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SUMMARY 10

This paper provides two groups of conditions of model consistency in least-absolute-deviation
mediation models. Under model consistency, we shows that the difference estimator and the
product estimator are not only numerically nonequivalent but asymptotically nonequivalent,
which is dramatically different from the situation in the least squares mediation analysis where
these two estimators are numerically equivalent. In all three possible scenarios of model parame- 15

ters, both the asymptotic theories and simulation studies show that the product estimator is more
efficient than the difference estimator.

Some key words: LAD mediation; Model consistency; Difference estimator; Product estimator; Second-order asymp-
totic.

1. INTRODUCTION 20

In many disciplines, the effect of the predictor on the outcome variable is often affected by
a third variable termed as a mediator. Mediation analysis aims to identify the mediation effec-
t between the predictor and the outcome via the change in the mediator (MacKinnon, 2008;
VanderWeele, 2015; Hayes, 2018). Since the seminal paper of Baron & Kenny (1986), the em-
pirical applications of mediation analysis have dramatically expanded in sociology, psychology, 25

epidemiology, and medicine. For example, Lindquist (2012) determined whether activation in
certain brain regions mediated the effect of applied temperature on self-reported pain based on
the data from a functional magnetic resonance imaging study of thermal pain. VanderWeele et al.
(2013) examined whether the 4Rs intervention has an effect on students’ depressive symptoms
by changing the quality of other classes and changing the quality of a student’s own class. 30

The basic mediation model consists of three regression equations with the causality assump-
tions. One usually adopts the least squares (LS) or the maximum likelihood under normality to
obtain two estimates of the mediation effect: the difference estimate and the product estimate
(MacKinnon et al., 2002). These two estimates are numerically equivalent under mild conditions
(MacKinnon et al., 1995; Wang et al., 2020). 35

Unfortunately, the real data sets are seldom normally distributed. Micceri (1989) examined
440 data sets from the psychological and educational literature and found that none of them was
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normally distributed. Instead, their distributions were either heavy-tailed and/or skewed. Field &
Wilcox (2017) further showed that some assumptions about commonly used statistical methods
are poorly understood and likely to be violated in psychological data, so inappropriate statistical40

methods are often applied. Mediation analysis for non-normal variables is an active research area
nowadays (Preacher, 2015).

It is well known that the LS method may break down in the presence of outliers and heavy-
tailed errors. Therefore, it is important to develop robust alternatives of the LS method. Zu &
Yuan (2010) used the local influence method to identify outliers which are far away from the45

majority of observations and strongly affect the mediation analysis. Recently, Yuan & MacKin-
non (2014) proposed the product estimate of the mediation effect by applying the least-absolute-
deviation (LAD) regression to data with heavy-tailed errors. Shen et al. (2014) and Bind et al.
(2017) suggested to employ quantile mediation models to explore the information in the error
distribution.50

The purpose of this paper is to provide an rigorous analysis on model consistency and show
nonequivalence of the difference and product estimators in the LAD mediation model. We pro-
vide two groups of conditions of model consistency. Both groups of conditions allow heavy-
tailed errors; the first group allows heteroskedasticity but the errors must be symmetrically dis-
tributed about zero, while the second group excludes heteroskedasticity but allows skewed er-55

rors. Under model consistency, we show that the two LAD estimators are not only numerically
nonequivalent but asymptotically nonequivalent, which is dramatically different from the LS case
where the two estimators are numerically equivalent. Specifically, for all three possible scenarios
of model parameters, our asymptotic theories show that the product estimator is more efficient
than the difference estimator, which is confirmed by our simulation studies.60

2. LAD MEDIATION ANALYSIS

2.1. LAD mediation model
As mentioned in the Introduction, the mean (or the LS method) is sensitive to outliers and

performs poorly when the error distribution is heavy-tailed (Huber & Ronchetti, 2009; Wilcox,
2017). Thus, it is not always an appropriate summary of the center of the data distribution; as65

an alternative, the median may perform better for non-normal distributions with heavy-tails. In
this section, we apply the LAD regression to the basic mediation model, give two conditions
for model consistency, and provide the asymptotic theory for the LAD estimates of the basic
parameters of the model.

Given the observations (Xi,Mi, Yi), i = 1, . . . , n, the basic LAD mediation model consists of70

three regression equations:

Yi = β1 + cXi + ε1i (1)
Mi = β2 + aXi + ε2i (2)
Yi = β3 + c′Xi + bMi + ε3i, (3)

where the errors satisfy Med(εki | Xi) = 0 for k = 1, 2, and Med(ε3i | Xi,Mi) = Med(ε3i |75

Xi, ε2i) = 0, which implies Med(ε3i | Xi) = 0. To compare with Equation (1), we plug Equation
(2) into Equation (3) to have

Y = β3 + c′X + b (β2 + aX + ε2) + ε3 = (β3 + bβ2) +
(
c′ + ab

)
X + εi. (4)
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where εi = bε2i + ε3i. The parameter c represents the total effect of X on Y , a measures the
relation between X and M , c′ represents the direct effect of X on Y adjusted for the effect of
M , and b measures the relation between M and Y adjusted for the effect of X . 80

In the general setup of the LAD mediation model, we only assume that the conditional medians
of the errors are zero, and do not impose any other distributional assumptions on them, i.e.,
independence (of X), homoscedasticity or normality; see Section 2.2 for further discussions on
the error term distributions. As in the LS mediation model, the LAD mediation effect can be
defined in two forms: the product of parameters ab and the difference in parameters c− c′. Next, 85

we discuss the conditions of model consistency, i.e., when will the difference in parameters c− c′
be equal to the product of parameters ab in population?

