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Abstract

We propose three new methods of inference for the threshold point in endogenous threshold regression

and two speci�cation tests designed to assess the presence of endogeneity and threshold e¤ects without

necessarily relying on instrumentation of the covariates. The �rst inferential method is a parametric

two-stage least squares method and is suitable when instruments are available. The second and third

methods are based on smoothing the objective function of the integrated di¤erence kernel estimator

in di¤erent ways and these methods do not require instrumentation. All three methods are applicable

irrespective of endogeneity of the threshold variable. The two speci�cation tests are constructed using a

score-type principle. The threshold e¤ect test extends conventional parametric structural change tests to

the nonparametric case. A wild bootstrap procedure is suggested to deliver �nite sample critical values

for both tests. Simulations show good �nite sample performance of these procedures and the methods

provide �exibility in testing and inference for practitioners working with threshold models.
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1 Introduction

In recognition of potential shifts in economic relationships, threshold models have become increasingly pop-

ular in recent econometric practice. Hansen (2011) provides an overview of the methods and their various

applications in economics and �nance. One typical application of the threshold model in time series is to

illustrate asymmetric e¤ects of shocks over the business cycle (e.g., Potter, 1995). Threshold models are

also useful in cross section applications. For example, Hansen (2000) applied a threshold model to show

that depending on the starting point, rich countries and poor countries have di¤erent growth patterns. All

this literature assumes exogenous regressors and an exogenous threshold variable. But in practical work

there is often uncertainty about exogeneity and threshold model applications have commonly encountered

endogeneity issues. For example, the empirical growth models used in Papageorgiou (2002) and Tan (2010)

both su¤er from endogenous regressor problems, as argued in Frankel and Romer (1999) and Acemoglu et

al. (2001).

The standard model formulation for endogenous threshold regression is

y = x0�11 (q � 
) + x0�21 (q > 
) + " =: x0� + x0�1 (q � 
) + "; (1)

with E["jx] 6= 0; where x = (1; x0; q)0 2 Rd+1 =: Rd, and where d and d are the dimensions of the nonconstant
covariates (x0; q)0 and all covariates including the constant. The parameter of interest is � =

�
�01; �

0
2; 

�0
or

equivalently, � :=
�
�0; �0; 


�0
with � = �2, � = �1 � �2 and 
 2 �. This setup is similar to endogenous

linear regression except that the regression coe¢ cients depend on whether the threshold variable q crosses

the threshold point 
.

The literature on estimation of this model includes the following three main contributions. First, Caner

and Hansen (2004) (CH hereafter) use a two-stage least squares (2SLS) method to estimate 
 in the small-

threshold-e¤ect framework of Hansen (2000), but assuming q is exogenous so that E["jx] = E["jx] holds.
Second, working in Hansen�s (2000) framework, Kourtellos, Stengos and Tan (2016) (KST hereafter) use a

control function approach to deal with the case where q is also endogenous.1 Their setup is parametric (see

Kourtellos et al. (2017) for a semiparametric extension) and the asymptotic theory is �awed. Speci�cally,

Yu, Liao and Phillips (2018) (YLP hereafter) show that the structural threshold regression (STR) estimator

of the threshold point in KST is not consistent unless the endogeneity level of the threshold variable is

low compared to the threshold e¤ect. Third, Yu and Phillips (2018) (YP hereafter) use an integrated

di¤erence kernel estimator (IDKE) to estimate 
 in the �xed-threshold-e¤ect framework of Chan (1993).

Their estimator can be applied irrespective of whether q is endogenous or whether instruments are available

(as required in the previous two methods). Even when there are no instruments available and the model

reduces to a nonparametric threshold regression, their estimator is still n-consistent, just as in the parametric

setup.2 The endogeneity problem is also considered in the related structural change literature, where the

threshold variable is a simple time index and is always exogenous; see YP for a detailed literature review.

In spite of the theoretical developments on the estimation of 
 in endogenous threshold regression, infer-

1 If q is exogenous, then KST�s estimator is asymptotically equivalent to CH�s estimator.
2There are two other estimators of 
 in nonparametric threshold regression with di¤erent motivations and objective functions

from the IDKE. The �rst estimator is the semiparametric M-estimator of Henderson et al. (2017). That estimator can be treated
as an extension of the partial linear estimator of Porter (2003) (see also Yu (2016)) in regression discontinuity designs to the
case with unknown discontinuity point and extra covariates (beyond q), but this estimator can be applied only to the case
with constant threshold e¤ects; readers are referred to the supplementary materials of YP to see why the authors avoid using
a generalized version of this estimator. The second estimator is the least squares estimator of Chiou et al. (2018). Chiou et al.
(2018) can be treated as a nonparametric parallel of Bai and Perron (1998); for example, they allow for multiple regimes, use
sequential tests to determine the number of regimes, and q =2 x (because q in structural change models is the time index which
is usually not a covariate in x); again, readers are referred to the supplementary materials of YP to see why the authors avoid
using this estimator.
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ence concerning the threshold parameter 
 still presents practical di¢ culties especially when q is endogenous.

First, the CH method should be applied only if q is exogenous. For as shown in Yu (2013a), the CH esti-

mator is generally inconsistent when q is endogenous. Second, as mentioned above, the KST approach is

not generically applicable. Third, the asymptotic distribution of the IDKE in YP is too complicated to be

readily applied in empirical work. This paper seeks to alleviate these practical di¢ culties by proposing three

new methods of con�dence interval (CI) construction for 
.3 All three methods can be applied regardless

of whether q is endogenous. To our knowledge, these methods are the only valid and applicable inferential

tools that are robust to endogeneity of q in the sense that the procedures need no modi�cation when q is

endogenous. The �rst method is a parametric two stage least squares (2SLS) method and requires instru-

ments, while the second and third methods are based on smoothing the objective function of the IDKE

in di¤erent ways so that instruments are unnecessary. In discussing the �rst method of inference, we also

discuss the identi�cation issue of 
 using moment conditions. Of the two remaining methods, the second

method assumes �xed threshold e¤ects and uses the data around the threshold point marginally, while the

third method assumes shrinking threshold e¤ects and makes full use of data around the threshold point.

So the second and third methods are similar in spirit to the smoothed maximum score (SMS) estimator

of Horowitz (1992). On the other hand, the two methods di¤er from the SMS estimator in the sense that

they have slower convergence rates than the IDKE in YP while the SMS estimator improves the convergence

rate over the original maximum score estimator of Manski (1975, 1985). This feature of the methods is in

some sense similar to the smoothed least squares estimator (SLSE) of Seo and Linton (2007) which also has

a slower convergence rate than the usual least squares estimator (LSE) in, e.g., Yu and Fan (2019). Like

the original IDKE approach, both of these IDKE-smoothing methods are nonparametric and require kernel

and bandwidth selection. Practitioners can select an approach to inference from among these three methods

based on their suitability to the data and on data availability. For example, if instruments are available,

then the �rst method can be used; otherwise, the second and third methods may be preferable.

This paper also proposes two speci�cation tests. The �rst tests for the existence of endogeneity, and the

second tests for the presence of threshold e¤ects with and without instruments. Both tests are score-type

tests in the sense that they are constructed under the null, and their asymptotic properties are therefore easy

to develop. More importantly, these tests of structural shifts are easier to implement in practice than the

popular Wald test especially when instruments are unavailable. Because the Wald and score tests of structural

shifts when instruments are available are standard extensions of existing tests and are well understood in the

literature, these tests are relegated to an online supplement and the main text of the paper concentrates on

the test without instruments. Both speci�cation tests discussed in the main text take a nonparametric form

and have an asymptotic normal (null) distribution. We suggest a wild bootstrap procedure to obtain critical

values for these tests. Practitioners are encouraged to give greater attention to the inference methods and

speci�cation tests that are developed without instrumentation because good instruments are often hard to

�nd and justify in practical work.

The rest of this paper is organized as follows. Section 2 provides an overview of the three inference

methods and the two speci�cation tests. Sections 3 to 5 analyze the three inference methods in turn and

derive the corresponding asymptotic theory for constructing CIs. Section 6 presents the limit theory of the

two speci�cation tests and shows how to bootstrap the critical values. Section 7 includes some simulation

results and Section 8 concludes.4 Proofs of theorems with supporting propositions and lemmas are given

in Supplements A, B and C. Additional discussion on parametric tests for the presence of threshold e¤ects

3We will not discuss inference on regular parameters such as � and � because these cases fall within the standard literature;
see, e.g., CH, YP and YLP. The �rst inference method in this paper also covers � and �.

4The dissertation of Qin Liao also includes a serious empirical application using the techniques in this paper, but to restrain
the length of this paper, we decide to discuss the application in a separate paper.
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when instruments are available is given in Supplement D. These supplements are collected together for online

access in Yu et al. (2019).

A word on notation. The three inference methods in the paper are labeled Methods I, II and III. The

symbol ` is used to indicate the two regimes in (1) or the two speci�cation tests, and is not always written

explicitly as �̀ = 1; 20. For matrices, A > 0 means that A is positive de�nite, span (A) denotes the column

space of A; and Im is the m�m identity matrix. For a random sequence Zn, plimZn means the probability

limit of Zn as the sample size n ! 1: For any random vector x, x�
 := x1 (q � 
) and x>
 is similarly

de�ned. For any two random vectors x and y, x ? y means x and y are independent. A parameter with a
subscript 0 is the true value of the parameter.

2 Overview of Inferential Methods and Speci�cation Testing

This section brie�y overviews the three inferential methods and the two speci�cation tests, introduces nota-

tion useful in the subsequent development, and details assumptions employed in the asymptotic theory.

