Online Supplement for ‘Inference and Specification Testing in Thresh-
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We first collect notation for future reference. The n x 1 vectors Y and € stack the variables y; and ¢;,
the n x d matrices X, X<, and X, stack the vectors x}, x;1(¢; < 7) and x;1(¢; > 7), and the n x d,
matrices Z, Z<, and Z, are similarly defined. The symbol ~ means asymptotic equivalence in the sense
that higher order terms are neglected, = signifies equality in distribution, C' means a positive constant that
may change at each occurrence, and ~ signifies weak convergence of the respective probability measures
over an associated compact metric space.

To aid intuition in the development of Methods IT and III, we let A (x,¢) = x’é throughout the proofs
for these two methods.

Supplement A: Proofs

Proof of Theorem We first show the consistency of 0. 1t ~ is consistent, then a standard argument
can be applied to show that

(3.3) = (B .33)
with .
( J ) - |(x,2) W(Z’Xg)y1 (X, 2) W (2'7)]

is consistent, where X<, = (X, Xgi So we now concentrate on the consistency of 7. First note that the
E

concentrated objective function of (12| after plugging in (E () ,g(’y)> is

Qn (1) =G0 (7) Wi (7) -

Here,

o~ —1 o
i) =12 (Y- %o, [(0XL,2) W (32%)] T [(3X5,2) W (227)])

—~ -1 —~
L= (32'X<y) [(%X'gvz) w (%Z/ng)} (FX Z) Wb (52K <yy00 + 3 2'€)

—~ -1 —
5= (22X <) [(AXL,2) W (22X ,) | (3XL,2) W (227X 0, + 1 2%6),
and the second equality holds because the first d columns of Z’ X<, are the same as those of Z'X <.
We apply Theorem 2.1 of Newey and McFadden (1994) to prove the result. First, we can show
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where

g0 () = (1-G, (GLWG) " GW) Gy, e

To see why, note that by a Glivenko-Cantelli argument,

= (22X <) (XL, 2) W (22X o) | (3XL,2)W 2 1 - G, (GLWG,) ™ G4 W

uniformly in 5. Also, 22'X, I\g:\l LN G, ., c and ”6171” 1Z'e =0, (m) = 0p (1), the result follows.
Second, by the CMT,

Qn () /1842 LGl ( ~ WG, (G,WG.)” Q’) (Il— G (@wa)™ Q;W) Gy
— Gy (W-wa, (G’ WG) ) 2
— Ry, (I-R, R,) Ra,
= HRZWOCH HPR (R2 %€ )H = (7)

uniformly in v, where R, = W1/2QV and Ry, = Wl/QQQW. Obviously, Qo (7o) = 0. Also, Pg_ is a
projection on a 2d-dimensional space, while Ry, c is a [(> 2d)-dimensional vector, so as long as R, c does
not fall in span (R,) when v # 7, Qo (v) > 0. This requirement is satisfied by virtue of Assumption IV.
We can now adjust Theorem 7.2 of Newey and McFadden (1994) to derive the asymptotic distribution
of 0. We only point out the difference in the proof. Replace G by G,r, and 6 — 6y by ;1 (6 — 6y),

I~ 0
- . , "o _ 2d
where Gn — ( E [ZX ] ,]El [ZXS,YO] ,E [ZX |q 70] 5nfq (’70) ) and Tn 0 1/ ||5n||

G WGnrn — —G'WG and D = —rnG;W\/ﬁ’g\n (0p) 4, N (0, GWQWG). What remains is to show
that for any h,, — 0,

Then H =

SUD | (9_go) | <hn V7 1Gn (6) = Gn (60) — go (60)]| = 0.

This stochastic equicontinuity result is obvious because g, (6) is generated by a VC subgraph class of func-
tions. We mention that this part of proof is similar to the ‘convergence rate and asymptotic normality’ part
in the proof of Theorem 1 of Seo and Shin (2016). Their consistency proof is marred by a typo, which has a
material effect. Specifically, at the end of page 181, the probability limit should be I — A()-- - rather than
I+ A(y)---. This is why they did not specify an identification assumption such as that in Assumption IV.

[
Proof of Theorem First assume W :diag{wl, Wg} with Wl L, Wi >0 and Wg L, W5 > 0. Then

Qn (6) can be expressed as a sum of two quadratic forms:

Qn () = Qun (61) + Qan (62)

where

Qvln (91) - 'Fflln (91)/ Wlﬁll’rb (01) and Qvln (01) - an (02)/ WQan (02) )
man (1) = + >0 2i (yi — x81) 1(qi < ),
Man (02) = 3 32021 2i (yi — xiB82) (g > ),

3=3 =



with 8, = (85,7 " and 0y = (85, ’. It is not hard to see that
1 2

( 3 () ) | [xe W zxa)] (L, 2) W (2ve)]
By (7) {X;WZWQ (Z’X>7)Tl [(ngz) W (Z’YM)] ’

so if ¥ is consistent, then both Bl and BQ are consistent. So we concentrate on the consistency of 7.
By similar analysis to the proof of Theorem [T}

2

9

2
~ 2 ~
|+ 17200l = | Pr,., (Par0)

_ o, _
Qn (1) L 00l = | P, (Fryio0)

where 71 4.9, = W11/2E [2y<+], T24.0, = W21/2E [2y>+], ﬁlﬁ = Wll/2E [ZX/S,Y] and ]:’,2’7 = W;/QE [zxgv].

Note that
E [zy<,] _ B 'ZX/S’Y/\’YO E inm<§7 Bio n E[ze<,]
Ezy>] Blzx! . | E|zxi,,, Bag E[zes]
E [2x/ 0
— 5| / <] / P10 n B [ze<,] iy < vy
E _zx7<§%} E {ZX>% B2 E [zes]
— E _ZX/S%} B [ZXZYo<S”V Bio + E [ze<] if 7 > 7
0 E [ZX'>,Y] Bao E[ze,]

We consider the following two cases.

(i) ¢q is exogenous (i.e., ¢ is included in z, and E[e|z] = 0). In this case, E[ze<,] = E[ze~,] = 0. First
suppose 7 < 7. Then 71, 9, = WE/QE [zx’__ | 1o and 72, 9, = Wzl/2 (E [zx’v<g%} Bio + E [Zx;%] 620>.
The question is whether we can find a; and as such that B [zx’g,y] ap =E [ZXIS,Y] B1o, and E [zxgv] as =
E [zxﬁKS%} Bro+E [zx’y{o} Bao = B [2xL ] B1p+E [zx;%} (Bag — Bio) or B [zxL ] (819 — az) = E {ngwo} do.
We can let a3 = (4, but if I > (d + 1), such an ay is impossible by Assumption IV’(i). Next sup-
pose v > 7,. Then we try to select a; and as such that E [zx’gv] a; =E {ZX’S%} B0+ E [zx’%<§7} Boo =

E [zx’gv} Boo+E [zx’g%] (B1p — Bag) or B [legn,} (a1 — By) = E [ZX’S,YO} 0o and E [zx;w] as =E [zx’>,y] Bag-
We can let ag = B4, but such an ag is impossible by Assumption IV'(i).
(ii) ¢ is endogenous and satisfies only E[zel(q <7y)] = 0 and E[zel(g > v,)] . Again, first

=0
suppose 7 < 7. Then we try to select a; and ag such that E I:ZXIS'*/] a = E [ZX/S,Y] B + Elze<,]
and E [ZX/>,Y] ax = E [zx’7<§%} Bio + E {zx;%} Boo + Elzes,] or E [ZX’SW] (a1 — B1y) = E[ze<,] and
E[zxL,] (B1p — a2)+E[zes,] = E ZX/>,YO:| do. Such an a; and ay are impossible by Assumption IV’(ii). Next
suppose v > 7,. Then we try to select a; and as such that E [zx’g] a = {zx’gw} B10+E [zx’70<gv} Bao+
Elze<,] = E [legy] Boo + E {ZX’S,YO} (Bio — Bao) + E[ze<,] and E [zxL ] ay = B [2x_ ] By + B [ze>,] or

E [ZX/S,J (a1 — By) = E [ZX/S’YO:| b0 + E[ze<,] and E [2x_ ] (a2 — By) = E[ze>,]. Such an a; and as are
impossible by Assumption IV'(ii).
Now consider the case where ¢ is exogenous and is independent of (z’,x’ )/. Suppose v < v,. We can

set ap = (1_FQ(17f2q((Bff_ﬁw) + B19 = (I_FQ(’YO)WQ%—_F%?(({;O)_F“(7))ﬂ10, which is 8% (\) in Proposition 1(ii) of

Fq(w)Ber(Fq(v)qu("/0))[320’ which is 9(1) ()\)

HHB where ¢ ~ U [0, 1]. Now suppose 7y > v,. We can set a; = Fu(7)

in Proposition 1(ii) of HHB where ¢ ~ U [0, 1].



IfWisa general positive definite matrix, then

~ R _ 2
Qn (1) 2 700 = || PR, (Fr00)

)

- ~ ~ E ! 0 . E
where R, = WY2G. with G = [ZXS’Y] ,and 7., 9, = W1/2 [2y<-] . In case (i), if
v g i 0 E [zx. ] e E [zy>,]

/ E |zx’ 0
there does not exist a; and as such that ( B [ZXSV} ) a1—|—< 0, > as = ( [Z,XSW] , > ( P10 >
0 E [zx>v] E [zx7<§%} E [zx>%] Bao

!
7<<7o

E [zx.. ] 0  Ejzxl, | E|zx| - 6] , _ ,
< OSW > a1—|—< 5 [ZX;A{] ) as = ( [ 0 ot ] H[][z’;ljw]”} ) < 5:2 ) orE [zxgﬂ{] a1 =E [ZXS%] Biot+

E [zx’%<§7} Bso and E [zxgv] as =B [ZX/>,Y] Bog for any v > 7y, then 7, is identified. These conditions are

or E [ZX/S’Y] a; = E [ZX’S,Y] B and E [zxgv} as = E [zx ] Bio + E [zx;%} Bq for any v < 7, and

exactly the same as in the diagonal W case. Similarly, in case (ii), the same conditions as in the diagonal
W case are required to identify v,. m

Proof of Corollary |z|. By a Glivenko-Cantelli theorem, we have the probability limit of J,, (6) to be
J(0) := E|g; (0)] WE [: (6)] .

We want to show that for any v € T', we can find 44,9 such that E[g; (6)] =0, i.e., J (7) := minJ (9) = 0,

ﬁ2276
S0 7y is not identifiable.
Note that
Zito AYit, Zitg ATy Zito Lito (V) Xito
Elgi (0)] = E : - E : P~ E : 9,
2ir Ayir 27 ATy zirLir (7)' Xir
where
Zito AYit, [ Zito (B320 A3t + 00X ity Litg (70) + Avig, )
E : = E :
zir Ayir | zir (Ba0Awir + 6o Xirlir (7o) + Avir)
[ 2ty Ay, Zito Lito (Y0) Xt
= FE : Baso +E : 90,
| i ATy zirLir (7o) Xi
and
Zitolito (’Y)IXito Zitg [(17 x/ito) Fq ('Y) - (17 x;,to—l) Fq (7)]
E : = FE :
zirLir () Xt Lz (L) Fy (7) — (Lagp) Fy ()]
Zitg Ay,
= L Fy ().
L ZiTA-T;T




As a result,
Zitg Ay,
Elgi (0) =FE (Bazo + Fq (7o) 020 — Bag — Fy (7) d2) s

A
where 6 = (01, 5/2)/. There are infinite many possible 855 and ¢’s such that By90+Fy (7g) 020— B0 —Fq (7) 62 =
0, e.g., Boy = g0, and & = (o, La0)5,). m
Proof of Theorem Proposition
O, ((n/h)’l/z), so we can apply the argmax continuous mapping theorem (see, e.g., Theorem 3.2.2 of
Van der Vaart and Wellner (1996)) to establish the asymptotic distribution of \/n/h (¥ — ). From
Proposition the finite-dimensional limit distributions of nh (@n(’yg) —Qn (’yo)) are the same as those of

—0?BIA () A f ()| = Yol fa (o) 0)+20U, where U ~ N (0,8 [ A% () () (03 (2:) + 0 (@)l = 0] fa0)€ () )
Combining this with the stochastic equicontinuity result in Lemma

proves the consistency of 7, and Proposition [2] proves ¥ — v, =

we have

nh (@n(%’) - @n(%)) v =0 BIA () Ai f ()] g = Yol fa(Y0) K, (0) 4 2Uw.

Thus,

Vi/h ([ = 0) <5 ot = argmax {0’ B[A (2 A (22) a: = Yol fo (v0 K (0) + 20U}
~ N(0,%).