2.2. Model consistency
In LAD mediation analysis, Yuan & MacKinnon (2014) discussed the model consistency for

normally distributed errors in their Theorem 1. We restated their Theorem 1 using our own lan- 90

guage in the following Lemma 1.

LEMMA 1. If conditional on Xi, ε2i and ε3i are independent and zero-mean normally dis-
tributed, then Med(bε2i + ε3i | Xi) = 0 such that c− c′ = ab holds.

Note that we do not allow dependency between ε2i and ε3i conditional onXi. This is because if
their correlation corr(ε2i, ε3i | Xi) ≡ ρ23(Xi) 6= 0, then Med(ε3i | Xi, ε2i) = E(ε3i | Xi, ε2i) = 95

ε2iρ23(Xi)σ3(Xi)/σ2(Xi) 6= 0, violating the basic requirement of Equation (3) in LAD media-
tion analysis, where σk(Xi) is the conditional standard deviation of εki given Xi, k = 2, 3. As a
result, the dependency between ε2i and ε3i can only be through Xi. A typical case satisfying the
assumptions in Lemma 1 is εki = σk(Xi)εki with ε2i and ε3i being independent and following
N(0, 1). 100

Lemma 1 is a good starting point for the model consistency in LAD mediation analysis. How-
ever, the normality of errors is too strong as it is well known that the LS estimator is more
efficient than the LAD estimator for normal errors. The following proposition tries to extend the
model consistency to non-normal errors in two typical cases; the first case allows dependency of
(ε2i, ε3i) on Xi while the second case does not. 105

PROPOSITION 1. If either of the following two cases hold, (i) conditional on Xi, ε2i and ε3i
are independent and symmetrically distributed about 0; (ii) (ε2i, ε3i) are independent of Xi, and
Med(ε2i) = 0 and Med(ε3i | ε2i) = 0; then in LAD mediation analysis, we have the equality

c− c′ = ab.

The conditions in Case (i) imply Med(ε2i | Xi) = 0 and Med(ε3i | Xi, ε2i) = Med(ε3i |
Xi) = 0, and the conditions in Case (ii) imply Med(ε2i | Xi) = Med(ε2i) = 0 and Med(ε3i | 110

ε2i, Xi) = Med(ε3i | ε2i) = 0, which are the requirements of the LAD mediation model, so are
not restrictions. The real restrictions are independence between ε2i and ε3i and the symmetrici-
ty of their distributions given Xi in Case (i) and the independence between (ε2i, ε3i) and Xi in
Case (ii). Case (i) in Proposition 1 is an extension of Lemma 1. It implies that the normality is
not the key for Med(bε2i + ε3i | Xi) = 0, but the symmetricity (implied by the normality) is. A 115

typical scenario in Case (i) is εki = σk(Xi)εki, k = 2, 3, with ε2i and ε3i being independent and
symmetrically distributed about 0. Compared with Case (i), Case (ii) requires the independence
between (ε2i, ε3i) and Xi but relaxes the independence between ε2i and ε3i and the symmetricity
of their distributions, which implies that when the means of ε2i and ε3i exist, E(ε2i) and E(ε3i)
need not be zero. From the proof of Proposition 1 in Case (ii), Med(εi) need not be zero such 120
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that β1 need not be equal to β3 + bβ2, but c− c′ = ab still holds. When Med(εi) 6= 0, we de-
note d = Med(εi), and then β1 = d+ β3 + bβ2 and ε1i = εi − d. The conditions in Case (i) of
Proposition 1 are hard to relax, as shown in the following two examples.

Example 1. This example will show that in Case (i), even if ε2i and ε3i are symmetrical-
ly distributed about 0 given Xi, εi conditional on Xi need not be symmetrically distributed125

about 0 when ε2i and ε3i are correlated. As a result, Med(εi | Xi) will depend on Xi and
c− c′ = ab cannot hold. Assume εki = σ (Xi) εki, k = 2, 3, where ε2i and ε3i are symmetri-
cally distributed about 0 but correlated with each other. Specifically, if (ε2i, ε3i) take three val-
ues (−1, 1), (0,−1), (1, 1) with probabilities 1/4, 1/2, 1/4 respectively, then both ε2i and ε3i
are symmetrically distributed about 0, but ε2i + ε3i, which is εi when b = 1, is not. In conse-130

quence, Med(εi | Xi) = Med(εi)σ(Xi) = d′σ(Xi) depending on Xi, and c− c′ = ab cannot
hold, where d′ = Med(εi). Of course, independence between ε2i and ε3i are only sufficient but
not necessary for the symmetricity of ε2i + ε3i. For example, if (ε2i, ε3i) are uniformly distribut-
ed on the unit disc (and hence have symmetric marginal densities but are not independent), then
ε2i + ε3i also has a symmetric density.135

Example 2. This example will show that in Case (i), even if ε2i and ε3i are independent given
Xi, εi conditional on Xi need not be symmetrically distributed about 0 if either ε2i or ε3i is not
symmetrically distributed about 0. As a result, Med(εi | Xi) will depend on Xi and c− c′ = ab
cannot hold. Suppose X takes three values, 0, 1 and 2, ε2 ∼ N(0, 1), ε3 ∼ λX{Exp(1)− ln 2}
with the scale parameter λX = X + 1, and b = 1, where N(0, 1) and the standard exponential140

distributionExp(1) are independent. By numerical simulation, we obtain three different medians
γ0 = 0.88, γ1 = 1.58 and γ2 = 2.24 which satisfy

pr(ε1 ≤ γx) = pr(ε3 ≤ γx − bε2) = 0.5,

where x = 0, 1, 2. Obviously, the three medians are not the same and c− c′ = ab fails.

