the right derivative of agge) at 6y, and 5774 is

the fourth order left derivative of S () at 6y. An object without the superscripts or subscripts + indicates
the common value, e.g., A is the common value of Ay and A_, and Sg, is the common value of 5'3'7 and S Gy

Finally, we use CS for an abbreviation of "correctly specified and MS for "misspecified".
2 The Setup
This section includes the setup for the least squares estimator and our asymptotic theory.

2.1 The Least Squares Estimator and Likelihood Ratio Statistic

We re-write the objective function of LSE as

3

Sn (0) = s (wil0) ,

i=1



where )
s (wle) = 5 (v —x'B11(a < 7) = x'Br1(a > 7)),

and S (0) =plim S, (6) = E[s (w|f)]. Usually, v is estimated through the concentrated objection function

n

Su () == S (wil),

i=1
where

% (y ~x'By (1) Uq <) —x'By (7) Lg > 7))2

S [ B _ (XL X)) XLY
o= (5,0 ) e 0= ( (30T )

and X<, and X, being matrices stacking the vectors x;

s(wly) =

with

and x; ... The probability limit of S, (v) is

denoted as S (7). There is an interval of v, [§_,7,), minimizing S, (7). Following Yu (2012, 2015a), we

1, <7y

therefore take the mid-point of the interval as our estimator of 7 because the mid-point % is more
efficient than the left-endpoint 7 in most cases when the model is CS. This choice of 4 will affect the

~ ~ ~ ~ /
asymptotic distribution only in I(1) with fixed threshold effects. Given 7, 5 = 3(7) = (5/1, ﬁ;) .
It can be shown that

S(0) =S (6o) =P (B1) +P(Ba) +[A- (V) +P_ (B1,7) + ¥— (Ba, 1) 1y <)
A (1) + - (B1,7) + ¥4 (Ba, ] LY > 7)),

RN
\ 2

E
E

Emﬂxa@_xlngl(ﬁw B1) (g < )

Tl = ( ma (7, q) — X/Bzoi;ﬁ‘) x' (B0 — B2) La > 7o)
A_(7) = E[(ma(z,q) —xBy) x'dol(y < g < 7)] =B[Z11(y < g < %)l
A (y) = —E[(malz,q) —x'By) X'dol(vy < ¢ <7)] = E[zZ1(y, < ¢ <),
B) = E[(WM T, q) /%) x' (810 — B1) 1(’Y<q§’70)} _. ( W (By,7) )
’ [(rm(ﬂs,q /510+52> x' (B0 — B2) Ly < g < ’Yo)} —A_(v) (B27) )
B [(mg(m“, q /ﬁ20+ﬁl> "(Bao = B1) Lo < g < 7)] —Ar () Y+ (B
+(B) = -E (mg x’%) x' (Bao — B2) (o <q§’y)] B ( +(B2,7) > ’

and in Ay (v),

1
[2 (m1(x,q) — X' B1g) + X 80] X'60 + Soxe1 = 3 (2e1 + x'8¢) x' b0,

N | =

Z = (ml(x, q) — X’BO) x'0g + dpxe; =

which equals z := (y — x'B,) (64x) with B, = % as q¢ < v, and represents the effect on S,, (7) — Sn (70)
when ~ is displaced on the left of v, while 3, is fixed, and

Zo = — (ma(w,q) — x'By) x'd0 — dpxea = —% [2 (ma(x, q) — X' Bag) — X 0] X'60 — yxea = % (x'8g — 2e5) x' b9,

which equals —z = — (y —-x' Bo) (56){) as ¢ > 7y, and represents the converse case. Among the various terms



in S(0) — S (6p), we use ® () to represent the variation in the direction of 8, A_ (v) (A4 (7)) to represent
the variation in the direction of v and ¥_ (8,v) (V4 (8,7)) to represent the covariation of 8 and 7 in the
left (right) neighborhood of v, in the limit objective function. Note that Ay (7,) = 0 and are positive when
v € N\ {7y} by the point identification of 7, where A is a neighborhood of ~,,.

Following Hansen (2000), we conduct inference on v always based on the LR-like statistic. In all cases,
the LR statistic takes the following form:

LR, (’7) _ Tn (Sn(')/) — Sy (/’77))’

b

where 7,, is the normalization rate and b is a consistent estimator of the normalization constant. The test

statistic is a by-product of estimation and can be used for hypotheses concerning « such as Hy : 7 = 7.

2.2 Distinction Between DTR and CTR

To develop the asymptotic distribution of 7, we first distinguish DTR and CTR which are labeled as case
I and II in this paper. Recall that in CTR, d,0 = 0 and .0 + 0407 = 0 so that x'6g = (¢ —7¢) 0q0. In
Hansen (2000), the assumption §4E [xx'|q = o] o > 0 is used to exclude the CTR. A natural question is
whether there are other cases besides CTR where 6, [xx'|q = 7] do = 0. The following proposition shows

that under a regularity condition, no intermediate cases between CTR and DTR can happen.

Proposition 1 If Var (z|g = v,) > 0, then 5o # 0 but §yE [xx'|q = v,] 5o = 0 if and only if 6,0 = 0 and
deo + 6q0'70 =0.

When ¢ is not a regressor, i.e., ;0 = 0, we have either DTR (dg # 0) or unidentification (do = 0). Quite
often, we normalize v, = 0 (which can be achieved by a location shift on ¢, i.e., replacing ¢ — v, for ¢), then
the CTR is equivalent to d,0 = 0 and d,0 = 0, and x'0g = gdq0 = O, (¢). In DTR, since d,9 # 0 and/or
deo # 0, x'00 = Oy, (1).

For a simple setup, we check the partition of the parameter space for the three cases - DTR, CTR and
unidentification. Suppose y = (0.0 + d409) 1 (¢ < 7¢) + €, where the parameter spaces of d.,d, and v are all
[—1,1]. Then Figure [1| shows the areas of (J.,d4,7) where the three cases happen.

2.3 Rates of A4 (7) Shrinking to Zero

Another critical factor that affects the asymptotic distribution, especially the convergence rate, of 7 is the
rate of Ay () shrinking to zero, where Ay (y) is defined in Section This rate indicates the information
to identify v, with a smaller rate indicating more information. In Chan (1993), Ay () is linear in ~, in BY
and BM, AL () is quadratic in v, and in HLS, A4 () is cubic in 7. In this paper, we allow the rate to be in
the interval [1,2] in DTR and in the interval [2,4] in CTR; in other words, the existing literature considers
only the rates 1 and 2 in DTR and the rate 3 in CTR so can be treated as special cases of this paper.

To extend Ay () to functions like |y|™ [log (1/ |v])], we introduce the regularly varying functions at zero.

Aler)

A positive locally integrable function A : (0,00) — (0, 00) is called slowly varying at zero if li?& G 1, for
¥

any ¢ > 0, denoted as A € RV, as v — 0. If this limit is finite but nonzero for any ¢ > 0, then A is called

reqularly varying at zero. Typical examples of slowly varying functions are the constant function and the
logarithm; other examples are the powers and the iterations of the logarithm, e.g., In®, & € R and Inln. The
function A(y) = 7 is not slowly varying, neither is A(y) = v* for any real a # 0. They are regularly varying

functions. By Karamata’s characterization theorem, any regularly varying function A is of the form v*L(y)



Figure 1: Partition of the Parameter Space of (d.,04,7) for the Three Cases: Blue Suface For CTR, Red
Line for Linear Regression and Other Area for DTR

where @ € R and L € RVy. Intuitively, L () can be treated as a small disturbance on the main function
~¢. We denote A as A € RV, as v — 0 and call « as the exponent of variation. See Section 0.4 of Resnick
(1987) and Seneta (1976) for more details on this type of functions.

Because the level information in L(7) is important in this paper, we extract this part of information in
L(v) out and make L() include only the rate information. Specifically, we assume Ay () = Ay |v|** L+ ()
for 7 in a neighborhood of v, = 0, where AL > 0 is the level information, oy € [1,2] in DTR and at € [2,4]
in CTR. Here, we implicitly extend the domain of regularly varying functions and slowly varying functions

to (—o0,0) but maintain the range as (0,00). We start ay from 2 in CTR because

Ay () = —E [(ma(z,q) — x'By) x'001(79 < ¢ <7)] = —E [(ma(z,q) — x'By) a6q01(79 < ¢ < 7)]

so that even if my(z,q) — x’3, were a constant, A, (7) € RVa; similar arguments apply to a_. As to why
« is bounded above by 2 in DTR and by 4 in CTR, we will explain in the next section. In most parts of
the paper, we assume ay = a_ and Ly (1) = L_ (), i.e., Ay () and A_ (v) are different only in the level
information; we will extend A () and A_ () to have different rates in Section [8] As a result, we can write
A+ (7) = At |7|® L () for simplicity. Often, we just use A (|y|) to represent this common rate information
of Ay (7). Note that A (]]) need not be monotone in ||, but we assume it so for ease of analysis since
we need define in our proofs the inverse function of A (), A~ (¢t) = inf {s|A(s) > ¢}. We do not assume the
[a]th-order differentiability of A (]y|) at vy, where [o] is the largest integer not gr(iater than aﬂ When A (|v])

+
is indeed the [o]th-order differentiable at vq, Ay = Sg” when a = 2 and A\t = 4”!4 when a = 4. Sometimes,

we abuse notations and define S% = 2\4 even if A (|]) is not second-order differentiable.

L Although a monotone function is differentiable almost everywhere, it need not be higher-order differentiable.



In the future discussions, some values of « receive special treatments; these values include o = 1, 1.5 and
2in DTR and o = 2,2.5,3,3.5 and 4 in CTR. For these values of a, we assume lim,| o L (7) = 1, i.e., all rate
information is included in || and all level information is included in A+. When limy,) o L () = 0 or oo, the
corresponding Ay (v) functions with index « are absorbed in the contiguous « interval. For example, the
function A |y|” [log (1/|7])| is included in the o interval (3,3.5), and A+ |y|* [log (1/]y])| " in the o interval
(2.5,3). As mentioned in the Introduction, we will index each Ay () function by its « value.

We illustrate how to obtain the level constants Ay at the end of this subsection. In DTR, suppose
x = (1,q), 7o = 0 and ma(q) — x'By = Ag® 1, 1 < a < 2. Then

Ay ()= [ A (1) dof () do e — 200T0 0

0 &

, whose positiveness implies Ad.,g < 0. This also implies L (v) = 1; E{) in the right
neighborhood of 0 and satisfies lim o L () = 1. A_ () can be similarly discussed. In HLS, the model is
the CS CTR, so my(z,q) — x'By = 0 such that my(z,q) — x'By = x'60/2 = d40q/2 and ma(x,q) — x'By =

—x'80/2 = —040q/2. As a result,

SO Ay = —Lfff“o

A= (7) = B [(mi(2,q) — XBy) XSo1(y < g < v0)] = [0 O f () dv = L fo8% I1°

) . @)
Ay () = =B [(ma(@,q) — x'By) X'l (ve < a <7)] = Ji S92 () dv = L fo0209%,

SOA;L = Ay = %focﬁo =: \, which is the constant appearing in HLS’s Theorem 1 (after dividing by 2 since our
Sy, (0) is their Sy, (6) /2). This also implies L (y) = A)\+T(;) in the right neighborhood of 0 and L (v) = A)\%(;)
in the left neighborhood of 0, and lim| ;o L (v) =1

2.4 Maximizer and Maximum of A Class of Stochastic Processes

In developing the asymptotic theory for 7, we often need the distributions of the maximizer and maximum

of the following stochastic process:

7%lu7 "U‘T+,/W_Bl(7”l)), lf’USO,
—ip v + /@5 Ba(v), if v > 0,

where B; (v) and Bg (v) are two independent standard Wiener Processes on [0, 00). Given B; (v) and Bs (v),
we can define a Wiener Processes on R as B (v) = By(—v)1(v < 0) + By(v)1(v > 0).

In the following proposition, we simplify these targets to some basic objects.

Proposition 2 For pu, >0, wy >0 and 7 > 1/2, we have the following results: (i)

_1 T /o B (— iy <
arg max %M_ ol + V= Bil~), va =0 = W2Tl_1g(§07¢§ ),
v —5py 07 + /T Ba(v), if v>0.

=3 |r|"+ Bi(=r), ifr<0,
—%@7‘7+\/$Bg(7‘), if 1 >0,

.
where w = %, and ¢ (o, ;1) = argmaxr{ with @ = Z—* and ¢ = 2o,
— —_ wo

(i)

v

1 T /o B (— if v <0
max %/,L7 |,:)—‘ + /@ 1( 'U), va = _ 7772T2_1§(()0,¢; 7_)’
—5p, v + /Ty Ba(v), if v>0.



falt =5 |r|" + Bi(= ifr <0
where 1P = =, and € (p.i7) = max, {311 T A, 4SO
- —30rT +V/éBa(r), ifr >0,
€ (o, ¢; 1) has the distribution P (€ (p,¢;1) < z) = (1 — e *)(1 — e~ 2%/%),

with ¢ and ¢ defined above. (iii)

We restrict 7 > 1/2 because by the law of the iterated logarithms for Brownian motion, B(v) <
V2vloglogv as |v| — oo, and 7 > 1/2 guarantees the |v|” term dominate the B (v) term and the max-
imizer be O, (1). The distribution of ¢ (¢, ¢;1) is developed in Appendix B of Bai (1997b), but for other 7
values, it is unknown whether ¢ (o, ¢; 7) has a closed-form distribution. A special case of £ (p, ¢;2) attracts

much attention in the literature. Define
¢, =argmax {—cr® + B(r)},
T

and then ((1,1;2) = ;5. Groeneboom (1989) derives the distribution of (; and shows that it is related
to the so-called Airy function so has no explicit form; Groeneboom and Wellner (2001) then show how to
compute it. Since Brownian scaling implies that (., = c2/3¢ 1, the case ¢ = 1 is considered without loss of
generality. The distribution of {; is referred to as Chernoff’s distribution in the literature. Note that the
distribution of ¢ (¢, ¢; T) is not required in this paper because the inference on + is based on the LR statistic
so & (p, ¢; 7) rather than ( (¢, ¢;7) is relevant. Except & (v, ¢;1), we guess £ (¢, ¢; 7) with other 7 values
does not have a closed-form distribution. Parallel to (., we can define

§. = max {—cr*+ B(r)},
and then £ (1,1;2) = £, »; Brownian scaling implies {, = /3¢,

2.5 Maintained Assumptions

We collect some maintained assumptions here for future references. These maintained assumptions will not
be repeated and only adjustments will be stated in the discussions of each case. In this way, we can focus

our attention on the assumptions that are different and critical in each case. First, define

M = E[xx],N=E[xy],M,=E[xx'l(¢ <7)],M, =M~ M, =E[xx'1(¢ > )],
My = M, =Ss,3,,Mo=DM, =Sa,3, Sss = diag{Mo,Mo},
Ny, = Epxyllg<v)],Ny=N-N, =E[xyl(g>)],No =Ny, No = Ny,
By = MIIN,, B, :M;1N~yvﬁ10 = By, = My ' No, Bog = Ba,, = M, Ny,
By, = (B1y:B5)" 0y =By — Bays Bo = Byyr 00 = 05,
¥, = E [xx’ (e;)2 1(g < ’y)] 2, =E [xx' (ei)2 1(q > 'y)] ;50 =3, 50 = Sy,
where e =y —x'By, and el =y —x'By,, &1 =€ =y —x'Bg=¢e1+mi(2,9) —x'Byp and eg = ef =

y—x'Ba9 = €2 +ma(z,q) — X' B59. Let f(q) denote the density of g, fo = f (7,) and N be a neighborhood
of v when 7, is point identified.

Assumption MA:

(i) The data {w;};_, are randomly sampled, w; = (yi, 7}, ¢;)' € W=RxXxQ C R¥*! 3, € B, C R+,
and vy € T = [7,7] & Q is compact.

(ii) When g < v4, m1 (x,q) := E[y|z,q] is left continuous at ¢ = ~, for all z € X; when ¢ > ~,,
maz (z,q) := E[y|z, q] is right continuous at g = 7, for all z € X.



(iii) The conditional distribution f(, ,)|q (%, €1]q) is left continuous at ¢ = vy and f(, c,)|q (7, €2]q) is right
continuous at g = 7.

(iv) (a) Ele}] < oo, E[|x]"] < oo and E[y*] < oo; (b) sup,en Bleglg = 7] < 00, sup, ¢ El|x|* g =] <
oo and sup, ¢ Bly?lg = 7] < oc.

(v) M >M,>0foryeN.

(vi) 8, >0 and X, > 0 for vy € V.

(vii) f(v) is continuous at 7, and 0 < f < f(7) < f < oo for v € I.

(viii) argmin,er S () = 7, is unique.

(

ix) 6y satisfies dao + dq07g # 0 and/or 0,9 # 0.