— U
T EB[As(@i)Aif(wi)lai="0]fq (Vo) K] (0)
]

Proof of Theorem We prove the theorem in two steps. First, we show that 3. (o) <, %, where & (7o)
is replacing 74 in 5 by v,. Second, we show that $-3 (vo) 2, 0. The first result is shown in Proposition
and the second is shown in Proposition ]

Proof of Corollary From the proof of Theorem [3] and the CMT,

BIA s (2:)Aq f(x:)|gi=70]k (0) {A vy _ A }
"SI P e (@ )+ (el =ro e o 1 9n(78) — @n(70)

d E[Af(2:)A; f(z4)]gi=70]k] (0) 2 AA - Mg, — /
- E[A?(Ii)f2(a:i)(tfi(m)+02_($i))|Qi:’YUif(1)Sgp{ VBIA () 8sf @)la: =70l fa10)K.(0) + 200}
_ BIA ¢ (z) A f(z:)|qi=70]k, (0) U?
o E[A?(mi)fz(zi)(o’i(wi)ﬁ-ai(wi))\qi:’yo]ﬁ(l) fq('Yo)E[Af(wi)Aif(wi)i‘Ji:’Yo”kg.(o)
U? 2

B[A2 (@) /2 (@) (02 (@) +02 @ )la=70 fa(vo)E, XL

By the proof of Theorem |4| and Slutsky’s theorem, f]\%n (Yo) 4, X?. m

Proof of Theorem Assume the densities of (2,q)" and e are known. Since the minimax risk for a
larger class of probability models is no smaller than that for a smaller class of probability models, the lower
bound for a particular distributional assumption also holds for a wider class of distributions. To simplify the
calculation, assume e; is iid N(0,1) and (2}, ¢;)’ is iid uniform on & x [0, 1]. Such a specification also appears
in Fan (1993) where it is called the assumption of richness of joint densities. We will use the technique in
Sun (2005) to develop our results. This technique is also implicitly used in Stone (1980) and the essential
part of the technique can be cast in the language of Neyman-Pearson testing.

Let P, @ be probability measures defined on the same measurable space (£2,.4) with the affinity between



the two measures defined as usual to be

m(P,Q) = inf (Bp [¢] + Eq [1 - ¢]),

where the infimum is taken over the measurable function ¢ such that 0 < ¢ < 1. In other words, 7(P, @) is
the smallest sum of type I and type II errors of any test between P and (. It is a natural measure of the
difficulty of distinguishing P and (). Suppose p is a measure dominating both P and @ with corresponding
densities p and g. It follows from the Neyman-Pearson lemma that the infimum is achieved by setting
¢ = 1(p < q) and then

T(P,Q) = [1p<qpdu+ [1(p>q)gdp=1—3 [Ip—qldu=1- 3P -Q|;,

where ||-||; is the L; distance between two probability measures. Now consider a pair of probability models
P,Q € P(s, B) such that |y(P) —v(Q)| > e.
For any estimator 7, we have

Ly =~(P)l > ¢/2) + 1([7 = (@) > ¢/2) > 1.

Let
¢ = L([F=y(P)|>€/2)
17—y (P)[>€/2)+1(I7—7(Q)[>€/2) *

Then 0 < ¢ <1 and

Pesgl(pB)P(W— VP > €¢/2) 2 5 {P (F = (P)| > ¢/2) + Q (7 = ¥(Q)] > ¢/2)} > 3Ep [¢] + 5Eq [1 - ¢].

Therefore

inf sup P (5 —~(P)|>¢/2) > 57(P.Q)

Y PeP(s,B)
for any P and @ such that |y(P) —v(Q)| > e. So we need only search for the pair (P, Q) which minimize
(P, Q) subject to the constraint |y(P) — v(Q)| > e. To obtain a lower bound with a sequence of independent
observations, let (€2,.4) be the product space and P(s, B) be the family of product probabilities on such
a space. Then for any pair of finite-product measures P = [[\", P; and Q = [];_, Q;, the minimax risk

satisfies
inf sup P(7—-~(P)|>¢/2)> % (1 - % L=, P — Ty Qi||1)
Y PeP(s,B)
provided that |y(P) — v(Q)| > €. From Pollard (1993), if dQ;/dP; =1 + A;(-), then
T, P T @il < e (£ 07) -1

i=1

where v? = Ep,[A2(-)] is finite. So

M=

nf sw P(F-9(P > 22 5 (1o (507)) (29)

7 PeP(s,B) i

provided that |y(P) — v(Q)| > e.
It remains to find probabilities P and @ that are difficult to distinguish by the data set {(«}, g, v:)}i—;-



Under P, the data is generated according to

Yi = gp(Ti, ¢i) + Amp (zi,¢:) 1qi < vp) + e,

where Amp (2;,¢;) = 0ap + ;0:p + ¢idgp, and under Q, gp, Amp and vp are changed to go, Amg and
7Y, respectively. The point here is that only Amp instead of d p matters for our purpose. We now specify g,
Am and v for each model. First suppose nZ p, — oo. For P, let gp =0, Amp =0, and vp = 0 without
loss of generality; for Q, let

-1
9q(x,q) =0, Amg (z,9) = p,, 7o = (§np?)

where & is a positive constant. Obviously, go(z,q) € Cs (B, X x [0,1]) for some B > 0, so it remains to
compute the Ly distance between the two measures. Let the density of @Q; with respect to P; be 14+ A;(+),
then

Ai(i, iy yi) = { o(yi — Amq (w5, q:))/d(yi) — 1, if @i € [0,7¢)],

0, otherwise

where ¢(-) is the standard normal pdf. Therefore,

Ep, [Azz]

= [79 i [y [ [y — Amg (2,9))/é(y) — 1) 6(y) f(z, q)dydadg

= JJe fo ey [y — Amg (x,9))? /é(y)dydadg — 2 [79 [ -+ [ [ é(y — Amg (x, q))dydzdg + v¢
= [0 fo o fy IS By — Amg (x,9))2/ély)dydadg — g

Plugging in the standard normal pdf yields

Ep[AZ] = [ fol . fol = % exp {_w + ?!72} dydzdg — o
= J7% o - Jo exp {AmQ (z, q)2} dwdq — g
= Jo'@ exp (€07) da — v
=g [exp (€20%) — 1] = 7€ ph (1 +0(1)) < 7,

when n is large enough.

When ¢ is small enough, say £ < log(5/4), we have

exp (Z I/ZQ) <exp(§) < %.
i=1
It follows from (29) that

. ~ ¢ -1
inf s P(F-2(P)>5m) ) 213 -3 =420
7 PeP(s,B)

on choosing C' < 1/8, where § (npfl)fl appears because |y(P) —v(Q)| = (fnpi)fl > € (np%)fl for a small
€.

We next suppose n7 1 pp =0 (1). Let P and @ be the same as above except that in @,

90(%,q) = =& ¢, (q_:Q) s Amg (z,q) =&n°, 7o =&,

where 1 = n~1/(s+1), ¢, is an infinitely differentiable function in ¢ satisfying (i) ¢,(v) = 0 for v > 0, (ii)



¢, () =1, for v < —1, and (iii) ¢, (v) € (0,1) for v € (~1,0). It is not hard to check that go(z,q) €
Cs (B, X x [0,1]) for some B > 0. By similar steps above, we can show

Ep (A2 < &

n

when n is large enough. By choosing £ appropriately, we have

inf sup P(W—7(P)| > %) > C,
7 PeP(s,B)

where we choose e < ¢. =

Proof of Theorem [l  We apply Theorem 2.7 of Kim and Polland (1990) to derive the asymptotic
distribution of np2 (5 —7,). Note that np2 (3 — v,) = argmax nh (@n ) — Qn (70)> =: argmax {Cy(v)},
where v§ = v, + #.

(i) Cp(v) ~ C (v) € Cpax (R), where
C (v) = BV2W (v) — 2k (0) fy(vo) D |v] |

W(v) := Wi(—v)1(v < 0) + Wa(v)1(v > 0) is a two-sided Brownian motion, D = lim,_,. D,, and
Y(v) = limy, 00 Xy, with X, defined in Proposition [8] Cphax (R) is defined as the subset of continuous
functions z(-) € B (R) for which (i) z(t) — —oo as |[t| — oo and (ii) z(¢) achieves its maximum at a
unique point in R, and By, (R) is the space of all locally bounded real functions on R, endowed with
the uniform metric on compacta. The weak convergence can be proved by combining Proposition
and Lemma We now check C (v) € Cpax (R). It is not hard to check C(v) is continuous, has a
unique minimum (see Lemma 2.6 of Kim and Pollard (1990)), and |vl‘imOO C(v) = —oo almost surely

(which is true since lim W, (v)/|v| = 0 almost surely).

[v]—o0

(ii) npZ (5 — 7o) = O,(1). This is proved in Proposition @

So
~ d
npn (7 — ) — argmax, {C(v)}.
Making the change-of-variables v = #&wzr, and noting the distributional equality Wy(a?r) =4 aWy(r),

we can rewrite the asymptotic distribution as

arg max, {C(v)}
_ \% Vi
= W arg max, {C’ (WT)}
1h4(0) /Ty (0)ViWa (— 5057 ) = 264 (0)£y(10)D | 5|, i <0,
14 (0)\/Fa 00 VaWa (7)) — 2k 0o (v0)D | 3oypmr| . 7> 0,

\%
= W arg max,

= —— arg max %Wl (=r) = %% Ir[, ifr <0,
fa(vo)D? T @I/I/é (7") — %% |’I“| s if r > 0,

Wy (=r) — & |r| ifr<0
. Vi 2 ’ =Y _ . Vi
~ o e { By ()~ Lel, it >0, Fowo Y-

Proof of Corollary We mimic the proof of Theorem @ Note that nh?"'A2(y — v,) = argmax

8



nh? (Qu(38) = Qu(r)) = argmax {Con (v)}, where 7§ = 7 + ey
(1) Con(v) ~ C, (v) € Chax (R), where

Co (1) = 2o (0)'* W (v) = 2k4.(0) f (0, 70)? o]
The weak convergence can be proved by combining Proposition [[1] and Lemma [T7]
(ii) nh9=tA2(5 —v,) = O,(1). This is proved in Proposition

So
nhd=LAZ(F — 7p) % argmax {C, (v)}

2
Making the change-of-variables v = fa(;jw;j)r, and noting the distributional equality W,(a?r) = aW,(r), we

can rewrite the asymptotic distribution as

argmax, {C, (v)}
= fgi(%)) arg max,. {C’ ( 7 (o) 7‘)}

(20,70 O\ f(zo,vg)
o2 To 0’2, Zo
] O T A (F5) -2k [ <
T f(=o, ) r o2 (xo o2 (zo .
o 4k+(0)’%\/f(x0a70)30'3_(~730) (f(wcff)’o)) ) 2k+ (O)f(xo,’yo)z f(wcff)’o)) ‘ lf r> 07
= =), arg max f(x0770) ~ (zo)W ( 7‘) (1'0770) (xo) |7’| if r <0,
- S f(@0,70)0+(70)0 - (20) W ( ) & (20,7002 (o) 7], if 7 >0
% (o) Wi (=r) = 5 Ir], ifr <0,  o2()
~ICe TR 2w () - e, >0 Tt Rok).
]
Proof of Corollary From the proof of Theorem [6] and the CMT, we have
A A d
nh (Qu (1) = Qulry)) ~ sup{C ()} |
where
wup, G} = sup 1k O/ TGV (— 72557) = 264 0o (00)D | 775527 | s it r <0
v r | 4k (0)\/fo (o) VaWa ﬁr) — 2k, (0) (o) D ]ﬁr o ifr>0,
VWi (-r)— 3% r], ifr<o,
)su
p WW f%L|r|, if r >0,

(=r)=3lrl, ifr<o,
=4k
+()Dsup{ fWQ() 2|7“|7 if r > 0.

So sup, {C(v)} = 4k4(0)%% max { M, Mo} =: 4k (0)¥2 M, where M; = sup,.<o { W1 (—r) — rl}, My =
Sup,.>q {\[\Wg( )— 2 r |}7 and M; and M; are independent. From Bhattacharya and Brockwell (1976),
M follows the standard exponential function, and M follows an exponential distribution with mean A. It
follows that

PM<z)=P(M; <x,My<2)=P(M; <2)P(My<z)=(1-e?)(1—e ).

By Slutsky’s theorem, the required result follows. m



Proof of Theorem [Tl Because

e =y —x,f—x101(q; <7)
— u + {mi — X} —x501(q¢; <7)

=u; + D’ia
we decompose L(ll) as
/2
I = 2SS (DiDy + uing + 2uiD;) K

A E

=1+ 18 + 1)

We complete the proof by examining I&), Iéi), Ig(jl% and showing that o = x® +0, (1) under Hél) and the
local alternative and v\)? = O (1) under Hl( ). Throughout this proof, z; = (), qi,u;) and By [] = B [-|z;, ¢i].

It is shown in Proposition that ISL) = Op(hd/ ) under H(()l) and converges to A under the local
alternative. It can also be shown that Ié,? = O,(h%/?) under Hél) and is dominated by Iy, under the
alternative, see, e.g., Zheng (1996). Proposition shows that I2(711) 4N (0,2(1)), and Proposition

(1)2

shows the results related to vy, ’“. The proof is then complete. m

Proof of Theorem First, decompose L(f) by using :

Ias
nh?/?

= n(n 1 Z Z 1F1F {( T/flz) (mj — T/ﬁ]) + uiuj + ﬂiﬂj + 2ui (m]‘ — T/ﬁj) — 2&,‘ (mj — fﬁj) — Q’Uiaj} Kh,ij

=12 4 1@) L§?+2ﬁ”«—2é?«—2éf.

n

We complete the proof by examining Ifn), e ,Iéi), and showing that v&zn =@ 4 op (1) under both HO(Q)

and H1 . Throughout this proof, z; = (2, ¢, ;)" and B; [-] = E[-|z;, ¢;]. We show that I;i) contributes to
the asymptotic distribution under the null, and I fi) contributes to the power under the local alternative. All
other terms will not contribute to the asymptotic distribution under either the null or the alternative; that
proof just extends Propositions 3, 4, 5 and 6 in Appendix B of Porter and Yu (2011), so it is omitted here.
The remaining part of the proof concentrates on I ) and Iz(i , and we only briefly mention the results for
the other terms since these are obtained in a blmllar fashion.