In Example 2, γ0, γ1 and γ2 do not fall on a straight line. In Example 1, if σ(Xi) is not
affine in Xi (i.e., σ (Xi) cannot be expressed as a+ bXi for some real numbers a and b),145

Med(εi | Xi) is not affine in Xi. As a result, we cannot even find β1 and c in Equation (1)
such that Med(ε1i | Xi) = 0. Of course, we can treat β1 + cXi as an approximation of the true
(nonlinear) conditional median Med(Yi|Xi) as in Angrist et al. (2006), but this seems out of
the scope of the usual mediation analysis. In contrast, in the LS mediation analysis, as long as
E(ε2i | Xi) = E(ε3i | Xi) = 0,E(εi | Xi) = E(bε2i + ε3i | Xi) = 0. In summary, although the150

LS estimate of the mediation effect is less robust to the heavy-tailedness of error distributions,
its model consistency allows a less restrictive relationship between (ε2i, ε3i) and Xi and/or the
joint distribution of (ε2i, ε3i). So there is a trade-off between the choices of the LS and LAD
mediation models.

2.3. LAD estimates of mediation effect155

The LS method is to minimize the squared errors between the dependent variable and the re-
gression function, while the LAD method is to minimize the absolute values of errors. Compared
with the sum of the squared errors, the sum of the absolute values of errors is not sensitive to
outliers. Thus, the LAD is a useful alternative to the LS when facing outliers or heavy-tailed
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errors. The LAD estimates of regression parameters in Equations (1)-(3) are obtained by 160

(β̂1, ĉ) = arg min
β1,c

n∑
i=1

|Yi − β1 − cXi| ,

(β̂2, â) = arg min
β2,a

n∑
i=1

|Mi − β2 − aXi| ,

(β̂3, ĉ′, b̂) = arg min
β3,c′,b

n∑
i=1

∣∣Yi − β3 − c′Xi − bMi

∣∣ .
For large samples, the LAD estimate is approximately normally distributed (Pollard, 1991;
Koenker, 2005). To rigorously state the asymptotic distributions of ĉ, ĉ′, â and b̂, which are 165

the building blocks of our parameters of interest ĉ− ĉ′ and âb̂, we impose the following condi-
tions. First, for a generic random variable ε, we define fε as the probability density function (pdf)
of ε.

Condition 1. (i) x, ε2 and ε3 are independent of each other. (ii) Med (ε2) = 0 and Med(ε3) =
0. (iii) fεk(0) > 0 for k = 1, 2, 3. (iv) E(|x|2) <∞ and E(|ε2|2) <∞. (v) fε1 , fε2 and fε3 are 170

continuous at 0.

Condition 1 collects the conditions for the first-order expansions of ĉ, ĉ′, â and b̂. Compared
with Case (ii) of Proposition 1, Condition 1 restricts ε2 and ε3 to be independent; anyway, such
an restriction allows heavy-tailedness and skewness of ε2 and ε3 as encountered in practice. This
restriction would greatly simplify our analysis; otherwise, tedious formulae would blur the main 175

conclusions of our analysis. Assuming errors of a causal diagram to be independent is not new;
see, e.g., Pearl (1995, 2009). Under this restriction, Fε1(x) =

∫
Fε3(x+ d− bε2)fε2(ε2)dε2 and

fε1(x) =
∫
fε3(x+ d− bε2)fε2(ε2)dε2, where for a generic random variable ε, Fε(·) is the cu-

mulative distribution function (cdf) of ε. Given the independence between ε2 and ε3, the nonze-
roness of µε2 , µε3 and d is only from the asymmetricity of the distributions of ε2 and ε3, where for 180

a generic random variableX , µX = E(X). When ε2 and ε3 are symmetrically distributed, d = 0,
Fε3(ε3) = 1− Fε3(−ε3) and fε3(ε3) = fε3(−ε3), so Fε1(x) =

∫
{1− Fε3(bε2 − x)} fε2(ε2)dε2

and fε1(x) =
∫
fε3(bε2 − x)fε2(ε2)dε2. Other conditions in Condition 1 are standard regularity

assumptions.
From Pollard (1991) and Knight (1998), we have the following asymptotic distributions for ĉ, 185

ĉ′, â and b̂.

