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Abstract

This paper studies estimation and inference based on the marginal quantile treatment e¤ect. First, we

illustrate the importance of the rank preservation assumption in the quantile treatment e¤ects evaluation,

show the identi�ability of the marginal quantile treatment e¤ect, and clarify the relationship between

the marginal quantile treatment e¤ect and other quantile treatment parameters. Second, we develop

sharp bounds for the quantile treatment e¤ect with and without the monotonicity assumption, and also

su¢ cient and necessary conditions for point identi�cation. Third, we estimate the marginal quantile

treatment e¤ect and associated quantile treatment e¤ect and integrated quantile treatment e¤ect based

on the distribution regression, derive the corresponding weak limits and show the validity of the bootstrap

inferences. The inference procedure can be used to construct uniform con�dence bands for quantile

treatment parameters and test unconfoundedness and stochastic dominance. We also develop goodness

of �t tests to choose regressors in the distribution regression. Fourth, we conduct two counterfactual

analyses: deriving the transition matrix and developing the relative marginal policy relevant quantile

treatment e¤ect parameter under the policy invariance. Fifth, we compare the identi�cation schemes in

some important literature with that by the marginal quantile treatment e¤ect, and point out advantages

and also weaknesses of each scheme, e.g., Chernozhukov and Hansen (2005) concentrate mainly on the

quantile treatment e¤ect with the selection select but without the essential heterogeneity; Abadie, Angrist

and Imbens (2002), Aakvik, Heckman and Vytlacil (2005) and Chernozhukov and Hansen (2006) su¤er

from some obvious misspeci�cation problems. Meanwhile, an alternative estimator of the local quantile

treatment e¤ect is developed and its weak limit is derived. Finally, we apply the estimation methods to

the famous return to schooling dataset of Angrist and Krueger (1991) to illustrate the usefulness of the

techniques developed in this paper to practitioners.
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1 Introduction

Treatment e¤ect evaluation is one main task of econometric analysis. Most literature concentrates on the

average treatment e¤ect evaluation; see Heckman and Vytlacil (2007a,b) for a comprehensive summary.

Meanwhile, as illustrated in Heckman (1992), Heckman et al. (1997) and Heckman and Smith (1993, 1998),

questions of political economy or "social justice" requires knowledge of the distribution of the treatment

e¤ect. As a result, distributional treatment e¤ects (especially when unconfoundedness does not hold) become

natural parameters of interest among econometricians. Actually, distributional treatment e¤ects have been

studied extensively in the empirical literature. For example, Card (1996) uses a panel data set to study the

e¤ects of unions on the structure of wages; DiNardo et al. (1996) presents a semiparametric procedure to

analyze the e¤ects of institutional and labor market factors on changes in the U.S. distribution of wages;

Bitler et al. (2006) estimate quantile treatment e¤ects using random-assignment data from Connecticut�s

Job First waiver.

Distributional treatment e¤ects are usually estimated based on quantile regression initiated by Koenker

and Bassett (1978) (see Koenker (2005) for an introduction to quantile regression). One related �eld that

recently attracts much attention is the "general" semiparametric and nonparametric quantile regression with

endogeneity. For the semiparametric setups, see, e.g, Hong and Tamer (2003), Honoré and Hu (2004), Ma

and Koenker (2006), Lee (2007), Sakata (2007) and Jun (2008) among others. For nonparametric setups,

see, e.g., Chesher (2003), Chernozhukov et al. (2007), Horowitz and Lee (2007), Imbens and Newey (2009),

Chen and Pouzo (2012), and Gagliardini and Scaillet (2012) among others. However, the main interest of

this paper concentrates on the special structure of the treatment model, namely, the endogenous variable

is binary. A key parameter we will develop is the marginal quantile treatment e¤ect (MQTE), which is the

counterpart of the marginal treatment e¤ect (MTE) in the average treatment e¤ect estimation.

The idea of the MTE was �rst introduced in the context of a parametric normal generalized Roy model by

Björklund and Mo¢ tt (1987), and was analyzed more generally by Heckman (1997). In a choice (or selection,

or participation) model with the latent variable structure, Heckman and Vytlacil (1999, 2001a) express the

conventional average treatment e¤ect parameters as di¤erent weighted averages of the MTE, and also identify

the MTE by the local instrumental variable (LIV) estimator. Actually, Heckman and Vytlacil (2007b) use

the MTE to unify the econometric literature on the evaluation of social programs, so it is well recognized

that the MTE is a convenient tool to organize the nonparametric literature on the average treatment e¤ect

evaluation. An embarrassing situation is that the counterpart of the MTE in the quantile treatment e¤ect

literature, the MQTE, is yet to be well understood. The purpose of this paper is to integrate the relevant

literature on the quantile treatment e¤ect evaluation without unconfoundedness into one framework and

provide some useful estimation and inference methods to practitioners based on the MQTE.

There are two strands of literature concerning about the distributional treatment e¤ects, and they are

interwined. Before reviewing the relevant literature, we must emphasize that the distributional treatment

e¤ects are functionals of the distribution of Y1�Y0, which requires the joint distribution of Y1 and Y0, where
Y1 and Y0 are the outcome under the treatment status and the control status, respectively. As mentioned

in Section II.B of Manski (1996) or footnote 5 of Manski (1997), "knowledge of F (Y1 � Y0) neither implying
nor being implied by knowledge of F (Y1) and F (Y0)", where F (X) is the cumulative distribution function

(CDF) of X for a random variable X. Due to the fundamental problem of causal inference (page 947 of

Holland (1986)), Y0 and Y1 cannot be observed simultaneously. As a result, even in a random experiment,

the joint distribution F (Y1; Y0) or F (Y1 � Y0) cannot be identi�ed if without further restrictions although
F (Y1) and F (Y0) can be identi�ed. On the other hand, marginal distributions F (Y1) and F (Y0) are also of

interest in econometric analysis. For example, in Atkinson (1970), Sen (1997, 2000), Manski (1996, p714),
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Imbens and Rubin (1997, p558), Imbens and Wooldridge (2009, p17), and Imbens (2010, p409), the marginal

distributions of outcomes are more relevant for a social planner choosing between two programs; see also the

Introduction of Abadie (2002) for an example where only the marginal distributions are relevant.

The �rst strand of literature tackles the joint distribution F (Y1; Y0) directly. This strand of literature is

mainly interested in the quantile of di¤erences of Y1 and Y0. First, using the classical probability results due

to Hoe¤ding (1940) and Fréchet (1951), Heckman et al. (1997) and Heckman and Smith (1993, 1998) bound

F (Y1; Y0) using F (Y1) and F (Y0) in a random experiment. It turns out that this kind of bounds are too

wide to be useful. Later, Aakvik et al. (2005) impose more structures on the problem to get more stringent

identi�cation results. Basically, two key structures are imposed: (i) the error terms in the outcome equations

and the choice equation are independent of all the covariates; (ii) the error terms follow a one-factor structure,

i.e., the correlation among the error terms is only through the factor. Under these two assumptions, F (Y1; Y0)

can be identi�ed, so all interesting functionals of F (Y1; Y0) can be identi�ed. For example, the proportion of

people who bene�t from participation in the program (P (Y1 > Y0)), gains to participants at selected levels

of the no-treatment distribution (F (Y1 � Y0jY0 = y0)) or treatment distribution (F (Y1 � Y0jY1 = y1)), and
a variety of other questions including the quantile treatment e¤ect (QTE) and the quantile treatment e¤ect

on the treated (QTT) can be answered. Aakvik et al. (2005) consider only two binary potential outcomes,

and parametric one-factor models with cross-sectional data. Extensions to multiple (possibly continuous or

mixed discrete and continuous) outcomes, and semiparametric (or nonparametric) multiple-factor models

with possibly panel data can be found in Aakvik et al. (1999) and Carneiro et al. (2001, 2003). See Section

2 of Abbring and Heckman (2007) for a summary of this strand of literature.

The second strand of literature concentrates on the marginal distribution of Y1 and Y0 (maybe also

conditional on some covariates or some speci�ed population). However, as noted above, the distributional

treatment e¤ects require the joint distribution of Y1 and Y0. To circumvent this problem, this strand of

literature explicitly or implicitly assume some type of rank preservation (RP) condition. Such type of

condition was initiated by Lehmann (1974) and Doksum (1974). Under this assumption, the distributional

treatment e¤ects can be described by the di¤erence of quantiles of Y1 and Y0. The �rst part of this strand of

literature bounds F (Y1) and F (Y0) without imposing any restrictions on the choice process. Under the RP

assumption, these bounds imply bounds on the QTE. Such literature are summarized in Manski (1994, 1995,

2003). When further restrictions on the choice process are imposed, point identifying some type of quantile

treatment e¤ects is possible. The second part of this strand of literature estimates and conducts inferences

on some type of quantile treatment e¤ects under point identi�cation. Firgo (2007) estimates the QTE and

the QTT in observational studies under the unconfoundedness assumption. When the unconfoundedness

assumption fails while only the selection e¤ect exists, Chernozhukov and Hansen (2005) show that the

QTE can be identi�ed under some completeness assumption, and Chernozhukov and Hansen (2006) provide

a speci�c estimation scheme; see also Chernozhukov and Hansen (2013) for most updated developments

along this line. When there is also the essential heterogeneity, the monotonicity assumption of Imbens and

Angrist (1994) or the uniformity assumption of Heckman and Vytlacil (2005) is usually imposed. Under

this assumption, Abadie et al. (2002) estimate the local quantile treatment e¤ect (LQTE), which is the

counterpart of the local average treatment e¤ect (LATE),1 using the identi�cation results in Abadie (2003);

see also Imbens and Rubin (1997) for identi�cation of the marginal potential distributions of compliers

when no covariates are present, and Abadie (2002) for bootstrap tests of distributional treatment e¤ects in

a similar framework. Carneiro and Lee (2009) deal with the essential heterogeneity in an alternative way.

They borrow a key assumption, the independence assumption (i) in the last paragraph, from the �rst strand

1The LATE parameter is �rst introduced by Imbens and Angrist (1994). The MTE is a limit form of the LATE, see, e.g.,
Björklund and Mo¢ tt (1987), Heckman (1997) and Angrist et al. (2000).
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of literature to identify the (conditional) marginal distributions of potential outcomes. These distributions

imply the MQTE, which is also the main objective of this paper but we do not need the independence

assumption. The above-mentioned literature concentrates on the cross-sectional data; Athey and Imbens

(2006) also use the panel data to identify the QTT through what they called change-in-change approach

under the RP condition on the treated.

Although these two strands of literature use di¤erent identi�cation assumptions, their targets are the

same, namely, identifying the joint distribution of Y1 and Y0. This paper can be put in the second strand of

literature, i.e., we impose some RP assumptions to identify F (Y1; Y0). Consequently, the quantile treatment

e¤ect in this paper refers to the di¤erence of quantiles rather than the quantile of di¤erences. Meanwhile,

we employ the framework in the �rst strand of literature to study the di¤erence of quantiles.

The rest of this paper is structured as follows. Section 2 sets up our treatment model, illustrates the

importance of the RP assumption in the quantile treatment e¤ect evaluation, shows the identi�ability of the

MQTE, and clari�es the relationship between the MQTE and other quantile treatment parameters. Section

3 develops sharp bounds and su¢ cient and necessary conditions for point identi�cation of the QTE with

and without the monotonicity assumption. In Section 4, we estimate the MQTE based on the distribution

regression introduced by Foresi and Peracchi (1995), derive its weak limit and show the validity of the

bootstrap inferences, and we also develop goodness of �t tests to choose regressors. In Section 5, we conduct

two counterfactual analyses: deriving the transition matrix and developing the relative marginal policy

relevant quantile treatment e¤ect parameter under the policy invariance. In Section 6, we comment some key

literature in the two strands above, pointing out their weaknesses, underlying assumptions, and interactions

with this paper. Section 7 presents an empirical application to the return to schooling and Section 8

concludes. All proofs are contained in an appendix.

Some notations are collected here for future reference. d is always used for indicating the two treatment

statuses, so is not written out explicitly as "d = 0; 1" throughout the paper. supp(X) for a random variable

X denotes the support of the distribution of X. Both QX(�) and Q� (X) denote the �th quantile of a random

variable X. The capital letters such as X denote random variables and the corresponding lower case letter

such as x denote the potential values they may take. For any parameter �, d� is the dimension of �. The

space `1(F) represents the space of real-valued bounded functions de�ned on the index set equipped with
the supremum norm k�k`1(F). C (Y) is the space of continuous functions on Y.

2 The Setup and Parameters of Interest

We use the nonlinear and nonseparable outcome model as in Heckman and Vytlacil (2005),

Y1 = �1(X;U1);

Y0 = �1(X;U0):
(1)

Actually, the additively separable setup, Yd = �d(X) + Ud, does not lose generality since we can de�ne the

new Ud as Yd � QYdjX(� jX) and all our analysis in this paper is conditional on X. The distribution of Yd
may be discrete (e.g., employment status), continuous (e.g., wage), or mixed discrete and continuous (e.g., in

the national JTPA study 18 month impact sample used in Heckman et al. (1997), a substantial proportion

of persons has zero earnings in both distributions of Y0 and Y1). The participation decision

D = 1(�D(X;Z)� V � 0); (2)
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where Z includes the instruments for the choice process. Both X and Z appearing as the arguments of �D
does not lose generality since �D(X;Z) may not depend on all elements of X. By transforming �D(X;Z)

and V by FV jX;Z , we can rewrite

D = 1(p(X;Z)� UD � 0); (3)

where UDjX;Z � U(0; 1) and p(X;Z) is the propensity score. We use these two formulations of D inter-

changeably throughout the paper. As shown in Vytlacil (2006), there is a larger class of latent index models

that will have a representation of this form. Also, this setup of D implies the monotonicity assumption of

Imbens and Angrist (1994) as shown in Vytlacil (2002).

We impose the following assumptions on the outcome equation and the choice equation.

(A1) �D(X;Z) is a nondegenerate random variable conditional on X.

(A2) The random vectors (U1; V ) and (U0; V ) are independent of Z conditional on X.

(A3) The distribution of V is absolutely continuous with respect to Lebesgue measure.

(A4) X1 = X0 almost everywhere, where Xd denote a value of X if D is set to d.

(A5) 1 > P (D = 1jX) > 0.
(A6) Conditional on X = x, V = v, Y0 and Y1 have the same rank:

(A1)-(A5) corresponds to (A-1)-(A-3), (A-6) and (A-5) in Heckman and Vytlacil (2005), respectively. These

assumptions are prevalent in the literature with heterogeneous treatment e¤ects. A necessary condition for

(A1) is that Z contains a continuous variable. (A2) allows for both the selection e¤ect (U0 6? DjX) and the
essential heterogeneity ((U1 � U0) 6? DjX). Also, (A2) implies the usual assumption in the control function
approach, say, Z ? (U1; U0)j (X;V ). (A1)-(A5), combined with (1) and (2), impose testable restrictions
on the distribution of (Y;D;Z;X); see Heckman and Vytlacil (2005) (page 678) for the index su¢ ciency

restriction and the monotonicity restriction. We refer to Heckman and Vytlacil (2005) for more detailed

discussions on (A1)-(A5). The assumption (A6) deserves further examination.

2.1 The Rank Preservation Condition

The key extra assumption beyond those in Heckman and Vytlacil (2005) is the RP condition (A6). Cher-

nozhukov and Hansen (2005) state the RP assumption via the Skorohod representation. We try to do

the same thing here although unlike them, this representation is not essential for the development of our

identi�cation scheme. Suppose Yd is continuous, and the �th conditional quantile of Yd given X and V is

q(d;X; V; �); then we can represent

Yd = q(d;X; V;Rd)

by the Skorohod representation, where Rdj(X;V ) � U(0; 1) is the rank variable which represents some

unobserved characteristic of Yd, e.g., ability or proneness, among the slice of people with a speci�c value of

X and V . The RP assumption (A6) can be restated as R1j(X;V ) = R0j(X;V ). We now clarify two key
points of the Skorohod representation. First, the Skorohod representation decomposes the information in

Ud of (1) into two components: the value information and the rank information. The former is incorporated

in the quantile function q(�) and the later is included in Rd. Second, because Rdj(X;V ) � U(0; 1) does not
depend on (X;V ), it may be suspected that Rd is independent of (X;V ). This is incorrect. This mistake

is immediately clear if we rewrite Yd = q(d;X; V;Rd(X;V )) ; in other words, Rd must be understood as

a conditional random variable. Suppose there are N distinct points on the support of (X;V ), and then

there are N rank variables Rd(X;V ). Although Rd(X;V )j(X = x; V = v) � U(0; 1) does not depend on

(x; v), the unconditional random variable Rd may depend on (X;V ). The RP condition does not restrict

the dependence between Rd and (X;V ); rather, it restricts the total number of conditional rank variables

4



Rd(X;V ) from 2N to N . To be consistent with the notation in the literature, Rd is replaced by Ud in the

rest of this paper. The meaning of Ud should be clear from the context. For example, when V appears as an

argument of the representation of Yd, or Yd is represented as Yd = q(�), Ud means the rank variable. In this
paper, we do not consider the quality of the evidence supporting the assumption (A6). Instead, we consider

the evaluation of speci�c programs under this assumption.

Figure 1: Rank Preserved Conditional on UD BUT Unconditionally Unpreserved

Our RP assumption is weaker than the usual assumption that Y0 and Y1 have the same rank conditional

on X = x. Think about the following example. Suppose Z is the only covariate in the determination of

D, and Z can take only 0 and 1. So the only nontrivial values for UD are p(0) and p(1). Suppose for

each value of UD, there are only two persons. Figure 1 shows that although the rank is preserved among

the people with a speci�c UD value, the rank is unpreserved if all people are taken into account. In other

words, (A6) only requires the RP condition to hold locally (X = x;UD = uD) instead of globally (X = x).

Conditional on X = x, the rank may not be maintained under the treatment. However, for a �ner slice of

individuals, the rank is maintained. Local rank preservation is much weaker than global rank preservation.

The larger the conditional set on which the RP condition is imposed, the harder for the RP condition to

hold. Actually, the analysis in Heckman et al. (1997) show that the unconditional RP condition cannot hold

although substantial departures from the perfect positive dependence across Y1 and Y0 are not credible in

their context; see also Carneiro et al. (2003) for further evidences against the unconditional RP condition.

The RP condition also imposes a restriction on the joint distribution of Y1 and Y0 given X = x and

UD = uD, namely, the joint distribution is fully determined by the marginal distribution. It is not hard to

see that when the RP condition holds,

P (Y1 � y1; Y0 � y0jX = x; UD = uD)

= min fP (Y1 � y1jX = x;UD = uD) ; P (Y0 � y0jX = x;UD = uD)g ;
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which implies that the joint distribution of Y1 and Y0 given X = x; UD = uD is degenerate. To see how

this joint distribution looks like, suppose Ydj (X = x; UD = uD) is continuously distributed and supp(YdjX =

x;UD = uD) = [0; 1] to simplify the discussion. It turns out that only on the line
�
y0; F

�1
Y1jX;UD

�
FY0jX;UD (y0jx; uD)jx; uD

��
with y0 2 [0; 1] there is probability. In other words, only on the Q-Q plot, (Y0; Y1) can occur simultaneously.
An implication of this result is that if FY0jX;UD (�jx; uD) is the same as FY1jX;UD (�jx; uD), then the correla-
tion between Y0 and Y1 conditional on X = x; UD = uD must be 1. Figure 2 shows a typical Q-Q plot of

(Y0; Y1) conditional on X = x;UD = uD. In Figure 2, P (Y1 � Y0jY0 = y0; X = x; UD = uD) = 1 when

y0 � 0:6 and P (Y1 � Y0jY0 = y0; X = x;UD = uD) = 0 when y0 > 0:6. In other words, for the slice of

people with Y0 = y0; X = x;UD = uD, the participant always bene�ts as long as y0 � 0:6, and vice versa.
Nevertheless, it is more likely that P (Y1 � Y0jY0 = y0; X = x) 2 (0; 1), P (Y1 � Y0jX = x;UD = uD) =

FY0jX;UD (0:6jx; uD) 2 (0; 1) and P (Y1 � Y0jX = x) =
R
P (Y1 � Y0jX = x;UD = uD)duD 2 (0; 1).

0 0.6 1
0

0.6

1

Figure 2: Q-Q Plot of (Y0; Y1) Conditional on X = x; UD = uD

It should be emphasized that the RP condition is only for de�ning various quantile treatment e¤ects.

Even without this condition, we can still identify various marginal distributions which, as argued in the

introduction, are useful for many other purposes. Under the RP assumption, we de�ne the MQTE in

Carneiro and Lee (2009) as

�MQTE
� (x; uD) = QY1jX;UD (� jx; uD)�QY0jX;UD (� jx; uD):

If we strengthen the RP assumption to be conditional on X = x or on X = x;D = 1, then we can de�ne the

QTE in Chernozhukov and Hansen (2005, 2006) and the QTT as

�QTE� (x) = QY1jX(� jx)�QY0jX(� jx)

and

�QTT� (x) = QY1jX;D(� jx; 1)�QY0jX;D(� jx; 1);
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respectively. If the RP assumption is conditional on X = x; uD < UD � u0D, then the LQTE of Abadie et
al. (2002)2 is de�ned as

�LQTE� (x; uD; u
0
D) = QY1jX;UD (� jx; (uD; u0D])�QY0jX;UD (� jx; (uD; u0D]):

Finally, if the RP assumption holds unconditionally (with respect to X),3 then we de�ne the integrated QTE

(IQTE)

�IQTE� = QY1(�)�QY0(�);

the integrated QTT (IQTT)

�IQTT� = QY1jD(� j1)�QY0jD(� j1)

as in Firpo (2007),4 and the integrated LQTE (ILQTE)

�ILQTE� (uD; u
0
D) = QY1jUD (� j(uD; u0D])�QY0jUD (� j(uD; u0D]):

2.2 Identi�cation of the MQTE

The following theorem states that the MQTE can be identi�ed for a range of uD.

Theorem 1 Suppose assumptions (A1)-(A6) hold. If uD is not an isolated point of P1x\P0x, then �MQTE
� (x; uD)

can be identi�ed for any � 2 (0; 1), where Pdx =supp(p(X;Z)jX = x;D = d).

Proof. To simplify notations, we depress the conditioning on X = x. Given the RP assumption (A6), we

need only identify QYdjUD (� juD) whose identi�cation is equivalent to the identi�cation of FYdjUD (�juD). We
provide two methods to identify FYdjUD (�juD).
Method 1: Note that

P (Y � yjp(Z) = p;D = 1) p = P (Y1 � yjp(Z) = p;D = 1)P (D = 1jp(Z) = p)

= P (Y1 � yjUD � p) p =
Z p

0

FY1jUD (yjuD)duD;

and similarly, P (Y � yjp(Z) = p;D = 0) (1� p) =
Z 1

p

FY0jUD (yjuD)duD, so

d [P (Y � yjp(Z) = p;D = 1) p]

dp
= FY1jUD (yjp);

�d [P (Y � yjp(Z) = p;D = 0) (1� p)]
dp

= FY0jUD (yjp):

2Abadie et al. (2002) con�ate issues of de�nition of parameters with issues of identi�cation; see Section 6.2 below for their
de�nition. Actually, �LQTE� (x; uD; u

0
D) can be de�ned for any uD; u

0
D 2 (0; 1) although it can only be identi�ed for uD; uD

on the support of p(x; Z).
3Note that if the RP assumption holds on X = x, YdjX can be expressed as Yd = q(d;X;U) by the Skorohod representation,

where U jX = U1jX = U0jX. If the RP assumption holds unconditionally, then Yd can be expressed as Yd = q(d; U) by
the Skorohod representation, where U = U1 = U2. This by no means implies that information in X and Z is useless to the
identi�cation or e¢ ciency improvement in the quantile treatment e¤ect evaluation.

4Be careful about the terminology in the literature. Our IQTE and IQTT are the QTE and QTT of Firpo (2007). Also,
the MQTE of Cattaneo (2010) means Q� (Y0) and Q� (Y1) rather than �

MQTE
� (x; uD), and the MQTE, QTE and QTT in the

�rst strand of literature mentioned in the introduction means QY1�Y0jX;UD (� jx; uD), QY1�Y0jX(� jx) and QY1�Y0jX;D(� jx; 1)
rather than �MQTE

� (x; uD), �
QTE
� (x) and �QTT� (x).
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Method 2: As in Hahn (1998), we can use DY and (1�D)Y to identify FYdjUD (�juD). Note that for any
y � 0

P (DY � yjp(Z) = p)� (1� p)
= P (DY � yjp(Z) = p;D = 1)P (D = 1jp(Z) = p) + P (DY � yjp(Z) = p;D = 0)P (D = 0jp(Z) = p)� (1� p)
= P (Y1 � yjUD � p) p+ P (0 � yjUD > p)P (D = 0jp(Z) = p)� (1� p)

=

Z p

0

FY1jUD (yjuD)duD + (1� p)� (1� p) =
Z p

0

FY1jUD (yjuD)duD;

so
d [P (DY � yjp(Z) = p)� (1� p)]

dp
= FY1jUD (yjp): (4)

For y < 0, repeat the analysis above, we have

dP (DY � yjp(Z) = p)
dp

= FY1jUD (yjp): (5)

Similarly,

� d [P ((1�D)Y � yjp(Z) = p)� p]
dp

= FY0jUD (yjp) when y � 0; (6)

and

� dP ((1�D)Y � yjp(Z) = p)
dp

= FY0jUD (yjp) when y < 0: (7)

Inverting FYdjUD (yjp) as a function of y, we can get QYdjUD (� jp). Since p(Z), P (Y � yjp(Z) = p;D = d),

P (DY � yjp(Z) = p) and P ((1�D)Y � yjp(Z) = p) for y 2 R and p 2 Pdx can be identi�ed,�MQTE
� (uD) =

QY1jUD (� juD)�QY0jUD (� juD) for all � 2 (0; 1) and uD not being an isolated point of P1x\P0x can be identi�ed.

Figure 3: Intuition for Identi�cation of FY1jUD (yjp) with y � 0 and y < 0

Figure 3 provides some intuition for the arguments in the second method. For y � 0, P (DY � yjp(Z) = p)

includes a point mass 1 � p at 0, and the remaining probability is
Z p

0

FY1jUD (yjuD)duD, while for y < 0,

8



P (DY � yjp(Z) = p) does not include the point mass. This intuition is similar in spirit to that of the
censored quantile regression models discussed in Powell (1984, 1986).

The arguments in Theorem 1 can be applied to the discrete Yd case. Suppose Y1 and Y0 have the same

support fy1; � � � ; ySg, and then the counterpart of the MQTE is PY1jUD (ysjuD)�PY0jUD (ysjuD), s = 1; � � � ; S,
where PYdjUD (ysjuD) is the point mass of Ydj (UD = uD) at ys. We can still identify FYdjUD (ysjp) by (4),
(5), (6) and (7), and then PYdjUD (y1jp) = FYdjUD (y1jp) and PYdjUD (ysjp) = FYdjUD (ysjp) � FYdjUD (ys�1jp)
for s = 2; � � � ; S can be sequentially identi�ed. If Yd can take only 0 and 1, then the parameter of interest is
PY1jUD (1juD)� PY0jUD (1juD) which coincides with the MTE. Of course, we can also consider the case with
mixed discrete and continuous outcomes. Both the discrete case and the mixed case are easier to handle

than the continuous case, so we will concentrate on the continuous case in the rest of this paper unless stated

otherwise.