As mentioned in the Introduction, we consider only random samples which are explicitly stated in As-
sumption (i). As usual, we restrict the parameter space of v to be a perfect subset of the support of ¢q. As-
sumption (ii) imposes some regularity conditions on my (x, ¢); under Assumption (ii), we can write my (z,7,)
for my (x,v9—) and mq (z,7,) for ma (z,v,+ E| Similarly, Assumption (iii) imposes some regularity condi-
tions on f(, ,)|¢; this assumption guarantees that E[g(z,e1)|q = 7] is left continuous and E[g(z,e2)|q = 7]
is right continuous at 7, for any function of g as long as the conditional means are well defined, so we
can write E[g(z,e1)|qg = vo—] as Elg(z,e1)|q = 7] and Elg(z,e2)lg = vo+] as Elg(z,e2)lq = fyo]ﬂ These
two assumptions make sure that we can focus on the (dis-)continuity property of m (x,q) and ¢ = v, be-

cause all other components of the model are continuous at -y,. Assumption (iv) implies E [mg(m, q)4] < 00,
E {(mg(:c, q) — x’ﬁeo)ﬂ < oo and E [ef] < oco; Assumption (iv)(b) implies sup, e B [me(z, ¢)*|g = 7] < oo,

sup., ey B {(mg(z, q) — X/ﬂ£0)4 lg = ’y] < oo and sup, ¢ E [ezﬂq = ’y] < 00, where N is understood as the left
neighborhood of v, when m4 (z,¢) , &1 and e; are involved and the right neighborhood when ms (z, q) ,e2 and
ez are involved. Note that E[e}] < oo implies E[e}|q] < oo for ¢ almost everywhere if 0 < f < f(q) < f < o0
for all ¢ € Q, so combined with Assumption (iii) and Assumption (vii) below, E[e}] < co indeed implies that
there is a A such that sup_ - Elef|g = 7] < oo (otherwise, E[e}] cannot be finite); similarly for E[|x]*] < o0
and E[y*] < co. We explicitly state these implications here because they will be used in some of our proofs;
sometimes, we need to strengthen Assumption (iv)(b) to apply a Donsker’s theorem. In Assumption (v),
we only require M, > 0 and M., > 0 for v € N while Hansen (2000) requires M, > 0 and M, > 0 for
~ € I. This is because Hansen (2000) needs his assumption to prove the consistency of 4 while we assume
the consistency of 7 in the following Assumption (viii). Note that M > M, > 0 for v € I" implies I must be
a proper subset of the support of ¢; since we only restrict v € N here, we explicitly specify I" in Assumption
(i). As usual, ¥, and iv in Assumption (vi) will be used in some asymptotic distributions of 3 By the
continuity of M, M., ¥, and X, at 7,, we can actually state Assumption (v) as My > 0 and My > 0 and
Assumption (vi) as ¥y > 0 and o > 0.

The following three assumptions may change with the cases, but we still state them here and explain how
to adjust them in some cases to save space. In II(«), 3 < a < 4, we need to strengthen the continuity of f(7)
at v, in Assumption (vii) to the differentiability of f(v) at 7,. Because S (v) is continuous in 7, Assumption
(viii) implies the consistency of 5 as mentioned above. Given the consistency of 7, 3 is consistent to Bo- This
is also why we did not restrict B, to be compact in Assumption (i). In Section |7} -y, is not point identified
(e.g., when 69 = 0, B9 = o9 = M "IN, and 7, is not identified), so we need to adjust Assumption (viii)
and also Assumption (vi) correspondinglyﬂ Assumption (ix) restricts the model to be DTR, and in CTR, we

2Rigorously, ma (z,7,) is not defined, so we define it as lim |, m2 (z,7) =: m2 (x,vo+) to guarantee m2 (z,q) to be right
continuous at ¢ = vo. On the other hand, m1 (x,7v¢) = limy 1, m1 (z,7) =: m1 (z,79—) since m1 (x, ) is well defined. This
convention applies to assumption (iii) in deﬁnlng f(z,e0)]q (T, €2]0 =) at v = vq.

3Because fa1q(%]q) is continuous at ¢ = g, E [g(x)|q = 7] is continuous at vq. This is why we can define Do = E [xx'[|q = ]
in the future.

4Note that v, and A are meaningful only in point identified models, so all assumptions involving v, and A need to be
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need to adjust du0 + 0407y 7# 0 and/or 0,49 # 0 according to Proposition |1l Specially, we replace Assumption
(ix) by

(ix)" d¢ # 0 but da0 + d4079 = 0 and d,0 = 0.
in CTR, and we still call the collected assumptions as Assumption MA. Note that in CTR, (d.0,d40) # O
implies d40 # 0 because if 640 = 0 then d.9 must be zero given that d.o 4+ d407¢ = 0; on the other hand, when
Yo =0, o0 can be zero since §,0 need not be zero.

The most important assumption is Assumption (x) which will be stated in each case instead of here be-
cause this assumption needs to be changed for each case (i.e., this assumption marks each case). Assumption
MA is definitely not the weakest assumption required, but we find the current form of Assumption MA is

convenient and intuitive.

3 An Example for Illustration

We use a simple example to illustrate the main results of this paper, especially, the various convergence
rates in different cases. With this example in mind, the proofs for the general cases are more accessible.
Readers who are only interested in general results can skip this section. Suppose ¢ is the only covariate, and
y=m1(q)1(q < 7vy) +m2(q)1(q > 7o) +e. WLOG, suppose v, = 0; then for ~y is in the neighborhood of 0,
(1,9)00 = qdq0 ~ v in CTR, and (1,¢)dp = de0 + gdq0 ~ 1 in DTR given that 6,9 # 0. Now, we check the
local behavior of Sy, (0) — Sy, (6o).

3.1 Deterministic and Random Parts of S, (0) — S, (0y)

First, check the deterministic part of S,(0) — S, (o), which is S(0) — S(6p). From the decomposition in
Section and noticing that x = (1,¢)’, we have

. 2 23D .
Spp = ding { G30), LT | — diag {(B[(1,0)' (1,0) 1(a < 70)] B [(1,0)' (1) 1a > 7)) } >0,

>V _ (B10:70)
ST = ) 3513}70770 _ .f() - [ml (’YO) - (1770) 610] ® 1
- &8 =B20:%0) m1(vo) — (1,70) Bao Y% )
08,07 _

_h< [rma(70) = (1.7 ?5 <%w@>®<1>

m1 (7o) — (1,7 B %(1 Yo) 0o Yo
>V 4 (B10:70)
St — 8E1 ;1 : ( [m2 70) (1,70) B1o ) ® ( 1 )
By — 9*W (Bap,70) ’
N (1,70) B2 Yo

0

)

)

:h< [m2(70) = (1,70) Bo - % %a@> ( )
ma (7o) — (1,70) Bo +% (1,70) do
S*—%ﬁﬂz—h Yo) B0 [( 1703]
g+ — 9+(v0) _ — o (1,70) 6o [ >(o %) Bo ]
regardless of in DTR or CTR, where ® is the Kronecker product.

It is obvious that whether Sﬁyi = 0 depends on whether the fitted model is DTR or CTR and the
values of my (7,) and mg (7,). Only in DTR S,f # 0 can happen. Because (ﬂg,%)/ is the minimizer of
S(0) — S(0p), we have S5 < 0 and S > 0 in this case which is our case I(1). If (1,7,) do > 0, this implies
m1(vg) > (1,79) By and ma(v,) < (1,7) By, i-e., m(q) is discontinuous at 74, and m; (7,) and (1,7,) B1o

deleted or adjusted when the model loses point identification.
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are both above (1,7,) 8, and ma (7,) and (1,7,) By are both below (1,70)30 In this case, S(6) — S(6o)
is not differentiable in v at %ﬂ In all other cases, S = 0, and S(0) — S(6p) is indeed differentiable in
v at vy. In DTR, since (1,7,)do # 0, this means mq(yy) = ma(vy) = (1,79) By, which is satisfied in
our case I(a), 1 < o < 2[| In CTR, (1,v4)00 = 0, so it must be the case that S$ = 0. In case II(2),
mi(vo) # (1,70) By # ma(7), and in case [I(a), 2 < a < 4, myi(7yy) = ma(y) = (1,7) Bo- The value of
a—1in DTR and «a — 2 in CTR indicate the speed of mq(v) — (1,7) 8, and ma(y) — (1,7) B, shrinking to
0 as v converges to 0. To simplify our discussion, assume here both m1(y) — (1,7) B, and ma () — (1,7) B,
are O (Mo‘_l) in DTR and O (|’y|a_2) in CTR, and then Ay (v) = O (|y]|).
Next, we study the covariation of 5 and «. In case I(1),

S5 #0#5;

in general, in case I(a), 1 < a < 2,

in case I1(2),

= - [ml(%) - (17’70)30] 1
S B 3 )
By fo ml(’}/o) _ (1,70) ﬁg ® "o #0
ST = = [ma(v0) = (1,70) Bo] 1 0.
5y = Jo ma(r) — (Lve) B ® . £

and in case II(), 2 < a < 4,
5577 = SB'Y+ =0.

Given Sg, = Sp,, = 0, we can further study Sétﬁv and the behavior of SBi (7). Notice that

_ (1,70)" (1,70) 0 N
S ’ =5 5
ey f ( 0 - (1770) (1770) ) B

and
1 — s ,ya—l +’72
s mi(v) — (1,v) By — 250 | f (v) dv
§7 i 2B _ )l o=*%] B ARG
3= g = 1 B ) A
- - v)dv — 3 ) d
S\, ) @) = Bl Fwydv =3 [T ) vbeof () dv s 40
1 - 1 a—l 4 A2
a O’Y [mg(y) -y 60] f) dy+%f07 vigof (v)dv 7&-1 72
gt .— 9%+ (Boy) _ v v e
o o a 1 a—1 2
¥ V6qo vy +'Y
fo ( v ) [m2( )= (1L,v) By + ]f(l/) dv e e

®Notice that (1,79) Bo = (1,70) B1o— (1,70) d0/2 and (1,74) Bo = (1,70) Bao + (1,70) 60/2, so the distance between m1 (yq)
and (1,7q) 819 is bounded below by —(1,v9)d0/2 and the distance between ma(vq) and (1,7q) B2g is bounded above by
(1,7¢) 00/2 to guarantee m1 (7yy) and ma (’yo) staying on different sides of (1,7q) Bo-

6In general, we require P (m1(z,7vy) # ma(z,vo)) > 0 to guarantee the nondifferentiability of S(8) — S(6o) at 7, given that
fz|q (]7) is continuous at .

"In general, P (m1(z,7vy) = ma(x,vy)) = 1 is not necessary but sufficient to guarantee the differentiability of S(0) — S(6o)
at o in DTR given that fg|, (z|y) is continuous at v,
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Now, we must distinguish 2 < @ < 3, and 3 < « < 4. In the former case, S’;E72 does not exist while in the

f06q0 1
Spyz = fodwo | @ = ng_'vz (5)
T2 Yo
when 3 < o < 4 and

— | —fo(mi(v0) = Byo) 1 Jobuo )
Sﬁ’yz - ( fo (mﬁ(ﬁ’o) —qu) ) ® ( 0 ) + ( L;SqO ® " ,

| —fo(mh(v0) = Byo) 1 folao .
S ( fo (m(v6) = Byo) )®<0>+(fogqo of 1)

when a = 3, where we assume f () is differentiable at -y, and qu is the second component of 3.

later case, it indeed exists and

Now, we can explain why in case I, we do not allow o > 2, and in case II, we do not allow o > 4.
This is mainly because we want to avoid local unidentification. In case I, because Sgz > 0, Sﬁi7 # 0 and

A (7) ~ |v|%, we have ,
$(6) = 5(00) ~ B+ B[ 11+ 11® (6)

~ ~1 ~1N\/ ~ ~112 ~
by Taylor expansion, where 3 = (ﬂ;,ﬂ;) with 8, = B, — 4. Since HﬂH + |y|* = HﬂH |'y|a/2, only if

~112
a < 2 we can control the variation of S(6) — S(6y) by HBH + |v|* (when a < 2,
a/2

BH |v| is dominated since

|7|%/" > |7]). Otherwise, the variation in the direction (8, ) may dominate the variation in the direction g

or 7, and v, and/or 3, may not be identified locallyﬂ In case II, we have
~2 a ~1|2 A 2 a—1 «
$(6) = 500) ~ B+ 8] 1+ B[ 11+ |[B]| (1P + 112 ) + 11, (7)

where the HBH || term appears only if & = 2 (and then all other cross terms are dominated by HBH |v] and

112 2 ~
the analysis is the same as in DTR with « = 2), the term HﬂH |v| is dominated by Hﬂ‘ , and HBH Iyt is

2 2 -
dominated by HBH + |y|* since HBH + [y|* = HBH lv|*/? and o — 1 > /2 if @ > 2. The key term here is

~ 112
Hﬂ” \'y|2 which is no larger than O <HﬁH + |’y|4 . By a similar argument as in case I, o cannot be greater

than 4. Under these restrictions on the value of o, we have

5(6) ~ 5(60) ~ 3]+ 1i°

in both DTR and CTR.
Second, we check the random part of S, (6) — S, (0p), which is equal to

% Z?:l (Bro — 51)/Xi61i1(%‘ <o) + %, Z?:l (Bao — Bz)lxiem‘l(‘h‘ > )

" (8)
+% Dt oxie1il(y < @i < vg) — %Zizl Soxicail(v9 < @i <)

8More rigorously, by Taylor expansion, the main terms of S(0) — S(fp) when 6 is local to 6o are
%BIB + (SEWBW + A |'y|°‘> (v < 0 + (S;WBW + )up/”‘) 1(y > 0) whose minimum given ~ # ¢ s
- [(725';65;7 — A |'y|°‘) 1(y <0)+ (725%35;7 — A+ M“‘) 1(y > 0)] < 0 when a > 2 unless S;/ = 0 which is impossi-
ble in this simple example; see Section EI for some concrete calculation. In other words, vg # argmin, S () at the beginning.

Actually, even when a = 2, we need some restrictions on A+ to guarantee the HBH |v| term not exceeding the other two terms;

see Example [3]in Section
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with x; = (1,¢;)’. The first two terms contribute to the randomness of B and the last two terms contribute

to the randomness of 5. The variance of depends on whether the model is DTR or CTR. In DTR, the
2 2 3

variance is O (% + @), and in CTR, the variance is O (”ﬁ_fjo” + W_JOI ) because §,x ~ qd40. So

_ _ 1/2 _ _ 3/2
in DTR, the random part is O, <%), and in CTR, the random part is O,, (M)

Note further from Yu (2012, 2015) that the randomnesses of B and of 7 are independent asymptotically
because the former involves the global information while the latter involves the local information and these

two parts of information are independent.

3.2 Determining the Convergence Rates of B and v

Now, we balance the deterministic part and the random part to determine the convergence rate of B and
~. First of all, we must make || — B[ and |y — 7,| have the same scale in S(0) — S(0y) to determine the
convergence rate, i.e., |8 — Byl ~ |y — 70|o¢/2. Suppose 8 — B, = O, (k1) and 7 — 7o = Oy (py ).

_ o e/2) e ~
I8 ﬁOHJr(lj/E%l ) > When a = 1, the randomness from 3 and v

are balanced, while when 1 < o < 2, the randomness from E is dominated by that from 7. So when a = 1,

In DTR, the random part is O, (

solving

to have p,, = n and k,, = v/n. Also, we need to multiply the localized S,,(8) — S, (fo) by k2 = n to have a
nondegenerate weak limit. We label this rate as the normalization rate in this subsection. When 1 < o < 2,

solving

N S— 71 . . . .
to have ,, = n?@>-0 and p,, = n2-1. The normalization rate is \/np, (or p2 or x2). Especially, when

n
1/3 as in BM and the normalization rate is n2/3.

_ _ a/2\3/ =N
I8 BOHjL(‘j/ﬁ%l ) ) When « = 3, the randomness from 8 and ¥

are balanced, when 2 < a < 3, the randomness from B dominates that from 7, while when 3 < a < 4, the

a=2 Kkp=p,=n

In CTR, the random part is O, (

randomness from B is dominated by that from 7. So when o = 3, solving

to have p,, = n'/3 and k, = \/n as in HLS. The normalization rate is K2 = n. When 2 < o < 3, solving

s =
—a/2 -1

K
—a _ Pn -2 _ "
P = and K,” = —=

vn vn

and k, = /n. Especially, when a = 2, p,, = k, = /n. The normalization rate is still

to have p, = n'/®

k2 =n. When 3 < a < 4, solving

n —

to have p,, = n7s and k, = n¥@-% . Now, the normalization rate is \/ np3 (or p& or k2). Especially, when
o =4, k, =2/, p, = n'/> and the normalization rate is n*/®>. Although both DTR and CTR consider
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« = 2, the convergence rates of 0 are different because o only indexes the rates of the deterministic part

shrinking to zero while the rates of the random part shrinking to zero are different in these two cases.

3.3 Extension and Refinement

When o =1 and 2 in DTR and « = 2, 3 and 4 in CTR, the rates in the last subsection are enough. When
l1<a<2inDTRand 2 < a < 3 and 3 < a < 4 in CTR, Ay () need not take the power form of +,
so we need to extend the arguments in the last subsection to this general specification of Ay (7). Now,

18 = Boll ~ VA (7).

When 1 < a < 2 in DTR, solving

1 p71/2 p71/2
Af— )~ and k% = 2 —
(m) vn vn

o 2
to have p, = nz=1L* (n) and K, = n2@a-DL* (n)1/4, where L* (n) = L(p;*)**~". For example, if
L(z) = log (\xrl), then L* (n) = (logn)ﬁ, p, = n=T (logn)mzif1 and K, = n¥@-1 (logn)m.