2.1 Methods of Inference for the Threshold Point

If we write the model (1) as y = G (x; q; �) + ", with E ["jx; q] 6= 0, where G (x; q; �) = x0� + x0�1 (q � 
) is

a nonlinear function of (x; q), then estimation of 
 can be treated as in a nonlinear regression model with

endogeneity. As argued in Section 2.1.6 of Blundell and Powell (2003), the �tted-value method of 2SLS relies

heavily on linearity of the regression function, a feature that can explain why the 2SLS estimators in Yu

(2013a) are not consistent. To restore consistency of 2SLS, we need to maintain the linear structure of the

model. In other words, instead of projecting (x; q) on instruments z, we �rst project (x;x�
) for a �xed 
 on

z to get the predictors bx and bx�
 ; then we can �nd b�(
) and b�(
) by regressing y on bx and bx�
 ; �nally, b
 is
obtained by minimizing

Pn
i=1(yi� bx0ib�(
)� bx0�
;ib�(
))2, from which we obtain b� = b�(b
) and b� = b� (b
). It is

easy to see that this procedure is equivalent to the instrumental variable (IV) extremum estimation problem�b�;b�; b
� = arg min
�;�;


(Y �X� �X�
�)
0PZ(Y �X� �X�
�); (2)

where Y , X, X�
 and Z are matrices stacking yi, x0i, x
0
�
;i and z respectively, and PZ is the projection matrix

onto the instrument space span (Z). This method, labeled as Method I, treats 
 as a regular parameter and

is just nonlinear 2SLS, as in Amemiya (1974). We will also show that this 2SLS estimator may be viewed

as a version of the GMM estimator considered in Hall, Han and Boldea (2012) (HHB hereafter; see also

Andrews (1993)) but one that turns out to have more desirable asymptotic properties, including consistency,

in the endogenous threshold regression case.

To better understand the estimator b
, we consider the case where x = 1, �0 = 0 and �0 = 1 are known, and
z = 1. For this simple case, y = 1 (q � 
0)+", and the moment condition is E[z"] = E["] = E[y]�Fq(
0) = 0,
where Fq(�) is the cdf of q. In other words, 
0 = F�1q (E[y]) is the E[y]�th quantile of q, and b
 = bF�1q (y).

Following this intuition, we will show that: (i) b
 is pn-consistent, asymptotically normal, and the asymptotic
variance involves the density of q at 
0 (i.e., fq(
0)) as in quantile regression; (ii) di¤erent from the usual

threshold regression estimators where b
 is asymptotically independent of �b�;b��, this new estimator b
 is
correlated with

�b�;b�� asymptotically. Given these two results, a valid CI for 
 can be constructed jointly
with (�; �) by means of the bootstrap, just as in quantile regression to avoid nonparametric estimation of

the density fq(
0) in the asymptotic distribution.

Di¤ering from CH estimation, this 2SLS estimator can be applied irrespective of whether q is endogenous.
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Yu (2013a) shows that when q is exogenous, the CH estimator is inconsistent if the �rst stage predictor is a

projection rather than a conditional mean. By contrast our 2SLS estimator requires only a linear projection

in the �rst stage, so it is more robust in this respect.

Moving away from instrument-based estimation, we next introduce instrument-free estimators in Methods

II and III by extending the IDKE of YP in di¤erent directions. Without instruments, the model reduces to

a nonparametric threshold regression that can be written in the form

y = m(x; q) + u = m�(x; q)1 (q � 
) +m+(x; q)1 (q > 
) + u

= g(x; q) + � (x; q) 1 (q � 
) + u;

where u = " � E["jx; q], m�(x; q) = x
0�1 + E ["jx; q], m+(x; q) = x

0�2 + E ["jx; q], g(x; q) = m+(x; q) when

q > 
 and is the smooth extension of m+(x; q) when q � 
, and �(x; q) = m�(x; q)�m+(x; q). This setup

allows E["jx; q] to be kinked or discontinuous at 
. When E["jx; q] is smooth, then g(x; q) = x0� + E["jx; q]
and �(x; q) = x0�; otherwise, g(x; q) 6= x0� + E["jx; q] for q � 
 and �(x; q) 6= x0�. When E["jx; q] is
continuous �(x; 
) = (1; x0; 
) �.

To construct the IDKE of 
, we start by de�ning a generalized kernel function, following Müller (1991).

De�nition: kh(�; �) is called a univariate generalized kernel function of order p if kh(u; t) = 0 when u > t

or u < t� 1 and for all t 2 [0; 1],

Z t

t�1
ujkh(u; t)du =

(
1;

0;

if j = 0;

if 1 � j � p� 1:

A popular example of the generalized kernel function is obtained as follows. De�ne the space

Mp ([a; b]) =

(
g 2 Lip ([a; b]) ;

Z b

a

xjg(x)dx =

(
1;

0;

if j = 0;

if 1 � j � p� 1

)
;

where Lip([a; b]) denotes the space of Lipschitz continuous functions on [a; b]. De�ne k+(�; �) and k�(�; �) as
follows:

(i) The support of k�(x; r) is [�1; r]� [0; 1] and the support of k+(x; r) is [�r; 1]� [0; 1].

(ii) k�(�; r) 2Mp ([�1; r]) and k+(�; r) 2Mp ([�r; 1]) :

(iii) k+(x; r) = k�(�x; r).

(iv) k�(�1; r) = k+(1; r) = 0.

Condition (iv) implies that k�(�; r) is Lipschitz on (�1; r] and k+(�; r) is Lipschitz on [�r;1). This as-
sumption is important in deriving the asymptotic distribution of the IDKE of 
: Readers are referred to

Appendix A of Porter and Yu (2015) for related discussion in the DKE case.

To simplify the construction of kh(u; t), the following constraints are imposed on the support of x and

on the parameter space.

Assumption S: (y; x0; q)0 2 R�X �Q � Rd, X = [0; 1]d�1, Q = [q; q], and 
 2 � = [
; 
] � Q, � 2 B � Rd,
� 2 � � Rd, where q can be �1 and q can be 1, and �, B and � are compact.

We do not restrict �0 to be �xed or to shrink to zero in all cases. Rather, �0 is taken as �xed in Method II and

shrinks to zero in Method III. We assume x is continuously distributed, but note that continuous and discrete
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components may be accommodated, at least in a conceptually straightforward manner but at the expense of

additional notational complexity, by using the continuous covariate estimator within samples homogeneous

in the discrete covariates. Requiring the support of x to be [0; 1]d�1 is not restrictive as this support can be

achieved by use of a suitable monotone transformation such as the empirical percentile transformation. The

compactness assumption on X simpli�es the proof and may be relaxed by imposing restrictions on the tail

of the distribution of x.

De�ne

k(�) = k+(�; 1) = k�(�; 1) 2Mp ([�1; 1]) , kh(u) = k(u=h)=h;

k+(�) = k+(�; 0) 2Mp ([0; 1]) , k
+
h (u) = k+(u=h)=h;

k�(�) = k�(�; 0) 2Mp ([�1; 0]) , k�h (u) = k�(u=h)=h;

and

kh(u; t) =

8><>:
1
hk
�
u
h

�
;

1
hk+

�
u
h ;

t
h

�
;

1
hk�

�
u
h ;

1�t
h

�
;

if h � t � 1� h;
if 0 � t � h;

if 1� h � t � 1:
: (3)

Then kh(u; t) is a generalized kernel function of order p. We may construct a corresponding multivariate

generalized kernel function of order p by taking the product of univariate generalized kernel functions of

order p. We only require kh(u; t) to be a �rst order kernel function in Method II but may require it to be a

higher order kernel function in Method III.5 In particular, we use the following two conditions. For Method

II we use:

Assumption K: kh(u; t) takes the form of (3) with p = 1, k+(0) = k�(0) = 0, and k0+(0) > 0, k
0
�(0) < 0.

For Method III we use:

Assumption K0: kh(u; t) takes the form of (3) with p = s, and k+(0) = k�(0) > 0, where s is the

smoothness index of g(x; q) and will be de�ned in Assumption G 0 below.

Assumption K mimics Assumptions B2 and B3 of Delgado and Hidalgo (2000) (DH hereafter) and Assump-

tion K0 is Assumption K in YP with the additional requirement that p = s. Higher order kernels are required

in Assumption K0 only to achieve the optimal convergence rate of 
: In practice, p = 1 is su¢ cient.

Given kh(u; t), the IDKE of 
 is constructed as the extremum estimator which satis�es

b
 = argmax



1

n

nX
i=1

24 1

n� 1

nX
j=1;j 6=i

yjK

�
h;ij �

1

n� 1

nX
j=1;j 6=i

yjK

+
h;ij

352 (4)

= : argmax



1

n

nX
i=1

b�2i (
) =: argmax



bQn (
) ;
where

K
�
h;ij =

Qd�1
l=1 kh(xlj � xli; xli) � k

�
h (qj � 
) =: Kx

h;ijk
�
h (qj � 
) ;

K
+
h;ij =

Qd�1
l=1 kh(xlj � xli; xli) � k

+
h (qj � 
) =: Kx

h;ijk
+
h (qj � 
) ;b�i (
) = 1

n�1
Pn

j=1;j 6=i yjK

�
h;ij � 1

n�1
Pn

j=1;j 6=i yjK

+
h;ij :

(5)

5Note here that the usual symmetric kernel is a second order kernel, but the boundary kernel is only a �rst order kernel
because

R
ukh(u; t) 6= 0,
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For notational convenience, we here use the same bandwidth for each dimension of (x0; q)0, although there

may be some �nite sample improvement from using di¤erent bandwidths in each dimension. As suggested

in Yu (2012, 2015b), we need only check the mid-points of the contiguous qi�s in the optimization process

of (4).6 In other words, the argmax operator is a mid-point operator. The summation in the parenthesis

of (4) excludes j = i, which is a standard strategy in converting a V-statistic to a U-statistic. Also, the

normalization factor
Pn

j=1;j 6=iK

�
h;ij does not appear in the construction of b
, thereby avoiding random

denominator issues in conditional mean estimation and simplifying the derivation of the limit distribution ofb
, a technique that dates back at least to Powell et al. (1989). This form of b
 has some practical advantages
especially when d is large. Since the conditional mean is estimated at the boundary point q = 
, the local

linear smoother (LLS) or local polynomial estimator (LPE) may be considered to ameliorate bias. However,

when d is large, there are not many data points in a h neighborhood of (x0i; 
)
0. As a result, not only does

the LLS lose degrees of freedom (by estimating more parameters) but its denominator matrix can be close

to singular, which disrupts �nite sample performance. Further, di¤ering from regular parameter estimation