If we use the idea of LIV as in Heckman and Vytlacil (2001a), we have

P (Y � yjp(Z) = p) = P (Y � yjp(Z) = p;D = 1) p+ P (Y � yjp(Z) = p;D = 0) (1� p)

=

Z p

0

FY1jUD (yjuD)duD +
Z 1

p

FY0jUD (yjuD)duD;

and
@P (Y � yjp(Z) = p)

@p
= FY1jUD (yjp)� FY0jUD (yjp);

which is the di¤erence of CDFs in the two treatment statuses. So it is hard to identify the MQTE from

@P (Y � yjp(Z) = p) =@p. From Theorem 1, we can identify E[Y1jUD = p] and E[Y0jUD = p] separately, not
just their di¤erence E[Y1 � Y0jUD = p] as in the LIV method of Heckman and Vytlacil (2001a).
Method 1 of the proof is a special case of Theorem 1 in Carneiro and Lee (2009). We also discuss

Method 2 to distinguish the di¤erence between the identi�cation scheme of the MTE and the MQTE. For

the MTE, E[DY jp(Z) = p] = E [Y jp(Z) = p;D = 1] p =

Z p

0

E [Y1jUD = uD] duD, and E[(1�D)Y jp(Z) =

p] = E [Y jp(Z) = p;D = 0] (1� p) =
Z 1

p

E [Y0jUD = uD] duD, so the two methods in the proof are the same

in the MTE identi�cation.

We close this subsection by a concrete example. Suppose Y1 = V+2U; Y0 = 2V+U , andD = 1(Z�V > 0),
where 0B@ U

V

Z

1CA � N (0;�) with � =

0B@ 1 0:5 0

0:5 1 0

0 0 1

1CA :
It can be shown that �MQTE

� (uD) = �0:5��1(uD) +
p
0:75��1(�). Figure 4 shows �MQTE

� (uD) for

� = 0:1; 0:25; 0:5; 0:75 and 0:9. In this simple model, the spreading measure of the MQTE, e.g.,�MQTE
1�� (uD)�

�MQTE
� (uD) for � 2 (0; 0:5), is the same for any uD, which may not be standard in practice. Also,

�MQTE
� (uD) is a decreasing function of p, which indicates that the more likely will an individual par-

ticipate in the program, the higher bene�t will she receive.5 In the �gure, we also show �MTE(uD), �QTE�

and �ATE(� E[Y1] � E[Y0]) for comparison. Note that in this example, �MTE(uD) = �MQTE
:5 (uD), and

�QTE� = 0 = �ATE does not depend on � .6 Obviously, �MQTE
� (uD) provides more information than

�MTE(uD), �QTE� , and �ATE .

5Aakvik et al. (2005) provide a converse example.
6 It should be emphasized that �QTE� is not well de�ned in this example since the RP condition does not hold unconditionally

given that Y1 and Y0 have the same marginal distribution but Corr(Y1; Y0) = 6:5=7 < 1.
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Figure 4: �MQTE
� (uD) for � = 0:1; 0:25; 0:5; 0:75 and 0:9 in a Simple Example

2.3 Relationship with Other Parameters of Treatment E¤ects

In this subsection, we �rst discuss the relationship between�MQTE
� (x; uD) and�QTT� (x),�QTE� (x),�LQTE� (x; uD; u

0
D),

�IQTE� ,�IQTT� ,�ILQTE� . It turns out that the building block is FYdjX;UD (ydjx; uD) rather than�MQTE
� (x; uD).

Actually, �MQTE
� (x; uD) is more relevant to the (conditional) quantile of Y1 � Y0.

From the supplementary materials, we can show that

�QTT� (x) = F�1Y1jX;D(� jx; 1)� F
�1
Y0jX;D(� jx; 1)

and the quantile treatment e¤ect on the untreated (QTUT)

�QTUT� (x) = F�1Y1jX;D(� jx; 0)� F
�1
Y0jX;D(� jx; 0);

where

FYdjX;D(ydjx; 1) =
Z 1

0

FYdjX;UD (ydjx; uD)hTT (x; uD)duD;

FYdjX;D(ydjx; 0) =
Z 1

0

FYdjX;UD (ydjx; uD)hTUT (x; uD)duD;

with hTT (x; uD) =
�
1� Fp(X;Z)jX(uDjx)

�
=E[p(X;Z)jX = x] and hTUT (x; uD) = Fp(X;Z)jX(uDjx)=E[1 �

p(X;Z)jX = x]. Also,

�QTE� (x) = F�1Y1jX(� jx)� F
�1
Y0jX(� jx);�

IQTE
� = F�1Y1 (�)� F

�1
Y0
(�);

�IQTT� = F�1Y1jD(� j1)� F
�1
Y0jD(� j1);�

IQTUT
� = F�1Y1jD(� j0)� F

�1
Y0jD(� j0)

10



where

FYdjX(ydjx) =
Z 1

0

FYdjX;UD (ydjx; uD)duD; FYd(yd) =
Z
FYdjX(ydjx)dFX(x);

FYdjD(yj1) =
Z
FYdjX;D(yjx; 1)dFXjD(xj1) =

Z Z 1

0

FYdjX;UD (yjx; uD)
1� Fp(X;Z)jX(uDjx)

P (D = 1)
duDdFX(x);

FYdjD(yj0) =
Z
FYdjX;D(yjx; 1)dFXjD(xj0) =

Z Z 1

0

FYdjX;UD (yjx; uD)
Fp(X;Z)jX(uDjx)
P (D = 0)

duDdFX(x):

Finally,

�LQTE� (x; uD; u
0
D) = F

�1
Y1jX;UD (� jx; (uD; u

0
D])� F�1Y0jX;UD (� jx; (uD; u

0
D]);

�ILQTE� (uD; u
0
D) = F

�1
Y1jUD (� j(uD; u

0
D])� F�1Y0jUD (� j(uD; u

0
D]);

where

FYdjX;UD (ydjx; (uD; u0D]) =
1

u0D � uD

Z u0D

uD

FYdjX;UD (ydjx; uD)duD;

FYdjUD (ydj(u0D; uD]) =
Z
FYdjX;UD (ydjx; (uD; u0D])dFXjp(X;Z)(xj(uD; u0D])

=

Z
FYdjX;UD (ydjx; (uD; u0D])

P (p(X;Z) 2 (uD; u0D]jX = x)

P (p(X;Z) 2 (uD; u0D])
dFX(x):

See Appendix B.1 of Carneiro and Lee (2009) for implementation of some of these parameters in practice.

Note that �QTE� (x) 6=
Z 1

0

�QTE� (x; uD)duD, and �IQTE� 6=
Z
�QTE� (x)dFX(x), so it is hard to �nd a

relationship between these quantile treatment parameters and �MQTE
� (x; uD).

We can also identify the MTE

�MTE(x; uD) =

Z
y1dFY1jX;UD (y1jx; uD)�

Z
y0dFY0jX;UD (y1jx; uD) =

Z
�MQTE
� (x; uD)d�;

so all the parameters that can be identi�ed by �MTE(x; uD) as listed in Table IA of Heckman and Vytlacil

(2005) can also be identi�ed by �MQTE
� (x; uD). In other words, �MQTE

� (x; uD) is a more basic building

block of the average treatment parameters. Note that to identify �MTE , we do not need the RP assumption,

but we need to assume E [jYdj] <1.
Heckman et al. (1997) consider also the following parameters of treatment e¤ects: (a) the proportion

of people taking the program who bene�t from it, P (Y1 > Y0jD = 1); (b) the proportion of the total

population that bene�ts from the program, P (Y1 > Y0jD = 1)P (D = 1); (c) selected quantiles of the impact

distribution, QY1�Y0jD(� j1); (d) the distribution of gains at selected base state values, FY1�Y0jY0;D(�jy0; 1);7

These parameters can be identi�ed from�MQTE
� (x; uD). It is not hard to show that under the RP assumption

(A6),

P (Y1 � Y0 � yjD = 1) =

Z Z 1

0

�Z 1

0

1(�MQTE
� (x; uD) � y)d�

�
1� Fp(X;Z)jX(uDjx)

P (D = 1)
duDdFX(x)

7They also consider the option value of a social program, E[max(Y0; Z)jD = 1]�E[Y0jD = 1], where Z is the option provided
by the program.
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by a similar derivation as in the expression of FYdjD(yj1), so QY1�Y0jD(� j1) can be identi�ed and

P (Y1 > Y0jD = 1) = 1� P (Y1 � Y0 � 0jD = 1)

can also be identi�ed.8 Actually, we can identify any conditional or unconditional quantile of Y1 � Y0 of
interest, e.g., QY1�Y0jX;D(� jx; d), QY1�Y0jX(� jx), QY1�Y0jD(� jd), QY1�Y0(�) and QY1�Y0jX;UD (� jx; (u0D; uD]),
based on �MQTE

� (x; uD). Since the corresponding weights can be similarly de�ned as above, we neglect the

details.

Note that if only assumption (A6) holds, P (Y1 > Y0jD = 1) need not equal
R R 1

0
1(�QTT� (x) > 0)d�dFXjD(xj1)

or
R 1
0
1(�IQTT� > 0)d� . They are equal only if the RP assumption holds on X = x;D = 1 or D = 1. This

observation can be used to test whether the RP assumption holds on a larger set than X = x;UD = uD.

Because quantile is not a linear operator of the distribution function, QY1�Y0(�) and QY1(�) � QY0(�) are
generally unequal (and do not have any identi�able relationships), so the quantile treatment e¤ect and the

quantile of the impact distribution are two di¤erent parameters. On the contrary, since mean is a linear

operator of the distribution function, the average treatment e¤ect and the average of the impact distribution

are the same parameter. In this paper, we concentrate on three most popular quantile treatment e¤ect pa-

rameters in the literature: �MQTE
� (x; uD), �QTE� (x) and �IQTE� . We concentrate on di¤erence of quantiles

rather than quantile of di¤erences because the latter may not be interesting. For example, in the common

e¤ect model, the distribution of Y1 � Y0 is a point mass at a �xed value. Even if the treatment e¤ect is
not common, Y1 � Y0 may still have discrete components in its distribution. See Section 3.2 of Aakvik et
al. (2005) for de�nitions of the distributional counterparts of the MTE, ATE and ATT based on Y1 � Y0
when the outcomes are binary, and see Section 2 of Abbring and Heckman (2007) for de�nitions of the

distributional treatment e¤ects in more general settings.

Finally, we study FY1�Y0jY0;D(�jy0; 1). We have already shown in Section 2.1 that under the RP assump-
tion (A6),

P (Y1 � Y0 � yjY0 = y0; X = x;UD = uD) = 1(QY1jX;UD (FY0jX;UD (y0jx; uD)jx; uD) � y + y0);

so

P (Y1 � Y0 � yjY0 = y0; D = 1) = P (Y1 � Y0 � yjY0 = y0; UD � p(X;Z))
=
R R h

1
FUDjU0;X(p(x;z)jFY0jX(y0jx);x)

R p(x;z)
0

P (Y1 � Y0 � yjY0 = y0; X = x; UD = uD)dFUDjU0;X(pjFY0jX(y0jx); x)
i

dFZjX(zjx)dFXjY0(xjy0);

where the equality is from the fact that F(UD;X;Z)jY0=y0 = FUDjY0=y0;X;Z �FZjY0=y0;X �FXjY0=y0 = FUDjU0=FY0jX(y0jX);X �
FZjX �FXjY0=y0 , and U0 is de�ned in the Skorohod representation of Y0, Y0jX = F�1Y0jX(U0jX). So this parame-
ter is a complicated functional of QY1jX;UD (FY0jX;UD (y0jx; uD)jx; uD) and is not easy to estimate. Actually,
it is unknown whether it can be point identi�ed since FUDjU0;X is hard to be nonparametrically identi�ed

without further structures on the model.

3 Sharp Bounds for the QTE

Although QYdjX;UD (� jx; uD) can be point identi�ed from Theorem 1, we show in this section that QYdjX(� jx)
generally can only be partially identi�ed, which implies that �QTE� (x) can only be partially identi�ed. Here,

we implicitly assume that the RP assumption on X = x holds (i.e., Yd can be represented as Yd = q(d;X;Ud)

8This parameter is useful, e.g., in the median-voter model, we need to check whether P (Y1 > Y0jD = 1)P (D = 1) > 1=2.
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with U0j(X = x) = U1j(X = x)), but we do not explicitly explore the information content in this assumption.9

First, we impose the quantile independence assumption (QIA),

QYdjX;Z (� jX;Z) = QYdjX (� jX) for all � 2 (0; 1). (8)

This assumption is equivalent to (Y1; Y0) ? ZjX. This assumption is parallel to the usual IV assumption

E[YdjX;Z] = E[YdjX] in the average treatment e¤ect evaluation. As in Heckman and Vytlacil (2001b), we
assume further that

D = 1(p(X;Z) � UD) and Z ? UDjX (9)

to study the improvement on the bounds for �QTE� (x).

3.1 Bounds Under the Quantile Independence Assumption

From Proposition 2 and (36) of Manski (1994), we have sharp bounds for QYdjX(� jx) under (8):

sup
z2Zx

L1� (x; z) � QY1jX(� jx) � inf
z2Zx

R1� (x; z) ;

sup
z2Zx

L0� (x; z) � QY0jX(� jx) � inf
z2Zx

R0� (x; z) ;

where Zx �supp(ZjX = x),

L1� (x; z) =

(
QY jX;Z;D

�
1� 1��

p(x;z)

���x; z; 1� ;
�1;

if p(x; z) > 1� �;
otherwise,

R1� (x; z) =

(
QY jX;Z;D

�
�

p(x;z)

��� jx; z; 1� ;
1;

if p(x; z) � �;
otherwise,

L0� (x; z) =

(
QY jX;Z;D

�
1� 1��

1�p(x;z)

���x; z; 0� ;
�1;

if p(x; z) < �;

otherwise,

R0� (x; z) =

(
QY jX;Z;D

�
�

1�p(x;z)

���x; z; 0� ;
1;

if p(x; z) � 1� �;
otherwise.

(10)

So

IL� (x) � sup
z2Zx

L1� (x; z)� inf
z2Zx

R0� (x; z) � �QTE� (x) � inf
z2Zx

R1� (x; z)� sup
z2Zx

L0� (x; z) � IU� (x): (11)

This bound is trivial, since IL� (x) = �1 and IU� (x) = 1 if Y1 and Y0 are unbounded. Similar phenomena

also happen in the average treatment e¤ect evaluation. To avoid such trivial results, we assume that

P
�
yld(x) � Yd � yud (x)jX = x; Z

�
= 1; (12)

where yld(x); y
u
d (x) 2 R does not depend on Z from (8). To simplify notations, we assume that yl0(x) = yl1(x),

denoted as yl(x), and yu0 (x) = yu1 (x), denoted as y
u(x). Then �1 in (10) is changed to yl(x) and 1 is

changed to yu(x).

Let Px �supp(p(X;Z)jX = x), psupx = supPx and pinfx = inf Px. The width of the bounds is IU� (x) �
IL� (x), a complicated expression to evaluate, especially if Zx is uncountable. Note that the above bounds
exactly identify �QTE� (x) if IL� (x) = I

U
� (x). Note also that it is neither necessary nor su¢ cient for p(x; z)

9 In Section 6.1, we will show how Chernozhukov and Hansen (2005) point identify QYdjX(� jx) by exploring the information
content in this assumption and imposing some completeness conditions.
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to be a nontrivial function of z for these bounds to improve upon the bounds when (8) is not imposed (i.e.,

sup
z2Zx

and inf
z2Zx

are dropped from (11)); this is because QY jX;Z;D(� jx; z; d) may depend on z through other

channels than p(x; z). Evaluating the bounds for �QTE� (x) requires knowledge of�
p(x; z); QY jX;Z;D

�
1� 1� �

p(x; z)

����x; z; 1� ; QY jX;Z;D � �

p(x; z)

����x; z; 1� ;
yl(x); yu(x); QY jX;Z;D

�
1� 1� �

1� p(x; z)

����x; z; 0� ; QY jX;Z;D � �

1� p(x; z)

����x; z; 0��
for each z 2 Zx; estimators of these objects can be constructed in an obvious way, so are omitted here.
The following theorem is parallel to Corollary 1 and 2 of Proposition 6 in Manski (1994). It develops

necessary and su¢ cient conditions on psupx and pinfx for point identifying �QTE� (x).

Theorem 2 Suppose assumptions (8) and (12) hold.

(i) psupx � min f�; 1� �g and pinfx � max f�; 1� �g are necessary for point identi�cation of �QTE� (x). Also,

when pinfx and psupx are achieved at some values that Z can take, pinfx = 0 and psupx = 1 are su¢ cient

for point identi�cation of �QTE� (x) for any �xed � 2 (0; 1).

(ii) When (Y1; Y0) ? Dj (X;Z), psupx = 1 and pinfx = 0 is su¢ cient for point identi�cation of �QTE� (x) for any

�xed � 2 (0; 1). If assume further that Ydj (X = x) is continuously distributed with a positive density

on (yl(x); yu(x)), then psupx = 1 and pinfx = 0 is also necessary for point identi�cation of �QTE� (x) using

(11).

For the average treatment e¤ect evaluation, Corollary 1 of Proposition 6 in Manski (1994) implies that

pinfx � 1=2 and psupx � 1=2 are necessary for point identi�cation of �ATE(x) � E[Y1 � Y0jX = x]. A key

assumption for this result to hold is that the support of Ydj (X = x; Z) does not depend on Z. Our �rst

necessary condition requires only the support independence assumption rather that the full independence

assumption (8). So these two sets of necessary conditions are comparable. When � = 1=2, they are the same.

To understand the su¢ cient condition for point identi�cation of �QTE� (x) in Theorem 2(i), we need

to clarify the meaning of QY jX;Z;D(�(x; z)jx; z; d) when z 2 Zx but cannot be taken by Z, where �(x; z)
is the quantile index as a function of x and z. Since in this case QY jX;Z;D(�(x; z)jx; z; d) is not de�ned,
it should be understood as the continuous extension of QY jX;Z;D(�(x; z)jx; z; d) as z converges to z. The
quantile functions in (13) below are similarly understood when psupx and pinfx cannot be taken by p(x; z).

This extension is not required when Z is discretely distributed. When Z has a continuous component, we

can assume that Z can take all values in Zx, and assume (8) is satis�ed for Z 2 Zx. This assumption does
not lose generality since rede�ning a continuous random variable on a set with Lebesgue measure zero will

not a¤ect its distribution at all. Under this extension, pinfx and psupx must be achieved at some values in Zx,
so pinfx = 0 and psupx = 1 are su¢ cient for point identi�cation of �QTE� (x) for any �xed � 2 (0; 1) regardless
of Z is discrete or continuous or a mixture. Finally, note that pinfx = 0 and psupx = 1 is essentially the usual

large support condition which entails identi�cation-at-in�nity.

In the average treatment e¤ect evaluation, there are not su¢ cient conditions for point identi�cation of

�ATE(x) in the literature. From Manski (1994),

IL(x) � �ATE(x) � IU (x);
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where

IL(x) = sup
z2Zx

�
p(x; z)E [Y1jX = x; Z = z;D = 1] + (1� p(x; z))yl(x; z)

	
� inf
z2Zx

f(1� p(x; z))E [Y0jX = x;Z = z;D = 0] + p(x; z)yu(x; z)g ;

IU (x) = inf
z2Zx

fp(x; z)E [Y1jX = x;Z = z;D = 1] + (1� p(x; z))yu(x; z)g

� sup
z2Zx

�
(1� p(x; z))E [Y0jX = x; Z = z;D = 0] + p(x; z)yl(x; z)

	
;

and yl(x; z), yu(x; z) 2 R satisfy P
�
yl(x; z) � Yd � yu(x; z)jX = x;Z = z

�
= 1. Note here that yl(x; z) and

yu(x; z) depend on z if only the mean independence assumption, E[YdjX;Z] = E[YdjX], is imposed. As in
Theorem 2(i), when pinfx and psupx are achieved at some values that Z can take, pinfx = 0 and psupx = 1 implies

that
E [Y1jX = x; Z = z;D = 1]� E [Y0jX = x;Z = z;D = 0] � IL(x) � IU (x)

� E [Y1jX = x;Z = z;D = 1]� E [Y0jX = x; Z = z;D = 0] ;

so �ATE(x) is point identi�ed.

Corollary 2 of Proposition 6 in Manski (1994) implies that when (Y1; Y0) ? Dj (X;Z), �ATE(x) is point
identi�ed using his bound (35) or [IL(x); IU (x)] above if and only if psupx = 1 and pinfx = 0. Our result parallels

his result when Ydj (X = x) is continuously distributed with a positive density on (yl(x); yu(x)). It should

be emphasized that when (Y1; Y0) ? Dj (X;Z), psupx = 1 and pinfx = 0 is necessary for point identi�cation

of �QTE� (x) only when (11) is used. Actually, since QYdjX(� jx) = QYdjX;Z(� jx; z) = QY jX;Z;D(� jx; z; d),
QYdjX(� jx) can be identi�ed directly from QY jX;Z;D(� jx; z; d).

3.2 Bounds Under the Nonparametric Selection Model

The following theorem states the bounds for �QTE� (x) when assumption (9) is imposed.

Theorem 3 Suppose assumptions (8), (9) and (12) hold.

(i) �QTE� (x) has sharp bounds,

L1� (x)�R0� (x) � �QTE� (x) � R1� (x)� L0� (x) ; (13)

where

L1� (x) =

(
QY jX;p(X;Z);D

�
1� 1��

psupx

���x; psupx ; 1
�
;

yl(x);

if psupx > 1� �;
otherwise,

R1� (x) =

(
QY jX;p(X;Z);D

�
�
psupx

���x; psupx ; 1
�
;

yu(x);

if psupx � �;
otherwise,

L0� (x) =

(
QY jX;p(X;Z);D

�
1� 1��

1�pinfx

���x; pinfx ; 0� ;
yl(x);

if pinfx < �;

otherwise,

R0� (x) =

(
QY jX;p(X;Z);D

�
�

1�pinfx

���x; pinfx ; 0� ;
yu(x);

if pinfx � 1� �;
otherwise.

(ii) pinfx = 0 and psupx = 1 are su¢ cient for point identi�cation of �QTE� (x) for any �xed � 2 (0; 1). When
Y j (X = x; p(X;Z) = psupx ; D = 1) and Y j

�
X = x; p(X;Z) = pinfx ; D = 0

�
are continuously distributed

with a positive density on (yl(x); yu(x)), they are also necessary.
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(iii) [IL� (x); I
U
� (x)] in (11) will simplify to the bounds in (13) under assumption (9).

Figure 5: Intuition for L1� � QY1 (�) � R1� : psupx = 0:8, � = 0:5, �1 = 0:15, �2 = 0:46 and �3 = 0:91

Figure 5 provides some intuition for why L1� (x) � QY1jX (� jx) � R1� (x); similar intuition can be applied
to the bounds for QY0jX (� jx). From the proof of Theorem 3,

P (Y � yjp(Z) = psupx ; D = 1) psupx � P (Y1 � y) � P (Y � yjp(Z) = psupx ; D = 1) psupx + (1� psupx );

where the conditioning on X = x is depressed. Suppose (Y1; V ) � N
 
0;

 
1 �

� 1

!!
; then

P (Y � yjp(Z) = psupx ; D = 1) psupx =

Z psupx

0

�

 
y � ���1(uD)p

1� �2

!
duD:

Figure 5 shows the bounds for P (Y1 � y) when psupx = 0:8 and � = 0:5. Inverting the bounds for P (Y1 � y),
we can get the bounds for QY1 (�). When � � 1 � psupx , L1� = yl; when � > psupx , R1� = yu. Only if

� 2 (1�psupx ; psupx ), both bounds are nontrivial. This is not always possible; only if psupx > max(�; 1��) � 1=2
(pminx < min(�; 1� �)), neither the left nor the right bound for QY1(�) (QY0(�)) is trivial. Pushing � ! 0 or

1, we can see that there are nontrivial bounds for QY1(�) (QY0(�)) for all � if and only if p
sup
x = 1 (pminx = 0).

Note that Ld� (x) and R
d
� (x) are increasing functions of � ; hence the bound for QYdjX(� jx) shifts to the

right as � increases. Also observe that

1� 1� �
psupx

� � � �

psupx
and 1� 1� �

1� pinfx
� � � �

pinfx
:

Hence QY jX;p(X;Z);D (� jx; psupx ; 1) and QY jX;p(X;Z);D
�
� jx; pinfx ; 0

�
lie within the bound for QY1jX(� jx) and

QY0jX(� jx), respectively. This implies that FY1jX(�jx) = FY jX;p(X;Z);D(�jx; psupx ; 1) and FY0jX(�jx) = FY jX;p(X;Z);D(�jx; pinfx ; 0)
are not rejectable in the absence of other information.
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Evaluating the bounds for �QTE� (x) requires knowledge only of�
pinfx ; p

sup
x ; QY jX;p(X;Z);D

�
1� 1� �

psupx

����x; psupx ; 1

�
; QY jX;p(X;Z);D

�
�

psupx

����x; psupx ; 1

�
;

yl(x); yu(x); QY jX;p(X;Z);D

�
1� 1� �

1� pinfx

����x; pinfx ; 0� ; QY jX;p(X;Z);D � �

1� pinfx

����x; pinfx ; 0�� :
Estimators of these objects can be constructed in an obvious way, so are omitted here. The simpler structure

of these bounds results from assumption (9). Also, it is both necessary and su¢ cient for p(x; z) to be a

nontrivial function of z for the bounds in Theorem 3 to improve upon the bounds when (8) and (9) are not

imposed.

As shown in Section 4 of Heckman and Vytlacil (2001b), pinfx = 0 and psupx = 1 are necessary and su¢ cient

for point identi�cation of �ATE(x) under assumption (9). Our result parallels their result when Ydj (X = x)

is continuously distributed with a positive density on (yl(x); yu(x)). As shown in Section 6 of Heckman and

Vytlacil (2001b), the Manski IV bounds of �ATE(x) simplify to their bounds under assumption (9); the last

part of Theorem 3 parallels their result.

Finally, note that the bounds for �QTE� (x) can be integrated (with respect to x) to get the bounds for

�IQTE� .

3.3 Some Counterexamples

The bounds for �QTE� (x) in Theorem 3 can be applied to cases with discrete, continuous or mixed response

variables. Note that pinfx = 0 and psupx = 1 are necessary for point identi�cation of �QTE� (x) only when

Y j (X = x; p(X;Z) = psupx ; D = 1) and Y j
�
X = x; p(X;Z) = pinfx ; D = 0

�
are continuously distributed with

a positive density on (yl(x); yu(x)). The following example illustrates that pinfx = 0 and psupx = 1 is not

necessary for point identi�cation of �QTE� (x) when Yd is binary. The supplementary materials include

another example in a similar spirit where the distribution of Yd is a mixture of continuous and discrete.

Example 1 Suppose Yd 2 f0; 1g. psupx1 � P (Y = 0jX = x; p(X;Z) = psupx ; D = 1) 2 (0; 1) and pinfx0 � P (Y =
0jX = x; p(X;Z) = pinfx ; D = 0) 2 (0; 1). First check the bounds for QY1jX (� jx):

L1� (x) =

(
1

0;

if psupx > 1� � and 1� 1��
psupx

> psupx1 ;

if psupx � 1� � or [psupx > 1� � and 1� 1��
psupx

� psupx1 ];

R1� (x) =

(
0;

1;

if psupx � � and �
psupx

� psupx1 ;
if psupx < � or [psupx � � and �

psupx
> psupx1 ]:

When max
n
1� �; �

psupx1

o
< psupx � 1��

1�psupx1
or �

psupx1
� psupx � 1 � � , L1� (x) = R1� (x) = 0; when 1��

1�psupx1
<

psupx < � or max
n

1��
1�psupx1

; �
o
< psupx < �

psupx1
, L1� (x) = R1� (x) = 1. Similarly, when 1 � 1��

1�pinfx0
� pinfx <

min
n
�; 1� �

pinfx0

o
or � � pinfx � 1 � �

pinfx0
, L0� (x) = R

0
� (x) = 0; when 1 � � < pinfx < 1 � 1��

1�pinfx0
or 1 � �

pinfx0
<

pinfx < min
n
1� �; 1� 1��

1�pinfx0

o
, L0� (x) = R

0
� (x) = 1. Figure 6 shows the point identi�cation combination of

psupx (pinfx ) and p
sup
x1 (pinfx0 ) for � = 0:1; 0:25; 0:5; 0:75; 0:9. Obviously, p

inf
x = 0 and psupx = 1 are not necessary

for point identi�cation of �QTE� (x). Only if psupx1 = pinfx0 = � , pinfx = 0 and psupx = 1 are necessary. Note

also that psupx � min f�; 1� �g and pinfx � max f�; 1� �g for point identi�cation of �QTE� (x) for any psupx1 ,

pinfx0 2 (0; 1) as predicted by Theorem 2. �
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Figure 6: psupx (pinfx ) and p
sup
x1 (pinfx0 ) for Point Identi�cation of QYdjX (� jx): Red Area for QYdjX (� jx) = 1

and Blue Area for QYdjX (� jx) = 0

The next example shows that [IL� (x); I
U
� (x)] in (11) may not simplify to the bounds in Theorem 3 if

assumption (9) is not imposed. This example parallels the example in Section 6 of Heckman and Vytlacil

(2001b) where they show a similar result for �ATE(x).