Also, /np,Ax (pi) — Az |v|” using the definition of slowly varying function at zero. When 2 < o < 3 in
CTR, solving

1
() L o

to have p, = na L* (n) and k,, = v/n, where L* (n) = L(1/p,)=. For example, if L (z) = log (|ar:|_1)7 then

Q=

L* (n) = (log n)% and p,, = (nlog n)%. Also, nAy (%) — A+ |v|®. This balancing is the same as in YZ;
see their Example 2.1. When 3 < o < 4 in CTR, solving

1 p73/2 p73/2
Af— )~ and k% = " —
(m) vn vn

to have p,, = n7a-s L* (n) and £k, = n?@=3 L* (n)*/* where L* (n) = L (p;l)""’gi‘:’. For example, if L (z) =
log (|:c|71>, then p,, = nz==s (logn)ﬁ and k,, = -3 (logn)m. Also, \/np3 Ay (pi) — Mg |v]*.
In the future, p,, and &, are referred to the rates here and will not specified explicitly. '

The convergence rate for B when 1 < a < 2 in DTR and 3 < a < 4 in CTR and the convergence rate
for ¥ when 2 < a < 3 in CTR derived above are correct but not useful since the asymptotic distributions
under these rates will degenerate. We will explain why this can happen below. First check DTR. From @,
only if a = 2, the cross term B/S’ﬁi,y'y will not be dominated. When a = 1, because the randomnesses from
3 and 7 in are balanced and asymptotically independent, and the cross term disappears asymptotically,
we expect B and 7 are asymptotically independent. For example, this is indeed the case in Chan (1993) and
Hansen (2000) where the model is the CS DTR. When a = 2, because the randomness from B is dominated
but the cross term remains, we expect the asymptotic distribution of ﬁ is completely determined by 7 and
will not degenerate since it inherits randomness from 7. When 1 < a < 2, because the randomness from 3
is still dominated but the cross term disappears, we expect the asymptotic distribution of B will degenerate
since it cannot inherit randomness from 5 anymore. In other words, the convergence rate of B should be
faster. How to obtain this convergence rate? Because the randomness in the = direction dominates, we

cannot search over 3 and v jointly; rather, we fix ¥ and concentrate on the randomness in the § direction.

o~

Putting in another way, we express 3 as /3 (7) and note that B F) =By = (B )-8 ('yo)) + (B (vo) — ,6’0).
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It is clear now the convergence rate of E is determined by the smaller of the convergence rates B ) - B(’yo)
and B(Vo) — Bo- Due to the cross term?/Sé[vfy,Ait turns out that the effect of estimating v, on 3 is linear
in (¥ —7g), so the convergence rate of 8 (%) — 5 (vy) is p,,- It is well known that the convergence rate of
B(’yo) — By is v/n, so the convergence rate of B is min (p,,, /n) with p, = /n when a = 1.5.

Second, check CTR. When « = 2, because the randomness from 7 is dominated but the cross term HBH 7]

remains, we expect the asymptotic distribution of 7 is completely determined by 3 and will not degenerate
since it can inherit randomness from E When a = 3, because the random components from E and 7 are
balanced and all cross terms in disappear, we expect B and 7 are asymptotically independent. This case
is like case I(1). For example, this is indeed the case in HLS where the model is the CS CTR. When a = 4,

because the randomness from B is dominated but the cross term ’

BH |’y|2 remains, we expect the asymptotic

distribution of B is completely determined by 4 and will not degenerate since it inherits randomness from
~. This case is similar to case I(2). When 3 < a < 4, because the randomness from 3 is dominated and
all cross terms disappear, we expect the asymptotic distribution of B will degenerate since it cannot inherit
randomness from 4 anymore. This case is similar to case I(a) with 1 < o < 2, and so can be similarly

analyzed. Now, the cross term HB‘

|v| disappears and the dominating cross term is HBH 7%, so the effect

of estimating -y, on 3 is quadratic in (¥ — 7o) and the convergence rate of B 7) - B(%) is p2. All in all,
the convergence rate ofB is min (,ofL7 \/ﬁ) with p2 = y/n when a = 3.5. The hardest case is 2 < a < 3
since there is no explicit-form solution for 4. Because the randomness from 7 is dominated and all cross
terms disappear, we expect the asymptotic distribution of 4 will degenerate. Similarly as in case I(a) with
1 < a <2, we express 7 as y (E) and note that 7 (5) — Yo = (3 (E) - §(50)> + (7 (By) — 7). It is not
hard to show that the convergence rate of 5 (8,) — vy is 0,,, where g,, takes the same formula as in II(«)
with 3 < o < 4. However, how to characterize the effect of estimating 5, on 7 is not an easy task. It turns
out that due to the cross term HEH |'y|o‘71 in (H), this effect can be thought of being linear in B — B, e,

the convergence rate of 7 (B) —7(By) is v/n. In summary, the convergence rate of 4 is min (g,,,/n) with
0, = v/n when o = 2.5.

We summarize all the discussions on the convergence rates in Figure where we consider only the
cases with A (]y]) taking the form of |y|’s power for simplicity. From Figure [2| we have two conclusions.
First, the convergence rates of both 7 and B are decreasing in «. This is because a larger @ means less
identification information for v so that the convergence rate of 7 is slower, and a slower convergence rate
for 4 will contaminate the convergence rate of B Second, in DTR, the convergence rate of 4 cannot be
slower than that of 3, while in CTR, the converse statement is true. Also, from the discussions above, the
asymptotic distributions of 4 and B are asymptotically independent in I(«) with 1 < a < 1.5 and in II(«)
with 2.5 < a < 3.5 and perfectly correlated in I(«) with 1.5 < @ < 2 and in II(a) with 2 < o < 2.5 and
3.5 < a < 4; only in some marginal cases I(1.5), II(2.5) and II(3.5), they are partially correlated as in the
regular model. This reflects the essential difference in the nature of v and 5. We also expect that when
pn = m, averaging in data is involved and the asymptotic distribution of 7 will be related to some Gaussian
processes rather than some Poisson processes as in I(1) (note that I(1) is the only case where p,, = n).

For comparison, we also summarize the normalization rates of LR, () (which will be developed in the
coming sections) in Figure [3| when A (|y]) takes the form of |y|’s power. Although when the identification
power for + is stronger (i.e., « is smaller) the normalization rate is generally higher, in II(a) with o < 2 < 2.5,
E takes in charge and the normalization rate is actually lower for smaller «. Juxtaposing Figures |2[and [3] it
is obvious that there is a close relationship between the convergence rate of 7 and the normalization rate of
LRy, (7).
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4 Asymptotics in Discontinuous Threshold Regression: a =1

We will give I(1) a special treatment. This is because (i) the CS DTR is a special case of I(1) and attracts
most of attentions of TR research; (ii) we hope the asymptotic results in I(1) provide a benchmark so that
we can compare the results in any other case with those in I(1); (iii) we hope the detailed analysis of I(1) can
provide a template for other cases so that we can streamline the statements of our asymptotic theory there.
Parallel to Chan (1993) and Hansen (2000), we will consider both the fixed-threshold-effect framework and
the shrinking-threshold-effect framework.

First, we define further notations for future use. Let

D, =E[xx'|¢=7],Do = D,,,Ey =E[xy|g =] and Ey = E, .

When 7, is known, we know

> -1
NG Or=Fo ) 4, Zg = SgaW = %‘llwl — (% ;
Ba — Bao My Ws Zﬁz

where
W = (W{,W3) with Wy ~ N (0,%), Wa ~ N (0,%) , and W and W being independent. (9)

The notations W, Zg, and Zg, will be used in the asymptotic distributions of Bl and Bz in some other cases
besides I(1).

4.1 Asymptotics with Fixed Threshold Effects

We now state the asymptotic distribution of 9 when dp is fixed. First, we list the required assumptions.
Assumption I(1): Assumption MA plus

(x) E[Z1]l¢ = o] > 0 and E [Z2|g = 7¢] > 0, and z; and 23 have absolutely continuous distributions.

Assumption (x) implies S (v, 8,) has a kink at ~,; for all other cases, E[z¢|g =] = 0 so S(v,05,) is
differentiable at v,. Note here that we did not write E[Z1|q = v,] as E[Z1]qg = v,—] and E [Z2]qg = 7,] as
E [Z2]q = 7o+] thanks to Assumption (iii) given that Z, is a function of = and &,.

Define a compound Poisson process D(-) as

Ni(|v])
214, if v < 0;
D) =19 Ny
Z Zo;, if v > 0.
=1

In D (v), {214, 22i};51, N1(-) and N (-) are independent of each other, N (-) is a Poisson process with intensity
fo, 215 = limaqo 21_2-1 {70 + A < ¢ <7y} is the limiting conditional value of Zy1; given vy + A < ¢ < 7y,
A < 0 with A 170, and z9; = limajoZ2:1 {vg < ¢ <7y + A} is the limiting conditional value of Zo; given
Yo < €@ < v+ A, A >0 with A | 0. When my(z;,q;) = x,840, 21: and zg; reduce to the form in Chan
(1993) and Yu (2014) (divided by 2) and E [21]q = 7o) = E[22]q¢ = 7¢] = 300D0do > 0. Assumption (x)
guarantees the uniqueness of argmin,ecgr D(v), where following the convention of 4 in Section we takes

the mid-point of the minimizing interval of D(v) as the minimizer.
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Theorem 1 Under Assumption I(1),
n (5 = 7o) < argmin D(v) =: Z, (1),
vn (21 - 51()) L Zs,,
vn (Bz - 520) o 2By

and Z, (1), Zg, and Zg, are independent.

The asymptotic distribution of the structural break estimator in Proposition 4 of Bai (1997a) can be
treated as a special case of Theorem (1| in the structural change context. In Bai’s setup, m (g) is piece-wise
constant and x = 1. GP generalize Bai’s setup to the TR context, but they show only that the convergence
rate of 4 is n and do not derive its asymptotic distribution. The asymptotic distribution of 3 is the same
as in the case where 7, is known, i.e., estimating v does not affect the asymptotic distribution of B, just as
in the CS model. The following example derives the asymptotic distribution of 4 in GP’s setup with three

regimes.

Example 1 Suppose y = (x'bio + €1) 1(q < 719) + (X'b20 + €2) L(710 < ¢ < 790) + (X'b30 + €3) 1(q > 720),
and g = argmin, S () = v99. Then Boy = bso, and

-1 —1
B0 =E [XX’S%O] E [x<q,,y] =E [XX/S'YQO] (E [XX/S'ho] bip+E {X>710x’§720] bgo) =: wbio+(I — w) by

is a weighted average of b1y and bsg by noticing that E [XX/S,YIO] +E {x>7wx’§720} =E |:XXI§720:| , S0

— 1 bio+b bao + b — —
Bo = B [wbio + (I — w) bao + bso] :w% +{ —w) % =t wfo + (I —w) By
is a weighted average of the the original two B’s, and
dp=w (b10 — bgo) + (I — U)) (b20 — bgo) = wdig + (I — w) (520, (10)

is a weighted average of the original two threshold effects. Now,

7 = (x'bio+e1—xBy) (6x) 1g < 710) + (X'b20 + €2 — X'By) (66%) 1(v10 < ¢ < Y20),
Zy = — (x'bso +e3 —x'By) (66%) 1(g > 720);
and
21 = (x'bao +e2 = x'By) (6p%) | (¢ = 7120—) = {X' [w (bao — B1g) + (I —w) (b20 — Bag)] +e2} (6p%) | (¢ = 720—)
Z2 = - (X/b30 +e3— X’Bo) (56X) [ (g ="720+) = — {X/ [w (b30 - 310) + (I —w) (b30 - 320)] + 53} (‘%X) [(@="201),

where the first term of Z1; is neglected because z1; is the limit random variable in the left neighborhood of v .

For comparison, if the first and second regimes are combined into (x'bag + €2) 1(q < 74q), i-€., the model is
CS, then

1 1
o1 = (0t ) (610 10 = 120m) and s = — (50— 305 ) (55) | 0 = 0%
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pro forma, w (bsg — B1o)+(I — w) (bso — Bag) = — 380 with &g defined in @), but w (bao — Bro)+( — w) (b2o — Bag) —
%(50 = w (bag — b1g) # 0, which is because the right regime is CS in the MS model, but the left regime is not.

4.2 Asymptotics with Shrinking Threshold Effects

Because the distribution of Z, in Theorem [I] involves the distribution of 2z, which is hard to estimate,
we employ the shrinking-threshold-effect framework to obtain an accessible asymptotic distribution of 7.
For future reference, we label the shrinking-threshold-effect case as I(1)’. First, we make the following

assumptions.

Assumption I(1)’: same as Assumption I(1) except

)2+6

(iv) (iv) of Assumption MA plus (c) sup,cp E [(||x|| lee] lg = 7} < oo for some € > 0.

(viii) 51 (7) =limy oo B [ (2582000 ) 1(q < )] for y € [3, 0] and ¢z (7) =lim,,—.ooB [x (2250250 ) 1(q > )]

for v € [y, 7] exist, and argminyer S () = 7, is unique, where S () :=plim,,_ ||6n||_2 [Sn (7) — Sn (00)]
is defined in Lemma 18,1 := 1810 — Baoll — 0 and a,, := n]|6,]|> — oo.

7 4 7x/
(x) (a) E [(m‘(zi%)nlx ﬁ”) ‘q = | exists for v € N (b) ¢1(7) =limy, B [x (71( \VI%)nH Bw) ‘ q= 'y]

ma(2,9) =% Bag

and ¢o (7) = —lim,_E [x (W) ‘ q= 'y] exist for v € N, ¢¢(y) and D, are continuous at -,
with ¢eo = $r (7p); (¢) V5= are continuous at 7y, where V- = B [xx'ef|q = y—] and V,} = E [xx'e3|q = 7+];
(d) ' Doc+ 2c¢¢19 > 0, ¢ Do+ 2¢'é99 > 0 and w§ = c’VOic > 0, where ¢ =lim,,—. 0,/ [|0,]], Vo = V., and
Vo= Vo

Assumption (iv)(c) is a little bit stronger than (iv)(b) due to a similar reason as Liapounov’s condition in
Lindeberg-Feller CLT (compared with Lindeberg-Lévy CLT). For example, Hansen (2000) takes ¢ = 2 in his
Assumption 1.4. Following the discussions in Section [2.5] replacing the finite 4th moments in Assumption
(iv)(a) to the finite (4 4+ €)th moments is sufficient for Assumption (iv)(c). The other two assumptions are
the counterparts of Assumption I(1) in the framework of shrinking threshold effects. The existence of ¢, ()
and <y () implies that my (z,q) — x'By = Op (|6, ])). In CS models, my (z,q) — %', = 0 From Lemma [3]
S (7) contains some extra terms beyond those in CS models due to the nonzeroness of ¢y (7). Hansen (2000)
assumes d, = cn~ %, «a € (0,1/2), and we extend his setup to the cases where the components of d,, have
different rates and the rates need not take the n=® form (e.g., it can be n=*logn). Our c¢ is the normalized
On-
To state the asymptotic distribution of 7, define

Cl) = 3fo (¢ Doc +2¢'S10) [v] + 1/ foc' V™ eBi(—v), ?f v <0,
%fo (C/Doc —+ 20/620 v+ \/ f()C/VE)JrCBQ(’U), lf v > 07
(

) dp_ v+ y@-Bi(—v), ifv<0,
| tpgv+ JEIIBa(v), if v > 0.

where wy = fowi Even if we have assumed the distribution of x given ¢ = + is continuous at 7, in
Assumption (iii) (which implies D, is continuous at 7, so that only Dy rather than DSE appears in C(v)),
the slopes of the deterministic part of C'(v) on v < 0 and v > 0 are not the same anymore, which is distinctly
different from the CS model. On the other hand, the covariance kernel of C (v) is the same as in the CS
model where €, = e¢. As shown in Yu and Phillips (2018), C(v) can be achieved from D(v) by shrinking J

and my (z,q) — X' B, In z¢;.
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Theorem 2 Under Assumption I(1),
~ d .
4 (7~ 79) % argmin O(v) = wC (p.611),

Iy r— . v+ o~
_ m— cVy e _ By _ Doct2c’éng N
where w = 7 = Fol@Dectadin)? and ¢ = = TDectaci. and ¢ = —*+ = Tt By has the same

asymptotic distribution as in Theorem and ?,Bl and BQ are asymptotically independent.

Proposition 8 of Bai (1997a) can be treated as a special case of Theorem [2| in the structural change
context with m (¢q) piece-wise constant and x = 1. This form of { (¢, ;1) also appears in Proposition
3 of Bai (1997b) where the CS structural change model is considered. Note that ¢ is not equal to 1
in general, which is dramatically different from the case in CS models. On the other hand, the form of
¢ is similar; if the model is homoskedastic in each regime, ¢ = 03/0}, where 07 = E [53], and ¢ = 1
when E [xx'e?|q = 7y] = E [xx’e3|q = 7,] as assumed in Hansen (2000). This theorem can be treated as a
misspecification-robust extension of Theorem 1 in Hansen (2000) where the model is CS.

Example 2 (continue of Example We need only derive the formulae of $go and VOi to obtain the
asymptotic distribution of 5. Note that

$i(y) = limE {X <X/620X/ﬂw> ' q= ’Yzo} = Dy ( lim w (920 — d10) )|) =: Dgycy,

n—00 [0l n—oo||d209 — w (620 — d10
) . x'b3g — X'
$a(y) = nhjch [X <”5”20 q="| =0,
s0
dDoc+2d¢19 = ' Do(c+2c1)=c Dy < lim 020 >
n— 00 ||'LU(51() + (I — w) (520”
' Doc+2c¢op = C/l)oc7

where ¢’ Doc 4 2¢'$o0 takes the same form as in the CS model because the right regime is indeed CS. Next,
Vo =E [XX/5%|‘J =730—] and V" =E [XX/5§|‘] = 720t]
take the same form as in the CS model.

