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Abstract

In this paper, we develop the asymptotic theory for threshold regression under misspeci�cation, which

is especially useful in the regression tree analysis of machine learning. First, we provide a thorough

characterization of the asymptotic distribution of the least square estimator, which integrates some

fragmented asymptotic results of threshold regression in the literature into one uni�ed framework of

misspeci�cation. The asymptotic distribution depends on the �tted threshold regression model being

discontinuous or continuous and also on the rate of the limit objective function shrinking to zero in the

direction of threshold parameter. The partially identi�ed and unidenti�ed models are also discussed.

Second, we provide a LR-based inference method for the threshold point, which can be treated as a

misspeci�cation-robust extension of the method in Hansen (2000, Econometrica, 68, 575-603).
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1 Introduction

Misspeci�cation is a popular problem in econometrics. This problem got much attention since White (1982)

who examines the consequences and detection of model misspeci�cation when using maximum likelihood

techniques for estimation and inference. Actually, the usual OLS estimator is a misspeci�ed estimator since

the conditional mean may not take the linear form of the covariates, see, e.g., White (1980, 1981). In

quantile regression, Angrist et al. (2006) study the estimation and inference in a misspeci�ed model. In

the GMM framework, Hall and Inoue (2003) study the consequences of misspeci�cation and develop the

asymptotics for the pseudo-parameters. In treatment e¤ects evaluation, Yu (2016) studies the pseudo-true

values of four estimators in the framework of Heckman and Vytlacil (2005) and also check two responses

to model misspeci�cation: the local sensitivity analysis and the partial identi�cation analysis. Following

these pioneers, this paper intends to develop the asymptotic theory for the least squares estimator (LSE) in

misspeci�ed threshold regression (TR).

In fact, the threshold autoregressive regression (TAR) is initiated in misspeci�ed time series models.

Tong and Lim (1980, p. 250) motivate the threshold model for approximating the dynamics of some time

series. Later, Petruccelli (1992) provides a rigorous argument that threshold autoregressive models can

approximate a general class of time series processes (e.g., exponential autoregressive and invertible bilinear

processes) almost surely. Tong (1982) gives some Bayesian underpinnings for the threshold approximation.

However, asymptotic results for the least squares estimation in the misspeci�ed model are yet to be developed.

This paper is more motivated by the regression tree analysis in machine learning. In this sense, this paper

is close to Bühlmann and Yu (2002) (BY hereafter) and Banerjee and McKeague (2007) (BM hereafter) in

spirit. Decision tree learning is a basic approximation and predictive approach nowadays. Depending on the

predicted outcome is discrete or continuous, it is called classi�cation tree and regression tree respectively,

and combined as so-called Classi�cation And Regression Tree (CART). See Breiman et al. (1984) for an

early summary about CART, and Hastie et al. (2009) and Efron and Hastie (2016) for recent treatments at

the textbook level. In TR language, the regression at each step of regression tree is a discontinuous threshold

regression (DTR), i.e., the �tted model has a discontinuity at the threshold point. We focus on parametric

DTR in this paper although nonparametric DTR is also popular in the literature. For example, threshold

regression with endogeneity will reduce to a nonparametric DTR as shown in Yu and Phillips (2018a),

and regression discontinuity designs (RDDs) with unknown discontinuity points studied in Porter and Yu

(2015) are also special cases of nonparametric DTR. Besides DTR, continuous threshold regression (CTR)

introduced by Chan and Tsay (1998) (CT hereafter) in the context of autoregression is also a standard tool in

nonlinear econometric modeling; see also Feder (1975a) for early developments with triangular independent

samples. CTR imposes restrictions on DTR that guarantee the �tted model is continuous but has a kink (i.e.,

the slope of the threshold variable has a discontinuity) at the threshold point; consequently, the decisions

based on DTR and CTR are often called hardthresholding (or hard) and softthresholding (or soft) decision,

respectively. Many nonparametric techniques are essentially CTR under di¤erent guises. For example,

Multivariate Adaptive Regression Spline (MARS) proposed by Friedman (1991) is basically an extension of

CTR. Similar to nonparametric DTR, nonparametric CTR also has important applications in econometrics,

e.g., regression kink designs (RKD) popularized by Card et al. (2015) are actually nonparametric CTR with

the threshold points known. This paper also studies parametric CTR but takes a di¤erent view. We do not

impose restrictions as in CT; rather, we run DTR but DTR degenerates to CTR, which is close to Hidalgo,

Lee and Seo (2019) (HLS hereafter) in spirit but they assume the model is correctly speci�ed. For future

references, we label DTR as Case I and CTR as Case II. It turns out the asymptotic theories of LSE in these

two cases are dramatically di¤erent.
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Suppose the true model is

y = m(x; q) + ", E["jx; q] = 0;

but we mistakenly �t the model as

y = x0�11 (q � ) + x0�21 (q > ) + e = x0�2 + x
0�1 (q � ) + e; (1)

where x0 = (1; x0; q) 2 Rd+1, 1(�) is the indicator function, and the parameter of interest is � =
�
; �0

�0
with

� =
�
�01; �

0
2

�0
or equivalently, � =

�
; �02; �

0�0 with � = �1 � �2 being the threshold e¤ect. To distinguish

m(x; q) in the two regimes, we write

m(x; q) = m1 (x; q) 1(q � 0) +m2 (x; q) 1(q > 0);

where we use the subscript 0 to indicate the pseudo-true value of a parameter of interest. Correspondingly,

the original error term " = "11(q � 0)+ "21(q > 0) with "` = y�m` (x; q) and the pseudo-true error term

e = e11(q � 0) + e21(q > 0) with e` = y � x0�`0, ` = 1; 2. Besides the most general form of m(x; q) in the

true model, we give two speci�c examples to show the possibility of misspeci�cation. In the �rst example,

m(x; q) =
LX
`=1

m`(x; q)1(`�1 < z � `); (2)

where m`(x; q) is a smooth function, z is a threshold variable which may be di¤erent from q, the number of

regimes L � 2, and �1 = 0 < 1 < � � � < L = 1. In other words, the true model is di¤erent from the

�tted model in at least three aspects: (i) the threshold variable may not be q; (ii) there may be more then

two regimes; (iii) the conditional mean in each regime may not be a linear function of covariates. The second

example is the varying coe¢ cient model (VCM); see Fan and Zhang (2008) for a review on this model. The

VCM is speci�ed as

m(x; q) = x0�(q);

where �(q) is a smooth function of q. In the �tted TR model, �(q) takes a parametric discontinuous form:

�101 (q � 0) + �201 (q > 0). In other words, �10 is an average of �(q) for q � 0, and �20 is an average of

�(q) for q > 0.

For a possibly misspeci�ed TR model, we can �rst conduct speci�cation testing as in Yu et al. (2018)

before estimation. However, we will follow the spirit of White (1980, 1981, 1982) �estimate the misspeci�ed

model directly but make the asymptotic theory robust to misspeci�cation. The only estimator studied in

this paper is the LSE of �, say b�, which is de�ned as the minimizer of
Sn (�) =

1

2

1

n

nX
i=1

(y � x0�11(q � )� x0�21(q > ))
2
; (3)

where the constant 1=2 is added to Sn (�) for convenience in expressing the asymptotic distribution of LSE.

Besides the distinction of DTR and CTR, the asymptotic theory of LSE also critically depends on the

behavior of the probability limit of Sn (�), say S (�), in the neighborhood of 0, especially the rate of S (�)

shrinking to zero in the direction of . We will index this rate by �; in DTR, � is restricted in [1; 2] and in

CTR, in [2; 4]. Combining with the distinction of DTR and CTR, we will label a case in DTR with � = 1:5

as I(1.5) and a case in CTR with � = 2:7 as II(2.7), etc. Under this labeling, the correctly speci�ed DTR

in Chan (1993) is a special case of I(1), the correctly speci�ed DTR but degenerating to CTR in HLS is a

special case of II(3). All other cases can happen only in misspeci�ed TR models. In other words, the two
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cases in the correctly speci�ed DTR are rare but become the focal points of research. It may be unexpected

that the asymptotic theory for LSE in misspeci�ed TR is much more complicated than that in White (1980,

1981) given that only a threshold point is added in White�s linear approximation of the conditional mean.

Besides the correctly speci�ed models, many misspeci�ed TR models studied in the literature also fall

in the framework of this paper as special cases. First, the model studied in BY and BM is a special case

of I(2) with x = 1. As in this paper, their data are randomly sampled. Later, Seo (2015) extends BY and

BM to include nonconstant regressors and cover time series and Koo and Seo (2015) extend to structural

break models for forecasting purposes. Both Seo (2015) and Koo and Seo (2015) require S (�) to be the

second-order di¤erentiable and "1 = "2, while we do not impose such restrictions. Second, the structural

change model studied in Bai (1997a) (see also Chong (1995)) can be treated as a special case of I(1) with

x = 1. He assumes m(x; q) takes the piece-wise constant form. Later, Gonzalo and Pitarakis (2002) (GP

hereafter) extend Bai (1997a) to multiple-regime TR. Speci�cally, their m(x; q) takes the form of (2) with

m`(x; q) = x0�` and L � 3. Both Bai (1997a) and GP show that b must converge to one of the original
threshold points, 2; � � � ; L�1. Bai (1997a) develops the asymptotic theory of LSE in his simple setup, while
GP show that b is n-consistent but without any asymptotic distribution; this paper will �ll this gap. Third,
Perron and Yamamoto (2015) use the LSE to estimate the structural break points when there is endogeneity,

so their model can be treated as a special case of (2) with z = t and their estimator is constructed under

misspeci�cation; see also Chong (2003) and Bai et al. (2008) for related setups. Actually, their model can

be treated as a special case of I(1). Yu (2015b) shows that their consistency proof is �awed but the LSE is

indeed consistent to the true structural break point because the threshold variable in the structural change

model is the time index t which is independent of the rest components of the model. On the other hand,

Yu (2019) shows that their asymptotic distribution of b is correct only if the endogeneity takes the linear
form and is incorrect in general; Yu (2019) also provides the correct asymptotic theory for LSE under more

general endogeneity forms. This paper extends Yu (2019) to misspeci�ed TR where the threshold variable

q need not be independent of the other elements of the model. Note that in misspeci�ed TR, b need not
converge to any true threshold point as shown in Yu (2013). To the best of our knowledge, these are the

only misspeci�ed TR models studied in the literature. Combining both correctly speci�ed and misspeci�ed

TR models in the literature, only some special cases of I(1), I(2) and II(3) are carefully studied until now.

It is well known that when the model is misspeci�ed, the parameters of interest can be partially identi�ed

or even unidenti�ed. This also happens in misspeci�ed TR. For example, Bai (1997a) studies the asymptotic

theory of b when L = 3 and S (�) achieves the minimum at the two original break points. For another

example, Yu and Phillips (2019) derive the asymptotic distributions of b and b� in correctly speci�ed TR
models with �0 = 0, i.e., the model is fully unidenti�ed. Note that in correctly speci�ed TR models, � is

either point identi�ed or fully unidenti�ed, and no intermediate scenario can happen, while in misspeci�ed TR

models, partial identi�cation can indeed happen. We are not aware of any developments in the asymptotic

theory of b� when � is not point identi�ed in general misspeci�ed TR models. This paper will �ll this gap.
The asymptotic theory developed in this paper is very useful for prediction purposes as illustrated in BY,

Seo (2015) and Koo and Seo (2015), but we will focus our attention on inferences especially on the inference

of  as in Hansen (2000), BM and HLS. In all models regardless of point identi�ed or not, we follow Feder

(1975b) and Hansen (2000, 2017) and use the likelihood ratio (LR) statistic to conduct inference on ; Feder

(1975b) and Hansen (2017) consider the LR test in correctly speci�ed CTR and Hansen (2000) considers

correctly speci�ed DTR with shrinking threshold e¤ects. Particularly, we solve a long-standing question

since Hansen (2000) �how to conduct inference on  when the TR model is misspeci�ed especially in I(1).

There is also some other literature related to this paper. First, Hansen (2017) develops the asymptotic

distribution of the LSE with the CTR restrictions imposed as in CT. His asymptotic distribution is robust to
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misspeci�cation, but because the objective function is continuous in parameters, the asymptotic distribution

of b� is jointly normal, which is similar to White (1980, 1981). Second, this paper pays special attentions to
how the rates of S (�) shrinking to zero in the direction of  a¤ect the asymptotic distribution of b�, and Yu
and Zhao (2013) (YZ hereafter) also study the e¤ects of S (�) shrinking to zero in correctly speci�ed DTR

but the reasons of shrinking to zero are di¤erent. Intuitively, this paper assumes the jump size of Sn (�) in the

direction of  shrinks to zero while YZ assume the jump intensity shrinks to zero (technically, they assume

the density of q shrinks to zero as  converge to 0). Of course, because YZ consider correctly speci�ed DTR

models, it is impossible for the jump size to go to zero. As a result, the asymptotic distributions of b� are very
di¤erent. Speci�cally, for � 2 (1; 2] in DTR (� = 1 is excluded because the jump size is positive when � = 1),
our asymptotic distribution of b is always related to a Gaussian process while YZ�s asymptotic distribution
is always related to a compound Poisson process although the Poisson process need not be homogeneous as

in the � = 1 case; b� and b in YZ are always asymptotically independent and estimating b will not a¤ect the
asymptotic distribution of b�, while b� and b can be perfectly collinear or partially correlated in this paper.
The rest of this paper is organized as follows. In Section 2, we make the necessary preparations for

the developments of our asymptotic theory. In Section 3, we use a simple example with q being the only

covariate to illustrate how to derive the convergence rates of b and b�. In Section 4, we discuss the asymptotic
theory in I(1) where the threshold e¤ect �0 can be either �xed or shrinking to zero. Sections 5 and 6 discuss

the asymptotic theories in DTR with other � values (i.e., � 2 (1; 2]), and in CTR, respectively. Section
7 includes the asymptotic theory with identi�cation failure. Section 8 covers some possible extensions of

previous sections and some unsolved problems in this paper. Section 9 presents some numerical examples,

and Section 9 concludes. All proofs and lemmas are collected in four supplementary appendices.

A word on notation: k�k denotes the Euclidean norm. For a matrix A, A > 0 means it is positive de�nite.

U [a; b] is the uniform distribution on an interval [a; b] and N (�;�) is the multivariate normal distribution

with mean vector � and variance-covariance matrix �. The symbol ` is used to indicate the two regimes in

(1) and, to simplify notation in what follows, the explicit values "` = 1; 2" are often omitted. The subscripts

"� " and "> " signify use of the indicator functions 1(q � ) and 1(q > ), so that xi;� = xi1(qi � )

and xi;> = xi1(qi > ). For a real number a, a� = max(a; 0) and a	 = min(a; 0). For two real numbers

a and b, a ^ b = min (a; b) and a _ b = max (a; b). For two sequences of real numbers an and bn, an � bn

means an = o (bn), an � bn means an = O (bn), an � bn means an and bn have the same rate as n ! 1,
and if they are random variables, an � bn means an = op (bn), and an � bn means an = Op (bn); an � bn

and an � bn are similarly understood. t means higher-order terms are neglected. Subscripts are used to

indicate the arguments of di¤erentiation, e.g., S+� =
@2S(�0)
@�@+

is the right derivative of @S(�)@� at �0, and S
�
4 is

the fourth order left derivative of S (�) at �0. An object without the superscripts or subscripts � indicates

the common value, e.g., � is the common value of �+ and ��, and S� is the common value of S
+
� and S

�
� .

Finally, we use CS for an abbreviation of "correctly speci�ed and MS for "misspeci�ed".

2 The Setup

This section includes the setup for the least squares estimator and our asymptotic theory.

2.1 The Least Squares Estimator and Likelihood Ratio Statistic

We re-write the objective function of LSE as

Sn (�) =
1

n

nX
i=1

s (wij�) ;
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where

s (wj�) = 1

2
(y � x0�11(q � )� x0�21(q > ))

2
;

and S (�) =plim Sn (�) = E [s (wj�)]. Usually,  is estimated through the concentrated objection function

Sn () =
1

n

nX
i=1

s (wij) ;

where

s (wj) = 1

2

�
y � x0b�1 () 1(q � )� x0b�2 () 1(q > )

�2
with b� () :=  b�1 ()b�2 ()

!
= arg min

�1;�2
Sn (�) =

 �
X 0�X�

��1
X 0�Y�

X 0>X>

��1
X 0>Y

!
and X� and X> being matrices stacking the vectors x0i;� and x

0
i;> . The probability limit of Sn () is

denoted as S (). There is an interval of , [b�; b+), minimizing Sn (). Following Yu (2012, 2015a), we
therefore take the mid-point of the interval as our estimator of  because the mid-point

b�+b+
2 is more

e¢ cient than the left-endpoint b� in most cases when the model is CS. This choice of b will a¤ect the
asymptotic distribution only in I(1) with �xed threshold e¤ects. Given b, b� = b� (b) = �b�01; b�02�0.
It can be shown that

S (�)� S (�0) = � (�1) + � (�2) + [�� () + 	� (�1; ) + 	� (�2; )] 1( � 0)

+ [�+ () + 	� (�1; ) + 	+ (�2; )] 1( > 0);

where

� (�) =

0@ E
h�
m1(x; q)� x0 �10+�12

�
x0 (�10 � �1) 1(q � 0)

i
E
h�
m2(x; q)� x0 �20+�22

�
x0 (�20 � �2) 1(q > 0)

i 1A =:

 
� (�1)

� (�2)

!
�� () = E

��
m1(x; q)� x0�0

�
x0�01( < q � 0)

�
= E [z11( < q � 0)] ;

�+ () = �E
��
m2(x; q)� x0�0

�
x0�01(0 < q � )

�
= E [z21(0 < q � )] ;

	� (�; ) =

0@ �E
h�
m1(x; q)� x0 �10+�12

�
x0 (�10 � �1) 1( < q � 0)

i
E
h�
m1(x; q)� x0 �10+�22

�
x0 (�10 � �2) 1( < q � 0)

i
� �� ()

1A =:

 
	� (�1; )

	� (�2; )

!
;

	+ (�; ) =

0@ E
h�
m2(x; q)� x0 �20+�12

�
x0 (�20 � �1) 1(0 < q � )

i
� �+ ()

�E
h�
m2(x; q)� x0 �20+�22

�
x0 (�20 � �2) 1(0 < q � )

i 1A =:

 
	+ (�1; )

	+ (�2; )

!
;

and in �� (),

z1 =
�
m1(x; q)� x0�0

�
x0�0 + �

0
0x"1 =

1

2
[2 (m1(x; q)� x0�10) + x0�0]x0�0 + �00x"1 =

1

2
(2e1 + x

0�0)x
0�0;

which equals z :=
�
y � x0�0

� �
�00x
�
with �0 =

�10+�20
2 as q � 0 and represents the e¤ect on Sn ()�Sn (0)

when  is displaced on the left of 0 while �0 is �xed, and

z2 = �
�
m2(x; q)� x0�0

�
x0�0� �00x"2 = �

1

2
[2 (m2(x; q)� x0�20)� x0�0]x0�0� �00x"2 =

1

2
(x0�0 � 2e2)x0�0;

which equals �z = �
�
y � x0�0

� �
�00x
�
as q > 0 and represents the converse case. Among the various terms
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in S (�)� S (�0), we use � (�) to represent the variation in the direction of �, �� () (�+ ()) to represent

the variation in the direction of  and 	� (�; ) (	+ (�; )) to represent the covariation of � and  in the

left (right) neighborhood of 0 in the limit objective function. Note that �� (0) = 0 and are positive when

 2 Nnf0g by the point identi�cation of 0, where N is a neighborhood of 0.

Following Hansen (2000), we conduct inference on  always based on the LR-like statistic. In all cases,

the LR statistic takes the following form:

LRn () =
�n (Sn()� Sn (b))bb ;

where �n is the normalization rate and bb is a consistent estimator of the normalization constant. The test
statistic is a by-product of estimation and can be used for hypotheses concerning  such as H0 :  = 0.

2.2 Distinction Between DTR and CTR

To develop the asymptotic distribution of b, we �rst distinguish DTR and CTR which are labeled as case
I and II in this paper. Recall that in CTR, �x0 = 0 and �c0 + �q00 = 0 so that x0�0 = (q � 0) �q0. In
Hansen (2000), the assumption �00E [xx0jq = 0] �0 > 0 is used to exclude the CTR. A natural question is

whether there are other cases besides CTR where �00E [xx0jq = 0] �0 = 0. The following proposition shows

that under a regularity condition, no intermediate cases between CTR and DTR can happen.

Proposition 1 If V ar (xjq = 0) > 0, then �0 6= 0 but �00E [xx0jq = 0] �0 = 0 if and only if �x0 = 0 and

�c0 + �q00 = 0.

When q is not a regressor, i.e., �q0 = 0, we have either DTR (�0 6= 0) or unidenti�cation (�0 = 0). Quite
often, we normalize 0 = 0 (which can be achieved by a location shift on q, i.e., replacing q� 0 for q), then
the CTR is equivalent to �x0 = 0 and �c0 = 0, and x0�0 = q�q0 = Op (q). In DTR, since �x0 6= 0 and/or

�c0 6= 0, x0�0 = Op (1).

For a simple setup, we check the partition of the parameter space for the three cases - DTR, CTR and

unidenti�cation. Suppose y = (�c0 + �q0q) 1 (q � 0) + ", where the parameter spaces of �c; �q and  are all

[�1; 1]. Then Figure 1 shows the areas of (�c; �q; ) where the three cases happen.

2.3 Rates of �� () Shrinking to Zero

Another critical factor that a¤ects the asymptotic distribution, especially the convergence rate, of b is the
rate of �� () shrinking to zero, where �� () is de�ned in Section 2.1. This rate indicates the information

to identify 0 with a smaller rate indicating more information. In Chan (1993), �� () is linear in , in BY

and BM, �� () is quadratic in , and in HLS, �� () is cubic in . In this paper, we allow the rate to be in

the interval [1; 2] in DTR and in the interval [2; 4] in CTR; in other words, the existing literature considers

only the rates 1 and 2 in DTR and the rate 3 in CTR so can be treated as special cases of this paper.