Example 2 Suppose Z is binary and there are no other covariates. Take inf
z2Zx

R1� (x; z) as an example;

suppose yl(x) = 0, yu(x) = 1 and p(1) � p(x; 1) > p(x; 0) � p(0). We want to show that it is possible to

have

min

�
QY jZ;D

�
�

p(1)

���� 1; 1� 1(p(1) � �) + 1(p(1) < �); QY jZ;D � �

p(0)

���� 0; 1� 1(p(0) � �) + 1(p(0) < �)�
= QY jZ;D

�
�

p(0)

���� 0; 1� 1(p(0) � �) + 1(p(0) < �) < QY jZ;D � �

p(1)

���� 1; 1� 1(p(1) � �) + 1(p(1) < �):
We must assume min fp(0); p(1)g � � to make this result hold. If min fp(0); p(1)g � � , we need only check

q1 � QY jZ;D
�

�

p(1)

���� 1; 1� > QY jZ;D � �

p(0)

���� 0; 1� � q0:
First, the QIA needs to be satis�ed. Without loss of generality, assume Y1jZ is uniformly distributed. Then
the QIA is satis�ed if

FY1jZ(y1j0) = FY1jZ;D(y1j0; 0)(1� p(0)) + FY1jZ;D(y1j0; 1)p(0) = y1;
FY1jZ(y1j1) = FY1jZ;D(y1j1; 0)(1� p(1)) + FY1jZ;D(y1j1; 1)p(1) = y1;

(14)
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for any y1 2 [0; 1]. As long as

FY1jZ;D(q0j0; 0) =
q0 � �
1� p(0) 2 (0; 1) or � < q0 < � + (1� p(0));

FY1jZ;D(q1j1; 0) =
q1 � �
1� p(1) 2 (0; 1) or � < q1 < � + (1� p(1));

we can �nd quali�ed FY1jZ;D(y1jz; d), z = 0; 1, d = 0; 1 such that (14) is satis�ed. For example, let

FY1jZ;D(y1j0; 0) =
q0 � �

(1� p(0)) q0
y11(y1 � q0) +

 
q0��
1�p(0) � q0
1� q0

+
1� q0��

1�p(0)

1� q0
y1

!
1(y1 > q0);

FY1jZ;D(y1j0; 1) =
�

p(0)q0
y11(y1 � q0) +

 
�
p(0) � q0
1� q0

+
1� �

p(0)

1� q0
y1

!
1(y1 > q0);

FY1jZ;D(y1j1; 0) =
q1 � �

(1� p(1)) q1
y11(y1 � q1) +

 
q1��
1�p(1) � q1
1� q1

+
1� q1��

1�p(1)

1� q1
y1

!
1(y1 > q1);

FY1jZ;D(y1j1; 1) =
�

p(1)q1
y11(y1 � q1) +

 
�
p(1) � q1
1� q1

+
1� �

p(1)

1� q1
y1

!
1(y1 > q1):

Figure 7 shows the case with � = 0:5; p(0) = 0:6; p(1) = 0:7; q0 = 0:65 < 0:75 = q1. �

0.65 1
0

0.375

1

1
0

1

0.5 1
0

0.5

1

0.75 1
0

0.833
1

1
0

1

0.5 1
0

0.5

1

Figure 7: An Illustration of inf
z2Zx

R1� (x; z) 6= R1� (x) When (9) is NOT Satis�ed: � = 0:5

It is useful to construct a test to check the hypothesis that the bounds [IL� (x); I
U
� (x)] and those in

Theorem 3(i) coincide. Since IL� (x) � L1� (x) � R0� (x) and IU� (x) � R1� (x) � L0� (x) always hold, our null
hypothesis is

L1� (x)�R0� (x)� IL� (x) � 0, and IU� (x)�
�
R1� (x)� L0� (x)

�
� 0;
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or

L1� (x)� sup
z2Zx

L1� (x; z) � 0; inf
z2Zx

R0� (x; z)�R0� (x) � 0;

and L0� (x)� sup
z2Zx

L0� (x; z) � 0; inf
z2Zx

R1� (x; z)�R1� (x) � 0:

This test can also serve as a test of the monotonicty assumption (9) although (9) is only su¢ cient (may not

be necessary) for the null to hold. The left hand side of the inequalities in the null hypothesis is expressed

as intersection bounds, so the estimation and inference procedures in Chernozhukov et al. (2013) are useful

for our purpose. The complication here is that the bounds also involve p(x; z) which must be estimated at

the �rst place. This complication also appears in applying the general results in Imbens and Manski (2004)

and Stoye (2009) to construct con�dence intervals for the bounds in Theorem 3(i).

4 Semiparametric Estimation of the MQTE

Before stating our semiparametric estimation of the MQTE, we �rst use the familiar parametric speci�cation

to motivate our semiparametric setup. Then the MQTE is estimated by the distribution regression and the

weak limit of the corresponding estimator is derived. It follows to show that the bootstrap is valid for

inferences based on the MQTE. Finally, we put forward some goodness of �t tests to choose regressors in

the distribution regression.

4.1 Parametric Motivation

Suppose
Y1 = �+ '+X

0�1 + U1;

Y0 = �+X
0�0 + U0;

D = 1(V � �+X 0
1 + Z
0
2):

(15)

This model can be interpreted as the Generalized Roy Model (GRM) (Heckman and Vytlacil (2001a)). For

example, suppose the cost of receiving treatment is C = �Z 0
2 + UC , and the decision of participation
is determined by a bene�t-cost analysis: D = 1 (Y1 � Y0 � C � 0); then let 
1 = �1 � �0, � = ', and

V = UC + U0 � U1, we get the model.
Suppose (U0; U1; V ) � N(0;�), where � represents the variance and covariance matrix with the variance

of V being normalized as 1. In what follows, �2d denotes the variance of Ud, and �V d denote the covariance

between Ud and V . Due to the RP assumption, Ud can be expressed as �V dV +
p
�2d � �2V dU for the same

U which follows N(0; 1) and is independent of V . Now,

P (X;Z) = � (�+X 0
1 + Z
0
2) and �+X 0
1 + Z

0
2 = �
�1 (P (X;Z)) :

Additionally,

P (Y � yjX = x; Z = z;D = 1) = P (Y � yjX = x; p(X;Z) = p;D = 1)

= P (U1 � y � �� '� x0�1jV � �+ x0
1 + z0
2)
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=
1

p

Z p

0

�

 
y � �� '� x0�1 � �V 1��1(uD)p

�21 � �2V 1

!
duD

= �

 
y � �� '� x0�1 � �V 1��1(uD)p

�21 � �2V 1

!
;

where p = p(x; z), and uD is a point between 0 and p. Similarly,

P (Y � yjX = x; p(X;Z) = p;D = 0) = �

 
y � �� x0�0 � �V 0��1(euD)p

�20 � �2V 0

!
;

where euD is a point between p and 1. Also, it is easy to see that
�MQTE
� (x; p) = q�

p
�21 � �2V 1 + �+ '+ x0�1 + �V 1��1(p)� q�

p
�20 � �2V 0 � �� x0�0 � �V 0��1(p)

= q�

�p
�21 � �2V 1 �

p
�20 � �2V 0

�
+ '+ x0 (�1 � �0) + (�V 1 � �V 0) ��1(p);

where q� is the �th quantile of N(0; 1). Whether �MQTE
� (x; p) varies with � depends on

p
�21 � �2V 1 �p

�20 � �2V 0, whether �MQTE
� (x; p) varies with p depends on �V 1 � �V 0, and whether �MQTE

� (x; p) varies

with x depends on �1 � �0.
From the above calculation, we can specify the distribution regression as follows,

P (Y � yjX = x; p(X;Z) = p;D = d) = � (T (x; p)0�d(y)) ; y 2 Yd, (16)

where Yd is a compact subset of supp(Yd), � is a known link function, T (x; p) is a vector of transformations
of p and X such as polynomials or B-splines, and �d(y) is the unknown function-valued parameters. We

divide T (x; p) and �d(y) as (1; T (x; p)0)
0 and

�
��d(y); �d(y)

0
�
for notational convenience. In the above

example, �(�) = �(�), ��0(y) = y��p
�20��2V 0

, ��1(y) =
y���'p
�21��2V 1

, T (x; p)0�
0
(y) = �x0�0+�V 0�

�1(euD)p
�20��2V 0

, and

T (x; p)0�
1
(y) = �x0�1+�V 1�

�1(uD)p
�21��2V 1

. In this example, we can specify T (x; p) = (x0; T (p)0)0 without interaction

terms of x and p, and �
d
(y) does not depend on y. So the speci�cation of our distribution regression is

quite general and covers the existing models as special cases. Another important feature of the distribution

regression is that it does not require smoothness of the conditional density, since the approximation is

done pointwise in the threshold y, and thus handles continuous, discrete, or mixed Yd without any special

adjustment.

The link function � can be the complementary log-log function, �(v) = 1 � exp (� exp(v)), as in
Cox (1972). Other useful link functions include the Logit, Probit, linear, log-log, and Gosset functions

(see Koenker and Yoon (2009) for the latter). Note that the distribution regression model is �exible in

the sense that, for any given link function �, we can approximate the conditional distribution function

FY jX;p(X;Z);D(yjx; p; d) arbitrarily well by using a rich enough T (x; p). Thus, the choice of the link function
is not important for su¢ ciently rich T (x; p). To check whether enough terms are included in T (x; p), we will

in the following Section 4.5 develop some goodness of �t tests which extend the usual �2 goodness of �t test

as suggested in e.g., Carneiro and Lee (2009) (Page 194 and footnote 21), Carneiro et al. (2003) (Section 7)

and Hansen et al. (2004) (Section 5).10 However, as in Abadie et al. (2002) and Chernozhukov and Hansen

(2006) (see also Heckman et al. (2006) for the MTE case), we use the semiparametric rather than the

fully nonparametric setup, so the dimension of T (x; p) is �xed rather than diverges to in�nity slowly. This

assumption is valid from a practical point of view: each element of the function space where FY jX;p(X;Z);D
10See Section 2.3.6 of Chen (2007) for more suggestions.
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stays can be approximated in a suitable norm by a �nite-dimensional model, and the approximation error

can be made arbitrarily small. Such a setup eases the inference of the marginal quantile treatment process

as discussed in Section 4.3 and 4.4. In practice, T (x; p) can include polynomials of p with the highest order 2

to catch the curvature in p since we need to di¤erentiate P (Y � yjX = x; p(X;Z) = p;D = d) with respect

to p to get the MQTE. This is also a rule-of-thumb strategy in the literature, e.g., in the local polynomial

estimation, Fan and Gijbels (1996) suggest that the order of polynomial be equal to one plus the order of

the derivative of the function of interest.

In passing, we mention that our setup (16) is more general than that in Carneiro and Lee (2009), where

they explore the special structure of (15), i.e., Ud is additively separable (Yd = �d(X;�d) + Ud) and is

independent of both X and Z (so there is no heteroskedasticity and Q� (YdjX;UD) is parallel as a function
of X for each � and each UD). In their setup, FYdjX;UD (yjx; uD) is completely controlled by the distribution
of Udj (UD = uD). They use a two-step control function approach as in Das et al. (2003) to estimate

p(X;Z), �d and Ud; then the density of UdjUD is estimated using the estimate of p(X;Z) and Ud, and

the MQTE can be derived. Obviously, their estimation procedure is restricted to the continuous Yd case.

It should be emphasized that even if we assume Yd = �d(X) + Ud, and D = 1(�D(X;Z) � V � 0) with

(U1; U0; V ) ? (X;Z), we should add in interaction terms of x and p and let �d(y) depend on y. To see why,
note from the above derivation that if FU1jUD=uD is continuous in uD,

P (Y � yjX = x; p(X;Z) = p;D = 1) =
1

p

Z p

0

FU1jUD (y � �1(x)juD)duD = FU1jUD (y � �1(x)juD)

= �
�
��1

�
FU1jUD (y � �1(x)juD)

��
;

where uD 2 [0; p]. So as long as ��1
�
FU1jUD (y � �1(x)juD)

�
does not degenerate to a [y � �1(x) + f(uD)],

where a is a scalar, and f(�) is a generic function of uD, the interaction terms should appear and �1(y)
should depend on y. Similar arguments can be applied to P (Y � yjX = x; p(X;Z) = p;D = 0).

4.2 Construction of the Quantile Treatment Estimators

As in Chernozhukov et al. (2013), we estimate �d(y), y 2 Yd, by

b�d(y) = argmax
�

nX
i=1

1(Di = d)
�
1 (Yi � y) ln�

�
T (Xi; bpi)0 ��+ 1 (Yi > y) ln �1� � �T (Xi; bpi)0 ���� (17)

where bpi = p(Xi; Zi; b
) is a parametric or semiparametric estimator of the propensity score at (X 0
i; Z

0
i)
0.

So our estimator is a two-step estimator: the �rst step estimates the propensity score and the second step

estimates the counterfactual distributions. To be speci�c, we consider p(X;Z; 
) = � (R(X;Z)0
) in what

follows, where R(X;Z) is a vector of transformations of X and Z which is similarly de�ned as T (x; p), and

b
 = argmax



nX
i=1

[Di ln� (R(Xi; Zi)
0
) + (1�Di) ln (1� � (R(Xi; Zi)0
))] :

Then the conditional CDF P (Y � yjX = x; p(X;Z) = p;D = d) is estimated as

bFY jX;p(X;Z);D(yjx; p; d) = ��T (x; p)0 b�d(y)� ; (18)
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so FYdjX;UD (ydjx; p) is estimated as

bFY1jX;UD (y1jx; p) = bFY jX;p(X;Z);D(y1jx; p; 1) + p@T (x; p)0
@p

b�1(y1) � ��T (x; p)0 b�1(y1)� ;
bFY0jX;UD (y0jx; p) = bFY jX;p(X;Z);D(y0jx; p; 0)� (1� p) @T (x; p)0

@p
b�0(y0) � ��T (x; p)0 b�0(y0)� ;

and �MQTE
� (x; uD) is estimated as

b�X;UD (� jx; uD) = bF�1Y1jX;UD (� jx; uD)� bF�1Y0jX;UD (� jx; uD);
where � is the derivative of �, and F�1 is the usual left-inverse of F . Although b�X;UD (� jx; uD) is de�ned
for all uD 2 (0; 1), it is usually only studied on supp(p(X;Z)jX = x;D = 1)\supp(p(X;Z)jX = x;D =

0); see page 3 of the Documentation on Estimation Techniques of Heckman et al. (2006) for practical

implementations. For notational convenience, we denote the region of interest for p as P which is compact

and does not depend on x. Of course, when p(X;Z) is discrete or has a narrow support, extrapolation

is necessary. Note also that bFYdjX;UD (ydjx; p) need not be a monotone function of yd. Nevertheless, the
monotone rearrangement operator developed in Chernozhukov et al. (2010) can be �rst applied before

inverting bFYdjX;UD (ydjx; p). Rearrangement does not a¤ect the weak limit of b�X;UD (� jx; uD) under correct
speci�cation of the model.

Given bFYdjX;UD (ydjx; p), we can estimate the QTE by
b�X(� jx) = bF�1Y1jX(� jx)� bF�1Y0jX(� jx);

where bFYdjX(ydjx) = bFY jX;p(X;Z);D(ydjx; d; d). This estimation may involve extrapolation of p(X;Z) out of
its support. We can further estimate the IQTE by

b�(�) = bF�1Y1 (�)� bF�1Y0jX(�);
where bFYd(yd) = n�1

Pn
i=1

bFY jX(ydjXi).1112 We reemphasize here that estimation of the QTE and IQTE
requires stronger versions of the RP assumption; otherwise, they only summarize the quantile di¤erences in

the two treatment states and do not have a causal interpretation.

4.3 Asymptotics for the Quantile Treatment Estimators

We in this subsection states the weak limit of b�X;UD (� jx; uD) indexed by (�; x; uD) 2 T XP, where X =supp(X)

and T � (0; 1) is compact. Our asymptotic results extend Newey (1984) by allowing the second-step esti-

mator to be a process.

We �rst specify similar conditions as Condition DR of Chernozhukov et al. (2013).

Condition DR: (a) p(x; z) = � (R(x; z)0
), FY jX;p(X;Z);D(yjx; p; d) = �
�
T (x; p)

0
�d(y)

�
for all y 2 Yd,

x 2 X , z 2 Zx and p 2 P, where � is either Probit or Logit link function. (b) The region of interest Yd is either
a compact interval in R or a �nite subset of R. In the former case, the conditional density fY jX;Z;D(yjx; z; d)
exists, is uniformly bounded and uniformly continuous in (y; x; z) in the support of (Yd; X; Z). XP is

11Note that the average is taken over all Xi�s. This is due to Assumption (A4) which states that supp(XjD = 0) =supp(XjD =
1).
12We can also de�ne treatment e¤ects on the usual inequality measures (based on the three kinds of quantile processes above)

such as the Lorenz curve and the Gini coe¢ cient, but such inequality measures are not of main interests in this paper; see
Bhattacharya (2007) and Barrett and Donald (2009) for related discussions.
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compact. (c) E
h
k(R; T )k2

i
<1 and the minimum eigenvalue of

Jp � E
" e�2ep [1� ep]RR0

#

and

Jd(yd) � E
�
1(D = d)

�d(yd)
2

�d (yd) [1� �d (yd)]
TT 0

�
is bounded away from zero uniformly over y 2 Yd, where R = R(X;Z), ep = �(R0
), e� = �(R0
), T =

T (X; p(X;Z)), �d (yd) = � (T 0�d(yd)), and �d(yd) = �(T 0�d(yd)).

To ease the statement of our theorem, de�ne

J0p(y0) = E

�
(1� ep)e��0(y0)H0(y0)@T (X; ep)0�0(y0)

@p
TR0

�
;

J1p(y1) = E

�epe��1(y1)H1(y1)@T (X; ep)0�1(y1)
@p

TR0
�
;

with Hd(yd) = H(T 0�d(yd)) and H(�) = �(�)= f�(�) [1� �(�)]g.

W
 = G (�
) , W0(y0) = G(�0(y0)), and W1(y1) = G(�1(y1));

where

�
 = (ep�D)H(R0
)R;
�0(y0) = (1�D) [�(T 0�0(y0))� 1(Y � y0)]H(T 0�0(y0))T;
�1(y1) = D [�(T

0�1(y1))� 1(Y � y1)]H(T 0�1(y1))T;

W
 is a zero-mean random variable with variance E[�2
 ], W1(y1) is a zero-mean Gaussian process with

the covariance function E [G(�1(y1))G(�1(y01))] = E [�1(y1)�1(y01)]�E [�1(y1)]E [�1(y01)](= E [�1(y1)�1(y01)]
since E [�1(y1)] = E [�1(y01)] = 0), and W0(y0) is similarly de�ned. It is easy to check that W
 , W0(�) and
W1(�) are independent. De�ne '0�0(�)(�0)(y0; x; p) : C (Y0)

d�0 �! `1 (Y0XP) as

'0�0(�)(�0) =

�
�
�
T (x; p)

0
�0(y0)

�
� (1� p)@T (x; p)

0

@p
�0(y0) � �0

�
T (x; p)

0
�0(y0)

��
T (x; p)0�0(y0)

� (1� p)@T (x; p)
0

@p
�0(y0) � �

�
T (x; p)

0
�0(y0)

�
;

and '0�1(�)(�1)(y1; x; p) : C (Y1)
d�1 �! `1 (Y1XP) as

'0�1(�)(�1) =

�
�
�
T (x; p)

0
�1(y1)

�
+ p

@T (x; p)
0

@p
�1(y1) � �0

�
T (x; p)

0
�1(y1)

��
T (x; p)0�1(y1)

+ p
@T (x; p)

0

@p
�1(y1) � �

�
T (x; p)

0
�1(y1)

�
:

Theorem 4 Suppose Condition DR holds, and FYdjX;UD (ydjx; uD) admits a positive continuous density
fYdjX;UD (ydjx; uD) on an interval [a; b] containing an �-enlargement of the set

�
QYdjX;UD (� jx; uD)j� 2 T
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for all (x; uD) 2 XP. Then

p
n
�b�X;UD (� jx; uD)��MQTE

� (x; uD)
�

 
'0�1(�)

�
J1(y1)

�1 �J1p(y1)J�1p W
 +W1(y1)
��

fY1jX;UD (y1jx; uD)

�����
y1=QY1jX;UD (� jx;uD)

�
'0�0(�)

�
J0(y0)

�1 �J0p(y0)J�1p W
 +W0(y0)
��

fY0jX;UD (y0jx; uD)

�����
y0=QY0jX;UD (� jx;uD)

in `1 (T XP) ;

where  means the weak convergence over a metric space.

Note that J0(y0)�1
�
J0p(y0)J

�1
p W
 +W0(y0)

�
and J1(y1)�1

�
J1p(y1)J

�1
p W
 +W1(y1)

�
are the weak limits

of
p
n
�b�0(y0)� �0(y0)� and pn�b�1(y1)� �1(y1)�, respectively. They are dependent through W
 which is

inherited from the generated regressor bp. When Yd is discrete, we�d better state the weak limit indexed by Y
rather than T , where we assume that Y0 and Y1 have the same support Y; see the discussion after Theorem
1. From the proof of Theorem 4, the weak limit of bFY1jX;UD (yjx; uD)� bFY0jX;UD (yjx; uD) in `1 (YXP) is

�'0�1(�)
�
J1(y1)

�1 �J1p(y1)J�1p W
 +W1(y1)
��
+ '0�0(�)

�
J0(y0)

�1 �J0p(y0)J�1p W
 +W0(y0)
��
:

This theorem has a trivial corollary. If we �x a point in two of the three index sets, T , X and P, then
the weak limit of the corresponding quantile treatment processes is the same as that stated in the theorem

but indexed by only one set. This is often helpful to intuitively illustrate the quantile treatment processes.

Suppose X = (Xc0; Xd0)0, where Xc is the continuous component, and Xd is the discrete component with K

possible values (say, xdk, k = 1; � � � ;K). Then we usually �x x at
�
X
c
; xdk

�
to check the quantile treatment

e¤ect for an average person in Xc, where X
c
is the sample mean of Xc.

The following corollary states the weak limit of b�X(� jx).
Corollary 1 Suppose Condition DR holds, and FYdjX(ydjx) admits a positive continuous density fYdjX(ydjx)
on an interval [a; b] containing an �-enlargement of the set

�
QYdjX(� jx)j� 2 T

	
for all x 2 X . Then

p
n
�b�X(� jx)��QTE� (x)

�
 

'0�1(�)
�
J1(y1)

�1 �J1p(y1)J�1p W
 +W1(y1)
��

fY1jX(y1jx)

�����
y1=QY1jX(� jx)

�
'0�0(�)

�
J0(y0)

�1 �J0p(y0)J�1p W
 +W0(y0)
��

fY0jX(y0jx)

�����
y0=QY0jX(� jx)

in `1 (T X ) ;

where '0�0(�)(�0)(y0; x) : C (Y0)
d�0 �! `1 (Y0X ) is de�ned as

'0�0(�)(�0) = �
�
T (x; 0)

0
�0(y0)

�
T (x; 0)0�0(y0);

and '0�1(�)(�1)(y1; x) : C (Y1)
d�1 �! `1 (Y1X ) is de�ned as

'0�1(�)(�1) = �
�
T (x; 1)

0
�1(y1)

�
T (x; 1)0�1(y1):

By Theorem 4.1 and Theorem 5.2 of Chernozhukov et al. (2013), we also have the following corollary.
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Corollary 2 Suppose Condition DR holds, and FYd(yd) admits a positive continuous density fYd(yd) on an
interval [a; b] containing an �-enlargement of the set fQYd(�)j� 2 T g. Then

p
n
�b�(�)��IQTE�

�
 
R
'0�1(�)

�
J1(y1)

�1 �J1p(y1)J�1p W
 +W1(y1)
��
dFX(x) +G

�
FY1jX(y1jX)

�
fY1(y1)

�����
y1=QY1

(�)

�
R
'0�0(�)

�
J0(y0)

�1 �J0p(y0)J�1p W
 +W0(y0)
��
dFX(x) +G(FY0jX(y0jX))

fY0(y0)

�����
y0=QY0

(�)

in `1 (T ) :

Note that now there are two sources of correlation between the two components of the weak limit of
p
n
�b�(�)��IQTE�

�
: one from W
 and one from X in FY1jX(y1jX) and FY0jX(y0jX).

4.4 Inferences for Quantile Treatment Processes

The asymptotic theory in the last subsection is not practically useful given that the limit processes are

non-pivotal and their covariance functions depend on complicated unknown, though estimable, nuisance

parameters. In other words, the Durbin problem (see Durbin (1973)) appears in this context. A popular

alternative of the asymptotic methods is the resampling methods, especially, the exchangeable bootstrap. This

procedure incorporates many popular forms of resampling as special cases, namely the empirical bootstrap,

weighted bootstrap, m out of n bootstrap, and subsampling, see Section 3.6.2 of van der Vaart and Wellner

(1996) for concrete descriptions. Each bootstrap scheme is useful to a speci�c application. For example, in

small samples, we might want to use the weighted bootstrap to gain good accuracy and robustness to "small

cells", whereas in large samples, where computational tractability can be an important consideration, we

might prefer subsampling.

Let (!1; � � � ; !n) be a vector of nonnegative random variables that satisfy Condition EB in Chernozhukov
et al. (2013) or the conditions (3.6.8) of van der Vaart and Wellner (1996). For example, (!1; � � � ; !n) is
a multinomial vector with dimension n and probabilities (1=n; � � � ; 1=n) in the empirical bootstrap. The
exchangeable bootstrap uses the components of (!1; � � � ; !n) as random sampling weights in the construction
of the bootstrap version of the estimators. Its validity is a trivial application of the Functional Delta method

for Bootstrap given the Hadamard-di¤erentiability of various operators in the last subsection. So in what

follows we only describe the bootstrap procedures for our estimators and no asymptotic validity results are

stated. We will only report the procedure for �MQTE
� (x; uD) since inferences for �QTE� (x) and �IQTE� are

similar.