First, Iz(n)7 1(2) and IéQ) are invariant under Héz) and Hl(z). It can be shown that Iéi) and Iéi) are both

0,(1). Proposition (14| shows that 12(2) — N (O 2(2))

Under Hé ), Proposition 13| shows that Iﬁ) = op, (1), and it can also be shown that I, and I, are
both op,, (1) uniformly in m(-) € Hp.

Under H 1(2), it can be shown that I ﬁ) and [ 5(? are dominated by I 1(n), and Proposition (13| shows that
I1( ) = =0, (nhd/2b) under H(z) The local power can be easily obtained from the proof of Proposition

Finally, Proposition [16] shows that v(?? = 2 4 0p(1) under both H(()Q) and Hl(z). So the proof is
complete. m

Proof of Theorem [9 This proof is similar but more tedious than the proofs of Theorem [7] and 8 Note
that ® (2) is a continuous function. By Pélya’s theorem, it suffices to show that for any fixed value of z € R,
P (18" < 217) = @(2)| = 0, (1),

For the first test, let

D; = XB+x01(q; <7) — %8 —x0 1(q; <7,

10



where (B*,g*ﬁ*) is the least squares estimator using the data {y},z;,¢;};—,. Then

1)* n d/2 * Tk *, % * )%
L = mi Gy XZ:;Z [D; D} + ufuf + 2u; D] Ky i
1

= I+ I+ 1)

The theorem is proved if we can show that I\V*|F, = o, (1) for i = 1 and 3 and I$)* /ofV*| 7, — N (0,1)
in probability. The first part can be proved as in the proof of Theorem [7] and, for the second part, see the
discussion below.

For the second test, denote m} = y; and define m; and u} by

o~ 1 * n
M= 525 i mij,ij/fi,

and
o= _1 x| F
U = 51 Z#i uij,u/fz-

Then using €f = y;' — y7 = m; +u; — (m; +u;), we get

I'r(LQ)*
= S T () 75) 9 20 o ) 28 (o )~ 205
i

]
= I I I 21" — 21l 21"

The theorem is proved if we can show that Ii(z)*|.7:n =0, (1) fori=1,3,4,5,6 and Iéi)*/vg)ﬂfn — N (0,1)
in probability. The first part is similar to that of Theorem [§8| under HéQ). However, note that m*(-)|F, as

defined above satisfies HéQ) even if m(+) is from H{Q)

; see Gu et al. (2007) for a similar analysis in testing
omitted variables. But there is some differences in showing the second part.

First, because u}|F,, are mean zero and mutually independent and have variance €2,

nh¢/? T, %, * R 2nh!/? T, %, ,* = *
=) Z %; L Lufui Ky iy = D Z g L L uiui Ky iy = 3 Uy ij
v JF i J>1

i J>1

is a second order degenerate U-statistic with conditional variance

2h? 52527572 .2
Ty 2 ;: Li1;eei K ;5 = vn-
i jAi

depends on ¢ and j, we use the central limit theorem of de Jong (1987) for generalized quadratic
2)x
n

*
Because U,, ;;

forms rather than Hall (1984) to find the asymptotic distribution of Ié
1(2)*/117(12”.7:" — N (0,1) in probability as long as

2n

. From his Proposition 3.2, we know

Gi=Y X B U] =0p (”7(12)4) ’

i J>1
ko * *2 *2 *2 *2 *2 *2 _ (2)4
Gir=>X> > E [Un,ijUn,il +UR5:Un5 + Un,liUn,lj} = 0p (Un )
i g>il>5>0

. 2)4
Giv =2 > > >, B { myii UnitUniiUnie T Un i Un iU i Un i + U;,ikU;,ilU:,ij;,jl} =0p (UW(L)

i g>ik>i>il>k> >0

It is straightforward to show that
* -1 * — *
G =0p ((nghd) ) ,Gi1 = 0p(n71), Gy = Oy (hY),

11



see, e.g., the proof of Theorem 2 of Hsiao et al. (2007), so the result follows by W2 =0 »(1). Next, it is
easy to check that E* [w(?)*z] oiP? +0p(1), and Var* ( (2= ) = 0p(1). Thus 1(2 JulDF, — N(0,1) in
1)* .

o, is similar. m

probability. The analysis for 12

Supplement B: Propositions
Proposition 1 7 — v, = O,(h).

Proof. We apply Lemma 4 of Porter and Yu (2015) to prove the result. By Lemma B.1 of Newey (1994),

we have
sup,cr [@n (1) = Qu ()] = 0, (Vinn/nh?) 20 ,

where

fO sz Uy, ) k— (ug) m (x + ugh, v + ugh) f (x + ugh, v + ugh) duydu,

2
z)dz -
fo JEK® (ug,@) kg (ug) m (x + ugh, v + ugh) f (z + ugh,v + ugh) duydu, ] f(z)

Qu(7) =] [
Let Ny, = [vo — h,7o + h] and v,, = argmax,er Q,, (7); then it is easy to show that sup,cp\n, Qn (V) =
O (h?). But for v € N, the result is different. Specifically, let v = v, + ah, a € (0,1). Then

fi)lsz (uzgs) k_ (ug) g (z +ugh,y +ugh) f (x + uzh, v + ugh) duydug
Qn(y)=/[ fﬁafo (g, ) k- (uq) (1, 2" + huly, v + ugh) dof (z + uzh,v + ugh) dugyduy | f(x)ds -
fo KT (ug,x) by (ug) g (2 + ugh,y +ugh) f (x4 ugh,y +ugh) dugdug

The differences of the first and the third terms in brackets are still O (h2), so the second term will dominate.
With Assumption I, we have [ [[K® (uyx) (1,2,7) dof (z,70) clugc]2 f(z)dz > C. Under Assumption K,
if a € (0,1), then [~ "k_ (uq)dug < 1 and [ "k (uq) dug is a nonincreasing function of a for a € (0,1).
As a result, @, (7) is a nonincreasing function of a for a € (0,1) up to O (h?). Similarly, @, (v) is a
nondecreasing function of a for a € (—1,0) up to O (k?). So @, (7) is maximized at some v, € N, such

that Q, (7v,,) Qn (7)] + C/2 for n large enough. The result of interest then follows. m

Proposition 2 ¥ — v, =0, ((n/h)_l/z),

Proof. We apply the standard shelling method to obtain the result. Specifically, for each n, the parameter
space is partitioned into the ‘shells’ S;, = {'y 2l < (n/h)l/2 [v — 7ol < 21} with [ ranging over the inte-

gers. If (n/h)1/2 | — 70| is larger than 2% for a given integer L, then 7 is in one of the shells S ,, with [ > L.
In that case the supremum of the map v — Q,, (v) = Qn (7o) over this shell is nonnegative by the property

12



of 4. Note that
P (/)" [ =70l > 2V)

<P sup (
2L <( ¥

n/h)2[F=o|<(n/h)/*h

:1812(7 I

Si=
(]
TS

L B2 () = o) +P (7 =l = 1)
(

)— =
ll h n > n > ~
<2 p qplsr A2(y)> 1y A2 (70)) +P(F = >h)

I,n

I,n

<SR P (supd S A2 (1) 1(A; > 0) > LI, A2 () 1(A; > 0)>

log, (nh nox nooA
437 lese(nh) p (Supgl S AT (A <0) > 5T AT (1) 1(A: < 0))

I,n

+P (7 =7l=h)
= T1+T2+T3.

As T'3 converges to zero by Proposition[I]and 72 is similar to T'1, we only use T'1 to illustrate the derivations

in the following discussion. Since

1o nh n ~ ~
T1< EZQZLgZ( )P (SUPi Zi:1 (Ai ('7) - A (’YO)) 1 (Ai > 0) > 0)

l,n

I,n

log, (nh n N N
Lyl p <sup,t S (B + A () 1(A > 0) < o) ,

we focus on the first term because the second term is easier to analyze given that A; > 0. To simplify

notations, 1(A; > 0) is neglected in the remaining proof. Notice that

1 " (B: (1) = Bi (7))
— + —
= n(rL 1) Zl 1 Z] 1,5#1 K;Z,Z_] K}’Z lj) - n(rL 1) Zl 1 Z] 1,541 ( K;Z,OZ_] KZ%])

- +
= n(n—l) Zi:l Zj:l,j;éi mng,ij m; K u) - n(n—l) Zi:l Zj:l,j;éi (mjKZ,ij K?fy)
n n - + n n - +
+ n(nlfl) dic1 Zj:l,j;éi (quIZ,ij u; K w) - n(nlfl) Diea Zj:l,j;éi (“J’K;Z,Oij KZO'LJ)
=: D1+ D2,

where m; = g; + (17x’j-,qj) dol (g; <o) with g; = g (x;,q;). Suppose vy < v < 7o+ h, then for some C > 0,
we have
1 v 1 + Yot
Dl = n(n—1) Z:’lzl Z?:l,j;éi gj (Kiz ij Khozj) ~ n(n—1) Z:L—l Z;’lzl,j#i 9j (K}’Z ij Khou)
+ n(n1—1) >iea Z?:l,j;éi (ijvqa') do (K;;g K;Zuw ) (4 <70)
< C ('Y 70)2
with probability approaching 1 by calculating the mean and variance of D1 in its U-projection, where

the difference of the first two terms contribute only O, (|’y - 70\2), and the third term contributes to

given that v > v, and

2
-C (%) because for each i, K. covers Op (n (v — 7)) terms less than KZ””

13



k4 (0) = 0. In consequence, for n < h,

P( sup iZ?_l(&(v)—&(%))>0><P< sup D2> € (5 ))

[v=7o0l<n [v=70l<n

Next,

D2
= m Z:'L:I Z;L:I,jyéi uj (KZ ij KZOU ) 1(g; <) + m Z:‘L:l Z?:l,j;éi uj (KZOW KZZ) 1(g; > )
ey i s (K + K0T ) 10 < 45 £9)
=: P14+ P2+ P3,
(30)
and we can apply Lemma 8.4 of Newey and Mcfadden (1994) to bound D2. Since the first two terms are
similar, we just check the first term and the last term. For the first term, set

My (Zi’zj) = uj (KZU K;ZOL]> ( j S PYO) )

where z; = (u;, 2, ¢;)', and m, (2, 2;) = 0 for any ¢ = j. So we have

n72 Z?:l Z?:l mp (Ziv Z]) =Pl 5

Elma (zi,2)] = 0, Bi [ma (25, 2))] = 0, Bllmy, (21, 21)[] /n =0,

and

B [lm. (21,22)|]

5 [p [ (2m) i (572) -4 (272)] 1. < 20)

—5 |5 [ (552) b (52) -0 (55)] 1 < 20l
=E hzdf% f quQK” (zJ Li xi)z {k ( ) k— ( )] (ujxj,qj)f(asj,qj)dujdxjdqj}
=E Ff_lfumo i + ugh, v + ugh) K% (ug, ;) 2 L (uq 4 Jo= ’Y) — k™ (uq)]z f(zi +ugh, vy + ugh) duxduq}

< < ('70*“/)2
> 34 I

under Assumption I and the fact that [k’ (-)| < co and K? (-) < 0o over their supports, where E; [-] = E [|z;],
o?(zj,q;) = [ u; |xj,qj]. Hence, by Propos1t10nl

(8 [l Gr17]) "/

under Assumption H. As a result,

>

%hﬂ’ nhld/2 =0,(1) Oy (W) =0y (1)

Pl = m Z?:l Z?:l,j;éi Uy (K;ﬁg KZOU ) (g5 <v0) = n~t Z?:l E [man (21, 25) 2] +0p (1)

14



where
Ej [mn, (2, 2j)]

= 71(qj < 7o) ) k()| LK (%’xl) f (@) d
= F1(g <o) [k (957 ) =k (572 | LK (uw, i) f (20 — ush) dug
< O%1(gy <o) [k (42) =k (2522)] £ )

Hence,

Var (P1) = Var (0™ S0, B o (21.2)] + 0, (1)
2
<n 2L O [k (5) =k (55| @) S sl S (. a5) dugdsda
2
< O 01,0 g0+ wgh) (K (g + 2572 ) = b7 ()] (25,70 + ugh) f (w5)” dosdu,

2
1 (Yo=Y
< Cnh( h ) .

Similarly for P3, we can set

n n + — n n
P3 =ty i X i (KZ it KZOZJ) (Yo < a5 <7) =n"2 30, 25 M (21, 25)

with
E [mn (2i,2;)] = 0, E; [my, (2, 25)] = 0, E[|lmy, (21,21)[|] /n =0,

and
E [limn (1, 22) |

_wle [(uj Ko (u” {k— (%) — kT (%)} 1(yg <g; < 7))2 x”

2
=E % i + uzh, 7o + ugh) K* (ug, xi)2 [kz’ (uq + ’y‘)h_’y> —kt (uq)} f (@i +ugh, 79 + ugh) dugdu,
< % 'Yo}:'Y ‘3 .