To extend �� () to functions like jj� jlog (1= jj)j, we introduce the regularly varying functions at zero.
A positive locally integrable function � : (0;1)! (0;1) is called slowly varying at zero if lim

#0
�(c)
�() = 1, for

any c > 0, denoted as � 2 RV0 as  ! 0. If this limit is �nite but nonzero for any c > 0, then � is called

regularly varying at zero. Typical examples of slowly varying functions are the constant function and the

logarithm; other examples are the powers and the iterations of the logarithm, e.g., ln�, � 2 R and ln ln. The
function �() =  is not slowly varying, neither is �() = � for any real � 6= 0. They are regularly varying
functions. By Karamata�s characterization theorem, any regularly varying function � is of the form �L()
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Figure 1: Partition of the Parameter Space of (�c; �q; ) for the Three Cases: Blue Suface For CTR, Red
Line for Linear Regression and Other Area for DTR

where � 2 R and L 2 RV0. Intuitively, L () can be treated as a small disturbance on the main function

�. We denote � as � 2 RV� as  ! 0 and call � as the exponent of variation. See Section 0.4 of Resnick

(1987) and Seneta (1976) for more details on this type of functions.

Because the level information in L() is important in this paper, we extract this part of information in

L() out and make L() include only the rate information. Speci�cally, we assume �� () = �� jj�� L� ()
for  in a neighborhood of 0 = 0, where �� > 0 is the level information, �� 2 [1; 2] in DTR and �� 2 [2; 4]
in CTR. Here, we implicitly extend the domain of regularly varying functions and slowly varying functions

to (�1; 0) but maintain the range as (0;1). We start �+ from 2 in CTR because

�+ () = �E
��
m2(x; q)� x0�0

�
x0�01(0 < q � )

�
= �E

��
m2(x; q)� x0�0

�
q�q01(0 < q � )

�
so that even if m2(x; q) � x0�0 were a constant, �+ () 2 RV2; similar arguments apply to ��. As to why
� is bounded above by 2 in DTR and by 4 in CTR, we will explain in the next section. In most parts of

the paper, we assume �+ = �� and L+ (�) = L� (�), i.e., �+ () and �� () are di¤erent only in the level
information; we will extend �+ () and �� () to have di¤erent rates in Section 8. As a result, we can write

�� () = �� jj� L () for simplicity. Often, we just use � (jj) to represent this common rate information
of �� (). Note that � (jj) need not be monotone in jj, but we assume it so for ease of analysis since
we need de�ne in our proofs the inverse function of � (�), � (t) = inf fsj�(s) � tg. We do not assume the
[�]th-order di¤erentiability of � (jj) at 0, where [�] is the largest integer not greater than �.1 When � (jj)

is indeed the [�]th-order di¤erentiable at 0, �� =
S�
2 when � = 2 and �� =

S�
4

4! when � = 4. Sometimes,

we abuse notations and de�ne S� = 2�� even if � (jj) is not second-order di¤erentiable.
1Although a monotone function is di¤erentiable almost everywhere, it need not be higher-order di¤erentiable.
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In the future discussions, some values of � receive special treatments; these values include � = 1; 1:5 and

2 in DTR and � = 2; 2:5; 3; 3:5 and 4 in CTR. For these values of �, we assume limjj#0 L () = 1, i.e., all rate

information is included in jj� and all level information is included in ��. When limjj#0 L () = 0 or1, the
corresponding �� () functions with index � are absorbed in the contiguous � interval. For example, the

function �� jj3 jlog (1= jj)j is included in the � interval (3; 3:5), and �� jj3 jlog (1= jj)j�1 in the � interval
(2:5; 3). As mentioned in the Introduction, we will index each �� () function by its � value.

We illustrate how to obtain the level constants �� at the end of this subsection. In DTR, suppose

x = (1; q)0, 0 = 0 and m2(q)� x0�0 = Aq��1, 1 � � � 2. Then

�+ () = �
Z 

0

A���1 (1; �) �0f (�) d� t �
A�c0f0
�

�,

so �+ = �Af0�c0
� , whose positiveness implies A�c0 < 0. This also implies L () = �+()

�+�
in the right

neighborhood of 0 and satis�es lim#0 L () = 1. �� () can be similarly discussed. In HLS, the model is

the CS CTR, so m`(x; q) � x0�`0 = 0 such that m1(x; q) � x0�0 = x0�0=2 = �q0q=2 and m2(x; q) � x0�0 =
�x0�0=2 = ��q0q=2. As a result,

�� () = E
��
m1(x; q)� x0�0

�
x0�01( < q � 0)

�
=
R 0

(�q0�)

2

2 f (�) d� t 1
6f0�

2
q0 jj

3
;

�+ () = �E
��
m2(x; q)� x0�0

�
x0�01(0 < q � )

�
=
R 
0
(�q0�)

2

2 f (�) d� t 1
6f0�

2
q0

3;
(4)

so �+ = �+ =
1
6f0�

2
q0 =: �, which is the constant appearing in HLS�s Theorem 1 (after dividing by 2 since our

Sn (�) is their Sn (�) =2). This also implies L () =
�+()
�3 in the right neighborhood of 0 and L () = ��()

�3

in the left neighborhood of 0, and limjj#0 L () = 1.

2.4 Maximizer and Maximum of A Class of Stochastic Processes

In developing the asymptotic theory for b, we often need the distributions of the maximizer and maximum
of the following stochastic process:(

� 1
2�� jvj

�
+
p
$�B1(�v);

� 1
2�+v

� +
p
$+B2(v);

if v � 0;
if v > 0;

where B1 (v) and B2 (v) are two independent standard Wiener Processes on [0;1). Given B1 (v) and B2 (v),
we can de�ne a Wiener Processes on R as B (v) = B1(�v)1(v � 0) +B2(v)1(v > 0).
In the following proposition, we simplify these targets to some basic objects.

Proposition 2 For �� > 0, $� > 0 and � > 1=2, we have the following results: (i)

argmax
v

(
� 1
2�� jvj

�
+
p
$�B1(�v);

� 1
2�+v

� +
p
$+B2(v);

if v � 0;
if v > 0:

= !
1

2��1 � ('; �; �) ;

where ! = $�
�2�
, and � ('; �; �) := argmaxr

(
� 1
2 jrj

�
+B1(�r);

� 1
2'r

� +
p
�B2(r);

if r � 0;
if r > 0;

with ' =
�+
��

and � = $+
0

$�
0

.

(ii)

max
v

(
� 1
2�� jvj

�
+
p
$�B1(�v);

� 1
2�+v

� +
p
$+B2(v);

if v � 0;
if v > 0:

= �
2

2��1 � ('; �; �) ;
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where �2 =
$�
�

��
, and � ('; �; �) := maxr

(
� 1
2 jrj

�
+B1(�r);

� 1
2'r

� +
p
�B2(r);

if r � 0;
if r > 0;

with ' and � de�ned above. (iii)

� ('; �; 1) has the distribution P (� ('; �; 1) � x) = (1� e�x)(1� e�x'=�).

We restrict � > 1=2 because by the law of the iterated logarithms for Brownian motion, B(v) �p
2v log log v as jvj ! 1, and � > 1=2 guarantees the jvj� term dominate the B (v) term and the max-

imizer be Op (1). The distribution of � ('; �; 1) is developed in Appendix B of Bai (1997b), but for other �

values, it is unknown whether � ('; �; �) has a closed-form distribution. A special case of � ('; �; 2) attracts

much attention in the literature. De�ne

�c = argmax
r

�
�cr2 +B(r)

	
;

and then � (1; 1; 2) = �1=2. Groeneboom (1989) derives the distribution of �1 and shows that it is related

to the so-called Airy function so has no explicit form; Groeneboom and Wellner (2001) then show how to

compute it. Since Brownian scaling implies that �c = c�2=3�1, the case c = 1 is considered without loss of

generality. The distribution of �1 is referred to as Cherno¤ �s distribution in the literature. Note that the

distribution of � ('; �; �) is not required in this paper because the inference on  is based on the LR statistic

so � ('; �; �) rather than � ('; �; �) is relevant. Except � ('; �; 1), we guess � ('; �; �) with other � values

does not have a closed-form distribution. Parallel to �c, we can de�ne

�c = max
r

�
�cr2 +B(r)

	
;

and then � (1; 1; 2) = �1=2; Brownian scaling implies �c = c�1=3�1.

2.5 Maintained Assumptions

We collect some maintained assumptions here for future references. These maintained assumptions will not

be repeated and only adjustments will be stated in the discussions of each case. In this way, we can focus

our attention on the assumptions that are di¤erent and critical in each case. First, de�ne

M = E [xx0] ; N = E [xy] ;M = E [xx01(q � )] ;M =M �M = E [xx01(q > )] ;

M0 = M0 = S�1�1 ;M0 =M0 = S�2�2 ; S�� = diag
�
M0;M0

	
;

N = E [xy1(q � )] ; N = N �N = E [xy1(q > )] ; N0 = N0 ; N0 = N0 ;

�1 = M�1 N ; �2 =M
�1
 N ; �10 = �10 =M�10 N0; �20 = �20 =M

�1
0 N0;

� =
�
�01 ; �

0
2

�0
; � = �1 � �2 ; �0 = �0 ; �0 = �0 ;

� = E
h
xx0

�
e�
�2
1(q � )

i
;� = E

h
xx0

�
e+
�2
1(q > )

i
;�0 = �0 ;�0 = �0 ;

where e� = y � x0�1 and e+ = y � x0�2 , e1 = e�0 = y � x0�10 = "1 +m1 (x; q) � x0�10 and e2 = e+0 =

y � x0�20 = "2 +m2 (x; q)� x0�20. Let f(q) denote the density of q, f0 = f (0) and N be a neighborhood

of 0 when 0 is point identi�ed.

Assumption MA:

(i) The data fwigni=1 are randomly sampled, wi = (yi; x0i; qi)0 2W � R�X�Q � Rd+1, �` 2 B` � Rd+1,
and  2 � = [; ] $ Q is compact.
(ii) When q � 0, m1 (x; q) := E [yjx; q] is left continuous at q = 0 for all x 2 X; when q > 0,

m2 (x; q) := E [yjx; q] is right continuous at q = 0 for all x 2 X.
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(iii) The conditional distribution f(x;"1)jq (x; "1jq) is left continuous at q = 0 and f(x;"2)jq (x; "2jq) is right
continuous at q = 0.

(iv) (a) E["4` ] <1, E[kxk
4
] <1 and E[y4] <1; (b) sup2N E["4` jq = ] <1, sup2N E[kxk

4 jq = ] <

1 and sup2N E[y4jq = ] <1.
(v) M > M > 0 for  2 N .
(vi) � > 0 and � > 0 for  2 N .
(vii) f() is continuous at 0, and 0 < f � f() � f <1 for  2 �.
(viii) argmin2� S () = 0 is unique.

(ix) �0 satis�es ��0 + �q00 6= 0 and/or �x0 6= 0.

As mentioned in the Introduction, we consider only random samples which are explicitly stated in As-

sumption (i). As usual, we restrict the parameter space of  to be a perfect subset of the support of q. As-

sumption (ii) imposes some regularity conditions on m` (x; q); under Assumption (ii), we can write m1 (x; 0)

for m1 (x; 0�) and m2 (x; 0) for m2 (x; 0+).
2 Similarly, Assumption (iii) imposes some regularity condi-

tions on f(x;"`)jq; this assumption guarantees that E [g(x; "1)jq = ] is left continuous and E [g(x; "2)jq = ]

is right continuous at 0 for any function of g as long as the conditional means are well de�ned, so we

can write E [g(x; "1)jq = 0�] as E [g(x; "1)jq = 0] and E [g(x; "2)jq = 0+] as E [g(x; "2)jq = 0].
3 These

two assumptions make sure that we can focus on the (dis-)continuity property of m (x; q) and q = 0 be-

cause all other components of the model are continuous at 0. Assumption (iv) implies E
�
m`(x; q)

4
�
<1,

E
h
(m`(x; q)� x0�`0)

4
i
<1 and E

�
e4`
�
<1; Assumption (iv)(b) implies sup2N E

�
m`(x; q)

4jq = 
�
<1,

sup2N E
h
(m`(x; q)� x0�`0)

4 jq = 
i
<1 and sup2N E

�
e4` jq = 

�
<1, where N is understood as the left

neighborhood of 0 when m1 (x; q) ; "1 and e1 are involved and the right neighborhood when m2 (x; q) ; "2 and

e2 are involved. Note that E["4` ] <1 implies E["4` jq] <1 for q almost everywhere if 0 < f � f (q) � f <1
for all q 2 Q, so combined with Assumption (iii) and Assumption (vii) below, E["4` ] <1 indeed implies that

there is a N such that sup2N E["4` jq = ] <1 (otherwise, E["4` ] cannot be �nite); similarly for E[kxk
4
] <1

and E[y4] <1. We explicitly state these implications here because they will be used in some of our proofs;
sometimes, we need to strengthen Assumption (iv)(b) to apply a Donsker�s theorem. In Assumption (v),

we only require M > 0 and M > 0 for  2 N while Hansen (2000) requires M > 0 and M > 0 for

 2 �. This is because Hansen (2000) needs his assumption to prove the consistency of b while we assume
the consistency of b in the following Assumption (viii). Note that M > M > 0 for  2 � implies � must be
a proper subset of the support of q; since we only restrict  2 N here, we explicitly specify � in Assumption

(i). As usual, � and � in Assumption (vi) will be used in some asymptotic distributions of b�. By the
continuity of M , M , � and � at 0, we can actually state Assumption (v) as M0 > 0 and M0 > 0 and

Assumption (vi) as �0 > 0 and �0 > 0.

The following three assumptions may change with the cases, but we still state them here and explain how

to adjust them in some cases to save space. In II(�), 3 < � � 4, we need to strengthen the continuity of f()
at 0 in Assumption (vii) to the di¤erentiability of f() at 0. Because S () is continuous in , Assumption

(viii) implies the consistency of b as mentioned above. Given the consistency of b, b� is consistent to �0. This
is also why we did not restrict B` to be compact in Assumption (i). In Section 7, 0 is not point identi�ed

(e.g., when �0 = 0, �10 = �20 = M�1N , and 0 is not identi�ed), so we need to adjust Assumption (viii)

and also Assumption (vi) correspondingly.4 Assumption (ix) restricts the model to be DTR, and in CTR, we

2Rigorously, m2 (x; 0) is not de�ned, so we de�ne it as lim#0 m2 (x; ) =: m2 (x; 0+) to guarantee m2 (x; q) to be right
continuous at q = 0. On the other hand, m1 (x; 0) = lim"0 m1 (x; ) =: m1 (x; 0�) since m1 (x; 0) is well de�ned. This
convention applies to assumption (iii) in de�ning f(x;"2)jq (x; "2jq = ) at  = 0.

3Because fxjq(xjq) is continuous at q = 0, E [g(x)jq = ] is continuous at 0. This is why we can de�ne D0 = E [xx0jq = 0]
in the future.

4Note that 0 and N are meaningful only in point identi�ed models, so all assumptions involving 0 and N need to be
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need to adjust ��0+ �q00 6= 0 and/or �x0 6= 0 according to Proposition 1. Specially, we replace Assumption
(ix) by

(ix)0 �0 6= 0 but ��0 + �q00 = 0 and �x0 = 0.
in CTR, and we still call the collected assumptions as Assumption MA. Note that in CTR, (�c0; �q0) 6= 0

implies �q0 6= 0 because if �q0 = 0 then �c0 must be zero given that �c0+ �q00 = 0; on the other hand, when
0 = 0, �c0 can be zero since �q0 need not be zero.

The most important assumption is Assumption (x) which will be stated in each case instead of here be-

cause this assumption needs to be changed for each case (i.e., this assumption marks each case). Assumption

MA is de�nitely not the weakest assumption required, but we �nd the current form of Assumption MA is

convenient and intuitive.

3 An Example for Illustration

We use a simple example to illustrate the main results of this paper, especially, the various convergence

rates in di¤erent cases. With this example in mind, the proofs for the general cases are more accessible.

Readers who are only interested in general results can skip this section. Suppose q is the only covariate, and

y = m1(q)1(q � 0) +m2(q)1(q > 0) + ". WLOG, suppose 0 = 0; then for  is in the neighborhood of 0,

(1; q)�0 = q�q0 �  in CTR, and (1; q)�0 = �c0 + q�q0 � 1 in DTR given that �c0 6= 0. Now, we check the
local behavior of Sn(�)� Sn(�0).

3.1 Deterministic and Random Parts of Sn(�)� Sn(�0)
First, check the deterministic part of Sn(�) � Sn(�0), which is S(�) � S(�0). From the decomposition in

Section 2.1 and noticing that x = (1; q)0, we have

S�� = diag
n
d2�(�10)
d�1d�

0
1
; d

2�(�20)
d�2d�

0
2

o
= diag

�
E
�
(1; q)

0
(1; q) 1(q � 0)

�
;E
�
(1; q)

0
(1; q) 1(q > 0)

�	
> 0;

S�� =

0@ @2	�(�10;0)
@�1@�

@2	�(�20;0)
@�2@�

1A = f0

 
� [m1(0)� (1; 0)�10]
m1(0)� (1; 0)�20

!


 

1

0

!
;

= f0

 
�
�
m1(0)� (1; 0)�0 � 1

2 (1; 0) �0
�

m1(0)� (1; 0)�0 + 1
2 (1; 0) �0

!


 

1

0

!

S+� =

0@ @2	+(�10;0)
@�1@+

@2	+(�20;0)
@�2@+

1A = f0

 
� [m2(0)� (1; 0)�10]
m2(0)� (1; 0)�20

!


 

1

0

!
;

= f0

 
�
�
m2(0)� (1; 0)�0 � 1

2 (1; 0) �0
�

m2(0)� (1; 0)�0 + 1
2 (1; 0) �0

!


 

1

0

!
S� =

@��(0)
@�

= �f0 (1; 0) �0
�
m1(0)� (1; 0)�0

�
;

S+ =
@�+(0)
@+

= �f0 (1; 0) �0
�
m2(0)� (1; 0)�0

�
;

regardless of in DTR or CTR, where 
 is the Kronecker product.
It is obvious that whether S� = 0 depends on whether the �tted model is DTR or CTR and the

values of m1 (0) and m2 (0). Only in DTR S� 6= 0 can happen. Because
�
�00; 0

�0
is the minimizer of

S(�)� S(�0), we have S� < 0 and S+ > 0 in this case which is our case I(1). If (1; 0) �0 > 0, this implies

m1(0) > (1; 0)�0 and m2(0) < (1; 0)�0, i.e., m(q) is discontinuous at 0, and m1 (0) and (1; 0)�10

deleted or adjusted when the model loses point identi�cation.
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are both above (1; 0)�0 and m2 (0) and (1; 0)�20 are both below (1; 0)�0.
5 In this case, S(�) � S(�0)

is not di¤erentiable in  at 0.
6 In all other cases, S� = 0, and S(�) � S(�0) is indeed di¤erentiable in

 at 0. In DTR, since (1; 0) �0 6= 0, this means m1(0) = m2(0) = (1; 0)�0, which is satis�ed in

our case I(�), 1 < � � 2.7 In CTR, (1; 0) �0 = 0, so it must be the case that S� = 0. In case II(2),

m1(0) 6= (1; 0)�0 6= m2(0), and in case II(�), 2 < � � 4, m1(0) = m2(0) = (1; 0)�0. The value of

�� 1 in DTR and �� 2 in CTR indicate the speed of m1()� (1; )�0 and m2()� (1; )�0 shrinking to
0 as  converges to 0. To simplify our discussion, assume here both m1()� (1; )�0 and m2()� (1; )�0
are O

�
jj��1

�
in DTR and O

�
jj��2

�
in CTR, and then �� () = O (jj�).

Next, we study the covariation of � and . In case I(1),

S�� 6= 0 6= S+�

in general, in case I(�), 1 < � � 2,

S�� =
1

2
f0

 
(1; 0) �0

(1; 0) �0

!


 

1

0

!
= S+� 6= 0;

in case II(2),

S�� = f0

 
�
�
m1(0)� (1; 0)�0

�
m1(0)� (1; 0)�0

!


 

1

0

!
6= 0;

S+� = f0

 
�
�
m2(0)� (1; 0)�0

�
m2(0)� (1; 0)�0

!


 

1

0

!
6= 0;

and in case II(�), 2 < � � 4,
S�� = S�+ = 0.

Given S�� = S�+ = 0, we can further study S
�
�� and the behavior of S

�
� (). Notice that

S��� = f0

 
(1; 0)

0
(1; 0) 0

0 � (1; 0)
0
(1; 0)

!
= S+�� ;

and

S�� :=
@	�(�0;)

@� =

0BBBB@
R 0


 
1

�

!h
m1(�)� (1; �)�0 �

��q0
2

i
f (�) d�

�
R 0


 
1

�

!�
m1(�)� (1; �)�0

�
f (�) d� � 1

2

R 0


 
1

�

!
��q0f (�) d�

1CCCCA �

0BBB@
��1 + 2

��1 + 2

��1 + 2

��1 + 2

1CCCA ;

S+� :=
@	+(�0;)

@� =

0BBBB@
�
R 
0

 
1

�

!�
m2(�)� (1; �)�0

�
f (�) d� + 1

2

R 
0

 
1

�

!
��q0f (�) d�

R 
0

 
1

�

!h
m2(�)� (1; �)�0 +

��q0
2

i
f (�) d�

1CCCCA �

0BBB@
��1 + 2

��1 + 2

��1 + 2

��1 + 2

1CCCA :

5Notice that (1; 0)�0 = (1; 0)�10� (1; 0) �0=2 and (1; 0)�0 = (1; 0)�20+(1; 0) �0=2, so the distance between m1 (0)
and (1; 0)�10 is bounded below by � (1; 0) �0=2 and the distance between m2(0) and (1; 0)�20 is bounded above by
(1; 0) �0=2 to guarantee m1 (0) and m2 (0) staying on di¤erent sides of (1; 0)�0.

6 In general, we require P (m1(x; 0) 6= m2(x; 0)) > 0 to guarantee the nondi¤erentiability of S(�)� S(�0) at 0 given that
fxjq (xj) is continuous at 0.

7 In general, P (m1(x; 0) = m2(x; 0)) = 1 is not necessary but su¢ cient to guarantee the di¤erentiability of S(�) � S(�0)
at 0 in DTR given that fxjq (xj) is continuous at 0
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Now, we must distinguish 2 < � < 3, and 3 � � � 4. In the former case, S��2 does not exist while in the
later case, it indeed exists and

S��2 =

 
f0�q0
2

f0�q0
2

!