The bootstrap estimator of �MQTE
� (x; uD) is

b��X;UD (� jx; uD) = bF ��1Y1jX;UD (� jx; uD)� bF ��1Y0jX;UD (� jx; uD);

where

bF �Y1jX;UD (y1jx; p) = bF �Y jX;p(X;Z);D(y1jx; p; 1) + p@T (x; p)0@p
b��1(y1) � ��T (x; p)0 b��1(y1)� ;

bF �Y0jX;UD (y0jx; p) = bF �Y jX;p(X;Z);D(y0jx; p; 0)� (1� p) @T (x; p)0@p
b��0(y0) � ��T (x; p)0 b��0(y0)�

with bF �Y jX;p(X;Z);D(yjx; p; d) = ��T (x; p)0 b��d(y)� ;
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and

b��d(y) = argmax
�

nX
i=1

!i1(Di = d)
�
1 (Yi � y) ln�

�
T (Xi; bp�i )0 ��+ 1 (Yi > y) ln �1� � �T (Xi; bp�i )0 ���� ;

bp�i = p(Xi; Zi; b
�), b
� = argmax



nX
i=1

!i [Di ln� (R(Xi; Zi)
0
) + (1�Di) ln (1� � (R(Xi; Zi)0
))] :

Given b��X;UD (� jx; uD), we can conduct uniform inferences for �MQTE
� (x; uD) which cover degenerated

cases, e.g., �MQTE
� (x; uD) for a �xed x and � or a �xed x and uD, as special cases. An asymptotic

simultaneous (1 � �) con�dence band for �MQTE
� (x; uD) over � 2 T , x 2 X and uD 2 P is de�ned by the

end-point functions

b��X;UD (� jx; uD) = b�X;UD (� jx; uD)� bt1��b� (�; x; uD)1=2 =pn;
such that

lim
n!1

P
�
�MQTE
� (x; uD) 2

hb��X;UD (� jx; uD); b�+X;UD (� jx; uD)i for all (�; x; uD) 2 T XP� = 1� �: (19)

Here, b� (�; x; uD) is a uniformly consistent estimator of �(�; x; uD), the asymptotic variance function ofp
n
�b�X;UD (� jx; uD)��MQTE

� (x; uD)
�
. In order to achieve the coverage property (19), we set the critical

value bt1�� as a consistent estimator of the (1� �)th quantile of the maximal t-statistic:
t = sup

(�;x;uD)2T XP

p
nb� (�; x; uD)�1=2 ��� b�X;UD (� jx; uD)��MQTE

� (x; uD)
��� :

It remains to obtain b� (�; x; uD) and bt1��. For this purpose, we �rst get bZ�b (�; x; uD), b = 1; � � � ; B, as
iid realization of bZ�(�; x; uD) = pn�b��X;UD (� jx; uD)� b�X;UD (� jx; uD)� for (�; x; uD) 2 T XP. Then com-
pute a bootstrap estimate of � (�; x; uD)

1=2 such as the bootstrap interquartile range13 rescaled with the

normal distribution: b� (�; x; uD)1=2 = (q0:75(�; x; uD)� q0:25(�; x; uD)) =1:349 for (�; x; uD) 2 T XP, where
q�(�; x; uD) is the �th quantile of

nbZ�b (�; x; uD); b = 1; � � � ; Bo. Finally, bt1�� is set as the (1 � �)th sam-
ple quantile of ft�b ; b = 1; � � � ; Bg, where t�b = sup

(�;x;uD)2T XP
b� (�; x; uD)�1=2 ��� bZ�b (�; x; uD)���. By modifying the

procedure above, we can test whether �MQTE
� (x; uD) is constant in � or in x or in uD.

Except constructing uniform bands for �MQTE
� (x; uD), the inference procedure above can also be used

to test unconfoundedness and stochastic dominance.14 Under unconfoundedness, FY jX;p(X;Z);D(yjx; p; d)
does not depend on p for any y, x and d,15 so we can check whether the components of �d(y) associated

with all components of T (x; p) involving p are zero to test unconfoundedness. The test statistic can be the

Kolmogorov-Smirnov (KS) statistic

Kn =
p
n sup
y02Y0




b�p0 (y0)


+pn sup
y12Y1




b�p1 (y1)



13Here, the interquartile range rather than the standard deviation is used to avoid technical complexities, see Remark 3.2 of

Chernozhukov et al. (2013).
14See Example 3 and 4 of Section 4.1 in Chernozhukov and Hansen (2006) for alternative tests in their framework.
15This is because FY jX;p(X;Z);D (yjx; p; 1) p =

Z p

0
FY1jX;UD (yjx; uD)duD = pFY1jX(yjx) under unconfoundedness, which

implies FY jX;p(X;Z);D (yjx; p; 1) = FY1jX(yjx) does not depend on p. This result can be similarly extended to the case with
D = 0.
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or the Cramer-von Mises (CM) statistic

Cn = n

Z
Y0




b�p0 (y0)


2 dy0 + n Z
Y1




b�p1 (y1)


2 dy1
where k�k is the Euclidean norm, and b�pd(y) is the component of b�d(y) associated with p.16 Since the

bootstrap is valid, we can check whether Kn > bc1�� to determine whether unconfoundedness holds, wherebc1�� is the (1� �)-th sample quantile of fK�
b ; b = 1; � � � ; Bg with

K�
b = sup

y02Y0

p
n



b�p�0 (y0)� b�p0 (y0)


+ sup

y12Y1

p
n



b�p�1 (y1)� b�p1 (y1)


 :

A similar procedure can also be applied to Cn.

An alternative way to test unconfoundedness is based on b�X;UD (� jx; uD). Under unconfoundedness,
�MQTE
� (x; uD) does not depend on uD (in model (15), this is equivalent to �V 1 = �V 0), so we can test

unconfoundedness by checking whether b�X;UD (� jx; uD) = b�X;UD (� jx; uD) for a speci�ed uD 2 P. For this
purpose, we just change the test statistic to

p
n sup
(�;x;uD)2T XP

��� b�X;UD (� jx; uD)� b�X;UD (� jx; uD)���
or

n

Z
T XP

��� b�X;UD (� jx; uD)� b�X;UD (� jx; uD)���2 d�dxduD;
and bootstrap the critical values. Similar ideas can also be used to test whether D a¤ects only the location

of outcome Y conditional on X and UD, i.e., �MQTE
� (x; uD) does not depends on � (in model (15), this

is equivalent to �21 � �2V 1 = �20 � �2V 0), based on, e.g., b�X;UD (� jx; uD) � b�X;UD (0:5jx; uD). Furthermore,
we can also test the setup of Carneiro and Lee (2009): Yd = �d(X) + Ud, D = 1(�D(X;Z) � V � 0) and

(U1; U0; V ) ? (X;Z). In their setup, bF�1YdjX;UD (� jx; uD) is parallel as a function of x for each � and each uD,
so bF�1YdjX;UD (�1jx; uD1)� bF�1YdjX;UD (�2jx; uD2) does not depend on x for any �1; �2 2 T and uD1; uD2 2 P. As
a result, the test can be based on

p
n sup
(�1;�2;uD1;uD2;x)2T T PPX

���h bF�1YdjX;UD (�1jx; uD1)� bF�1YdjX;UD (�2jx; uD2)i� h bF�1YdjX;UD (�1jx; uD1)� bF�1YdjX;UD (�2jx; uD2)i���
or

n

Z
T T PPX

���h bF�1YdjX;UD (�1jx; uD1)� bF�1YdjX;UD (�2jx; uD2)i� h bF�1YdjX;UD (�1jx; uD1)� bF�1YdjX;UD (�2jx; uD2)i���2 d�1d�2duD1duD2dx
for a speci�ed x 2 X .
As to the test of (�rst-order) stochastic dominance, the null is �MQTE

� (x; uD) � 0 for all (�; x; uD) 2
T XP. In this case, the least favorable null is �MQTE

� (x; uD) = 0 for all (�; x; uD) 2 T XP, and one may use
the one-sided KS or CM statistics, i.e.,

Sn =
p
n sup
(�;x;uD)2T XP

max
�
�b�X;UD (� jx; uD); 0�

16The test statistic can be extended to base on



b�pd(yd)


b�p

d
(yd)

�
qb�pd(yd)0b�pd(yd)b�pd(yd), where b�pd(yd) is some weight

matrix with the probability limit positive de�nite uniformly on Yd, e.g., the inverse of an estimator of the asymptotic variance
matrix of b�pd(yd). However, as mentioned in footnote 13, we need to take caution in estimating this weight matrix; see Kato
(2011) for more discussions.
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or

Mn = n

Z
T XP

���max��b�X;UD (� jx; uD); 0����2 d�dxduD;
to test the hypothesis. The bootstrapped critical values can be obtained from bZ�(�; x; uD) in an obvious
way. If we only want to test stochastic dominance for x and/or uD �xed, the procedure can be adjusted

correspondingly. Note that the null here is composite, while the bootstrapped critical values are based on

the least favorable null, so the test procedure may tend to be conservative (i.e., the type-I error is lower than

the nominal level). This testing idea is used in Chernozhukov and Hansen (2006). Other approaches are

discussed, for example, by McFadden (1989), Anderson (1996), Davidson and Duclos (2000), Abadie (2002),

Barrett and Donald (2003), and Linton et al. (2005).

Similar ideas as in testing stochastic dominance can be applied to test the validity of the our setup (1), (2)

and assumptions (A1)-(A5). In our setup, P (Y � yjX = x; p(X;Z) = p;D = 1) p and�P (Y � yjX = x; p(X;Z) = p;D = 0) (1� p)
as a function of p must have a positive slope of smaller than 1, so the null is

d [P (Y � yjp(Z) = p;D = 1) p]

dp
2 [0; 1] and � d [P (Y � yjp(Z) = p;D = 0) (1� p)]

dp
2 [0; 1]:17

In practice, violation of the range [0; 1] can be due to sampling variation or to violations of the assumptions,

especially, the exclusion assumption, the ignorability assumption (A2), and the monotonicity assumption.18

Using the test statistic

p
n sup
(y1;x;uD)2Y1XP

max
�
� bFY1jX;UD (y1jx; p); 0�+pn sup

(y1;x;uD)2Y1XP
max

� bFY1jX;UD (y1jx; p)� 1; 0�
+
p
n sup
(y0;x;uD)2Y0XP

max
�
� bFY0jX;UD (y0jx; p); 0�+pn sup

(y0;x;uD)2Y0XP
max

� bFY0jX;UD (y0jx; p)� 1; 0�
or

n

Z
Y1XP

���max�� bFY1jX;UD (y1jx; p); 0����2 dy1dxduD + n Z
Y1XP

���max� bFY1jX;UD (y1jx; p)� 1; 0����2 dy1dxduD
+ n

Z
Y0XP

���max�� bFY0jX;UD (y0jx; p); 0����2 dy0dxduD + n Z
Y0XP

���max� bFY0jX;UD (y0jx; p)� 1; 0����2 dy0dxduD;
we obtain alternative tests of those in Heckman and Vytlacil (2005).

In practice, the supremum and integration on Yd, T , X and P can be replaced by their corresponding

discretized versions by stochastic equicontinuity of the involved processes as long as the distance between

adjacent grid points goes to zero as n!1.

4.5 Goodness of Fit Tests

In this subsection, we suggest some goodness of �t tests to choose the terms in T (x; p) and R(x; z). The null

hypothesis in our case is

H0 : FY jX;p(X;Z);D(ydjx; p; d) = � (T (x; p)0�d(yd)) with p(x; z) = � (R(x; z)0
)
for some �d(yd) 2 Bd(Yd), 
 2 � and all (y; x; z; p) 2 YdXZP,

17See also Section 5 of Imbens and Rubin (1997) for the testable restrictions that the complier�s outcome densities when
D = 0 and D = 1 are nonnegative; their restrictions can only be applied for discrete Z.
18 It may also be due to misspeci�cation of the distribution regression (16); see the next subsection on this issue.
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where Bd(Yd) is the class of bounded mappings on Yd, and � is a compact parameter space. The alternative
H1 is the negation of H0, i.e., FY jX;p(X;Z);D(ydjx; p; d) 6= �(T (x; p)0�d(yd)) with p(x; z) = � (R(x; z)0
) for
all �d(yd) 2 Bd(Yd), 
 2 � and some (y; x; z; p) 2 YdXZP, where Z and P are understood as the support of
Z and p(X;Z), respectively. Under H1 and Condition DR (except (a)), we can still estimate 
 and �d(y),

but the estimators should be understood as estimating pseudo-true values. Violation of H0 may be due to

either p(x; z) 6= �(R(x; z)0
) or FY jX;p(X;Z);D(yjx; p; d) 6= �(T (x; p)0�d(y)) even if p(x; z) = � (R(x; z)0
).
As in Heckman (1984), our test is based on the marginal distribution of (Y;D) rather than the conditional

distribution FY jX;p(X;Z);D or the joint distribution FY;X;p(X;Z);D. Our test statistics are constructed by

comparing Hd(yd) = P (Y � yd; D = d) with F d(yd;�d; 
) = E [1(D = d)�(T (X;� (R(X;Z)0
))0�d)]. Note

that under H0, Hd(yd) = F
d(yd;�d; 
) for some �d(yd) 2 Bd(Yd), 
 2 � and all (yd; x; z) 2 YdXZ. This is

because

Hd(yd) = P (Y � yd; D = d) = E [P (Y � yd; D = djX; p(X;Z))]
= E [P (Y � ydjX; p(X;Z); D = d)P (D = djX; p(X;Z))]
= E

�
FY jX;p(X;Z);D(ydjX; p(X;Z); 1)1(D = d)

�
= F d(yd;�d; 
) under H0,

where the second to last equality is from the law of iterated expectation. We consider P (Y � yd; D = d)

rather than P (Y � ydjD = d) to avoid denominators in the CDF estimation. Our test statistics are

TKn =
p
n sup
y12Y1

��� bH1
n(y1)� bF 1n(y1)���+pn sup

y02Y0

��� bH0
n(y0)� bF 0n(y0)��� ; (20)

or

TCn = n

Z
Y1

� bH1
n(y1)� bF 1n(y1)�2 dw1(y1) + n Z

Y0

� bH0
n(y0)� bF 0n(y0)�2 dw0(y0); (21)

where

bHd
n(yd) =

1

n

nX
i=1

1(Yi � yd)1(Di = d) and bF dn(yd) = 1

n

nX
i=1

bFY jX;p(X;Z);D(ydjXi; bpi; d)1(Di = d)
with bFY jX;p(X;Z);D and bpi constructed as in Section 4.2, and wd(�) is a known weighting function on Yd. Our
test extends that of Heckman (1984) in at least three aspects. First, the building elements of TKn and TCn , bHd

n

and bF dn , are indexed by a continuum rather than a few sets, so our tests can detect more possible deviations

from H0. Second, the parameters under the null, �d(�), are function-valued rather than �nite-dimensional.
Third, the CDFs under the null are estimated by a two-step procedure rather than a one-step procedure.

The following theorem states the consistency of TKn and TCn and their asymptotic properties under the

null and local alternative. To ease our exposition of the theorem, de�ne

W 0
H(y0) = G(�0H(y0));W 1

H(y1) = G(�1H(y1));W 0
F (y0) = G(�0F (y0)) and W 1

F (y1) = G(�1F (y1));

with

�0H(y0) = (1�D) � 1(Y � y0)�H0(y0); �
1
H(y1) = D � 1(Y � y1)�H1(y1);

�0F (y0) = (1�D) � �(T 0�0)� F 0(y0); �1F (y1) = D � �(T 0�1)� F 1(y1);
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and

G0H(y0) =W 0
H(y0);G1H(y1) =W 1

H(y1);

G0F (y0) = A0
J�1p W
 �A00J0(y0)�1
�
J0p(y0)J

�1
p W
 +W0(y0)

�
+W 0

F (y0);

G1F (y1) = A1
J�1p W
 �A11J1(y1)�1
�
J1p(y1)J

�1
p W
 +W1(y1)

�
+W 1

F (y1);

with

A0
 = E

�
(1�D)@T (X; ep)0�0

@p
�0e�R0� ; A00 = E [(1�D)�0T 0] ;

A1
 = E

�
D
@T (X; ep)0�1

@p
�1e�R0� ; A11 = E [D�1T 0] :

Our local alternatives are

qn(x; z) = (1� �
=
p
n)p� (x; z) + (�
=

p
n) q(x; z);

Qdn(ydjx; p) = (1� �d=
p
n)F d� (ydjx; p) + (�d=

p
n)Qd(ydjx; p);

(22)

where p� (x; z) = � (R(x; z)0
�) for some 
� 2 � and all (x; z) 2 XZ, q(x; z) 6= �(R(x; z)0
) for all 
 2 �
and some (x; z) 2 XZ, F d� is the CDF such that F d� (ydjx; p) = �(T (x; p)0��d) for some �

�
d 2 Bd(Yd) and

all (yd; x; p) 2 YdXP, Qd is a CDF such that Qd(ydjx; p) 6= �(T (x; p)0�d) for all �d 2 Bd(Yd) and some
(yd; x; p) 2 YdXP.

Theorem 5 Under Condition DR (b) and (c), the following statements hold:

(i) Under H0,
TKn

d�! sup
y12Y1

��G1H(y1)�G1F (y1)��+ sup
y02Y0

��G0H(y0)�G0F (y0)�� ;
and

TCn
d�!
Z
Y1

�
G1H(y1)�G1F (y1)

�2
dw1(y1) +

Z
Y0

�
G1H(y0)�G1F (y0)

�2
dw0(y0):

(ii) Under any �xed alternative such that P (Y 2 Sd (�d; 
) ; D = d) > 0 for all �d 2 Bd(Yd), 
 2 �,

lim
n!1

P
�
TKn > cn

�
= 1 and lim

n!1
P
�
TCn > cn

�
= 1;

for any sequences of random variables fcn : n � 1g with cn = Op(1), where Sd (�d; 
) = fyd 2 Yd :
Hd(yd) 6= F d(yd;�d; 
)g.

(iii) If Qdn(yd) = E
�
Qdn(ydjX; qn(X;Z))1(D = d)

�
is contiguous to the distribution function Qd�(yd) =

E[F d� (ydjX; p� (X;Z))1(D = d)],19 then

TKn
d�! sup

y12Y1

��G1H(y1)�G1F (y1) + �1(y1)��+ sup
y02Y0

��G0H(y0)�G0F (y0) + �0(y0)�� ;
and

TCn
d�!
Z
Y1

�
G1H(y1)�G1F (y1) + �1(y1)

�2
dw1(y1) +

Z
Y0

�
G0H(y0)�G0F (y0) + �0(y0)

�2
dw0(y0);

19Since we concentrate on Yd, we require only that for any sequence of measurable sets An, Qd�(An \ Yd) ! 0 implies
Qdn(An \ Yd)! 0.
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where

�d(yd) = �dE
��
Qd(ydjX; ep)� �(T 0�d)� 1(D = d)

�
+ �


�
Ad
 +A

d
dJd(yd)

�1Jdp(yd)
�
J�1p E [(q(X;Z)�D)H(R0
)R]

+ �dA
d
dJd(yd)

�1E
��
�(T 0�d)�Qd(ydjX; ep)�H(T 0�d)T � 1(D = d)

�
;

and all terms in �d(yd) are evaluated at 
� and ��d .

We have a few remarks on Theorem 5. First, in (i), GdH(�) andGdF (�) are the weak limits of
p
n
� bHd

n(�)�Hd(�)
�

and
p
n
� bF dn(�)� F d(�)� under the null where Hd(�) = F d(�). Second, (ii) implies that our tests are consis-

tent against some types of �xed alternatives. Third, from (iii), the local powers are from two sources, the

deviation of p(x; z) from the form of � (R(x; z)0
) (the �
 term) and the deviation of FY jX;p(X;Z);D(yjx; p; d)
from the form of �(T (x; p)0�d) (the two �d terms). The �rst source has a direct e¤ect on the estimation of

FY jX;p(X;Z);D(yjx; p; d) through p (the term associated with Ad
) and an indirect e¤ect through �d (the term

associated with Add). The second source may a¤ect the estimation ofH
d(�) (the �rst �d term) and also the esti-

mation of F d(�) through the estimation of FY jX;p(X;Z);D(yjx; p; d) (the second �d term). Fourth, when 
� and
��d take the pseudo-true value under q(x; z) andQ

d(ydjx; p), �d(yd) = �dE
��
Qd(ydjX; ep)� �(T 0�d)� 1(D = d)

�
and the other two terms are equal to zero. In this case, �d(yd) is proportional to the di¤erence between the

marginal distributions implied by Qd(ydjx; p) and F d� (ydjx; p). Fifth, from Section 6 of Andrews (1997) and

Section 3.2 of Rothe and Wied (2013), when q does not have a larger support than p�, a su¢ cient condition

for contiguity is

sup
(yd;x;p)2YdXP:fd� (ydjx;p)>0

qd(ydjx; p)=fd� (ydjx; p) <1;

where qd and fd� are the density functions corresponding to Q
d and F d� . Intuitively, this would be case

when Qd(�j�) has lighter tails than F d� (�j�). Sixth, when �
 = �d =
p
n, qn(x; z) = q(x; z) and Qdn(ydjx; p) =

Qd(ydjx; p), which implies that the powers of our tests against q(x; z) and Qd(ydjx; p) when the sample size
is n can be approximated by P

�
TKA > cK(�)

�
and P

�
TCA > cC(�)

�
with �
 = �d =

p
n, where TKA and TCA

represent the asymptotic distributions of our test statistics under the local alternative, and cK(�) and cC(�)

represent the corresponding critical values at level � implied by the asymptotic null distributions in (i).

Note that the critical values cK(�) and cC(�) depend on the true value of (
0; �00; �
0
1)
0 under H0 and also

the distribution of (X 0; Z 0; D)0, so are nuisance parameter dependent. This motivates us to use the bootstrap

to obtain these critical values. Our semiparametric bootstrap procedure is as follows.

Step 1. Draw a bootstrap sample f(X�
i ; Z

�
i ; D

�
i ) ; 1 � i � ng with replacement from the realized values

f(Xi; Zi; Di) ; 1 � i � ng. Compute the estimate b
� of 
 and get bp�i = p(X�
i ; Z

�
i ; b
�).

Step 2. For every i with D�
i = d, put

Y �i =

( bF�1Y jX;p(X;Z);D(U�i jX�
i ; bp�i ; d);

Yi�;

if bF�1Y jX;p(X;Z);D(U�i jX�
i ; bp�i ; d) 2 Yd;

otherwise,

where Yi� is the Yi corresponding to X�
i in the original sample, fU�i ; 1 � i � ng is a simulated iid sequence

of standard uniformly distributed random variables, and bFY jX;p(X;Z);D(�jx; p; d) takes the form as in (18).

Step 3. Use the bootstrap data f(Y �i ; X�
i ; bp�i ; D�

i ); 1 � i � ng to compute estimates bHd�
n and bF d�n exactly as

in (20) and (21), and compute the corresponding bootstrap realization of the test statistics:

TK
�

n =
p
n sup
y12Y1

��� bH1�
n (y1)� bF 1�n (y1)���+pn sup

y02Y0

��� bH0�
n (y0)� bF 0�n (y0)��� ;
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or

TC�n = n

Z
Y1

� bH1�
n (y1)� bF 1�n (y1)�2 dw1(y1) + n Z

Y0

� bH0�
n (y0)� bF 0�n (y0)�2 dw0(y0):

Step 4. Repeat Step 1-3 B times to get
�
TK

�

nb

	B
b=1

and
�
TC

�

nb

	B
b=1

which approximate the bootstrap dis-

tribution of the test statistics, and use the (1 � �)th empirical quantiles of
�
TK

�

nb

	B
b=1

and
�
TC

�

nb

	B
b=1

to

approximate the asymptotic critical values. The bootstrap critical values are denoted as bcKn (�) and bcCn (�),
respectively.

Since the bootstrap distribution in Step 2 mimics the distribution of the data over Yd under the null, our
bootstrap procedure is valid even though the data might be generated from an alternative distribution. The

following theorem rigorously states this result by extending Corollary 1 of Andrews (1997) and Theorem 3

of Rothe and Wied (2013).

Theorem 6 Under Condition DR (b) and (c), the following statements hold for any � 2 (0; 1):

(i) Under H0,
lim
n!1

P
�
TKn > bcKn (�)� = � and lim

n!1
P
�
TCn > bcCn (�)� = �:

(ii) Under any �xed alternative such that P (Y 2 Sd (�d; 
) ; D = d) > 0 for all �d 2 Bd(Yd), 
 2 �,

lim
n!1

P
�
TKn > bcKn (�)� = 1 and lim

n!1
P
�
TCn > bcCn (�)� = 1:

(iii) Under any contiguous local alternative as in Theorem 5(iii),

lim
n!1

P
�
TKn > bcKn (�)� � � and lim

n!1
P
�
TCn > bcCn (�)� � �:

(i) implies that under H0, bcKn (�) p�! cK(�) and bcCn (�) p�! cC(�), where the randomness in the probability

convergence includes both the randomness of the original sample and the independent randomness of the

bootstrap simulations (this also applies to other statements in Theorem 6). (ii) is a corollary of Theorem

5(ii) since bcKn (�) and bcCn (�) are bounded in probability under the �xed alternative. (iii) states that TKn and

TCn are asymptotically locally unbiased.

We have a few further remarks on Theorem 5 and 6. First, although hard to imagine, it is indeed possi-

ble that two marginal distributions match each other although the corresponding conditional distributions

are di¤erent. As an alternative of our tests which are based on marginal distributions, Andrews (1997) and

Rothe and Wied (2013) suggest to test whether the joint empirical distribution matches the joint distribution

implied by the conditional distribution under the null. In our case, we need to test whether the empirical dis-

tribution of (Yi; Xi; bpi; Di) matches the distribution implied by FY jX;p(X;Z);D(ydjx; bp; d) = � (T (x; bp)0�d(yd))
with bp(x; z) = � (R(x; z)0b
). Such tests are technically di¢ cult because the weak limit of the empirical dis-
tribution fbpigni=1 is hard to derive given that bpi = �(R(Xi; Zi)0b
) is a random transformation of (X 0

i; Z
0
i)
0.

Our tests avoid this problem. Also, since the distribution of covariates is usually complicated, our tests

are easier to implement than the tests based on the joint distribution given that the distribution of Y jD
is usually continuous. Second, as suggested at the end of the last subsection, we can discretize Yd in the
construction of our test statistics. For example, our test statistics can be

TKn =
p
n sup
Di=1;Yi2Y1

��� bH1
n(Yi)� bF 1n(Yi)���+pn sup

Di=0;Yi2Y0

��� bH0
n(Yi)� bF 0n(Yi)��� ;
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or

TCn =
nX
i=1

1(Di = 1; Yi 2 Y1)
� bH1

n(Yi)� bF 1n(Yi)�2 + nX
i=1

1(Di = 0; Yi 2 Y0)
� bH0

n(Yi)� bF 0n(Yi)�2 ;
where wd(yd) in TCn corresponds to the empirical distribution of Yi 2 Yd such that Di = d. It can be shown
that the asymptotic results in Theorem 5 still hold with wd(yd) = P (Y � yd; D = d) and the bootstrap

procedure with corresponding adjustments is still valid. Third, our tests concentrate on testing whether

FY jX;p(X;Z);D(ydjx; p; d) = � (T (x; p)0�d(yd)), so misspeci�cation in p(X;Z) has only indirect e¤ects on the
power of our tests. Nevertheless, before carrying out our tests, we can �rst use the conditional Kolmogorov

(CK) test of Andrews (1997) to check whether p(x; z) = � (R(x; z)0
) is misspeci�ed; see also McFadden

(1974), Horowitz (1985) and Andrews (1988a,b) for related discussions.

5 Counterfactual Analysis

The tools developed in the last section can be used for counterfactual analysis. We �rst derive the transition

matrix of deciles of (marginal) Y0 to deciles of (marginal) Y1 as Table 8 of Carneiro et al. (2003), and then

estimate a policy relevant treatment parameter under policy invariance. Many other counterfactual analyses

can be conducted since the conditional joint distribution of (Y0; Y1) given (X;UD) is known under the RP

assumption (A6). So this section provides an alternative way to remove the veil of ignorance in assessing

the distributional impacts of social policies as described in Carneiro et al. (2001).