To conduct inference on -, we use the LR-like statistic as mentioned in Section [2.1

n(Sp(y) — S, (¥
Ui
where ’772 is a consistent estimator of 1% = % = C/DS/C‘—/‘—%’ so 7, =n and b= ﬁQ here.

Corollary 1 Under Assumption I(1),

LR, (7o) 5 € (9, 651

where the distribution of & (¢, ¢;1) is given in Proposition[d(iii) with ¢ and ¢ defined in Theorem[3
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To make LR, (v) feasible, we need to estimate 7%, ¢ and ¢. From the proof of the Theorem

2 15 2
= 1t E[E%ihh:’m*] T E{(‘S%xl) (yi_xiﬁo) |Qi='yﬂ_]
Vo e= lim == = lim/ 3T

2 ’
ot e BEda=vot] _ . B[(80x)* (s —xiBo) lai=o +]
cVp'e= lim == = lim Tk

)

and
1 ey — i EEuilai=ve=] _ g BIOLx) (9i—xiBo)lai=v0—]
3 (¢'Doc+2c610) = lim =55 pre= = lim T )
L(dDoc+2c¢0) = lim Blailai=vot] _ iy 7E[(6"xi)(yﬁxif”)lqiz%ﬂ.
2 S ] e 51

This implies that

772 ~ ]E[((S;in)z(yi—x2§0)2IQi:’Yo—] o~ %E][((S;zxi)(yifxigo)\qi:woﬂ and ¢ ~ ]E[(é,’nxi)Q(yi_x,’i,Bo) |qi= 'yo+]
2E[(87, %) (yi =%} Bo ) lai=v0—| B[ (87, %) (vi =%} By ) la:="0—] E[(&;xi)'z(yﬁx;m) \qizwof]'

(11)

As a result, n?, o and ¢ can be consistently estimated by kernel regression or series regressmn as in Section

3.4 of Hansen (2000) but with ¢,, replaced by 8 and Bo by Bﬁﬁ? in the formulae of n%,¢ and ¢. These

estimators are robust to misspecification in E [y|z,¢] in TR, Just like White’s sandwich-form convariance

matrix estimator is robust to mispecification in conditional mean E [y|x] in linear regression. Given the

estimators of 12, ¢ and ¢, say 7>, % and a, the (1 — ) LR confidence interval for v follows by inversion from
{7: LRy (3) < @it}

where crit is the (1 — @) quantile of £ (@, b; 1).
In the CS model,

E[(éﬁlXi)Qe%ilqz':’Yo'*‘]
E[((S;quz)%fi\qi:’)'o—]

,'72 _ E[(éizxi)zei‘(h':')’o—] o= E{(élnxi)ﬂq@‘:’yn—‘r]
Bl x)*lai=vo-] 7 B[(87,%:)2|qi="0—]

and ¢ =

)

but these formulae are not correct in the MS model. Specifically, the correct formulae should be

[(5/ xl) etilai=ro— ] [(6 xl)(xé —262,>\q7L ] - E[(é/nxi)Qggq:“h:’YowL]
1" = B Cen i lai=re =1 ? = BlGhx)Gert o llai=r,—] nd ¢ = E[(37,%:)%e%,lai=70—] ’
while
B[ (0x:) edilas = vo=| — B[ (0x) hila = v0=| = B [(6,x:)" (i (w1,00) = x4810)° | = 70— = O (16ll") >0
B (3,x:) eBila: = vo+] — B | (0x:) il = v0+| = B[ (3x:)” (ma(wi, ) = xi80)* 145 = v0+] = O (6all*) >0
B (%) la: = 70— | — B [(0,%:) Cexs +8,x5) [a; = v0~] = 2B [(5x:) (ma (@1,.05) = xi10) lai = 0] = O (I10u1*)
B (%) la: = 70| = B [(0,%:) ('8, — 262:) [a: = vo+] = 2B [(9,:) (ma(ws,05) = XiB0) a: = 70+] = O (116l -

Although E [(%Xi)? e2lq = 70—} and B [(%xi)z e3lq = 'yo—i—} can replace E [(5;Xi)2 e2.lqg= "/0—} and
E [(%xi)z e3;lqi = 'yo—i—} because their differences are o (||(5n||2), E {(6;xi)2 lg; = 'yo—} and B {((S;X¢)2 lgi = 'yo—i—]
cannot replace E [((ﬁLxl) (2611' + 5’nxi) lg; = fyof] and B [(§;xl) (x'6p, — 2€9;) |gi = ’yo+}. In other words, n?

_\2 _\2
9 Note that E [(5%&')2 <yi — x;B()) lgi = 70—} —-F [(5%&')2 el = 707] =F {(6%){02 (ml (zi,q:) — x;,B()) lg; = 'YO*:| =
E [(07,%:)% (1 (@i,4:) = %810 +X16n/2) la: = 70| = O (I8a*)
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and @ are biased if the estimation is based on . Even for ¢, the formula in should have a smaller
finite-sample bias than that in .
If the model is homoskedastic in each regime,

o _ _Doeo?  Bl(xi) laimro—|B[(si—xiBo) lai=vo-] B[ (y:—x/0)’ l4:<70]
T = TDoctzeie ~ 2B[(87,%:) (vi—xBy ) lgi=70—| ™ B[(3%0) (31— %, Bo ) [ai=v0—] /B[ (5 x0)2 [di=70]
b= ~ E[(yi_";m)zwi:%*‘] - E[(yi—XQBo)z\qpvo]
o E[(yifxgﬁo)z‘qi:%f] E[(yi,x;go)2‘qig%] ,

(MV)

=

where the second approximation of n? and ¢ allows us to use more data to estimate them. Note that n?
cannot be simplified to ¢? as in the CS model.

5 Asymptotics in Discontinuous Threshold Regression: 1 < a <2

We first state the asymptotic theory of I(2) and then I(«a), 1 < a < 2.

51 a=2
First, we specify the required assumptions.
Assumption I(2): same as Assumption I(1) except
(iv) (iv) of Assumption MA plus (c) sup, ¢y E [|x;50 (yi — xB,) |2+€ lg; = 'y] < oo for some € > 0.
(x) (a) A+ (7) € RVg; (b) Si, > 0, where SE =245 (¢) wi = “x;éo (ys —X;BO”Q lgi :'yj:} is

continuous at 7y, and o.)g = wi > 0

Assumption (iv)(c) is assumed due to a similar reason as in Assumption I(1)’. If Ay (y) in Assumption
(x)(a) is actually the left and right second-order differentiable, then

~ _ ¢ EEule=vo-] _ _ p OB[x60(y—x"Bo)la=vo-] _ _ , OE[x'60(m1(x,a)=x"Bo)la=vo-] _
Soy = —fomg = =~ fo QWO — ==/ v_ ) — =2 (13)
E[Z2:|g= OB|x"60 (y—%'Bg ) la=~o+ OE(x'60(m2(z,q)—x'By ) la=70+
S%Zfo [2\(;17’)’04-]:_.](-0 [x'50(y a’yu)q Yo ]:_f() [x' 80 (mo qa,y 0)la=70 }:2)\4_,
and is even the second-order differentiable, then
S,y,y _ —fo aE[x 50(y78}; BO)|q:'yO] _ —fO B]E[x 5o(m(x,g?yfx 60)“1:70] =2\ = 2A+, (14)

where f(7) is assumed to be differentiable at y,. From (14]), we need to impose further restrictions on the
smoothness of m (z,q) and f;, (z|q) around ¢ = 7, (beyond the continuity at ¢ = ;) to guarantee the
i

existence of S,,. When x = (1, ¢)

Sy =B [x'd (m(q) —x'By) lg =] = (1,7) 6o (m (v) = (1,7) Bo) » (15)

the existence of S, implies the differentiability of m (y) at vy, where m (y) — (1,7) B, is termed as the
"centered" regresson function in BM. If m(v) has a kink at 7, S, does not exist and only S% can be used.

10Here, "continuous" is understood as "left continuous" for w5 and "right continuous" for w?YL. This convention is applied in
the future discussions and will not be repeated again.
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In S3; of Assumption (x)(b),

_ [ Bl —xBi)la=v-] | _ —x(y-xB) \| _ ]
%V‘h< E[((%)—X%MQ—%)]> ﬁ@_<x@—xwm )q 07|
:fo(E[( 1(z.0) =By = %' %) lg = o~ ]>::<Sm>
E [x (mi(z,q) — X’Bo +x'%) |g = 70— T\ S5 ) ) (16)
+ _ —E[x (ma(z,q) =x'Bi) lg =0+ | _ —x (y —x'fyp) _
SBW — o ( E [x (ma(z, q) — x'By0) lg = 7o+ ) Jof L ( x (y —x'By) ) ! ’y(ﬁ-_

_ 5 ( -E [X (mZ(maQ) 7XLBO 7X/670) |q - F)/OjL] > =: ( Sgl’y ) .

E [X (mZ(xa q) —x'By + X/%O) lg = 70+] Bay
In the simple example in Section [3} x = (1,q)’, so At (y) € RV; implies
E [(mi(z,q) —x'By) x1 (v < g <vy)] € RVz and —E [(ma(z,q) —x'By) x1 (v < g <7)] € RV>  (17)

or E [(mi(z,q) —x'By) x|g = vo—] = E [(m2(z,q) — x'By) x|g = 7o+] = 0. We do not impose such restric-
tions in the general case; otherwise, Sﬁ_7 and Sg}{ can be simplified to

LB [xx'|q = v,] 0 fi 1 S
So =8t = 2 R i ® (Dodo) =: Sgy = | P17
b fO( 3B [xx'|q = o] 6o 2 (1) @ P00 =5 Spav
with Sg o = Sg,+, and correspondingly, S 4o 1s simplified to

2\ Vi
SE = < g + gw ) with S, 5 = S}, and Sgp = diag { Mo, Mo} .
By BB

Of course, even if does not hold, S/;v can still be equal to St/; in this case,
E [(m1(337(Z) - XIBO) x|q = ’Yo—] =E [(m2($7Q) - X/BO) xlg = ’Yo+] # 0,
which is implied by the continuity of m(x,q) at v,. Now,
—x (m(z,q) — x'B —x(y—x'p3
im0~ x50\, ] (v = x50)
x (m(z, q) — x'By) x (y — x'By)

In Assumption (x)(c),

Spy = folb

3 _ DoMy ' Ny — Ej
=701 =10\ gy~ podt, ' N,

(18)

wg =B [Fila = 70-] = Var (zula = 7o) = B| (m1(2,9) = xBy)” ('80)* lg = 70~ + B |(x'd0)* e3lg = 70— | ,
wi =B [Fila = v0+] = Var (Zaila = o) = B | (ma(z,q) - x'By)” (x'60)° lg = v+ | +E |(x'60) 3l = w0+ | -
(19)
where the second equality is because Ay () € RV; implies E [21;]|¢; = v9—] = 0 = E [Z2i|¢i = 7o+ If m(x, q)
is continuous at v, and E [5%|x,q = 70—] =E [5%|x7q = ’yo—i-], then wy = w{. In the simple example,
A4 (v) € RV, further implies

E [(ml(z,q) - X'BO)2 (X’50)2 1(y<g< ’yo)} € RV3 and E [(mz(z,q) - X/BO)Q (x’60)2 1(yg<¢q< ’y)] € RV3,
(20)
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SO
wg =B [(x160)" 3 lai = 70— and wi =B |(xi80)" 3l = 70+] , (21)

but such a simplification cannot happen in general. In other words, the randomness in (my (z, q) — x'B,) (x'80) 1(7 <
q <) and — (ma(z,q) — x'By) (x'00) 1 (7 < ¢ <) cannot be neglected, which is very different from I(1)’
where the corresponding terms converge to the constants 3/ |v| in mean square (i.e., the L2-norm). Any-
way, since €y is not observable, we still need to estimate w? based on the general formulae even in the
simplified case.

The positive-definiteness of Si; in Assumption (x)(b) guarantees the local identification of 6y. The

following example shows that S;te > 0 imposes some restrictions on AL.

Example 3 Suppose x = (1,q)', ¢ ~ U [-0.5,0.5], v, = 0, and 6o = (660,6q0)'. Then

20 %2 0 b0 0

6a0 l _l
00 — S S - 8 24
By BB 3co 11
2 0 2 8
1 1
0 5

implies Ay > 2530. Since Sgg > 0 and Ay > 0, the restriction comes from the appearance of Sg.. However,

1
If x =1 and m(q) is differentiable at ¢ = v, as in BY and BM, then

1
Sgy = % ( ® (Dodo) in the current setup, and Dody # 0 in DTR, so Sg, must appear.

o\ S —fodorn/ (vo) 260 L0 —dom’ (o) % &
S@g— ( g S’YB > = L;éo Fo 0 :fO 570 FO/fO 0 >0
v PEp fog, 0 1-F % 0 (1= Fo)/fo

2 252
implies dom’ (vg) < —% (< —fodg) <0 or A > %, where Fy = P (q <7,), and (1 — Fy) /fo

is the reciprocal of the hazard function of g at vo. This is actually the assumption b > 0 in Theorem 2.1
of BM; the form of Sgg (times 2) also appears in BM (p. 571). Note that m' (v,) # 0 as assumed in BY’s
(A2)(i) and BM’s (A2) implies A () € RV;.

Before stating the asymptotic distribution of /9\, define py = 2Ay — SwiﬂlMo_lSﬁiﬂ — SfBQMEISgﬂ, and

+
Wt = wao .

Theorem 3 Under Assumption 1(2),

nM3 ([ = yp) 5 W3¢ (0, 032) =: Z,, (2),

and
~ d o
s (61 a 610) Mg [SB1VZ’Y (2)e + 55,25 (2)@} :
- d =17 _
nt/? (62 -8 0) — Mo [SBMZV (2)g + SEQ'YZ“/ (2)69} ’
ot
where w = =5 ,Lp—zi, and ¢ = 2+ = £o
_ T o
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If S5, = S;,Y =S4y, Wy =wg =wp and A_ = Ap = A = %, then ¢ (p, ¢;2) in Z, (2) reduces to ¢y o,
where (.. is defined in Section At the same time,

1/3 (5 _ N _Mo_lanZw@) 929
n'/3 (B - 5o) (_Molsﬁﬂzv o ) (22)

This is actually Theorem 2 of Seo (2015) after some manipulations. The cube-root convergence rate of
7 implies that v cannot be estimated precisely even as a sample mean, which is very different from what
happens in I(1). When x = (1, ¢)’, m(q) must be continuous but may have a kink at ~y,. If we fit a CTR as in
Hansen (2017), then 7 is y/n-consistent, i.e., restrictions imposed in CTR help to improve the preciseness of
7. As Kim and Siegmund (1989) point out, the estimation of an abrupt change when only a gradual change
exists can exaggerate the magnitude of the possible change or introduce unwanted bias into an estimate of
its location.

Section 2 of BM considers the case where x = 1, £; = €5 and m(q) is differentiable at ¢ = v,. In this case,

_ . — §2
Wa_ =Wy = 5302 (70) =: wy with o2 ('7) =K [52|q = ’Y]v Sv“r - 575555557 = Jo (_50777'/ (70) - %) as

shown in Example —My'Ss,, = —’;‘ﬁ? and —Mangﬂ = —%. In summary,
1
nt/? (5— 90) el I CL P min {\/foU2 (0) 63 B(©) = % fo (—50771/ (7o) — 4F0{016—[2)F0)>}
o 2({[251%0)
1
= | A |ammin {VRGZG0BE) - 5 (~ I (o)l - iy ) ) -
a 2({(16%0)

which is exactly the same as that in Theorem 2.1 of BM, where —dom’ (7¢) / [d0] = |m' (7¢)]- Section 3
of BM also considers the case where ¢ is the only regressor and a possibly nonlinear function of ¢, say
ge(q), is used in the conditional mean of y in each regime. In this case, Z; = (m(q) —g(q)) Ag(q) and
Zy = — (m(q) — g(q)) Ag (), where Ag(q) = g1 (¢) — g2 (¢). They assume Ag (7o) # 0, m(vo) =g (7o) and
m' (7o) # 7 (70), which guarantees the model is a DTR, and A (y) € RV, but A (v) ¢ RV, for @ > 2. Their
Theorem 3.1 can be treated as a special case of our Theorem where S (6) is the second-order differentiable,
and the regressors in each regime are completely different but all functions of q.

From , the randomness in B— B, is completely determined by that in ¥ — v, asymptotically; in other
words, there is perfect correlation between B — By and 7 — v, asymptotically, or the asymptotic distribution
of nt/3 (/0\ — 90> concentrates on a line through the origin. This is very different from case I(1) and I(1)’,

where the randomness in the former is independent of that in the latter. If v, were known, B(’yo) — By is

0, (n='/2); however, when 7, is unknown, it contaminates the estimation of 3 such that B—B, is O, (n1/3).

As a result, the randomness in 8 — 8, = 3 () — B, = (B )-8 (70)) + (B (vo) — 60) is dominated by that
in 3@) -B (7o) To get more intuitions, note that
ni/8 (B, (3) - By ()
—1 —1
= | (bxss) (Rxey) - (B, e ) (1))
~ 0!/ (Bxx'l(g <7)] 7 Elxyl(g <7)] - Elxx'1(g < 7)) B xyl(g < 70)})

~ nt/? (= foMy ' DoMy ' No + foMy 'Eo) (7 — 7o)
= foMy " (Ey — DoMy ' No) n'/3 (5 — v¢) = =My ' Sp,,n' /3 (7 = 7,),
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where the first approximation is because %X/gaXiﬁ =n"12G, (xx'1(¢ < 7))+E [xx'1(g < 7)] = O, (n"1/?)+
E[xx'1(g < /7\)] and similarly %X/S?Y =0, (n7Y/?) + E[xyl(g < 7)] so that the O, (n~/2) part can be
neglected given that the pre-multiplying term is n'/3, the second approximation is from the calculus of ma-
trix derivative, and the last equality is from the alternative formula of Sg  in . Similar analyses apply
to Bsy.