LEMMA 2. Under Condition 1,

n1/2(ĉ− c) =⇒ N

(
0,

H2,2

4f2ε1(0)

)
, n1/2(ĉ′ − c′) =⇒ N

(
0,

J2,2

4f2ε3(0)

)
,

n1/2(â− a) =⇒ N

(
0,

H2,2

4f2ε2(0)

)
, n1/2(̂b− b) =⇒ N

(
0,

J3,3

4f2ε3(0)

)
,

where the symbol ’=⇒’ signifies weak convergence of the associated probability measures, for
a matrix A, Ai,j is the (i, j) element of A−1, H = E(x1x

T
1 ) with x1 = (1, X)T, J = E(x2x

T
2 ),

with x2 = (1, X,M)T, and the superscript ’T ’ indicates the transpose of a matrix. 190

For a generic random variableX , define σ2X =var(X), and set σ2k =var(εk), k = 1, 2, 3. Under
Condition 1, if σ2k exists, then we need only replace (4f2εk(0))−1 in Lemma 2 by σ2k to get the
asymptotic distributions of the corresponding LS estimates. Note that the LAD estimates need
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not dominate the LS estimates in efficiency. From Lemma 2, the former is more efficient than
the latter if and only if the ratio σ2k/(4f

2
εk

(0))−1 > 1. For example, this ratio is 0.64, 5.75,+∞195

for the standard normal distribution N(0, 1), the contaminated normal distribution 0.9N(0, 1) +
0.1N(0, 102), and the heavy-tailed distribution t2 which is the t-distribution with two degrees of
freedom, respectively.

Based on the LAD estimators of ĉ, ĉ′, â and b̂, we can construct the difference estimator
ĉ− ĉ′ and the the product estimator âb̂ of the mediation effect, where the latter estimator is200

suggested by Yuan & MacKinnon (2014) in the LAD mediation model. Unlike the numerical
equivalence of the two parallel LS estimates (MacKinnon et al., 1995; Wang et al., 2020), the two
LAD estimates are not numerically equivalent, that is, âb̂ 6= ĉ− ĉ′ in general (see our simulation
studies in Section 4). Actually, they are not even asymptotically equivalent, as shown in the
coming section.205

3. ASYMPTOTIC THEORY FOR LAD ESTIMATES OF MEDIATION EFFECT

3.1. Conditions for second-order asymptotics
We now study the asymptotic properties of ĉ− ĉ′, âb̂ and ĉ− ĉ′ − âb̂, where ĉ, ĉ′, â and b̂ are

the LAD estimators defined in Section 2.3. It turns out that these asymptotic properties criti-
cally depend on the zeroness of a and b. Whether b = 0 or not determines ĉ− ĉ′ − âb̂ is n1/2-210

consistent or n3/4-consistent. Given b = 0, whether a = 0 or not determines the convergence
rates of ĉ− ĉ′ and âb̂ to be n1/2 or faster than n1/2. For n1/2-consistency, we require only the
first-order expansions of ĉ− ĉ′ and âb̂, while for n3/4-consistency, we require their second-order
expansions. The second-order expansions need stronger conditions than the first-order expan-
sions as detailed below.215

Condition 2. (i)-(iii) are the same as in Condition 1. (iv) E(|x|3) <∞ and E(|ε2|3) <∞. (v)
fε2 is continuous at 0, and fε3 is differentiable at 0.

Compared with Condition 1, Condition 2 imposes stronger conditions on the moments of x and
ε2 and the smoothness of fε3 at 0. Because ε1 = ε3 when b = 0, fε1 (0) > 0 and fε1 is continuous
at 0 in Condition 1 can be omitted. Now, we are ready to discuss the asymptotic properties of220

ĉ− ĉ′, âb̂ and ĉ− ĉ′ − âb̂when b 6= 0, b = 0 but a 6= 0, and a = b = 0 which are labeled as Case
one, Case two and Case three, respectively.

3.2. Case one: b 6= 0

We first consider the case with b 6= 0 in the following Theorem 1.

THEOREM 1. When b 6= 0, if Condition 1 holds, then225

n1/2{ĉ− ĉ′ − (c− c′)} =⇒ N(0, σ2D), n1/2(âb̂− ab) =⇒ N(0, σ2P ),

n1/2(ĉ− ĉ′ − âb̂) =⇒ N(0, σ2),

where

σ2D =
1

4fε1(0)2σ2X
+

1/σ2X + a2/σ22
4fε3(0)2

− 2
Λ(ε1, ε3)

σ2X
, σ2P =

b2

4fε2(0)2σ2X
+

a2

4fε3(0)2σ22
,

σ2 =
1

σ2X

[
1

4fε1(0)2
+

1

4fε3(0)2
+

b2

4fε2(0)2
− 2Λ(ε1, ε3)− 2bΛ(ε1, ε2)

]
,
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with

Λ(ε1, εk) =
E{1(ε1 ≤ 0)1(εk ≤ 0)} − 1/4

fε1(0)fεk(0)
, k = 2, 3,

E{1(ε1 ≤ 0)1(ε2 ≤ 0)} =

∫ 0

−∞
Fε3(−bε2 + d)dFε2(ε2),

E{1(ε1 ≤ 0)1(ε3 ≤ 0)} =

{
1
2Fε2(db ) +

∫∞
d/b Fε3(−bε2 + d)dFε2(ε2),

1
2(1− Fε2(db )) +

∫ d/b
−∞ Fε3(−bε2 + d)dFε2(ε2),

if b > 0,
if b < 0.