By Proposition [I] we have

51\ 1/2 o 3?24 .
(B [lmn (1, 22)IP]) /< €| 927 Sl = 05 (1) 0 (k72) = 0 (1)
under Assumption H. As a result,
P3 = ﬁ i Z?:l,j;éi uj (K;Z ij KZOZJ ) (g <v)=n"" Z; 1Bj [ma (25, 25)] + 0p (1)
with
Ej [mn (Zz,zj)]
= % B h — k" % (v <q; < 7)f K* (“;’Zwﬂwz) f(zi) d;
:% k™ QJ‘}:’Y —k* ’YO 1(70<qj <7)wa(uwvmi)f(mi_uzh)duw
<o [k (12 - k*( )10 <4 <) f (@)

15



Hence,

Var (P3) =Var (n_l > i By [mn (i, zj)])
Y—70 2
h

<O Lo ™ [0 (@0 +uah) (b (g + 2572) = kF (ug)| S (@570 + ugh) £ (2)* dasydug

3
1 [Yo—Y
S Cnh h ’ :

Since, conditional on x;, the three summations on the right hand side of are independent, we obtain

Var (D2) =Var(Pl)+ Var(P2)+ Var (P3)
2 3 2
C# {(’Yo}:’Y) + Voh—’Y‘ :| < Ca=7)

IN

nh3

uniformly for |y — 74| < 1. In consequence,

P < sup £, (31‘ (7) — A (Wo)) > 0)

[v=70l<n

2 2
2 2 4
< CB ( sup Dz) / [c (mo)] < clyl foopr _ o,

[v=70l<n

by Markov’s inequality. So

Log,(nh n N ~
l2:Lg2( )P <2up7ll Zi:l (Az (’y) — AZ' (’70>) 1 (Al > 0) > 0)

l,n

< leL ch = CZlZL % —0

n(2l/\/m)2

as L — oco. The proof is completed. m
Proposition 3 For v on any compact set,
B [nh (Qn (98) = Qu(10)) | = =0*BIA (2:) Aif (:)la: = 7o) falr0) ' (0) + 0(1),

Cov (nh (Qu (1) = Q@ (7)) .1 (@n (152) — @ (7)) )
= 4K [A?(wi)ﬁ (z;) (0% () + 0% (x;))|q: = 70} fa(vo)v1v2€ 1y + o(viv2),

and

et ey (M (@ 08) = Q00) B [nh (@0 08) = Q)] ) = N 0.,

v

where vg = o + Nk

Proof. Note that
Qn (1) = Qu(r0) = 2 1y (Bi (8)* = Bi (00)*) = £ 20y (B () + B3 (7)) (Bi (98) = Bi (30))

By Lemma B.1 of Newey(1994), we can show that ‘ﬁl (v8) — Af(z;)| 2 0 uniformly in i and v, where

Ag(ws) i= (1,24, 70) 80 f (31, 70) = Op(1). So [Bs (v8) + A (70) — 24 ()

2, 0 uniformly in i and v. Next

16



we focus on the other term. For simplicity, let v > 0. Now,

3*(78) — A ()

_ Yo+ 1 n 1Yo~ 1 n 1Yot
= (2 D KT — i T i KR ) — (357 Ty KRS — 21 Ty wi KRS
_ pevo— 1 ) (. n vt 1 n 1Yot
o = Zj:l,j;éi Yk, T Zj:l,j;éi yJKh,ij T g1 YiEnly — amt 2 Yi K

= A Y0y s (Thij + Taij + Tij + Taij + Toij + Toig)
where
Thij = 9(25,45) (KZOU - KZOU)
+
Taij = —g (2,95) (KZOU KZDU)

— . Yo~ _ prYo—
T3Z.7 = Uj Kh Ky Kh YN
. Yo+ Yot
T4Z] = Uj Kh Ky Kh zg ’

Tsij = — (1,25, 45) 00K hz] (v —h<q <),

Toij = — (1,2, q5) 0015 1 (v — h < g5 < 7).
By Lemmal [T} we have

T 2oiet 2oyt s 287 (@) (T1sj + Taij) = 0,

by Lemma [2| we have

m Dt g,y 207 (@) (Taig + Tuig)
R et Ap (@) f () ui [(k‘ (q’ h”") —k~ (%)) - <k+ (%) e (%))} 7

and by Lemma [3] we have

n(n1—1) Do i i 28 (23) (T + Toig)
~ 3 0 A (@) £ () (L) o [k (2578) 10 = h < g < 70) — b~ (4522) 17y — A < 45 < %) -

Combining results we have

nh (@n (18) ~ Qu(70)) |

=230 A () o) (0 (2528) =k (2520)) = (k0 (2528) — e (25))]
2200 Ay (@) f (@) (123, 0:) 8o [k <%> L0vg —h < g5 <) =k~ (qlh%> Livo—h<a S’Yo)}
+op (1)

=514+ S +0,(1).

Hence,

[nh (Qn (76) = %)ﬂ B[S

=2n/ fv WAy () f () (1,xj,qj)50 ( h’y") f (x4, q;) dgidz;
—onf, 70 A (@) f () (L), ) ok~ (2570) £ (21, 45) daidas

=onf, [0 Ap (@) F (@) (kv +ugh) ok~ (ug = ) £ (0070 +ugh) dugdas
—2nf f Ay () f () (1, 25,70 + ugh) dok™ (ug) f (24,70 + ugh) dugda;

~ 02 fy (v0) BIAS (20) Af (@) lai = vol K, (0),
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where the first equality comes from the zero conditional mean property of the error term, and the last one
applies |k’ (0)| = £/ (0). By Lemma {4 and Lemma [5 as well as the exogeneity property of error term u;, we
have

b (Qn(35) = @n(70)))
+ Cov (S3 (v1),52 (v2)) + Cov (Sy (v1),52 (v2)) + Cov (S7 (v2),.52 (v71))
(2:) + 0 (@) 195 = 0| Fa (o) viv2€ 1.

Cou (nh (Qu(r5) = Qu(v0)
= Cov (51 (v1),51 (v2)) +
~ 4B (A3 (2:) f2 (w4) (03
Roughly speaking, S2(v) contributes to the mean process of nh (@n ) — Qn (70))7 and S1(v) contributes
to the variance process.
To show the weak convergence, we apply the Lyapunov CLT by checking the Lyapunov condition. Specif-

ically, we show that

ot s [ (252) o (552) - (o52) - (52)]

0, (1#) —ar 1)

asn —oo. i

Proposition 4 3 (o) S

Proof. By standard arguments, we have

1 n

n 1 kn(gs )Az () f (zi)u?
= OIS EOLCON [ A3 (1) £ () (03 (@) + 02 (@2))lgs = 7] = 0

and

a Lo gl 0B ORI _ BA () Aif (w5)la: = 0] 2 0.

w 1 kn(ai—v0)

So all we need to show is

LS kg = A2 (v0) P (10)7 = £ S0y bn(s — v0) A% () F2(wi)u? 0

and
LS Enla — 7o) A2(vo) F (@i v0) o) — 2500 k(g — o) A p (@) Aif () = 0,
which are implied by

~ ~

Fl@ivo) = Flzi,ve) == 0, 8i(70) — Ap(i) 2 0, F(zi) — flai) = 0 and G; () — ui == 0

uniformly in z; € X.
In the following, we take @; (7,) — u; —— 0 for illustration since others are easier to show. By Lemma
B.3 of Newey (1994),

b, | Sy s K (w5 = @) K (05 = 70) w5 = B [ykess 7] £(@i,70)| = Op (VIn/nh? + ) = 0, (1)

which implies

sup,,, [t (i,70) — ma (2i,70)] = 0.

18



As a result,

SUD, |, —o|<h [Ui (70) — ]

= SUPy, |g,—vo|<h |¥i — M= (i, 70) 1 (@i < vo) — My (T35 70) L (g > 7o) — wil
= SUDg, (g, —no|<h |[M— (iCu qi) —m— (zi,70)] 1 (¢ <o) + [my (2, ¢:) — My (24,70)] 1 (@ > 7o)l
< sup,, [ma (@i, 7o) — Mt (Tis Vo) | + SUPy, g,y |<n [T (T4, @) — M (@4, 70)]
p
— 0.

Proposition 5 & — £ (y,) == 0.
Proof. To derive the result, we need to show
L k(s = A)A2F) (202 — 3 0 k(g — 70)A2(v0) P (@) (70)* = 0

and

~

Ly knla = DAZA) @i 3) ) — 200 k@i — v0)A2(v0) (@i vo) Flai) - 0

Take the first result for illustration since the second is simpler. First, we show that

LS k(s — o) A2A) F2(wa)a2 — L300 knlar — 70) A2 (7o) F2 ()T () - 0. (31)

Since

SUPy; J?(zlvﬁ) _f(xivfyo)‘
= ﬁ Sty i Ko (g — m) ki (@5 = 7) — 755 20—y s Kn (25 — @) ki (45 — 7o)
= | i Sy Ko () — 1) (k (¥) & (%))‘

(32)

\/17)171 =0p (1) )
and, by a similar argument as that in ,

Supzi ﬁli (I’Lv;y\) f:l: (mla:)/\) - T/T\Lj: ("Eia’YO) f:l: (‘T“FYO)’ = OP (1) )

we have

sup,, 2 7) -4, 0
< sup,, |- (21,7) f- (2,7) — M- (24,70) f- (xi:’Yo)‘ +sup,, | My (4,7) fr (2i,7) — My (i,70) fr (26,70)
£50.
(33)
With the results in , . and 1(yy < ¢ <7) =0, (\/77> = 0,(1), we have
sup,, [u; — Ui (7o)|
= sup,, |m— (v;,7) 1 (qz <7) —m— (zi,7) 1 (¢ <o) + Mg (25,7) L(qi > 7) — g (x4,79) 1 (g5 > 7o)
< sup,, M- (2i,7) — (xz,’yo)l (g <7) +sup,, |m— (@i, 7)1 (70 < @ <7)
+sup,, |y (24,7) — Mg (24,70)| 1 (¢ > 7) + sup,, [y (2:,70)| 1 (3 < @ < 7o) — 0.
(34)
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Combining —7 is obtained.

Secondly, we show

Ly k(e —DAZE) ()i — 200 ke — 70)AZA) F2(xi)a?
Lyt (knlei—7) —k (@ = 70) & AZ(F) ()2 | + op(
= 0y (o Sy 1 (i — 0l < B A2A) P2 ()2 + 0,(1)

Hence the required result is derived. m

Proposition 6 7 — v, = O,(h).

Proof. The proof mimics that of Proposition [I} By replacing Assumption K, G and H with K’, G’ and H’,

P20 () = Qu ()| = O, (Vinn/nh?) L=,

where @, () contains only the middle term in Proposition and the first and third terms disappear because
their difference is O (h?*/p2) = 0(1). Now, for v € T\N,,, SUp,er\w, @n (1) = o(1). For v € Ny, Qn (7) is
a nondecreasing (nonincreasing) function of a for a € (~1,0) (a € (0,1)) up to o (1) and sup.¢cn;, [@n (V)] =
O (1). So @, (v) is maximized at some 7,, € N, such that Q, (v,)) > sup,ep\n;, [@n (7)| + C/2 for n large
enough. The result of interest is then derived. m

we now have

SUp,er

Proposition 7 5 — v, = 0, ((np2) ™).

Proof. This proof mimics that of Proposition [2{ with the term \/n/h replaced by np2; Suppose v, < v <

Yo + h, now we have

n n n n + +
Dl = n(nlfl) Zi:l Zj:l,j#i 9j (Kh ij Kf’zozj) - n(nl 1) Zifl Zj:l,j;ﬁi 9j (K; ij K}’ZOZ])
+ n(nl—l) Z;L:l E;L:Lj;éi (1’ xj’ qj) 6" <K;Z,zg - KI’ZOU ) (qj < 70)
*Cpn ”‘/—h’Yo

for some C' > 0 with probability approaching 1 by calculating the mean and variance of D1 in its U-projection,
where the difference of the first two terms contribute only O, (]y — o] h®), the third term contributes to
—Cp,, ‘%‘ Since p,,/h* — oo, for n < h,

P (SUPlvaokn w it <3i (7) = A (’Yo)> > 0) <P (supw,%m7 D2 > Cp,

Y—70
7 .

With a different kernel function in Assumption K’ and the same formula of D2, we now have

2
Var (P1) <C-2 (%) Var (P2) < C-L (%h_'y) and Var (P3) < C-L

Yo— ’Y‘

As a result,
(P1) + Var (P2) + Var (P3)

=Var
1 7772 Yo—¥ C
<Cnh[(°h)+ D ”<nh D

’Yo*’Y‘
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uniformly for |y — 74| < 1. In consequence,

~

P (b, 1y 3300 (Bi () = Bi (3)) > 0)

IN

. {(S“pv—vm Dﬂ/ ou [72] 2

2
C | v 2 (=) _ c
nh h Pn h T np2lv—g

IN

by Markov’s inequality. So

) (supg,, 150 (B0 ) - Bi (7)) 1(A > 0) > 0)

¢ — 1
< ZlZL np2 -2t /np2 T CZZZL 2r 0

as L — oo, and the proof is completed. m

Proposition 8 On any compact set of v,
B [nh (Qn (38) = @u(0) )| = ~264(0)fy(v0) Du 0] + 0(0),

Cov (nh (@n () = @u () sk (Qu (387) = Qu (1))
) Xpvato(v2), ifvi>v2>0o0rv v <0,
1o, otherwise,

and
_ ] 16k3.(0) fo () Var,  ifv <0,
" 16](1_2’_ (O) fq (’Yo) ‘/7127 if’U > 07

and the finite-dimensional limit distributions of nh (@n (43) — Qn (70)) are the same as those of C (v), where
V6 =0+ sprs and C (v) is defined in the proof of Theorem @

Proof. We mimic the proof of Proposition Now, |A, (v8) — As(z;)| -2+ 0 uniformly in 5 and v, where
Ag(z;) == (1,25, 79)0nf(xi,79) = Op(p,). Decompose A, (v8) — A; (7,) into the same six terms as in the

proof of Proposition [3] only with dy replaced by d,. By Lemma [7 we have

AT it 2ot s 287 (@) (Thij + Taij) = 0,
by Lemma [§], we have

AT Doiet 2ot s 287 (@) (T + Tusj) )
o iy g (@) f (i) wg Kki (%) -k~ (%)) - (k+ (%) _ it (%))]
: So(v)/nh

Q

and by Lemma [9] we have

n(nl—l) D i i 207 (22) (Thi + Toig)
o i g () f (@) (L2, ;) 6w [/f_ (%) L(vg—h<q <) — k™ (%) L(vo—h < g <)
=: S1(v)/nh.
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As a result,

B [nh (Qu(18) = Qu(10)) | = B1S2 )] ~ 2k (0) fy (o) B[A2f (i, i) f (@) lai = 0] v/ 2.