5.1 Derivation of the Transition Matrix

It should be emphasized that we do not impose the unconditional RP assumption in this subsection as

in Corollary 2; otherwise, the transition matrix will degenerate to the identity matrix. Actually, only the

conditional RP assumption (A6) is imposed.

For each yi such that Di = 0, we need to derive the corresponding outcome when Di = 1; similarly, for

each yi such that Di = 1, we need to derive the corresponding outcome when Di = 0. Denote the data

points with Di = 0 as fy0ign0i=1 and with Di = 1 as fy1ig
n1
i=1, where nd =

Pn
i=1 1(Di = d). Assume further

that fy0ign0i=1 and fy1ig
n1
i=1 are ordered ascendingly. Now, the counterfactual outcome for y0i is estimated as

by1i = bF�1Y1jX;UD � bFY0jX;UD (y0ijXi; bpi)���Xi; bpi�
and the counterfactural outcome for y1i is estimated as

by0i = bF�1Y0jX;UD � bFY1jX;UD (y1ijXi; bpi)���Xi; bpi� :
As a result, the counterfactural samples for Y0 are Y0 = fy01; � � � ; y0n0 ; by01; � � � ; by0n1g and the corresponding
counterfactual samples for Y1 are Y1 = fy11; � � � ; y1n1 ; by11; � � � ; by1n0g. Suppose the jth decile of Y0 is y(j)0 and

denote Y(j)0 =
n
yi 2 Y0jy(j�1)0 < yi � y(j)0

o
, where j = 1; � � � ; 10, y(0)0 = minY0 and y

(10)
0 = maxY0.20 The

set of the corresponding indices in Y(j)0 is denoted as I(j)0 =
n
ijyi 2 Y(j)0

o
and the set of the corresponding

20To avoid the identi�cation problem in �nite samples, we can assume the counterfactual value of the small-
est (say) 0:1% of fy01; � � � ; y0n0g(fy11; � � � ; y1n1g) will fall in the �rst decile of Y1(Y0) and that of the largest
(say) 0:1% of fy01; � � � ; y0n0g(fy11; � � � ; y1n1g) will fall in the last decile of Y1(Y0). Also, the smallest (say)
0:1% of fy01; � � � ; y0n0g(fy11; � � � ; y1n1g) will stay in the �rst decile of Y0(Y1) and the largest (say) 0:1% of
fy01; � � � ; y0n0g(fy11; � � � ; y1n1g) will stay in the last decile of Y0(Y1).
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data points in Y1 is denoted as eY(j)1 =
n
yi 2 Y1ji 2 I(j)0

o
. Y(j)1 and I(j)1 are similarly de�ned. Then the

transition matrix is estimated as0BBBBBBBBBB@

#
n
I(1)0 \I(1)1

o
#
n
I(1)0

o #
n
I(1)0 \I(2)1

o
#
n
I(1)0

o � � �
#
n
I(1)0 \I(10)1

o
#
n
I(1)0

o
#
n
I(2)0 \I(1)1

o
#
n
I(2)0

o #
n
I(2)0 \I(2)1

o
#
n
I(2)0

o � � �
#
n
I(2)0 \I(10)1

o
#
n
I(2)0

o
...

...
. . .

...
#
n
I(10)0 \I(1)1

o
#
n
I(10)0

o #
n
I(10)0 \I(2)1

o
#
n
I(10)0

o � � �
#
n
I(10)0 \I(10)1

o
#
n
I(10)0

o

1CCCCCCCCCCA
;

where # fAg for a set A is the number of the elements in A, and #
n
I(i)0
o
, i = 1; � � � ; 10, is roughly n=10.

5.2 Relative Marginal Policy Relevant Quantile Treatment E¤ect

As in Heckman and Vytlacil (2001c) or Section 3 of Heckman and Vytlacil (2005), we postulate a policy

question or decision problem of interest and derive the treatment parameter that answer it. We consider

a class of policies that a¤ect p(X;Z), but do not a¤ect FYdjX;UD (ydjx; uD) or �MQTE
� (x; uD). Usually, we

condition on X and study the e¤ect of changing Z. Let a and a0 denote two potential policies (without loss

of generality, let a be the original observed policy and a0 be the hypothetical unrealized policy); then we

use subscripts a and a0 to distinguish variables under these two policies and assume that the assumptions in

Section 2.1 are satis�ed under these two policies.

Policy invariance is a key assumption for any study of policy evaluation. It allows analysts to characterize

outcomes without specifying how those outcomes are obtained. Policy invariance was �rst de�ned and

formalized by Marschak (1953) and Hurwicz (1962); see Section 4.6 of Heckman and Vytlacil (2007a) for

precise de�nitions of invariance. For our purpose, we need only the following assumption:

(A7) The distribution of (Y0;a; Y1;a; UD;a) conditional on Xa = x is the same as the distribution of

(Y0;a0 ; Y1;a0 ; UD;a0) conditional on Xa0 = x.

This assumption is exactly the assumption (A-7) of Heckman and Vytlacil (2005).21 To simplify notations,

we keep implicit the conditioning on Xa = x and Xa0 = x.

Although in principle, we can estimate the policy relevant quantile treatment e¤ect (PRQTE) as

PRQTEa;a
0

� = QYa0 (�)�QYa (�) ; 22

the support of pa and pa0 may be far from [0; 1], where QYa0 (�) is the inverse function of

FYa0 (y) �
Z 1

0

��
1� Fpa0 (uD)

�
FY1;ajUD;a

(yjuD) + Fpa0 (uD)FY0;ajUD;a
(yjuD)

�
duD;

23 (23)

and QYa (�) is the inverse function of

FYa(y) �
Z 1

0

�
(1� Fpa(uD))FY1;ajUD;a

(yjuD) + Fpa(uD)FY0;ajUD;a
(yjuD)

�
duD;

21Policy invariance assumption may not hold in practice. For example, in the education expansion example, increases in
college enrollment may a¤ect the spending on each student; as a result, the distribution of Y1j (X;UD) will shift left.
22Note that we implicitly assume the RP condition holds between the policy regime and the original regime.
23See the supplementary materials for its derivation.
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pa = pa(Za) and pa0 = pa0(Za0). Extrapolation out of Px;a and Px;a0 may generate unreliable predictions
especially when bFYajpa;Da

is estimated based on a nonparametric procedure. To avoid this problem, Carneiro

et al. (2010) consider a marginal version of the policy relevant treatment e¤ect (MPRTE) in the framework

of average treatment evaluation.24 We extend the MPRTE to the marginal policy relevant quantile treatment

e¤ect (MPRQTE) below.

To de�ne the MPRQTE, assume Fpa0 stays in a parametrized space fF� : � 2M; 0 2M;F0 = Fpag. Then
the MPRQTE is a path derivative along the path fF� : � 2Mg of

PRQTE� (F�) =
Q� (�)�Q0 (�)
E�[p]� E0[p]

;

i.e.,

MPRQTE� (fF�g) = lim
�!0

PRQTE� (F�)

where E�[p] = EF� [p], Q� (�) is the inverse function of

G�(y) �
Z 1

0

�
(1� F�(uD))FY1jUD (yjuD) + F�(uD)FY0jUD (yjuD)

�
duD

and Q0(�) is the inverse function of

G0(y) �
Z 1

0

�
(1� F0(uD))FY1jUD (yjuD) + F0(uD)FY0jUD (yjuD)

�
duD

with FYdjUD (yjuD) = FYd;ajUD;a
(yjuD). It is straightforward to show that

MPRQTE� (fF�g) � lim
�!0

Q� (�)�Q0 (�)
E�[p]� E0[p]

=

R 1
0
!(uD)

�
FY1jUD (Q0 (�) juD)� FY0jUD (Q0 (�) juD)

�
duD

g0(Q0 (�))
;

where g0(�) is the density function corresponding to G0(�), @
@�F0(uD) is the shorthand expression for

@
@�F�(uD)

��
�=0

, and

!(uD) =
@
@�F0(uD)R 1
0

@
@�F0(t)dt

is the weight function in Carneiro et al. (2010). Three popular policy changes are p� = p+�, p� = p(1+�)

and Zk� = Z
k+�, and the corresponding weight functions are fp(uD),

uDfp(uD)
E0[p]

and fp(uD)fV (F
�1
V (uD))

E[fV (�D(Z))]
, where

�D(Z) = Z
0
, and Zk is the kth component of Z and is continuous; see Table 1 of Carneiro et al. (2011)

for a summary. Since fp(uD) appears in !(uD), the numerator of MPRQTE� (fF�g) can be recovered even
if the support of p is a strict subset of [0; 1]. However, to recover the denominator, we still need the full

support condition.

To avoid the full support condition, we can de�ne the relative MPRQTE (RMPRQTE) as

RMPRQTE� (fF�g ; fF�g) =
MPRQTE� (fF�g)
MPRQTE� (fF�g)

=

R 1
0
!�(uD)

�
FY1jUD (Q0 (�) juD)� FY0jUD (Q0 (�) juD)

�
duDR 1

0
!�(uD)

�
FY1jUD (Q0 (�) juD)� FY0jUD (Q0 (�) juD)

�
duD

;

where fF�g is the distribution function sequence associated with another policy, and !�(uD) and !�(uD) are
weight functions associated with fF�g and fF�g. In practice, there may be more than one policies under con-
24 Ichimura and Taber (2000) present a discussion of local policy analysis in a model without the MTE structure using a

framework developed by Hurwicz (1962).

36



sideration, and the policy maker needs to choose one among them. In such cases, RMPRQTE� (fF�g ; fF�g)
is a useful parameter. Note that identi�cation of Q0(�) still need identi�cation of G0(y) which requires the

full support condition, so we rede�ne the RMPRQTE as

RMPRQTEy (fF�g ; fF�g) =
R 1
0
!�(uD)

�
FY1jUD (yjuD)� FY0jUD (yjuD)

�
duDR 1

0
!�(uD)

�
FY1jUD (yjuD)� FY0jUD (yjuD)

�
duD

; y 2 Y:

Now, this parameter can be identi�ed even if the full support condition does not hold. It is the ratio of the

e¤ects induced by two policies on the population with outcome level y and can be estimated by its sample

analog, say, \RMPRQTEy (fF�g ; fF�g). As in the test of stochastic dominance in Section 4.4, we can test
whether

��RMPRQTEy (fF�g ; fF�g)�� � 1 (or � 1) for y 2 Y. The corresponding test statistics are
p
nsup
y2Y

max
�
1�

��� \RMPRQTEy (fF�g ; fF�g)
��� ; 0� and n Z

Y

���max�1� ��� \RMPRQTEy (fF�g ; fF�g)
��� ; 0����2 dy.

6 Comments on the Literature

In this section, we review three papers on the quantile treatment e¤ect evaluation, pointing out their under-

lying assumptions, weaknesses, and interactions with our framework.

6.1 Comments on Chernozhukov and Hansen (2005)

Chernozhukov and Hansen (2005) express

Yd = q(d;X;Ud) with UdjX � U(0; 1)25

by the Skorohod representation, where q(d; x; �) is the quantile function of Yd conditional on X = x. This

representation is essential in developing their identi�cation results. Chernozhukov and Hansen impose the

following assumptions on the model:

A1. Potential Outcomes: Conditional on X = x, for each d, Yd = q(d; x; Ud), where q(d; x; �) is strictly

increasing in � and Ud � U(0; 1):
A2. Independence: Conditional on X = x, fUdg are independent of Z.
A3. Selection: D � �(Z;X; V ) for some unknown function � and random vector V .

A4. Rank Invariance (RI) or Rank Similarity (RS): Conditional on X = x, Z = z, (a) fUdg are equal to
each other; or, more generally, (b) fUdg are identically distributed, conditional on V .
A5. Observed Variables: Observed variables consist of Y � q(D;X;UD), D, X, and Z.26

Some obvious di¤erences between their setup and ours are as follows. A1 restricts Yd to be continuously

distributed, while we do not need this requirement. Their d can be continuous, while we consider only the

binary treatment case. To further contrast our model with theirs, we put these two setups side by side for

comparison:

25Note that Ud may be dependent of X even under unconfoundedness, which generates the usual (parametric) endogeneity. As
argued in Section 2, in the usual quantile regression model, Y = q(X;U), U should be expressed as U(X), and U(X) � U(0; 1)
for any value of X. In other words, although the parametric quantile regression is not valid, the nonparametric quantile
regression still works. Only if Y = X0�(U) with U ? X and U � U(0; 1), the parametric quantile regression is valid.
26Note that their UD = DU1 + (1�D)U0 is di¤erent from our UD .
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Chernozhukov and Hansen (2005): Our Model:

Yd = q(d;X;Ud) with UdjX � U(0; 1) Yd = q(d;X; V; Ud) with Udj (X;V ) � U(0; 1)
D � �(Z;X; V ) with V being a random vector D = 1(�D(X;Z)� V � 0) with Z ? V jX
U0j (X;Z) = U1j (X;Z) and Z ? (U0; U1)jX U0j (X;V ) = U1j (X;V ) and Z ? (U0; U1)jX

Obviously, Chernozhukov and Hansen put more restrictions on the outcome equation, while we put more

restrictions on the choice equation. For example, they assume that the quantile of Y depends on V only

through D, while we assume that even given D = d, the quantile of Yd depends on V . On the other hand,

they do not impose the index structure on the choice equation. However, under the general setup of outcome

equations, the monotonicity assumption, which is implied by the indexed choice model, is hard to relax; see

Section 6 of Heckman and Vytlacil (2005) for discussions. Given the indexed structure of D, it is without

loss of generality to assume Z ? V jX; see the discussion in Section 2.27 Also, our RP assumption is di¤erent
from their RI assumption since the conditional variables are di¤erent.28

Our target is to identify q(d; x; v; �), while Chernozhukov and Hansen�s target is to identify q(d; x; �).29

It should be emphasized that Chernozhukov and Hansen do not really impose the RP assumption for their

purpose, i.e., they do not use U1j (X = x) = U0j (X = x). Otherwise, they do not need to assume A4 since

it is implied by U1j (X = x) = U0j (X = x). This means that their q(1; x; �) � q(0; x; �) is only a di¤erence
of two quantiles and may not have a causal interpretation (i.e., may not be the di¤erence between two

potential outcomes for the same group, say the �th quantile, of individuals). As mentioned in Section 3, this

RP assumption is not really used in our partial identi�cation results either, so their identi�cation results

are comparable with those in Section 3. As argued in Section 3, q(d; x; �) may not be point identi�ed in

the general model or even under the nonparametric selection model unless assumptions such as pinfx = 0

and psupx = 1 are satis�ed. Of course, as argued in Section 3 of Chernozhukov and Hansen (2005), we can

still identify q(d; x; �) by expressing q(d; x; V; Ud) in the form of q(d; x; Ud). However, this object is not of

practical interest since it is not related to any interpretable parameter of treatment e¤ects unless the RP

assumption on X = x is satis�ed. To see why, note that

q(d; x; �) = F�1YdjX(� jx) with FYdjX(yjx) =
Z
q�1d (yjx; v)dFV jX(vjx);

where q�1d (yjx; v) is the inverse function of q(d; x; v; �) with respect to � .
Their assumption on the outcome equation, combined with A4, imposes strong restrictions on the form

of the essential heterogeneity. Consider our outcome equation (1) with additively separable Ud. Under the

RS assumption,

Q� (Y1jX;Z; V )�Q� (Y0jX;Z; V )
= Q� (�1(X;U1)jX;Z; V )�Q� (�0(X;U0)jX;Z; V )
= �1(X) +Q� (U1jX;Z; V )� �0(X)�Q� (U0jX;Z; V )
= �1(X)� �0(X)

does not depend on Z and V so does not depend onD, where the last equality follows from the RS assumption.

27As mentioned in Chernozhukov and Hansen (2005), Imbens and Angrist (1994) provide important examples in which Z is
assigned depending on D, so it is critical to allow Z and V to be dependent (conditional on X) in their setup.
28A4 is also used in Vytlacil and Yildiz (2007) in estimating marginal means of potential outcomes in weakly separable

models.
29They also mention the "local" identi�cation condition, but the "local" there is di¤erent from the "local" in our "local"

QTE. Their "local" is local to the vector fq(d; x; �); d = 0; 1g, while our "local" is local to UD = uD for a speci�c uD .
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This is why Theorem 1 of Chernozhukov and Hansen (2005) is stated as Q� (Y1jX;Z) � Q� (Y0jX;Z) =
q(1; X; �)� q(0; X; �) and V is not involved.30 Even in the non-additively separable setup of Yd, Y1 � Y0 =
q(1; X; U)� q(0; X; U), where U j(X;Z) = U1j(X;Z) = U0j(X;Z) under the RI assumption. Y1 � Y0 may be
correlated with D, but only through the same "one" source as Y0 is correlated with D. In summary, it is

fair to claim that the main problem that Chernozhukov and Hansen target is the selection e¤ect instead of

the essential heterogeneity; see Torgovitsky (2011) for related discussions.

If we express our model as Y = q(D;V; U) and D = 1(�D(Z) � V � 0), where X is depressed, and

U = DU1 + (1 � D)U0, then we can compare our model with those in Chesher (2003), Koenker and Ma
(2006), Lee (2007) and Imbens and Newey (2009) where triangular structures are imposed. Their model

takes the following form:

Y = �(D;V; U);

D = '(Z; V );

where V and U are scalars jointly independent of Z.31 Similar as our model, their Y is also in�uenced by

two random errors. However, they assume D and Z are both continuous and �(D;V; U) is strictly increasing

in U and '(Z; V ) is strictly increasing in V . So their model does not cover the treatment e¤ect model in

this paper. Chesher (2005) provides some partial identi�cation results when D is discrete. However, as

mentioned in his Section 5.3, his arguments cannot be extended to the binary endogenous variables case (see

Jun et al. (2011) for further discussions). By strengthening D to take a latent index form, we can recover

�(D;V; U) for V �s implied by the D equation.

The general choice equation D � �(Z;X; V ) of Chernozhukov and Hansen may seem surprising. However,
there is a parallel result in the average treatment context without the essential heterogeneity. We state this

result formally in the following theorem.

Theorem 7 Suppose Yd = �d(X) + Ud with E[UdjX] = 0,32 D = �(X;Z; V ), E[U0jX;Z] = 0, E[U1 �
U0jX;Z] = 0 and (U1 � U0) ? V j (X;Z).33 Then E[Y � �0(X) �D (�1(X)� �0(X)) jX;Z] = 0. �1(X) �
�0(X) can be identi�ed as long as E[DjX;Z] 6= E[DjX] almost surely, which is equivalent to that conditional
on X, D is complete for Z. Furthermore, the IV estimator of �1(X)� �0(X) is consistent.

As in Theorem 4 of Chernozhukov and Hansen (2005), the above theorem shows that the average treatment

e¤ect �1(X)��0(X) can be identi�ed under some completeness assumption. The completeness condition is
a global (about Z, not X) condition, while our identi�cation condition in Theorem 1 is a local (abount Z)

condition. Due to such kind of completeness conditions, Chernozhukov and Hansen�s identi�cation scheme

is more convenient to put in the nonparametric IV framework rather than the structural treatment e¤ect

model, or their identi�cation scheme is more of "reduced-form" than "structural".

As shown in the proof of Theorem 5, as long as there exist two values of Z, say 0 and 1, such that

E[DjX = x;Z = 0] 6= E[DjX = x;Z = 1], �1(x)��0(x) can be identi�ed. Such an assumption parallels the
full rank condition in Theorem 2 of Chernozhukov and Hansen (2005). This full rank condition is equivalent

30E[U1 � U0jX;Z; V ] = 0 under the RS assumption, so the usual essential heterogeneity in the average treatment e¤ect
evaluation is excluded. The RI assumption U1jX;Z = U0jX;Z is somewhat like the common treatment e¤ect assumption.
31Chesher (2003) actually uses a local independence condition for local identi�cation. Imbens and Newey (2009) also analyze

identi�cation of average derivatives and other functionals of �(D;V; U) without the condition that U is a scalar.
32 In average treatment e¤ect evaluation, the additively separable formulation of Yd is without loss of generality because we

can de�ne the new Ud as �d(X;Ud)� E [�d(X;Ud)jX].
33This implies (U1 � U0) ? Dj(X;Z), i.e., the choice is made without knowledge of the idiosyncratic gain after controlling

for the observables.
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to a monotone likelihood ratio condition,

fY;DjZ(y1; 1j1)
fY;DjZ(y0; 0j1)

>
fY;DjZ(y1; 1j0)
fY;DjZ(y0; 0j0)

for y1 (and y0) in a neighborhood of the �th quantile of Y1 (and Y0). This condition requires the impact of

Z on the joint distribution of (Y;D) to be su¢ ciently rich, which is in spirit similar to our assumption that

pinfx = 0 and psupx = 1 for identifying the QTE in Section 3, but we need only the impact of Z on D to be

su¢ ciently rich.34 In our framework,

fY;DjZ(y1; 1j1)
fY;DjZ(y0; 0j1)

=
fY jD;Z(y1j1; 1)P (D = 1jZ = 1)
fY jD;Z(y0j0; 1)P (D = 0jZ = 1)

=
fY1(y1jUD � p(1))p(1)

fY0(y0jUD > p(1)) (1� p(1))
=

Z p(1)

0

fY1jUD (y1juD)duDZ 1

p(1)

fY0jUD (y0juD)duD

and similarly

fY;DjZ(y1; 1j0)
fY;DjZ(y0; 0j0)

=

Z p(0)

0

fY1jUD (y1juD)duDZ 1

p(0)

fY0jUD (y0juD)duD
:

So the monotone likelihood ratio condition requiresZ p(1)

0

fY1jUD (y1juD)duDZ 1

p(1)

fY0jUD (y0juD)duD
>

Z p(0)

0

fY1jUD (y1juD)duDZ 1

p(0)

fY0jUD (y0juD)duD
: (24)

When
Z p(1)

p(0)

fY1jUD (y1juD)duD > 0 and
Z p(1)

p(0)

fY0jUD (y0juD)duD > 0, i.e., fY1jUD (y1juD) and fY0jUD (y0juD)duD

are not completely zero for uD 2 (p(0); p(1)), this condition is equivalent to p(1) > p(0), i.e., Z has a non-
trivial impact on D, which is less stringent than the identi�cation condition of the QTE in Section 3, namely,

p(1) = 1 and p(0) = 0. This is understandable since our model also covers the essential heterogeneity while

Chernozhukov and Hansen consider only the selection e¤ect. In the unconfouned case where fY1jUD (y1juD)
and fY0jUD (y0juD) does not depend on uD, (24) reduces to p(1)=(1 � p(1)) > p(0)=(1 � p(0)), which is
equivalent to p(1) > p(0). It is easy to see that p(1) > p(0) is also the above identi�cation condition

E[DjX = x;Z = 0] 6= E[DjX = x; Z = 1] in our framework.

Note also that the IV-QRE of Chernozhukov and Hansen (2006) identi�es q(1; X; �)�q(0; X; �) regardless
of what Z is used. However, when the essential heterogeneity exists, interpretation of the IV-QRE depends

on the speci�cation of Z even if the same set of instruments (among Z) are used in the estimation. This point

is emphasized by Angrist et al. (2000) and Heckman and Vytlacil (2005); see also footnote 6 of Carneiro et

al. (2011) for an intuitive explanation. Heckman and Vytlacil (2005) also express the usual IV estimator as

a weighted average of the MTE in the average treatment context, while the task is quite complicated, even

if not impossible, in the quantile treatment environment. Finally, we summarize important literature on the

34Their identi�cation conditions do not imply or are implied by our identi�cation assumption that pinfx = 0 and psupx = 1.
Their conditions are not easy to check, while checking of our conditions is quite straightforward, e.g., by drawing histogram of
p(X;Z) as in e.g., HIT (1997) and HIST (1998).
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average treatment e¤ect and the quantile treatment e¤ect in the following table.

Average Treatment E¤ect Quantile Treatment E¤ect

Unconfoundedness Imbens (2004) Firgo (2007)

Selection E¤ect Only Theorem 7 of This Paper* Chernozhukov and Hansen (2005)

Essential Heterogeneity
LATE :

MTE :

Imbens and Angrist (1994)

Heckman and Vytlacil (2005)

LQTE :

MQTE :

Abadie et al. (2002)

This Paper

Table: Literature of the Average and Quantile Treatment E¤ect under Various Assumptions

Note: I only provide the most important or summary paper based on my personal judgement.

Note*: Part of this result is scattered in the literature such as Heckman and Robb (1985),

but I did not notice the whole result stated explicitly anywhere else.
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Figure 8: Asymptotic Biases of the QRE and IV-QRE When There is Only Selection E¤ect and When There
is ALSO the Essential Heterogeneity

We close this subsection by a simple example to illustrate the bias of the QRE when the selection e¤ect

exists and the bias of the IV-QRE when the essential heterogeneity exists. Assume �rst only the selection

e¤ect exists, Y1 = 2U , Y0 = U and D = 1(Z � V > 0), where0B@ U

V

Z

1CA � N (0;�) with � =

0B@ 1 0:5 0

0:5 1 0

0 0 1

1CA :
When the essential heterogeneity also exists, suppose Y1 = V +2U; Y0 = 2V +U , and all other speci�cations

are the same as in the �rst speci�cation. This speci�cation is the same as that in Section 2.2. The QRE

and IV-QRE are solutions to two groups of moment conditions which are developed in the supplementary

materials. Figure 8 shows the (asymptotic) biases of the QRE and IV-QRE in the estimation of the QTE

under the two speci�cations. As expected, the QRE is inconsistent as long as D is endogenous, and the

IV-QRE is consistent only when the endogeneity comes solely from the selection e¤ect.
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6.2 Comments on Abadie et al. (2002)

Identi�cation of �QTE� (x) requires psupx = 1 and pinfx = 0 as shown in Section 3. This hardly holds in practice

especially when Z is discrete. A popular alternative is the LQTE of Abadie et al. (2002), which measures

the quantile treatment e¤ect only on the compliers.35 Speci�cally, pick z; z0 2 Zx; then the LQTE measures
the quantile treatment e¤ect for those who change their participation status in response to the change in

policy Z from z to z0:

�LQTE� (x; z; z0) = F�1Y1jX;Dz;Dz0
(� jx; 0; 1)� F�1Y0jX;Dz;Dz0

(� jx; 0; 1); (25)

where
FYdjX;Dz;Dz0

(ydjx; 0; 1) = E [1(Yd � yd)jX = x;Dz = 0; Dz0 = 1]

= E [1(Yd � yd)jX = x; p(x; z) < UD � p(x; z0)]

= 1
p(x;z0)�p(x;z)

Z p(x;z0)

p(x;z)

FYdjX;UD (ydjx; uD)duD;

and Dz = 1(p(X; z) � UD � 0). When p(x; z) = 0 and p(x; z0) = 1, �LQTE� (x; z; z0) = �QTE� (x). Note

that F�1Y1jX;Dz;Dz0
(y1jx; 0; 1) may not be parallel to F�1Y0jX;Dz;Dz0

(y0jx; 0; 1) as a function of x. However, when
Zx = f0; 1g, Abadie et al. (2002) assumes36

Assumption 3.1: For � 2 (0; 1), there exist �� 2 R; �� 2 Rdx such that

Q� (Y jX;D;D1 > D0) = ��D +X 0�� :

Assumption 3.1 implicitly assumes rank preservation on the compliers. Their other assumptions as stated in

their Assumption 2.1 are parallel to our assumption (A1)-(A5). Di¤erent from Chernozhukov and Hansen

(2005), Assumption 3.1 is conditioned on D. However, it is easy to see that this assumption implies

P (Y � ��D +X 0�� jX;D1 > D0) = � .37 So this assumption is comparable to Theorem 1 of Chernozhukov

and Hansen (2005), but as emphasized in the last subsection, Chernozhukov and Hansen (2005) does not

consider the essential heterogeneity (and meanwhile consider all persons in the program).