Finally, consider the LR-inference on . Define

n?/ -S. (v
LR, (v) = - (S"(%)/S 5x ),

2

~2 . . . w
where 7)” is a consistent estimator of n? = T

Corollary 2 Under Assumption 1(2),

d
where & (p, ¢;2) is defined in Proposition @(zz} with ¢ and ¢ defined in Theorem @

When ¢ = ¢ =1, £(p,9;2) = €12 with &, defined in Section which is essentially the asymptotic
distribution appearing in Corollary 3 of Seo (2015) where In S,,(-) rather than S,,(-) is used in LR, (). The
€12 distribution also appears in Theorem 2.2 of BM after some manipulations. BM further suggest in their
Theorem 2.3 an alternative LR statistic which has a larger p_ (= 2A_) to stabilize the inversion of LR, ().

To make the LR inference feasible, we need to estimate ¢, ¢ and 1% which are functions of A, Swiﬁe’
My, My and wy. The latter four objects can be estimated by their sample analogs, i.e., Sviﬁe is estimated
based on , and w4 is based on . Here, we provide more details on the estimation of AL because
the method here will be used in other cases. Although we can estimate A+ based on , the estimator is
specific to II(2) and is not easy to extend to other scenarios. Alternatively, in I(a)) with 1 < o < 2, suppose

A (]v]) takes the form of |y|’s power for simplicity; then by observing
EZil(vo —h < qgi <vo)] = A_hY and E[-Z;1(7vy < ¢ <79+ h)] = AR
for some bandwidth h, we can estimate A+ by

- IS A —h<q <A ~ 'Y 1< <A+h
S it (hva <¢ <7) and %, = —" Zzzlzh(av<q_7+ ) (20)

where Z; = x;g (yi — x;B) with 6 = 31 — Bz and 3 = % When a =1, Xi reduce to the kernel estimator
with the uniform boundary kernel as Section 3.4 of Yu et al. (2019). This estimator of AL can be used for
all other cases and will not be repeated in the future.

5.2 1 <a<?2

As indicated in the intuition of Section we expect the convergence rate of 3 to be min (nl/ 2, pn); When
A (J|) takes the form of |v|’s power,

1/2 ; 3
. n fl<a<s
min (nl/Q,pn) = L o 3 -2

nZ-1, if § <a <2,

Here, Gy, (xx'1(q < 7)) is the empirical process indexed by v, and E [xx'1(qg < 7)] := E [xx'1(q < 7)] |y=5-
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which is faster than the usual balancing rate n*@-1 . This rate can also be seen through a similar analysis

~

as in . When a < 2, the convergence rate of 3 () = B () is determined by 7 — 7, whose convergence

rate is faster than n'/2

, so the asymptotic distribution of B is completely determined by B(yo) — By When
o> %, the converse happens, and the asymptotic distribution of B is just a linear transformation of that of ¥
as indicated in . Only when o = 2, both 3 A)— B (7o) and B('yo) — B¢ will contribute to the asymptotic
distribution of 3.

We next specify the required assumptions.
Assumption I(a) [1 < a < 2]: same as Assumption I(2) except

(x) (a) A+ (7) € RVy; (b) wi = ng% (yi — x}By) |2 lgi = 'yi} is continuous at v, and w := wi > 0.

If we assume but replace RV3 by RVa,_1, then we can simplify w? to (21)), but we will keep this general
form of wg here. Similarly, if RV5 is replaced by RV, in , S’/ﬂ;y can be simplified as there.
Before stating the asymptotic distribution of @, define p, =2Xy and wy = fowoi.

Theorem 4 Under Assumption I(a), 1 < a < 2,

P (3= 0) —5 wTTC (0, 650) = 7, (),

- +
wherew:%:ﬁ);é",gp:%:— andqﬁz—::—‘l, when 1 < a < 1.5,

- 0

\/ﬁ (B1 - /310) i’ Zﬁp
\/ﬁ (32 - 520) i’ ZBQ’
when 1.5 < a < 2,

~ d _ _
Pn (51 - 510) - —My! [Sﬂnzv (@)g + S[;r1"/ZW (a)@} ’
- d =1 [q"
e (B ) 305" 5,2, @) + S5, 22 @0s]
and when a = 1.5,

Vi (By = Bro) = Zs, = My (85,2, (L5), + 53,2, (15), |

- d — 1 [
Vit (By = Bao) = Zs, = My [S5,,2, (15) o + Sy, 2, (15)g |
where Z (c) , Zg, and Zg, are independent.

Comparing Theorems and [4] we can see that the asymptotic distributions of 7§ take a unified
form with the key difference lying in the definitions of w, ¢ and ¢. In I(1)’, using the notations in
this subsection, we have gy = lim, o0 2As/ [|0,]%, wy = limy oo B [Z2:lai = v0—] / 16,1 and wi =
lim,, o0 B [23;]¢: = vo+] / 16,|1%, where note that A\ = foB [Z1ilg; = vo—] and Ay = fo [Zailgs = vo+]-
Dividing |6, is to ensure py and w? nondegenerate given that we assume ||6,| — 0 as n — 0; apart
from this, the formulae in Theorems [2[ and [4] can be unified. Compared with Theorem 3| Z, («) in Theorem
E| replaces p1y by 2A+ because the cross terms are dominated as shown in Section As expected, when
1 < a < 1.5, the asymptotic distribution of 5 is not affected by 7 and is exactly the same as in I(1) and I(1)’.
When 1.5 < a < 2, it is completely determined by 7 and takes the same form as in I(2). When o = 1.5,
it is the sum of both components. BM notice that BY made a mistake in claiming B is v/n-consistent (in
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their proof of Theorem 3.1) which is used to show that B will not affect the asymptotics of 4. Actually, B is
/n-consistent when 1 < o < 1.5 and it will not affect the asymptotics of 5 as long as « < 2.
Finally, consider the LR-inference on . Define

VP (Sn(y) = S (7))

LR, (’7) = ~2/(2a—1) s
n
where ﬁQ is a consistent estimator of n? = 1:" = (fOQL;‘E) . Note that n?/3 < \/np, < n.

Corollary 3 Under Assumption I(a), 1 < a < 2,

LR, (15) =5 £ (9. 63),
where & (¢, ;@) is defined in Proposition [4(ii) with ¢ and ¢ defined in Theorem [4]

The form and asymptotic distribution of the LR statistic can also be unified for I(1)" and I(«) with
1 < a < 2 with properly defined w, ¢ and 72.

6 Asymptotics in Continuous Threshold Regression

We will discuss the asymptotic theory in the following order: II1(2), II(3), II(4), II(a) with 3 < @ < 4, and
II(@) with 2 < a < 3. We first discuss I1(2), I1(3), II(4) to make them anchors of others (as I(1) and I(2) in
DTR), and discuss II(«) with 3 < a < 4 before II(«) with 2 < o < 3 because we will use some results of the
former in the latter.

In CTR, besides Ay (v) € RV, we must assume a key assumption throughout. This key assumption is
satisfied in the simple example of Section [3| Specifically, we need to extend to

E [(mi(z,q) — x'By) x1(y < ¢ < vo)] € RVa—1 and —E [(m2(z,q) — x'By) x1(7y < ¢ <7)] € RV\—1. (25)

Here, we implicitly assume these two objects are positive; otherwise, a negative sign is added given that
the range of regularly varying functions must be (0,00); the point is that only the rates of these two
objects shrinking to zero matter. Although it seems innocent to assume given that Ay (v) € RV,, i.e.,
E [(m1(z,q) — x'By) 40q01(y < g < 7p)] € RVa and —E [(ma(z,q) — x'By) ¢dq01(v9 < ¢ <7)] € RVj, it
indeed excludes many cases when x includes nonconstant regressors besides ¢. When a = 2, this assumption

is trivial, but when a > 2, it indeed has some contents.

Example 4 Suppose —(ma(z,q)—x'B,) = g(x), € R, in the neighborhood of ¢ = v, i.e., q is offsetted; then
Eg(z)ql(vy < ¢ < )] ~ 7% need not imply Eg(x)zl(yy < g <7)] ~
and o = 3; Eg(z)ql(vy < ¢ <7)] ~ > implies E[x|q =] ~ 7, but this need not imply E[g(z)z|qg =] =
E [2%|q =] ~ v (which would imply B [g(z)x1(vy < ¢ <7)] ~72); e.g., if (#,q)" ~ N (0, (02, 00q; 0gas 02))

2 o2
with 04z # 0, then Blzlg =] = 25y ~ v but B [2°|g = 7] = (%) v2 + (U?v - 0“2’”) ~ 1.

=1 To be concrete, let g(z) = x

Nevertheless, without this assumption, we can only analyze I1(2) because as shown in Section [3| the model

2112
in II(e) with 2 < @ < 4 may be locally unidentified given that HBH +]7v|* need not dominate the cross term
‘EH |v|. Here, note that HEH |v] would appear if does not hold such that Séﬁ/ # 0; to be concrete, from
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the formulae of U4 (3,+) in Section we have

w —E [x (m1(z,q) — x'By) 1(y < ¢ < 70)] — 3E [xqd401(7 < ¢ < 7))
_ ( Blx(y = X'B10) 1(y < g < 7)) ) NG )
B [=x(y = xBy) 1y < 4 < 70)] Sz, (1) )’ (26)
St (q) = Welfan) _ ( —E [x (ma(z,q) = x"Bo) 1(7o < ¢ < 7)] + % [xq0q01(79 < ¢ < )] )
b dp E [x (ma(z,q) = x'Bo) 1(vo < ¢ <7)] + 3B Xq5qol Yo <q<7)]

_ [ BEx@—=xBi0) v <g<7) S
E[—x(y —x'By) L(vo < q < )]
where the second terms of Sﬁi (7) are definitely RVa, but the first terms may be only RV; such that Sﬁi,y #0
if is not imposed.

Sz (v) = av_(Boy) _ ( E [x (m1(z,q) —x'By) 1(v < ¢ < 70)] — % [xqdq0l(7 < ¢ < 7o)] )

6.1 a=2
This case is not discussed in the literature. First, we specify the required assumptions.
Assumption II(2): Assumption MA plus
(x) (a) Ax (7) € RVa; (b) S5, > 0, where S% = 2)\.
Assumption (x)(a) implies P (my(z,7o) # (1,2',7) By # ma(z,7,)) > 0. As to S3; > 0, the discussions in

Section can still be applied here, but since x'dy = ¢dq0, S and SBjE can be simplified. For example, if
A4 () is the left and right second-order differentiable, then from (13),

- 98] do (= By )la=10 -] 08 4800 (e1:+9°42 ) la: =70~ OBlg8y0e:ilai=70]
— _fO 5 0 0 — _fO 5 — _fO q qoeévq Yo

= —fo0qg0E [e1i|qs = vo—] = —fodq0E [m1 (x,q) — X'B1ola:i = vo—] = 22—,

and similarly,
STy = —fodgoB le2ilai = vo+] = —fodgoE [m2 (z,9) — X' Baglas = vo+] = 24,
where f() is assumed to be differentiable at y,; when Ay () is even the second-order differentiable, then
Say = = fodgoE [eslai = vo] = — fodqoE [m (2, q) — X Bygla: = o] = 2A— = 2X; =1 2A.

Similarly, we can simplify as

F— ( E [(ma (@, @) = X'B10) xlg = o] ) _ ( —E[X€1i|q:70—]>
7\ Ellma(e.q) = X' Bio) xla = 70 E [xe1ilg = o~

— f ( [(m1($ q) _Xﬂo) x[q == } ) —. S/;ﬂ ) ’
B 55,1

f
( (ai,)—x’ﬁo)x\q:'yo—] (

527=fo< [(K 2(w,0) = X o) Xla =0+) | _ —E[xe%m:w)
| [

E[(ma(z, q) — x'Byo) X|lq = vo+] E [xe2ilq = 7o+
s —E [(m2(z,q) — XLB()) x|q = vo+] Y
E [(ma(z,q) — x'Bo) x|g = vo+] S;ﬂ
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where note that Sgi»y = —Sﬁiﬂ. In CS models, S% = 0 so that S;te > 0 cannot hold, i.e., II(2) includes only

MS models. It is not hard to see S;/ is also equal to 0 in CS models. Different from Assumption I(2)(x),

we do not need to define wi since it is zero in CTR; wi represents the randomness in 7, but we know from

Section |3| that this part of randomness is dominated by the randomness in E

Theorem 5 Under Assumption I1(2),

_ -1
(800 = S5, (55,) 7" S55) W, W e Ry,
_ -1 —
(Sa0 = S5, (55)7"S5) W, iy w e Ry,

and
s ZfW € RN Ry,

~ d
V(3 =) — —=
5 ifWERl N Rs,

W
W, if W € Ri N Ra,
W
W

5 ifWGRl ﬂﬁg,

where W is defined in (@,
117/ - Ay lom 7! 1ya7/ + +\ 71 ot !
Ry = W] = 5W' (S = S5, (53,) 7' S5) W < 4w (Sps = S5, (85)7'85) Wt
N -1 - o
[Sﬁ'y (5% Sy~ Sﬂt/ (S3) S'Jyrﬂ] (555 — 5 (53)

)
[SB"/ )

= e _ —1,-\!
Ry =AWW' (Sgs = S5, (S3,) " S5, S55) W=op,

o 1
(S57) )
1 -1 1, 1 -1 -1

o= {1 (52— 55, (5507 55,) ™ [55, 5707 55, (557 8] (50— 5, (557 55) " w o).

and R1, Ry and Rs are their negations.

In some special cases, the asymptotic distributions of B and 7 can be simplified. For example, if S’gﬂ/ =

SgW = S3,, then Ry = Ry = R3 = R29+2 when A_ < A, and ) otherwise. As a result,

o

(555 — Sgy (Si )71 Svg)_l Wit A < Ay,

(Sﬂ[; - Sg—y (SJr )71 S»w) Woif A_ > Mg,

Yy

v (B-80) -

and

-1

_ -1
—(S5,) " Sus (Sﬂﬁ — Spy (S53) Svﬂ) Wit A < Ay,

Vi (3 =) = L e N
— (55) 7" Sy (S = Sy (55) 7 Sys) WAL > Ay

When A_ = Ay = A which implies S = Sj/‘v =2\ =: 5,4, the formulae can be further simplified and are

the same as the case where S (6) is the second-order differentiable:

Vi (B 80) < (S5 - 2552) W = 2,
d

) 27)
~ S, SpySys\ Sp- (
V(¥ =) — —52 (Sﬁﬁ -5 E) W =—522s,

ie., B is asymptotically normal and 7 — ~y, is a linear transformation of E — B, asymptotically.
Compared with 1(2), w¥ (and w4 ) in Theorem [3| equals zero, so n'/3 (6 — 6y) = 0,(1); in other words,

31



0 has a faster convergence rate than n'/3. From Theorem |5, the convergence rate of 0 is actually n'/2.
Also, different from the asymptotic distribution in Theorem |1} 7 and B are not asymptotically independent;
actually, even 51 and BQ are not asymptotically independent. The asymptotic distribution of 7 is completely
determined by that of B, so the asymptotic distribution of \/n (5 — 0()) concentrates on a hyperplane with
dimension 2d + 2. This asymptotic distribution is also different from that in CT and Hansen (2017) where
although 7 and B are asymptotically jointly normal and not asymptotically independent, the asymptotic
distribution of 7 is not fully determined by 5 Another way to see why the randomness related to 7

disappears is to check the localized objective function in the direction of ~, Z?:l Z1il (’Yo + ﬁ <q < 70) +

Z?:l Z9i1 (’yo <qi <+ ﬁ), whose variance goes to zero in CTR, i.e., the O (n*1/2) neighborhood is
too small to accumulate randomness for ~.

Finally, consider the LR-inference on . Define

LRy () = 2n(Sn(v) = S0 (3))
which takes the same form as the LR statistic in the regular model.

Corollary 4 Under Assumption II(2),

535585553 —1g+ ¢+ g-1
LR, (7o) % max { W'S5595,5,5955 W W'S5555,575555 W}

S = 53055385, St~ 5368555,
Note that

W'S;58;5 S 5854 W -1
BB~ B B=BB — rqg—1¢g— - @ Qq—-1lg-— — a—1
5 sog s, V959, (55— 55553355,) S35 W

_ -1 _
= g {0 (%)} 53385, (S5, = 53553455,)  SyS5die {20 (%) "} 2 = 202

where Z =diagq (3¢ 71/2, 0 -2 W ~ N (0, I5412). Since 2~ > 0 and has rank 1, we can decompose
+

it as H-'TI" H~ for an orthogonal matrix H~ and a diagonal matrix II~ =diag{w—,0,--- ,0}. As a result,
W' S35 S5, 5+5535 W

Sy =5,5585 55+
In summary,

= w‘zfz follows a scaled x? distribution, where (zf, ‘e ,z;dJrZ)/ =H Z ~ N(0,Ir442).