(such as conditional mean estimation), use of the LLS in this context does not a¤ect the �rst-order asymptotic

distribution of b
.
CI construction based on the limit distribution of b
 under Assumption K0 and �xed threshold e¤ects

(i.e., in the framework of YP) is challenging because the asymptotics involve a compound Poisson process,

making simulation awkward. Methods II and III use di¤erent smoothing schemes to achieve more convenient

asymptotic distributions. Method II assumes �xed threshold e¤ects but uses data in the neighborhood of


0 only marginally. The resulting asymptotic theory is normal and the CI can be constructed by inverting

either the t or likelihood ratio (LR) statistic. Method III fully utilizes data in the neighborhood of 
0 but

assumes shrinking threshold e¤ects. The limit distribution then involves a two-sided Brownian motion. As

suggested in Hansen (2000) we can invert the LR statistic (rather than the t-statistic) to improve �nite-

sample performance. As expected, due to insu¢ cient usage of data information in the neighborhood of 
0,

the convergence rates of the IDKE in both these methods are slower than the O (n) rate in YP. In Method

II we also require k0�(0) 6= 0; or else the convergence rate of the IDKE is even slower.
We next provide some intuition that helps to justify the extremum estimator b
. For this purpose we

impose the following Assumption F on the distribution of (x0; q)0 in Method II and Assumptions G and G0

on g(x; q) in Method III.

Assumption F: The density f(x; q) of (x0; q)0 is second order continuously di¤erentiable and satis�es

0 < f � f(x; q) � f <1 for (x0; q)0 2 X ���, where �� :=
�

 � �; 
 + �

�
for some � > 0 and and (f; f) are

some �xed quantities.

Assumption G: g(x; q) is second order continuously di¤erentiable on X � ��.

Assumption G0: g(x; q) is s�th order continuously di¤erentiable on X � �� with s � d.

Assumption F implies that fq(
) is continuous, and 0 < f
q
� fq(
) � fq <1 for 
 2 �� and �xed

�
f
q
; fq

�
,

and the conditional density fxjq(xjq) is bounded below and above for (x0; q)0 2 X � ��; see Yu and Zhao
(2013) for relaxation of these conditions. The �rst part of Assumption F implies that there are no discrete

covariates in x. As mentioned earlier in the remarks following Assumption S, this assumption is made for

simplicity, just as in Robinson (1988), and is not critical to the methodology or the limit theory. The second

6Although in the �xed-threshold-e¤ect framework with k�(0) > 0 the asymptotic distribution of b
 depends on whether the
left endpoint or the middle point of the maximizing interval is taken as the maximizer, the asymptotic distributions of the two
IDKEs in the present paper are both invariant to such choices of b
:
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part of Assumption F implies that 
0 is not on the boundary of Q. Under these two assumptions, we can
expect the objective function bQn (
) to converge to
E
h
fE[yjx; q = 
�]f(x; 
)� E[yjx; q = 
+]f(x; 
)g2

i
=

Z
(E[yjx; q = 
�]� E[yjx; q = 
+])

2
f(x; 
)2f(x)dx:

Since f(x) and f(x; 
) are continuous in x and 
, there will be a jump in the limit only if 
 = 
0 which

provides identifying information. In view of these properties, the threshold point can then be identi�ed and

consistently estimated by maximizing bQn (
) under an additional requirement on the di¤erential
�(x; 
0) := E[yjx; q = 
0�]� E[yjx; q = 
0+]; (6)

which enables identi�cation of 
0.

Assumption I: �(x; 
0) 6= 0 for x in some set of positive Lebesgue measure in X .

In Method I, �(x; 
0) = (1; x0; 
0) �0, so we can replace �(x; 
0) by (1; x
0; 
0) �0 in Assumption I. For

comparison, we state the following Assumption I0.

Assumption I0: �0 6= 0, where 6= here means that at least one element is unequal.

Note that Assumption I is stronger than Assumption I0 when �(x; 
0) = (1; x
0; 
0) �0: For example,

�0 =

8<:
�
1;0;� 1


0

�0
;

(0;0; 1)0;

if 
0 6= 0;
if 
0 = 0;

is nonzero but does not satisfy Assumption I. Assumption I implies that P ((1; x0; 
0) �0 6= 0) > 0, which

excludes the continuous threshold regression (CTR) of Chan and Tsay (1998) (see also Hansen (2017)).

For comparison, we also review the DKE in DH here. De�ne the DKE

e
 = argmax



�
1

n

Xn

j=1
yjK


�
h;j �

1

n

Xn

j=1
yjK


+
h;j

�2
= : argmax



b�2o (
) =: argmax



eQn (
) ;

where

K
�
h;j =

Yd�1

l=1
kh(xlj � xol; xol) � k�h (qj � 
) , K


+
h;j =

Yd�1

l=1
kh(xlj � xol; xol) � k+h (qj � 
) ;

and xo is some �xed point in the interior of X .7 As explained in YP, selection of xo is di¢ cult from both

theoretical and practical perspectives. As distinct from the DKE, the IDKE procedure integrates the jump

information over all the xi, thereby removing the problem of choosing xo. Further, usage of all the data

ensures that the IDKE has greater identifying capability than the DKE in both Methods II and III.

7Strictly speaking, DH normalize the �rst term of b�o (
) by bf
�o := 1
n

Xn

j=1
K
�
h;j and the second term by bf
+o :=

1
n

Xn

j=1
K
+
h;j . However, their estimator is asymptotically equivalent to argmax


b�2o (
) =f(xo; 
o)2 and has the same asymptotic
distribution as e
.
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2.2 Overview of Two Speci�cation Tests

The �rst speci�cation test addresses potential endogeneity and the corresponding hypotheses H(1) are for-

mulated as follows

H
(1)
0 : E["jx; q] = 0;

H
(1)
1 : E["jx; q] 6= 0:

This exogeneity test can be conducted prior to model estimation. When instruments are available, the

Hausman test in Kapetanios (2010) can be applied. In the present paper we therefore consider only the case

without instruments and apply the techniques developed in Fan and Li (1996) and Zheng (1996) to test the

null H(1)
0 . In the second test, the hypotheses H(2) are

H
(2)
0 : �1 = �2 or � = 0;

H
(2)
1 : �1 6= �2 or � 6= 0:

If H(1)
0 is not rejected, i.e., there is no evidence of endogeneity, then H(2) involve a conventional paramet-

ric structural change test, such as that considered in Davies (1977, 1987), Andrews (1993), Andrews and

Ploberger (1994) and Hansen (1996), among others. If H(1)
0 is rejected, the ensuing situation is more com-

plex. When there are instruments, Wald-type test statistics such as the sup-statistic in Section 5 of Caner

and Hansen (2004) or score-type statistics such as those in Yu (2013b) can be used. Since the asymptotic

distributions of both these types of test statistics are not pivotal, the simulation method of Hansen (1996)

and De Jong (1996) can be applied to obtain critical values. Details concerning these tests are given in

Supplement D of the paper because techniques for these tests are nowadays standard.

When there are no instruments, the Wald-type statistic is hard to implement since its asymptotic dis-

tribution is hard to derive given that b� can only be estimated at a nonparametric rate �see Section 3.3 of
Porter and Yu (2015) for discussion.8 However, the score-type test of Porter and Yu (2015) can be extended

to this case with some technical complications. Importantly, the hypotheses H(2) relate to whether m(x; q)

is continuous, so H(2)
0 encompasses more data generating processes (DGPs) than the null hypothesis in the

usual structural change literature where m(x; q) has a simple parametric form. In other words, the usual

parametric tests have power against alternatives in which m(x; q) does not take the form x0� + x0�1 (q � 
)

(see, e.g., Section 5.4 of Andrews (1993))9 , but our test has only trivial asymptotic power in such continuous

m(x; q) cases. A simple example may clarify the point. Suppose m(x; q) = �+ �q; in contrast to the speci-

�cations employed for our tests, which are based on (1), or y = �+ �1 (q � 
) + ". It is easy to see that the

usual tests have power against m(x; q); which is very smooth in this case. In summary, the usual tests have

power against both misspeci�cation and certain types of structural change, whereas our test has non-trivial

power only against threshold structural change, which may be more relevant in practical work.10 But this

8Gao et al. (2008) discuss an average form of such a test in the time series context. But their test is not easy to extend to
the case with a nonparametric threshold boundary as in the present framework. See also Hidalgo (1995) for a nonparametric
conditional moment test for structural stability in a fully nonparametric environment, which focuses on global stability rather
than local stability as here.

9 In this framework and assuming m(x; q) = x0�(q), the structural change tests focus on whether �(q) = �. See, e.g., Chen
and Hong (2012), Kristensen (2012) and references therein for related tests in the time series context using nonparametric
techniques. Actually, we can test whether �(q) is continuous by extending the tests below, e.g., we can construct residualsbei in I(2)n by estimating �(q) using estimation techniques from the varying coe¢ cient model (VCM) literature - see Robinson
(1989, 1991), Cleveland et al. (1992) and Hastie and Tibshirani (1993) for early developments, and Fan and Zhang (2008) for
a summary of recent developments.
10 In the same way, there are also cases where the parametric test does not have power when there is a nonparametric threshold

e¤ect; see Example 1 of Hidalgo (1995).
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advantage does not come for free: the usual tests have power against n�1=2 local alternatives, while our test

needs a larger (than n�1=2) local alternative to generate non-trivial power. Understandably so, because our

test is essentially nonparametric whereas the usual tests are parametric.