 

1

0

!
= S+�2 (5)

when 3 < � � 4 and

S��2 =

 
�f0

�
m01(0)� �q0

�
f0
�
m01(0)� �q0

� !


 
1

0

!
+

 
f0�q0
2

f0�q0
2

!


 

1

0

!
;

S+�2 =

 
�f0

�
m02(0)� �q0

�
f0
�
m02(0)� �q0

� !


 
1

0

!
+

 
f0�q0
2

f0�q0
2

!


 

1

0

!
;

when � = 3, where we assume f () is di¤erentiable at 0 and �q0 is the second component of �0.

Now, we can explain why in case I, we do not allow � > 2, and in case II, we do not allow � > 4.

This is mainly because we want to avoid local unidenti�cation. In case I, because S�� > 0, S�� 6= 0 and

�� () � jj�, we have
S(�)� S(�0) �

e�2 + e� jj+ jj� (6)

by Taylor expansion, where e� = �e�01; e�02�0 with e�` = �` � �`0. Since
e�2 + jj� � e� jj�=2, only if

� � 2 we can control the variation of S(�)� S(�0) by
e�2 + jj� (when � < 2, e� jj is dominated since

jj�=2 � jj). Otherwise, the variation in the direction (�; ) may dominate the variation in the direction �
or , and 0 and/or �0 may not be identi�ed locally.

8 In case II, we have

S(�)� S(�0) �
e�2 + e� jj+ e�2 jj+ e��jj2 + jj��1�+ jj� ; (7)

where the
e� jj term appears only if � = 2 (and then all other cross terms are dominated by

e� jj and
the analysis is the same as in DTR with � = 2), the term

e�2 jj is dominated by e�2, and e� jj��1 is
dominated by

e�2 + jj� since e�2 + jj� � e� jj�=2 and � � 1 > �=2 if � > 2. The key term here ise� jj2 which is no larger than O�e�2 + jj4�. By a similar argument as in case I, � cannot be greater
than 4. Under these restrictions on the value of �, we have

S(�)� S(�0) �
e�2 + jj�

in both DTR and CTR.

Second, we check the random part of Sn(�)� Sn(�0), which is equal to

1
n

Pn
i=1 (�10 � �1)

0
xie1i1(qi � 0) +

1
n

Pn
i=1 (�20 � �2)

0
xie2i1(qi > 0)

+ 1
n

Pn
i=1 �

0
0xi"1i1( < qi � 0)� 1

n

Pn
i=1 �

0
0xi"2i1(0 < qi � )

(8)

8More rigorously, by Taylor expansion, the main terms of S(�) � S(�0) when � is local to �0 are
1
4
e�0e� +

�
S��

e� + �� jj�� 1( � 0) +
�
S+�

e� + �+�� 1( > 0) whose minimum given  6= 0 is

�
h�
2S��S

�
� � �� jj

�
�
1( � 0) +

�
2S+�S

+
� � �+ jj

�
�
1( > 0)

i
< 0 when � > 2 unless S�� = 0 which is impossi-

ble in this simple example; see Section 9 for some concrete calculation. In other words, 0 6= argmin S () at the beginning.

Actually, even when � = 2, we need some restrictions on �� to guarantee the
e� jj term not exceeding the other two terms;

see Example 3 in Section 5.1.
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with xi = (1; qi)
0. The �rst two terms contribute to the randomness of b� and the last two terms contribute

to the randomness of b. The variance of (8) depends on whether the model is DTR or CTR. In DTR, the
variance is O

�
k���0k2

n + j�0jn

�
, and in CTR, the variance is O

�
k���0k2

n + j�0j
3

n

�
because �00x � q�q0. So

in DTR, the random part is Op
�
k���0k+j�0j1=2p

n

�
, and in CTR, the random part is Op

�
k���0k+j�0j3=2p

n

�
.

Note further from Yu (2012, 2015) that the randomnesses of b� and of b are independent asymptotically
because the former involves the global information while the latter involves the local information and these

two parts of information are independent.

3.2 Determining the Convergence Rates of b� and b
Now, we balance the deterministic part and the random part to determine the convergence rate of b� andb. First of all, we must make k� � �0k and j � 0j have the same scale in S(�) � S(�0) to determine the

convergence rate, i.e., k� � �0k � j � 0j
�=2. Suppose b� � �0 = Op

�
��1n

�
and b � 0 = Op

�
��1n

�
.

In DTR, the random part is Op

�
k���0k+(j�0j�=2)

1=�

p
n

�
. When � = 1, the randomness from b� and b

are balanced, while when 1 < � � 2, the randomness from b� is dominated by that from b. So when � = 1,
solving

��1n =
�
�1=2
np
n

and ��2n =
��1np
n

to have �n = n and �n =
p
n. Also, we need to multiply the localized Sn(�) � Sn(�0) by �2n = n to have a

nondegenerate weak limit. We label this rate as the normalization rate in this subsection. When 1 < � � 2,
solving

���n =
�
�1=2
np
n

and ��2n =
�
�1=�
np
n

to have �n = n
�

2(2��1) and �n = n
1

2��1 . The normalization rate is
p
n�n (or �

�
n or �

2
n). Especially, when

� = 2, �n = �n = n1=3 as in BM and the normalization rate is n2=3.

In CTR, the random part is Op

�
k���0k+(j�0j�=2)

3=�

p
n

�
. When � = 3, the randomness from b� and b

are balanced, when 2 < � < 3, the randomness from b� dominates that from b, while when 3 < � � 4, the
randomness from b� is dominated by that from b. So when � = 3, solving

��3n =
�
�3=2
np
n

and ��2n =
��1np
n

to have �n = n1=3 and �n =
p
n as in HLS. The normalization rate is �2n = n. When 2 � � < 3, solving

���n =
�
��=2
np
n

and ��2n =
��1np
n

to have �n = n1=� and �n =
p
n. Especially, when � = 2, �n = �n =

p
n. The normalization rate is still

�2n = n. When 3 < � � 4, solving

���n =
�
�3=2
np
n

and ��2n =
�
�3=�
np
n

to have �n = n
1

2��3 and �n = n
�

2(2��3) . Now, the normalization rate is
p
n�3n (or �

�
n or �

2
n). Especially, when

� = 4, �n = n2=5, �n = n1=5 and the normalization rate is n4=5. Although both DTR and CTR consider
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� = 2, the convergence rates of b� are di¤erent because � only indexes the rates of the deterministic part
shrinking to zero while the rates of the random part shrinking to zero are di¤erent in these two cases.

3.3 Extension and Re�nement

When � = 1 and 2 in DTR and � = 2, 3 and 4 in CTR, the rates in the last subsection are enough. When

1 < � < 2 in DTR and 2 < � < 3 and 3 < � < 4 in CTR, �� () need not take the power form of ,

so we need to extend the arguments in the last subsection to this general speci�cation of �� (). Now,

k� � �0k �
p
� ().

When 1 < � < 2 in DTR, solving

�

�
1

�n

�
� �

�1=2
np
n

and ��2n =
�
�1=2
np
n

to have �n = n
1

2��1L� (n) and �n = n
�

2(2��1)L� (n)
1=4, where L� (n) = L

�
��1n

� 2
2��1 . For example, if

L (x) = log
�
jxj�1

�
, then L� (n) = (log n)

2
2��1 , �n = n

1
2��1 (log n)

2
2��1 and �n = n

�
2(2��1) (log n)

1
2(2��1) .

Also,
p
n�n��

�
v
�n

�
! �� jvj� using the de�nition of slowly varying function at zero. When 2 < � < 3 in

CTR, solving

�

�
1

�n

�
�

r
�
�
1
�n

�
p
n

and ��2n =
��1np
n

to have �n = n
1
�L� (n) and �n =

p
n, where L� (n) = L (1=�n)

1
� . For example, if L (x) = log

�
jxj�1

�
, then

L� (n) = (log n)
1
� and �n = (n log n)

1
� . Also, n��

�
v
�n

�
! �� jvj�. This balancing is the same as in YZ;

see their Example 2.1. When 3 < � < 4 in CTR, solving

�

�
1

�n

�
� �

�3=2
np
n

and ��2n =
�
�3=2
np
n

to have �n = n
1

2��3L� (n) and �n = n
�

2(2��3)L� (n)
3=4, where L� (n) = L

�
��1n

� 2
2��3 . For example, if L (x) =

log
�
jxj�1

�
, then �n = n

1
2��3 (log n)

2
2��3 and �n = n

�
2(2��3) (log n)

3
2(2��3) . Also,

p
n�3n��

�
v
�n

�
! �� jvj�.

In the future, �n and �n are referred to the rates here and will not speci�ed explicitly.

The convergence rate for b� when 1 < � < 2 in DTR and 3 < � < 4 in CTR and the convergence rate

for b when 2 < � < 3 in CTR derived above are correct but not useful since the asymptotic distributions

under these rates will degenerate. We will explain why this can happen below. First check DTR. From (6),

only if � = 2, the cross term e�0S�� will not be dominated. When � = 1, because the randomnesses fromb� and b in (8) are balanced and asymptotically independent, and the cross term disappears asymptotically,

we expect b� and b are asymptotically independent. For example, this is indeed the case in Chan (1993) and
Hansen (2000) where the model is the CS DTR. When � = 2, because the randomness from b� is dominated
but the cross term remains, we expect the asymptotic distribution of b� is completely determined by b and
will not degenerate since it inherits randomness from b. When 1 < � < 2, because the randomness from b�
is still dominated but the cross term disappears, we expect the asymptotic distribution of b� will degenerate
since it cannot inherit randomness from b anymore. In other words, the convergence rate of b� should be
faster. How to obtain this convergence rate? Because the randomness in the  direction dominates, we

cannot search over � and  jointly; rather, we �x b and concentrate on the randomness in the � direction.
Putting in another way, we express b� as b� (b) and note that b� (b)� �0 = �b� (b)� b� (0)�+ �b� (0)� �0�.
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It is clear now the convergence rate of b� is determined by the smaller of the convergence rates b� (b)� b� (0)
and b� (0) � �0. Due to the cross term e�0S��, it turns out that the e¤ect of estimating 0 on b� is linear
in (b � 0), so the convergence rate of b� (b)� b� (0) is �n. It is well known that the convergence rate ofb� (0)� �0 is pn, so the convergence rate of b� is min (�n;pn) with �n = pn when � = 1:5.
Second, check CTR. When � = 2, because the randomness from b is dominated but the cross term e� jj

remains, we expect the asymptotic distribution of b is completely determined by b� and will not degenerate
since it can inherit randomness from b�. When � = 3, because the random components from b� and b are
balanced and all cross terms in (7) disappear, we expect b� and b are asymptotically independent. This case
is like case I(1). For example, this is indeed the case in HLS where the model is the CS CTR. When � = 4,

because the randomness from b� is dominated but the cross term e� jj2 remains, we expect the asymptotic
distribution of b� is completely determined by b and will not degenerate since it inherits randomness fromb. This case is similar to case I(2). When 3 < � < 4, because the randomness from b� is dominated and
all cross terms disappear, we expect the asymptotic distribution of b� will degenerate since it cannot inherit
randomness from b anymore. This case is similar to case I(�) with 1 < � < 2, and so can be similarly

analyzed. Now, the cross term
e� jj disappears and the dominating cross term is

e� jj2, so the e¤ect
of estimating 0 on b� is quadratic in (b � 0) and the convergence rate of b� (b)� b� (0) is �2n. All in all,
the convergence rate of b� is min ��2n;pn� with �2n = p

n when � = 3:5. The hardest case is 2 < � < 3

since there is no explicit-form solution for b. Because the randomness from b is dominated and all cross
terms disappear, we expect the asymptotic distribution of b will degenerate. Similarly as in case I(�) with
1 < � < 2, we express b as b �b�� and note that b �b�� � 0 =

�b �b��� b (�0)� + (b (�0)� 0). It is not
hard to show that the convergence rate of b (�0) � 0 is %n, where %n takes the same formula as in II(�)

with 3 � � � 4. However, how to characterize the e¤ect of estimating �0 on b is not an easy task. It turns
out that due to the cross term

e� jj��1 in (7), this e¤ect can be thought of being linear in b� � �0, i.e.,

the convergence rate of b �b�� � b (�0) is pn. In summary, the convergence rate of b is min (%n;pn) with
%n =

p
n when � = 2:5.

We summarize all the discussions on the convergence rates in Figure 2, where we consider only the

cases with � (jj) taking the form of jj�s power for simplicity. From Figure 2, we have two conclusions.

First, the convergence rates of both b and b� are decreasing in �. This is because a larger � means less
identi�cation information for  so that the convergence rate of b is slower, and a slower convergence rate
for b will contaminate the convergence rate of b�. Second, in DTR, the convergence rate of b cannot be
slower than that of b�, while in CTR, the converse statement is true. Also, from the discussions above, the

asymptotic distributions of b and b� are asymptotically independent in I(�) with 1 � � < 1:5 and in II(�)

with 2:5 < � < 3:5 and perfectly correlated in I(�) with 1:5 < � � 2 and in II(�) with 2 � � < 2:5 and

3:5 < � � 4; only in some marginal cases I(1.5), II(2.5) and II(3.5), they are partially correlated as in the
regular model. This re�ects the essential di¤erence in the nature of  and �. We also expect that when

�n � n, averaging in data is involved and the asymptotic distribution of b will be related to some Gaussian
processes rather than some Poisson processes as in I(1) (note that I(1) is the only case where �n = n).

For comparison, we also summarize the normalization rates of LRn () (which will be developed in the

coming sections) in Figure 3 when � (jj) takes the form of jj�s power. Although when the identi�cation
power for  is stronger (i.e., � is smaller) the normalization rate is generally higher, in II(�) with � � 2 < 2:5,b� takes in charge and the normalization rate is actually lower for smaller �. Juxtaposing Figures 2 and 3, it
is obvious that there is a close relationship between the convergence rate of b and the normalization rate of
LRn ().
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4 Asymptotics in Discontinuous Threshold Regression: � = 1

We will give I(1) a special treatment. This is because (i) the CS DTR is a special case of I(1) and attracts

most of attentions of TR research; (ii) we hope the asymptotic results in I(1) provide a benchmark so that

we can compare the results in any other case with those in I(1); (iii) we hope the detailed analysis of I(1) can

provide a template for other cases so that we can streamline the statements of our asymptotic theory there.

Parallel to Chan (1993) and Hansen (2000), we will consider both the �xed-threshold-e¤ect framework and

the shrinking-threshold-e¤ect framework.

First, we de�ne further notations for future use. Let

D = E [xx0jq = ] ; D0 = D0 ; E = E [xyjq = ] and E0 = E0 :

When 0 is known, we know

p
n

 b�1 � �10b�2 � �20
!

d�! Z� := S�1��W =

 
M�10 W1

M
�1
0 W2

!
=:

 
Z�1 ;

Z�2

!
;

where

W = (W 01;W
0
2)
0 with W1 � N (0;�0) , W2 � N

�
0;�0

�
, and W1 and W2 being independent. (9)

The notations W , Z�1 and Z�2 will be used in the asymptotic distributions of
b�1 and b�2 in some other cases

besides I(1).

4.1 Asymptotics with Fixed Threshold E¤ects

We now state the asymptotic distribution of b� when �0 is �xed. First, we list the required assumptions.
Assumption I(1): Assumption MA plus

(x) E [z1jq = 0] > 0 and E [z2jq = 0] > 0, and z1 and z2 have absolutely continuous distributions.

Assumption (x) implies S (; �0) has a kink at 0; for all other cases, E [z`jq = 0] = 0 so S (; �0) is

di¤erentiable at 0. Note here that we did not write E [z1jq = 0] as E [z1jq = 0�] and E [z2jq = 0] as

E [z2jq = 0+] thanks to Assumption (iii) given that z` is a function of x and "`.

De�ne a compound Poisson process D(�) as

D(v) =

8>><>>:
N1(jvj)P
i=1

z1i, if v � 0;
N2(v)P
i=1

z2i, if v > 0:

InD (v), fz1i; z2igi�1, N1(�) andN2(�) are independent of each other, N` (�) is a Poisson process with intensity
f0, z1i = lim�"0 z1i1 f0 +� < qi � 0g is the limiting conditional value of z1i given 0 + � < qi � 0,

� < 0 with � " 0, and z2i = lim�#0 z2i1 f0 < qi � 0 +�g is the limiting conditional value of z2i given
0 < qi � 0 + �, � > 0 with � # 0. When m`(xi; qi) = x0i�`0, z1i and z2i reduce to the form in Chan

(1993) and Yu (2014) (divided by 2) and E [z1jq = 0] = E [z2jq = 0] =
1
2�
0
0D0�0 > 0. Assumption (x)

guarantees the uniqueness of argminv2RD(v), where following the convention of b in Section 2.1, we takes
the mid-point of the minimizing interval of D(v) as the minimizer.
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Theorem 1 Under Assumption I(1),

n (b � 0) d�! argmin
v

D(v) =: Z (1) ;

p
n
�b�1 � �10� d�! Z�1 ;

p
n
�b�2 � �20� d�! Z�2 ;

and Z (1), Z�1 and Z�2 are independent.

The asymptotic distribution of the structural break estimator in Proposition 4 of Bai (1997a) can be

treated as a special case of Theorem 1 in the structural change context. In Bai�s setup, m (q) is piece-wise

constant and x = 1. GP generalize Bai�s setup to the TR context, but they show only that the convergence

rate of b is n and do not derive its asymptotic distribution. The asymptotic distribution of b� is the same
as in the case where 0 is known, i.e., estimating  does not a¤ect the asymptotic distribution of b�, just as
in the CS model. The following example derives the asymptotic distribution of b in GP�s setup with three
regimes.

Example 1 Suppose y = (x0b10 + "1) 1(q � 10) + (x
0b20 + "2) 1(10 < q � 20) + (x

0b30 + "3) 1(q > 20),

and 0 = argmin S () = 20. Then �20 = b30, and

�10 = E
h
xx0�20

i�1
E
�
x�20y

�
= E

h
xx0�20

i�1 �
E
h
xx0�10

i
b10 + E

h
x>10x

0
�20

i
b20

�
=: wb10+(I � w) b20

is a weighted average of b10 and b20 by noticing that E
h
xx0�10

i
+ E

h
x>10x

0
�20

i
= E

h
xx0�20

i
, so

�0 =
1

2
[wb10 + (I � w) b20 + b30] = w

b10 + b30
2

+ (I � w) b20 + b30
2

=: w�10 + (I � w)�20

is a weighted average of the the original two ��s, and

�0 = w (b10 � b30) + (I � w) (b20 � b30) := w�10 + (I � w) �20; (10)

is a weighted average of the original two threshold e¤ects. Now,

z1 =
�
x0b10 + "1 � x0�0

� �
�00x
�
1(q � 10) +

�
x0b20 + "2 � x0�0

� �
�00x
�
1(10 < q � 20);

z2 = �
�
x0b30 + "3 � x0�0

� �
�00x
�
1(q > 20);

and

z1 =
�
x0b20 + "2 � x0�0

� �
�00x
�
j (q = 20�) =

�
x0
�
w
�
b20 � �10

�
+ (I � w)

�
b20 � �20

��
+ "2

	 �
�00x
�
j (q = 20�) ;

z2 = �
�
x0b30 + "3 � x0�0

� �
�00x
�
j (q = 20+) = �

�
x0
�
w
�
b30 � �10

�
+ (I � w)

�
b30 � �20

��
+ "3

	 �
�00x
�
j (q = 20+) ;

where the �rst term of z1i is neglected because z1i is the limit random variable in the left neighborhood of 20.

For comparison, if the �rst and second regimes are combined into (x0b20 + "2) 1(q � 20), i.e., the model is

CS, then

z1 =

�
1

2
�00x+ "2i

��
�00x
�
j (q = 20�) and z2i = �

�
"3 �

1

2
�00x

��
�00x
�
j (q = 20+) ;
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pro forma, w
�
b30 � �10

�
+(I � w)

�
b30 � �20

�
= � 1

2�0 with �0 de�ned in (10), but w
�
b20 � �10

�
+(I � w)

�
b20 � �20

�
�

1
2�0 = w (b20 � b10) 6= 0, which is because the right regime is CS in the MS model, but the left regime is not.

4.2 Asymptotics with Shrinking Threshold E¤ects

Because the distribution of Z in Theorem 1 involves the distribution of z`i which is hard to estimate,

we employ the shrinking-threshold-e¤ect framework to obtain an accessible asymptotic distribution of b.
For future reference, we label the shrinking-threshold-e¤ect case as I(1)0. First, we make the following

assumptions.

Assumption I(1)0: same as Assumption I(1) except

(iv) (iv) of Assumption MA plus (c) sup2N E
h
(kxk j"`j)2+� jq = 

i
<1 for some � > 0.

(viii) &1 () =limn!1E
h
x
�
m1(x;q)�x0�10

k�nk

�
1(q � )

i
for  2 [; 0] and &2 () =limn!1E

h
x
�
m2(x;q)�x0�20

k�nk

�
1(q > )

i
for  2 [0; ] exist, and argmin2� S () = 0 is unique, where S () :=plimn!1 k�nk

�2
[Sn ()� Sn (�0)]

is de�ned in Lemma 3, k�nk := k�10 � �20k ! 0 and an := n k�nk2 !1.

(x) (a) E
��

m`(x;q)�x0�`0
k�nk

�4���� q = 

�
exists for  2 N ; (b) _&1 () =limn!1E

h
x
�
m1(x;q)�x0�10

k�nk

���� q = 
i

and _&2 () = �limn!1E
h
x
�
m2(x;q)�x0�20

k�nk

���� q = 
i
exist for  2 N , _&` () and D are continuous at 0

with _&`0 = _&` (0); (c) V
�
 are continuous at 0, where V

�
 = E

�
xx0"21jq = �

�
and V + = E

�
xx0"22jq = +

�
;

(d) c0D0c+ 2c
0 _&10 > 0, c0D0c+ 2c

0 _&20 > 0 and !
�
0 := c0V �0 c > 0, where c =limn!1�n= k�nk, V �0 = V �0 and

V +0 = V +0 .