Combining these results and the fact that k_(0) = k4 (0), we obtain the first equation in the proposition.
By Lemma (10| and Lemma we have

Cov (nh (@n(%l) - @n('YO)) ,nh (@n(’YSQ) - @n(%)))
= Cov (81 (v1), 51 (v2)) + Cov (S2 (v1) , 82 (v2)) + Cov (S1 (v1) , Sa (v2)) + Cov (Sy (v2) , Sa (v1))

~ Zn'UQ.

Just as in Method I1, S3(v) contributes to the mean process of nh (@n (vo!) — Qn (’yo)), and S (v) contributes
to the variance process.

To show fidi convergence, we apply the Cramér-Wold device, combined with the Lyapunov CLT. Specif-
ically, we check the Lyapunov condition that

S5 o (355) o (552) - o 55 - )
=0p (%ﬁ%) = 0p (1)

as n — 0o. Then the proposition is proved. m

Proposition 9 7 — v, = O, (h).

Proof. The proof is similar to that of Proposition [ But now

Qn (1) = f?lme (ug, o) k= (uq) M (zo + uzh, vy + ugh) f (zo + uzh,y + ugh) dugdu,
" —folfK’” (s, o) kit (ug) m (zo + ugh, v + ugh) f (xo + uzh, v + ugh) dugdu,

and we require A,/h® — 0o to make the proof go through. m
Proposition 10 7 — v, = O, ((nh®'A2)71).

Proof. The proof is the same as that of Proposition [7]] We only pay attention to the role that A, — 0 plays
to make the proof go through. m

Proposition 11 On any compact set of v,
a(D (~v) O 2
B [nh? (Qn (38) = @n(30)) ] = =2k+(0)f (@01 %0)” le] + 0(0),

Cov (nh (Qn (") = @n (30) ) 1 (@ (67) = @n (30)) )

_{ Yo (v2)va+0(v2), ifvi>v2>00rv <vp <0,

0, otherwise,

and the finite-dimensional limit distributions of nh? (@n v8) — @n(70)> are the same as those of C, (v),

22



_ v
where ’yg = ’70 + m,

(o) f (Toy70)* K2, if v <0,

2 K
?l» (1'0) f (5L'oa’y())3 ’{’27 ZfU > 07
and C, (v) is defined in the proof of Corollary[4

Proof. Mimic the proof of Proposition [§] Now,
G (1) = G (10) = B (18)” = Bo (70)* = (B0 (38) + Bo (1)) (B0 (38) = Bo (70)) -

By Lemma B.1 of Newey (1994), we can show that ‘30 (78) — Af(z,)| -2 0 uniformly in 4 and v, where

Ap(zo) == (1,24,70)00f (T0,79) = Op(As), s0 ‘30 (v6) + Eo (7o) — 285 (o)
We then only need to focus on the other term. For simplicity, let v > 0. Now,

. 0 uniformly in ¢ and v.

Ao (V) — Dy (70) = i > i (Thj + Toj + T + Ty + Tsj + Tssj)

where {Tkj}2:1 are defined similarly as in Proposition |8 only with KZ;]- and K;jj replaced by K,;’; and
K;fj', respectively. By Lemma , we have

04 20 (2,) (Thj + Toy) = 0,
and by Lemma [I4] we have
+ 21 20 () (Tsj + Toj) = —2k4 (0) 3= f (Zo,70)
So

nh? (Qn (18) = Qulr0))
= hT3T0 1 20 (wo) (Thj + Tog) + AT 3051 207 (wo) (T + Tug) + b 3251 24 (wo) (Ts; + To;)
= Op (1) + Sl (U) + SQ (’U) .

Hence, with the zero mean assumption of the error term, we have
d (N v N 2
B [nh? (Qn (78) = Qu(10)) | = B[Sz (0)] = 2k (0) f (50, 70)" v + 0y (0).

By Lemmas and and the exogeneity property of the error terms, we have

Cou (nh? (Qu(76) = Qu(0) ) b (@ (3E) = @n(70)))
= Cov (Sl(vl), 51(1}2)) + Cov (Sg(vl), SQ(’UQ)) + Cov (Sl(vl), SQ(’UQ)) + Cov (51(’02), SQ(’Ul))
~ Zonvg.

To show the weak convergence, we apply the Lyapunov CLT by checking the Lyapunov condition. Specifically,

we show that

" v -~ v 4 nh3dat
YL E [h“dA;% (o)t [(B75 = 1707 ) = (K05 = K751 } =0, (%t ) =0, (1).
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Proposition 12 I( ) s op (1) under Hél), and is O, (nhd/Q) under Hl(l).
Proof. Note that

nhi/?
I = n(’,lb 1) Z ZﬁélDD Ky ,ij
nhd/2
:n(zil) Zizﬁéi [ml xﬁ—xél(ql<'y)} [ —Xﬁ—x (51( )] Khij.
Under H( ) my = X580 + %1001 (¢ < ), so that

-—xﬂ—xéllg
o) e ()1t 00
Y

+xl0ol (< q; < )—x51(70<q1<~y)

As a result, Iy, has ten terms with a typical term of the form

71 = (B=80) [HE55 505 Knsyxixs] (B = o)

or
d/2

T2 = 0 [0 32, 32,y KnigxixL (7 < 0 < 70) 13 < g5 < 7)) do.

Given that 3 — By = Op(n=1/2), 0 — 60 = 0,(n71/?), and 7 — 75 = Op(n *1), it is easy to show that T'1 =
O0,(h%?)and T2 = O, (hd/2)smce I)ZZKh”xx =0,(1 )and ZZK;HJXX 1(7<q<7)1(7 <q <)

Op (n71).

We now analyze I,,, under H fl). There are three cases. Let

(50» oa’Yo) =arginfg s, B |(y —x'8-x'61(¢ < 7))2

If §, = 0, then m(z,q) = x'8, and the model degenerates to the case analyzed in Zheng (1996). If
dz0 = 0 and 0q0 + V4,040 = 0, then T(z,q) takes the CTR form of Chan and Tsay (1998). It follows
that 3 — B, = O,(n~1/2), 5 — 6y = Op(n12), and 7 — v, = O,(n™1/2). If §,0 # 0 Or da0 + V,040 # O,
then 3 — 8, = 0,(n=1/?), 0= 6, = O,(n=2), and 4 — v, = O,(n™'). See Yu (2017) for these results. We

concentrate on the last case. Now,

nhd/2 e -
I = 71(2 1) Z Z];ﬁz( ml) (mj 7mj)Kh»ij(]‘+0P(1))a

where m; = X3, + x;0,1 (¢; < 7,), so we need only calculate E [(m; — ;) (m; — ;) K} i;], which is equal

to

[ (m, —ma)( 5 — ) Kpij fifjdeidg;dr;dg;
J (m 2 K*(ug, z)k(ug) fRdz;dg;dugdu,
J(m

%

; — ;) fi dz;dg;,

The result follows. m

Proposition 13 Ii? is op,, (1) uniformly in m under H(()Q), and is O (nhd/zb) under HfQ),
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Proof. Given that f ! = fi +0,(1) and f; is bounded uniformly over (z;,¢;) € X x T,

Iln
d/2
= Z 1)2 ZJ#L]‘Slg( mZ)fl( m])fJKhZJ <f f ) (35)
d/2 1 =
R e Yo ot i oy 1 (i =) Ly 1S (my —mu) Ly B f7 1 f

/2
=0, (n(: )? > Zﬁéz Zl# Ek;éj i i (mi — my) Ly, zll (m; — my) L ji Kp, w)

Mimicking the proof of Proposition A.1 of Fan and Li (1996), we can show that under HSQ), L, =
O, (nh®2b?1) = 0,(1). The only new result we need to employ is that |Ey [(ma —m1) Ly21]| = O, (b7),
which is accomplished in Lemma [I8]

2)

We now analyze I,, under H { . It can be shown that the case where i, j,[, k are all different from each

other dominates in the formula of the second equality of , SO
Iln ~ Op (nhd/Z]E [1? (m1 — mg) Lbylglg (m3 — m4) Lb734Kh713f1_1f3_1:|) .
Because h/b — 0, we can treat (z1,q1) = (x3,¢3). Specifically,

E [1] (m1 — m2) Ly 1215 (ms —my) LysaKnasfi ' f5 ']
it ( —ma) Lyaafi " [ 1(q1 +ugh €T) (m((z1,q1) + uh) — ma)
1 Lz S veh o —&—uxh) l (7(]4 e )K”” (g, 1) k (uq) du

Q

(17 —ma) Lb 12 (m1 — ma) Lyaafi ']

{ {El my — my) Lb,lZ]}z}

fjf U m(z1,q1) — m(z ) gr L7 (255, 21) 1 (252) f(%ﬂz)dﬂfquQ]Q dxidg

S O (77) + [0 [ [ (m(er, @) — (s + tab, 1+ 0gh)) I (i 21) ) (21 + 11ab, a1 + b)) sy
fiobql <m<x1, @) = m(a1, g1+ ugh)) L (ug) du

f 1 m(z1,q1) — m(z1, 1 + ueb)) L (uq) dug

E
E

Yo—b

~ O (b*) + oty l ] f(@1,70)?dz1dgs

where u = (uz,uq). Under H{Q),

Yo+b fvlo% (m(x1,q1) — m(z1,q1 + Uqb)) l (uq) du
Yo—b _i_fjf?“ (m
2

Yo—41
~ [0t f |:_ f%% ml+ (ml)uqbl(uq)duq + f_1 o (my (1) —m_(x1) + Cugyb) l(uq)duq:| f(l'l,’YQ)QdiUldCh

] f(x1,70)*dzrdg
(w1,q1) — m(x1, q1 + ugb)) [ (uy) dug

Yo

Y0—491

%_bf[fw o (m_(21) = o (1) + Cugh) Luug )y — [
b [0 (maen) = mo (@) Mgy | dando

L[S On(a0) = mo (@) M)y F(@r, 7o) s

=90 [ (i (20) = m (@) FCr, o) [ (2 Uung)dug) o,

p)
xl)uqbl(uq)duq} f(x1,70)%dx1dq

where m/, (z) = lim dm(z,v)/0v, and my(x) = lim m(z,v). The result follows. m
amaliE= Y=ok

Proposition 14 1)) <4 N (0,50) and I52) 4 N (0,5®@).
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Proof. We only prove the second result since the first is proved in a similar way.

2) nhd/2
I = n(n=T) D2 2y L L uiu K g
_ nh¥
= n(n—1) Z Zg;&l (Zuzj) = nhd/QU

where U, is a second order degenerate U-statistic with kernel function H,,. We can apply theorem 1 of Hall
(1984) to find its asymptotic distribution. Two conditions need to be checked: (i) E[H2(21,22)] < oo; (ii)

E[G2 (21,22)]+n "E[H}A (21,22)]
E2[H? (21,22)]

— 0 asn — oo,

where G, (21, 22) = E[H, (23, 21)Hy (23, 22)|21, 22]. Because these checks follow in a similar way to lemma

3.3a of Zheng (1996) they are omitted here to save space. In conclusion
nU, / 2E[H? (71, 22)) i>N(O,1).
It is easy to check that

B[H(:1,22)] =B [I1KZ ,Blufler, 1] [u%\mz,qzl]
7fof7fh2de(x2 ) K2 (250 0% (01, q1)0” (22, 62) f (21, 01) f (w2, g2 )dwadgadadgy
:fl”ff% [ &K (ug, 2)? K (ug)o? (2, )0 (x + ugh, q + ugh) f(x,q) f(x + ush, q + ugh)dudzdg
~ e ST [ B (s 2)? K)o (o, ) 2
~ qa [[ 12 (w)du] [] [ o* (@, q)f* (2, q)dedq

q)dzdq + o (77)
2(2)

z,q
1
hd

so the result follows. m

Proposition 15 v)? = 21 4 op (1) under Hél) and the local alternative and vi"? = 0,(1) under H{l).

Proof. It can be shown that

Z Z];ﬁz h 13/6\12/6\?
—\2 — \2
= n(n 1) E Z]#z h,zj (ul +m; — ml) (uj +mj — mj) + Op(l)

= h'E K7 o5 (ui +m; —m;)? (uj +m; —mj)Q] + 0p(1)

= B K3 B | (i + my —77,)° | By | (g +my —775)° | | + 0p(1)
= [ [ K (o) K2 (ug)du] (02 + (s —773,)?) f2dwidgi + 0,(1)
— [ | £ (.0) (o200 + (= 7) | + 0,0

where 0? = o%(z;,¢;). Under H(()l), —m = 0. Under the local alternative, & {f (z,q9) (m 7m)4 =
O (n72h~%) = o(1), and under H1 U E [f( q) (m — m)‘*] =0(1). m

Proposition 16 v\ = (2 + op (1) under both HéQ) and Hl(z).