In the following discussion of the two speci�cation tests, H0 indicates both H
(1)
0 and H

(2)
0 , and H1

indicates both H(1)
1 and H(2)

1 , 1�q = 1 (q 2 �), 1�i = 1 (qi 2 �), mi = m(xi; qi) = E[yijxi; qi], fi = f(xi; qi),

Kh;ij = Kx
h;ij � kh(qj � qi), and Lb;ij = Lxb;ij � lb(qj � qi) with lb(�) similarly de�ned as kh(�). Denote the class

of probability measures under H(`)
0 as H(`)

0 and under H(`)
1 as H(`)

1 . Both H
(`)
0 and H(`)

1 are characterized

by m(�), so we acknowledge the dependence of the distribution of y given (x0; q)0 upon m(x; q) by denoting
probabilities and respective expectations as Pm and Em. To unify notation, we de�ne ui = yi�E[yijxi; qi] =
yi �mi under both the null and alternative in these tests.

For the �rst test, we use the statistic

I(1)n =
nhd=2

n (n� 1)
X
i

X
j 6=i

Kh;ijbeibej ;
and, for the second, we use

I(2)n =
nhd=2

n (n� 1)
X
i

X
j 6=i

1�i 1
�
jKh;ijbeibej :

The exact forms of bei in these two tests are de�ned later. To motivate the statistics, let e = y�m(x), where

m(�) = arg infem(x;q)=x0�+x0�1(q�
)E
h
(y � em(x; q))2i

= arg infem(x;q)=x0�+x0�1(q�
)E
h
(m(x; q)� em(x; q))2i (7)

in the �rst test, and

m(�) = arg infem2Cs(B;X�Q)E
h
(y � em(x; q))2 1�q i

= arg infem2Cs(B;X�Q)E
h
(m(x; q)� em(x; q))2 1�q i ; (8)

in the second test, where Cs (B;X �Q) is the class of s times continuously di¤erentiable functions on X �Q
with all derivatives up to order s bounded by B. In other words, we use em(x; q) = x0� + x0�1 (q � 
) to

approximate m(x; q) in the �rst test and use em 2 Cs (B;X �Q) to approximate m(x; q) in the second test.
Note that in the �rst test the model need not have a threshold e¤ect. The reason is that the class of functions

fx0� + x0�1 (q � 
)g includes the linear function where � = 0, the CTR of Chan and Tsay (1998) where

� 6= 0 but �x = 0 and �� + �q
 = 0, and the usual threshold regression where �x 6= 0 or �� + �q
 6= 0; see
Yu (2017) for more discussion on misspeci�ed threshold regression. Here, � is partitioned according to the

partition of x = (1; x0; q)0 as
�
��; �

0
x; �

0
q

�0
.

Note further that e = u under H0, so e has the same meaning in both I
(1)
n and I(2)n under H0. Ob-

serve that E[eE[ejx; q]f(x; q)] = E
h
E [ejx; q]2 f(x; q)

i
� 0 in the �rst test and E

�
eE [ejx; q] f(x; q)1�q

�
=

E
h
E [ejx; q]2 f(x; q)1�q

i
� 0 in the second test where the equalities hold if and only if H0 holds. So

we can construct the statistic based on the moment E[eE[ejx; q]f(x; q)] in the �rst test and the moment
E[eE [ejx; q] f(x; q)1�q ] in the second test. Here, f(x; q) is added in to avoid the random denominator prob-

lem in kernel estimation, and 1�q appears in the second test because threshold e¤ects can occur only on

q 2 �.
To construct a feasible test statistic, we need sample analogues of e and E[ejx; q]f(x; q). For the �rst
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test, the sample counterpart of e is

bei = yi � byi = yi �
h
x0i
b� + x0ib�1 (qi � b
)i ; (9)

where
�b�0;b�0; b
�0 is the LSE. For the second test, let

bei = yi � byi = (mi � bmi) + (ui � bui) ; (10)

where byi = 1

n� 1
X

j 6=i
yjLb;ij

� bfi (11)

and bfi is the corresponding kernel estimator of fi given by
bfi = 1

n� 1
X

j 6=i
Lb;ij ;

and bmi and bui are de�ned in the same way as byi in (11) with yj replaced by mj and uj , respectively. Under

H0, bei is a good estimate of ui, while under H1, bei includes a bias term which generates power. Now,

E[ejx; q]f(x; q) at (x0i; qi)0 is estimated by 1
n�1

P
j 6=i bejKh;ij in the �rst test and by 1

n�1
P

j 6=i bejKh;ij1
�
j in

the second test. Hence, we may regard I(1)n and I(2)n as the sample analogues of E[eE[ejx; q]f(x; q)] and
E[eE[ejx; q]f(x; q)1�q ]. The statistics are constructed under the null, mimicking the idea of score tests. For
example, the construction of I(2)n does not involve H(2)

1 at all (see Figure 1 of Porter and Yu (2015) for an

intuitive illustration in a simple case without x), whereas the usual test statistics in the structural change

literature typically involve H(2)
1 in one way or another.

3 Inference Based on the 2SLS Estimator

In this section, we derive the asymptotic distribution of the 2SLS estimator of � and discuss some identi�a-

bility results for 
 when estimation is based on moment conditions. First, note that the 2SLS estimator of


 can be written in GMM form as b
 = argmin



bQn (
) ;
where bQn (
) = min

�;�

bQn (�) := min
�
bgn (�)0cWbgn (�) (12)

with � =
�
�0; �0

�0
, cW =

�
n�1Z 0Z

��1
and

bgn (�) = 1

n

nX
i=1

gi (�) =
1

n

nX
i=1

zi
�
yi � x0i� � x0�
;i�

�
:

To develop asymptotic properties of b� we make the following assumption. First, throughout our analysis we
use the notation �n for the true value of � when we allow � to shrink to zero, as in Hansen (2000), and we

use �0 to denote the true value of � when � is �xed to signify this di¤erence.

Assumption IV: E [z"] = 0, dim (z) = l � 2d+ 1, �n= k�nk ! c,

G =
�
E [zx0] ;E

h
zx0�
0

i
;E [zx0jq = 
0] cfq (
0)

�

10



is of full column rank, G
 = E
�
z
�
x0;x0�


��
=:
�
G1; G2;


�
is of full column rank for any 
 2 �, W :=

E [zz0] > 0, and 
 := E
�
zz0"2

�
> 0. Also, there does not exist a vector a 2 R2d such that G
a = G2;
0c for

any 
 6= 
0.

When � is �xed, the parameter c is just the normalized form of �: When k�nk ! 0, only the components

of c that correspond to the lowest shrink rate of �n are nonzero. Full column rankness of G excludes CTR

models where x0�njq = 
0 is always zero so that the third part of G is a zero matrix.11 But this assumption

is nonetheless weaker than full column rankness of E [zx0jq = 
0]. This is because if E [zx0jq = 
0] has full

column rank, then 1 and q cannot be elements of x simultaneously; otherwise, the �rst and the last columns

of E [zx0jq = 
0] would be collinear.

All other conditions in Assumption IV are standard except the last condition. This condition is required

for the identi�cation of 
0. Take the �xed-� case as an example where c can be taken as �0 and no normal-

ization on � is required. Note that if E [z"] = 0, then E [zy] = G
0�0. If there exists an a := (a
0
1; a

0
2)
0 such

that G
a = G2;
0�0 for some 
 6= 
0, then under this 
, we can still let � = (�0 + a1; a2) satisfy the moment

conditions, in which case the model is not identi�ed by the moment conditions. This condition requires that

the l-dimensional vector G2;
0�0 =2
S

 6=
0 span

�
G1; G2;


�
, where span

�
G1; G2;


�
is a 2d < l dimensional

space. There is an important case where this condition is violated. If q is independent of (z0;x0)0 as in the

structural change model where q is the time index, then G2;
0 = G1Fq (
0) and a =
�
Fq (
0) �

0
0;0

0�0 satisfy
G
a = G2;
0�0. In the TR context, if q is independent of the rest of the system, then q should be included in

z, and cannot be independent of (z0;x0)0. This condition also implies the usual assumption that z cannot be

independent of the endogenous variables (x0; q)0.12 If this were the case, then G2;
0 = E [z]E
h
x0�
0

i
would

span a one-dimensional space, which can obviously be spanned by G1 = E [z]E [x0] and G2;
 = E [z]E
�
x0�


�
.

Theorem 1 Under Assumptions F, I, IV and S, b� and especially b
 are consistent and have limit distribution
given by  p

nI2d 0

0
p
n k�nk

! b� � �0b
 � 
0
!

d�! N (0; V )

where V = (G0WG)�1G0W
WG(G0WG)�1.

Note that we need only Assumption I0 to show the consistency of b
: But to derive the asymptotic distribution
we need Assumption I. Otherwise, G need not be of full column rank.13 Also, as predicted in Section 2.1,

fq (
0) appears in V and b
 is not asymptotically independent of �b�;b��. cW can be any positive de�nite

matrix besides
�
n�1Z 0Z

��1
: We still use cW to denote such a general weight matrix and use W to denote

its limit.

To provide some intuition on the asymptotic variance of b
, consider the simple example in Section 2.1
again. In this example, G = fq (
0), 
 = V ar (") and W is irrelevant, so V = V ar (") =fq (
0)

2. In fact, b
 =bF�1q (y), so
p
n (b
 � 
0) = pn h bF�1q (y)� F�1q (y)�

� bF�1q (E [y])� F�1q (E [y])
�i
+
p
n
� bF�1q (E [y])� F�1q (E [y])

�
+

p
n
�
F�1q (y)� F�1q (E [y])

�
. The �rst term is, roughly speaking,

p
n (
Pn

i=1 ( i (y)�  i (E [y]))) with  i (�) =

11Note that zero x0�njq = 
0 does not imply E
h
zx0�
0

i
�n = 0 or E

h
zx0>
0

i
�n = 0.