Assumption (iv)(c) is a little bit stronger than (iv)(b) due to a similar reason as Liapounov�s condition in

Lindeberg-Feller CLT (compared with Lindeberg-Lévy CLT). For example, Hansen (2000) takes � = 2 in his

Assumption 1.4. Following the discussions in Section 2.5, replacing the �nite 4th moments in Assumption

(iv)(a) to the �nite (4 + �)th moments is su¢ cient for Assumption (iv)(c). The other two assumptions are

the counterparts of Assumption I(1) in the framework of shrinking threshold e¤ects. The existence of &` ()

and _&` () implies that m` (x; q) � x0�`0 t Op (k�nk). In CS models, m` (x; q) � x0�`0 = 0 From Lemma 3,

S () contains some extra terms beyond those in CS models due to the nonzeroness of &` (). Hansen (2000)

assumes �n = cn��, � 2 (0; 1=2), and we extend his setup to the cases where the components of �n have
di¤erent rates and the rates need not take the n�� form (e.g., it can be n�� log n). Our c is the normalized

�n.

To state the asymptotic distribution of b, de�ne
C (v) =

8<: 1
2f0 (c

0D0c+ 2c
0 _&10) jvj+

q
f0c0V

�
0 cB1(�v);

1
2f0 (c

0D0c+ 2c
0 _&20) v +

q
f0c0V

+
0 cB2(v);

if v � 0;
if v > 0;

= :

(
1
2�� jvj+

p
$�B1(�v);

1
2�+v +

p
$+B2(v);

if v � 0;
if v > 0:

where $� = f0!
�
0 . Even if we have assumed the distribution of x given q =  is continuous at 0 in

Assumption (iii) (which implies D is continuous at 0 so that only D0 rather than D
�
0 appears in C(v)),

the slopes of the deterministic part of C(v) on v � 0 and v > 0 are not the same anymore, which is distinctly
di¤erent from the CS model. On the other hand, the covariance kernel of C (v) is the same as in the CS

model where "` = e`. As shown in Yu and Phillips (2018), C(v) can be achieved from D(v) by shrinking �0
and m` (x; q)� x0�`0 in z`i.
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Theorem 2 Under Assumption I(1)0,

an (b � 0) d�! argmin
v

C(v) = !� ('; �; 1) ;

where ! = $�
�2�

=
c0V �

0 c

f0(c0D0c+2c0 _&10)
2 and ' =

�+
��

= c0D0c+2c
0 _&20

c0D0c+2c0 _&10
and � = $+

$�
=

c0V +
0 c

c0V �
0 c
, b�` has the same

asymptotic distribution as in Theorem 1, and b; b�1 and b�2 are asymptotically independent.
Proposition 8 of Bai (1997a) can be treated as a special case of Theorem 2 in the structural change

context with m (q) piece-wise constant and x = 1. This form of � (�; '; 1) also appears in Proposition

3 of Bai (1997b) where the CS structural change model is considered. Note that ' is not equal to 1

in general, which is dramatically di¤erent from the case in CS models. On the other hand, the form of

� is similar; if the model is homoskedastic in each regime, � = �22=�
2
1, where �

2
` = E

�
"2`
�
, and � = 1

when E
�
xx0"21jq = 0

�
= E

�
xx0"22jq = 0

�
as assumed in Hansen (2000). This theorem can be treated as a

misspeci�cation-robust extension of Theorem 1 in Hansen (2000) where the model is CS.

Example 2 (continue of Example 1) We need only derive the formulae of _&`0 and V �0 to obtain the

asymptotic distribution of b. Note that
_&1 () = lim

n!1
E
�
x

�
x0b20 � x0�10

k�nk

����� q = 20

�
= D0

�
lim
n!1

w (�20 � �10)
k�20 � w (�20 � �10)k

�
=: D0c1;

_&2 () = lim
n!1

E
�
x

�
x0b30 � x0�20

k�nk

����� q = 20

�
= 0;

so

c0D0c+ 2c
0 _&10 = c0D0 (c+ 2c1) = c0D0

�
lim
n!1

�20
kw�10 + (I � w) �20k

�
c0D0c+ 2c

0 _&20 = c0D0c;

where c0D0c+ 2c
0 _&20 takes the same form as in the CS model because the right regime is indeed CS. Next,

V +0 = E
�
xx0"22jq = 20�

�
and V +0 = E

�
xx0"23jq = 20+

�
take the same form as in the CS model.

To conduct inference on , we use the LR-like statistic as mentioned in Section 2.1:

LRn () =
n (Sn()� Sn (b))b�2 ;

where b�2 is a consistent estimator of �2 = $�
��

=
c0V �

0 c
c0D0c+2c0 _&10

, so �n = n and bb = b�2 here.
Corollary 1 Under Assumption I(1)0,

LRn (0)
d�! � ('; �; 1)

where the distribution of � ('; �; 1) is given in Proposition 2(iii) with ' and � de�ned in Theorem 2.
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To make LRn () feasible, we need to estimate �2, ' and �. From the proof of the Theorem 2,

c0V �0 c = lim
n!1

E[z21ijqi=0�]
k�nk2

= lim
n!1

E
h
(�0nxi)

2
(yi�x0i�0)

2jqi=0�
i

k�nk2
; 9

c0V +0 c = lim
n!1

E[z22ijqi=0+]
k�nk2

= lim
n!1

E
h
(�0nxi)

2
(yi�x0i�0)

2jqi=0+
i

k�nk2
;

and
1
2 (c
0D0c+ 2c

0 _&10) = lim
n!1

E[z1ijqi=0�]
k�nk2

= lim
n!1

E[(�0nxi)(yi�x
0
i�0)jqi=0�]

k�nk2
;

1
2 (c
0D0c+ 2c

0 _&20) = lim
n!1

E[z2ijqi=0+]
k�nk2

= lim
n!1

�E[(�0nxi)(yi�x
0
i�0)jqi=0+]

k�nk2
:

This implies that

�2 t
E
h
(�0nxi)

2
(yi�x0i�0)

2jqi=0�
i

2E[(�0nxi)(yi�x0i�0)jqi=0�]
; ' t �E[(�

0
nxi)(yi�x

0
i�0)jqi=0+]

E[(�0nxi)(yi�x0i�0)jqi=0�]
and � t

E
h
(�0nxi)

2
(yi�x0i�0)

2jqi=0+
i

E
h
(�0nxi)

2(yi�x0i�0)
2jqi=0�

i :
(11)

As a result, �2; ' and � can be consistently estimated by kernel regression or series regression as in Section

3.4 of Hansen (2000) but with �n replaced by b� and �0 by b�1+b�2
2 in the formulae of �2; ' and �. These

estimators are robust to misspeci�cation in E [yjx; q] in TR, just like White�s sandwich-form convariance

matrix estimator is robust to mispeci�cation in conditional mean E [yjx] in linear regression. Given the
estimators of �2; ' and �, say b�2; b' and b�, the (1��) LR con�dence interval for  follows by inversion fromn

 : LRn () �dcrito ;
wheredcrit is the (1� �) quantile of � �b'; b�; 1�.
In the CS model,

�2 =
E
h
(�0nxi)

2
e21ijqi=0�

i
E[(�0nxi)2jqi=0�]

; ' =
E
h
(�0nxi)

2jqi=0+
i

E[(�0nxi)2jqi=0�]
and � =

E
h
(�0nxi)

2
e22ijqi=0+

i
E[(�0nxi)2e21ijqi=0�]

; (12)

but these formulae are not correct in the MS model. Speci�cally, the correct formulae should be

�2 =
E
h
(�0nxi)

2
"21ijqi=0�

i
E[(�0nxi)(2e1i+�0nxi)jqi=0�]

; ' =
E[(�0nxi)(x

0�n�2e2i)jqi=0+]
E[(�0nxi)(2e1i+�0nxi)jqi=0�]

and � =
E
h
(�0nxi)

2
"22ijqi=0+

i
E[(�0nxi)2"21ijqi=0�]

;

while

E
h�
�0nxi

�2
e21ijqi = 0�

i
� E

h�
�0nxi

�2
"21ijq = 0�

i
= E

h�
�0nxi

�2
(m1(xi; qi)� x0i�10)

2 jqi = 0�
i
= O

�
k�nk4

�
> 0;

E
h�
�0nxi

�2
e22ijqi = 0+

i
� E

h�
�0nxi

�2
"22ijqi = 0+

i
= E

h�
�0nxi

�2
(m2(xi; qi)� x0i�20)

2 jqi = 0+
i
= O

�
k�nk4

�
> 0;

E
h�
�0nxi

�2 jqi = 0�
i
� E

��
�0nxi

� �
2e1i + �

0
nxi
�
jqi = 0�

�
= �2E

��
�0nxi

�
(m1(xi; qi)� x0i�10) jqi = 0�

�
= O

�
k�nk2

�
;

E
h�
�0nxi

�2 jqi = 0+
i
� E

��
�0nxi

�
(x0�n � 2e2i) jqi = 0+

�
= 2E

��
�0nxi

�
(m2(xi; qi)� x0i�20) jqi = 0+

�
= O

�
k�nk2

�
:

Although E
h�
�0nxi

�2
e21ijqi = 0�

i
and E

h�
�0nxi

�2
e22ijqi = 0+

i
can replace E

h�
�0nxi

�2
"21ijq = 0�

i
and

E
h�
�0nxi

�2
"22ijqi = 0+

i
because their di¤erences are o

�
k�nk2

�
, E
h�
�0nxi

�2 jqi = 0�
i
and E

h�
�0nxi

�2 jqi = 0+
i

cannot replace E
��
�0nxi

� �
2e1i + �

0
nxi
�
jqi = 0�

�
and E

��
�0nxi

�
(x0�n � 2e2i) jqi = 0+

�
. In other words, �2

9 Note that E
�
(�0nxi)

2
�
yi � x0i�0

�2
jqi = 0�

�
�E

h
(�0nxi)

2 "21ijqi = 0�
i
= E

�
(�0nxi)

2
�
m1 (xi; qi)� x0i�0

�2
jqi = 0�

�
=

E
h
(�0nxi)

2 �m1 (xi; qi)� x0i�10 + x0i�n=2
�2 jqi = 0�i = O �k�nk4�.
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and ' are biased if the estimation is based on (12). Even for �, the formula in (11) should have a smaller

�nite-sample bias than that in (12).

If the model is homoskedastic in each regime,

�2 =
c0D0c��21

c0D0c+2c010 _&
t

E
h
(�0nxi)

2jqi=0�
i
E
h
(yi�x0i�0)

2jqi=0�
i

2E[(�0nxi)(yi�x0i�0)jqi=0�]
t

E
h
(yi�x0i�0)

2jqi�0
i

2E[(�0nxi)(yi�x0i�0)jqi=0�]=E[(�0nxi)
2jqi=0]

;

� =
�22
�21
t

E
h
(yi�x0i�0)

2jqi=0+
i

E
h
(yi�x0i�0)

2jqi=0�
i t E

h
(yi�x0i�0)

2jqi>0
i

E
h
(yi�x0i�0)

2jqi�0
i ;

where the second approximation of �2 and � allows us to use more data to estimate them. Note that �2

cannot be simpli�ed to �21 as in the CS model.

5 Asymptotics in Discontinuous Threshold Regression: 1 < � � 2
We �rst state the asymptotic theory of I(2) and then I(�), 1 < � < 2.

5.1 � = 2

First, we specify the required assumptions.

Assumption I(2): same as Assumption I(1) except

(iv) (iv) of Assumption MA plus (c) sup2N E
h��x0i�0 �yi � x0i�0���2+� jqi = 

i
<1 for some � > 0.

(x) (a) �� () 2 RV2; (b) S
�
�� > 0, where S� := 2��; (c) !� := E

h��x0i�0 �yi � x0i�0���2 jqi = �
i
is

continuous at 0 and !
�
0 := !�0 > 0.

10

Assumption (iv)(c) is assumed due to a similar reason as in Assumption I(1)0. If �� () in Assumption

(x)(a) is actually the left and right second-order di¤erentiable, then

S� = �f0
E[z1ijq=0�]

@ = �f0
@E[x0�0(y�x0�0)jq=0�]

@ = �f0
@E[x0�0(m1(x;q)�x0�0)jq=0�]

@ = 2��

S+ = f0
E[z2ijq=0+]

@ = �f0
@E[x0�0(y�x0�0)jq=0+]

@ = �f0
@E[x0�0(m2(x;q)�x0�0)jq=0+]

@ = 2�+;
(13)

and is even the second-order di¤erentiable, then

S = �f0
@E[x0�0(y�x0�0)jq=0]

@ = �f0
@E[x0�0(m(x;q)�x0�0)jq=0]

@ = 2�� = 2�+; (14)

where f() is assumed to be di¤erentiable at 0. From (14), we need to impose further restrictions on the

smoothness of m (x; q) and fxjq (xjq) around q = 0 (beyond the continuity at q = 0) to guarantee the

existence of S . When x = (1; q)
0,

S = E
�
x0�0

�
m (q)� x0�0

�
jq = 

�
= (1; ) �0

�
m ()� (1; )�0

�
; (15)

the existence of S implies the di¤erentiability of m () at 0, where m () � (1; )�0 is termed as the
"centered" regresson function in BM. If m() has a kink at 0, S does not exist and only S

�
 can be used.

10Here, "continuous" is understood as "left continuous" for !� and "right continuous" for !+ . This convention is applied in
the future discussions and will not be repeated again.
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In S��� of Assumption (x)(b),

S�� = f0

 
�E [x (m1(x; q)� x0�10) jq = 0�]
E [x (m1(x; q)� x0�20) jq = 0�]

!
= f0E

" 
�x (y � x0�10)
x (y � x0�20)

!����� q = 0�
#

= f0

 
�E

�
x
�
m1(x; q)� x0�0 � x0 �02

�
jq = 0�

�
E
�
x
�
m1(x; q)� x0�0 + x0 �02

�
jq = 0�

� !
=:

 
S��1
S��2

!
;

S+� = f0

 
�E [x (m2(x; q)� x0�10) jq = 0+]

E [x (m2(x; q)� x0�20) jq = 0+]

!
= f0E

" 
�x (y � x0�10)
x (y � x0�20)

!����� q = 0+

#

= f0

 
�E

�
x
�
m2(x; q)� x0�0 � x0 �02

�
jq = 0+

�
E
�
x
�
m2(x; q)� x0�0 + x0 �02

�
jq = 0+

� !
=:

 
S+�1
S+�2

!
:

(16)

In the simple example in Section 3, x = (1; q)0, so �� () 2 RV2 implies

E
��
m1(x; q)� x0�0

�
x1 ( < q � 0)

�
2 RV2 and � E

��
m2(x; q)� x0�0

�
x1 (0 < q � )

�
2 RV2 (17)

or E
��
m1(x; q)� x0�0

�
xjq = 0�

�
= E

��
m2(x; q)� x0�0

�
xjq = 0+

�
= 0. We do not impose such restric-

tions in the general case; otherwise, S�� and S
+
� can be simpli�ed to

S�� = S+� = f0

 
1
2E [xx

0jq = 0] �0
1
2E [xx

0jq = 0] �0

!
=
f0
2

 
1

1

!

 (D0�0) =: S� =

 
S�1

S�2

!

with S�1 = S�2 , and correspondingly, S
�
�� is simpli�ed to

S��� =

 
2�� S�

S� S��

!
with S� = S0� and S�� = diag

�
M0;M0

	
:

Of course, even if (17) does not hold, S�� can still be equal to S
+
� ; in this case,

E
��
m1(x; q)� x0�0

�
xjq = 0�

�
= E

��
m2(x; q)� x0�0

�
xjq = 0+

�
6= 0;

which is implied by the continuity of m(x; q) at 0. Now,

S� = f0E

" 
�x (m(x; q)� x0�10)
x (m(x; q)� x0�20)

!����� q = 0

#
= f0E

" 
�x (y � x0�10)
x (y � x0�20)

!����� q = 0

#
= f0

 
D0M

�1
0 N0 � E0

E0 �D0M
�1
0 N0

!
:

(18)

In Assumption (x)(c),

!�0 = E
�
z21ijqi = 0�

�
= V ar (z1ijqi = 0�) = E

h�
m1(x; q)� x0�0

�2
(x0�0)

2 jq = 0�
i
+ E

h
(x0�0)

2
"21jq = 0�

i
;

!+0 = E
�
z22ijqi = 0+

�
= V ar (z2ijqi = 0+) = E

h�
m2(x; q)� x0�0

�2
(x0�0)

2 jq = 0+
i
+ E

h
(x0�0)

2
"22jq = 0+

i
;

(19)

where the second equality is because �� () 2 RV2 implies E [z1ijqi = 0�] = 0 = E [z2ijqi = 0+]. Ifm(x; q)

is continuous at 0 and E
�
"21jx; q = 0�

�
= E

�
"22jx; q = 0+

�
, then !�0 = !+0 . In the simple example,

�� () 2 RV2 further implies

E
h�
m1(x; q)� x0�0

�2
(x0�0)

2
1( < q � 0)

i
2 RV3 and E

h�
m2(x; q)� x0�0

�2
(x0�0)

2
1 (0 < q � )

i
2 RV3;
(20)
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so

!�0 = E
h
(x0i�0)

2
"21ijqi = 0�

i
and !+0 = E

h
(x0i�0)

2
"22ijqi = 0+

i
; (21)

but such a simpli�cation cannot happen in general. In other words, the randomness in
�
m1(x; q)� x0�0

�
(x0�0) 1( <

q � 0) and �
�
m2(x; q)� x0�0

�
(x0�0) 1 (0 < q � ) cannot be neglected, which is very di¤erent from I(1)0

where the corresponding terms converge to the constants 1
2�� jvj in mean square (i.e., the L

2-norm). Any-

way, since "`i is not observable, we still need to estimate !
�
0 based on the general formulae even in the

simpli�ed case.

The positive-de�niteness of S��� in Assumption (x)(b) guarantees the local identi�cation of �0. The

following example shows that S��� > 0 imposes some restrictions on ��.

Example 3 Suppose x = (1; q)0, q � U [�0:5; 0:5], 0 = 0, and �0 = (�c0; �q0)
0. Then

S��� =

 
2�� S�

S� S��

!
=

0BBBBBB@
2��

�c0
2 0 �c0

2 0
�c0
2

0

1
2 � 1

8

� 1
8

1
24

0

�c0
2

0
0

1
2

1
8

1
8

1
24

1CCCCCCA > 0

implies �� > 2�
2
c0. Since S�� > 0 and �� > 0, the restriction comes from the appearance of S� . However,

S� =
f0
2

 
1

1

!

 (D0�0) in the current setup, and D0�0 6= 0 in DTR, so S� must appear.

If x = 1 and m(q) is di¤erentiable at q = 0 as in BY and BM, then

S�� =

 
2� S�

S� S��

!
=

0B@ �f0�0m0 (0) f0
2 �0

f0
2 �0

f0
2 �0 F0 0
f0
2 �0 0 1� F0

1CA = f0

0B@ ��0m0 (0) �0
2

�0
2

�0
2 F0=f0 0
�0
2 0 (1� F0) =f0

1CA > 0

implies �0m0 (0) < � f0�
2
0

4F0(1�F0)
�
� �f0�20

�
< 0 or � > f20 �

2
0

8F0(1�F0) , where F0 = P (q � 0), and (1� F0) =f0
is the reciprocal of the hazard function of q at 0. This is actually the assumption b > 0 in Theorem 2.1

of BM; the form of S�� (times 2) also appears in BM (p. 571). Note that m0 (0) 6= 0 as assumed in BY�s
(A2)(i) and BM�s (A2) implies � () 2 RV2.

Before stating the asymptotic distribution of b�, de�ne �� = 2�� � S��1M
�1
0 S��1 � S��2M

�1
0 S��2 , and

$� = f0!
�
0 .

Theorem 3 Under Assumption I(2),

n1=3 (b � 0) d�! !1=3� ('; �; 2) =: Z (2) ;

and

n1=3
�b�1 � �10� d�! �M�10

h
S��1Z (2)	 + S

+
�1

Z (2)�

i
;

n1=3
�b�2 � �20� d�! �M�10

h
S��2Z (2)	 + S

+
�2

Z (2)�

i
;

where ! = $�
�2�
, ' =

�+
��
, and � = $+

$�
=

!+0
!�0
.

25



If S�� = S+� = S� , !
�
0 = !+0 = !0 and �� = �+ = � =

S
2 , then � ('; �; 2) in Z (2) reduces to �1=2,

where �c is de�ned in Section 2.4. At the same time,

n1=3
�b� � �0� d�!

 
�M�10 S�1Z (2)

�M�10 S�2Z (2)

!
: (22)

This is actually Theorem 2 of Seo (2015) after some manipulations. The cube-root convergence rate ofb implies that  cannot be estimated precisely even as a sample mean, which is very di¤erent from what

happens in I(1). When x = (1; q)0, m(q) must be continuous but may have a kink at 0. If we �t a CTR as in

Hansen (2017), then b is pn-consistent, i.e., restrictions imposed in CTR help to improve the preciseness ofb. As Kim and Siegmund (1989) point out, the estimation of an abrupt change when only a gradual change

exists can exaggerate the magnitude of the possible change or introduce unwanted bias into an estimate of

its location.

Section 2 of BM considers the case where x = 1, "1 = "2 and m(q) is di¤erentiable at q = 0. In this case,

!+0 = !�0 = �20�
2 (0) =: !0 with �

2 () = E
�
"2jq = 

�
, S �S�S�1�� S� = f0

�
��0m0 (0)�

f0�
2
0

4F0(1�F0)

�
as

shown in Example 3, �M�10 S�1 = �
f0�0
2F0

and �M�10 S�2 = �
f0�0

2(1�F0) . In summary,

n1=3
�b� � �0� d�!