230

We give a few comments on Theorem 1 here. First, the asymptotic variance of n1/2(ĉ− ĉ′ −
âb̂) is the not the sum of those of n1/2{ĉ− ĉ′ − (c− c′)} and n1/2(âb̂− ab) because they are
asymptotically correlated. Their asymptotic covariance is bΛ(ε1, ε2) which is included in the last
term of σ2. Second, the asymptotic distributions of ĉ− ĉ′, âb̂ and ĉ− ĉ′ − âb̂ do not depend on
β2, β3 and c′, and that of ĉ− ĉ′ − âb̂ does not even depend on a. Third, when d = 0, 235

E{1(ε1 ≤ 0)1(ε3 ≤ 0)} − 1

4
=

∫ ∞
0

Fε3(− |b| ε2)dFε2(ε2),

so the formulae of σ2D and σ2 can be simplified. Fourth, when a = 0, the formulae of σ2D and σ2P
can be simplified. However, σ2 depends only on b but not on a. When b = 0, ε1 = ε3, so

σ2 =
1

σ2X

[
1

4fε3(0)2
+

1

4fε3(0)2
− 2

E{1(ε3 ≤ 0)} − 1/4

fε3(0)2

]
= 0,

and a further refinement on the asymptotic distribution of ĉ− ĉ′ − âb̂ is required; see Section
3.3. Fifth, it is interesting to discuss why the product estimator and the difference estimator are
asymptotically (even numerically) equivalent in the LS mediation model while they are not in the 240

LAD mediation model. From the proof of Theorem 1, the first-order asymptotic representations
(FOARs) of the two estimators in the LAD mediation model are

n1/2{ĉ− ĉ′ − (c− c′)} = n−1/2
n∑
i=1

{
X̃i

σ2
X
s(ε1i)−

(
X̃i

σ2
X
− aε̃2i

σ2
2

)
s(ε3i)

}
,

n1/2(âb̂− ab) = n−1/2
n∑
i=1

{
bX̃i

σ2
X
s(ε2i) + aε̃2i

σ2
2
s(ε3i)

}
,

(5)

where X̃i = Xi − µX , ε̃2i = ε2i − µε2 , and s(εki) = {1/2− 1(εki ≤ 0)}/fεk(0), k = 1, 2, 3,
the two terms in n1/2{ĉ− ĉ′ − (c− c′)} are correlated even if ε2 and ε3 are independent, while
the two terms in n1/2(âb̂− ab) are uncorrelated. As a result, the FOAR of ĉ− ĉ′ − âb̂ is 245

n1/2(ĉ− ĉ′ − âb̂) = n−1/2
1

σ2X

n∑
i=1

X̃i{s(ε1i)− s(ε3i)− bs(ε2i)},

which is not zero. In LS mediation analysis, we need only replace s(εki) by εki, k = 1, 2, 3, to
have the FOAR of ĉ− ĉ′ − âb̂ as

n1/2(ĉ− ĉ′ − âb̂) = n−1/2
1

σ2X

n∑
i=1

X̃i (ε1i − ε3i − bε2i) = 0.

where the last equality is from ε1i = bε2i + ε3i.
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Our simulation studies in Section 4 show that σ2D > σ2P for a few error distributions, i.e., the
product estimator is more efficient. The following Corollary 1 rigorously states this fact when ε2250

and ε3 follow the standard normal.

COROLLARY 1. Under the assumptions of Theorem 1, if ε2 and ε3 both follow N (0, 1), then

σ2D − σ2P = {π − (b2 + 1)1/2(π − 2 arctan |b|)}/σ2X ,

which is positive when b 6= 0 and converges to (π − 2)/σ2X when |b| → ∞.

In Corollary 1, only the relative variance between ε2 and ε3 is relevan-
t, and resetting ε2 ∼ N

(
0, κ2

)
is equivalent to set b as bκ , so now σ2D − σ2P =255 {

π − (b2κ2 + 1)1/2(π − 2 arctan |b|κ)
}
/σ2X .

3.3. Case two: b = 0 but a 6= 0

We next consider the case with b = 0 but a 6= 0 in the following Theorem 2.

THEOREM 2. When b = 0 but a 6= 0, if Condition 1 holds, then

n1/2(ĉ− ĉ′) =⇒ N(0, σ2C), n1/2âb̂ =⇒ N(0, σ2C),

with σ2C = a2/{4fε3(0)2σ22}, and if further assume Condition 2 holds, then,260

n3/4(ĉ− ĉ′ − âb̂) =⇒ 1

fε3(0)σ2X
{(2arX2(β2 + µε2)− µX , 2a2rX2 + 1,−2arX2)D2(Z2)

−(−µX , 1)D1(Z1)},

where rX2 = σ2X/σ
2
2 , D1(·) is a zero-mean Gaussian process on R2 with D1(0) = 0 and

E[{D1(u)−D1(v)}{D1(u)−D2(v)}T] = fε3(0)E{x1x
T
1 |xT

1 (u− v)|} ≡ ΣD1(u− v),

D2(·) is a zero-mean Gaussian process on R3 with D2(0) = 0 and

E[{D2(u)−D2(v)}{D2(u)−D2(v)}T] = fε3 (0)E {x2x
T
2 |xT

2 (u− v)|} ≡ ΣD2(u− v),

the covariance kernel between D1(·) and D2(·) is

fε3 (0)E {x1x
T
2 (|xT

1u| ∧ |xT
2v|) 1(uTx1x

T
2v > 0)}

with ∧ indicating the minimizer of two real numbers, (Z1, Z2) ∼ N (0,Σ) with

Σ =

(
Σ1 Σ12

ΣT
12 Σ2

)
, Σ1 =

E(x1x
T
1 )−1

4fε3 (0)2
,

Σ12 =
E(x1x

T
1 )−1E (x1x

T
2 )E (x2x

T
2 )−1

4fε3 (0)2
, Σ2 =

E (x2x
T
2 )−1

4fε3 (0)2
,

and (D1(·),D2(·)) and (Z1, Z2) are independent of each other.265

We give a few comments on Theorem 2 here. First, when b = 0, Condition 1(v) reduces to
assume that fε2 and fε3 are continuous at 0, and we strengthen fε3 to be differentiable at 0 for
the second-order asymptotic representation (SOAR) of ĉ− ĉ′ and b̂. Second, because ĉ− ĉ′ and
âb̂ have the same asymptotic variance, to compare their efficiency, the second-order expansion
is required. From the proof of Theorem 2, both n1/2(ĉ− ĉ′)− FOAR and n1/2âb̂− FOAR are270

n1/4-consistent but have different asymptotic distributions, where FOAR is their common first-
order asymptotic representation (revisit (5) to check this fact). These asymptotic distributions are
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uncorrelated with (although not independent of) the first-order asymptotic distributions (ZT
1 , Z