12 In the nonlinear scenario, uncorrelatedness in the linear scenario should be strengthened to independence. Also, all elements
of (x0; q)0 should be endogenous; otherwise, z should include the exogenous elements of (x0; q)0 and cannot be independent of
(x0; q)0.
13 In Remark 2 of Seo and Shin (2016) where their FD-GMM estimator, which is similar to our estimator, is used to estimate

the dynamic panel threshold regression, they claim that the asymptotic distribution of b� is invariant to whether the model is
CTR. That statement is not correct as can be seen by noting that their G
 (
0) = 0 in CTR so that the asymptotic variance
matrix of b� is unde�ned. The zeroness of G
 (
0) is due to some redundancy in the parameter � when the model is CTR. If
we rewrite the CTR as y = x0� + (q � 
) �1 (q � 
) + ", then the corresponding G under the moment conditions E [z"] = 0 is�
E [zx0] ;E

�
z�
0 (q � 
0)

�
;
�
E [z (q � 
0) jq = 
0] fq (
0)� E

�
z�
0

��
�0

�
, which is of full column rank.
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��1(qi�F�1
q (�))

fq(
0)
. By a stochastic equicontinuity argument this term is op (1), and so the asymptotic distribu-

tion of
p
n (b
 � 
0) is the same as that of pn� bF�1q (E [y])� F�1q (E [y])

�
+
p
n
�
F�1q (y)� F�1q (E [y])

�
, where

the �rst term represents the randomness in bF�1q and the second term represents the randomness in y (recall

that b
 = bF�1q (y)). By the Bahadur representation,
p
n
� bF�1q (E [y])� F�1q (E [y])

�
t 1p

n

Pn
i=1

Fq(
0)�1(qi�
0)
fq(
0)

,

and by the Delta method,
p
n
�
F�1q (y)� F�1q (E [y])

�
t 1p

n

Pn
i=1

yi�E[y]
fq(
0)

= 1p
n

Pn
i=1

"i+1(qi�
0)�Fq(
0)
fq(
0)

.

Hence, by the continuous mapping theorem (CMT),
p
n (b
 � 
0) t 1p

n

Pn
i=1

�
Fq(
0)�1(qi�
0)

fq(
0)
+

"i+1(qi�
0)�Fq(
0)
fq(
0)

�
=

"i
fq(
0)

, and the asymptotic variance is V = V ar (") =fq (
0)
2. To consider the e¤ect of �n on b
, suppose y =

�n1 (q � 
0)+" with �n known. Then, by a similar argument, we can show
p
n (b
 � 
0) t 1p

n

Pn
i=1

"i
�nfq(
0)

,

so that the asymptotic variance of b
 is O � 1
n�2n

�
. When �n is smaller, the asymptotic variance of b
 is larger,

and when �n shrinks to zero the convergence rate of b
 is pn j�nj.
By choosing cW = b
�1 with b
 = n�1

Pn
i=1 ziz

0
ib"2i and b"i = yi � x0ib� � x0�
;ib�, we get the asymptotically

e¢ cient estimator of �0 and the following result holds.

Corollary 1 Under the same assumptions as in Theorem 1, if b� is estimated using bQn (�) with cW = b
�1,
then  p

nI2d 0

0
p
n k�nk

! b� � �0b
 � 
0
!

d�! N
�
0; (G0
�1G)�1

�
:

When the model is homoskedastic, i.e., E
�
"2jz

�
= �2, our 2SLS estimator is e¢ cient. For inference concerning


 we suggest use of bootstrap methods such as in Hall and Horowitz (1996), Brown and Newey (2002) or Lee

(2014) to avoid estimating E [zx0jq = 
0] and fq (
0) ; for instance by numerical derivatives, as in Section 7.3

of Newey and McFadden (1994), or by some kernel or series method.

3.1 Comparison with the GMM of HHB and the 2SLS of CH

In the structural change context, HHB show that the GMM estimator based on the following criterion is

generally inconsistent: e
 = argmin



eQn (
) ;
where eQn (
) = min

�1;�2

eQn (�) := min
�1;�2

emn (�)
0fW emn (�)

with emn (�) =
1

n

nX
i=1

mi (�) =
1

n

nX
i=1

 
m1i (�)

m2i (�)

!
:=

1

n

nX
i=1

zi

 
(yi � x0i�1) 1(qi � 
)

(yi � x0i�2) 1(qi > 
)

!
:

As commented by HHB, inconsistency of e
 stems from the fact that the minimand is a quadratic form in

the sample moment, thereby taking the form of a square of sums. This "square of sums" structure provides

an opportunity for the e¤ects of misspeci�cation associated with the selection of the wrong threshold point

to be an o¤setting balancing factor in the minimand, leading to inconsistency. In contrast, the objective

function of the 2SLS estimator in CH takes a "sum of squares" form, which generates a consistent estimator

of 
. Speci�cally, the objective function of the 2SLS of CH is

bSn (�) = 1

n

nX
i=1

�
yi � �01

�b�0zi� 1(qi � 
)� �02
�b�0zi� 1(qi > 
)

�2
; (13)
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where b�0zi delivers a �rst-stage prediction of xi.14 Given the comments by HHB, it may seem surprising

that our GMM estimator is consistent even if the minimand is also a square of sums. The key point, however,

is not the distinction between the "square of sums" and "sum of squares" criteria in this case, but rather

the fact that the threshold variable q in the structural change model is a time index which is independent

of the other components of the system (so that o¤setting is possible, resulting in inconsistency).

Before a formal discussion on these points, note �rst that our 2SLS estimator is a special GMM estimator

of HHB. Speci�cally, it is easy to check that when

fW =

 
Il

Il

!cW �
Il Il

�
; (14)

eQn (�) = bQn (�). This fW is only positive semide�nite, not positive de�nite. In other words, our 2SLS

estimator does not fully explore the information in emn (�). This is why we need l > 2d instruments, whereas

HHB�s GMM estimator needs only l > d instruments. This is also why our 2SLS estimator is not consistent

when q has properties like a time index (because the general GMM estimator is not consistent). The moment

conditions in emn (�) explore the special structure of threshold regression - �1 and �2 are involved only in

one regime of the system, while the moment conditions in bgn (�) are designed for any nonlinear system
y = G (x; q; �) + " with E ["jx; q] 6= 0. Essentially, the moment conditions emn (�) explore the validity of the

moments E
�
z"�
0

�
= 0 and E

�
z">
0

�
= 0, whereas bgn (�) explores only E [z"] = E �z"�
0�+E �z">
0� = 0.

We can now formally state the consistency of e
 when q is not independent of (z0;x0; ")0. First, we impose
the following assumption. Because we concentrate on the identi�cation issue below, we here assume that �

is �xed for notational simplicity.

Assumption IV0: dim (z) = l � d + 1, fW p�! W > 0,15 and E
�
zx0�


�
and E

�
zx0>


�
are of full column

rank for any 
 2 �. (i) If q is exogenous (i.e., q is included in z, and E ["jz] = 0), then there does not exist
a = (a01; a

0
2)
0 2 R2d such that E

�
zx0>


�
a2 = E

h
zx0>
0

i
�0 for any 
 < 
0 or E

�
zx0�


�
a1 = E

h
zx0�
0

i
�0

any 
 > 
0. (ii) If q is endogenous and only E
�
z"�
0

�
= 0 and E

�
z">
0

�
= 0 hold, then there does not

exist a = (a01; a
0
2)
0 2 R2d such that E

�
zx0�


�
a1 = E [z"�
 ] ; E

h
zx0>
0

i
�0 + E

�
zx0>


�
a2 = E [z">
 ] for any


 < 
0 or E
�
zx0�


�
a1 � E

h
zx0�
0

i
�0 = E [z"�
 ] and E

�
zx0>


�
a2 = E [z">
 ] for any 
 > 
0.

Theorem 2 Under Assumptions F, I0, IV0 and S, e
 is consistent.
HHB assume fW = diag

�fW1;fW2

�
with fW1

p�! W1 > 0 and fW2
p�! W2 > 0, but we do not need such

a restriction to show the consistency of e
 or inconsistency of e
 in the HHB setup. Similar to b
, we only
require Assumption I0 rather than the stronger Assumption I to prove the consistency of e
. In contrast to
Assumption IV, we need di¤erent assumptions here for the identi�cation of 
0 depending on whether q is

exogenous or not. In this sense, reducing emn (�) to bgn (�) makes the treatment of identi�cation more uniform
although there is some loss of information in doing so. When q is exogenous, Assumption IV0(i) requires

some extra variation in E [zx0jq = 
] when 
 moves away from 
0. This condition implicitly precludes the

possibility that q is independent of (z0;x0)0 because if this is the case, then E
�
zx0>


�
= E [zx0] (1� Fq (
))

and E
h
zx0>
0

i
= E [zx0] (1� Fq (
0)), so a2 can be chosen as

1�Fq(
0)
1�Fq(
) �0 and, similarly, a1 can be chosen as

Fq(
0)
Fq(
)

�0. When q is endogenous, we need also to take account of the variation in E [z"�
 ] and E [z">
 ] as 

moves away from 
0. We provide more intuition on such identifying information in the following discussion.

14Following the general setup of this paper we do not assume a threshold e¤ect in the �rst stage.
15To save notation, we still use W to denote the limit of fW . This should not introduce any confusion.
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The proof of the theorem also establishes the following results. First, if q is exogenous and also indepen-

dent of (z0;x0)0, then 
0 cannot be identi�ed by eQn (
). This is essentially the case considered by HHB, and
we label it case (o). Second, in case (i), both groups of moment conditions in mi (�) are required to identify


0; using only m1i (�) or m2i (�) is not enough. Third, in case (ii), either group of moment conditions in

mi (�) can identify 
0.
16 For example, if there does not exist a1 2 Rd such that E

�
zx0�


�
a1 = E [z"�
 ]

for any 
 < 
0 and E
�
zx0�


�
a1 � E

h
zx0�
0

i
�0 = E [z"�
 ] for any 
 > 
0, then 
0 can be identi�ed by

only m1i (�). In comparison with case (i), we can see that the identifying power in either group of moment

conditions in mi (�) comes solely from the correlation between q and ". In other words, endogeneity is helpful

in identifying 
0 by moment conditions.

It seems that the correlation of q with the rest of the system is critical for the identi�cation of 
0. When q

is independent of (z0;x0; ")0, then even the combination of m1 and m2 cannot identify 
0; if q is independent

of " but not (z0;x0)0, then combination of m1 and m2 can (but m1 or m2 individually cannot) identify 
0;

if q is correlated with all of (z0;x0; ")0, then either m1 or m2 can identify 
0.
17 What is the intuition here?