0B@ 1

� f0�0
2F0

� f0�0
2(1�F0)

1CA argmin
v

�q
f0�2 (0) �

2
0B(v)� v2

2 f0

�
��0m0 (0)�

f0�
2
0

4F0(1�F0)

��

=

0B@ 1

� f0�0
2F0

� f0�0
2(1�F0)

1CA argmin
v

np
f0�2 (0)B(v)� v2

2 f0

�
� jm0 (0)j �

f0j�0j
4F0(1�F0)

�o
;

which is exactly the same as that in Theorem 2.1 of BM, where ��0m0 (0) = j�0j = jm0 (0)j. Section 3
of BM also considers the case where q is the only regressor and a possibly nonlinear function of q, say

g` (q), is used in the conditional mean of y in each regime. In this case, z1 = (m(q)� g (q))�g (q) and
z2 = � (m(q)� g (q))�g (q), where �g (q) = g1 (q)� g2 (q). They assume �g (0) 6= 0, m(0) = g (0) and

m0(0) 6= g0 (0), which guarantees the model is a DTR, and � () 2 RV2 but � () =2 RV� for � > 2. Their
Theorem 3.1 can be treated as a special case of our Theorem 3 where S (�) is the second-order di¤erentiable,

and the regressors in each regime are completely di¤erent but all functions of q.

From (22), the randomness in b���0 is completely determined by that in b� 0 asymptotically; in other
words, there is perfect correlation between b� � �0 and b � 0 asymptotically, or the asymptotic distribution
of n1=3

�b� � �0� concentrates on a line through the origin. This is very di¤erent from case I(1) and I(1)0,

where the randomness in the former is independent of that in the latter. If 0 were known, b� (0) � �0 is

Op
�
n�1=2

�
; however, when 0 is unknown, it contaminates the estimation of � such that b���0 is Op �n�1=3�.

As a result, the randomness in b���0 = b� (b)��0 = �b� (b)� b� (0)�+�b� (0)� �0� is dominated by that
in b� (b)� b� (0). To get more intuitions, note that

n1=3
�b�1 (b)� b�1 (0)�

= n1=3
��

1
nX
0
�bX�b

��1 �
1
nX
0
�bY

�
�
�
1
nX
0
�0X�0

��1 �
1
nX
0
�0Y

��
t n1=3

�
E [xx01(q � b)]�1 E [xy1(q � b)]� E [xx01(q � 0)]

�1 E [xy1(q � 0)]
�

t n1=3
�
�f0M�10 D0M

�1
0 N0 + f0M

�1
0 E0

�
(b � 0)

= f0M
�1
0

�
E0 �D0M

�1
0 N0

�
n1=3 (b � 0) = �M�10 S�1n

1=3 (b � 0) ;
(23)
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where the �rst approximation is because 1nX
0
�bX�b = n�1=2Gn (xx01(q � b))+E [xx01(q � b)] = Op

�
n�1=2

�
+

E [xx01(q � b)] 11 and similarly 1
nX
0
�bY = Op

�
n�1=2

�
+ E [xy1(q � b)] so that the Op �n�1=2� part can be

neglected given that the pre-multiplying term is n1=3, the second approximation is from the calculus of ma-

trix derivative, and the last equality is from the alternative formula of S�1 in (18). Similar analyses apply

to b�2.
Finally, consider the LR-inference on . De�ne

LRn () =
n2=3 (Sn()� Sn (b))b�2=3 ;

where b�2 is a consistent estimator of �2 = $2
�

��
.

Corollary 2 Under Assumption I(2),

LRn (0)
d�! � ('; �; 2) ;

where � ('; �; 2) is de�ned in Proposition 2(ii) with ' and � de�ned in Theorem 3.

When ' = � = 1, � ('; �; 2) = �1=2 with �c de�ned in Section 2.4, which is essentially the asymptotic

distribution appearing in Corollary 3 of Seo (2015) where lnSn(�) rather than Sn(�) is used in LRn (). The
�1=2 distribution also appears in Theorem 2.2 of BM after some manipulations. BM further suggest in their

Theorem 2.3 an alternative LR statistic which has a larger ��(= 2��) to stabilize the inversion of LRn ().

To make the LR inference feasible, we need to estimate ', � and �2 which are functions of ��, S
�
�`
,

M0, M0 and $�. The latter four objects can be estimated by their sample analogs, i.e., S
�
�`

is estimated

based on (16), and $� is based on (19). Here, we provide more details on the estimation of �� because

the method here will be used in other cases. Although we can estimate �� based on (13), the estimator is

speci�c to II(2) and is not easy to extend to other scenarios. Alternatively, in I(�) with 1 < � � 2, suppose
� (jj) takes the form of jj�s power for simplicity; then by observing

E [zi1(0 � h < qi � 0)] t ��h
� and E [�zi1(0 < qi � 0 + h)] t �+h

�

for some bandwidth h, we can estimate �� by

b�� = n�1
Pn
i=1 bzi1(b � h < qi � b)

h�
and b�+ = �n�1

Pn
i=1 bzi1(b < qi � b + h)

h�:
; (24)

where bzi = x0ib� �yi � x0ib�� with b� = b�1� b�2 and b� = b�1+b�2
2 . When � = 1, b�� reduce to the kernel estimator

with the uniform boundary kernel as Section 3.4 of Yu et al. (2019). This estimator of �� can be used for

all other cases and will not be repeated in the future.

5.2 1 < � < 2

As indicated in the intuition of Section 3.3, we expect the convergence rate of b� to be min �n1=2; �n�; when
� (jj) takes the form of jj�s power,

min
�
n1=2; �n

�
=

(
n1=2;

n
1

2��1 ;

if 1 < � � 3
2 ;

if 32 < � < 2;

11Here, Gn (xx01(q � )) is the empirical process indexed by , and E [xx01(q � b)] := E [xx01(q � )] j=b .
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which is faster than the usual balancing rate n
�

2(2��1) . This rate can also be seen through a similar analysis

as in (23). When � < 3
2 , the convergence rate of

b� (b)� b� (0) is determined by b � 0 whose convergence

rate is faster than n1=2, so the asymptotic distribution of b� is completely determined by b� (0)� �0. When
� > 3

2 , the converse happens, and the asymptotic distribution of
b� is just a linear transformation of that of b

as indicated in (23). Only when � = 3
2 , both

b� (b)� b� (0) and b� (0)��0 will contribute to the asymptotic
distribution of b�.
We next specify the required assumptions.

Assumption I(�) [1 < � < 2]: same as Assumption I(2) except

(x) (a) �� () 2 RV�; (b) !� := E
h��x0i�0 �yi � x0i�0���2 jqi = �

i
is continuous at 0 and !

�
0 := !�0 > 0.

If we assume (20) but replace RV3 by RV2��1, then we can simplify !
�
0 to (21), but we will keep this general

form of !�0 here. Similarly, if RV2 is replaced by RV� in (17), S
�
� can be simpli�ed as there.

Before stating the asymptotic distribution of b�, de�ne �� = 2�� and $� = f0!
�
0 .

Theorem 4 Under Assumption I(�), 1 < � < 2,

�n (b � 0) d�! !
1

2��1 � ('; �;�) =: Z (�) ;

where ! = $�
�2�

=
f0!

�
0

4�2�
, ' =

�+
��
= �+

��
, and � = $+

$�
=

!+0
!�0
, when 1 < � < 1:5;

p
n
�b�1 � �10� d�! Z�1 ;

p
n
�b�2 � �20� d�! Z�2 ;

when 1:5 < � < 2;

�n

�b�1 � �10� d�! �M�10
h
S��1Z (�)	 + S

+
�1

Z (�)�

i
;

�n

�b�2 � �20� d�! �M�10
h
S��2Z (�)	 + S

+
�2

Z (�)�

i
;

and when � = 1:5,

p
n
�b�1 � �10� d�! Z�1 �M

�1
0

h
S��1Z (1:5)	 + S

+
�1

Z (1:5)�

i
;

p
n
�b�2 � �20� d�! Z�2 �M

�1
0

h
S��2Z (1:5)	 + S

+
�2Z (1:5)�

i
;

where Z (�) ; Z�1 and Z�2 are independent.

Comparing Theorems 2, 3 and 4, we can see that the asymptotic distributions of b take a uni�ed
form with the key di¤erence lying in the de�nitions of !, ' and �. In I(1)0, using the notations in

this subsection, we have �� = limn!1 2��= k�nk2, !�0 = limn!1 E
�
z21ijqi = 0�

�
= k�nk2 and !+0 =

limn!1 E
�
z22ijqi = 0+

�
= k�nk2, where note that �� = f0E [z1ijqi = 0�] and �+ = f0E [z2ijqi = 0+].

Dividing k�nk2 is to ensure �� and !�0 nondegenerate given that we assume k�nk ! 0 as n ! 0; apart

from this, the formulae in Theorems 2 and 4 can be uni�ed. Compared with Theorem 3, Z (�) in Theorem

4 replaces �� by 2�� because the cross terms are dominated as shown in Section 3.1. As expected, when

1 < � < 1:5, the asymptotic distribution of b� is not a¤ected by b and is exactly the same as in I(1) and I(1)0.
When 1:5 < � < 2, it is completely determined by b and takes the same form as in I(2). When � = 1:5,

it is the sum of both components. BM notice that BY made a mistake in claiming b� is pn-consistent (in
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their proof of Theorem 3.1) which is used to show that b� will not a¤ect the asymptotics of b. Actually, b� is
p
n-consistent when 1 < � � 1:5 and it will not a¤ect the asymptotics of b as long as � < 2.
Finally, consider the LR-inference on . De�ne

LRn () =

p
n�n (Sn()� Sn (b))b�2=(2��1) ;

where b�2 is a consistent estimator of �2 = $�
�

��
=
(f0!�0 )

�

2��
. Note that n2=3 � pn�n � n.

Corollary 3 Under Assumption I(�), 1 < � < 2,

LRn (0)
d�! � ('; �;�) ;

where � ('; �;�) is de�ned in Proposition 2(ii) with ' and � de�ned in Theorem 4.

The form and asymptotic distribution of the LR statistic can also be uni�ed for I(1)0 and I(�) with

1 < � � 2 with properly de�ned !, ' and �2.

6 Asymptotics in Continuous Threshold Regression

We will discuss the asymptotic theory in the following order: II(2), II(3), II(4), II(�) with 3 < � < 4, and

II(�) with 2 < � < 3. We �rst discuss II(2), II(3), II(4) to make them anchors of others (as I(1) and I(2) in

DTR), and discuss II(�) with 3 < � < 4 before II(�) with 2 < � < 3 because we will use some results of the

former in the latter.

In CTR, besides �� () 2 RV�, we must assume a key assumption throughout. This key assumption is
satis�ed in the simple example of Section 3. Speci�cally, we need to extend (17) to

E
��
m1(x; q)� x0�0

�
x1( < q � 0)

�
2 RV��1 and �E

��
m2(x; q)� x0�0

�
x1(0 < q � )

�
2 RV��1. (25)

Here, we implicitly assume these two objects are positive; otherwise, a negative sign is added given that

the range of regularly varying functions must be (0;1); the point is that only the rates of these two
objects shrinking to zero matter. Although it seems innocent to assume (25) given that �� () 2 RV�, i.e.,
E
��
m1(x; q)� x0�0

�
q�q01( < q � 0)

�
2 RV� and �E

��
m2(x; q)� x0�0

�
q�q01(0 < q � )

�
2 RV�, it

indeed excludes many cases when x includes nonconstant regressors besides q. When � = 2, this assumption

is trivial, but when � > 2, it indeed has some contents.

Example 4 Suppose �(m2(x; q)�x0�0) = g(x), x 2 R, in the neighborhood of q = 0 i.e., q is o¤setted; then

E [g(x)q1(0 < q � )] � � need not imply E [g(x)x1(0 < q � )] � ��1. To be concrete, let g(x) = x

and � = 3; E [g(x)q1(0 < q � )] � 3 implies E [xjq = ] � , but this need not imply E [g(x)xjq = ] =

E
�
x2jq = 

�
�  (which would imply E [g(x)x1(0 < q � )] � 2); e.g., if (x; q)0 � N

�
0;
�
�2x; �xq;�qx; �

2
q

��
with �qx 6= 0, then E [xjq = ] =

�qx
�2x
 �  but E

�
x2jq = 

�
=
�
�qx
�2x

�2
2 +

�
�2x �

�2qx
�2q

�
� 1.

Nevertheless, without this assumption, we can only analyze II(2) because as shown in Section 3, the model

in II(�) with 2 < � � 4 may be locally unidenti�ed given that
e�2+ jj� need not dominate the cross terme� jj. Here, note that e� jj would appear if (25) does not hold such that S�� 6= 0; to be concrete, from

29



the formulae of 	� (�; ) in Section 2.1, we have

S�� () =
d	�(�0;)

d� =

 
E
�
x
�
m1(x; q)� x0�0

�
1( < q � 0)

�
� 1

2E [xq�q01( < q � 0)]

�E
�
x
�
m1(x; q)� x0�0

�
1( < q � 0)

�
� 1

2E [xq�q01( < q � 0)]

!

=

 
E [x (y � x0�10) 1( < q � 0)]

E [�x (y � x0�20) 1( < q � 0)]

!
=:

 
S��1 ()

S��2 ()

!
;

S+� () =
d	+(�0;)

d� =

 
�E

�
x
�
m2(x; q)� x0�0

�
1(0 < q � )

�
+ 1

2E [xq�q01(0 < q � )]

E
�
x
�
m2(x; q)� x0�0

�
1(0 < q � )

�
+ 1

2E [xq�q01(0 < q � )]

!

= �
 

E [x (y � x0�10) 1(0 < q � )]

E [�x (y � x0�20) 1(0 < q � )]

!
=:

 
S+�1 ()

S+�2 ()

!
;

(26)

where the second terms of S�� () are de�nitely RV2, but the �rst terms may be only RV1 such that S
�
� 6= 0

if (25) is not imposed.

6.1 � = 2

This case is not discussed in the literature. First, we specify the required assumptions.

Assumption II(2): Assumption MA plus

(x) (a) �� () 2 RV2; (b) S��� > 0, where S� := 2��.

Assumption (x)(a) implies P
�
m1(x; 0) 6= (1; x0; 0)�0 6= m2(x; 0)

�
> 0. As to S��� > 0, the discussions in

Section 5.1 can still be applied here, but since x0�0 = q�q0, S� and S
�
� can be simpli�ed. For example, if

�� () is the left and right second-order di¤erentiable, then from (13),

S� = �f0
@E[x0�0(y�x0�0)jq=0�]

@ = �f0
@E
h
q�q0

�
e1i+q

�q0
2

�
jqi=0�

i
@ = �f0 @E[q�q0e1ijqi=0�]@

= �f0�q0E [e1ijqi = 0�] = �f0�q0E [m1 (x; q)� x0�10jqi = 0�] = 2��;

and similarly,

S+ = �f0�q0E [e2ijqi = 0+] = �f0�q0E [m2 (x; q)� x0�20jqi = 0+] = 2�+;

where f() is assumed to be di¤erentiable at 0; when �� () is even the second-order di¤erentiable, then

S = �f0�q0E [eijqi = 0] = �f0�q0E [m (x; q)� x0�`0jqi = 0] = 2�� = 2�+ =: 2�:

Similarly, we can simplify (16) as

S�� = f0

 
�E [(m1(x; q)� x0�10)xjq = 0�]
E [(m1(x; q)� x0�10)xjq = 0�]

!
= f0

 
�E [xe1ijq = 0�]
E [xe1ijq = 0�]

!

= f0

 
�E

��
m1(x; q)� x0�0

�
xjq = 0�

�
E
��
m1(x; q)� x0�0

�
xjq = 0�

� !
=:

 
S��1
S��2

!
;

S+� = f0

 
�E [(m2(x; q)� x0�20)xjq = 0+]

E [(m2(x; q)� x0�20)xjq = 0+]

!
= f0

 
�E [xe2ijq = 0+]

E [xe2ijq = 0+]

!

= f0

 
�E

��
m2(x; q)� x0�0

�
xjq = 0+

�
E
��
m2(x; q)� x0�0

�
xjq = 0+

� !
=:

 
S+�1
S+�2

!
:
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where note that S��2 = �S
�
�1
. In CS models, S� = 0 so that S

�
�� > 0 cannot hold, i.e., II(2) includes only

MS models. It is not hard to see S�� is also equal to 0 in CS models. Di¤erent from Assumption I(2)(x),

we do not need to de�ne !�0 since it is zero in CTR; !
�
0 represents the randomness in b, but we know from

Section 3 that this part of randomness is dominated by the randomness in b�.
Theorem 5 Under Assumption II(2),

p
n
�b� � �0� d�!

8><>:
�
S�� � S��

�
S�

��1
S��

��1
W , if W 2 R1,�

S�� � S+�
�
S+

��1
S+�

��1
W , if W 2 R1,

and

p
n (b � 0) d�!

8>>>>>>><>>>>>>>:

�
�
S�

��1
S��

�
S�� � S��

�
S�

��1
S��

��1
W , if W 2 R1 \R2,

�
�
S+

��1
S+�

�
S�� � S��

�
S�

��1
S��

��1
W , if W 2 R1 \R2,

�
�
S�

��1
S��

�
S�� � S+�

�
S+

��1
S+�

��1
W , if W 2 R1 \R3,

�
�
S+

��1
S+�

�
S�� � S+�

�
S+

��1
S+�

��1
W , if W 2 R1 \R3,

where W is de�ned in (9),

R1 =

�
W j � 1

2W
0
�
S�� � S��

�
S�

��1
S��

��1
W � �1

2W
0
�
S�� � S+�

�
S+

��1
S+�

��1
W

�
;

R2 =

�
W jW 0

�
S�� � S��

�
S�

��1
S��

��1 h
S��

�
S�

��1
S�� � S

+
�

�
S+

��1
S+�

i �
S�� � S��

�
S�

��1
S��

��1
W � 0

�
;

R3 =

�
W jW 0

�
S�� � S+�

�
S+

��1
S+�

��1 h
S��

�
S�

��1
S�� � S

+
�

�
S+

��1
S+�

i �
S�� � S+�

�
S+

��1
S+�

��1
W � 0

�
;

and R1, R2 and R3 are their negations.

In some special cases, the asymptotic distributions of b� and b can be simpli�ed. For example, if S�� =
S+� = S� , then R1 = R2 = R3 = R2d+2 when �� � �+ and ; otherwise. As a result,

p
n
�b� � �0� d�!

8><>:
�
S�� � S�

�
S�

��1
S�

��1
W , if �� � �+;�

S�� � S�
�
S+

��1
S�

��1
W , if �� > �+;

and

p
n (b � 0) d�!

8><>: �
�
S�

��1
S�

�
S�� � S�

�
S�

��1
S�

��1
W , if �� � �+;

�
�
S+

��1
S�

�
S�� � S�

�
S+

��1
S�

��1
W , if �� > �+:

When �� = �+ = � which implies S� = S+ = 2� =: S , the formulae can be further simpli�ed and are

the same as the case where S (�) is the second-order di¤erentiable:

p
n
�b� � �0� d�!

�
S�� � S�S�

S

��1
W =: Z� ;

p
n (b � 0) d�! �S�

S

�
S�� � S�S�

S

��1
W = �S�

S
Z� ;

(27)

i.e., b� is asymptotically normal and b � 0 is a linear transformation of b� � �0 asymptotically.
Compared with I(2), !�0 (and $�) in Theorem 3 equals zero, so n1=3

�b� � �0� = op(1); in other words,
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b� has a faster convergence rate than n1=3. From Theorem 5, the convergence rate of b� is actually n1=2.
Also, di¤erent from the asymptotic distribution in Theorem 1, b and b� are not asymptotically independent;
actually, even b�1 and b�2 are not asymptotically independent. The asymptotic distribution of b is completely
determined by that of b�, so the asymptotic distribution of pn�b� � �0� concentrates on a hyperplane with
dimension 2d + 2. This asymptotic distribution is also di¤erent from that in CT and Hansen (2017) where

although b and b� are asymptotically jointly normal and not asymptotically independent, the asymptotic
distribution of b is not fully determined by b�.12 Another way to see why the randomness related to b
disappears is to check the localized objective function in the direction of ,

Pn
i=1 z1i1

�
0 +

vp
n
< qi � 0

�
+Pn

i=1 z2i1
�
0 < qi � 0 +

vp
n

�
, whose variance goes to zero in CTR, i.e., the O

�
n�1=2

�
neighborhood is

too small to accumulate randomness for .

Finally, consider the LR-inference on . De�ne

LRn () = 2n (Sn()� Sn (b)) ;
which takes the same form as the LR statistic in the regular model.

Corollary 4 Under Assumption II(2),

LRn (0)
d�! max

(
W 0S�1�� S

�
�S

�
�S

�1
��W

S� � S��S
�1
�� S

�
�

;
W 0S�1�� S

+
�S

+
�S

�1
��W

S+ � S+�S
�1
�� S

+
�

)
:

Note that

W 0S�1�� S
�
�S

�
�S

�1
��W

S��S��S
�1
�� S

�
�

=W 0S�1�� S
�
�

�
S� � S��S

�1
�� S

�
�

��1
S��S

�1
��W

= Z 0diag
n
(�0)

1=2
;
�
�0
�1=2o

S�1�� S
�
�

�
S� � S��S

�1
�� S

�
�

��1
S��S

�1
�� diag

n
(�0)

1=2
;
�
�0
�1=2o

Z =: Z 0
�Z;

where Z =diag
n
(�0)

�1=2
;
�
�0
��1=2o

W � N (0; I2d+2). Since 
� � 0 and has rank 1, we can decompose

it as H�0��H� for an orthogonal matrix H� and a diagonal matrix �� =diagf��; 0; � � � ; 0g. As a result,
W 0S�1�� S

�
�S

�
�S

�1
��W

S��S��S
�1
�� S

�
�

= ��z�21 follows a scaled �21 distribution, where
�
z�1 ; � � � ; z�2d+2

�0
= H�Z � N (0; I2d+2).

In summary,

LRn (0)
d�! max

�
��z�21 ; �+z+21

	
=: max

�
����21 ; �+�+21

	
;

where �+ and z+j are parallelly de�ned as �
� and z�j , and E

h�
z�1 ; � � � ; z�2d+2

�0 �
z+1 ; � � � ; z+2d+2

�i
= E [H�ZZ 0H+0] =

H�H+0 whose (1; 1) element need not be 1, i.e., the two �21 distributions need not be the same. If

S+� = S�� = S� , then

LRn (0)
d�!

W 0S�1�� S�S�S
�1
��W

2min f��; �+g � S�S�1�� S�
=
�
�� _ �+

�
�21;

where note that ��21 = �+21 =: �21, and �
� is the nonzero eigenvalue of 
 divided by

�
2�� � S�S�1�� S�

�
,

where 
 =diag
n
(�0)

1=2
;
�
�0
�1=2o

S�1�� S�S�S
�1
�� diag

n
(�0)

1=2
;
�
�0
�1=2o

. When �� = �+ = �, �� =

�+ =: �, and LRn (0)
d�! ��21 which is close to the asymptotic distribution of the standard LR test.