We use (15) to illustrate the key point of Assumption 3.1. Under the normality assumption,

FY (yjX = x;D = 1; D1 > D0) = P (Y1 � yjX = x; V � �+X 0
1 + Z
0
2; �+X

0
1 < V � �+X 0
1 + 
2)

= P (Y1 � yjX = x; Z = 1; �+X 0
1 < V � �+X 0
1 + 
2)

= P (Y1 � yjX = x; �+X 0
1 < V � �+X 0
1 + 
2)

= 1
p(x;1)�p(x;0)

R p(x;1)
p(x;0)

�

�
y���'�x0�1��V 1��1(uD)p

�21��2V 1

�
duD;

(26)

and similarly,

FY (yjX = x;D = 0; D1 > D0) =
1

p(x; 1)� p(x; 0)

Z p(x;1)

p(x;0)

�

 
y � �� x0�0 � �V 0��1(uD)p

�20 � �2V 0

!
duD:

35 It is commonly believed that the LATE is only useful for evaluating the e¤ects of policies in place, but not for forecasting
those of new policies. Nevertheless, see Section 6 of Imbens (2010) and Angrist and Fernández-Val (2013) for arguments
favorable to the external validity of the LATE estimator.
36See also Abadie (2003) for a similar assumption in local average response function estimation.
37P (Y � ��D +X0�� jX;D1 > D0) = P (Y � ��D +X0�� jX;D = 1; D1 > D0)P (D = 1jX;D1 > D0) +

P (Y � ��D +X0�� jX;D = 0; D1 > D0)P (D = 0jX;D1 > D0) = � (P (D = 1jX;D1 > D0) + P (D = 0jX;D1 > D0)) = � .
However, P (Y � ��D +X0�� jX;D1 > D0) = � does not imply Q� (Y jX;D;D1 > D0) = ��D + X0�� without further
assumptions. This is also why Theorem 2 of Chernozhukov and Hansen (2005) is required to identify the QTE when the
conditioning set is (X;Z) instead of (X;D1 > D0).
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Figure 9: Q:5(Y jX;D;D1 > D0) As a Function of D and X: �1 = 2, �0 = 1, 
2 = 1

To further simplify our discussion, assume � =

0B@ �21 �1�0 �1

�1�0 �20 �0

�1 �0 1

1CA; in other words, U1 = �1", U0 = �0"
and V = " with " � N(0; 1). In this simple setup, the RP assumption trivially holds. Also, FY (yjX =

x;D = d;D1 > D0) is simpli�ed as

FY (yjX;D = 1; D1 > D0) =
max

n
0;
h
�
�
min

n
y���'�X0�1

�1
;�+X0
1+
2

o�
��(�+X0
1)

io
�(�+X0
1+
2)��(�+X0
1)

;

FY (yjX;D = 0; D1 > D0) =
max

n
0;
h
�
�
min

n
y���X0�0

�0
;�+X0
1+
2

o�
��(�+X0
1)

io
�(�+X0
1+
2)��(�+X0
1)

:

Assuming the min and max operators do not apply in FY (yjX;D;D1 > D0), we solve FY (qjX;D;D1 >
D0) = � to have

Q� (Y jX;D = 1; D1 > D0) = �1�
�1 f� [� (�+X 0
1 + 
2)� � (�+X 0
1)] + � (�+X

0
1)g+ �+ '+X 0�1;

Q� (Y jX;D = 0; D1 > D0) = �0�
�1 f� [� (�+X 0
1 + 
2)� � (�+X 0
1)] + � (�+X

0
1)g+ �+X 0�0:

They are not the same as a function of X. The left graph of Figure 9 shows Q� (Y jX;D = 1; D1 > D0) and

Q� (Y jX;D = 0; D1 > D0) as a function of X for the case with � = 0:5, �1 = 2, �0 = 1, X � N(0; 1), �1 = 2,
�0 = 
1 = 
2 = 1, and � = ' = � = 0. We take X 2 [�3; 3] which covers most people under consideration.
These two functions for other ��s are qualitatively similar, so omitted here. From Figure 9, it is quite clear

that Q� (Y jX;D = 1; D1 > D0) and Q� (Y jX;D = 1; D1 > D0) are not parallel as a function of X. Anyway,

there are special cases where Assumption 3.1 holds: (i) �1 = �0 and 
1 = 0; (ii) 
2 = 0, �1
1+�1 = �0
1+�0
(or �1 � �0 = (�0 � �1) 
1). But these setups are too trivial to happen in practice since either Y1 � Y0 does
not depend on X or Z does not a¤ect D. For comparison, the corresponding Q� (Y jX;D = 1; D1 > D0) and

Q� (Y jX;D = 1; D1 > D0) for � = 0:5, �1 = �0 = 1 are shown in the right graph of Figure 9.

The example above does not invalidate the analysis in Abadie et al. (2002) completely. As long as we

re�ne their Assumption 3.1 as

Q� (Y jX;D;D1 > D0) = X 0�� +D �X 0�� (27)
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for � 2 (0; 1), their estimation scheme can still go through with proper adjustment in notations. Note here
that X includes a constant. Also, since X can include functions of the original covariates (e.g., polyno-

mials or B-splines), the linear setup of the conditional quantile does not lose generality. Under this setup,

�LQTE� (x; 0; 1) = x0�� , which depends on x.38 By adjusting notations in their Theorem 3.1, we can derive

the asymptotic distribution of x0b�� for each x 2 X .39 Of course, given b�� we can test whether ���s are equal
to zero for a bunch of ��s, where �� is �� excluding the intercept. However, it is still hard to test �� = 0 for

� 2 T since the weak limit of b�� , � 2 T , is unavailable until now.
This misspeci�cation problem also happens in Chernozhukov and Hansen (2006) who assume

P (Y � D�� +X 0�� jX;Z) = �:

In a typical application of their technique, Chernozhukov and Hansen (2004) study the e¤ect of 401(k)

participation on savings. Their Table 3 shows that this e¤ect varies with the income level, so the interaction

term D � income should be included as a regressor. One main reason for Chernozhukov and Hansen to use
this form of conditional quantile is to circumvent the computation problem as noted in Abadie (1997). If we

assume

P (Y � X 0�� +D �X 0�� ) jX;Z) = �;

then the inverse quantile regression algorithm of Chernozhukov and Hansen (2006) is not e¢ cient especially

when dX is large. As an alternative, the algorithm of Chen and Pouzo (2012) is still applicable. When D is

multi-valued, e.g., D = S is the schooling level as in the application of Chernozhukov and Hansen (2006), it

is better to assume Q� (Y jX;Z) = �� (S) + X 0�� (S) which takes the form of the varying coe¢ cient model

(VCM). Section 6 of Hansen et al. (2004) considers the VCM in estimating the return to schooling in a

di¤erent context.

On the other hand, the distribution regression can be applied to estimate �LQTE� (x; 0; 1) straightfor-

wardly. From Theorem 1,

FY1jX;D0;D1
(y1jx; 0; 1) = P (Y�y1jX=x;p(X;Z)=p(x;1);D=1)p(x;1)�P (Y�y1jX=x;p(X;Z)=p(x;0);D=1)p(x;0)

p(x;1)�p(x;0) ;

and similarly,

FY0jX;D0;D1
(y0jx; 0; 1) = P (Y�y0jX=x;p(X;Z)=p(x;0);D=0)(1�p(x;0))�P (Y�y0jX=x;p(X;Z)=p(x;1);D=0)(1�p(x;1))

p(x;1)�p(x;0) ;

so the estimates in (17) can be used to estimate �LQTE� (x; 0; 1). Speci�cally,

bFY1jX;D0;D1
(y1jx; 0; 1) =

bFY jX;p(X;Z);D(y1jx;bp(x;1);1)bp(x;1)� bFY jX;p(X;Z);D(y1jx;bp(x;0);1)bp(x;0)bp(x;1)�bp(x;0) ;bFY0jX;D0;D1
(y1jx; 0; 1) =

bFY jX;p(X;Z);D(y0jx;bp(x;0);0)(1�bp(x;0))� bFY jX;p(X;Z);D(y0jx;bp(x;1);0)(1�bp(x;1))bp(x;1)�bp(x;0) ;

and b�LQTEX;z;z0 (� jx; 0; 1) = bF�1Y1jX;D0;D1
(� jx; 0; 1)� bF�1Y0jX;D0;D1

(� jx; 0; 1);

where bp(x; z) = bp(x; z; b
) = � (R(x; z)0b
) and bFY jX;p(X;Z);D(yjx; p; d) = ��T (x; p)0 b�d(y)�. This procedure
38The usual justi�cation of Assumption 3.1 is that �� is close to E[X0�� ]; see, e.g., Angrist and Krueger (1999).
39To summarize the results, we can integrate the LQTE estimator by n�1

Xn

i=1
X0
i
b�� = Xb�� , which is estimating E[X0�� ].

This estimator is similar to the average derivative estimator in quantile regression; see Chaudhuri et al. (1997). But this
estimator is not estimating the ILQTE. In general, E[X0�� ] 6= Q� (Y1jD1 > D0)�Q� (Y0jD1 > D0) � �ILQTE� (0; 1). Actually,
�ILQTE� (0; 1) is hard to estimate. Also note that when these parameters are used, the results in the application of Abadie et
al. (2002) may change.
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has two advantages over that of Abadie et al. (2002). First, we do not need to estimate the weights � or ��
as in Abadie et al. (2002), where �(D;Z;X) = 1� D�(1�Z)

1�P (Z=1jX)�
(1�D)�Z
P (Z=1jX) and ��(Y;D;Z) = E [�jY;D;X] =

1 � D�(1�P (Z=1jY;D;Z))
1�P (Z=1jX) � (1�D)�P (ZjY;D;Z)

P (Z=1jX) ; rather, only the propensity score is estimated in the �rst step.

Second, our procedure can be applied to continuous, discrete or mixed Y without any special adjustment,

while the procedure of Abadie et al. (2002) is only suitable to the continuous Y case (see Abadie (2003) for

possible extensions to other data types).

The following theorem states the weak limit of b�LQTEX;z;z0 (� jx; 0; 1). To ease the statement of the theorem,
de�ne 'L0
;�0(�) (�; �0) (y0; x) : R

d
 � C (Y0)d�0 �! `1 (Y0X ) as

'L0
;�0(�) (�; �)

=
[1� p(x; 0)] [F10(y0; x)� F00(y0; x)]� [p(x; 1)� p(x; 0)] [1� p(x; 0)]�00(y0; x)@T (x;p(x;0))

0�0(y0)
@p

[p(x; 1)� p(x; 0)]2
�p1(x)R(x; 1)

0�

�
[1� p(x; 1)] [F10(y0; x)� F00(y0; x)]� [p(x; 1)� p(x; 0)] [1� p(x; 0)]�00(y0; x)@T (x;p(x;0))

0�0(y0)
@p

[p(x; 1)� p(x; 0)]2
�p0(x)R(x; 0)

0�

+

�
[1� p(x; 0)]�00(y0; x)
p(x; 1)� p(x; 0) T (x; p(x; 0))0 � [1� p(x; 1)]�10(y0; x)

p(x; 1)� p(x; 0) T (x; p(x; 1)))0
�
�0(y0)

and 'L0
;�1(�) (�; �1) (y1; x) : R
d
 � C (Y1)d�1 �! `1 (Y1X ) as

'L0
;�1(�) (�; �)

=
[p(x; 1)� p(x; 0)] p(x; 1)�11(y1; x)@T (x;p(x;1))

0�1(y1)
@p � p(x; 0) [F11(y1; x)� F01(y1; x)]

[p(x; 1)� p(x; 0)]2
�p1(x)R(x; 1)

0�

�
[p(x; 1)� p(x; 0)] p(x; 0)�01(y1; x)@T (x;p(x;0))

0�1(y1)
@p � p(x; 1) [F11(y1; x)� F01(y1; x)]

[p(x; 1)� p(x; 0)]2
�p0(x)R(x; 0)

0�

+

�
p(x; 1)�11(y1; x)

p(x; 1)� p(x; 0) T (x; p(x; 1))
0 � p(x; 0)�01(y1; x)

p(x; 1)� p(x; 0) T (x; p(x; 0)))
0
�
�1(y1);

where Fzd(y; x) = FY jX;p(X;Z);D(yjx; p(x; z); d), �pz(x) = �(R(x; z)0
) and �zd(y; x) = �(T (x; p(x; z)))0�d(y)).

Theorem 8 Suppose Assumption DR holds, and FYdjX;D0;D1
(yjx; 0; 1) admits a positive continuous density

fYdjX;D0;D1
(y1jx; 0; 1) on an interval [a; b] containing an �-enlargement of the set

�
QYdjX;D0;D1

(� jx; 0; 1)j� 2 T
	

for all x 2 X . Then

p
n
�b�LQTEX;z;z0 (� jx; 0; 1)��

LQTE
� (x; 0; 1)

�
 �

'L0
;�1(�)
�
W
 ; J1(y1)

�1 �J1p(y1)J�1p W
 +W1(y1)
��

fY1jX;D0;D1
(y1jx; 0; 1)

�����
y1=QY1jX;D0;D1 (� jx;0;1)

+
'L0
;�0(�)

�
W
 ; J0(y0)

�1 �J0p(y0)J�1p W
 +W0(y0)
��

fY0jX;D0;D1
(y0jx; 0; 1)

�����
y0=QY0jX;D0;D1 (� jx;0;1)

in `1 (T X ) :

The randomness in this weak limit is from three sources, bp, b�0 and b�1, separately, while for the MQTE, bp
a¤ects b�X;UD (� jx; uD) only through b�0 and b�1. From the proof of Theorem 8, it is easy to see that the

exchangeable bootstrap is valid. As a result, similar inference procedures as in Section 4.4 can be applied so

omitted here.
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6.3 Comments on Aakvik et al. (2005)

We �rst consider a simple model to illustrate the limitation of the one-factor model in Aakvik et al. (2005).

Suppose

Y �1 = X�1 � U1; Y1 = 1(Y �1 � 0);
Y �0 = X�0 � U0; Y0 = 1(Y �1 � 0);
D� = Z
 � V;D = 1(D� � 0);

with U1 = �1(X) [��1� + "1], U0 = �0(X) [��0� + "0] and V = �� + "D, where �1(X) > 0 and �0(X) > 0
control the heteroskedasticity, (X;Z) ? (�; "1; "0; "D), �; "1; "0 and "D and independent, and except �, all

others follow N(0; 1). Theoretically,

E [Y1 � Y0 = 1jX = x; V = v] =

R
�
�

x
�1(x)

�1 + �1�
��
1� �

�
x

�0(x)
�0 + �0�

��
� (v + �) dF (�)

�
�
v=
p
2
� ;

where F (�) is the CDF of �. Under the RP assumption,

E [Y1 � Y0 = 1jX = x; V = v] = E[Y1 = 1jX = x; V = v]� E[Y0 = 1jX = x; V = v]

=

R h
�
�

x
�1(x)

�1 + �1�
�
� �

�
x

�0(x)
�0 + �0�

�i
� (v + �) dF (�)

�
�
v=
p
2
� ;

which is smaller than the true value, i.e., the RP assumption does not hold in this example. If we use the

model in Aakvik et al. (2005),

E [Y1 � Y0 = 1jX = x; V = v] =

R
� (x��1 + �

�
1�) (1� � (x��0 + ��0�))� (v + �) dF (�)

�
�
v=
p
2
� ;

where (
�; ��0 ; �
�
1) and (�

�
0; �

�
1) are the pseudo-true value of (
; �0; �1) and (�0; �1), de�ned as the maximizer

of

E

�
ln

Z
P (D;Y jX;Z; �) dF (�)

�
:

Here,

P (D;Y jX;Z; �) = P (DjZ; �)P (Y jD;X; �);

and

P (D = 1jZ; �) = � (Z
 + �) ;
P (Y = 1jD = 1; X; �) = � (X�1 + �1�) ;

P (Y = 1jD = 0; X; �) = � (X�0 + �0�) :

Note that D and Y in the expectation of the likelihood function follow the distribution in the true model.

To simplify the numerical integrations in the likelihood function, we assume �1 = �1 = 2, �0 = �0 = 
 = 1,

�1(X) = 1 + X, �0(X) = 1 + 0:5X, X and Z are independent and both follow the uniform distribution

on two points 0 and 1, and � can take only three values �1, 0 and 1 with P (� = �1) = P (� = 1) = 1=4
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and P (� = 0) = 1=2.40 It turns out (��0; �
�
1; �

�
0 ; �

�
1 ; 


�) = (334:15; 10:03; 176:57; 0:72; 0:85), far from the true

value (1; 2; 1; 2; 1).
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Figure 10: Comparison of E [Y1 � Y0 = 1jX = 1; UD = uD] Under Di¤erent Speci�cations

Figure 10 shows the true E [Y1 � Y0 = 1jX = x; V = v], E [Y1 � Y0 = 1jX = x; V = v] under the RP

assumption, and E [Y1 � Y0 = 1jX = x; V = v] with pseudo-true parameter values as a function of uD =

�(v=
p
2) when x = 1. As expected, as long as there is misspeci�cation, E [Y1 � Y0 = 1jX = x; UD = uD]

cannot be estimated consistently. E [Y1 � Y0 = 1jX = 1; UD = uD] with pseudo-true parameter values may

or may not have a smaller bias than E [Y1 � Y0 = 1jX = 1; UD = uD] under the RP assumption, depending

on the value of uD. A striking feature of the one-factor model of Aakvik et al. (2005) in this example is that

there is no treatment e¤ect for any UD = uD, which contrasts the truth.

To compare our model with that of Aakvik et al. (2005), we put them side by side for comparison:

Aakvik et al. (2005): Our Model:

Yd = �('d (X) + �d� � "d) Yd = �d(X;V; Ud)

D = 1(�D(X;Z) + � � "D � 0) D = 1(�D(X;Z)� V � 0) with Z ? V jX
(X;Z) ? (�; "0; "0; "D) and (�; "0; "0; "D) are independent U0j (X;V ) = U1j (X;V ) and Z ? (U0; U1)jX

where we use a prototype of Aakvik et al. (2005) and its extension. Similar to our setup, their outcome

equation also includes two random errors. However, their (Y0; Y1) include totally three random errors,

(�; "0; "1), while our potential outcomes essentially include only two random errors (V;U) with U j (X;V ) �
Udj (X;V ). Also, their choice equation includes also two random errors, (�; "D), while ours includes only one,
V . On the other hand, our speci�cation of outcome equations is more general in the sense that it allows for

heteroskedasticity and nonseparable errors. Also, we do not restrict the dependence between X and (V;U)

40The technique used in the assumption of the distribution of �, i.e., approximating a continuous distribution by a discrete
distribution, has been applied to econometric models for duration data by Heckman and Singer (1984).
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and among (V;U), while they assume independence between the covariates and the random errors and also

among the random errors. To further understand their independence assumption, we represent their model

with �; "1; "0 and "D being independent and following N(0; 1) as

Yd = �('d (X)� �dV � Ud);
D = 1(�D(X;Z)� V � 0);

where Ud � N
�
0; 1 + �2d

�
, and jCorr(U1; U0)j = j�0�1jp

(1+�20)(1+�
2
1)
< 1, (U1; U0; V ) ? (X;Z), and (U1; U0) ? V .

Di¤erent from our model, their ranks are only partially maintained since jCorr(U1; U0)j < 1. Meanwhile,

their ranks do not depend on X and V given that (U0; U1) ? (X;V ), which implies that conditional ranks
and unconditional ranks are the same. Our unconditional ranks are di¤erent from conditional ranks; the

former are also only partially maintained, while the latter are fully preserved. In summary, these two kinds

of models are more complements than substitutes.

An advantage of the factor model over the model with the RP assumption is that it allows for nondegen-

erate P (Y1 > Y0jY0 = y0; X = x;UD = uD). In the simple example above,

P (Y1 > Y0jY0 = 0; X = x;UD = uD) = P (Y1 = 1jY0 = 0; X = x; UD = uD)

=

R
�
�

x
�1(x)

�1 + �1�
��
1� �

�
x

�0(x)
�0 + �0�

��
� (v + �) dF (�)R �

1� �
�

x
�0(x)

�0 + �0�
��
� (v + �) dF (�)

2 (0; 1) :

Nevertheless, merits of the factor model should be determined by how far it is from the true model and

how convenient it is to be implemented in practice. A similarity of the factor model with our model is that

identi�cation-at-in�nity is required to identify various treatment parameters.

7 Application

We use the data of Angrist and Krueger (1991) to illustrate some main points of this paper. Angrist and

Krueger (1991) estimate schooling coe¢ cients using quarter of birth as instrument in a sample of 329509

men born 1930-39 from the 1980 census. Quarter of birth is correlated with educational attainment because

of a mechanical interaction between compulsory school attendance laws and age at school entry. See the

appendix to Angrist and Krueger (1991) for a detailed description of the data. This data set is widely used for

various purposes. For example, Bound et al. (1995) use it to illusrate the bias of the IV estimates when the

instruments are weak; Chesher (2005) uses it to show the di¢ culty in estimating identifying nonparametric

intervals when the instruments are weak; van der Klaauw (2002) uses it to show that the quarter of birth is

not a valid instrument in the conventional sense (independence of the error term in the outcome equation)

while can still be used to estimate some treatment e¤ects in the regression discontinuity design framework;

Chernozhukov and Hansen (2006) use it to estimate the quantile treatment e¤ects de�ned and identi�ed in

Chernozhukov and Hansen (2005).

Our conditional distribution of the returns to schooling is speci�ed as

P (Y � yjX; p(X;Z) = p;D = d) = �
��
p; p2

�
�d(y) +X

0�d(y)
�
; 41

41We also tried cubic polynomials of p, and the results are qualitatively similar. Note here that although we use saturated
speci�cation for X given that X is discrete, the speci�caiton is not fully saturated to both X and p. The fully saturated
model should include the interaction terms of p and X. We neglect such interaction terms because Px includes only four points
and does not include much variation given that the instruments are relatively weak. Our speci�cation implicitly assumes that
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and the treatment status is determined by

D = 1(V � X 0
1 + Z
0
2);

where Y is the log weekly wage, D = 1(S > 12) is the indicator of a high school graduate, and following

Angrist and Krueger (1991), X is a vector of covariates consisting of a constant, state and year of birth �xed

e¤ects, and Z includes three dummies for the �rst through third quarter of birth.42 We specify �(�) as the
CDF of the standard normal and V following a standard normal distribution. Di¤erent from Chernozhukov

and Hansen (2006), D is binary rather than the years of schooling S to �t in the framework of this paper.

Also, we use dummies for the three quarters of birth rather than both the linear projection of S onto X and

the three dummies as instruments.

0.1 0.4 0.5 0.6 0.9

­5

0

5

0.1 0.4 0.5 0.6 0.9

­5

0

5

0.1 0.4 0.5 0.6 0.9

­5

0

5

0.1 0.4 0.5 0.6 0.9

­5

0

5

Figure 11: Manski and HV Bounds for �QTE� (x): x = (36; 1930) and (19; 37), � 2 [0:1; 0:9]

We �rst show the bounds in Section 3 for this data set. Since X and Z are discrete, p(X;Z) can be

obtained by its sample analog. Totally, the support of X, X , includes 510 possible values. The minimum
number of observations among all x 2 X is 3 and the maximum number is 3203. Averagely, there are 646

data points for each x. For some values of x 2 X , not every value of Z is possible. It is rare among all

values of x 2 X that pinfx = 0 and psupx = 1, so point identi�cation of �QTE� (x) is almost impossible. There

are actually only four x�s satisfying pinfx = 0 and psupx = 1, but at most eight data points are available at

these x�s. yl(x) and yu(x) are taken as the minimum and maximum of Y given X = x, and the population

quantiles in the bounds are estimated by the sample quantiles. Given that X is large, we only present the

bounds at two x�s for a taste. Figure 11 shows the bounds with and without Assumption (9) for individuals

from state 36 and born in 1930 and individuals from state 19 and born in 1937. These two x�s correspond

to cases with most observations (3203 data points) and moderate number of observations (666 data points),

(X;Z) ? (U1; U0; V ), so the MQTE can be identi�ed over the marginal support of p(X;Z) instead of the conditional support
of p(X;Z) given X. Such a strategy is also used in Carneiro et al. (2011).
42The dummy for quarter four is omitted to avoid multicollinearity since X includes a constant.
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respectively. The bounds in (11) are labeled as "Manski Bounds" and those in (13) are labeled as "HV

Bounds". The vertical lines in the upper two �gures indicate four possible values of p(x; z) (and 1� p(x; z)),
and the vertical lines in the lower two �gures indicate pinfx , p

sup
x , 1� pinfx and 1� psupx . From Figure 11, we

can draw a few interesting conclusions. First, both Manski bounds and HV bounds are narrower than the

trivial bounds [yl(x)� yu(x); yu(x)� yl(x)] especially when � > 0:5, which indicates that these bounds are
indeed informative. Second, �QTE� (x) = 0 cannot be rejected for all � 2 [0:1; 0:9]. In other words, these
bounds cannot determine whether there are quantile treatment e¤ects or not at these two x values. Third,

the Manski bounds and the HV bounds are very similar, which indicates that assumption (9) is most likely

to hold. Fourth, when x = (19; 1937) and � between 0.4 and 0.45, the Manski upper bound is indeed lower

than the HV upper bound. Fifth, for both x values, the range of p(x; z) is quite limited, e.g, between 0.4

and 0.5, which is a sign that Z is weak as already emphasized in the literature.

We now estimate the MQTE for x = (19; 1937). The results for x = (36; 1930) are qualitatively similar so

are not reported here. The bootstrap con�dence bands are not calculated since they are too time-consuming.

The range of bpi is [0:2149; 0:6054]. Out of this range, the estimation shows some abnormality and is not
reliable. bFYdjX;UD (yjx; uD) for uD = 0:3 and 0:5 and the MQTEs for � = 0:1; 0:25; 0:5; 0:75 and 0:9 when

uD 2 [0:2; 0:6] are shown in Figure 12. From Figure 12, a few results of interest are as follows. First, as

expected, bFY1jX;UD (yjx; uD) stochastically dominates bFY0jX;UD (yjx; uD) for the two uD values. Second, as

expected, b�X;UD (� jx; uD) is a decreasing function of uD for all ��s, which implies that for individuals with

any level of income, those who are reluctant to attend college have lower returns to college. Third, the

return to college is decreasing in � and becomes stable when � gets large for all values of uD. Chernozhukov

and Hansen (2006) interpret � as an ability index, so interpret this result as that people with high ability

will generate high earnings regardless of their education level, while those with lower ability gain more from

the training provided by formal education. Fourth, the variation of the return to college gets larger when

uD gets larger. Fifth, for individuals with any level of income, the counterfactual income when D = 0

is increasing in uD. This means that when D = 0, individuals with relatively high income tend not to

attend the college. The counterfactual income when D = 1 is di¤erent. For high-income individuals, the

counterfactual income of attending college is decreasing in uD, while the low-income individuals have an

increasing counterfactual income in uD. This means that for high-income individuals, they attend college

because they can potentially have a higher income (check bF�1Y0jX;UD (� jx; uD) and b�X;UD (� jx; uD)), while for
low-income individuals, they attend college not because their potential income of attending college would

be higher but because their potential income of not attending college would be even lower. Dependence

of bF�1YdjX;UD (� jx; uD) on uD indicates the invalidity of unconfoundedness. Sixth, the variation of potential

income when D = 0 is increasing in uD, while the variation when D = 1 is decreasing. This means that

those who are eager to attend college have much more chances if attending college than not, while the

converse result is more suitable to those who are reluctant to attend college. All these results are intuitively

understandable in reality.

We next analyze the RMPRQTE between the constant shifts p� = p+� (Policy I) and the proportional

shifts p� = p(1 + �) (Policy II) when x = (19; 1937). We will not check the policy e¤ect of the marginal

change in Z since it is discrete. \RMPRQTE as a function of y is shown in the upper right panel of Figure

12, where Y = Y0 \ Y1 with Yd =
h bQYd(0:01); bQYd(0:99)i and bQYd(�) being the �th sample quantile of Yd.