T
2 )

of ((β̂1, ĉ), (β̂3, ĉ′, b̂)). This is dramatically different from the SOAR in LS mediation analysis.
From typical Edgeworth expansions, we know that the SOAR of ĉ− ĉ′ (and âb̂, which is the 275

same as ĉ− ĉ′) is n1/2-consistent rather than n1/4-consistent. Third, the asymptotic distribution
of n3/4(ĉ− ĉ′ − âb̂) follows a (variance) mixture normal distribution, whose density is tedious
to express in the explicit form. We will provide an explicit formula for it when a = 0 in Section
3.4. Fourth, when a = 0, σ2C = 0, so the asymptotic distributions of ĉ− ĉ′ and âb̂will degenerate
and further refinements are required; see Section 3.4. Fifth, from our simulations in Section 4, 280

although the FOAR of ĉ− ĉ′ and âb̂ are the same when b = 0, the variance of the SOAR of ĉ− ĉ′
is much larger than that of âb̂ when a is relatively small. In other words, âb̂ is still more efficient
than ĉ− ĉ′ in finite samples as in Case one.

3.4. Case three: a = b = 0

We finally consider the case with a = b = 0 in the following Theorem 3. 285

THEOREM 3. When a = b = 0, if Condition 1 holds, then

nâb̂ =⇒ 1

4fε2 (0) fε3 (0)σXσ2
z1z2,

and if further assume Condition 2 holds, then

n3/4(ĉ− ĉ′) =⇒ (−µX , 1)

fε3 (0)σ2X
{D2 (Z2)−D1 (Z1)} ,

n3/4(ĉ− ĉ′ − âb̂) =⇒ (−µX , 1)

fε3 (0)σ2X
{D2 (Z2)−D1 (Z1)} ,

where z1 and z2 are two independent standard normal random variables, D1(·), Z1 and Z2 are
defined in Theorem 2, D2(·) is the first two elements of D2(·) in Theorem 2 so is a zero-mean
Gaussian process on R2 with D2(0) = 0 and 290

E
[
{D2(u)−D2(v)} (D2(u)−D2(v))T

]
= fε3 (0)E {x1x

T
1 |xT

2 (u− v)|} ≡ ΣD2(u− v),

the covariance kernel between D1(·) and D2(·) is

fε3 (0)E {x1x
T
1 (|xT

1u| ∧ |xT
2v|) 1(uTx1x

T
2v > 0)} ≡ ΣD12(u− v),

and (D1(·), D2(·)) and (Z1, Z2) are independent of each other.

We give a few comments on Theorem 3 here. First, it is interesting to observe that âb̂ and
ĉ− ĉ′ have different convergence rates. This is dramatically different from Cases one and t-
wo where they have the same convergence rates n1/2. This is also very different from the 295

case in LS mediation analysis where âb̂ = ĉ− ĉ′ and both are n-consistent. Since âb̂ has a
faster convergence rate than ĉ− ĉ′, it is superior, same as in Cases One and Two; also, it im-
plies n3/4(ĉ− ĉ′ − âb̂) and n3/4(ĉ− ĉ′) have the same asymptotic distribution. Second, when
a = 0,

{
2arX2 (β2 + µε2)− µX , 2a2rX2 + 1,−2arX2

}
D2 (Z2) in the asymptotic distribution

of ĉ− ĉ′ − âb̂ in Theorem 2 will reduce to (−µX , 1, 0)D2 (Z2) = (−µX , 1)D2 (Z2) as indicat- 300

ed in Theorem 3. Third, when a = b = 0, Σ1, Σ12 and Σ2 in Theorem 2 can be simplified such
that we can write ZT

2 = (ZT
1 + (z3, 0) , z2) with (z2, z3) independent of Z1, Z1 ∼ N (0,Σ1),
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and

(z2, z3)
T ∼ N

(
0,

1

4fε3 (0)2 σ22

(
1 −µM
−µM µ2M

))
;

see Appendix F for details. Fourth, (−µX , 1){D2(Z2)−D1(Z1)}/{σ2Xfε3(0)} follows a (vari-
ance) mixture normal distribution. Its density is305

g(x) =

∫
f(x | 0, σ2D(z1, z2))f(z1, z2 | 0,Σ)dz1dz2,

where f(x | 0,Ω) is the pdf of the normal distribution with mean 0 and variance matrix Ω, and

σ2D(z1, z2) =
(−µX , 1) {ΣD1 (z1) + ΣD2 (z2)− 2ΣD12 (z1, z2)} (−µX , 1)T

σ4Xfε3 (0)2

with z1, z2 ∈ R2. The asymptotic variance of n3/4(ĉ− ĉ′) is

E
[
(−µX , 1) {ΣD1 (Z1) + ΣD2 (Z2)− 2ΣD12 (Z1, Z2)} (−µX , 1)T

]
σ4Xfε3 (0)2

.