2

LR, () 4, max {wle_ , 2

+ 421 . — =2 o +2
Tz }f.max{ﬂ' X157 X1y,

where 71 and z;' are parallelly defined as 7~ and z; , and E [(zl_, e ’Z2_d+2)/ (zf, e ,z;dﬁ)} =E[H ZZ'H"] =

H~H"" whose (1,1) element need not be 1, i.e., the two x distributions need not be the same. If
+ _ o— _
S,B'y = Sﬂ'y = S3,, then

d W'S5553,98555 W

LR, = (= vat)x3,
(VO)H2min{)\_,/\+}—5755551557 (= v

where note that x;2 = x{% =: x?, and 7% is the nonzero eigenvalue of Q divided by (2)\i - SWﬁS[;[;SgW),
where 2 :diag{(Eo)l/Q,(ig)l/z}Sg;SMSyﬁsﬁ_gdiag{(zo)l/z7(50)1/2} When Ao = Ay = A, 77 =

7t =: 7, and LR, (7,) <, 7x3 which is close to the asymptotic distribution of the standard LR test.

12Note that in CT and Hansen (2017), the regressors are (1,x, (q —'y)e (g — 7)®), and 8 = (ﬁlc + B1g7s BQ,BM,BQQ), S

R4*2 gince d restrictions 840 = 0 and §e0 + 04079 = 0 are imposed on the model.
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6.2 a=3
First, we specify the required assumptions.

Assumption II(3): same as Assumption II(2) except

2
+6|Qi 27} < oo for some € > 0.

(iv) (iv) of Assumption MA plus (c) sup. ¢ E [’ (vi — x}By) |
x) (a) Ay () € RV3; (b) (25) holds with a = 3; (¢) wt =B |(y — x'B ? q = v=%| is continuous at ~y
vy 0 0

+._ %
and wy = w3 > 0.

Assumption (iv)(c) is assumed due to a similar reason as in Assumption I(2) but here x;do (y; — x}3,) is
replaced by (y; — x}8,) as x;6g = ¢;610. Actually, Assumption (iv)(c) is implied by Assumption (iv)(b), but
we state it here for comparison with Assumption I(2). Correspondingly, wff in Assumption I(2) takes the
new form. Parallel to ,

wy =B |(y—xBo)’ g = 10—| =B |(m1 (,9) — xBo)’ | = vo—| + B [e3lg = 70— ,
Wi =B |(y—xBo) la = vo+| =B |(ma (,9) — x'By)" |q = vo+| + B [e3lg = vo+] -

Actually, w(ﬂf are still from the variances of Z1; and Zs; in the neighborhood of ¢ = «, but caution is taken
since (y — x'By) (x'60) = (y — x'By) (¢640) now. In the simple example of Section (3} Ay (y) € RV3 implies

E [(ml(xi,qi) —x!Bo) 1y < s < %)} € RV; and E [(mz(wi, gi) — %,80) 170 < @i < 7)] € RV3, (28)
SO
wyg =E [5%|q =7v—] andwj =E [sg\q =7o+] -

In general, does not hold and the simplification will not happen. HLS is a special case of II(3) with
A4 () taking the special form 7 and woi =E [EQ\Q = 70]7 where the simplification of w(jf can be seen from
the facts that

E [(ml (x,q) — XIBO)2 lg = 70—} =E [((]2“0)2 lg = O—} =0

and similarly E [(mg (z,q) — x/BO)2 lg = 70—1—] =0, and g1 = g9 = ¢ is assumed. Another form of w? is

2
wf = B[y—xBi0+x50/27la =70~ =B[la =]
2
Wi = B[(y—xBa—x0/2)°la =0-] =B [e}lg = 7]
R - 2 wi
Before stating the asymptotic distribution of 6, define 1y = 2A4 and wy = fgaq%

Theorem 6 Under Assumption II(3),

n3 @ =) -5 Wl (0, 8 DYP = 7, (3),

and

- d
/2 (51 _ 510) — Zg,,

n'/? (Bz - 520) - Zﬁzv
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52 + + .
where w = % = folg/(\)go o=t =M gpd g = FE = :—(Ui, and Z., (3), Zs, and Zg, are independent.

As noticed in footnote 2 of HLS, the asymptotic distribution in Gonzalo and Wolf (2005)’s Theorem A.1
and Remark A.1 are not properly developed because the Hessian matrix of S (0) is degenerate. Interestingly,
the constraints d,0 = 0 and 6.0 + 0407y = 0 imposed in CTR help to improve the convergence rates of 7; a
similar phenomenon appears in I(2). Although 7 is n'/3-consistent in both BM and HLS, the reasons for the
cube-root rate are different because BM is a special I(2) and HLS is a special II1(3) and the balancings for the
convergence rate of 4 are different. Also, ¥ and B are perfectly correlated asymptotically in BM, while they
are asymptotically independent in HLS; B even has different convergence rates and asymptotic distributions
in BM and HLS. Note that we do not need the model to be CS to achieve the cube-root rate. Note also that
the intuition in can still be applied here. But now n'/? (Bl F) - B (fyo)) ~ —My'Sp,nt/3(F —vy) =0

under Assumption (x)(b), so 3; () = B (1) = 0p (n71/3). Actually, Theorem@shows that B, () — B (7o) =
Op (nil/z) because Bl — B and 31 (7o) — B1o have the same asymptotic distribution. The same arguments

apply to S3,.
Finally, consider the LR-inference on . Define

LRn (’V) = Y] )
n
~2 . . . SaoWo - -
where 7 is a consistent estimator of 7% = === ﬂ’d\i"f“ which reduces to wy in HLS.

Corollary 5 Under Assumption II(3),

where the distribution of & (¢, ;1) is given in Proposition (m) with ¢ and ¢ defined in Theorem @

6.3 a=14
This case is not discussed in the literature. First, we specify the required assumptions.
Assumption II(4): same as Assumption II(3) except

(vii) (a) f() is differentiable at vy, and 0 < f < fo < f < oo; (b) E [x|q = 7] is differentiable at ~,.
(x) (a) Ax () € RVy; (b) holds with a = 4; (¢) w¥ := B [(y - X’Bo)z lg = ’y:l:} is continuous at 7,
and wE = wE > 0; (d)

Yo
1 o—/ 1q—/
ZA_ 5551’}’2 55[3272 2)\ lsl
ST = 38;.. S 0 = T >0
’ 2% B,v? 8181 : lg S s
lsf 0 S 2By BB
2% B2 B2Bs
1 g+ 1 g+
2>\+ §Sﬁ172 555272 2\ lsl
st . = isf, S 0 =: Tt ) >0
: 2% 8,42 B181 : lg IS s
lg+ 0 S 2°By? BB
2% By7y? B2Bs

1
where 55172 = Sﬁiﬂz = 5‘1%folE [x|g = 70| =: 53,42, and Sp,2 = ( ) > ® Sg,q2-
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Only Assumption (x)(d) needs some explanations. ST is parallel to 5’3@ only with 42 replacing v. From
Assumption (x)(b), only the second terms of are involved in calculating Sgﬂg. Take SE{ as an example.

We need to calculate

OE [x|q = 7] vf(7)
vy

O°E [xqdg01(vy < ¢ < )]
oy?

082 Jo Elxldlaf(a)dg _

92 = 640 folE [x[q = 7o),

=5 Sq0

where the last equality uses Assumption (vii). Parallel to Example [3] the following example shows that
S* > 0 imposes some restrictions on M.

Example 5 When x = (1,q)", ¢ ~ U [-0.5,0.5], 75 = 0, and 6o = (5c0,040) . Then

6qg ng
22 F 0 50
Sq0 1 1
n 2 2 8 0
— 1 1
840 11
2 2 8
0 0 11
8 24

implies Ay > 2530. Note that since 040 # 0, Sp,42 = 5qgf°E [x|g = 7] # 0, which implies the restriction on

At
Before stating the asymptotic distribution of 57 define py = 2Ay — Sz, (M(;1 +M§l> Sg,42/4 and
+

052 . .. .. .
oy = J‘Oq%wo, which play similar roles and take similar forms as p, and wy in I(2).

Theorem 7 Under Assumption I1(4),

n% (7 — o) ~5 W3¢ (0, 43 4/3)1° = Z, (4)

and ~
n?% By = Bro N ( _%MglsﬁZWZZW (4)° >
n?/® Bz — Bao _%M(;lsﬁmzzv (4)2 ,
wherew:%, QD::% andqﬁ:%:%.

When Ao = Ay, p_ = py so p = 1; if wy = wy, then ¢ = 1; and (g, ¢;4/3) will reduces to
¢(1,1;4/3). As in I(2), the asymptotic distribution of S is completely determined by 7; actually, the
asymptotic distribution of 0 concentrates on a quadratic line through the origin. The intuition in can

still be applied here, but now n'/® (Bl ) —-p ('yo)> ~ —M;'Sp,,n'/® (7 — 74) = 0. To get a nondegenerate

distribution for B, we need to expand B(ﬁ) around -y, to the second order. It turns out that
~ o~ 1. R 5
n?/? (51 ) -8 (70)) =5 My 8p,m0 0 (7 = 70)” (29)

which results in the asymptotic distribution in Theorem E The same arguments apply to 32.
Finally, consider the LR~inference on 7. Define
n*/? (S, (7) — S (3))

LRn (’Y) = /']’76/5 9

4/3

PO . .
where 7° is a consistent estimator of n? = T
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Corollary 6 Under Assumption II(4),

LRn (70) i> € (90’ ¢a 4/3) 9

where & (p, ¢;4/3) is defined in Proposition @(n} with ¢ and ¢ defined in Theorem @

6.4 3<a<i4

From the intuition of Section we expect the convergence rate of 3 to be min (n/2, p2); when A (|4])
takes the form of |vy|’s power,

1/2 ; 7
. n if3<a<i
min (nl/z,pn) = 2 o7 -2

nz2=3if 5 <a <4,

which is faster than the usual balancing rate n?@=3 . This rate can also be seen through a similar analysis
as in . When a < I, the convergence rate of 3 () — 3 (7,) is determined by (7 — 0)? whose convergence

1/2 o

rate is faster than n'/<, so the asymptotic distribution of 3 is completely determined by B(’yo) — By When

a > %, the converse happens, and the asymptotic distribution of E is just a quadratic transformation of
that of 9 as indicated in . Only when a = I, both (3) — B (v) and B (v,) — By will contribute to the
asymptotic distribution of 3.

We next specify the required assumptions.

Assumption II(«@) [3 < a < 4]: same as Assumption II(4) except

X a 1&:‘: Y S li [/O b 2!)' hOldS C) w = y — X /—)) q — y:t 18 COIllHl 10us al "Y all(l w =
Y 0 0 0
0 >

As in (28), we can assume

— .2 — \2
E {(ml(a:,q) — x’,é’o) 1(y<qg< 70)} € RVso_3 and B [(mg(x,q) — X’BO) 1(y9<q¢<7)| € RVaq-3
(30)
to simplify w(jf, but we will keep this general form of w(? here.

f05c210w§
3

Before stating the asymptotic distribution of 5, define 1y =2X4 and wy =
as in 11(3).

, which are the same

Theorem 8 Under Assumption Il(a), 3 < a < 4,
~ d 1 ) 1/3 _.
Pn (7_70) w2“—3<(gp,¢,a/3) = Z"/ (Oé) ’

52wy +
@ — fo0u0 o=t =2 gndg =2t =90 when 3 < a < 3.5,
w

where w = DT T T = = :

\/H (B1 - 510) i’ Zﬁp
\/ﬁ (32 - 520) i’ ZﬂQ?
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when 3.5 < a < 4,

-~ d 1
P?L (ﬂl - ﬁlo) - _§M0 1S5172Z’Y (a)2,

~ d 1——1
(52 - 520) - _§M0 Sﬁ(’YZZ’Y (a)2 )

and when o = 3.5,

R J 1
vn (51 - 510) — Zp, — §M0 155@7227 (3'5)2’
~ d 1——1
vn (52 - 520) — Zp, — §M0 58,72 %~ (3'5)2’
where Zg, , Zg, and Z (o) are independent.

Comparing Theorems [6] [7] and [§] we can see that the asymptotic distributions of 7 take a unified form
except in II(4) where p, includes some extra term. These extra cross terms are dominated in II(a) with
3 < a < 4 as shown in Section As expected, when 3 < a < 3.5, the asymptotic distribution of@ is not
affected by 4 and is exactly the same as in case II(3), which is similar to B in case I(a) with 1 < & < 1.5.
When 3.5 < a < 4, it is completely determined by 74 and takes the same form as in II(4), which is similar to
B in case I(a) with 1.5 < a < 2, but takes a quadratic instead of linear form of Zy (o). When o = 3.5, it is
the sum of both components, which is similar to 3 in I(1.5).

Finally, consider the LR-inference on 7. Define

LR, (7) = V1p3 (Sn(v) — Sn (7))

6
7,7\2(173

b

3
wa/

55— Note that \/np3 < n.

~2 . . .
where 7)° is a consistent estimator of n? =

Corollary 7 Under Assumption II(a), 3 < a < 4,

d
LRy (79) — £ (0, 030/3),
where & (¢, ¢; /3) is defined in Proposition [(ii) with ¢ and ¢ defined in Theorem [§

The form of LR, (7) and the asymptotic distribution LR, (7,) take unified forms when 3 < o < 4.

6.5 2<a<3

From the analyses in previous sections, we can see that II(a) with 3 < a < 4 are parallel to I(a) with

1 < a < 2 in some sense, but II(«) with 2 < @ < 3 are new. From the intuitions in Section and in

I(a) with 1 < o < 2, we expect the convergence rate of 4 to be min (n1/2, Qn), where g,, is determined from
Vnp3A (p;) =1 and is the convergence rate of 7 (8y) — 7o; when A (|7]) takes the form of |y|’s power,

n/2,  if2<a<?

mln <n1/2’9n) = { ’ -2

# . =4
nZz-3, if 5 <a <3,

which is faster than the usual balancing rate nw.

We now specify the required assumptions.
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Assumption II(«@) [2 < a < 3]: same as Assumption II(3) except

(iv) (iv) of Assumption MA plus (c) sup,cp B U (y —x'By) |2+€ lg = ry] < oo for some € > 0 when 2.5 <
a < 3 and sup, v E {H (y —x'By) x||2+€ lg = 7} < oo for some € > 0 when a = 2.5.
+
(x) (a) Ax(y) € RVy; (b) holds, and lim‘vuo% = ty; (c) when 25 < a < 3, wi :=

E {(y - X’BO)2 lg = fyj:} is continuous at 7, and w§ = wffo > 0, and when o = 2.5, Qf =E {(y — x’ﬁo)2 xx'|qg = v+

and Tf =E {(y — X'BO)2X|(] = fyj:} are continuous at vy, and QF := Q,i > 0.

In Assumption (iv)(c), supE {H (y —x'By) x||2JrE lg = 7} < oo implies supE [| (y —x'By) |2+6 lg = fy] < oo be-
yeEN yEN
cause 1 is the first element of x, i.e., we need a stronger assumption when o = 2.5; supE [H (y —x'By) XH2+€ lg = ’y] <
YEN

oo is also stronger than supE “xé&o (yl — xéﬁo) |2JrE lg; = 'y] < 00 in Assumption I(2). Similarly in Assump-
yEN

tion (x)(c), we need a stronger assumption for a = 2.5 by noticing that wg is the (1,1) element of Q.

2+
Parallel to wy = foé“?f’wo , define

5
Qs = foF and T4 = —%Ti.

As mentioned in Section we need to characterize the effect of B on 7 to derive the asymptotic distribution
of 7; this is why we impose Assumption (x)(b) on Sg[ (7). First of all, implies Sﬁi (7) € RV,_1, so the
limit in Assumption (x)(b) is meaningful; the only thing that deserves caution is the same L (-) as in A (|])
appearing in the normalization rate, but when A (|]) takes the form of |y|’s power, L (-) ~ 1 and such an
assumption is innocent. From the formulae of Sﬁi (7) in 7 only the first terms contribute to the limit
¥ [v]*"" but these terms in Sﬁi1 (v) and Sﬁiz () are exactly the same with opposite signs; in other words,
the last (d 4+ 1) components of ¢, are the negative of its first (d + 1) components.

Example 6 Take w+va_1 as an example, and let L (-) =1, x = (Lq)/, Yo =0, 6,0 > 0, and ma(q) —x'By =
Aq®~2. Because A+ (v) € RV, we have

_ AS
—E [(ma(q) = x'By) ¢0401(0 < g <v)] = —?fofov“ =A%,

for v around 0, which implies

B (o)~ xF) 10 < < 0)] x Lot @ e

Q
|

a—1 dgoa—1 ’
_ A
-E [(mz(q) — x'ﬁo) ql(0< g < v)} ~ ﬁva,
q
so we have
)\+ e’
500 a—1
0
7/1+ - A o 5
5q0 a—1
0

where the first element of v, is positive and the third is negative.
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To connect 1o with Sg,y m Theorem@ note that when o = 2, S[f (v) € RVy and limy,| o L (v) = 1, so

e, p_ =-S5 and = S;w'
We next state the asymptotic distributions of Bz and 7.