12Note that in CT and Hansen (2017), the regressors are
�
1; x; (q � )	 ; (q � )�

�
, and � =

�
�1c + �1q; �

0
x; �1q ; �2q

�0 2
Rd+2 since d restrictions �x0 = 0 and �c0 + �q00 = 0 are imposed on the model.
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6.2 � = 3

First, we specify the required assumptions.

Assumption II(3): same as Assumption II(2) except

(iv) (iv) of Assumption MA plus (c) sup2N E
h���yi � x0i�0���2+� jqi = 

i
<1 for some � > 0.

(x) (a) �� () 2 RV3; (b) (25) holds with � = 3; (c) !� := E
h�
y � x0�0

�2 jq = �
i
is continuous at 0

and !�0 := !�0 > 0.

Assumption (iv)(c) is assumed due to a similar reason as in Assumption I(2) but here x0i�0
�
yi � x0i�0

�
is

replaced by
�
yi � x0i�0

�
as x0i�0 = qi�10. Actually, Assumption (iv)(c) is implied by Assumption (iv)(b), but

we state it here for comparison with Assumption I(2). Correspondingly, !� in Assumption I(2) takes the

new form. Parallel to (19),

!�0 = E
h�
y � x0�0

�2 jq = 0�
i
= E

h�
m1 (x; q)� x0�0

�2 jq = 0�
i
+ E

�
"21jq = 0�

�
;

!+0 = E
h�
y � x0�0

�2 jq = 0+
i
= E

h�
m2 (x; q)� x0�0

�2 jq = 0+
i
+ E

�
"22jq = 0+

�
:

Actually, !�0 are still from the variances of z1i and z2i in the neighborhood of q = 0 but caution is taken

since
�
y � x0�0

�
(x0�0) =

�
y � x0�0

�
(q�q0) now. In the simple example of Section 3, �� () 2 RV3 implies

E
h�
m1(xi; qi)� x0i�0

�2
1( < qi � 0)

i
2 RV3 and E

h�
m2(xi; qi)� x0i�0

�2
1(0 < qi � )

i
2 RV3; (28)

so

!�0 = E
�
"21jq = 0�

�
and !+0 = E

�
"22jq = 0+

�
:

In general, (28) does not hold and the simpli�cation will not happen. HLS is a special case of II(3) with

�� () taking the special form (4), and !�0 = E
�
"2jq = 0

�
, where the simpli�cation of !�0 can be seen from

the facts that

E
h�
m1 (x; q)� x0�0

�2 jq = 0�
i
= E

��
q�q0
2

�2
jq = 0�

�
= 0

and similarly E
h�
m2 (x; q)� x0�0

�2 jq = 0+
i
= 0, and "1 = "2 = " is assumed. Another form of !�0 is

!+0 = E
h
(y � x0�10 + x0�0=2)

2 jq = 0�
i
= E

�
e21jq = 0�

�
;

!+0 = E
h
(y � x0�20 � x0�0=2)

2 jq = 0�
i
= E

�
e22jq = 0+

�
:

Before stating the asymptotic distribution of b�, de�ne �� = 2�� and $� = f0�
2
q0!

�
0

3 .

Theorem 6 Under Assumption II(3),

n1=3 (b � 0) d�! [!� ('; �; 1)]
1=3

=: Z (3) ;

and

n1=2
�b�1 � �10� d�! Z�1 ;

n1=2
�b�2 � �20� d�! Z�2 ;
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where ! = $�
�2�

=
f0�

2
q0!

�
0

12�2�
, ' =

�+
��
= �+

��
and � = $+

$�
=

!+0
!�0
, and Z (3), Z�1 and Z�2 are independent.

As noticed in footnote 2 of HLS, the asymptotic distribution in Gonzalo and Wolf (2005)�s Theorem A.1

and Remark A.1 are not properly developed because the Hessian matrix of S (�) is degenerate. Interestingly,

the constraints �x0 = 0 and �c0 + �q00 = 0 imposed in CTR help to improve the convergence rates of b; a
similar phenomenon appears in I(2). Although b is n1=3-consistent in both BM and HLS, the reasons for the

cube-root rate are di¤erent because BM is a special I(2) and HLS is a special II(3) and the balancings for the

convergence rate of b are di¤erent. Also, b and b� are perfectly correlated asymptotically in BM, while they
are asymptotically independent in HLS; b� even has di¤erent convergence rates and asymptotic distributions
in BM and HLS. Note that we do not need the model to be CS to achieve the cube-root rate. Note also that

the intuition in (23) can still be applied here. But now n1=3
�b�1 (b)� b� (0)� t �M�10 S�1n

1=3 (b � 0) = 0
under Assumption (x)(b), so b�1 (b)� b� (0) = op

�
n�1=3

�
. Actually, Theorem 6 shows that b�1 (b)� b� (0) =

op
�
n�1=2

�
because b�1 � �10 and b�1 (0)� �10 have the same asymptotic distribution. The same arguments

apply to b�2.
Finally, consider the LR-inference on . De�ne

LRn () =
n (Sn()� Sn (b))b�2 ;

where b�2 is a consistent estimator of �2 = $�
��

=
f0�

2
q0!

�
0

6��
which reduces to !�0 in HLS.

Corollary 5 Under Assumption II(3),

LRn (0)
d�! � ('; �; 1) ;

where the distribution of � ('; �; 1) is given in Proposition 2(iii) with ' and � de�ned in Theorem 6.

6.3 � = 4

This case is not discussed in the literature. First, we specify the required assumptions.

Assumption II(4): same as Assumption II(3) except

(vii) (a) f() is di¤erentiable at 0, and 0 < f � f0 � f <1; (b) E [xjq = ] is di¤erentiable at 0.

(x) (a) �� () 2 RV4; (b) (25) holds with � = 4; (c) !� := E
h�
y � x0�0

�2 jq = �
i
is continuous at 0

and !�0 := !�0 > 0; (d)

S� : =

0B@ 2��
1
2S
�0
�1

2
1
2S
�0
�2

2

1
2S
�
�1

2 S�1�1 0
1
2S
�
�2

2 0 S�2�2

1CA =:

 
2��

1
2S
0
�2

1
2S�2 S��

!
> 0;

S+ : =

0B@ 2�+
1
2S

+0
�1

2
1
2S

+0
�2

2

1
2S

+
�1

2 S�1�1 0
1
2S

+
�2

2 0 S�2�2

1CA =:

 
2�+

1
2S
0
�2

1
2S�2 S��

!
> 0;

where S��12 = S��22
=

�q0f0
2 E [xjq = 0] =: S�`2 , and S�2 =

 
1

1

!

 S�`2 .
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Only Assumption (x)(d) needs some explanations. S� is parallel to S��� only with 2 replacing . From
Assumption (x)(b), only the second terms of (26) are involved in calculating S��`2 . Take S

+
� as an example.

We need to calculate

@2E [xq�q01(0 < q � )]

@2
= �q0

@2
R 
0
E [xjq] qf(q)dq
@2

= �q0
@E [xjq = ] f()

@
= �q0f0E [xjq = 0] ;

where the last equality uses Assumption (vii). Parallel to Example 3, the following example shows that

S� > 0 imposes some restrictions on ��.

Example 5 When x = (1; q)0, q � U [�0:5; 0:5], 0 = 0, and �0 = (�c0; �q0)
0. Then

S� =

0BBBBBB@
2��

�q0
2 0

�q0
2 0

�q0
2

0

1
2 � 1

8

� 1
8

1
24

0

�q0
2

0
0

1
2

1
8

1
8

1
24

1CCCCCCA > 0

implies �� > 2�
2
q0. Note that since �q0 6= 0, S�`2 =

�q0f0
2 E [xjq = 0] 6= 0, which implies the restriction on

��.

Before stating the asymptotic distribution of b�, de�ne �� = 2�� � S2�`

�
M�10 +M

�1
0

�
S�`2=4 and

$� =
f0�

2
q0!

�
0

3 , which play similar roles and take similar forms as �� and $� in I(2).

Theorem 7 Under Assumption II(4),

n1=5 (b � 0) d�! !1=5� ('; �; 4=3)
1=3

=: Z (4)

and 0@ n2=5
�b�1 � �10�

n2=5
�b�2 � �20�

1A d�!
 
� 1
2M

�1
0 S�`2Z (4)

2

� 1
2M

�1
0 S�`2Z (4)

2

!
;

where ! = $�
�2�
, ' =

�+
��

and � = $+

$�
=

!+0
!�0
.

When �� = �+, �� = �+ so ' = 1; if !�0 = !+0 , then � = 1; and � ('; �; 4=3) will reduces to

� (1; 1; 4=3). As in I(2), the asymptotic distribution of b� is completely determined by b; actually, the
asymptotic distribution of b� concentrates on a quadratic line through the origin. The intuition in (23) can
still be applied here, but now n1=5

�b�1 (b)� b� (0)� t �M�10 S�1n
1=5 (b � 0) = 0. To get a nondegenerate

distribution for b�, we need to expand b� (b) around 0 to the second order. It turns out that
n2=5

�b�1 (b)� b� (0)� t �12M�10 S�`2n
2=5 (b � 0)2 ; (29)

which results in the asymptotic distribution in Theorem 7. The same arguments apply to b�2.
Finally, consider the LR-inference on . De�ne

LRn () =
n4=5 (Sn()� Sn (b))b�6=5 ;

where b�2 is a consistent estimator of �2 = $
4=3
�
��

.
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Corollary 6 Under Assumption II(4),

LRn (0)
d�! � ('; �; 4=3) ;

where � ('; �; 4=3) is de�ned in Proposition 2(ii) with ' and � de�ned in Theorem 7.

6.4 3 < � < 4

From the intuition of Section 3.3, we expect the convergence rate of b� to be min �n1=2; �2n�; when � (jj)
takes the form of jj�s power,

min
�
n1=2; �n

�
=

(
n1=2;

n
2

2��3 ;

if 3 < � � 7
2 ;

if 72 < � < 4;

which is faster than the usual balancing rate n
�

2(2��3) . This rate can also be seen through a similar analysis

as in (29). When � < 7
2 , the convergence rate of

b� (b)�b� (0) is determined by (b � 0)2 whose convergence
rate is faster than n1=2, so the asymptotic distribution of b� is completely determined by b� (0)� �0. When
� > 7

2 , the converse happens, and the asymptotic distribution of
b� is just a quadratic transformation of

that of b as indicated in (29). Only when � = 7
2 , both

b� (b)� b� (0) and b� (0)� �0 will contribute to the

asymptotic distribution of b�.
We next specify the required assumptions.

Assumption II(�) [3 < � < 4]: same as Assumption II(4) except

(x) (a) �� () 2 RV�; (b) (25) holds; (c) !� := E
h�
y � x0�0

�2 jq = �
i
is continuous at 0 and !

�
0 :=

!�0 > 0.

As in (28), we can assume

E
h�
m1(x; q)� x0�0

�2
1( < q � 0)

i
2 RV2��3 and E

h�
m2(x; q)� x0�0

�2
1 (0 < q � )

i
2 RV2��3

(30)

to simplify !�0 , but we will keep this general form of !�0 here.

Before stating the asymptotic distribution of b�, de�ne �� = 2�� and $� = f0�
2
q0!

�
0

3 , which are the same

as in II(3).

Theorem 8 Under Assumption II(�), 3 < � < 4,

�n (b � 0) d�! !
1

2��3 � ('; �;�=3)
1=3

=: Z (�) ;

where ! = $�
4�2�

=
f0�

2
q0!

�
0

12�2�
, ' =

�+
��
= �+

��
and � = $+

$�
=

!+0
!�0
, when 3 < � < 3:5,

p
n
�b�1 � �10� d�! Z�1 ;

p
n
�b�2 � �20� d�! Z�2 ;
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when 3:5 < � < 4,

�2n

�b�1 � �10� d�! �1
2
M�10 S�`2Z (�)

2
;

�2n

�b�2 � �20� d�! �1
2
M
�1
0 S�`2Z (�)

2
;

and when � = 3:5,

p
n
�b�1 � �10� d�! Z�1 �

1

2
M�10 S�`2Z (3:5)

2
;

p
n
�b�2 � �20� d�! Z�2 �

1

2
M
�1
0 S�`2Z (3:5)

2
;

where Z�1 ; Z�2 and Z (�) are independent.

Comparing Theorems 6, 7 and 8, we can see that the asymptotic distributions of b take a uni�ed form
except in II(4) where �� includes some extra term. These extra cross terms are dominated in II(�) with

3 � � < 4 as shown in Section 3.1. As expected, when 3 < � < 3:5, the asymptotic distribution of b� is not
a¤ected by b and is exactly the same as in case II(3), which is similar to b� in case I(�) with 1 < � < 1:5.

When 3:5 < � < 4, it is completely determined by b and takes the same form as in II(4), which is similar tob� in case I(�) with 1:5 < � < 2, but takes a quadratic instead of linear form of Z (�). When � = 3:5, it is

the sum of both components, which is similar to b� in I(1:5).
Finally, consider the LR-inference on . De�ne

LRn () =

p
n�3n (Sn()� Sn (b))b� 6

2��3
;

where b�2 is a consistent estimator of �2 = $
�=3
�
2��

. Note that
p
n�3n � n.

Corollary 7 Under Assumption II(�), 3 < � < 4,

LRn (0)
d�! � ('; �;�=3) ;

where � ('; �;�=3) is de�ned in Proposition 2(ii) with ' and � de�ned in Theorem 8.

The form of LRn () and the asymptotic distribution LRn (0) take uni�ed forms when 3 � � � 4.

6.5 2 < � < 3

From the analyses in previous sections, we can see that II(�) with 3 � � � 4 are parallel to I(�) with

1 � � � 2 in some sense, but II(�) with 2 � � < 3 are new. From the intuitions in Section 3.3 and in

I(�) with 1 < � < 2, we expect the convergence rate of b to be min �n1=2; %n�, where %n is determined fromp
n�3n�

�
��1n

�
= 1 and is the convergence rate of b (�0)� 0; when � (jj) takes the form of jj�s power,

min
�
n1=2; %n

�
=

(
n1=2;

n
1

2��3 ;

if 2 < � � 5
2 ;

if 52 < � < 3;

which is faster than the usual balancing rate n
1
� .

We now specify the required assumptions.
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Assumption II(�) [2 < � < 3]: same as Assumption II(3) except

(iv) (iv) of Assumption MA plus (c) sup2N E
h���y � x0�0���2+� jq = 

i
< 1 for some � > 0 when 2:5 <

� < 3 and sup2N E
h�y � x0�0�x2+� jq = 

i
<1 for some � > 0 when � = 2:5.

(x) (a) �� () 2 RV�; (b) (25) holds, and limjvj#0
S�� (v)

jvj��1L(v) =  �; (c) when 2:5 � � < 3, !� :=

E
h�
y � x0�0

�2 jq = �
i
is continuous at 0 and !

�
0 := !�0 > 0, and when � = 2:5, 


�
 := E

h�
y � x0�0

�2
xx0jq = �

i
and �� := E

h�
y � x0�0

�2
xjq = �

i
are continuous at 0 and 


�
0 := 


�
0
> 0.

In Assumption (iv)(c), sup
2N

E
h�y � x0�0�x2+� jq = 

i
<1 implies sup

2N
E
h���y � x0�0���2+� jq = 

i
<1 be-

cause 1 is the �rst element of x, i.e., we need a stronger assumption when � = 2:5; sup
2N

E
h�y � x0�0�x2+� jq = 

i
<

1 is also stronger than sup
2N

E
h��x0i�0 �yi � x0i�0���2+� jqi = 

i
<1 in Assumption I(2). Similarly in Assump-

tion (x)(c), we need a stronger assumption for � = 2:5 by noticing that !�0 is the (1; 1) element of 
�0 .

Parallel to $� =
f0�

2
q0!

�
0

3 , de�ne


� = f0

�
0 and �� = �

f0�q0
2

��0 :

As mentioned in Section 3.3, we need to characterize the e¤ect of b� on b to derive the asymptotic distribution
of b; this is why we impose Assumption (x)(b) on S�� (). First of all, (25) implies S�� () 2 RV��1, so the
limit in Assumption (x)(b) is meaningful; the only thing that deserves caution is the same L (�) as in � (jj)
appearing in the normalization rate, but when � (jj) takes the form of jj�s power, L (�) � 1 and such an
assumption is innocent. From the formulae of S�� () in (26), only the �rst terms contribute to the limit

 � jvj
��1 but these terms in S��1 () and S

�
�2
() are exactly the same with opposite signs; in other words,

the last (d+ 1) components of  � are the negative of its �rst (d+ 1) components.

Example 6 Take  +v
��1 as an example, and let L (�) = 1, x = (1; q)0, 0 = 0, �q0 > 0, and m2(q)�x0�0 =

Aq��2. Because �� () 2 RV�, we have

�E
��
m2(q)� x0�0

�
q�q01(0 < q � v)

�
t �A�q0f0

�
v� = �+v

�;

for v around 0, which implies

�E
��
m2(q)� x0�0

�
1(0 < q � v)

�
t � Af0

�� 1v
��1 =

�+
�q0

�

�� 1v
��1;

�E
��
m2(q)� x0�0

�
q1(0 < q � v)

�
t

�+
�q0

v�;

so we have

 + =

0BBBB@
�+
�q0

�
��1
0

� �+
�q0

�
��1
0

1CCCCA ;

where the �rst element of  + is positive and the third is negative.
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To connect  � with S
�
� in Theorem 5, note that when � = 2, S�� () 2 RV1 and limjvj#0 L (v) = 1, so

S�� (v)

L (v)
t S�� (v) t S��v;

i.e.,  � = �S�� and  + = S+� .

We next state the asymptotic distributions of b�` and b.
Theorem 9 Under Assumption II(�), 2 < � < 3,

p
n
�b�1 � �10� d�! Z�1 ;

p
n
�b�2 � �20� d�! Z�2 ;

when 2 < � < 2:5;

p
n (b � 0) d�! argmin

v

nh
Z 0� � jvj

��1
+ �� jvj�

i
1(v � 0) +

h
Z 0� +v

��1 + �+v
�
i
1(v � 0)

o
=

8>><>>:
��1
�

 0�
��
Z� ;

���1
�

 0+
�+
Z� ;

0;

if Z� 2 R1,
if Z� 2 R2,
if Z� 2 R3,

where

R1 =

�
Z� j 0�Z� < 0,  0+Z� < 0 and

�� 0�Z��� � ����+ �1� 1
� �� 0+Z��� OR  0�Z� < 0 and  

0
+Z� � 0

�
;

R2 =

�
Z� j 0�Z� < 0,  0+Z� < 0 and

�� 0�Z��� < ����+ �1� 1
� �� 0+Z��� OR  0�Z� � 0 and  0+Z� < 0

�
;

R3 = R2d+2n (R1 [R2) =
�
Z� j 0�Z� � 0 and  0+Z� � 0

	
;

when 2:5 < � < 3;

%n (b � 0) d�! argmin
v

(
�� jvj� + ��2 (jvj) ;
�+v

� + �+2 (v) ;

if v � 0;
if v > 0;

= !
1

2��3 � ('; �;�=3)
1=3

;

where ! = $�
4�2�

=
f0�

2
q0!

�
0

12�2�
, ' = �+

��
and � = !+0

!�0
, and when � = 2:5;

p
n (b � 0) d�! argmin

v

nh
Z 0� � jvj

3=2
+
�
Z�1 � Z�2

�0
��1 (jvj) + �� jvj

5=2
+ ��2 (jvj)

i
1(v � 0)

+
h
Z 0� +v

3=2 �
�
Z�1 � Z�2

�0
�+1 (v) + �+v

5=2 + �+2 (v)
i
1(v � 0)

o
;

where
�
��1 (v)

0
;��2 (v)

�0
is a (d+ 2)-dimensional zero-mean Gaussian process on [0;1) with the covariance

kernel  

� (v1 ^ v2) �� (v1 ^ v2)2

�0� (v1 ^ v2)
2

$� (v1 ^ v2)3

!
;

and Z�1 ; Z�2 ;
�
��1 (�)

0
;��2 (�)

�0
and

�
�+1 (�)

0
;�+2 (�)

�0
are independent.
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When 2 < � < 2:5, if  + =  = � � as in II(2) with S+� = S�� , then

p
n (b � 0) d�!

(
���1

�
 0

��
Z� ;

���1
�

 0

�+
Z� ;

if  0Z� � 0;
if  0Z� < 0;

= ��� 1
�

"�
 0Z�

�
�

��
+

�
 0Z�

�
	

�+

#
;

which is a mixture of two half normals; if �+ = �� =: �, this asymptotic distribution further reduces to

���1
�

 0Z�
� , which is close to the asymptotic distribution of b in (27). Inspecting Theorems 6, 7, 8 and 9, we

can see that the asymptotic distributions of b in II(�) with 2:5 < � � 4 can be uni�ed with only di¤erence
lying on the values of �, ', � and !; except II(4), even the formulae of '; � and ! are the same.