When µX = 0, it can be further simplified; see Appendix F for details. Fifth, from Theorem 3,

var(âb̂) ≈ 1

16n2
1

fε2 (0)2 fε3 (0)2
1

σ2Xσ
2
2

E
(
z21z

2
2

)
=

1

16n2
1

fε2 (0)2 fε3 (0)2
1

σ2Xσ
2
2

which is equal to π2/(4n2σ2X) when ε2 and ε3 follow the standard normal, where≈means higher
order terms are omitted throughout this paper.310

4. SIMULATIONS

4.1. Simulation designs
Because β2, β3 and c′ will not affect the asymptotic distribution of any parameter of interest

as indicated in Theorems 1, 2 and 3, we set β2 = β3 = 0 and c′ = 1 throughout our simulations.
The sample size is set at n = 200, 500, 1000, 2000, 5000, 10000, and the replication number is315

set at N = 10000. To save space, we report only the simulation results for n = 200 and 1000
in our three tables as the results for the other sample sizes are consistent with these two sample
sizes. Anyway, in our four figures, we use information from all sample sizes. In the three tables,
we report the finite-sample MSE companioned with the MSE predicted by the asymptotic theory
for the LS and two LAD estimators. As the bias is ignorable in both finite samples and large320

samples, the MSE is roughly equal to the variance. To satisfy Conditions 1 and 2, we set X ∼
N(0, 1), ε2 ∼ N(0, 1), and ε3 follows three popular distributions: (I) N(0, 1), (II) 0.9N(0, 1) +
0.1N(0, 102), and (III) t2.

4.2. Case one: b 6= 0

When b 6= 0, we set a = b = 0.14, 1.4, corresponding to small and large mediation effects.325

From Table 1, we can draw the following conclusions. First, the large-sample MSE matches the
finite-sample MSE very well, which implies that the convergence rates of all three estimators
are n1/2 as predicted by Theorem 1. Second, the product LAD estimator is the most efficient
except in case (I) where the LS estimator is the most efficient. Third, the difference estimator is
less efficient than the product estimator and the efficiency of the former gets closer to that of the330
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Table 1. MSE (×10−3) for LS and two LAD estimates
a = b = 0.14 a = b = 1.4

ε3 n MSELS MSEP MSED MSELS MSEP MSED

(I) 200 0.22 0.38 1.69 19.68 31.03 36.46
0.20 0.31 1.56 19.60 30.79 35.82

1000 0.04 0.06 0.32 3.94 6.20 7.17
0.04 0.06 0.31 3.92 6.16 7.16

(II) 200 1.44 0.42 1.86 118.82 34.35 41.69
1.17 0.33 1.69 116.62 33.18 40.36

1000 0.25 0.07 0.35 23.47 6.57 8.17
0.23 0.07 0.34 23.32 6.64 8.07

(III) 200 1.93 0.44 2.00 149.37 35.50 44.11
∞ 0.35 1.79 ∞ 35.00 43.73

1000 0.68 0.07 0.36 32.18 7.05 8.75
∞ 0.07 0.36 ∞ 7.00 8.73

For each ε3 distribution and n, the first row is the finite-sample MSE and the second
row is the MSE predicted by the asymptotic theory.
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Fig. 1. log{MSE(ĉ− ĉ′ − âb̂)}/2 against logn for two (a, b) values and three ε3 distributions.

latter when the mediation effect gets larger. Finally, the MSE is larger when ε3 has a heavier tail
(or fε3(0) is smaller) for all three estimators.

Figure 1 shows log{MSE(ĉ− ĉ′ − âb̂)}/2 against log n when b 6= 0; it indicates that the
convergence rate of ĉ− ĉ′ − âb̂ is indeed n1/2 when b 6= 0 as predicted by Theorem 1. Fur-
thermore, since the asymptotic variance of ĉ− ĉ′ − âb̂ is roughly e2θ̂0 , where θ̂0 is the inter- 335

cept of regressing log{MSE(ĉ− ĉ′ − âb̂)}/2 on log n, Figure 1 indicates that this asymptotic
variance increases with the heaviness of ε3’s tail and the magnitude of the mediation effec-
t. For example, if a = 0.14, the ratio of the asymptotic variances when ε3 ∼ t2 and N (0, 1)
is e−2×0.48/e−2×0.60 ≈ 1.29, and if ε3 ∼ N (0, 1), this ratio when a = 1.4 and a = 0.14 is
e2×0.52/e−2×0.60 ≈ 9.36. 340
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Table 2. MSE (×10−3) for LS and two LAD estimates
b = 0, a = 0.14 b = 0, a = 1.4