Theorem 9 Under Assumption Il(a), 2 < a < 3,
- d
vn (51 - 510) — Zp,
- d
Vi (By = Ban) = Zs,.
when 2 < a < 2.5,

Vi (3 = ) ~ argmin { [z;gw, o] 4 AL |v|a} (v <0) + | Zip oot + Awa} (v > o)}

a—1¥%L )
TIYZ,B, if Zﬁ € Ry,
= _OKT—l%ZB, if Zg € Ra,
0, ifZﬁERg,

where

Ry = {Z,BW/_Zg <0, 9, Zs <0 and |y"_Zg| > (%)17 |V Zs| ORY_Zg <0 and ' Zg >0

1-1 }
Ry — {Zﬁlw’zﬁ <0, ¢, Z5 <0 and |¢'_Zs| < (%) W, Zs| OR W' Z5 >0 and v/, Z5 < 0},
R3 =R\ (Ry URy) = {Zsly' Zg >0 and ¥’ Zg > 0},

when 2.5 < a < 3,

00 (7 — 7o) ~% arg min = w3 ( (o, ¢;a/3)"2,

v

A fol* +E5 (lvl), v <0,
Apv® + 25 (v), ifv>0,
w_ fO‘;(ZIQWE Ay

"
where w = rsealai v eantl Al v and ¢ = :—g, and when o = 2.5,

~ d . o o
V(Y —7y) — argmin { [Zéwf 0%+ (Zs, = Z5,) Er (Jo]) + A o] + 55 <|v|)} 1(v < 0)
|2y 0 — (25, — 2,) EF (0) + A0®/2 42 ()] 10 2 0)}

where (EfE (), 2% (v))/ is a (d + 2)-dimensional zero-mean Gaussian process on [0,00) with the covariance
kernel

( Qi (v1 Ava)  To (vg Awg)? )

Ty (v1 A 02)2 wy (v1 A 112)3

and Zg,, Zs,, (7 (), 25 ())/ and (2§ (1), =5 ())/ are independent.
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When 2 < o < 2.5,if ¢, =1 = —1p_ as in II(2) with S+ =S5, then
’ —e L7y, it Z5 <0, a A Ao |
which is a mixture of two half normals; if Ay = A_ =: A, this asymptotic distribution further reduces to

—%%, which is close to the asymptotic distribution of 4 in . Inspecting Theorems @ and @ we
can see that the asymptotic distributions of 4 in II(«) with 2.5 < o < 4 can be unified with only difference
lying on the values of a, ¢, ¢ and w; except 11(4), even the formulae of ¢, ¢ and w are the same.

Comparing II(a), 2 < a < 2.5, with II(2) where 7 is also fully determined by B asymptotically, we can see
that the asymptotic distribution of 7 in the former may have a point mass at zero because P (Zg € R3) > 0
while is continuous in the former. This difference is not because the relationship between 7 and B has
dramatically changed, but because the interaction between B and 7 in II(2) makes B’s asymptotic distribution
not be Zz anymore. In other words, 7 indeed has some effect on B in II(2) but has no effect in II(«) with
2 < a < 2.5. Similar phenomena happen in I(2) and 11(4) where B is fully determined by 7 asymptotically but
5 indeed has some effects on ~ by observing that 5 (B) and 7 (8,) have different asymptotic distributions.

InII(e) with 2 < o < 2.5, the randomness of 4 comes completely from B asymptotically, which is similar to
Bin II(@) with 3.5 < o < 4; in II(a) with 2.5 < o < 3, the asymptotic distribution of 4 takes the same form as
in II(3), which is similar to Bin II(«) with 3 < a < 3.5. However, different from II(3.5) where the asymptotic
randomness of 3 is a linear combination of those in II(er) with 3 < & < 3.5 and II(«) with 3.5 < a < 4, the
randomness of 7 in II(2.5) has some extra elements beyond those in II(«) with 2 < a < 2.5 and II(«) with
25 <a<3. Thebe extra elements come from (Zg, — ZBQ)IEI (Jo]) 1(v < 0) — (Zg, — ZBQ)/EIr (v)1(v > 0),
especially, the Z5 (Jv]) components.

Recall that 5 — v, = (? (B) — 3(50)) +# (Bo) —70)- When 2 < a < 2.5, the first term dominates, and
the asymptotic distribution of v/n (¥ — 7,) indicates the effect of estimating 8, on 7; that effect depends on
a. When 2.5 < a < 3, the second term dominates and the asymptotic distribution of v/n (¥ — 7,) is as if 3,

were known. When « = 2.5, both terms contribute. Since

Vi (3 (By) = o) <= argmin { [ A [o* +Z; (0] 100 <0+ [Mv™2 + 25 ()] 10> 0)},
we have

vn (ﬁ (3) (60)) — argmm{[zgw, W*? +(Zs, — Zp,) E1 (Iv]) + A_ 0]/ + =5 (|U|)} 1(v < 0)
Ziptl® = (B, = Z5,) 3 () 20?2 4 2 ( >] o> >}
—argmvin { {)\_ |v|5/2 + 5, (|UD} L(v < 0) + [Ayv®/2 + (v>0)

that is, the effect of estimating 8, on 7 indeed depends on « and the form of the effect when o = 2.5 is
different from that when 2 < a < 2.5.

Finally, consider the LR~inference on 7. Define

W(S"(—i if2 < a <25,

LR, (v) =4 n%*(S,(7) — Sn (7)), if a = 2.5,
VALAGH )S"”) if25<a<3,

n?




/3

where ﬁQ is a consistent estimator of n? = %, and y/ne? = n. Note that the normalization rate of

Sn(y) — S () is faster than n for any 2 < o < 3, which is different from all other cases in both DTR and
CTR.

Corollary 8 Under Assumption II(a), when 2 < o < 2.5,

d a— a a— «
LR () =5 = |25 121+ 12,°] 12, <0) = [ 250,257 + 20 25| 12, 2 0)
(e Iy (g, € Ry 4 e B (7 ¢ Ry,

o a—1 o a—1
A A

where R1 and Ry are defined in Theorem@ when 2.5 < a < 3,

LR, (10) % € (o, d50/3),

where & (i, ¢; /3) is defined in Proposition[d(ii) with ¢ and ¢ defined in Theorem|[9, and when o = 2.5,

d r o

LR, (v0) =5 = |25 |2, + (25, — 25,) 21 (12,) + A 12, + 55 (12,])] 1Z, < 0)
3/2 = 5/2 —_

o {Zéw‘f‘zv/ - (Zﬁl - ZBQ) ‘:‘T (Z‘Y) + >‘+Zv/ + :; (Z’Y)} 1(Z’Y > 0)7

where Z., follows the asymptotic distribution of \/n (¥ — ) in Theorem B when 2 < o < 2.5.

When 2 < a < 2.5, the asymptotic distribution of LR, (7,) has a point mass at 0. When 2.5 < « < 3, the
form of LR, () and the asymptotic distribution of LR,, (,) take the unified form in II(«) with 3 < o < 4. To
make the LR inference feasible, we need to estimate the nuisance parameters. Given the discussions at the end
of Section only 1, deserve further attention. Suppose L (v) ~ 1 for Simplicicy; then Sﬂi (v) =y |1)|O“71
for v in a neighborhood of zero. As a result, 1, can be similarly estimated as A4 in , only replacing Z;

X; (y —x'B )
by N and h® by ho1.
—X (yz - XiﬂQ)

7 Asymptotics Without Point Identification

When + cannot be point identified, it can be either partial identified or unidentified. An example of the
former is the multiple-regime TR considered in GP (see also Bai (1997a) in the structural change context
with x = 1). As noted in the Introduction, the minimizer can only be achieved among the original threshold
points. If at two or more threshold points, the limit objective function S (v) has the same value, then ~ is
only partially identified. An example of the later is do = 0 which implies S (819, 820,7) = S (8105 P20, Vo)
for any v € I' regardless of the model is CS or MS; in this case, the identified set is I' and the model is
unidentified.

Assumption ITI: Assumptions MA(i) and (iv)(a) plus

(v-vi) ¥,y > 0, where ¥, ,, := Cov *=n¥ (x’<7 Y, vec (xxSh)/) for vy,7v, € I', T'§ is
vec (xxS%) =72

the e-enlargement of T, with T', defined in (viii) below, and wvec () is the vec operator.
(Vi) 0< f< f(y) < f<ooforyel.
(viii) argmin, S (y) =T, a set.

Note that because S () is continuous under Assumption (vii), T', is a compact set.
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Theorem 10 Under Assumption III, 5 is consistent to I', in the sense that

lim P(3 eT) =1

n—oo

forany € > 0. (1) If By, # Beg on Ty or By, = By but Brg # By,

~ 4, argmax = () =: Zs,
v€ls

where
E (7) = (QBIIW]B)IC}; - BllfyIB%)l(::Blfy) + (2512718)2(3 - 6/27]3)2(3;5%» )

1v >
equal to 3, -,, ByY = BIY, — BYY, and vec (B3Y) = vec (BYX,) — vec (BYY). (i) If B¢, = By and 519 = Bag
onT,,

li
(Bxy/ vec (IB%’I‘;‘)/) is a (d+ 1) (d + 2)-dimensional zero-mean Gaussian process with the covariance kernel

~ N arg max = () =: Zw:
v€l,

where

(1

(7) = By My 'BY; + By M., By,

BYS is a (d + 1) zero-mean Gaussian process with the covariance kernel equal to E {xx’<,h/\7262}, and B35 =
B — BYS. (iit) If By # Beo on T,

lim P (B, <b) = P(Zery),
im P (By<bs) = P(Zerh),

if ﬁew = Beo but B1g # Bag on T,
Vi (By = Buo) — Mz BY
o d 7 loxe
vn (52 - 5@0) - MZWBQZW
and if By, = Bgo and Big = oy on L,
n d —1lmxe
Vi (B = Bu) <= MZ'BY;
2 d r-loxe
Vit (By = o)~ Mz By |
where T = {y € To|B1, < b1}, and T2 = {y € To|By, < b2}.

From Theorem 7 is not consistent to a point but converges to a random variable on I',. This
partial identifiability of v is different from that in the usual partial identification literature, e.g., the moment
inequalities, where the estimator is not random on a set in finite samples and that random set converges to
a fixed set in limit. On the contrary, 7 is random on any set in finite samples and only the randomness on a
specific set I', will not disappear even letting n go to infinity. When 8,, = 84 and 815 = B4 on I'y, E ()
will degenerate to a random variable which does not depend on 7, i.e., E(7) is not useful in deriving the

asymptotic distribution of 5. Specifically,
E(y) = (2[32013)1(3 - ﬁ}oﬁﬁﬂeo) + (2/3270153)2(}; - ﬂéoBgﬁzo) = 2830B1% — BroBiocBuo
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Figure 4: Approximation of m(q) = ¢* by 8;1(q <) + 851(q > 7) and the Limit Objective Function S* ()

does not involve v, where we use 3, to denote the common ;4 and By. In Theorem [L0[ii), we refine the
asymptotic distribution of 74, where note that I', must be I' as mentioned at the beginning of this section,
and e =y — x'By.

When 8., # By on I'y, the distribution of B is completely determined by the distribution of 7. There
may be a point mass in the asymptotic distribution of 8. For example, if 8,, = a for v € I'; with I'; being a

subset of T', and P (Z, € T%) > 0, then P (Be - a) — P(Z, €T35) > 0. If B, = By for all v € T, then j,
converges to a point mass at 3,, and we need to refine the distribution of B It turns out that the asymptotic
distribution of B@ is a mixture normal with the mixing probability depending on 3,y = B85 or not.

In Bai (1997a), I, is a set of two points, and 3, is different at these two v values, so Theorem i) can
be applied. Specially, 4 converges to each of the two points with probability 1/2 as shown in his Proposition
3, and B should converge to each of its two different possible values with probability 1/2. Actually, Bai
(1997a) refines this result in this special scenario, e.g., 5 converges to these two points at rate of n, and it is
easy to see that E converges to its two possible values at rate of \/n. Yu and Phillips (2019) consider a case
where the model is CS but §g = 0; then by Theorem iii),

5~ argmax {BY M 'BY; + B, B } (31)

X

where BYS = BYS in CS models, BYS is a (d + 1)-dimensional Gaussian process with the covariance kernel

5
equal to E [xx’S% /\7252} , and B3S = BY5, — BYS. This asymptotic distribution is exactly the same as that in
Yu and Phillips (2019). Our conclusion is that we can refine our results in Theorem [10| when the model is
known to have some structures. In practice, we should explore these structures on a case-by-case basis.
The following example shows that partial identification can happen even if m(q) does not take the piece-

wise constant form as in Bai (1997a). This example is inspired by the example in Remark 1 of BM.
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Example 7 Suppose y = |q\2 + ¢, where ¢ ~ U[—0.5,0.5], ¢ ~ N (0,1), and x = 1 From the proof of
Theorem [10, we have

argmin § (7) = argmax§* (v) := argmax {81, F (7) + 55, F (1)}
B 14895 \° 1-8y3\? B
= argmax { <247+12> (v +0.5) + 12— 24y (0.5 =) ¢ ={V10: Y20}

where F () = v+ 0.5 is the cdf of ¢, and F (y) = 1 — F (y) = 0.5 — v is the survival function. From the

right panel of Figure Yo = —V2/4 = —0.35 and vy, = —71,. As a resull, Biy,, = Bay,, = 3+v2 ~.184

24
and 62710 = 51720 = 3§f ~ 0.066, which are shown in the left panel of Figure . To derive the asymptotic

distribution of § = vy, and ¥ = 7,,, we apply Theorem[I((i). Note that = (v,,) —Z (Va,) follows a mean-zero

normal distribution, so P (Z(v1,) — 2 (72,) > 0) = 3;

variable with equal mass at y,, and ')/QOE Interestingly, these probabilities are the same as in Proposition 3

as a result, ¥ converges in distribution to a random

of Bai (1997a). Given the asymptotic distribution of 7, it is not hard to see that Be converges in distribution

to a random variable with equal mass at ﬂé’Ylo and ,6’4720.

The next example shows that unidentification can happen even if the model is MS. This example is
inspired by Example 1 of Hidalgo (1995).

Example 8 Suppose y = x + 2% + ¢, where e ~ N (0,1), x =2 ~ N (0,1), ¢ ~ U[0,1], and , q and ¢ are

independent of each other. Then it is not hard to see By, = By, =1 for any v because x is symmetrically

distributed. As a result,
Yo = arg mvax {5%715 [:CQS,Y] + BS,YE [:L'2>,y] } = arg mf/xx {E [ng,y] +E [x2>,y]} = arg m;cmx {E [xQ] } =T.
We need to apply Theorem (zz) to derive the asymptotic distribution of 7:

2 2 2 2
(B55)” , (B51) } { B, By
+ = arg max { 16 ( 1 ) + 16 (7
v€L, 47 41—~

M, M,
_ 2 2
= argmax {xi, +x3,}>

~ d
¥ — arg max
Y€,

where the covariance kernel of BYS is B [XX’S%MZ@ﬂ =E {x%vlmz (y — mﬁm)ﬂ =16 (v, A7q), My =1,

xe

_ xe \ 2 P)
M, =1-v, and X%v = (f\%) and ng = (;ﬁ%) are two chi-square processes. If the model is CS, i.e.,

y =z +e¢, then By = By as in and B [Xxlivlngz =5, AYq.
Finally, consider the LR-inference on . Define

2vn(Sn(v) = Sn (7)), if Bey # Beo on L'y or By, = By but By # By,

LR, (7) = - .
™) { 2. (Sn(7) = Su (3)),  if Be, = Byo and Byo = Bag on T,

Note that the normalization rate depends on whether 3,, = 845 and ;5 = B85, on I's.

13 Actually, we can show that as long as the power of |g| in m(q) is positive, S(y) has two minimizers and the arguments
below apply.

14 Note that this does not mean limy,— oo P (§ = v1,) = 1/2 = limy— 00 P (¥ = 7¥4,). Also, when there are more than two
maximizers of S* (), the asymptotic distribution of ¥ need not put equal mass on each maximizer.
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Corollary 9 Under Assumption I1I, if By, # Byy on Lo or By, = By but B1g # Bag,

[1]

LR, (75) % max Z(7) — Z (y,),

v€l,

and if By, = By and B1g = Bag on T,

d = =
LRy, (7o) — max E(y) — E(70)
v€Tl,

where E (v) and Z (v) are defined in Theorem .

In Example |7, max,er, Z(7) — Z(7¢) is the max of two correlated zero-mean normal random variables
minus one of them, and in Example a maXer, 2 (7) — 2 (7,) is the maximum of Z (), which is the sum of
two chi-square processes, minus the value of = () at the hypothetical .

The CI by inverting LR, (7) will cover each v, in T', with the prespecified level, but may not cover I,
with that level. Anyway, the critical value depends on I',; however, if we know I',, then we do not need
a CI for the point in ', anymore. In practice, we can choose a set I',, that includes I', almost surely in
determining the critical value based on Corollary [0] Such a critical value would be conservative but avoids
the precise knowledge on T',. For example, in Bai (1997a), if there are three threshold points (i.e., four
regimes) in the original model, and we suspect I, includes two of them but are not sure which two, then we
can replace T', by a three-points set (which needs to be estimated) to obtain a conservative critical value. Of
course, the most conservative critical value is achieved by replacing I" for I',, which is also the appropriate

critical value when ., = 8,y and By = By, on I,.

8 Discussions

In this section, we discuss some extensions of our asymptotic theory and also some unsolved problems in
this paper.

First, there seems a gap between the asymptotic theory of DTR and CTR. For example, the range of « in
DTR is [1,2] while in CTR is [2,4]. From the intuitions in Section [3] we can see this is because x'dg = ¢d40
in CTR where the power of ¢ is 1. If we replace ¢ by ¢", 0 < 7 < 1, when we can transfer smoothly from
DTR to CTR. Now, in Proposition |1} §4E [xx'|q = 7] 6o = 0 if and only if 6,0 = 0 and deo + 0757 = 0 (or
d.0 = 0 when v, = 0). Because such a regressor seems rare in practice, we will not study this setup in this
paper.