Proof. By steps similar to the last proposition, we have
2
A= 1) X Y W1 KG et = /kzd(u)duE [1£f(xi,qi) (02(%%‘) + (m; —Wi)Q) ] + op(1),

26



where m; is redefined as E; [m;]. Note that E [er (i, ;) (m; —m;)*| is at most O(b) since m; — m;
contributes only for ¢ € [y —b,v+b]. m

Supplement C: Lemmas
Lemma 1 ﬁ D00 2 i 287 (@) (Thij + Taig) = 0.
Proof. For 2Af(x;)Th;;, we have

E [2A ¢ (z:)Thij|2]
= fj’oof 20y (x;) g (x4, q;5) hlde (T’;T’,xl) (k‘ (‘I’T) — k- ( 7”)) f(zj,q5)dz;dg;
=2A¢(z )f f 9 (@i + uzh, g + ugh) K (uz, xi) K~ (ug) f (i + uah, 76 + ugh) dugydug
—2Ay (x4 f f g (zi + ugh, vy + ugh) K7 (ug, ;) k™ (uq) f (i + ugh, vo + ugh) dugdu,

7 (
=20y (z4) f 1 f xl, Yo + ugh) + g1 (i, 75 + ugh) uzh + o (uph)] K (ug, ;) k™ (uq) duzduy
—2Af (z) f G (zi,70 +ugh) + gy (zi,79 + ugh) uzh + 0 (ugh)] K* (ua, i) k™ (uq) dugduy
= 2Af i f g (wi, g+ uqh) g (zi,vo + uqh)] k= (uq) dug

zi) [y [
:2Af($l)§2($'u70)\/T+O("/h)

and gy (z;,q5) = . Since

_ ag(z;,
where g(z;,q;) = 9(x;,4;)f(z5,q5), 91 (w;, q;) = 50

6?(1‘]‘ 7qj)
qu

B [2Af(zi)Thij|25]
= [, 20 ) g (o) ke (2 w) (b (9528) = (25720) ) f (o) s
= %g (zj,q5) (b (% h'yo — k(% h’yo fuz Ag (z; +ugh) K* (ug, xj — ugh) f (z; — ugh) duy
= 2g(x;,q5) (b (2522) — k= (2522)) Ay () f (x7)

and
B [183 ()72,
= Lo Jy Jey e g g0y 167 (S 0) (ke (25720) b (9572)) (o) f () o
77 (2:) g (zi + ugh, vy + ugh)’ K (ug, 1)’
= fu fuq fum . (]g* (uq + w) A (uq)>2 P uqh)

_ 1 v
=0 (hd Vnh )’

} dugdug f (z;) dz;

we have

LI BRA (@) Tigla] = 28 ()T (xi70) 72 +0 (7).

LS B RA () Tuigles] = 29 (05,05) (b (9528) — b (252)) Ap (2) £ (),
1/2

1R {4Afc(xi)T12ij} =10 (#W) =o(1).

By Lemma 8.4 of Newey and Mcfadden(1994), we have

~—

n(n 1) Zz 1 Z] 1,5#1 [QAf(xZ)ThJ] ~ 2Af (ml)EQ (277;7’)/0) \/ZWa
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where the extra terms £ Y% | B[2A ¢ () T145]2;]—E[2A f (x;)T145] and 2 370 B2A p () Thi]2;]—

are op(1). Similarly for 2A ¢ (z;)T2;5, we have

m Z:‘L:l Z?:l,j;éi E[2Af(2:)Toi5] & =247 (%) G2 (Ti570) \/UW

n

Hence,
T it 2ot s B (28 (23) (Thij + Taij)] = 0

and

Var (ﬁ D i i B 24 (20) (T + T2z‘j)]>

E[2Af () Thi5)

<Var (ﬁ i Z?:l,j;éi B [2Af($i)T1ij]) + Var (ﬁ i Z;‘L:Lj;éi E [2Af(xi)T2ij])

=o0(1).

So the result of interest is derived. m

Lemma 2

n(n 1) Z j= l,j;éz 2Af (‘Tt) (T37J + T4ij)

< e (1 (52) T () - e (55) e ()]

Proof. Since
E2Af (z;) Tsi5|2:] = 0,
E[2Af (zi) Tsij |Zvj]
= (ki (%) —k” (%)) Jo. Ay () K7 (zjﬁmi’$i> f(z:) dz;

D“

o =

k= — k-

=70
R

Ag (z;) f(z;)
and
E [4A2 (zi)Tgij]
= Jo Jy, Jo, w2} (2i) 0
{ AA ( ) (xz+u¢h ’Yo+uqh) K= (uw,xi)Q

dugdug f (z;) dx;

( h) —k (uq)>2 [z +ugh, vy + ugh)

=0 (i)

we have

LY BR2A () Taig) ~ 20 Y0 u; (’ff (q’ h%) — k- (%)) Ay (z5) f(25),

+E [4A§»(wi)T§ij]l/2 ~10 (W( h)1/4) —o(1).

By Lemma 8.4 of Newey and Mcfadden(1994), we have

= 2y, gk gqj_hvg; -k~ gw [ Ar (5 = ughy) K* (ug, x5 — ugh) f (v + —ugh) dz;
4

2 (xj,q5) K* (I7 i ,xi>2 (k‘ (q] h'yo) — k- (qJ h%))zf(a:j,qj)dxjdqu(xi) dz;

m it Z?:l,j;éi 20y (1) Taij = 55 20 Ay (i) f (@) wi (]( (ql h%) — k" (q7 h%)) :
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A similar result can be derived for ﬁ Doie1 2= i 207 (;) Taij and the result of interest is then
obtained. m

Lemma 3

Ty Doiet 2ot s 287 (22) (Tsij + Teij)
~ 3 Ay (@) f @) (L) do | (k7 (2725) 108 = h < a < 90) = b~ (2522 1vo—h < 0 < 70)) ] -

Proof. Taking T3 to illustrate, we have

E[2Af (%) Tsijlz]
= = A () (L, a) S0k (555 ) b (9520) (g — b < g5 < 70) f (1) da
= —2 (1,2},q5) b0k~ E%h%; L(vo —h <45 <o) [, Ar (@) — ugh) K7 (ug, 25 — uzh) f (x; — ugh) duy

~ =2 (L), q5) ok~ (45722 ) 1 (v — h < g5 <v9) Ay (25) f (25),

B [2Af (xi) Tsijlzi
= o A (@) (105 05) 00K (55 ) k™ (9522) 1 v — h < ay < 70) £ (w5,0,) did
= —2A¢ () fi)lfuw (1,2 + ulh,vo + ugh) 00 K* (ug, ;) k™ (ug) f (@i + ugh, v + ugh) duy
r =207 () (1,25, 70) do f (i, 70) ~ —24 ()

and
B [4A?(ifz’)T52ij]
= [ f, fo, 723 () (125 q5) 60)° K7 (%mf (k (%))2f(xj,qj)dxjdqu(mi)dxi
4 ! / 2
b L B e
=0 (5a)-
Hence,

LS E[2Ap(2:)Thijlzi] = —20¢ (),

& i1 B8 (w0)Thijlz] ~ =7 (1,25, q5) dok™ (%) 1(vo—h < q; <v9) Ag (2) f(25),
1/2

LB (183 (@) T2, | T = 10 (=) =0 (1).

T n

A similar result can be derived for > | E[2A(x;)Tsi;]2] . Then by Lemma 8.4 of Newey and Mcfad-
den(1994), we have

LY BR2A (i) (Tsij + Tsij)]
~ 25 (L,a),q5) 6o [k’ (%) L(vg—h<q <7 —k~ (%) 1(yo—h<g < 70)} Ag (z5) f (25),

Where the extra terms % Z:’l:l E[2Af($z)T5” |ZL]—E[2AJ£ (x,-)TMj] and % 211:1 E[2Af (l‘i)Tﬁij |Zz]—E[2Af (xi)TGij]
are op(1). m

Lemma 4 Cov (S1(v1),S1(v2)) ~ 4E [A?(xi)fQ(a:i)(af_(x,-) + 02 (z:))lgi = ’Yo} fa(vo)v1v2€ 1y
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Proof. Without loss of generality, assume v; > vy > 0. Then

anCov (A (2) () u; (k* (‘”‘,731) K ( )) Ay @) (k+ (252) — et (2520))
s "
= 4nf f’yo f A2 a?i i)Q ’LLZZ (k‘+ (qi;’yo (uz|xz>%) /
(+
2

($u qz) du;dg;dz;

—dnf, f f A% ( xz)f( i) ukt (k+ (%) k* (q _PYO)) (wilzi, qi) f (24, q5) dugdgida;
ey | AF@) S G () =w (m5e)
Fand f{ (e (i ) f ki) S ) [ O
+anf,, fz)o-i:hfu,ﬂ,A? (z:) f (2;)* udk (q hg )k+ ( hw )f(ui|$iaQi)f(xi7Qi>duiindxi
(

~ AE [Afc (i) f (z:)? o2 (z;)|gi = 70} fa (Vo) viva 1y,

N
N~—
£
S
~
oy

ST N
|
T
+
/—\
2
=

where 0% (z;) = Blu|zi,qi = 7o+] and &) fo K/ (t)*dt. For a more detailed proof, we refer to that of
Lemma C.4 of DH. Similarly,

4nCov (Af () f (z3) wy (k_ (#) -k~ (%)) JAp () f () ug (k_ (#) -k (%)))
~ B [ (1) £ (21)2 0 () las = 0| fo (v0) on0s€

and

nCon (8 a1y (i (20 < (15722)) & 0 sy (57 (2) =7 (27))

~ AB A3 () £ (20 02 (@) g: = 0] Ju () vava€ry oz = 0, (1),

where 02 (z;) = E[u?|z;, ¢ = 79—]. So the result of interest is obtained by summing up terms. ®

Lemma 5 Couv (S2(v1),S2(v2)) = o (viva), Cov (S1(v1), S2(v2)) = 0 (v1v2) and Cov (S2(v1),S1(v2)) = o (vivs).

Proof. From Lemma [3] by tedious calculation, we can obtain

Var (Sg (v2)) = o (v2) .

Hence,
Cov (Sa(v1), S2(v2)) < v/Var (S2(v1)) Var (S2(v2)) = o (v1v2),
Cov (S1(v1), S2(v2)) < /Var (S1(v1)) Var (S2(v2)) = o (v1va) ,
Cov (S2(v1), S1(v2)) < /Var (Sa(v1)) Var (Si(v2)) = o (vi1vs)
[

Lemma 6 For any ¢, ¢y > 0, there exists n > 0 such that

P {supjy, _uyjn [0 (@ (G8) = @u (30)) = 1 (@ (18%) = Bn (30) )| > 01} <

where

~

nh (Qn (98) = Qn (7)) = (Qu (18) = Qu (0)) =B [k (Qn (38) = Qu (70) )|
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Proof. From Proposition 3| we have

lim,, o0 E {ﬁb (@n (vo") Qn (70 > — nh (Q” &)= Qn (’YO)” 2
ity B [ (@0 (331) — @ (00))|” + ltn B [ (@ (98) — B0 (00))
— 2im, oo B [ (Qn < % > Qu (00))] [1h (@n (36%) = Qu (0))]

= 4 (07 + 0 — 20002) B | A (@) (@) (0% () + 0% (20)las = 7o) Su(r0)6 0y +0 (Jon = va’)
S C |U1 — 1}2|2 .