As mentioned above, p(X;Z)jX can take only four values, which makes the estimation of fpjX(uDjx) in
the weight function !(uDjx) impossible. To avoid this problem, we assume the distribution of p(X;Z)jX
does not depend on X, so the marginal density fp(uD) is used in the weight function. This assumption is

roughly valid since the quarter of birth seems uncorrelated with the state or year of birth. In our estimation,

fp(uD) is approximated by 20 discrete point masses. From Figure 12, we can see that Policy I has a larger
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e¤ect than Policy II for most income levels. Note that both the numerator and denominator of \RMPRQTE

are negative. This is because as education expands, more people are enrolled in college. These marginally

enrolled people are less eager to attend college since the return is relatively low. This is somewhat like the

scenario that increases in college enrollment will deteriorate the quality of college graduate and make the

average wage level decrease.

We �nally estimate the transition matrix de�ned in Section 5.1. It can be shown that the transition

matrix equals0BBBBBBBBBBBBBBBBBB@

0.930 0:074 0 0 0 0 0 0 0 0

0:088 0.707 0:142 0:052 0:009 0:002 0 0 0 0

0 0:191 0.324 0:166 0:084 0:092 0:086 0:041 0:014 0:003

0 0:048 0.311 0.226 0:077 0:053 0:062 0:076 0:078 0:073

0 0:012 0:088 0.311 0.193 0:119 0:072 0:052 0:063 0:107

0 0 0:036 0:076 0.230 0.191 0:171 0:086 0:034 0:162

0 0 0:033 0:039 0:195 0.208 0.162 0:131 0:046 0:187

0 0 0:019 0:117 0:187 0.225 0:203 0.149 0:079 0:097

0 0 0:001 0:015 0:028 0:100 0:230 0.376 0.156 0:023

0 0 0 0 0 0:012 0:016 0:093 0.532 0.350

1CCCCCCCCCCCCCCCCCCA
So unconditionally, the RP assumption does not hold since this transition matrix is far from the identify

matrix although there is a strong positive dependence between the two potential outcomes. The transition

matrix also shows that the independence assumption across counterfactual outcomes, which is the Veil of

Ignorance assumption used in applied welfare theory (see, e.g., Sen (1997)) or in aggregate income inequality

decomposition (see, e.g., DiNardo et al. (1996)), does not hold either. Another interesting phenomenon

is that the diagonal element is not the largest in seven out of ten rows and many individuals from the

low-income stratum may jump to the high-income stratum if attending college. This means that education

indeed changes people�s income strata.

8 Conclusion

This paper studies identi�cation, estimation and inference of quantile treatment e¤ects which are useful

in economic policy analysis. We use the MQTE to unify the literature and organize the whole paper. The

contributions of this paper can be summarized in four aspects. First, we clarify some key concepts in quantile

treatment e¤ect evaluation. For example, what is the meaning of the rank preservation assumption and why

is it important? what is the di¤erence between quantile of di¤erence and di¤erence of quantiles? what is the

relationship between the MQTE and other parameters of quantile treatment e¤ects? Second, we estimate

various quantile treatment e¤ects based on the distribution regression, derive their weak limits and show

the validity of the bootstrap inferences. These quantile treatment parameters include the MQTE, the QTE,

the IQTE and the LQTE. Third, we conduct two counterfactual analyses, namely, deriving the transition

matrix and developing the RMPRQTE parameter. These two tools are useful to remove the veil of ignorance

in assessing the distributional impacts of social policies. Fourth, we develop sharp bounds for the QTE

and provide su¢ cient and necessary conditions for point identi�cation with and without the monotonicity

assumption. These results are useful to clarify the di¤erence between this paper (which considers both the

selection e¤ect and the essential heterogeneity) and the literature such as Chernozhukov and Hansen (2005)

(who consider only the selection e¤ect). For example, under the monotonicity assumption, point identi�cation
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Figure 12: bFYdjX;UD (yjx; uD), bF�1YdjX;UD (� jx; uD), b�X;UD (� jx; uD) and \RMPRQTE: x = (19; 1937)

of the QTE in the framework of Chernozhukov and Hansen (2005) only requires the instrument to have a

nontrivial e¤ect on the propensity score, while in our framework, point identi�cation requires the e¤ect of

the instrument on the propensity score to be not only nontrivial but extremal.

There are many interesting problems which are unsolved in this paper and will be considered in our

future research. First, our propensity score estimator is parametric or semiparametric, while a nonparametric

estimator is also popular, see, e.g., Abadie (2003), Hirano et al. (2003), Carneiro and Lee (2009) and Cattaneo

(2010) among others. When the second-step estimator is only �nite-dimensional, Newey (1994), Chen et

al. (2003) and Ichimura and Lee (2010) derive its asymptotic distribution and prove the bootstrap validity.

However, when the second-step estimator is in�nite-dimensional as in our case, its week limit and bootstrap

validity involve nontrivial technical complications and will be pursued in a separate paper. Nevertheless, our

semiparametric estimator (combined with the goodness-of-�t test in Section 4.5) is enough for any practical

purpose. Second, our estimation scheme can be easily extended to multi-valued treatment case. We refer to

Cattaneo (2010) for the relevant literature on this topic (especially under unconfoundedness), and Heckman

and Vytlacil (2007b) and Heckman et al. (2006, 2008) for the MTE estimation. However, extension to

the case with continuous treatment is not trivial; see Florens et al. (2008) for some identi�cation results

in the average treatment scenario. Third, a formal solution to the testing and inference problems at the

end of Section 3.3 is desirable. Finally, a key assumption in this paper is the RP condition (A6). When

this assumption does not hold, even the MQTE cannot be point identi�ed. There are two responses to

the relaxation of the RP assumption. First, we can test whether the RP assumption holds. Second, we

can construct bounds for the MQTE (and related parameters such as the QTE and IQTE) and conduct

inferences on the identi�ed sets; see Kitagawa (2009), Fan and Zhu (2009), Fan and Park (2009, 2010, 2012),

Fan and Wu (2010) and Kim (2013) for some related recent developments in di¤erent contexts.
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Appendix: Proofs

Proof of Theorem 2. We concentrate on the point identi�cation of Q� (Y1jX = x). Note that

sup
z2Zx

L1� (x; z) � sup
z2Zx

QY jX;Z;D

�
1� 1� �

psupx

����x; z; 1� 1 (psupx > 1� �) + yl(x)1 (psupx � 1� �)

� yu(x)1 (psupx > 1� �) + yl(x)1 (psupx � 1� �) ;

inf
z2Zx

R1� (x; z) � inf
z2Zx

QY jX;Z;D

�
�

psupx

����x; z; 1� 1 (psupx � �) + yu(x)1 (psupx < �)

� yl(x)1 (psupx � �) + yu(x)1 (psupx < �) :

When 0 � psupx < min f�; 1� �g, sup
z2Zx

L1� (x; z) � yl(x) < yu(x) � inf
z2Zx

R1� (x; z), so QY1jX (� jx) cannot be

point identi�ed. So it is necessary for psupx � min f�; 1� �g to point identify QY1jX (� jx).
Assume psupx is achieved at some value that Z can take, say, zsup. If psupx = 1, QY jX;Z;D(� jx; zsup; 1) �

sup
z2Zx

L1� (x; z) � inf
z2Zx

R1� (x; z) � QY jX;Z;D(� jx; zsup; 1), so sup
z2Zx

L1� (x; z) = inf
z2Zx

R1� (x; z) :

If (Y1; Y0) ? DjX;Z, then under the assumption (8),

sup
z2Zx

L1� (x; z) = sup
z2Zx

�
QY jX

�
1� 1� �

p(x; z)

����x� 1(p(x; z) > 1� �) + yl(x)1 (p(x; z) � 1� �)�
� QY jX

�
1� 1� �

psupx

����x� 1(psupx > 1� �) + yl(x)1 (psupx � 1� �) ;

inf
z2Zx

R1� (x; z) = inf
z2Zx

�
QY jX

�
�

p(x; z)

����x� 1(p(x; z) � �) + yu(x)1 (p(x; z) > �)�
� QY jX

�
�

psupx

����x� 1 (psupx � �) + yu(x)1 (psupx < �) :

When psupx = 1, sup
z2Zx

L1� (x; z) = QY jX(� jx) = inf
z2Zx

R1� (x; z), so p
sup
x = 1 is su¢ cient for point identi�cation of

QY1jX (� jx). Suppose Y1jX = x is continuously distributed with a positive density on (yl(x); yu(x)). When

1 > psupx > max f�; 1� �g, sup
z2Zx

L1� (x; z) � QY jX

�
1� 1��

psupx

���x� < QY jX

�
�
psupx

���x� = inf
z2Zx

R1� (x; z). When

min f�; 1� �g � psupx � max f�; 1� �g, either sup
z2Zx

L1� (x; z) � yl(x) < QY jX

�
�
psupx

���x� � inf
z2Zx

R1� (x; z) or

sup
z2Zx

L1� (x; z) � QY jX
�
1� 1��

psupx

���x� < yu(x) � inf
z2Zx

R1� (x; z) or sup
z2Zx

L1� (x; z) � yl(x) < yu(x) inf
z2Zx

R1� (x; z)

or sup
z2Zx

L1� (x; z) � QY jX
�
1� 1��

psupx

���x� < QY jX � �
psupx

���x� � inf
z2Zx

R1� (x; z). So p
sup
x = 1 is also necessary for

point identi�cation of QY1jX (� jx).
Proof of Theorem 3. Depress the conditioning on X = x to simplify notations. From Theorem 1,Z psupx

0

FY1jUD (yjuD)duD and
Z 1

pinfx

FY0jUD (yjuD)duD can be identi�ed, but the distribution of (D;Y;X;Z)

contains no information on
Z 1

psupx

FY1jUD (yjuD)duD and
Z pinfx

0

FY0jUD (yjuD)duD. Nevertheless, note that

P (Y � yjp(Z) = psupx ; D = 1) psupx � P (Y1 � y) =
Z psupx

0

FY1jUD (yjuD)duD +
Z 1

psupx

FY1jUD (yjuD)duD (28)

� P (Y � yjp(Z) = psupx ; D = 1) psupx + (1� psupx );
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and

P
�
Y � yjp(Z) = pinfx ; D = 0

� �
1� pinfx

�
� P (Y0 � y) =

Z 1

pinfx

FY1jUD (yjuD)duD +
Z pinfx

0

FY0jUD (yjuD)duD

� P
�
Y � yjp(Z) = pinfx ; D = 0

� �
1� pinfx

�
+ pinfx :

We concentrate on bounding QY1(�) since the results for QY0(�) can be similarly derived. We derive the

proof into six steps. The �rst four steps are similar to the proof of Proposition 2 in Manski (1994).

Step 1: R1� (x) is an upper bound for QY1(�).
By (28),

P (Y � yjp(Z) = psupx ; D = 1) psupx � � =) P (Y1 � y) � �: (29)

The premise of (29) is empty if that psupx < � . Suppose that psupx � � . Then the de�nition of R1� (x) states
that

R1� (x) � min ft : P (Y � tjp(Z) = psupx ; D = 1) � �=psupx g :

It follows that P (Y1 � R1� (x)) � � . Hence QY1(�) � R1� (x).
Step 2: L1� (x) is a lower bound for QY1(�).
By (28),

P (Y � yjp(Z) = psupx ; D = 1) psupx + (1� psupx ) < � =) P (Y1 � y) < �;

which can be rewritten as

P (Y � yjp(Z) = psupx ; D = 1) < 1� 1� �
psupx

=) P (Y1 � y) < �: (30)

The premise of (30) is empty if psupx � 1� � . Suppose that psupx > 1� � . Then the de�nition of L1� (x) states
that

L1� (x) � min
�
t : P (Y � tjp(Z) = psupx ; D = 1) � 1� 1� �

psupx

�
:

It follows that, for all � > 0, P
�
Y1 � L1� (x)� �

�
< � . Hence QY1(�) � L1� (x).

Step 3: R1� (x) is the least upper bound for QY1(�).
First let psupx � � . For any � > 0,

P
�
Y1 � R1� (x)� �

�
= P

�
Y � R1� (x)� �jp(Z) = psupx ; D = 1

�
psupx +

Z 1

psupx

FY1jUD (R
1
� (x)� �juD)duD:

Suppose FY1jUD (R
1
� (x) � �juD) = 0 for uD 2 (psupx ; 1], as is possible in the absence of other information.

Then the de�nition of R1� (x) implies that

P
�
Y1 � R1� (x)� �

�
= P

�
Y � R1� (x)� �jp(Z) = psupx ; D = 1

�
psupx < �:

Hence QY1(�) > R
1
� (x)� �. Now let psupx < � . For any t < yu(x),

P (Y1 � t) = P (Y � tjp(Z) = psupx ; D = 1) psupx +

Z 1

psupx

FY1jUD (tjuD)duD: (31)

Suppose that FY1jUD (tjuD) = 0 for uD 2 (psupx ; 1]. Then

P (Y1 � t) = P (Y � tjp(Z) = psupx ; D = 1) psupx < �:
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Hence QY1(�) > t.

Step 4: L1� (x) is the greatest lower bound for QY1(�).
First let psupx > 1� � . For any � > 0,

P
�
Y1 � L1� (x) + �

�
= P

�
Y � L1� (x) + �jp(Z) = psupx ; D = 1

�
psupx +

Z 1

psupx

FY1jUD (L
1
� (x) + �juD)duD:

Suppose that FY1jUD (L
1
� (x)+�juD) = 1 for uD 2 (psupx ; 1], as is possible in the absence of other information.

Then the de�nition of L1� (x) implies that

P
�
Y1 � L1� (x) + �

�
= P

�
Y � L1� (x) + �jp(Z) = psupx ; D = 1

�
psupx + (1� psupx ) � �:

Hence QY1(�) � L1� (x) + �. Now, let psupx � 1� � . Let t > yl(x) and suppose that FY1jUD (tjuD) = 1. Then
by (31),

P (Y1 � t) = P (Y � tjp(Z) = psupx ; D = 1) psupx + (1� psupx ) � �:

Hence QY1(�) � t.
Step 5: R1� (x) = L1� (x) if p

sup
x = 1; psupx = 1 if R1� (x) = L1� (x) when Y jX = x; p(X;Z) = psupx ; D = 1 is

continuously distributed with a positive density on (yl(x); yu(x)).

Suppose psupx = 1, then L1� (x) = QY jX;p(X;Z);D(� jx; psupx ; 1) = R1� (x).

Fix � 2 (0; 1=2]. When 0 � psupx < � , L1� (x) = yl(x) < yu(x) = R1� (x). When 1 > psupx > 1 � � ,
L1� (x) = QY jX;p(X;Z);D

�
1� 1��

psupx

���x; psupx ; 1
�
< QY jX;p(X;Z);D

�
�
psupx

���x; psupx ; 1
�
= R1� (x). When 1 � � �

psupx � � , L1� (x) = yl(x) < QY jX;p(X;Z);D

�
�
psupx

���x; psupx ; 1
�
. So when � � 1=2, Q� (Y1jX = x) cannot be

point identi�ed unless psupx = 1. Similarly, when 1 > � > 1=2, QY1jX (� jx) cannot be point identi�ed unless
psupx = 1.

Step 6: sup
z2Zx

L1� (x; z) = L
1
� (x) and inf

z2Zx
R1� (x; z) = R

1
� (x) under assumption (9).

Note that

inf
z2Zx

R1� (x; z) = inf
z2Zx

�
QY jX;Z;D

�
�

p(x; z)

����x; z; 1� 1(p(x; z) � �) + yu(x)1(p(x; z) < �)�
= inf

px2Px

�
QY jX;p(X;Z);D

�
�

px

����x; px; 1� 1(px � �) + yu(x)1(px < �)�
and

R1� (x) = QY jX;p(X;Z);D

�
�

psupx

����x; psupx ; 1

�
1(psupx � �) + yu(x)1(psupx < �):

If psupx < � , the result is trivial, so assume psupx � � . First, inf
z2Zx

R1� (x; z) � R1� (x), so we need only show

inf
z2Zx

R1� (x; z) � R1� (x). Since inf
z2Zx

R1� (x; z) must be achieved at some px 2 Px such that px � � , we need

only show

r1� (x; px) � QY jX;p(X;Z);D
�
�

px

����x; px; 1� � QY jX;p(X;Z);D � �

psupx

����x; psupx ; 1

�
� r1� (x)

for any px 2 Px and px � � . From the de�nition of r1� (x; px), r
1
� (x; px) is the in�mum of r such that

P (Y � rjX = x; p(Z) = px; D = 1) � �=px or
Z px

0

FY1jX;UD (rjx; uD)duD � � . Since FY1jX;UD (rjx; uD) � 0,Z psupx

0

FY1jX;UD (r
1
� (x; px) jx; uD)duD � � or P

�
Y � r1� (x; px) jX = x; p(Z) = psupx ; D = 1

�
� �=psupx . Since
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r1� (x) is the in�mum of r satisfying P (Y � rjX = x; p(Z) = pmaxx ; D = 1) � �=psupx , r1� (x; px) � r1� (x).

Similarly, we can show sup
z2Zx

L1� (x; z) = L
1
� (x).

Proof of Theorem 4. The following theorem applies to the case where Yd is a compact interval of R.
The case where Yd is discrete is simpler. Lemma E.1 and E.2 in the following proof are referred to the

corresponding lemmas in Appendix E of Chernozhukov et al. (2013).

Step 1: We apply the proof idea of Theorem 5.2 of Chernozhukov et al. (2013) to derive the weak limit ofb�d(yd).
If we use the notation of Chernozhukov et al. (2013), u = y = (y0; y1)

0; �(u) = (
; �0(y)
0; �1(y)

0)
0 �

(
; �(y)0)
0 2 Rd� , and U = Y � Y0Y1 = f(y0; y1)jy0 2 Y0; y1 2 Y1g. Note that the �rst element of �(u) does

not depend on y. Let

'y;�(D;Y;X;Z) =

0B@ (ep�D)H(R0
)R;
(1�D) [�(T 0�0)� 1(Y � y0)]H(T 0�0)T;
D [�(T 0�1)� 1(Y � y1)]H(T 0�1)T;

1CA
where H(�) = �(�)= f�(�) [1� �(�)]g. Let 	(�; y) = P ('y;�) and b	(�; y) = Pn ('y;�), where Pn is the empir-
ical measure and P is the corresponding probability measure. From the �rst order conditions, distribution

regression in the sample obeys b�(y) = �(b	(�; y); 0) for each y 2 Y, where � is the Z-map de�ned in Appendix
E.1. Then, by Step 3 below

p
n
�b	�	� W � (W
 ;W0(y0);W1(y1)) in `1

�
Rd� � Y

�
; W (y; �) = G ('y;�) ;

where W has continuous paths a.s. with three components being independent of each other. Step 4 veri�es

the Conditions of Lemma E.1 for

_	�(u);u =

0B@ Jp 0 0

J0p(y0) J0(y0) 0

J1p(y1) 0 J1(y1)

1CA � J(y);

where Jp, Jd(yd) and Jdp(yd) are de�ned in the main text, which also implies y 7�! �(y) is continuously

di¤erentiable on Y. Then, by Lemma E.2, the map � is Hadamard-di¤erentiable with the derivative map
w 7�! �J�1w at (	; 0). Therefore, we can conclude by the Functional Delta Method that

p
n
�b�(�)� �(�)� �J�1(�)W (�(�); �) in `1 (Y)d� :

This further implies that

p
n
�b�(y)� �(y)� �

 
J0(y0)

�1 �J0p(y0)J�1p W
 +W0(y0)
�

J1(y1)
�1 �J1p(y1)J�1p W
 +W1(y1)

� ! in `1 (Y)d� :

Note that the weak convergence in this step does not reply on compactness of Y.
Step 2: We derive the results for conditional CDFs and the MQTE. [Here we shall rely on compactness of
YXP. Then Y0 and Y1 are closed interval of R.]
Consider the mapping ' : D' � `1 (Y)d� 7�! `1 (YXP)2, de�ned as b 7�! '(b),

'(b)(y; p; x) =

 
�(T (x; p))0b0(y0))� (1� p)@T (x;p)

0

@p b0(y0) � �
�
T (x; p)

0
b0(y0)

�
;

�(T (x; p))0b1(y1)) + p
@T (x;p)0

@p b1(y1) � �
�
T (x; p)

0
b1(y1)

�
:

!
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It is straightforward to deduce that this map is Hadamard di¤erentiable at b(�) = �(�) tangentially to C (Y)d�

with the derivative map given by: � 7�! '0�(�)(�),

'0�(�)(�)(y; x; p) =

 
'0�0(�)(�)(y; x; p)

'0�1(�)(�)(y; x; p)

!
;

where '0�0(�) and '
0
�1(�) are de�ned in the main text. Since

bFY0jX;UD (y0jx; p) = �(T (x; p))0b�0(y0))� (1� p) @T (x; p)0@p
b�0(y) � ��T (x; p)0 b�0(y0)� ;

bFY1jX;UD (y1jx; p) = �(T (x; p))0b�1(y1)) + p@T (x; p)0@p
b�1(y) � ��T (x; p)0 b�1(y1)� ;

by the delta method it follows that

p
n

 bFY0jX;UD (y1jx; p)� FY0jX;UD (y1jx; p)bFY1jX;UD (y1jx; p)� FY1jX;UD (y1jx; p)
!
 �

 
'0�0(�)

�
J0(y0)

�1 �J0p(y0)J�1p W
 +W0(y0)
��

'0�1(�)
�
J1(y1)

�1 �J1p(y1)J�1p W
 +W1(y1)
�� ! in `1 (YXP)2 ,

and

p
n

 bF �Y0jX;UD (y1jx; p)� bFY0jX;UD (y1jx; p)bF �Y1jX;UD (y1jx; p)� bFY1jX;UD (y1jx; p)
!

� �
 
'0�0(�)

�
J0(y0)

�1 �J0p(y0)J�1p W
 +W0(y0)
��

'0�1(�)
�
J1(y1)

�1 �J1p(y1)J�1p W
 +W1(y1)
�� ! in `1 (YXP)2 :

Also, �MQTE
� (x; uD) is estimated as

b�X;UD (� jx; uD) = bF�1Y1jX;UD (� jx; uD)� bF�1Y0jX;UD (� jx; uD):
By the proof of Theorem 4.1(2) of Chernozhukov et al. (2013), the results in the theorem follow.

Step 3: We verify that
�
'y;�(Y;X;Z)j(y; �) 2 Y�Rd�

	
is P -Donsker with a square integrable envelope.

We only analyzeD [�(T 0�1)� 1(Y � y1)]H(T 0�1)T for illustration. The function classes F1 =
�
T 0�1j�1 2 RdT

	
,

F2 = f1(Y � y1)jy1 2 Y1g, and fDTqjq = 1; � � � ; dT g are VC classes of functions. The �nal class G =

f(�(F1)�F2)H(F1)DTqjq = 1; � � � ; dT g is a Lipschitz transformation of VC classes with Lipschitz coe¢ -
cient bounded by const� kTk and envelope function const� kTk, which is square-integrable. Hence G is Donsker
by Example 9.19 in van der Vaart (1998). Finally, the map (�1; y1) 7�! D [�(T 0�1)� 1(Y � y1)]H(T 0�1)T
is continuous at each (�1; y1) 2 Rd�1 �Y1 with probability one by the absolute continuity of the conditional
distribution of Y (when Y is not �nite).
Step 4: We verify conditions (a)-(c) of Lemma E.1.
Condition (a) and (b) are immediate by the assumption. To verify (c), a straightforward computation

gives that for (�; y) in the neighborhood of (�(y); y),

@

@�0
	(�; y) = (32)0B@ E
�
fh [p�D] +H�gRR0

�
0 0

A0
 E
�
(1�D) fh0 [�0�1(Y � y0)]+H0�0gTT 0

�
0

A1
 0 E
�
D fh1 [�1�1(Y � y1)]+H1�1gTT 0

�
1CA ;
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and

@

@y0
	(�; y) =

0B@ 0 0

�E
�
(1�D)fY jX;Z;D(yjX;Z;D)H0T

�
0

0 �E
�
DfY jX;Z;D(yjX;Z;D)H1T

�
1CA

=

0B@ 0 0

�E
�
(1� ep)fY0jX;Z(yjX;Z)H0T � 0

0 �E
�epfY1jX;Z(yjX;Z)H1T �

1CA ;
where

A0
 = E

�
(1�D)�

�
@T (X; p)0�0

@p
[h0 (�0 � 1(Y � y0)) + �0H0]T +H0 [�0 � 1(Y � y0)]

@T (X; p)

@p

�
R0
�
;

A1
 = E

�
D�

�
@T (X; p)0�1

@p
[h1 (�1 � 1(Y � y1)) + �1H1]T +H1 [�1 � 1(Y � y1)]

@T (X; p)

@p

�
R0
�

and T = T (X; p), R = R(X;Z), H = H(R0
), p = �(R0
), h = h(R0
), � = �(R0
), Hd = H(T 0�d),

hd = h(T
0�d), �d = �(T 0�d), �d = �(T 0�d). Both terms are continuous in (�; y) at (�(y); y) for each y 2 Y.

The computation above as well as veri�cation of continuity follows from using the dominated convergence

theorem, and the following ingredients: (1) a.s. continuity of the map (�; y) 7�! @
@�0'y;�(Y;X;Z), (2)

domination of


 @
@�0'y;�(Y;X;Z)



 by a square-integrable function const� k(R; T )k, (3) a.s. continuity and
uniform boundedness of the conditional density function y 7�! fY jX;Z;D(yjX;Z; d), and (4) H(�) is bounded
uniformly on R, a.s. By assumption and the lower-triangular form of @

@�0	(�; y),
@
@�0	(�(y); y) is positive-

de�nite uniformly in y 2 Y.
Proof of Theorem 5. Since TKn and TCn are continuous functionals of bHd

n(y) � bF dn(y), y 2 Yd, we can
apply the continuous mapping theorem to get their asymptotic distributions as long as the weak limits ofbHd
n(y)� bF dn(y), y 2 Yd, are derived. For this purpose, let

'y;�(D;Y;X;Z) =

0BBBBBBBBBB@

(ep�D)H(R0
)R;
(1�D) [�(T 0�0)� 1(Y � y0)]H(T 0�0)T;
D [�(T 0�1)� 1(Y � y1)]H(T 0�1)T;
(1�D) � 1(Y � y0)�H0(y0);

D � 1(Y � y1)�H1(y1);

(1�D) � �(T 0�0)� F 0(y0);
D � �(T 0�1)� F 1(y1);

1CCCCCCCCCCA
and 	(�; y) = P ('y;�), where �(y) =

�

; �0(y0)

0; �1(y1)
0;H0(y0);H

1(y1); F
0(y0); F

1(y1)
�0
and other nota-

tions are the same as in the proof of Theorem 4. It can be shown that

_	�(y);y =

0BBBBBBBBBB@

Jp 0 0 0 0 0 0

J0p(y0) J0(y0) 0 0 0 0 0

J1p(y1) 0 J1(y1) 0 0 0 0

0 0 0 �1 0 0 0

0 0 0 0 �1 0 0

A0
 A00 0 0 0 �1 0

A1
 0 A11 0 0 0 �1

1CCCCCCCCCCA
;
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where Ad
 and A
d
d are de�ned in the main text. By the Functional Delta Method, it follows that

p
n

0BBB@
bH0
n(y0)�H0(y0)bH1
n(y1)�H1(y1)bF 0n(y0)� F 0(y0)bF 1n(y1)� F 1(y1)

1CCCA 
0BBB@
G0H(y0)
G1H(y1)
G0F (y0)
G1F (y1)

1CCCA in `1 (Y)4 ; (33)

where GdH(yd) and GdF (yd) are de�ned in the main text. By the continuous mapping theorem, the asymptotic
null distributions in (i) follow.