Second, in Section we assume the rates of Ay () shrinking to zero are the same; what will happen
if these two rates are different? Actually, by a similar argument as in Theorem 3.2 of YZ, the convergence
rate of 4 is determined by the neighborhood with less identification information for v. Specifically, suppose
in Sections [3.2 and |3.3| the convergence rate of 4 determined by A_ (-) (instead of A (+)) is p;, and by Ay (+)
os p;, then the ultimate convergence rate of 5 is p,, := p,, A pt. If p, = p;, then in all theorems the
information in the left neighborhood of v, can be neglected because 4 cannot fall in the left neighborhood
of 7, asymptotically, and vice versa. To be concrete, suppose a— = 1, ay = 1.5 and Ly (-) = 1 in DTR;
then p, = n A +/n = /n. We now need to revise Theorem [4] as

V(Y =) 4, arg maxy,>( {—)\+va + «/w+Bz(U)} =: Zy (1.5),
o~ d _
Vi (B — Bio) = Zs, — M, Rs*gﬂz7 (1.5),

o~

d -1
\/ﬁ ﬁ2 - ﬁZO - Zﬁg - MO Sg_z'yZ'Y (15) .
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Third, when the joint asymptotic distribution of B and 7 is degenerate, we can combine them in an
appropriate way to develop a nondegenerate asymptotic distribution. For example, in I(a) with 1.5 < a < 2,

combine 3, and 7 as
pu [(Br = o) + MG'S5,, G = 70)_ + Mg 'S5, (F =)
pu [ (Ba = Bao) + 755, G = 7o) + My S5, (G = 0), |
in IT(e) with 3.5 < o < 4, combine Bz and 7 as
Pi |:(Bl - 510) + %M(;lsﬁle ¥ - 70)2} )
o [(Bz - 520) + %Mngﬁﬂz - 70)2} ;
in II(2), combine 3 and 7 as

v {@ ~ %)+ ((Sv_ ) e lmnr + (S5) T S rem + (55) 7 S5 Layam, + (55) S[Jsrylﬁmﬁg) (3 - ﬂo)] :

where the subscript of the indicator function signifies the area of diag{Mo,Mo} Vn (B — ﬁ0> staying; in
II(«) with 2 < & < 2.5, combine B and v as

. —19L — 19! -
\/ﬁ |:('Y _70) + (_O(Oé;/jllﬁ + aa rf\ile) (B_BO)] 3

where the subscript of the indicator function signifies the area of /n (B — 60) staying. Because we conduct
inference on v based on the LR statistic which is nondegenerate, the developments of such refinements seem
unnecessary for our purpose.

Fourth, as mentioned in the Introduction, YZ is closely related to this paper but f (7) there can converge
to zero or diverge to infinity as v converges to 7v,. Combing YZ and this paper would be an interesting
exercise, but it seems reasonable to assume f () to be finite in a neighborhood of 7, in practice.

Fifth, we assume dg shrinks to zero in I(1)’ to obtain accessible asymptotic distributions for 5 and the
LR statistic. In all other cases of both DTR and CTR, we can also assume shrinking threshold effects, but
it seems unnecessary because the asymptotic distributions in all these cases involve only Gaussian processes
and can be simulated at least in principle.

Sixth, the techniques used in the paper can be extended to study misspecification in quantile threshold
regression. If the model is CS; 5 based on any quantile index should converge to the same value, so it is a
sign of misspecification if quantile threshold regression based on different quantile indices generates different
threshold estimates; see Galvao et al (2011) for some evidences in threshold quantile autoregressive models.

Seventh, as mentioned in the Introduction, the TAR model is proposed initially to approximate more
general time series, so it is desirable to extend the results in this paper to time series. By extending the
techniques of Hansen (2000), we expect the results in this paper still hold for stationary ergodic time series.
But we will not investigate this extension in this paper because our proofs are already quite complicated;
adding time dependency to the DGP will dramatically lengthen the proofs without essentially changing the
main results.

Eighth, when A (+) is known, we can conduct LR inference on v as detailed in the main text, but if A (-)

is unknown, then p,, is unknown and it is hard to formulate the LR statistic because the normalization rate
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7, and normalization constant b are hard to determine. In other words, we must have some a priori (at least
quantitative) knowledge on the behavior of m(z,q) around g = v, to apply the LR inference in this paper.
For example, if it is believed that we are using TR to approximate some phenomena involving discontinuity,
then the LR inference in Section [4.2] is appropriate. Generally speaking, a challenging problem is how to
conduct uniform inference on v without any knowledge on A (-).

BY (p. 940) point out that the bootstrap is not valid, while BM show that the subsampling still works
in I(2). HLS unify the LR inference on 7 in CS I(1)’ and CS II(3) by the grid bootstrap. However, the
grid bootstrap implicitly assumes the model is CS. For example, conditional on {Xi}?:p the grid bootstrap

generates the bootstrap samples {y}};_, by

y* _ X;Bl + glieh if qi S :Y\a
‘ X; By + €gi€;,  if q; > 7,

where €p; = y; — x;@, and {¢;}!_; are i.i.d. zero mean random variables with unit variance and finite fourth
moments. Obviously, in the bootstrap world, the conditional mean of y; is linear in x; in each regime; in
other words, the model is CS and only I(1)" and II(3) can happen. As shown in Section @ is generally
not equal to 1 in MS I(1)’, but it is equal to 1 in CS I(1)’; furthermore, the normalization constant 7? should
be E {(5,’,in)2 e2lq = ’yo—} /E [(5;)(1')2 lgi = ’yo} in CS I(1)’, so we need change to this formula of ? in the
grid bootstrap, where note that the error variances in the bootstrap world are €2, ~ e, in each regime, which
is the reason of E%i being replaced by e%i. Using this n?, the asymptotic bootstrap distribution is ¢ (1,¢;1)
with a correct ¢ but a wrong ¢. In other words, the asymptotic bootstrap distribution does not match the
original asymptotic distribution of the LR statistic, so the grid bootstrap is not consistent in MS I(1)". In
MS I1(3), ¢ = Ay /A_ # 1 in general, and ¢ = E [e3|q = vo+] /E [e}lg = 7o—] = wg /wy can be consistently
:: Z:ig:gjgg?gg by extending Proposition 3 of HLS, where Kj-(-) = h~'K™*(-/h) for
some bandwidth h and boundary kernel functions K+ (-). By setting n? = wy, = E [eﬂq = 70—], which can
S (x09) e K (ai-9)
n=t S (x(3) K (i)
have the asymptotic bootstrap distribution as £ (1, ¢; 1), so it is still that ¢ is wrong, where K}, () is similarly

estimated by

be consistently estimated by

as shown in Proposition 3 of HLS, as in CS II(3), we

defined as K ,:—L() In summary, HLS’s grid bootstrap procedure has the asymptotic bootstrap distribution
& (1,¢;1), so is not valid in both MS I(1)" and MS II(3).

9 Numerical Examples

In this section, we consider some concrete DGPs to illustrate the asymptotic distributions of 4. For simplicity,
we normalize x’3; = 0 and set ¢ ~ U[-0.5,0.5], ¢ ~ N(0,1) independent of ¢, and v, = 0. Also, due to
the symmetricity in the specification of 8, vs. By and mi(q) vs. ma(q), A- = A4 =: X and all asymptotic
distributions are symmetric about zero. In DTR, we consider I(1), I(1.5), I(2) and I(3), and in CTR, we
consider I1(2), 11(2.5), 11(3) and II(4).

9.1 DTR
Suppose x = 1 to further simplify the discussion. Let 8;, = 0.5 and S5, = —0.5, which implies d9 = 1,

a—1

mi(q) =a+b |q|a_1 and ma(q) = —a — bq
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with @ >0, b > 0, and « > 1. Now, 8;, = 0.5 and B, = —0.5 implies b = (0.5 — a) 2°~!, and

b, o
Aﬂ:('Y):a|'Y|+a|7| .

m(q) and Ay (v) are shown in the first and second rows of Figure 5| In I(1), set & =2, a = 0.25 and b = 1;
in I(1.5), set @« = 1.5, a = 0 and b = 0.75v/2; in I(2), set e =2, a=0and b=2; in I(3), set a =3,a =0
and b = 6. In the asymptotic distribution of I(1), z; = 0.25 + €1 and 2z = 0.25 — &5 with ¢; and €5 being
iid. copies of €. From Appendix D of Yu (2012), we can derive the distribution of Z, (1), which is shown
in the (3,1) panel of Figure |5l In I(1.5), Z, (1.5) = yw((1,1;1.5) with w = (;:7:)2 = 1. Because there is
no closed-form density for ¢ (1,1;1.5), we simulate it; the resulting density of Z, (1.5) is shown in the (3,2)
panel of Figure InI2), p=¢=1,and w = % =1 from Example 80 Zy(2) = (10 = (1/2)_2/3 (q-
Dykstra and Carolan (1999) suggest the approximation N (0, (0.52)2) for ¢;. Such an approximation turns
out to be fairly accurate, as evidenced by the results of Groeneboom and Wellner (2001, Table 2). The
density of (1/2)_2/3 N(0, (0.52)?) is shown in the (3, 3) panel of Figure [5| Comparing the densities of 7 in
I(1), I(1.5) and I(2), we can see that the asymptotic density at zero gets smoother as « gets larger.

In Section (3| we show that -, may be locally unidentified in 1(3) because the cross term HBH |v| may not

12
be dominated by HﬁH + |y[°. To show this is indeed the case in our example, we scrutinize S (6) — S (6p).
First,

U (84) = —E {(66}2 - %) (Bro =By <g< 0)} . ( —27:%1 ‘l‘ %’Y& )
O T B[ 2 (8- )1 <a<0)] —2pf ) T\ 2Bt B (1-By) )
_ EK—GQQ—%) (620—ﬁ1)1(0<q§7)} -2 [ 2B +&7 (1+B ) )
el = —E [(—6(]2 - %) (B0 — B2)1(0 < g < ’7)] N < —2’)’;52 _2 7520;[32 ’7512 ,

which implies

B 1/2
SBWZS[J;W: ( 1/2 ) =: 5.

E[(GqQ—M) (510_51)1(QS0)} B ( {Bf >
= [(_6(12 a %) (Baog — B2) 1(q > 0)] o %Ei :

Second,
@ (8) =
So locally,
S(0) = S (B0) = ® (8,) + B (By) + B Sayy + s (1) = & (B + By + 295, + 295, + 8 1[*) = 5 (6) = S (0),

whose minimum with v fixed is achieved at Blw = 527 = —~ with the minimum equal to

1
S(1) =5 (v) =57 +21I° <0,

i.e., 0 is not the minimizer of S (7). The cross terms 751 and 752 play a key role to make this happen.
Including higher order terms in, we have

5(6)~ 5 (09) =5 (6) ~ 5 (60) + 21" By + 575 — 2ol By — 5755,
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Figure 5: m(q), Ax () and LSE Asymptotic Distributions in DTR

o . . . > 4]~|3 > —4~® . o
whose minimum with ~ fixed is achieved at 3, = — 7;_'2'1{' and By, = —71_|21| with the minimum equal to

Both S (7) — S () and S (y) — S (7,) are shown in the (3,4) panel of Figure |5} From Figure |5, we can see
S (7) =58 (7,) approximates S () — S (v,) very well, and 7, is not the local minimizer but the local maximizer
of S(v) — S (7); both S (7) — S (7o) and S (7) — S (7,) have two global minimizers at +1/6 ~ £0.167 and
+ (V3 —1) /4 = £0.183, respectively. From Example E’ ~ converges in distribution to a random variable
with equal mass at + (\/ﬁ — 1) /4. This setup also shows that monotonicity of m(q) does not guarantee 7 to
be point identified as hinted in Remark 1 of BM, and combined with the setup in I(2), shows that a strictly
increasing transformation of m(q) need not imply the same v, as claimed on page 551 of BM.

9.2 CTR
Suppose x = (1,¢)" and let §;, = (0, %)/ and By = (0,—1), which implies 6o = (0,1) and x'§g = ¢. In
TI1(3), set

ml(q) = (C] + a/)Q — a2 — bq4 and mo (q) = (q — a)2 — a2 _ bq4

with @ = 1/3 and b = 10/3, where m/ (0) = 2/3 # 1/2 and m/, (0) = —2/3 # —1/2; this setup indicates that
II(3) does not require the model to be CS. Now,

8 —90y|+20]y[°)

P
A:I: (’7) 36 )
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Figure 6: m(q), Ax (v) and LSE Asymptotic Distributions in CTR

2 2| ,—
w = JodioBllae=r02] _ 1 and A = 2 (different from %foéio = & — the X in HLS), which implies o = ¢ =1

3 -3
and w = 55 = %. For other «a values, set

m1(g) = a — by |q|*"? — bag" and ma(q) = a — big® 2 — bag*

with ¢ < 0 and b; > 0. Now,
a, o b1, o b2 6
A =—— — = .
(M =—5hl+_hl"+Fhl

In I1(2), set « = 4, a = —i, and by = 1, b = 0. This setup indicates that II(2) does not require
mq (7o) # m2 () as in I(1). The asymptotic distribution of 7 is

,% <Sﬁﬁ _ Sﬁs“’vs'vﬁ>1 W,

SV’Y vy

/2 -1/8 \ — /2 1/8
where S,Yg:(i,O,—i,O),SW:i,MOZ ( /s 1/24 ),MO— ( /s 124 , and
1 1 1\° 1/5760  —1/23040
Y = E 1, —— —¢*—=q) Lg<0)| =My+ ;
0 K q ) (1,q) (5 DY 2q) (a= )] 0 ( ~1/23040  1/60480 )

- 1 1 1\? — 1/5760  1/23040
Yy = E 1, —— —¢+=q) 1(¢g>0)| =My + )
0 l( g ) (1,4) (E 21 1 Qq) (4 )1 0 ( 1/23040 1/60480 )
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Note that there is an extra terms besides My and M, in ¥y and Xy due to misspecification. In I1(2.5), set

a=25,a=0,b = %‘f, and by = ?. In the asymptotic distribution of 7,

5. s 1o fodq0 1 2 -1 1
Qi = foB [e*xx'|q = 7o£] = 0 0o ,Ti:—TE [e*x|q = vot] = 0 andw:§.

From the form of Q1 and T4, (EljE (), =% (v))/ degenerates to a two-dimensional Brownian motion on

2 _a by
5qo a—1 E
0 0
[0,00). From Example [6f A\ = % = %7 and ¢, = ¢ = A e = b = —_.
dq0 a—1 a—1
0 0

Combining the form of 1 and the degeneration of (EfE (), E;t (v))/, we can see that only the first component

of Zg, and Zg, contributes to the asymptotic distribution of 7. Similarly as in II(2), there is an extra term
besides My and My in ¥ and Xg. Because there is no closed-form density for this asymptotic distribution,
we simulate it. In II(4), set o = 4, a = 0, by = 3, and by = —10; then Sg,,» = %(1,0)/, A= % =3, and
w = %, SO pt = 2\ — Sz, (MO_1 +M81> Sg,y2/4 = %, which implies ¢ = ¢ =1 and w = % = %. As in
Figure |5, we show m(q) in the first row, AL (7) in the second row, and the asymptotic density of 4 in the
third row of Figure [6]

Before discussing the asymptotic density of 7, first check some of its quantitative properties. When

2 < a < 2.5, the asymptotic distribution is normal and has a closed-form densityE When 2.5 < a < 4,

P(Z(a) <o) = P (wT5¢ (0,650/3)* <a) = P (C(0,610/3) < 0 jwT5 ) i= Fugy (20 =530,0)

wZa—3 wZa—3

so the density of Z, (a) at = is f,/3 ( "‘z 50, gb) i , where fo /3 (+; ¢, ¢) is the density of ( (o, ¢; a/3).

In other words, Z, (o) should be bimodal and has a density zero at 0, which contrasts the usual asymptotic
density which is unimoal and the mode is at zero. Note that 5/6 < /3 < 4/3, so the density of ¢ (¢, ¢; a/3)
should have a cusp at 0 from Figure [5| but the density of Z, («) is zero at 0. The graphs in the third row of
Figure |§| satisfy these properties, where Z, (3) has a closed-form density but Z, (4) does not so we simulate
it. From Figure @ we can also see that II(2.5) is a turning point from a unimodal asymptotic distribution
to a bimodal asymptotic distribution; when « > 2.5, the asymptotic distribution is not only bimodal, but
the density at 0 is zero.

10 Conclusion

In this paper, we develop the asymptotic theory for the least squares estimator in threshold regression under
misspecification. It turns out that this asymptotic distribution depends on the fitted model being DTR
or CTR and also on the rate of the limit objective function shrinking to zero in the direction of threshold
parameter. Our asymptotic theory includes many theories developed in the literature as special cases;
actually, only three special cases are discussed until now. Besides the point identified model, we also discuss
the partial identified and fully unidentified models. For inference on the threshold point, we focus on the LR
statistic whose asymptotic null distribution is derived regardless of the model is point identified or not and

’
e . 19’z
15When 2 < a < 2.5, the asymptotic distribution of 7 is 70‘717/)7‘3

in Figure @

which is a zero-mean normal as in II(2) so is not shown

o1



is DTR or CTR. Although our asymptotic theory is thorough in the sense that all cases are discussed when
we know which case we are in, there is an important unsolved problem — how to conduct uniform inference
on the threshold point without knowing the form of misspecification. Recently, Yu (2020) tries to do this
work.
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