Comparing II(�), 2 < � < 2:5, with II(2) where b is also fully determined by b� asymptotically, we can see
that the asymptotic distribution of b in the former may have a point mass at zero because P (Z� 2 R3) � 0
while is continuous in the former. This di¤erence is not because the relationship between b and b� has
dramatically changed, but because the interaction between b� and b in II(2) makes b��s asymptotic distribution
not be Z� anymore. In other words, b indeed has some e¤ect on b� in II(2) but has no e¤ect in II(�) with
2 < � < 2:5. Similar phenomena happen in I(2) and II(4) where b� is fully determined by b asymptotically butb� indeed has some e¤ects on b by observing that b �b�� and b (�0) have di¤erent asymptotic distributions.
In II(�) with 2 < � < 2:5, the randomness of b comes completely from b� asymptotically, which is similar tob� in II(�) with 3:5 < � < 4; in II(�) with 2:5 < � < 3, the asymptotic distribution of b takes the same form as

in II(3), which is similar to b� in II(�) with 3 < � < 3:5. However, di¤erent from II(3:5) where the asymptotic

randomness of b� is a linear combination of those in II(�) with 3 < � < 3:5 and II(�) with 3:5 < � < 4, the

randomness of b in II(2:5) has some extra elements beyond those in II(�) with 2 < � < 2:5 and II(�) with

2:5 < � < 3. These extra elements come from
�
Z�1 � Z�2

�0
��1 (jvj) 1(v � 0)�

�
Z�1 � Z�2

�0
�+1 (v) 1(v � 0),

especially, the ��1 (jvj) components.
Recall that b� 0 = �b �b��� b (�0)�+(b (�0)� 0). When 2 < � < 2:5, the �rst term dominates, and

the asymptotic distribution of
p
n (b � 0) indicates the e¤ect of estimating �0 on b; that e¤ect depends on

�. When 2:5 < � < 3, the second term dominates and the asymptotic distribution of
p
n (b � 0) is as if �0

were known. When � = 2:5, both terms contribute. Since

p
n (b (�0)� 0) d�! argmin

v

nh
�� jvj5=2 + ��2 (jvj)

i
1(v � 0) +

h
�+v

5=2 + �+2 (v)
i
1(v > 0)

o
;

we have

p
n
�b �b��� b (�0)� d�! argmin

v

nh
Z 0� � jvj

3=2
+
�
Z�1 � Z�2

�0
��1 (jvj) + �� jvj

5=2
+ ��2 (jvj)

i
1(v � 0)

+
h
Z 0� +v

3=2 �
�
Z�1 � Z�2

�0
�+1 (v) + �+v

5=2 + �+2 (v)
i
1(v � 0)

o
� argmin

v

nh
�� jvj5=2 + ��2 (jvj)

i
1(v � 0) +

�
�+v

5=2 + �+2 (v)
�
1(v > 0)

o
;

that is, the e¤ect of estimating �0 on b indeed depends on � and the form of the e¤ect when � = 2:5 is

di¤erent from that when 2 < � < 2:5.

Finally, consider the LR-inference on . De�ne

LRn () =

8>>>><>>>>:
n�=2(Sn()�Sn(b))

L
�

1

n1=2

� , if 2 < � < 2:5,

n5=4 (Sn()� Sn (b)) , if � = 2:5,p
n%3n(Sn()�Sn(b))b� 6

2��3
, if 2:5 < � < 3,
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where b�2 is a consistent estimator of �2 = $
�=3
�
2��

, and
p
n%3n � n. Note that the normalization rate of

Sn() � Sn (b) is faster than n for any 2 < � < 3, which is di¤erent from all other cases in both DTR and

CTR.

Corollary 8 Under Assumption II(�), when 2 < � < 2:5,

LRn (0)
d�! �

h
Z 0� � jZ j

��1
+ �� jZ j�

i
1(Z � 0)�

h
Z 0� +Z

��1
 + �+Z

�


i
1(Z � 0)

= (��1)��1
��

(�Z0� �)
�

���1�
1(Z� 2 R1) + (��1)��1

��
(�Z0� +)

�

���1+

1(Z� 2 R2);

where R1 and R2 are de�ned in Theorem 9, when 2:5 < � < 3,

LRn (0)
d�! � ('; �;�=3) ;

where � ('; �;�=3) is de�ned in Proposition 2(ii) with ' and � de�ned in Theorem 9, and when � = 2:5,

LRn (0)
d�! �

h
Z 0� � jZ j

3=2
+
�
Z�1 � Z�2

�0
��1 (jZ j) + �� jZ j

5=2
+ ��2 (jZ j)

i
1(Z � 0)

�
h
Z 0� +Z

3=2
 �

�
Z�1 � Z�2

�0
�+1 (Z) + �+Z

5=2
 + �+2 (Z)

i
1(Z � 0);

where Z follows the asymptotic distribution of
p
n (b � 0) in Theorem 9 when 2 < � � 2:5.

When 2 < � < 2:5, the asymptotic distribution of LRn (0) has a point mass at 0. When 2:5 < � < 3, the

form of LRn () and the asymptotic distribution of LRn (0) take the uni�ed form in II(�) with 3 � � � 4. To
make the LR inference feasible, we need to estimate the nuisance parameters. Given the discussions at the end

of Section 5.1, only  � deserve further attention. Suppose L (v) � 1 for simplicity; then S�� (v) t  � jvj
��1

for v in a neighborhood of zero. As a result,  � can be similarly estimated as b�� in (24), only replacing bzi
by

0@ xi

�
yi � x0ib�1�

�xi
�
yi � x0ib�2�

1A and h� by h��1.

7 Asymptotics Without Point Identi�cation

When  cannot be point identi�ed, it can be either partial identi�ed or unidenti�ed. An example of the

former is the multiple-regime TR considered in GP (see also Bai (1997a) in the structural change context

with x = 1). As noted in the Introduction, the minimizer can only be achieved among the original threshold

points. If at two or more threshold points, the limit objective function S () has the same value, then  is

only partially identi�ed. An example of the later is �0 = 0 which implies S (�10; �20; ) = S (�10; �20; 0)

for any  2 � regardless of the model is CS or MS; in this case, the identi�ed set is � and the model is
unidenti�ed.

Assumption III: Assumptions MA(i) and (iv)(a) plus

(v-vi) � > 0, where �12 := Cov

  
x�1y

vec
�
xx�1

� !�x0�2y; vec �xx�2�0�
!
for 1; 2 2 ��o, ��o is

the �-enlargement of �o with �o de�ned in (viii) below, and vec (�) is the vec operator.
(vii) 0 < f � f() � f <1 for  2 �.
(viii) argmin S () = �o, a set.

Note that because S () is continuous under Assumption (vii), �o is a compact set.
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Theorem 10 Under Assumption III, b is consistent to �o in the sense that
lim
n!1

P (b 2 ��o) = 1
for any � > 0. (i) If �` 6= �`0 on �o or �` = �`0 but �10 6= �20,

b d�! arg max
2�o

� () =: Z ;

where

� () =
�
2�01B

xy
1 � �

0
1Bxx1 �1

�
+
�
2�02B

xy
2 � �

0
2Bxx2 �2

�
;�

Bxy01 ; vec
�
Bxx1

�0�0
is a (d+ 1) (d+ 2)-dimensional zero-mean Gaussian process with the covariance kernel

equal to �12 , B
xy
2 = B

xy
11 � B

xy
1 , and vec

�
Bxx2

�
= vec (Bxx11)� vec

�
Bxx1

�
. (ii) If �` = �`0 and �10 = �20

on �o, b d�! arg max
2�o

e� () =: eZ ;
where e� () = Bxe01 M

�1
 Bxe1 + Bxe02 M

�1
 Bxe2 ;

Bxe1 is a (d+ 1) zero-mean Gaussian process with the covariance kernel equal to E
h
xx0�1^2e

2
i
, and Bxe2 =

Bxe11 � Bxe1 . (iii) If �` 6= �`0 on �o,

lim
n!1

P
�b�1 � b1

�
= P

�
Z 2 �b1o

�
;

lim
n!1

P
�b�2 � b2

�
= P

�
Z 2 �b2o

�
;

if �` = �`0 but �10 6= �20 on �o,

p
n
�b�1 � �`0� d�!M�1Z B

xe
1Z ;

p
n
�b�2 � �`0� d�!M

�1
ZB

xe
2Z ;

and if �` = �`0 and �10 = �20 on �o,

p
n
�b�1 � �`0� d�!M�1eZ Bxe1eZ ;

p
n
�b�2 � �`0� d�!M

�1eZBxe2eZ ;
where �b1o =

�
 2 �oj�1 � b1

	
, and �b2o =

�
 2 �oj�2 � b2

	
.

From Theorem 10, b is not consistent to a point but converges to a random variable on �o. This

partial identi�ability of  is di¤erent from that in the usual partial identi�cation literature, e.g., the moment

inequalities, where the estimator is not random on a set in �nite samples and that random set converges to

a �xed set in limit. On the contrary, b is random on any set in �nite samples and only the randomness on a

speci�c set �o will not disappear even letting n go to in�nity. When �` = �`0 and �10 = �20 on �o, � ()

will degenerate to a random variable which does not depend on , i.e., � () is not useful in deriving the

asymptotic distribution of b. Speci�cally,
� () =

�
2�0`0B

xy
1 � �

0
`0Bxx1 �`0

�
+
�
2�0`0B

xy
2 � �

0
`0Bxx2 �`0

�
= 2�0`0B

xy
11 � �

0
`0Bxx21�`0
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Figure 4: Approximation of m(q) = q2 by �11(q � ) + �21(q > ) and the Limit Objective Function S� ()

does not involve , where we use �`0 to denote the common �10 and �20. In Theorem 10(ii), we re�ne the

asymptotic distribution of b, where note that �o must be � as mentioned at the beginning of this section,
and e = y � x0�`0.
When �` 6= �`0 on �o, the distribution of b� is completely determined by the distribution of b. There

may be a point mass in the asymptotic distribution of b�. For example, if �` = a for  2 �so with �so being a
subset of �o and P (Z 2 �so) > 0, then P

�b�` = a
�
! P (Z 2 �so) > 0. If �` = �`0 for all  2 �o, then b�`

converges to a point mass at �`0 and we need to re�ne the distribution of b�. It turns out that the asymptotic
distribution of b�` is a mixture normal with the mixing probability depending on �10 = �20 or not.

In Bai (1997a), �o is a set of two points, and � is di¤erent at these two  values, so Theorem 10(i) can

be applied. Specially, b converges to each of the two points with probability 1=2 as shown in his Proposition
3, and b� should converge to each of its two di¤erent possible values with probability 1=2. Actually, Bai
(1997a) re�nes this result in this special scenario, e.g., b converges to these two points at rate of n, and it is
easy to see that b� converges to its two possible values at rate of pn. Yu and Phillips (2019) consider a case
where the model is CS but �0 = 0; then by Theorem 10(iii),

b d�! argmax
2�

n
Bx"1 0M�1 Bx"1 + Bx"02 M

�1
 Bx"2

o
; (31)

where Bxe1 = Bx"1 in CS models, Bx"1 is a (d+ 1)-dimensional Gaussian process with the covariance kernel
equal to E

h
xx0�1^2"

2
i
, and Bx"2 = Bx"11�Bx"1 . This asymptotic distribution is exactly the same as that in

Yu and Phillips (2019). Our conclusion is that we can re�ne our results in Theorem 10 when the model is

known to have some structures. In practice, we should explore these structures on a case-by-case basis.

The following example shows that partial identi�cation can happen even if m(q) does not take the piece-

wise constant form as in Bai (1997a). This example is inspired by the example in Remark 1 of BM.
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Example 7 Suppose y = jqj2 + ", where q � U [�0:5; 0:5], " � N (0; 1), and x = 1.13 From the proof of

Theorem 10, we have

argmin

S () = argmax


S� () := argmax



�
�21F () + �

2
2F ()

	
= argmax



(�
1 + 83

24 + 12

�2
( + 0:5) +

�
1� 83
12� 24

�2
(0:5� )

)
= f1o; 2og ;

where F () =  + 0:5 is the cdf of q, and F () = 1 � F () = 0:5 �  is the survival function. From the

right panel of Figure 4, 1o = �
p
2=4 t �0:35 and 2o = �1o. As a result, �11o = �22o =

3+
p
2

24 t 0:184
and �21o = �12o =

3+
p
2

24 t 0:066, which are shown in the left panel of Figure 4. To derive the asymptotic
distribution of b = 1o and b = 2o, we apply Theorem 10(i). Note that � (1o)�� (2o) follows a mean-zero
normal distribution, so P (� (1o)� � (2o) > 0) = 1

2 ; as a result, b converges in distribution to a random
variable with equal mass at 1o and 2o.

14 Interestingly, these probabilities are the same as in Proposition 3

of Bai (1997a). Given the asymptotic distribution of b, it is not hard to see that b�` converges in distribution
to a random variable with equal mass at �`1o and �`2o .

The next example shows that unidenti�cation can happen even if the model is MS. This example is

inspired by Example 1 of Hidalgo (1995).

Example 8 Suppose y = x+ x2 + ", where " � N (0; 1), x = x � N (0; 1), q � U [0; 1], and x, q and " are

independent of each other. Then it is not hard to see �1 = �2 = 1 for any  because x is symmetrically

distributed. As a result,

0 = argmax


�
�21E

�
x2�

�
+ �22E

�
x2>

�	
= argmax



�
E
�
x2�

�
+ E

�
x2>

�	
= argmax



�
E
�
x2
�	
= �:

We need to apply Theorem 10(ii) to derive the asymptotic distribution of b:
b d�! arg max

2�o

(�
Bxe1
�2

M
+

�
Bxe2
�2

M

)
= argmax

2�o

(
16

� Bxe1
4
p


�2
+ 16

� Bxe2
4
p
1� 

�2)
= argmax

2�o

�
�21 + �

2
2

	
;

where the covariance kernel of Bxe1 is E
h
xx0�1^2e

2
i
= E

h
x2�1^2 (y � x�`0)

2
i
= 16 (1 ^ 2), M = ,

M = 1� , and �21 =
�
Bxe1
4
p


�2
and �22 =

�
Bxe2

4
p
1�

�2
are two chi-square processes. If the model is CS, i.e.,

y = x+ ", then Bxe` = Bx"` as in (31) and E
h
xx0�1^2"

2
i
= 1 ^ 2.

Finally, consider the LR-inference on . De�ne

LRn () =

(
2
p
n (Sn()� Sn (b)) ;

2n (Sn()� Sn (b)) ; if �` 6= �`0 on �o or �` = �`0 but �10 6= �20;

if �` = �`0 and �10 = �20 on �o.

Note that the normalization rate depends on whether �` = �`0 and �10 = �20 on �o.

13Actually, we can show that as long as the power of jqj in m(q) is positive, S() has two minimizers and the arguments
below apply.
14Note that this does not mean limn!1 P (b = 1o) = 1=2 = limn!1 P (b = 2o). Also, when there are more than two

maximizers of S� (), the asymptotic distribution of b need not put equal mass on each maximizer.
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Corollary 9 Under Assumption III, if �` 6= �`0 on �o or �` = �`0 but �10 6= �20,

LRn (0)
d�! max

2�o
� ()� � (0) ;

and if �` = �`0 and �10 = �20 on �o,

LRn (0)
d�! max

2�o
e� ()� e� (0)

where � () and e� () are de�ned in Theorem 10.

In Example 7, max2�o � ()� � (0) is the max of two correlated zero-mean normal random variables

minus one of them, and in Example 8, max2�o e� ()� e� (0) is the maximum of e� (), which is the sum of

two chi-square processes, minus the value of e� () at the hypothetical 0.
The CI by inverting LRn () will cover each 0 in �o with the prespeci�ed level, but may not cover �o

with that level. Anyway, the critical value depends on �o; however, if we know �o, then we do not need

a CI for the point in �o anymore. In practice, we can choose a set �n that includes �o almost surely in

determining the critical value based on Corollary 9. Such a critical value would be conservative but avoids

the precise knowledge on �o. For example, in Bai (1997a), if there are three threshold points (i.e., four

regimes) in the original model, and we suspect �o includes two of them but are not sure which two, then we

can replace �o by a three-points set (which needs to be estimated) to obtain a conservative critical value. Of

course, the most conservative critical value is achieved by replacing � for �o, which is also the appropriate

critical value when �` = �`0 and �10 = �20 on �o.

8 Discussions

In this section, we discuss some extensions of our asymptotic theory and also some unsolved problems in

this paper.

First, there seems a gap between the asymptotic theory of DTR and CTR. For example, the range of � in

DTR is [1; 2] while in CTR is [2; 4]. From the intuitions in Section 3, we can see this is because x0�0 = q�q0

in CTR where the power of q is 1. If we replace q by q� , 0 < � < 1, when we can transfer smoothly from

DTR to CTR. Now, in Proposition 1, �00E [xx0jq = 0] �0 = 0 if and only if �x0 = 0 and �c0 + ��q00 = 0 (or

�c0 = 0 when 0 = 0). Because such a regressor seems rare in practice, we will not study this setup in this

paper.

Second, in Section 2.3, we assume the rates of �� () shrinking to zero are the same; what will happen

if these two rates are di¤erent? Actually, by a similar argument as in Theorem 3.2 of YZ, the convergence

rate of b is determined by the neighborhood with less identi�cation information for . Speci�cally, suppose
in Sections 3.2 and 3.3 the convergence rate of b determined by �� (�) (instead of � (�)) is ��n and by �+ (�)
os �+n , then the ultimate convergence rate of b is �n := ��n ^ �+n . If �n = �+n , then in all theorems the

information in the left neighborhood of 0 can be neglected because b cannot fall in the left neighborhood
of 0 asymptotically, and vice versa. To be concrete, suppose �� = 1, �+ = 1:5 and L� (�) = 1 in DTR;

then �n = n ^
p
n =

p
n. We now need to revise Theorem 4 as

p
n (b � 0) d�! argmaxv�0

�
��+v� +

p
$+B2(v)

	
=: Z (1:5) ;

p
n
�b�1 � �10� d�! Z�1 �M

�1
0 S+�1Z (1:5) ;p

n
�b�2 � �20� d�! Z�2 �M

�1
0 S+�2Z (1:5) :

45



Third, when the joint asymptotic distribution of b� and b is degenerate, we can combine them in an

appropriate way to develop a nondegenerate asymptotic distribution. For example, in I(�) with 1:5 < � � 2,
combine b�` and b as

�n

h�b�1 � �10�+M�10 S��1 (b � 0)� +M�10 S+�1 (b � 0)+i ;
�n

h�b�2 � �20�+M�10 S��2 (b � 0)� +M�10 S+�2 (b � 0)+i ;
in II(�) with 3:5 < � � 4, combine b�` and b as

�2n

��b�1 � �10�+ 12M�10 S�`2 (b � 0)2� ;
�2n

��b�2 � �20�+ 12M�10 S�`2 (b � 0)2� ;
in II(2), combine b� and b as
p
n
h
(b � 0) + ��S���1 S��1R1\R2

+
�
S+

��1
S+�1R1\R2

+
�
S�

��1
S��1R1\R3

+
�
S+

��1
S+�1R1\R3

��b� � �0�i ;
where the subscript of the indicator function signi�es the area of diag

�
M0;M0

	p
n
�b� � �0� staying; in

II(�) with 2 < � < 2:5, combine b� and b as
p
n

�
(b � 0) + ���� 1�

 0�
��
1R1

+
�� 1
�

 0+
�+
1R2

��b� � �0�� ;
where the subscript of the indicator function signi�es the area of

p
n
�b� � �0� staying. Because we conduct

inference on  based on the LR statistic which is nondegenerate, the developments of such re�nements seem

unnecessary for our purpose.

Fourth, as mentioned in the Introduction, YZ is closely related to this paper but f () there can converge

to zero or diverge to in�nity as  converges to 0. Combing YZ and this paper would be an interesting

exercise, but it seems reasonable to assume f () to be �nite in a neighborhood of 0 in practice.

Fifth, we assume �0 shrinks to zero in I(1)0 to obtain accessible asymptotic distributions for b and the
LR statistic. In all other cases of both DTR and CTR, we can also assume shrinking threshold e¤ects, but

it seems unnecessary because the asymptotic distributions in all these cases involve only Gaussian processes

and can be simulated at least in principle.

Sixth, the techniques used in the paper can be extended to study misspeci�cation in quantile threshold

regression. If the model is CS, b based on any quantile index should converge to the same value, so it is a
sign of misspeci�cation if quantile threshold regression based on di¤erent quantile indices generates di¤erent

threshold estimates; see Galvao et al (2011) for some evidences in threshold quantile autoregressive models.

Seventh, as mentioned in the Introduction, the TAR model is proposed initially to approximate more

general time series, so it is desirable to extend the results in this paper to time series. By extending the

techniques of Hansen (2000), we expect the results in this paper still hold for stationary ergodic time series.

But we will not investigate this extension in this paper because our proofs are already quite complicated;

adding time dependency to the DGP will dramatically lengthen the proofs without essentially changing the

main results.

Eighth, when � (�) is known, we can conduct LR inference on  as detailed in the main text, but if � (�)
is unknown, then �n is unknown and it is hard to formulate the LR statistic because the normalization rate
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�n and normalization constant bb are hard to determine. In other words, we must have some a priori (at least
quantitative) knowledge on the behavior of m(x; q) around q = 0 to apply the LR inference in this paper.

For example, if it is believed that we are using TR to approximate some phenomena involving discontinuity,

then the LR inference in Section 4.2 is appropriate. Generally speaking, a challenging problem is how to

conduct uniform inference on  without any knowledge on � (�).
BY (p. 940) point out that the bootstrap is not valid, while BM show that the subsampling still works

in I(2). HLS unify the LR inference on  in CS I(1)0 and CS II(3) by the grid bootstrap. However, the

grid bootstrap implicitly assumes the model is CS. For example, conditional on fxigni=1, the grid bootstrap
generates the bootstrap samples fy�i g

n
i=1 by

y�i =

(
x0i
b�1 + be1i�i;

x0i
b�2 + be2i�i; if qi � b;

if qi > b;
where be`i = yi�x0ib�`, and f�igni=1 are i.i.d. zero mean random variables with unit variance and �nite fourth

moments. Obviously, in the bootstrap world, the conditional mean of y�i is linear in xi in each regime; in

other words, the model is CS and only I(1)0 and II(3) can happen. As shown in Section 4.2, ' is generally

not equal to 1 in MS I(1)0, but it is equal to 1 in CS I(1)0; furthermore, the normalization constant �2 should

be E
h�
�0nxi

�2
e21ijqi = 0�

i
=E
h�
�0nxi

�2 jqi = 0

i
in CS I(1)0, so we need change to this formula of �2 in the

grid bootstrap, where note that the error variances in the bootstrap world are be2`i t e2`i in each regime, which

is the reason of "2`i being replaced by e
2
`i. Using this �

2, the asymptotic bootstrap distribution is � (1; �; 1)

with a correct � but a wrong '. In other words, the asymptotic bootstrap distribution does not match the

original asymptotic distribution of the LR statistic, so the grid bootstrap is not consistent in MS I(1)0. In

MS II(3), ' = �+=�� 6= 1 in general, and � = E
�
e22jq = 0+

�
=E
�
e21jq = 0�

�
= !+0 =!