We can understand these results by using Lemma 2.3 of Newey and McFadden (1994) which states that as

long as WE [mi (�)] 6= 0 for � 6= �0, then �0 is identi�ed. In case (o), for any W , WE [mi (�)] 6= 0 for � 6= �0

cannot hold. In case (i), when W > 0 or W =

 
Il

Il

!
W0

�
Il Il

�
for some W0 > 0, WE [mi (�)] 6= 0 for

� 6= �0. In case (ii), when W > 0 or W =

 
Il

Il

!
W0

�
Il Il

�
for some W0 > 0 or W =

 
W1 0

0 0

!
with

W1 > 0 or W =

 
0 0

0 W2

!
with W2 > 0, WE [mi (�)] 6= 0 for � 6= �0. To be speci�c, we identify 
0 from

the fact that

WE

"
z

 
(y � x0�1) 1(q � 
)

(y � x0�2) 1(q > 
)

!#
= 0

only if 
 = 
0 for any �1 and �2, or equivalently,

W

 
E
�
zx0�


�
�1

E
�
zx0>


�
�2

!
6=WE

"
zy�


zy>


#

when 
 6= 
0 for any �1 and �2. Note that

E

"
zy�


zy>


#
= E

24 z
�
x0�
0�10 + x

0
>
0

�20 + "
�
1(q � 
)

z
�
x0�
0�10 + x

0
>
0

�20 + "
�
1(q > 
)

35 ;
which is equal to  

E
�
zx0�


�
�10 + E [z"�
 ]

E
h
zx0
<�
0

i
�10 + E

h
zx0>
0

i
�20 + E [z">
 ]

!
16Assume fW =diag

�fW1;fW2

�
. Because there is no restriction on fW1 and fW2 to obtain the consistency of e
 in both case

(i) and case (ii), when fW1

�fW2

�
is much larger than fW2

�fW1

�
, we are essentially using only m1i (�) (m2i (�)) in eQn (�). In

this sense, it is surprising to see that case (i) requires both m1i (�) and m2i (�), while case (ii) requires only m1i (�) or m2i (�).
Essentially, the limiting behaviors of eQn (
) in these two cases are quite di¤erent; see the following discussion and example for
more intuition on this point. Importantly, note that either fW1 = 0 or fW2 = 0 violates fW > 0, so Assumption IV0 does not
hold and the identi�ability of 
0 cannot follow from Theorem 2 in this case. The new results here are that in case (ii), fW > 0 is
not necessary for identi�cation (actually, in case (i), fW > 0 is not necessary either, e.g., the fW in (14) is not positive de�nite).
17 In cases (o) and (i), we require only E["jz; q] = 0, and in case (ii), q can be independent of (z0;x0)0. Here, we use three

sequentially stronger assumptions to distinguish these three cases.
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when 
 < 
0, and equal to  
E
h
zx0�
0

i
�10 + E

h
zx0
0<�


i
�20 + E [z"�
 ]

E
�
zx0>


�
�20 + E [z">
 ]

!

when 
 > 
0. In case (o), E [z"�
 ] = E [z">
 ] = 0, E
�
zx0�


�
= E [zx0]Fq (
), E

�
zx0>


�
= E [zx0] (1� Fq (
))

and E
h
zx0
1<�
2

i
= E [zx0] (Fq (
2)� Fq (
1)), where 
1 < 
2. So we can choose �1 and �2 such that

�1 = �10 and (1� Fq (
))�2 = (Fq (
0)� Fq (
))�10 + (1� Fq (
0))�20 (15)

when 
 < 
0 and

�2 = �20 and Fq (
)�1 = Fq (
0)�10 + (Fq (
)� Fq (
0))�20 (16)

when 
 > 
0 to make the equalities hold.
18 In other words, plim eQn (
) = 0 for any 
. In case (i),

E [z"�
 ] = E [z">
 ] = 0. So when 
 < 
0, we can choose �1 = �10 to make E
�
zx0�


�
�1 = E [zy�
 ] but

cannot choose �2 such that E
�
zx0>


�
�2 = E [zy>
 ], and when 
 > 
0, we can choose �2 = �20 to make

E
�
zx0>


�
�2 = E [zy>
 ] but cannot choose �1 such that E

�
zx0�


�
�1 = E [zy�
 ]. In other words, if we use

only m1, then plim eQn (
) = 0 for 
 2 �
; 
0� and if we use only m2, then plim eQn (
) = 0 on [
0; 
], while if
we use both m1 and m2, then plim eQn (
) = 0 only if 
 = 
0. In case (ii), E [z"�
 ] 6= 0 and E [z">
 ] 6= 0. So
even if we use only m1 or m2, the equalities can hold only at 
 = 
0.

The above arguments also show a key di¤erence between the identi�cation sources of the HHB GMM

estimator and the CH 2SLS estimator. In CH,

plimbSn (�) = E h�y � �01 (�0z) 1(q � 
)� �02 (�0z) 1(q > 
)
�2i

;

which assumes that E [yjz; q] = �01 (�
0z) 1(q � 
)+�02 (�

0z) 1(q > 
) and uses the conditional mean di¤erence

of y below 
0 and above 
0 to identify 
0 (just as in standard least squares estimation where E ["jx] = 0

and we can calibrate y against its conditional mean to identify the parameters in the conditional mean).

Since y = �01 (�
0z+ u) 1(q � 
) + �02 (�

0z+ u) 1(q > 
) + ", where the �rst stage regression is assumed to

be x = �0z + u, we must assume E [ujz; q] = 0 and E ["jz; q] = 0 and then the conditional mean of y is

�01 (�
0z) 1(q � 
) + �02 (�

0z) 1(q > 
). To achieve such conditions, we must assume that q is exogenous so

that it can be included in z. Also, as argued in Yu (2013a), the �rst stage must be a regression rather than

a projection, i.e., E [ujz] = 0 rather than only E [zu0] = 0. In a nonlinear environment, such a requirement
does not seem too stringent. On the contrary, the identi�cation of 
0 by HHB�s GMM is based on the

matching of covariances just as in the usual linear GMM estimation. If 
0 were known, we can identify

�1 by matching E
�
zy�
0

�
with E

h
zx0�
0

i
�1 and �2 by matching E

�
zy>
0

�
with E

h
zx0>
0

i
�2. It is the

nonlinear structure introduced by the unknown 
 that necessitates the division of identi�cation into three

di¤erent cases; in such a nonlinear system, endogeneity of q is helpful rather than harmful to identi�cation

as in CH�s 2SLS. As far as inference is concerned, the bootstrap is questionable for CH�s 2SLS given the

negative �ndings in Yu (2014) where it is shown that the bootstrap for 
 when the objective function takes

the "sum of squares" form is invalid.

As for the requirement on the number of instruments, CH�s assumption that E [�0zz0�jq = 
0] =

�0E [zz0jq = 
0] � > 0 implies l � d instruments are needed. As mentioned in Assumptions IV and IV0,

l � 2d + 1 instruments are required in our 2SLS because gi (�) contains 2d + 1 unknown parameters, and

l � d + 1 instruments are required in HHB�s GMM because each of m1i (�) and m2i (�) contains d + 1

18Note that we can choose �1 and �2 freely, so the choice of �1 and �2 depends on 
 here.
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unknown parameters. On the other hand, more instruments imply more identi�cation power: CH�s 2SLS

cannot handle the endogenous q case, while the other two estimators can; as discussed before Assumption

IV0, HHB�s GMM relies on the special structure of (1) while our 2SLS can handle any nonlinear system

y = G (x; q; �) + " with E ["jx; q] 6= 0.
It is well known that more moment conditions generally imply higher asymptotic e¢ ciency. Why then is

our 2SLS the suggested approach rather than HHB�s GMM? The reason is that the derivative dE [mi (�0)] =d�
0

does not exist as is normally required in usual GMM asymptotic derivations. Speci�cally,

@E [mi (�0; �0; 
)]

@


����

=
0+

=

 
E [z"jq = 
0] fq (
0)� E [zx0jq = 
0] �0fq (
0)

�E [z"jq = 
0] fq (
0)

!
; (17)

whereas
@E [mi (�0; �0; 
)]

@


����

=
0�

=

 
E [z"jq = 
0] fq (
0)

�E [z"jq = 
0] fq (
0)� E [zx0jq = 
0] �0fq (
0)

!
: (18)

Here, note that E [z"1(q � 
0)] = 0 and E [z"1(q > 
0)] = 0 do not imply E [z"jq = 
0] = 0. Even if

E [z"jq = 
0] = 0 as in case (i), if E [zx0jq = 
0] is of full column rank, the derivative @E [mi (�0; �0; 
0)] =@


does not exist. This makes the asymptotic distribution of e
 a nonnormal mixture that depends on the
one-sided derivatives, rendering inference based on e
 di¢ cult.19 On the contrary, in our 2SLS approach we
have

@E [gi (�0; �0; 
)]
@


����

=
0+

= (Il; Il)
@E [mi (�0; �0; 
)]

@


����

=
0+

= �E [zx0jq = 
0] �0fq (
0)

= (Il; Il)
@E [mi (�0; �0; 
)]

@


����

=
0�

;

which makes bootstrap inference valid.