By Markov’s inequality, the result follows. m

Lemma 7 ——- 1)2 i 1J¢Z2Af(a:i)(T1ij+T2ij)zO.
Proof. The proof is similar to that of Lemma [I| For 2A¢(z;)T1;;, we now have

B 24 (2:)T1ij] X

= fjoof 28 (i) g (l‘g,q]) ra K (IJ 117%) (k7 (%) — k- (@)) [ (@5, q;) dwjdg,

=2A¢ (z f_ f g (z; + ugh, v + ugh) K% (g, ;) k™ (ug) f (2 + ugh, 7§ + ugh) dugydug
—2A¢ (z; f f g (@i +uzh,vo + ugh) K® (ug, ) k™ (uq) f (@i + uzh, 7o + ugh) duzdu,
f i 9 (i 76 Z)uqh) + gg ) (@i, 78 + ugh) ugh!
e 477 (@i, + ugh) ugh® + o (uSh®)
—2Ay (x4) f J, [ (x“’yof—(t)uqh) + 551) (2i,70 + ugh) ugh'

el g1 (@i 0+ ugh) ugh® + o (uph?)
(F (@i, 78 + ah) = G (i, 70 + 1)) + B (78 (5,78 + weh) = 5 (31,70 + ugh) )
o b (G5 (@078 + ugh) = 31 (227 + ugh)

~ 907 (@) g [T (2v0) + -+ TS (@i30)]

=2A (z ] K7 (ug, x;) k™ (uq) dugdug

K7 (ug, x;) k™ (uq) duydug

~ 20 (a7) [°, k™ (ug) dug

—_ o s —(n 37(1") T;,q; .
where §(z;,0;) = 9(z5,))f (25, 0), 31" (25,q;) = S5 and i (2, ¢;) = P51 Since

E [2A ¢ (z:)Ti5] X;]
:f 2A¢ (mi)g(mj,qj) = K* (% xl,m,») (k_ (7) k™ ( )) i) dx;
hg (‘T_]v QJ) k= (% }LWO — k(% }L’YO f Af T; + u:rh) K* (U:cvxj h) f (zj - uﬂch) duy,
=29 (zj,q;) (b~ (% h% — k= (450 ) ) Af () f (25)

and

B [483 (2T,

2 _ - 2
= Lo Sy Loy 72 (@) 9 (2 05) K (Ml‘z) (k_ (%) — k" (%)) f(zj,45) djdg; f (xi) de;
A A2 (2:) g (5 4 ugh, vy + ugh)® K (ug, x;)
pa g i 7 xzlty Y0 q xy L1
= Lo Sy Ju

(k_ (uq + @) -k~ (uq))2 [ (@i + ugh, vy + ugh)

2
— Pn _ v _ 1
=0 (hd nhp? ) - (nhd+1) )

dugydug f (z;) dx;
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we have

LS BRAH )T Xi) ~ 285 (2:) 15 (72 (w090) + -+ 158 (w07%0)]
LS BRA @) Tl X = 39 (2,0) (b (955) =k (9522)) Ay (3) £ (2),
1/2
1B (18372, = 10 (Joke ) = 0(1).
By Lemma 8.4 of Newey and Mcfadden(1994), we have
Ty Smiet Doyt 207 (@) Trij = 204 (23) 557 [52 (@i vo) + - + hogy) (l’i,%)} :

where the extra terms L+ ZZ LE[2A ¢ () T4 X;]—BE[2A f (2;)Th;5] and % Z?zl E[2A p(x)Thi; | X;]—E2A ¢ (z;)Th44)
are op(1). Similarly for 2A¢(z;)T5;5, we have

Ty Sy S i 28 (000 Tty ~ —28 (1) 2[5 (w0,70) + -+ + B°G8 (31,7)|

Hence,
n(n 1) Zz 1 Zg 1,5#4 2Af( ) (Tll] + T2z])

and the result of interest is derived. m

Lemma 8

m it 2 jen i 287 (1) (Taij + Tas)
~ i A @0 f o (1 () -k () = (o (8) =4 (252)) -

Proof. The proof is the same as that of Lemma[2 m

Lemma 9

ﬁ Dit 2oy i 281 (i) (Tsij + Tois)
~ 2 Ay () @) (L) 6 [ (B (2525) 108 — A < 0 < 70) =k (2522) W —h S @ <)) -

Proof. The proof is the same as that of Lemma([3 m

Lemma 10 Cov (S1(v1), S1(v2)) = 3y ve.

Proof. Without loss of generality, assume v; > vy > 0. Then

(ot ey o (55 i (50) s o s (o (45) i (152)
a3 o (6 () o (5 (6 (557) o (5)[ w0 ) s
f

(

:4nf 782] Az wz) (i) 2 2(k+ - ’YO [ (uilzi, @) f (i, @) duidgida; (%)
—dnf, [ f A% (2;) f () u2kt qh o) (ke (450) — K (%))f(ui|:ci,qi)f(xi,qi)duidqidxi
o s (e (7)o ()
+4n f’Y +hfui ,(k+ T?) L (lhj) (ul|m“ql)}(x“qz) du;dg;dz;
(i) f (@) w2k (95250 ) et (S0 ) £ (il ) f (2, g:) dusdgyde
(2:)° 0% (1) lai = wo} fa (o) /R,

v2
Yo +h
+4f Yot+h Ju;

A3
~ ki (0B [A3 () f
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where 02 (z;) = E[u?|z;,q; = 7vo+]. Similarly,

4nCov {Af (i) f (x) wy (k’ <%) —k (‘hh )) Ay () f i) w (kf (‘17 h’vo ) —k (qz h%))]
~ 4k (0B A3 (@) £ (@)% 03 (21) la: = 7] fu (v0) /0302,

and

4nCov [Af (i) [ (x) wy (ki (%) k* ( )) CAp () f () w (k’1 (%) — kT (%))]
~ ks (0B A3 (@) £ (@)% 03 (20) la: = 7o) fu (v0) /0302

If v1 < vy <0, the result is similar except that the term Ui (z;) is replaced by o2 ().
If vive < 0, then the four terms are all o(vz). =

Lemma 11 Cov (S2(v1), S2(v2)) = 0 (v2) , Cov (S1(v1), S2(v2)) = 0 (v2) and Cov (S2(v1), S1(v2)) = 0 (v2).

Proof. The proof idea is the same as that in Lemmalf] m
Lemma 12 For any ¢, ¢, > 0, there exists n > 0 such that

P {subjy, _uyj<n [0 (@ (G8) = @u (30)) = 1 (@ (28%) = Bn (30) )| > 01} <
where
nh (Qn (78) = Qu (0)) = 1 (Qu (1) = Qn (7)) — E [ (Qn (38) = @n (70))] -
Proof. Without loss of generality, assume v; > vy > 0. From Proposition [8) we have
tm o B [ (@ (537) — @ (30)) — 1 (@ (48) = @ (20)]
=l oo B [ (@ (331) ~ @ (30))] + lin o B [nh (czn ( )= Q)]

= 21y e B [10h (@ (05") = @ (1)) ] [0 (Qu (72) = @ (30)
= 16k? (0) (v1 + v2 — 202) Vi f4(70)
< Clvy — 9.

By Markov’s inequality, the result follows. =

Lemma 13 37 | 2A¢(x,) (Th; + Tpy) =~ 0.
Proof. First,

E 247 (z0)Th;]
+oof 207 (20) 9 (25, ;) hlde (xj;xo7x0> (k_ (%) — k- ( 0)) f(zj,q5) dzjdg,
=20y (z,) [° f 9 (o + uzh, vg + ugh) K (ug, o) k™ (uq) f (%0 + uch, 76 + ugh) duadug
—2A¢ (2, f f g (zo + ugh, vy + ugh) K% (ug, o) k™ (uq) f (To + ugh, vy + ugh) duzdu,
=247 (xo) f fux [ g (20,76 + ugh) + - +§§5) (o, 76 + ugh) ush + 0 (ugh) | K (ug, o) k™ (uq) dugdug
=287 (@0) [ [, [9@or 0+ 1) <+ G (oo + tgh) sk + 0 (uph)| KT (10 w0) K™ (ug) dutydug

~ 20 () [, (3 (o 98) -+ 38 @) 1) = (3. @orr0) + -5 (orv0) 1) K () s

~ 20 (20) (72 (@or o) + -+ + 785 (50170) h*) stz
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— —(s 0g(xj,q;
where §(z5,q;) = 9(25, ;) f (25,47, 357 (25, 05) = 5 Gy (w5, q5) =

Similarly, we have

955" (5,a5)
and912 (z5,q;) = = aqj] ot

99(%;,9;)
0q;

B (28 (20)To5] ~ ~2A1 (3) (2 (20, %0) + -+ + 53 (20,%0) h* ) sz

Hence,
B4 575, 287 (20) A (w0) (T3, + Toj)| ~ 0
Next,
LE |4A3 (z,) T3,
1 |: ! 4 2j:| T;—x 2 q — 2
:ﬁfqg' fl“j WAf(xO)g(zjvqj) Km( ! 071'0) (k (%)_k ( 0)) f(xja%)dxjd%
1 %A? (1‘0) g ($0 + ugh, vo + uqh)2 K* (uxa xo)z
~n fuq fuz . _ Yo—Yo - 2 duxduq
k™ (ug + 725 k™ (uq)) f(xo+ugh,vo+ ugh)
=0 (nhd nh2A2) = 0(1)7
SO

Var [ 520 281 (@0)Thy] = LVar 287 (@o)Th) = 1B 483 (w,)T2 | = LB 2A1(20)T1,)° = o(1).
With similar results derived for % Z?Zl 2A¢(z,)T5; and

LR [4Af(20)2T1; ;]
Cap g [ A etk i) (7 (= )~k ()
nJugJu, . (k+ (uq — #Af;) — Kkt (Uq)) K® (Ugc,l’o)2 £ (2o +uahy o Jruqh)
=0 (nhd nhdA2) P

we have

dugdug

LCov 20 ()T, 204 (o) 2] = O (##) — O (s42-%) = o(1).

As a result,
Var [% Z;—;l 20 f(zo)(Th; + ng)] = o(1).

By Markov’s inequality, the result of interest is obtained. m

Lemma 14 1 Z] 120 (o) (Ts5 + T5) = —2k_(0 )nzdf(ajo,vo)z.
Proof. Since

B[2A f(20)T5;]
== Joy Jo, 7B (@o) (1,25, 45)00 K* (%@o) k™ (QJ h%) 1(vo = h < g5 <70)f(25, ¢;)dx;dg;
= —2A¢(x,) f?l Ju, L@y +ulhy v + ugh)on Ko (g, 20)k ™ (ug) f (20 + ush, 7o + ugh)dugdug
= —2A7(20)(1,20,70)0nf (To, 7o) (1 + O (h)) ~ —2A%(zo)
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and, similarly,

[QAf(wo)Tﬁj]
= Jy L A @) (L a)0 K (5552 20 ) B (9575) 138 = b < a5 < 70) fl, 47) ey
=2A¢(z, f71+ - fum(l,xo +ulh, vy + ugh)dn K* (uy, o)k~ (uq - #A?,) f@o + ugh, vy + ugh)dugydug

= 204 () (1, 2, 70)0nf (0, 70) (1= K (0) itz + O (1)) ~ 283 () (1 — - (0) 7 xz )

the result of interest follows. m

Lemma 15 Cov (Si(v1), S1(vs)) = Sovs.
Proof. Without loss of generality, assume v > vy > 0. Then
Anh21Cov (g (wo) us (K75 KZOJ ) A Gy (K57 = K797
- i (e ) (o () e (352 o (35 e (552
= dnh'f, 782] A} (zo0) U K* (M,wo) ( ( n )) ug\%qg)f(fﬂj»qg')dujdqjdfﬂj (%)
—dnhtf, qu [, A% (20) I K* (M,xo) g ) ( ( ) k*( ))f(uj|l’ja11j)f(mjvqj)dujd%'df”j

(*(q =)= ) iy,
‘(k*(%) 07 F glerna) F o) [
g [

7) K (T) fujlz, q5) f (25, 95) dujdgjdz;

+ 47’Lhdf f70+hf

and

Anh®Cov (Ag(wo)u; (K5~ = K157 ) Apleo)us (K5~ = K157))

~4k2( )U+(-To)f($oa70) K’ V2,
and
”1:|: + v2
— dnh?Cov (Ap(wo)e; (Ko~ = K757)  Ap(wo)e; (Kot T = K757))
b (O (0)02 (20) f (20, 70)* K05,

where 02 (z,) = Ele?|z; = 0, qj = 75 ], K2 = [ K (us)*dus.

If vy <vy <0, the result is similar except that the term oi (7,) is replaced by o2 (z,).

If v1vg < 0, then the four terms are all o(v2). ®m

Lemma 16 Cov (S2(v1), S2(v2)) = 0 (v2),Cov (S1(v1), S2(v2)) = 0 (v2) and Cov (S2(v1), S1(v2)) = 0 (v2).

Proof. The proof idea is the same as that in Lemma [T1] m

Lemma 17 For any ¢, ¢, > 0, there exists n > 0 such that

P {Sup|v17v2\<n ’TTh\d (@n (’781> - @n (’70)) - ;ﬁ (@n (782) - @n (70))’ > (bl} < ¢,
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where
nh? (Qu () = @ (20)) = 1 (@ (38) = @u (0)) =B [nh? (@ () = @ (70) )| -

Proof. Without loss of generality, assume vy > vy > 0. From Proposition we have

i, B [ (@ (337) — Qo (7)) — 707 (@ () — @ 20))]

=l B [0 (G (38— G (30)) | lim o B [0 (0 (32) —~ O (30) ]
= 2limc B [ (G (35) = @ (00) | [ (@ (35) = @ 00)

= 162 0) f (2 70)" K203 (50) (01 + 3 — 302)

< Clvy —vgl.