�
0 can be consistently

estimated by
n�1

Pn
i=1(x

0
i
b�)2be22K+

h (qi�b)
n�1

Pn
i=1(x0ib�)2be21K�

h (qi�b) by extending Proposition 3 of HLS, where K�h (�) = h�1K�(�=h) for

some bandwidth h and boundary kernel functions K� (�). By setting �2 = !�0 = E
�
e21jq = 0�

�
, which can

be consistently estimated by
n�1

Pn
i=1(x

0
i
b�)2be22K�

h (qi�b)
n�1

Pn
i=1(x0ib�)2Kh(qi�b) as shown in Proposition 3 of HLS, as in CS II(3), we

have the asymptotic bootstrap distribution as � (1; �; 1), so it is still that ' is wrong, where Kh(�) is similarly
de�ned as K�h (�). In summary, HLS�s grid bootstrap procedure has the asymptotic bootstrap distribution
� (1; �; 1), so is not valid in both MS I(1)0 and MS II(3).

9 Numerical Examples

In this section, we consider some concrete DGPs to illustrate the asymptotic distributions of b. For simplicity,
we normalize x0�0 = 0 and set q � U [�0:5; 0:5], " � N(0; 1) independent of q, and 0 = 0. Also, due to

the symmetricity in the speci�cation of �10 vs. �20 and m1(q) vs. m2(q), �� = �+ =: � and all asymptotic

distributions are symmetric about zero. In DTR, we consider I(1), I(1.5), I(2) and I(3), and in CTR, we

consider II(2), II(2.5), II(3) and II(4).

9.1 DTR

Suppose x = 1 to further simplify the discussion. Let �10 = 0:5 and �20 = �0:5, which implies �0 = 1,

m1(q) = a+ b jqj��1 and m2(q) = �a� bq��1
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with a � 0, b > 0, and � > 1. Now, �10 = 0:5 and �20 = �0:5 implies b = (0:5� a)�2��1, and

�� () = a jj+ b

�
jj� :

m(q) and �� () are shown in the �rst and second rows of Figure 5. In I(1), set � = 2, a = 0:25 and b = 1;

in I(1.5), set � = 1:5, a = 0 and b = 0:75
p
2; in I(2), set � = 2, a = 0 and b = 2; in I(3), set � = 3, a = 0

and b = 6. In the asymptotic distribution of I(1), z1 = 0:25 + "1 and z2 = 0:25 � "2 with "1 and "2 being

i.i.d. copies of ". From Appendix D of Yu (2012), we can derive the distribution of Z (1), which is shown

in the (3; 1) panel of Figure 5. In I(1.5), Z (1:5) =
p
!� (1; 1; 1:5) with ! = $�

(2��)
2 =

1
2 . Because there is

no closed-form density for � (1; 1; 1:5), we simulate it; the resulting density of Z (1:5) is shown in the (3; 2)

panel of Figure 5. In I(2), ' = � = 1, and ! = $�
�2�

= 1 from Example 3, so Z (2) = �1=2 = (1=2)
�2=3

�1.

Dykstra and Carolan (1999) suggest the approximation N(0; (0:52)2) for �1. Such an approximation turns

out to be fairly accurate, as evidenced by the results of Groeneboom and Wellner (2001, Table 2). The

density of (1=2)�2=3 N(0; (0:52)2) is shown in the (3; 3) panel of Figure 5. Comparing the densities of b in
I(1), I(1.5) and I(2), we can see that the asymptotic density at zero gets smoother as � gets larger.

In Section 3, we show that 0 may be locally unidenti�ed in I(3) because the cross term
e� jj may not

be dominated by
e�2 + jj3. To show this is indeed the case in our example, we scrutinize S (�) � S (�0).

First,

	� (�; ) =

0@ �E
h�
6q2 � �10+�1

2

�
(�10 � �1) 1( < q � 0)

i
E
h�
6q2 � �10+�2

2

�
(�10 � �2) 1( < q � 0)

i
� 2 jj3

1A =

 
�23e�1 + �10+�1

2 e�1
23e�2 + e�2

2 
�
1� e�2�

!
;

	+ (�; ) =

0@ E
h�
�6q2 � �20+�1

2

�
(�20 � �1) 1(0 < q � )

i
� 23

�E
h�
�6q2 � �20+�2

2

�
(�20 � �2) 1(0 < q � )

i 1A =

 
23e�1 + e�1

2 
�
1 + e�1�

�23e�2 � �20+�2
2 e�2

!
;

which implies

S�� = S+� =

 
1=2

1=2

!
=: S� :

Second,

� (�) =

0@ E
h�
6q2 � �10+�1

2

�
(�10 � �1) 1(q � 0)

i
E
h�
�6q2 � �20+�2

2

�
(�20 � �2) 1(q > 0)

i 1A =

 
1
4
e�21

1
4
e�22
!
:

So locally,

S (�)� S (�0) t � (�1) + � (�2) + e�0S� + �� () = 1
4

�e�21 + e�22 + 2e�1 + 2e�2 + 8 jj3� =: S (�)� S (�0) ;
whose minimum with  �xed is achieved at e�1 = e�2 = � with the minimum equal to

S ()� S (0) := �
1

2
2 + 2 jj3 < 0;

i.e., 0 is not the minimizer of S (). The cross terms e�1 and e�2 play a key role to make this happen.
Including higher order terms in, we have

S (�)� S (�0) = S (�)� S (�0) + 2 jj3 e�1 + 12e�21 � 2 jj3 e�2 � 12e�22;
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Figure 5: m(q), �� () and LSE Asymptotic Distributions in DTR

whose minimum with  �xed is achieved at e�1 = �+4jj3
1+2 and e�2 = ��4jj3

1�2 with the minimum equal to

S ()� S (0) = �
1

4

�
 + 4 jj3

�2
1 + 2

� 1
4

�
 � 4 jj3

�2
1� 2 + 2 jj3 :

Both S ()� S (0) and S ()� S (0) are shown in the (3; 4) panel of Figure 5. From Figure 5, we can see

S ()�S (0) approximates S ()�S (0) very well, and 0 is not the local minimizer but the local maximizer
of S ()� S (0); both S ()� S (0) and S ()� S (0) have two global minimizers at �1=6 t �0:167 and
�
�p
3� 1

�
=4 t �0:183, respectively. From Example 7, b converges in distribution to a random variable

with equal mass at �
�p
3� 1

�
=4. This setup also shows that monotonicity of m(q) does not guarantee  to

be point identi�ed as hinted in Remark 1 of BM, and combined with the setup in I(2), shows that a strictly

increasing transformation of m(q) need not imply the same 0 as claimed on page 551 of BM.

9.2 CTR

Suppose x = (1; q)
0 and let �10 =

�
0; 12
�0
and �20 =

�
0;� 1

2

�
, which implies �0 = (0; 1) and x0�0 = q. In

II(3), set

m1(q) = (q + a)
2 � a2 � bq4 and m2 (q) = (q � a)2 � a2 � bq4

with a = 1=3 and b = 10=3, where m01 (0) = 2=3 6= 1=2 and m02 (0) = �2=3 6= �1=2; this setup indicates that
II(3) does not require the model to be CS. Now,

�� () =
jj3 (8� 9 jj+ 20 jj3)

36
;
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Figure 6: m(q), �� () and LSE Asymptotic Distributions in CTR

$ =
f0�

2
q0E["

2jq=0�]
3 = 1

3 , and � =
2
9 (di¤erent from

1
6f0�

2
q0 =

1
6 �the � in HLS), which implies ' = � = 1

and ! = $
4�2

= 27
16 . For other � values, set

m1(q) = a� b1 jqj��2 � b2q4 and m2(q) = a� b1q��2 � b2q4

with a � 0 and b1 > 0. Now,
�� () = �

a

2
jj2 + b1

�
jj� + b2

6
jj6 :

In II(2), set � = 4, a = � 1
24 , and b1 = 1, b2 = 0. This setup indicates that II(2) does not require

m1 (0) 6= m2 (0) as in I(1). The asymptotic distribution of b is
�S�
S

�
S�� �

S�S�
S

��1
W;

where S� =
�
1
24 ; 0;�

1
24 ; 0

�
, S = 1

24 , M0 =

 
1=2 �1=8
�1=8 1=24

!
, M0 =

 
1=2 1=8

1=8 1=24

!
, and

�0 = E

" 
1

q

!
(1; q)

�
"� 1

24
� q2 � 1

2
q

�2
1(q � 0)

#
=M0 +

 
1=5760 �1=23040
�1=23040 1=60480

!
;

�0 = E

" 
1

q

!
(1; q)

�
"� 1

24
� q2 + 1

2
q

�2
1(q > 0)

#
=M0 +

 
1=5760 1=23040

1=23040 1=60480

!
:
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Note that there is an extra terms besides M0 and M0 in �0 and �0 due to misspeci�cation. In II(2.5), set

� = 2:5, a = 0, b1 = 15
p
2

112 , and b2 =
20
7 . In the asymptotic distribution of b,


� = f0E
�
"2xx0jq = 0�

�
=

 
1 0

0 0

!
, �� = �

f0�q0
2

E
�
"2xjq = 0�

�
=

 
� 1
2

0

!
and $ =

1

3
:

From the form of 
� and ��,
�
��1 (v)

0
;��2 (v)

�0
degenerates to a two-dimensional Brownian motion on

[0;1). From Example 6, � =
b1f0�q0

� = b1
� , and  + =  =

0BBBB@
�
�q0

�
��1
0

� �
�q0

�
��1
0

1CCCCA =

0BBB@
b1
��1
0

� b1
��1
0

1CCCA = � �.

Combining the form of  and the degeneration of
�
��1 (v)

0
;��2 (v)

�0
, we can see that only the �rst component

of Z�1 and Z�2 contributes to the asymptotic distribution of b. Similarly as in II(2), there is an extra term
besides M0 and M0 in �0 and �0. Because there is no closed-form density for this asymptotic distribution,

we simulate it. In II(4), set � = 4, a = 0, b1 = 3, and b2 = �10; then S�`2 =
1
2 (1; 0)

0, � = b1
� = 3

4 , and

$ = 1
3 , so � = 2� � S2�`

�
M�10 +M

�1
0

�
S�`2=4 =

1
2 , which implies ' = � = 1 and ! = $

�2 =
4
3 . As in

Figure 5, we show m(q) in the �rst row, �� () in the second row, and the asymptotic density of b in the
third row of Figure 6.

Before discussing the asymptotic density of b, �rst check some of its quantitative properties. When
2 � � < 2:5, the asymptotic distribution is normal and has a closed-form density.15 When 2:5 < � � 4,

P (Z (�) � x) = P
�
!

1
2��3 � ('; �;�=3)

1=3 � x
�
= P

�
� ('; �;�=3) � x3=!

3
2��3

�
:= F�=3

�
x3=!

3
2��3 ;'; �

�
;

so the density of Z (�) at x is f�=3

�
x3

!
3

2��3
;'; �

�
3x2

!
3

2��3
, where f�=3 (�;'; �) is the density of � ('; �;�=3).

In other words, Z (�) should be bimodal and has a density zero at 0, which contrasts the usual asymptotic

density which is unimoal and the mode is at zero. Note that 5=6 < �=3 � 4=3, so the density of � ('; �;�=3)
should have a cusp at 0 from Figure 5, but the density of Z (�) is zero at 0. The graphs in the third row of

Figure 6 satisfy these properties, where Z (3) has a closed-form density but Z (4) does not so we simulate

it. From Figure 6, we can also see that II(2:5) is a turning point from a unimodal asymptotic distribution

to a bimodal asymptotic distribution; when � > 2:5, the asymptotic distribution is not only bimodal, but

the density at 0 is zero.

10 Conclusion

In this paper, we develop the asymptotic theory for the least squares estimator in threshold regression under

misspeci�cation. It turns out that this asymptotic distribution depends on the �tted model being DTR

or CTR and also on the rate of the limit objective function shrinking to zero in the direction of threshold

parameter. Our asymptotic theory includes many theories developed in the literature as special cases;

actually, only three special cases are discussed until now. Besides the point identi�ed model, we also discuss

the partial identi�ed and fully unidenti�ed models. For inference on the threshold point, we focus on the LR

statistic whose asymptotic null distribution is derived regardless of the model is point identi�ed or not and

15When 2 < � < 2:5, the asymptotic distribution of b is ���1
�

 0Z�
�

which is a zero-mean normal as in II(2) so is not shown
in Figure 6.
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is DTR or CTR. Although our asymptotic theory is thorough in the sense that all cases are discussed when

we know which case we are in, there is an important unsolved problem �how to conduct uniform inference

on the threshold point without knowing the form of misspeci�cation. Recently, Yu (2020) tries to do this

work.

References

Angrist, J., V. Chernozhukov and I. Fernández-Val., 2006, Quantile Regression under Misspeci�cation, with

an Application to the U.S. Wage Structure, Econometrica, 74, 539-563.

Bai, J., 1997a, Estimating Multiple Breaks One At a Time, Econometric Theory, 13, 315-352.

Bai, J., 1997b, Estimation of a Change Point in Multiple Regression Models, Review of Economics and

Statistics, 79, 551-563.

Bai, J., H. Chen, T.T.-L. Chong and S.X. Wang, 2008, Generic Consistency of the Break-Point Estimators

under Speci�cation Errors in a Multiple-Break Model, Econometrics Journal, 11, 287-307.

Banerjee, M. and I.W. McKeague, 2007, Con�dence Sets for Split Points in Decision Trees, Annals of

Statistics, 35, 543-574.

Breiman, L., J.H. Friedman, R.A. Olshen and C.J. Stone, 1984, Classi�cation and Regression Trees, Belmont,

CA: Wadsworth.

Bühlmann, P. and B. Yu, 2002, Analyzing Bagging, Annals of Statistics, 30, 927-961.

Card, D., D. Lee, P. Pei and W. Weber, 2015, Inference on Causal E¤ects in a Generalized Regression Kind

Design, Econometrica, 83, 2453-2483.

Chan, K.S., 1993, Consistency and Limiting Distribution of the Least Squares Estimator of a Threshold

Autoregressive Model, Annals of Statistics, 21, 520-533.

Chan, K.S. and R.S. Tsay, 1998, Limiting Properties of the Least Squares Estimator of a Continuous Thresh-

old Autoregressive Model, Biometrika, 85, 413-426.

Chong, T.T.-L., 1995, Partial Parameter Consistency in a Misspeci�ed Structural Change Model, Economics

Letters, 49, 351�357.

Chong, T.T.-L., 2003, Generic Consistency of the Break-Point Estimator under Speci�cation Errors, Econo-

metrics Journal, 6, 167-192.

Dykstra, R. and C. Carolan, 1999, The Distribution of the Argmax of Two-Sided Brownian Motion with

Quadratic Drift, Journal of Statistical Computation and Simulation, 63, 47-58.

Efron, B. and T.J. Hastie, 2016, Computer Age Statistical Inference: Algorithms, Evidence, and Data Science,

New York: Cambridge University Press.

Fan, J., and W.-Y. Zhang, 2008, Statistical Methods with Varying Coe¢ cient Models, Statistics and Its

Interface, 1, 179-195.

Feder, P.I., 1975a, On Asymptotic Distribution Theory in Segmented Regression Problems - Identi�ed Case,

Annals of Statistics, 3, 49-83.

52



Feder, P.I., 1975b, The Log Likelihood Ratio in Segmented Regression, Annals of Statistics, 3, 84-97.

Friedman, J.H., 1991, Multivariate Adaptive Regression Splines (with discussion), Annals of Statistics, 19,

1-141.

Galvao, A.F., G. Montes-Rojas and J. Olmo, 2011, Threshold Quantile Autoregressive Models, Journal of

Time Series Analysis, 32, 253-267.

Gonzalo, J. and J.-Y. Pitarakis, 2002, Estimation and Model Selection Based Inference in Single and Multiple

Threshold Models, Journal of Econometrics, 110, 319-352.

Gonzalo, J. and M. Wolf, 2005, Subsampling Inference in Threshold Autoregressive Models, Journal of

Econometrics, 127, 201-224.

Groeneboom, P., 1989, Brownian Motion with a Parabolic Drift and Airy Functions, Probability Theory and

Related Fields, 81, 79-109.

Groeneboom, P. and J.A. Wellner, 2001, Computing Cherno¤�s Distribution, Journal of Computational and

Graphical Statistics, 10, 388-400.

Hall, A.R. and A. Inoue, 2003, The Large Sample Behavior of the Generalized Method of Moments Estimator

in Misspeci�ed Models, Journal of Econometrics, 114, 361-394.

Hansen, B.E., 2000, Sample Splitting and Threshold Estimation, Econometrica, 575-603.

Hansen, B.E., 2017, Regression Kink With an Unknown Threshold, Journal of Business & Economic Sta-

tistics, 35, 228-240.

Hastie, T.J., R.J. Tibshirani and J.H. Friedman, 2009, The Elements of Statistical Learning: Data Mining,

Inference, and Prediction, 2nd edition, New York: Springer Verlag.

Heckman, J.J. and E.J. Vytlacil, 2005, Structural Equations, Treatment E¤ects, and Econometric Policy

Evaluation, Econometrica, 73, 669-738.

Hidalgo, J., 1995, A Nonparametric Conditional Moment Test for Structural Stability, Econometric Theory,

11, 671-698.

Hidalgo, J., J. Lee and M.H. Seo, 2019, Robust Inference for Threshold Regression Models, Journal of

Econometrics, 210, 291-309.

Kim, H.J. and D. Siegmund, 1989, The Likelihood Ratio Test for a Change-point in Single Linear Regression,

Biometrika, 76, 409-423.

Koo, B. and M.H. Seo, 2015, Structural-break Models Under Mis-speci�cation: Implications for Forecasting,

Journal of Econometrics, 166-181.

Perron, P. and Y. Yamamoto, 2015, Using OLS to Estimate and Test for Structural Changes in Models with

Endogenous Regressors, Journal of Applied Econometrics, 30, 119-144.

Petruccelli, J.D., 1992, On the Approximation of Time Series by Threshold Autoregressive Models, Sankhya

Series B, 54, 54-61.

Porter, J. and P. Yu, 2015, Regression Discontinuity Designs with Unknown Discontinuity Points: Testing

and Estimation, Journal of Econometrics, 189, 132-147.

53



Resnick, S.I., 1987, Extreme Values, Regular Variation, and Point Processes, New York: Springer-Verlag.

Seneta, E., 1976, Regularly Varying Functions. Lecture Notes in Mathematics, Vol. 508, Berlin: Springer

Verlag.

Seo, M.H., 2015, Threshold Regression Under Misspeci�cation, mimeo, LSE.

Tong, H., 1982, Discontinuous Decision Processes and Threshold Autoregressive Time Series Modelling,

Biometrika, 69, 274-276.

Tong, H. and K.S. Lim, 1980, Threshold Autoregression, Limit Cycles and Cyclical Data, Journal of the

Royal Statistical Society, Series B, 42, 245-292.

White, H., 1980, Using Least Squares to Approximate Unknown Regression Functions, International Eco-

nomic Review, 21, 149-170.

White, H., 1981, Consequences and Detection of Misspeci�ed Nonlinear Regression Models, Journal of the

American Statistical Association, 76, 419�433.

White, H., 1982, Maximum Likelihood Estimation of Misspeci�ed Models, Econometrica, 50, 1-25.

Yu, P., 2012, Likelihood Estimation and Inference in Threshold Regression, Journal of Econometrics, 2012,

167, 274-294.

Yu, P., 2013, Inconsistency of 2SLS Estimators in Threshold Regression with Endogeneity, Economics Letters,

120, 532-536.

Yu, P., 2014, The Bootstrap in Threshold Regression, Econometric Theory, 30, 676-714.

Yu, P., 2015a, Adaptive Estimation of the Threshold Point in Threshold Regression, Journal of Econometrics,

189, 83-100.

Yu, P., 2015b, Consistency of the Least Squares Estimator in Threshold Regression with Endogeneity,

Economics Letters, 131, 41-46.

Yu, P., 2016, Treatment E¤ects Estimators Under Misspeci�cation, mimeo.

Yu, P., 2019, On Inferences Based on OLS in Structural Change Models with Endogenous Regressors, mimeo.

Yu, P., 2020, Misspeci�cation-Robust Inference in Threshold Regression, work in progress.

Yu, P., Q. Liao and P.C.B. Phillips, 2018, Inferences and Speci�cation Testing in Threshold Regression with

Endogeneity, mimeo.

Yu, P., Q. Liao and P.C.B. Phillips, 2019, New Control Function Approaches in Threshold Regression with

Endogeneity, mimeo.

Yu, P. and P.C.B. Phillips, 2018a, Threshold Regression with Endogeneity, Journal of Econometrics, 203,

50-68.

Yu, P. and P.C.B. Phillips, 2018b, Threshold Regression Asymptotics: From the Compound Poisson Process

to Two-Sided Brownian Motion, Economics Letters, 172, 123-126.

Yu, P. and P.C.B. Phillips, 2019, Calibrating the Con�dence Intervals in Threshold Regression, mimeo.

Yu, P. and Y. Zhao, 2013, Asymptotics for Threshold Regression Under General Conditions, Econometrics

Journal, 16, 430-462.

54


	Introduction
	The Setup
	The Least Squares Estimator and Likelihood Ratio Statistic
	Distinction Between DTR and CTR
	Rates of ( 0=x"010D)  Shrinking to Zero
	Maximizer and Maximum of A Class of Stochastic Processes
	Maintained Assumptions

	An Example for Illustration
	Deterministic and Random Parts of Sn(0=x"0112)-Sn(0=x"01120)
	Determining the Convergence Rates of 0=x"010C"03620=x"010C and 0=x"010D"03620=x"010D
	Extension and Refinement

	Asymptotics in Discontinuous Threshold Regression: 0=x"010B=1
	Asymptotics with Fixed Threshold Effects
	Asymptotics with Shrinking Threshold Effects

	Asymptotics in Discontinuous Threshold Regression: 1<0=x"010B2
	0=x"010B=2
	1<0=x"010B<2

	Asymptotics in Continuous Threshold Regression
	0=x"010B=2
	0=x"010B=3
	0=x"010B=4
	3<0=x"010B<4
	 2<0=x"010B<3

	Asymptotics Without Point Identification
	Discussions
	Numerical Examples
	DTR
	CTR

	Conclusion