3.2 Extensions

We discuss two extensions on identi�cation based on moment conditions in this subsection. As mentioned

above, more moment conditions typically imply higher asymptotic e¢ ciency, but such results rely in the �rst

place on identi�cation. With 2SLS, even if E [z"] = 0 is replaced by E ["jz] = 0 which implies more moment
conditions, the identi�cation results are unaltered. For example, when q is independent of (z0;x0)0, 
0 is not

identi�ed even by E ["jz] = 0. Similar identi�cation results apply to HHB�s GMM.
In dynamic panel threshold regression,

yit = (1; x0it)�11(qit � 
) + (1; x0it)�21(qit > 
) + "it;

i = 1; � � � ; n; t = 1; � � � ; T;

where "it = �i + vit, �i is the �xed e¤et, vit is the idiosyncratic disturbance, and xit may contain lagged

yit�s, Seo and Shin (2016) apply the FD-GMM estimator of Arellano and Bond (1991) to estimate 
. The

moment conditions are

E [gi (�)] := E

2664
zit0

�
�yit0 � �022�xit0 � �0Xit01it0(
)

�
...

ziT
�
�yiT � �022�xiT � �0XiT 1iT (
)

�
3775 = 0;

19We will discuss the asymptotic properties of e
 and bootstrap inference based on e
 in a separate paper.
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where �2 =
�
�21; �

0
22

�0
, � = �1 � �2, � =

�
�022; �

0; 

�
, 2 < t0 � T , Xit =

 
(1; x0it)�
1; x0i;t�1

� !, 1it(
) = 
1(qit � 
)

�1(qi;t�1 � 
)

!
, and � is the �rst di¤erence operator, and the FD-GMM estimator

b� = argmin
�
Jn (�) ;

where

Jn (�) = gn (�)
0
Wngn (�)

with gn (�) =
1
n

Pn
i=1 gi (�), and Wn

p�!W > 0.

The identi�cation issue still exists even for such general moment conditions. Due to a mistake in the

proof of their Theorem 1 (as detailed in the proof of our Theorem 1), Seo and Shin (2016) does not exclude

the unidenti�able case in their assumptions. One important unidenti�able case is stated in the following

corollary.

Corollary 2 If qit is independent of fzitgTt=t0 and fxitg
T
t=t0�1 and has a stationary distribution over t =

t0 � 1; � � � ; T , and E [zit�vit] = 0 for t = t0; � � � ; T , then 
 is not identi�able by Jn (�).

One typical case for qit in Corollary 2 is the time index, i.e., the model considered is the dynamic panel

model with structural change. Note also that we do not require qit to be exogenous as in case (o), which

implies that our 2SLS estimator is unidenti�able even if q is endogenous as long as q is independent of z and

x. Since qit is independent of other regressors and instruments, it is similar to the Lewbel�s special regressor

(see, e.g., Lewbel (2014) for a summary) in appearance; however, Lewbel�s special regressor is to provide

identi�cation while qit here makes identi�cation fail.

3.3 A Simple Illustration

We illustrate the identi�cation results above based on the example in Section 2.1. In this example y =

1 (q � 
0) + ", where q � U [0; 1], 
0 = 1=2, �0 = 0 and �0 = 1 are known, x = 1, and V ar (") = 1.

First assume E ["jq] = 0; so there is no endogeneity. Let z = 1; giving case (o) with E ["jq; z] = 0 and

q ? (z; x). The moment conditions used for identifying 
0 are

E

" 
(y � 1) 1(q � 
)

y1(q > 
)

!#
= 0. (19)

Suppose fW = I2: Then

plim eQn (
) = E [(y � 1) 1(q � 
)]
2
+ E [y1(q > 
)]

2
:

After some algebra,

plim eQn (
) = "��
 � 1
2

�
+

#2
+

�
1

2
� 

�2
+

=

�
1

2
� 

�2

;

where for a 2 R, a+ = max(a; 0), and 1
2 �
 = �

�

 � 1

2

�
+
+
�
1
2 � 


�
+
. Obviously, argmin


2�
plim eQn (
) = 1=2.

This seems to contradict the nonidenti�cation result of HHB in case (o). In fact, this outcome is because

�0 and �0 are known. In (15) and (16), �1 and �2 are �xed at �10 = 1 and �20 = 0. So when 
 < 
0,

(1� Fq (
))�20 = (Fq (
0)� Fq (
))�10 + (1� Fq (
0))�20 or (Fq (
0)� Fq (
)) �0 = 0 cannot hold as long
as �0 6= 0 and fq (
) > 0 on

�

; 
0

�
. Similarly, when 
 > 
0, Fq (
)�1 = Fq (
0)�10 + (Fq (
)� Fq (
0))�20
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or (Fq (
)� Fq (
0)) �0 = 0 cannot hold as long as �0 6= 0 and fq (
) > 0 on [
0; 
]. If they can be chosen

freely, then it is obvious that the system cannot be identi�ed - there are two equations and three unknowns.

Next, let z = (1; q)0 as in case (i), for which the moment conditions used for identifying 
0 are

E

" 
z (y � 1) 1(q � 
)

zy1(q > 
)

!#
= 0.

Suppose fW =

 fW1
fW12fW 0

12
fW2

!
=

 
c1I2 fW12fW 0
12 c2I2

!
; and then

plim eQn (
) = c1

"
�
�

 � 1

2

�
+

#2
+ c1

"
�
�
1

2

2 � 1

8

�
+

#2
+ c2

�
1

2
� 

�2
+

+ c2

�
1

8
� 1
2

2
�2
+

+2

 
�
�

 � 1

2

�
+

;�
�
1

2

2 � 1

8

�
+

!fW12

 �
1

2
� 

�
+

;

�
1

8
� 1
2

2
�
+

!0
.

IffW12 = 0, c1 = 1 and c2 = 0, then we use onlym1 (
) and Figure 1 shows that argmin

2�

plim eQn (
) = [0; 1=2].
If fW12 = 0, c1 = 0 and c2 = 1, then we use only m2 (
) and Figure 1 shows that argmin


2�
plim eQn (
) =

[1=2; 1].20 If c1 6= 0 and c2 6= 0, then we use both m1 (
) and m2 (
) and Figure 1 shows that when either

c1 = 1, c2 = 2 and fW12 = 0 or c1 = 1, c2 = 1:5 and fW12 =

 
0:5 0:5

0:5 0:5

!
, argmin


2�
plim eQn (
) = 1=2.21

Section 3.3 of Yu (2015b) considers the following joint distribution of (q; "):

fq;" (q; ") =

8>>>>>><>>>>>>:

�("� 1=2);
�("+ 1=2);

�("� 1=2);
�("+ 1=2);

0;

if 0 � q < 1
4 ;

if 14 � q � 1
2 ;

if 12 < q � 3
4 ;

if 34 < q � 1;
otherwise,

(20)

where �(�) is the standard normal density. Obviously, E ["jq] 6= 0, and E ["1(q � 
0)] = E ["1(q > 
0)] = 0,

so this is case (ii). Suppose z = 1: Then the moment conditions used for identifying 
0 are (19). SupposefW =

 
A C

C B

!
: Then

plim eQn (
) = AE [(y � 1) 1(q � 
)]
2
+BE [y1(q > 
)]

2
+ 2CE [(y � 1) 1(q � 
)]E [y1(q > 
)] ;

and with some algebra this reduces to

plim eQn (
) =
8><>:

A
�


2

�2
+B

�
1�3

2

�2
+ 2C

�


2

� �
1�3

2

�
;

(A+B + 2C)
�
1
4 �



2

�2
;

A
�
1� 3


2

�2
+B

�

�1
2

�2
+ 2C

�
1� 3


2

� �

�1
2

�
;

if 0 � 
 < 1
4 ;

if 14 � 
 � 3
4 ;

if 34 < 
 � 1;

Figure 2 shows that when A = 1, B = 2 and C = 0, argmin

2�

plim eQn (
) = 1=2. Actually, if only m1 is used

20This implies that in case (o) (i.e., z = 1), using only one moment condition cannot identify 
0.
21 In this example, fW12 does not play any role, i.e., plim eQn (
) depends only on fW1 and fW2 because the last term of

plim eQn (
) is zero.
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(i.e., A = 1, B = 0 and C = 0) or only m2 is used (i.e., A = 0, B = 1 and C = 0), argmin

2�

plim eQn (
) = 1=2,
where the parameter space � excludes the neighborhoods of 0 and 1. If C 6= 0, argmin


2�
plim eQn (
) = 
0 as

long as fW > 0: For instance, Figure 2 shows that when A = 1, B = 2 and C = 1, argmin

2�

plim eQn (
) = 1=2.
We now check the behavior of the 2SLS estimators of this paper and CH for these three cases: (o)

E ["jq] = 0 and z = 1; (i) E ["jq] = 0 and z = (1; q)0; and (ii) E ["jq] 6= 0 and z = 1. For 2SLS, the moment
conditions are E [y � 1(q � 
)] = 0 in cases (o) and (ii) and E [z (y � 1(q � 
))] = 0 in case (i). In case (o),

plim bQn (
) = �1
2
� 

�2

;

the same as plim eQn (
). In case (i) with cW = I2,

plim bQn (
) = �1
2
� 

�2
+

�
1

8
� 1
2

2
�2

;

where for comparison with plim eQn (
), note that 18 � 1
2


2 = �
�
1
2


2 � 1
8

�
+
+
�
1
8 �

1
2


2
�
+
. In case (ii),

plim bQn (
) = �1
2
� 

�2

;

the same as in case (o). For CH�s 2SLS,

plimbSn (
) = E h(y � 1(q � 
))
2
i

in all three cases. In cases (o) and (i),

plimbSn (
) = 1 + j
 � 1=2j ;
in case (ii),

plimbSn (
) =
8><>:

7
4 � 2
;
5
4 ;

2
 � 1
4 ;

if 0 � 
 < 1
4 ;

if 14 � 
 � 3
4 ;

if 34 < 
 � 1:

Figure 3 shows plim eQn (
) and plimbSn (
) in these three cases. For our 2SLS estimator, argmin

2�

plim eQn (
) =
1=2 in all cases, giving the same identifying results as HHB�s GMM using both m1 and m2. For CH�s 2SLS,

argmin

2�

plimbSn (
) = 1=2 in cases (o) and (i), whereas argmin

2�

plimbSn (
) = [1=4; 3=4] in case (ii), which is
unidenti�ed.