By Markov’s inequality, the result follows. m

Lemma 18 ‘El [(mg — ml) Lb’gl]

=0, (b").
Proof. We have

|E[(m($2,Q2) m(z1,q1)) Lv21]w1, 1]
= | [ (m(z2,q2) = m(z1,q1)) f (@2, q2) gr L* (255, w1) | (251 daadgo|
(Qm ((22,92) , (z1, 1)) + R (22, 42) , (21, 01)))
=[] -(fler,q) + Qr ((z2,42) , (21, q1)) + Ry (22, ¢2) , (1, q1))) ¢ daadga|,
e Lt (B @) (25 1)

where Qm ((1’2, (12) ’ (xla ql)) is the (S - 1)th—order Taylor expansion Ofm(‘r% QQ) at m(xlv ql)v Rm ((332, qQ) ) (xlv ql))
is the remainder term, Qf ((z2,¢2) , (1, ¢1)) is (A — 1)th-order Taylor expansion of f(z2,q2) at f(z1,¢1), and
Ry ((z2,q2), (x1,¢1)) is the remainder term. From Assumption L,

S Qum ((x2,42) , (21, 01)) (f (@1, 1) + Qp (2, q2) , (w1, 1)) pr L” (225, 21) | (L25L) dwodg = 0,

so |E[(m(z2,g2) — m(x1,¢1)) Lp,21]|z1]| is bounded by

|[ R (22,42) , (w1, q1)) flz1, q1) g L® (22550, 1) L (252 ) daodgs|
+ | [ (m(z2,q2) —m(z1,q1)) Ry (z2,q2) » (21, 1)) 7 L” (2255, @1) 1 (L5L) daadgs|
< Cb® + ChML < O,

where n = min (A4 1,s). =

Supplement D: Parametric Tests for Threshold Effects when In-

struments are present

This supplement discusses the asymptotic distribution of the Wald-type and score-type test statistics under
the null and local alternatives when instruments are available. We also provide implementation details for

the use of Hansen’s (1996) simulation method in the current context.
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For ~ € T', define

0 (7) = B [zizie?1(q: <7)], Q2 (7) = B [zizjefl(q > )],

Q1 (v) =E[zix{1(g; < 7)] 2 (7) = E [Z X; 1(qz > 7)), B
) =@ ) e k) [Q2< Y M)

Q=B [zz}e?],Q = Ez;x ],VZ[Q’ Q]

Si(y) is a mean-zero Gaussian process with covariance kernel E [S1 (1) S1 (72)'] = Q1 (v Ava), S =

lim Sy (), and S () =S — S1 (7). S(v) is a mean zero Gaussian process with covariance kernel
y—00

H(’h”YQ) =K [(Zil(%‘ < ’71) - @1 (’71) VQlﬂilzi) (Zil(Qi < ’Yz) Q1 (72) VQ Q- ) ﬂ :
Given the threshold point v, the 2SLS estimators for 5, and g, are
1 A VPN —
") (@ (lzzwzg) Hlzy),
. 1
Q> (7)) (02 (v (222, 255) " L2L Y ),

B = (@i (lzzvzgw)
By (1) = (@2 () (224,227)"

1

where Q1 =n! Z z;x;1(¢; < ) and Q2 =n! Z z;x;1(¢; > 7). The residual from this
equation is

G () = v —xBy () g <7) = XiBy () 1gi > 7)-
The GMM estimators for 5, and 3, are
- - -1
L) =(Q T Mam) (

L) O () b2y )
()= (@)% M:M) (

B
E 2 (1) 05t () 222,Y),
where the weight matrices

() =250 225 () Uai <), Q) = L350 2215 (9) Las > ).

The estimated covariance matrices for the GMM estimators are

~

= (@S O hE = (0% Mam)
When Hj holds, § = 0, and then the 2SLS estimator for (3 is
B=(Q(22'2)" 1@) (@' (kz2)" Lzy).

-~ n
where Q = n~! Z . z;x}. Note here that the underlying assumption in this specification testing context
i=
is E[e|z] = 0, so that the 2SLS estimator can be applied. Correspondingly, the GMM estimator for 3 is

3= (@0Q)  (eatizy),

and the residual is
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where the weight matrix is
O_ 1y /=2
= " Z¢=1 2iZ;g;

with €; = y; — xéB The estimated covariance matrix for the GMM estimator is
N e -1
V= (o) .

Wald-type Tests
Define

~ ~ —1/2 —~ ~
Wa) = (M) + %) va(Bi()=B()),v €T,
The Wald-type test statistic is a functional of W, (-). Two test statistics are the most popular. The first is
the Kolmogorov-Smirnov sup-type statistic
Ky = SUPyer [We (I

and the second is the Cramér—von Mises average-type statistic

C¥ = [ Wa(M]w(y)dy,

where w(y) in Cy is a known positive weight function with [ w(y)dy = 1. For example, w(r) = 1/ |T| with
IT'| being the length of I'. But if we have some information on the locations where threshold effects are most
likely to occur, we can impose larger weights on the neighborhoods of such locations. The choice of the norm
I]| is also an issue. The Euclidean norm ||-||, is obviously natural, e.g., CH use (the square of) this norm.
Yu (2013b) suggests using the ¢; norm in testing quantile threshold effects, and Bai (1996) suggests using
the /o, norm in structural change tests.

The following theorem states the asymptotic distribution of a general continuous functional g(-) of W, ()
under the local alternative §,, = n~'/2c. The corresponding test statistic is denoted as g.

Theorem 10 If§, =n""?c, E [||a:||4] < 00, El¢*] < o0, El[e?] and E [||z||4} < 00, then

d
9 — 90 = g(W°),
where

Wely) = (Vi (7) + Va (7)) ? [Vl MM UM QL (Y AY) =V (1) Q2(7) Q0 (7) ' Q2 (yV 70)} c
+ Vi (7) + Va(y)™? [Vl M Q1 (N U () S ()= Va(r)Q2(7) R ()" S (v)] :

Proof. Under the local alternative §,, = n=1/2¢, Y = Xy (B46n) + X5, f+e=XB+ X<y, 0n +¢, 50
that

~ _ -1 _
Bi(y) = (XISWZSW (ZlngS'v) IZ/S'YXS'Y) (X%VZS’Y (ZISVZSV) IZ/S’YY)

I,
= B""OP(I)E Zi:l 2; [x;0n1 (¢ <79 A7) +eil (g < )]
= [+ 0p(1) uniformly in y € T.
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Similarly, Bz () is uniformly consistent for 8. As a result,

S0 = wi—xiB () g <) —xiBy (1) Ug > )
= XB+X0n1(a: < 70) + & — X (B+0p(1))
= ¢g; + 0, (||x:]]) uniformly in~y €T,

so that
Dy = *Zzz & (1) g <)

= —Zzz (e; + op HXvH)) g <7) 5 (v)

uniformly in v € T by a standard argument. Similarly, Q5 (7) = Qs () uniformly in v € T'. Now,

- 1
Z/S’Y (XS’YO 6” + E) ’

V(B )= 8) = @0y B o) Ge] @ EeT o

where Q1 (7) -~ Q1 (7), \}Z’<7X<%5 25 Q1 (7 Ayp) ¢ uniformly in y € T, and Z’<A/€ ~ S1(7). Hence

Vi (Br (1) = 8) ~ i (1) Q1 (3) 2 () (@1 (7 Avg) e+ 81 ().

Similarly,
Vit (Ba () = B) = Va (1) Q2 (1) Q2 (1) [Q2 (v 70) e+ 82 ()]

From the arguments above and by the CMT, V; (v) =2 Vi (7) and Va (7) -2 V3 (y) uniformly in ~ € T.
Finally, W, () ~ W¢(~) as specified in the theorem, where the second part of W¢(y) is the process in
Theorem 4 of CH. m

Score-type Tests

The score-type tests are based on

n ’ -1/2
) = [n_l Z (Zil(Qi <9 -0:1(7) ‘7@5_1%) (Zil(%‘ <) -Q1() ‘7@5_1%’) 312]
i=1

Q)

n
23 (20 <9) = Qi () V@A 7| 5y € T
i=1

Note here that although Q; ( YVQQ1n=1/2 Yo ziei = 0p(1), 2;1(g; < ) is recentered by Q1 (1) VRO
This is because the effect of 6 will not disappear asymptotically so the asymptotic distribution of n=1/2 Yo zil(g <
~)&; differs from n=2/2 3" 2,1(g; < 7)e; under Hy. Recentering is to offset the effect of 3. Since only /3 is
used in the construction of T,, (+), this type of tests is constructed under Hy and only one GMM estimator
needs to be constructed. This significantly lightens the computation burden. Given T,,(-), we can similarly
construct the Kolmogorov-Smirnov sup-type statistic K and the Cramér-von Mises average-type statistic
Cs.

The following theorem states the asymptotic distribution of a general continuous functional g(-) of T,,(-)

under the local alternative d,, = n~/2¢. The corresponding test statistic is denoted as gy
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Theorem 11 If§, =n"/?c, B [||x||4] <00, El¢'] < o0, E[e?] and E [||z||4] < 00, then

S

d .
gn — go = 9(T°),

where

T(v) = H(y,7) 2 {S() + [Q1 (Y A vp) — Q1 (7) VQ'Q' Q1 (70)] ¢} -

Proof. As in the last theorem, we can show /ﬁ\ 2,8, Q-2 Q, and V -2 V under the local alternative.

2N 2 1(% < V)&
=n 2N 2l (g < ) (y — x;B)
=n"12Y0 (qz <) (yi —xiB) —n~ 300 zixi1 g < v)vn (B - ﬁ)
=0 V2 21 <) (010 < %) + i) — Qu (1) v (B 8).

where n 1/22 z;1(q; < v)x0,1(q; < v¢) £, Q1 (Y Avo) ¢ Ql( ) P, Q1 (v) uniformly in v € T, and
n=1/? Zz 1 le(% < 5)e; ~» S1 (7). Next,

23 O () VA
= Q1 (v) (Q/Q—lQ) O'Q1n~1/2 2;1 z; (—x;(B —B) + x;0,1(q: <) + €i>
= QA (B-8)+ Q) TQ (Y] mxil(a <)) e
+Q\1 (’}/) ‘7@1571 (n71/2 Zj:l Zié‘i) y

where the second term in the last equality converges in probability to Q1 (7) VQ'Q71Q1 (7,) ¢ uniformly in
n
v €T, and n~1/2 Z'—1 zie; - N (0,9). In summary,

= p /2 Z [Zil(Qi <) - Qi (") ?Qlﬁ_lzl} &

+[Q1 (v Av) = Q1 (M VQ'QQ1 (70)] ¢ + 0,(1)
v S+ [Q1(v A ) — Q1 () VQ'ATIQ1 (v0)] ¢,

n o~ o~~~ o~~~ !/
and it is not hard to show n~* Z_il (zil(qi <9)-Q1(v) VQ’Q_lzi) (zil(qi <v)—-Q1(v) VQ’Q_lzi) GH
H(~,v) uniformly in vy € T, so the results of the theorem follow.

H(71,79) = B [ (2:1(q < 71) = Q1 (1) VQ'Q'2:) (2il(a: < 72) — Q1 (1) VQ'Q'2:) ¢? .
To understand S(7y) in T°(vy), consider a simple case where x = (1,2’)’, ¢ follows a uniform distribution
on [0,1] and is independent of (z’,2’,¢)". In this case,

H(vy,72) = (71 Ay2) @ — 7172QV Q"
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If d, = d, i.e., the model is just-identified, then

H(v1,72) =B [(Zil(qi <) = Q1 (71) Q7 '2) (2i1(gi < 72) — Q1 (72) Q‘lzz')/é?]
= (11 AY2) = Q1() Q71 (72) = U (1) Q71Q1 (72)" + Q1 (1) @712Q Q1 (1)

and we can let, for v € T,

~

n , —1/2
To(v) = [nl > (Zil(%' <) -Qi(v) @*1z¢> (Zil(%‘ <7) - Q1 (v) @7131') 3?]
i=1 " (36)

~

n 23 zl(e <) - () QB e

i=1
Combining these two cases, H(7yq,7,) reduces to (y; Ayy —7172) 2, where d, = d. In other words,
Q~1/25(y) is a standard d-dimensional Brownian Bridge. Now, the local power is generated by [Q1 (Y A 7o) —

Q1 (V) VQ'27Q1 (vo)]e = (Y Avg — 7o) Qc. Of course, the construction of T}, () can be greatly simplified
in this simple case, e.g., let

Ty () = Q71212 Y [l(a: <) — vzl &,

which converges to the standard d-dimensional Brownian Bridge. In linear regression, we need only replace
z; in all formula of by x;.

Simulating Critical Values

The asymptotic distributions in the above two theorems are nonpivotal, but the simulation method in Hansen
(1996) can be extended to the present case. More specifically, let {&;}!"_, be i.i.d. N(0,1) random variables,
and set

~k ~
2

Wi = (G + %) VA (B ) -B).ver,

and, for y € T,
) 712
Ty (v) = [n_l ) (Zil(Qi <) -Q:1(7) V@'§_1Zi> (Zil(Qi <y)-Q:1(7) ‘7@@_1%) g?]
- ] (37)
/2 Z {Zil(Qi <) -Q1(7) ‘7@/@71%} g7 €T,
i—1

where BI (v) and E; (7) are similarly defined as 31 () and BQ (v) with the only difference being that y; is
replaced by g; (v) &;; more specifically,

B = (@9t (e (v))i1 (@1 (7)'551(7)%§zi1(%§7)& (7)62‘>7
e = (@& &) (@050 S 1w 5.

Our test rejects Hy if g% (g3) is greater than the (1 — a)th conditional quantile of g(W} (7)) (9(Tk(7))).
Equivalently, the p-value transformation can be employed. Take the score test as an example. Define
py = 1—F(g:), and p, = 1 — Fy(g3), where F} is the conditional distribution of g(T(vy)) given the
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original data, and Fy is the asymptotic distribution of g(7},(y)) under the null. Our test rejects Hy if
p < a. By stochastic equicontinuity of the T),(y) process, we can replace I' by finite grids with the distance
between adjacent grid points going to zero as n — oo. A natural choice of the grids for T" is the ¢;’s in T.
Also, the conditional distribution can be approximated by standard simulation techniques. More specifically,

the following procedure is used.

Step 1: generate {f;‘]}?: be i.i.d. N(0,1) random variables.

Step 2: set T7*(v,) as in , where {’yl}lel is a grid approximation of I'. Note here that the same {£};}
are used for all v;, [ =1,---, L.

Step 3: set gi* = ¢ (T,{*)

Step 4: repeat Step 1-3 J times to generate {g%*};.lzl.
Step 5: if p/* = J ! Z}]:l 1 (g{L* > g‘;;) < «, we reject Hy; otherwise, accept Hy.

n
i=1

It can be shown that p}, = p, +0,(1) under both the null and local alternative. Hence p}; L p.=1-F, (92)
under the local alternative, and pJ N , the uniform distribution on [0, 1], under the null. The proof is
similar to that of Yu (2013b, 2016) and so it is omitted here.
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