ε3 n MSELS MSEP MSED MSELS MSEP MSED

(I) 200 0.13 0.23 0.92 9.96 15.86 16.68
0.10 0.15 0.15 9.80 15.39 15.39

1000 0.02 0.03 0.10 1.95 3.06 3.11
0.02 0.03 0.03 1.96 3.08 3.08

(II) 200 1.38 0.27 1.09 112.23 18.81 19.74
1.07 0.18 0.18 106.82 17.79 17.79

1000 0.22 0.04 0.12 21.56 3.71 3.78
0.21 0.04 0.04 21.36 3.56 3.56

(III) 200 1.43 0.29 1.15 169.12 20.04 20.92
∞ 0.20 0.20 ∞ 19.60 19.60

1000 0.34 0.04 0.12 39.06 3.98 4.04
∞ 0.04 0.04 ∞ 3.92 3.92

4.3. Case two: b = 0 but a 6= 0

When b = 0, we set a = 0.14, 1.4. From Table 2, we can draw the following conclusions.
First, the large-sample MSE matches the finite-sample MSE very well except for the difference
estimator when a = 0.14; as a result, the finite-sample MSEs of the two LAD estimators are very
different when a = 0.14 even if their asymptotic MSEs are the same as predicted by Theorem 2.345

When a = 0.14, the FOAR is not a good approximation to the asymptotic distribution of ĉ− ĉ′.
Actually, the SOAR takes in charge. Figure 2 shows log{MSE(ĉ− ĉ′)− σ2C/n}/2 against log n,
where MSE(ĉ− ĉ′)− σ2C/n is approximately the variance of the SOAR by recalling that the
FOAR and the SOAR are asymptotically uncorrelated. As mentioned after Theorem 2, the root
mean square error (RMSE) of the SOAR in the LAD estimates is O(n−3/4) rather than O(n−1)350

as in the LS estimate. Because the asymptotic variance of the SOAR is large for ĉ− ĉ′ when a
is small, its effect on the MSE cannot be neglected; on the other hand, the counterpart for âb̂
is very small, so the asymptotic variance of the FOAR is a good approximation to the MSE.
For example, when ε3 ∼ N(0, 1) and a = 0.14, the asymptotic variance of the SOAR of ĉ− ĉ′
is e2×0.36 ≈ 2.06, while that of âb̂ is close to zero. From Fig. 2, we can see that the asymptotic355

variance of the SOAR of ĉ− ĉ′ also increases with the heaviness of ε3’s tail, just as the asymptotic
variance of the FOAR as indicated Table 2. Second, the second and third conclusions in Case one
still hold.

As Fig. 1, Figure 3 shows log{MSE(ĉ− ĉ′ − âb̂)}/2 against log n when b = 0 but a 6= 0.
Different from Fig. 1, Figure 3 indicates that the convergence rate of ĉ− ĉ′ − âb̂ is n3/4 when360

b = 0 (rather than n1/2 when b 6= 0), which matches the prediction of Theorem 2. Also, the
asymptotic variance of ĉ− ĉ′ − âb̂ increases with the heaviness of ε3’s tail, but does not seem to
increase with a as in the b 6= 0 case. Comparing Fig. 2 and Fig. 3, we can see that MSE(ĉ− ĉ′ −
âb̂) and MSE(ĉ− ĉ′)− σ2C/n when a = 0.14 are quite close, which is because the asymptotic
variance of the SOAR of âb̂ is close to zero so that both MSEs are roughly the variance of the365

SOAR of ĉ− ĉ′.

4.4. Case three: a = b = 0

The first, second and fourth conclusions from Table 1 still apply to Table 3; especially, the
first conclusion implies that the convergence rates of the LS and product estimators are n while
the convergence rate of the difference estimator is n3/4 (see Appendix F for more discussions),370

which is in accordance with Theorem 3 and dramatically different from Cases one and two where
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Fig. 2. log{MSE(ĉ− ĉ′)− σ2
C/n}/2 against logn for a = 0.14, b = 0 and three ε3 distributions
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Fig. 3. log{MSE(ĉ− ĉ′ − âb̂)}/2 against logn for b = 0, two a values and three ε3 distributions.

Table 3. MSE (×10−5) for LS and two
LAD estimates when a = b = 0

ε3 n MSELS MSEP MSED

(I) 200 2.59 6.26 72.40
2.50 6.17 70.06

1000 0.10 0.25 6.32
1.10 0.25 6.27

(II) 200 27.77 7.99 92.50
27.25 7.13 80.96

1000 1.11 0.29 7.47
1.09 0.29 7.24

(III) 200 33.91 8.58 99.62
∞ 7.85 89.21

1000 1.44 0.32 8.42
∞ 0.31 7.98
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Fig. 4. log{MSE(ĉ− ĉ′ − âb̂)}/2 against logn for a = b = 0 and three ε3 distributions.

all three estimators are n1/2-consistent. As Fig. 1 and Fig. 3, Figure 4 shows log{MSE(ĉ−
ĉ′ − âb̂)}/2 against log n when a = b = 0. As predicted by Theorem 3, the convergence rate of
ĉ− ĉ′ − âb̂ is n3/4, same as in Case two. Also, similar to Cases One and Two, the asymptotic
variance of ĉ− ĉ′ − âb̂ increases with the heaviness of ε3’s tail.375

5. DISCUSSION

This paper develops asymptotic theories for two forms of mediation effect estimates and shows
their asymptotic nonequivalence in a basic LAD mediation model. The LAD method can be
easily generalized to multilevel mediation models (Hox, 2002; Preacher et al., 2010) and multi-
mediator models (VanderWeele & Vansteelandt, 2014). In order to further improve the estima-380

tion efficiency, many other robust methods can be applied to the mediation model, including the
weighted quantile average regression (Zhao & Xiao, 2014), the differenced method (Wang et al.,
2019), and the general M-estimation method (Huber & Ronchetti, 2009). Analyses in these gen-
eral models and for other robust methods are left for future research, but the results in this paper
will definitely shed some lights on these extensions.385
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