Under H1, if P (Y 2 Sd (�d; 
) ; D = d) > 0 ,

TKn =
p
n sup
y2Y1

��� bH1
n(y)�H1(y)�

� bF 1n(y)� F 1(y)�+ �H1(y)� F 1(y)
����

+
p
n sup
y2Y0

��� bH0
n(y)�H0(y)�

� bF 0n(y)� F 0(y)�+ �H0(y)� F 0(y)
����

= Op
�p
n
�
;

and similarly, TCn = Op(n), which implies that for any sequences of random variables fcn : n � 1g with
cn = Op(1),

lim
n!1

P
�
TKn > cn

�
= 1 and lim

n!1
P
�
TCn > cn

�
= 1;

where F
d
(y) = E

�
1(D = d)�(T (X;� (R(X;Z)0
))0�d)

�
with �d 2 Bd(Yd) and 
 2 � being pseudo-true val-

ues of �d and 
. Note here that although we can show a similar result as in (33), Jp, Jd(�) and Jdp(�) cannot be
simpli�ed underH1 and must take the form as in (32). Nevertheless,

p
n sup
y2Yd

��� bHd
n(y)�Hd(y)�

� bF dn(y)� F d(y)���� =
Op(1) and is dominated by

p
n sup
y2Yd

����Hd(y)� F d(y)
����.

From Lemma 2.8.7 in Van der Vaart andWellner (1996, p. 174),
p
n
� bHd

n(yd)�Hd
n(yd)

�
and

p
n
� bF dn(yd)� F dn(yd)�

under the local alternative have the same weak limit as
p
n
� bHd

n(yd)�Hd(yd)
�
and

p
n
� bF dn(yd)� F d(yd)�

under the null (associated with p� and F d� ), where H
d
n(yd) and F

d
n(yd) are the counterparts of H

d(yd)

and F d(yd) under the local alternative. So it remains to �nd the limits of
p
n
�
Hd
n(yd)�Hd(yd)

�
and

p
n
�
F dn(yd)� F d(yd)

�
.

p
n
�
Hd
n(yd)�Hd(yd)

�
= �dE

��
Qd(ydjX; qn(X;Z))� F d� (ydjX; qn(X;Z))

�
1(D = d)

�
+ �dE

��
F d� (ydjX; qn(X;Z))� F d� (ydjX; p�(X;Z))

�
1(D = d)

�
�! �dE

��
Qd(ydjX; p�(X;Z))� F d� (ydjX; p�(X;Z))

�
1(D = d)

�
by the bounded convergence theorem. Since

p
n
�
F dn(yd)� F d(yd)

�
=
p
n (E [�(T 0n�dn) � 1(D = d)]� E [�(T 0�d) � 1(D = d)])

where 
n in Tn and �dn are the true values of 
 and �d under local alternative, we have

p
n
�
F dn(yd)� F d(yd)

�
�! ��


�
Ad
 +A

d
dJd(yd)

�1Jdp(yd)
�
J�1p E [(q �D)H(R0
)R]

� �dAddJd(yd)�1E
��
�(T 0�d)�Qd(ydjX; ep)�H(T 0�d)T � 1(D = d)

�
;

by a similar argument as in Step 1 of Theorem 4.
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Proof of Theorem 6. We take TKn as an example since the proof for TCn is similar.

Because
� bH0

n(y0);
bH1
n(y1);

bF 0n(y0); bF 1n(y1)� = �(b	(�; y)) and �(�) is Hadamard di¤erentiable at 	(�; y),
where b	(�; y) = Pn ('y;�) and 	(�; y) = P ('y;�) with 'y;� de�ned in Theorem 5, by the functional delta

method for the bootstrap (Van der Vaart and Wellner (1996), Theorem 3.9.11, p. 378), it holds under either

the null or a �xed alternative that
p
n
� bH0�

n (y0)� bF 0n(y0); bH1�
n (y1)� bF 1n(y1); bF 0�n (y0)� bF 0n(y0); bF 1�n (y1)� bF 1n(y1)�

weakly converges to a tight mean zero Gaussian process whose distribution coincides with that of the limit

process in (33) under H0.

Under H0, it follows from the above result that bcn(�) = c(�) + op(1) under H0. This implies that Tn
and Tn � (bcn(�) � c(�)) converges to the same limiting distribution as n ! 1, and hence we have that
P (Tn > bcn(�)) = �+ o(1) under the null.
Under a �xed alternative, bcn(�) is bounded in probability from the above result. Thus, for any � > 0,

there exists a constant M such that P (bcn(�) > M) < �+ o(1). Using elementary inequalities, we also have
that

P (Tn � bcn(�)) = P (Tn � bcn(�);bcn(�) �M) + P (Tn � bcn(�);bcn(�) > M) � P (Tn �M) + P (bcn(�) > M):
From Theorem 5(ii), we know that P (Tn � M) = o(1), and thus P (Tn � bcn(�)) < � + o(1), which implies
the statement of the theorem since � can be chosen arbitrarily small.

As to part (iii), we can use Anderson�s Lemma (e.g., see Ibragimov and Has�minski (1981), Lemma 10.1, p.

155) and similar arguments of Andrews (1997, p. 1114) to show that lim
n!1

P (Tn > c(�)) � �. Furthermore,
we have already shown in part (i) that P (Tn > bcn(�)) = P (Tn > c(�)) + o(1) under the null. By using

contiguity arguments, this can also shown to be true under the local alternative; see, for example, the proof

of Corollary 2.1 in Bickel and Ren (2001, p. 97).

Proof of Theorem 7. Note that

E[Y � �0(X)�D (�1(X)� �0(X)) jX;Z]
= E [U0 +D (U1 � U0) jX;Z]
= E [�(X;Z; V ) (U1 � U0) jX;Z]
= E [�(X;Z; V )jX;Z]E [(U1 � U0) jX;Z]
= 0;

where the second equality uses E[U0jX;Z] = 0, and the third equality uses (U1 � U0) ? V j (X;Z), and the
fourth equality uses E[U1 � U0jX;Z] = 0. This is the parallel result of Theorem 1 of Chernozhukov and

Hansen (2005) in the average treatment e¤ect evaluation.

To identify �1(X)� �0(X), we need for all �0(X) and �1(X) with �nite expectation,

E[�0(X) +D�1(X)jX;Z] = �0(X) + E[DjX;Z]�1(X) = 0 =) �1(X) = 0: (34)

If E[DjX;Z] > 0, then �1(X) = 0 is equivalent to �0(X) = �1(X) = 0. If Z can take only one value, obvi-
ously, (34) cannot be satis�ed. Suppose Z can take two values, z1 and z2, then E[�0(X)+D�1(X)jX;Z] = 0
implies

�0 + E[DjZ = z1]�1 = 0;
�0 + E[DjZ = z2]�1 = 0;
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i.e., "
1 E[DjZ = z1]
1 E[DjZ = z2]

# 
�0

�1

!
=

 
0

0

!
;

where we depress the conditioning on X to simplify the notations. As long as E[DjZ = z1] 6= E[DjZ = z2],
we must have �0 = �1 = 0. Interestingly, we do not require E[DjZ] 2 (0; 1) as long as Z has a nontrivial

impact on D. Also, this condition is equivalent to that D is complete for the "parameter" Z in the family

of FDjZ . To see why, note that for any �(D) with �nite expectation (which is equivalent to j�(0)j <1 and

j�(1)j <1), E[�(D)jZ] = 0 implies

�(0)PDjZ(0jZ) + �(1)PDjZ(1jZ) = �(0)(1� E[DjZ]) + �(1)E[DjZ]
= �(0) + (�(1)� �(0))E[DjZ] = 0:

If �0+ �1E[DjZ] = 0 for any �0 and �1 =) �0 = �1 = 0; then �(0)+ (�(1)� �(0))E[DjZ] = 0 for any �(0)
and �(1) =) �(0) = �(1) = 0.

The usual IV estimator of � in the regression Y = �+D� + " with " = U0 +D (U1 � U0) is

b�IV = dCov(Z; Y )dCov(Z;D) ;
where dCov is the covariance estimate (conditional on X). It is easy to see that

b�IV p�! � +
Cov(Z; ")

Cov(Z;D)
;

where Cov(�; �) is understood as the conditional covariance given X.

Cov(Z; ") = Cov(Z;U0 +D (U1 � U0))
= Cov(Z;U0) + Cov(Z;D (U1 � U0))
= Cov(Z;D (U1 � U0));

where the last equality is implied by the assumption E[U0jX;Z] = 0 and E[U0jX] = 0.

Cov(Z;D (U1 � U0)) = E [ZD (U1 � U0)]� E [Z]E [D (U1 � U0)]
= E [ZE [DjZ]E[U1 � U0jZ]]� E [Z]E [E [DjZ]E [U1 � U0jZ]]
= 0;

where E[�j�] is understood as conditional on X, the second equality is from (U1 � U0) ? V j (X;Z) and the
law of iterated expectation, and the last equality is from E[U1 � U0jX;Z] = 0. This derivation is similar as
that in footnote 5 of Heckman et al. (2006).

All the elegancy in the identi�cation of �1(X) � �0(X) and the consistency of b�IV hinges on the linear
structure of �0(X) +D (�1(X)� �0(X)) in D.
Proof of Theorem 8. Consider the mapping ' : D' � Rd
 � `1 (Y)d� 7�! R2 � `1 (YX )4, de�ned as
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(a; b) 7�! '(a; b),

'(a; b)(x; y) =

0BBBBBBBB@

�(R(x; 1)0a)

�(R(x; 0)0a)

�(T (x; p(x; 1; a))0b1(y1))

�(T (x; p(x; 0; a))0b1(y1))

�(T (x; p(x; 1; a))0b0(y0))

�(T (x; p(x; 0; a))0b0(y0))

1CCCCCCCCA
:

It is straightforward to deduce that this map is Hadamard di¤erentiable at (a; b(�)) = (
; �(�)) tangentially
to Rd
 � C (Y)d� with the derivative map given by: (�; �) 7�! '0
;�(�)(�; �),

'0
;�(�)(�; �)(y; x) =

0BBBBBBBBBB@

�(R(x; 1)0
)R(x; 1)0�

�(R(x; 0)0
)R(x; 0)0�

�(T (x; p(x; 1; 
))0�1(y1))
h
@T (x;p(x;1;
))0�1(y1)

@p �(R(x; 1)0
)R(x; 1)0� + T (x; p(x; 1; 
)))0�1(y1)
i

�(T (x; p(x; 0; 
))0�1(y1))
h
@T (x;p(x;0;
))0�1(y1)

@p �(R(x; 0)0
)R(x; 0)0� + T (x; p(x; 0; 
)))0�1(y1)
i

�(T (x; p(x; 1; 
))0�0(y0))
h
@T (x;p(x;1;
))0�0(y0)

@p �(R(x; 1)0
)R(x; 1)0� + T (x; p(x; 1; 
)))0�0(y0)
i

�(T (x; p(x; 0; 
))0�0(y0))
h
@T (x;p(x;0;
))0�0(y0)

@p �(R(x; 0)0
)R(x; 0)0� + T (x; p(x; 0; 
)))0�0(y0)
i

1CCCCCCCCCCA
:

Since

bFY1jX;D0;D1
(y1jx; 0; 1) =

�(T (x;�(R(x; 1)0b
))0b�1(y1))�(R(x; 1)0b
)� �(T (x;�(R(x; 0)0b
))0b�1(y1))�(R(x; 0)0b
)
�(R(x; 1)0b
)� �(R(x; 0)0b
) ;

bFY0jX;D0;D1
(y0jx; 0; 1) =

�(T (x;�(R(x; 0)0b
))0b�0(y0)) (1� �(R(x; 0)0b
))� �(T (x;�(R(x; 1)0b
))0b�0(y0)) (1� �(R(x; 1)0b
))
�(R(x; 1)0b
)� �(R(x; 0)0b
) ;

by the delta method it follows that

p
n

 bFY1jX;D0;D1
(y1jx; 0; 1)� FY1jX;D0;D1

(y1jx; 0; 1)bFY0jX;D0;D1
(y0jx; 0; 1)� FY0jX;D0;D1

(y0jx; 0; 1)

!

 
 
'L0
;�1(�)

�
W
 ;�J1(y1)�1

�
J1p(y1)J

�1
p W
 +W1(y1)

��
'L0
;�0(�)

�
W
 ;�J0(y0)�1

�
J0p(y0)J

�1
p W
 +W0(y0)

�� ! in `1 (YX )2 ,

where

'L0
;�1(�) (�; �1)

=

FY jX;p(X;Z);D(y1jx; p(x; 1); 1)�(R(x; 1)0
)R(x; 1)0 � FY jX;p(X;Z);D(y1jx; p(x; 0); 1)�(R(x; 0)0
)R(x; 0)0

+p(x; 1)�(T (x; p(x; 1)))0�1(y1))
@T (x;p(x;1))0�1(y1)

@p �(R(x; 1)0
)R(x; 1)0

�p(x; 0)�(T (x; p(x; 0)))0�1(y1))@T (x;p(x;0))
0�1(y1)

@p �(R(x; 0)0
)R(x; 0)0

p(x; 1)� p(x; 0) �

�
FY jX;p(X;Z);D(y1jx; p(x; 1); 1)p(x; 1)� FY jX;p(X;Z);D(y1jx; p(x; 0); 1)p(x; 0)

[p(x; 1)� p(x; 0)]2
[�(R(x; 1)0
)R(x; 1)0 � �(R(x; 0)0
)R(x; 0)0] �

+

�
p(x; 1)�(T (x; p(x; 1))0�1(y1))

p(x; 1)� p(x; 0) T (x; p(x; 1))0 � p(x; 0)�(T (x; p(x; 0))
0�1(y1))

p(x; 1)� p(x; 0) T (x; p(x; 0)))0
�
�1(y1);
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and

'L0
;�0(�) (�; �0)

=

FY jX;p(X;Z);D(y0jx; p(x; 1); 0)�(R(x; 1)0
)R(x; 1)0 � FY jX;p(X;Z);D(y0jx; p(x; 0); 0)�(R(x; 0)0
)R(x; 0)0

+ [1� p(x; 0)]�(T (x; p(x; 0))0�0(y0))@T (x;p(x;0))
0�0(y0)

@p �(R(x; 0)0
)R(x; 0)0

� [1� p(x; 1)]�(T (x; p(x; 1))0�0(y0))@T (x;p(x;1))
0�0(y0)

@p �(R(x; 1)0
)R(x; 1)0

p(x; 1)� p(x; 0) �

�
FY jX;p(X;Z);D(y0jx; p(x; 0); 0) [1� p(x; 0)]� FY jX;p(X;Z);D(y0jx; p(x; 1); 0) [1� p(x; 1)]

[p(x; 1)� p(x; 0)]2

� [�(R(x; 1)0
)R(x; 1)0 � �(R(x; 0)0
)R(x; 0)0] �

+

�
[1� p(x; 0)]�(T (x; p(x; 0))0�0(y0))

p(x; 1)� p(x; 0) T (x; p(x; 0))0 � [1� p(x; 1)]�(T (x; p(x; 1))
0�0(y0))

p(x; 1)� p(x; 0) T (x; p(x; 1)))0
�
�0(y0);

which can be simpli�ed to the form in the main text. By the proof of Theorem 4.1(2) of Chernozhukov et

al. (2013), the results in the theorem follow.
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Supplementary Materials

1. Derivation of Weights for the QTT and QTUT

The following derivation is similar as that in Section 4 of Heckman and Vytlacil (2001a). We start from

FYdjX;UD (ydjx; uD) since it can be identi�ed from our data directly. First,

FYdjX;UD;D(ydjx; p; 1) =
1

p

Z p

0

FYdjX;UD (ydjx; uD)duD:

Second,

FYdjX;D(ydjx; 1) =
Z 1

0

FYdjX;UD;D(ydjx; p; 1)dFp(X;Z)jX;D(pjx; 1):

Using Bayes�rule, it follows that

dFp(X;Z)jX;D(pjx; 1) =
P (D = 1jX = x; p(X;Z) = p)

P (D = 1jX = x)
dFp(X;Z)jX(pjx):

Since P (D = 1jX = x; p(X;Z) = p) = p, it follows that

FYdjX;D(ydjx; 1) =
1

P (D = 1jX = x)

Z 1

0

�Z p

0

FYdjX;UD (ydjx; uD)duD
�
dFp(X;Z)jX(pjx):

Note further that since P (D = 1jX = x) = E [p(X;Z)jX = x] =

Z 1

0

�
1� Fp(X;Z)jX(tjx)

�
dt,

FYdjX;D(ydjx; 1) =
1

P (D = 1jX = x)

Z 1

0

�Z 1

0

1(uD � p)FYdjX;UD (ydjx; uD)duD
�
dFp(X;Z)jX(pjx)

=
1Z 1

0

�
1� Fp(X;Z)jX(tjx)

�
dt

Z 1

0

�Z 1

0

1(uD � p)dFp(X;Z)jX(pjx)
�
FYdjX;UD (ydjx; uD)duD

=

Z 1

0

FYdjX;UD (ydjx; uD)
1� Fp(X;Z)jX(uDjx)Z 1

0

�
1� Fp(X;Z)jX(tjx)

�
dt

duD

=

Z 1

0

FYdjX;UD (ydjx; uD)hTT (x; uD)duD;

where hTT (x; uD) =
�
1� Fp(X;Z)jX(uDjx)

�
=E[p(X;Z)jX = x] is the same weight as in Heckman and

Vytlacil (2001a). Similarly,

FYdjX;D(ydjx; 0) =
Z 1

0

FYdjX;UD (ydjx; uD)hTUT (x; uD)duD;

where hTUT (x; uD) = Fp(X;Z)jX(uDjx)=E[1�p(X;Z)jX = x]. Third, from FYdjX;D(ydjx; 1) and FYdjX;D(ydjx; 0),
we can identify

�QTT� (x) = F�1Y1jX;D(� jx; 1)� F
�1
Y0jX;D(� jx; 1)

and

�QTUT� (x) = F�1Y1jX;D(� jx; 0)� F
�1
Y0jX;D(� jx; 0):
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2. Another Counterexample for Section 3.3

Example 3 Suppose Yd 2 [0; yu(x)] conditional on X = x. psupx1 � P (Y = 0jX = x; p(X;Z) = psupx ; D =

1) 2 (0; 1) and pinfx0 � P (Y = 0jX = x; p(X;Z) = pinfx ; D = 0) 2 (0; 1). Y jX = x; p(X;Z) = psupx ; D = 1

and Y jX = x; p(X;Z) = pinfx ; D = 0 are continuously distributed with a positive density on (0; yu(x)). First

check the bound for QY1jX (� jx):

L1� (x) =

(
QY jX;p(X;Z);D

�
1� 1��

psupx

���x; psupx ; 1
�
;

0;

if psupx > 1� � and 1� 1��
psupx

> psupx1 ;

if psupx � 1� � or [psupx > 1� � and 1� 1��
psupx

� psupx1 ];

R1� (x) =

8>><>>:
0;

QY jX;p(X;Z);D

�
�
psupx

���x; psupx ; 1
�

yu(x);

if psupx � � and �
psupx

� psupx1 ;
if psupx � � and �

psupx
> psupx1 ;

if psupx < �:

When max
n
1� �; �

psupx1

o
< psupx � 1��

1�psupx1
or �

psupx1
� psupx � 1 � � , L1� (x) = R1� (x) = 0. Otherwise,

L1� (x) < R1� (x) unless p
sup
x = 1. Similarly, when 1 � 1��

1�pinfx0
� pinfx < min

n
�; 1� �

pinfx0

o
or � � pinfx �

1 � �
pinfx0
, L0� (x) = R

0
� (x) = 0. Otherwise, L

0
� (x) < R

0
� (x) unless p

inf
x = 0. In Figure 6, only the blue area

augmented by fpsupx = 1g (
�
pinfx = 0

	
) is the combination of psupx (pinfx ) and p

sup
x1 (pinfx0 ) for point identi�cation

of QY1jX (� jx) (QY0jX (� jx)) when � = 0:1; 0:25; 0:5; 0:75; 0:9. Obviously, pinfx = 0 and psupx = 1 are not

necessary for point identi�cation of �QTE� (x). Only if psupx1 � � and pinfx0 � � , pinfx = 0 and psupx = 1 are

necessary. �

3. Derivation of Equation (23)

The following derivation is similar as that in Appendix B of Heckman and Vytlacil (2005).

FYa0 jXa0
(ydjx) =

Z 1

0

FYa0 jXa0 ;pa0
(ydjx; p)dFpa0 jXa0

(pjx)

=

Z 1

0

�Z 1

0

1[0;p](uD)FY1;a0 jXa0 ;UD;a0
(ydjx; uD) + 1(p;1](uD)FY0;a0 jXa0 ;UD;a0

(ydjx; uD)duD
�
dFpa0 jXa0

(pjx)

=

Z 1

0

�Z 1

0

1[uD;1](p)FY1;a0 jXa0 ;UD;a0
(ydjx; uD) + 1(0;uD](p)FY0;a0 jXa0 ;UD;a0

(ydjx; uD)dFpa0 jXa0
(pjx)

�
duD

=

Z 1

0

h�
1� Fpa0 jXa0

(uDjx)
�
FY1;a0 jXa0 ;UD;a0

(ydjx; uD) + Fpa0 jXa0
(uDjx)FY0;a0 jXa0 ;UD;a0

(ydjx; uD)
i
duD

=

Z 1

0

��
1� Fpa0 jXa0

(uDjx)
�
FY1;ajXa;UD;a

(ydjx; uD) + Fpa0 jXa0
(uDjx)FY0;ajXa;UD;a

(ydjx; uD)
�
duD

where pa0 = pa0 (Xa0 ; Za0), the third equality is from Fubini�s theorem, and the last equality is from assump-

tion (A7).
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4. Moment Conditions for the QRE and IV-QRE

If we use the QRE to estimate the QTE,�QTE� (x) is the � such that for some �, Q� (Y � ��D�jX = x) = 0.

The moment condition to identify (�; �) is

E

" 
1

D

!
(� � 1(Y � �+D�))

�����X = x

#
= 0;

i.e.,  
�

�E[p(X;Z)jX = x]

!
=

 
P (Y � �+D�jX = x)

E[D1(Y � �+D�)jX = x]

!
:

We calculate these moment conditions in our framework. First,

P (Y � �+D�jX = x) =

Z
P (Y � �+D�jX = x; p(X;Z) = p) dFp(X;Z)jX(pjx);

where
P (Y � �+D�jX = x; p(X;Z) = p)

= P (Y � �+D�jX = x; p(X;Z) = p;D = 1)P (D = 1jX = x; p(X;Z) = p)

+ P (Y � �+D�jX = x; p(X;Z) = p;D = 0)P (D = 0jX = x; p(X;Z) = p)

= P (Y1 � �+ �jX = x;UD � p) p+ P (Y0 � �jX = x;UD > p) (1� p)

=

Z p

0

FY1jX;UD (�+ �jx; uD)duD +
Z 1

p

FY0jX;UD (�jx; uD)duD:

Second,

E[D1(Y � �+D�)jX = x] =

Z
E[D1(Y � �+D�)jX = x; p(X;Z) = p]dFp(X;Z)jX(pjx);

where
E[D1(Y � �+D�)jX = x; p(X;Z) = p]

= E[D1(Y � �+D�)jX = x; p(X;Z) = p;D = 1]P (D = 1jX = x; p(X;Z) = p)

+ E[D1(Y � �+D�)jX = x; p(X;Z) = p;D = 0]P (D = 0jX = x; p(X;Z) = p)

= P (Y1 � �+ �jX = x;UD � p) p

=

Z p

0

FY1jX;UD (�+ �jx; uD)duD

In summary,

0B@ �

Z
(1� p) dFp(X;Z)jX(pjx)

�

Z
pdFp(X;Z)jX(pjx)

1CA =

0BB@
Z �Z 1

p

FY0jX;UD (�jx; uD)duD
�
dFp(X;Z)jX(pjx)Z �Z p

0

FY1jX;UD (�+ �jx; uD)duD
�
dFp(X;Z)jX(pjx)

1CCA ;
which is a very nonlinear system of functions. If FY0jX;UD (y0jx; uD) and FY1jX;UD (y1jx; uD) do not depend
on uD, or UD is independent of (Y0; Y1) given X, or the unconfoundedness assumption holds, then � will

identify �QTE� (x); otherwise, won�t.

The IV-QRE of Chernozhukov and Hansen (2006) is estimating q(1; x; �) � q(0; x; �), where q(d; x; �) is
de�ned by E [1 (Y � q(D;X; �))� � jX = x;Z] = 0. If use p(X;Z) as the instrument, then the corresponding
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moment equations are

 
�

�E[p(X;Z)jX = x]

!
=

0BB@
Z �Z p

0

FY1jX;UD (�+ �jx; uD)duD +
Z 1

p

FY0jX;UD (�jx; uD)duD
�
dFp(X;Z)jX(pjx)Z

p

�Z p

0

FY1jX;UD (�+ �jx; uD)duD +
Z 1

p

FY0jX;UD (�jx; uD)duD
�
dFp(X;Z)jX(pjx)

1CCA
where the �rst moment condition is from above, and the second moment condition is from

E[p(X;Z)1(Y � �+D�)jX = x] =

Z
E[p(X;Z)1(Y � �+D�)jX = x; p(X;Z) = p]dFp(X;Z)jX(pjx);

and

E[p(X;Z)1(Y � �+D�)jX = x; p(X;Z) = p]

= pE[1(Y � �+D�)jX = x; p(X;Z) = p;D = 1]P (D = 1jX = x; p(X;Z) = p)

+ pE[1(Y � �+D�)jX = x; p(X;Z) = p;D = 0]P (D = 0jX = x; p(X;Z) = p)

= pE[1(Y1 � �+ �)jX = x; p(X;Z) = p; UD � p]p+ pE[1(Y0 � �)jX = x; p(X;Z) = p; UD > p](1� p)

= p

�Z p

0

FY1jX;UD (�+ �jx; uD)duD +
Z 1

p

FY0jX;UD (�jx; uD)duD
�
:

In the unconfoundedness case, the system reduces to

 
�

�E[p(X;Z)jX = x]

!
=

0B@
Z �

pFY1jX(�+ �jx) + (1� p)FY0jX(�jx)
�
dFp(X;Z)jX(pjx)Z

p
�
pFY1jX(�+ �jx) + (1� p)FY0jX(�jx)

�
dFp(X;Z)jX(pjx)

1CA
which can be satis�es by � = q(0; x; �) and �+ � = q(1; x; �).

In the example of the main context, we assume that � is known and numerically solve the moment

conditions. Speci�cally, for the �rst speci�cation where only the selection e¤ect exists, the moment condition

for the QRE is

�

2
=

Z "Z p

0

�

 
��1(�)+�

2 � 0:5��1(uD)p
0:75

!
duD

#
dp;

and for the IV-QRE is

�

2
=

Z
p

"Z p

0

�

 
��1(�)+�

2 � 0:5��1(uD)p
0:75

!
duD +

Z 1

p

�

�
��1(�)� 0:5��1(uD)p

0:75

�
duD

#
dp;

for the second speci�cation where only the essential heterogeneity also exists, the moment condition for the

QRE is

�

2
=

Z "Z p

0

�

 p
7��1(�)+����1(uD)

2 � 0:5��1(uD)p
0:75

!
duD

#
dp;

and for the IV-QRE is

�

2
=

Z
p

"Z p

0

�

 p
7��1(�)+����1(uD)

2 � 0:5��1(uD)p
0:75

!
duD +

Z 1

p

�

 p
7��1(�)� 2��1(uD)� 0:5��1(uD)p

0:75

!
duD

#
dp:
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