We next check whether the expected moment conditions are di¤erentiable. In case (i), for HHB�s GMM,

E [mi (�0; �0; 
)] =

0BBBB@
�
�

 � 1

2

�
+

�
�
1
2


2 � 1
8

�
+�

1
2 � 


�
+�

1
8 �

1
2


2
�
+

1CCCCA

is not di¤erentiable at 
0 = 1=2; whereas for our 2SLS E [gi (�0; �0; 
)] =

 
1
2 � 


1
8 �

1
2


2

!
; which is dif-

ferentiable at 
0 = 1=2. In case (ii), E [mi (�0; �0; 
)] is di¤erentiable at 
0. This is due to the special
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Figure 1: plim eQn (
) when E ["jq] = 0 and z = (1; q)0
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Figure 2: plim eQn (
) when E ["jq] 6= 0
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Figure 3: plim bQn (
) and plimbSn (
)
design of the DGP in this simple example. Speci�cally, using the formulae in (17) and (18), it turns

out that @E[m1i(�0;�0;
)]
@


���

=
0�

= �1=2 = @E[m1i(�0;�0;
)]
@


���

=
0+

, and @E[m2i(�0;�0;
)]
@


���

=
0�

= �1=2 =
@E[m2i(�0;�0;
)]

@


���

=
0+

. But, in general, E [mi (�0; �0; 
)] is not di¤erentiable at 
0 in case (ii). On the

other hand, for our 2SLS, E [gi (�0; �0; 
)] = 1
2 � 
, which is always di¤erentiable at 
0.

3.4 Summary of Identi�cation Results

Before summarizing the identi�cation results for the existing estimators of 
0, we provide a further comment

on the distinction between "sum of squares" and "square of sums" criteria. Note that "sum of squares"

criteria need not have more identi�cation power than "square of sums" criteria. When q is endogenous, the

example in Section 2.1 of Yu (2013a) shows that the 2SLS estimator of CH is not consistent, and the example

in the previous subsection shows that the limit objective function of CH�s 2SLS need not even have a unique

minimizer. On the contrary, either the 2SLS estimator of this paper or the GMM estimator of HHB can

generate a consistent estimator of 
0.
22

Table 1 summarizes the identi�cation results for all possibly consistent estimators of 
0 in various scenar-

ios. The �rst four estimators require instruments and the last two do not. Among the last two, Perron and

Yamamoto (2015) (PY in Table 1) use the LSE to estimate 
 in a structural change model even when there

is endogeneity. However, as shown in Yu (2015a), this strategy is valid only in the structural change context.

From Table 1, it seems that the IDKE of YP has the most extensive identi�cation power even though the

method makes no use of instruments. Nevertheless, the IDKE cannot identify 
0 in CTR models,
23 while

HHB�s GMM estimator and our 2SLS estimator can identify 
0 even in such models (although inference

needs further investigation). Table 1 also lists KST�s STR estimator. As mentioned in the Introduction,

22Of course, we can claim that CH�s 2SLS cannot be applied when q is endogenous; see YLP for modi�cations of CH�s 2SLS
to generate consistent estimators of 
0.
23 In such models, the IDKE can be extended also to take into account slope di¤erences at each 
 2 � beyond level di¤erences

to identify 
0.
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when q is exogenous, their estimator is equivalent to CH�s 2SLS estimator so it is consistent; but when q is

endogenous, their estimator is not generally consistent unless the endogeneity is relatively small compared

to the threshold e¤ect. Taking Table 1 as a whole, we can see some interesting di¤erences between structural

change models and TR models �speci�cally case (o) vs. cases (i) and (ii). It is, however, becoming folklore

in the literature that these two kinds of models are considered similar to each other (at least in terms of

their asymptotic properties).24 The present �ndings reveal that such folklore is misleading when there is

endogeneity.

(o): E ["jz; q] = 0 and
q ? (z0;x0)0 25

(i): E ["jz; q] = 0 but
q 6? (z0;x0)0

(ii): E ["jz; q] 6= 0 but
E
�
z"�
0

�
= E [z"q>
0 ] = 0

Consistency Literature Consistency Literature Consistency Literature

GMM of HHB No HHB Yes26 This Paper Yes27 This Paper

2SLS of This Paper No This Paper Yes This Paper Yes This Paper

2SLS of CH Yes HHB28 Yes CH No Yu (2013a)

STR of KST Yes HHB Yes CH No YLP

LSE of PY

and Yu (2015a)29
Yes

PY and

Yu (2015a)30
No Yu (2015a) No Yu (2015a)

IDKE of YP Yes YP Yes YP Yes YP

Table 1: Identi�cation of 
0 by Various (Possibly Valid) Estimators in Di¤erent Scenarios

4 Inference Based on the IDKE with k�(0) = 0

This section presents limit theory for the IDKE b
 in Method II where k�(0) = 0. To facilitate formulation
of the limit distribution of b
, we de�ne the following quantities,

�i = E[yijxi; qi = 
0�]� E[yijxi; qi = 
0+] =: m�(xi)�m+(xi);

�f (xi) = �i � f (xi; 
0) ;

where �i = �(xi; 
0) and �f (xi) is the limit of b�i (
0) with b�i (
) and �(x; 
0) de�ned in (5) and (6)
respectively. To derive the asymptotic distribution of b
 we use the following assumptions on f(ujx; q); which
is allowed to be discontinuous at q = 
0.

Assumption U:
(a) f(ujx; q) is continuous in u for (x0; q)0 2 X � ��� and (x0; q)

0 2 X � �+� , where ��� = (
 � �; 
0] and
�+� = (
0; 
 + �) for some � > 0.

24 In structural change models, case (i) corresponds to the circumstance that the moments E [(z0t;x
0
t)] are not equal for all

t, i.e., that there is some nonstationarity in the mean of E [(z0t;x
0
t)]; case (ii) corresponds to E ["tjzt] 6= 0 for all t but with

1
T0

PT0
t=1 E [zt"t] =

1
T�T0

PT�T0
t=1 E [zt"t] = 0, where T0 is the break point, i.e, zt is not a valid instrument for all t but is valid

when the information in each regime is integrated. These results echo the �nding in YP that nonstationarity is often helpful in
establishing identi�cation.
25 Here, we implicitly assume z and x do not include q.
26 Both m1 (�) and m2 (�) are required to prove consistency.
27 Either m1 (�) or m2 (�) is enough to prove consistency.
28 Yu (2015a) strengthens this result a little. Speci�cally, let z = (z0; q)0 and x = (x; q)0. If q ? z and E [xjz; q] = g (z) + q�,

i.e., q need not be independent of x, then projecting x only on z in the �rst stage would generate a consistent estimator of 
0.
29z is not necessary here.
30 Yu (2015a)�s result is a little stronger. Speci�cally, if q ? x and E ["jx; q] = g (x) + q�, i.e., q need not be exogenous, then

the LSE is consistent.
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(b) f(ujx; q) is Lipschitz in (x0; q)0 for (x0; q)0 2 X � ��� and (x0; q)
0 2 X � �+� .

(c) E[u4jx; q] is uniformly bounded on (x0; q)0 2 X � ��, where �� = ��� [ �+� .

Given Assumption U, we impose the following conditions on the bandwidth h.

Assumption H: h! 0; and
p
nhd= lnn!1.

Observe that nhd =
p
n lnn

p
nhd

lnn ! 1 when
p
nhd= lnn ! 1. The limit theory for b
 is given in the next

result.

Theorem 3 Under Assumptions F, G, H, I, K, S and U,p
n=h(b
 � 
0) d�! N(0;�)

where

� =
E[�2f (xi)f2(xi)(�2+(xi) + �2�(xi))jqi = 
0]�(1)

fq(
0) (E[�f (xi)�if(xi)jqi = 
0])
2
k0+(0)

2

with �(1) =
R 1
0
k0+(t)

2dt and �2�(x) = E
�
u2jx; q = 
0�

�
.

This result shows that b
 converges to 
0 at the rate pn=h; a much faster rate than that of the DKE e

of DH because b
 utilizes more data information in estimation. Speci�cally, the convergence rate of DKE isp
nhd�2 and the relative rate

p
nhd�2=

p
n=h =

p
hd�1 ! 0. Based on Theorem 2 of DH, the asymptotic

variance of their estimator e
 is
�o =

(�2+(xo) + �
2
�(xo))�

2�(1)

f(xo; 
0)�
2
ok
0
+(0)

2
; (21)

where �2 =
R
K (ux)

2
dux with K (ux) =

Qd�1
l=1 k(uxl), and �o = m�(xo) � m+(xo) which is equal to

(1; x0o; 
0) �0 when E["jx; q] is continuous. This asymptotic variance is comparable to �, but critically relies
on the choice of xo. If �i = � and �2�(x) = �2, then � = O

�
�2

fq(
0)�
2k0+(0)

2

�
. As expected, � is decreasing

in fq(
0), j�j and k0+(0) and increasing in �2.
The convergence rate

p
n=h of b
 exceeds the usual parametric rate pn. To understand this increase

over the parametric rate, some heuristic analysis is helpful. For this purpose, we use the simple case where

d = 1; so that q is the only covariate. The convergence rate is then determined by the balance between an

empirical process and a deterministic centering process. Recall that

b
 = argmax

2�

bQn(
) = argmax

2�

n bQn(
)� bQn(
0)o :
Because b
 maximizes bQn(
)� bQn(
0) on � and 
0 2 �, we have the decomposition

0 � bQn(b
)� bQn(
0) = [Q0(b
)�Q0(
0)] + h� bQn(b
)�Q0(b
)�� � bQn(
0)�Q0(
0)�i ;
where the �rst term on the extreme right side is the limit centering process and is less than zero because


0 = argmax

2�

Q0(
), whereas the second term is the modulus of continuity of the empirical process, which

exceeds zero. Hence, Q0(b
)�Q0(
0) and
sup

j
�
0j��

h� bQn(b
)�Q0(b
)�� � bQn(
0)�Q0(
0)�i =: �n (�)p
n
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must balance out so their sum is greater than zero.

In the h neighborhood of 
0, we can treat the model as a parametric one, so without loss of generality,

assume

yi = �1(qi � 
0) + ui;

where qi = i=n, i = 1; � � � ; n,31 ui � N (0; 1) and � > 0. Now, b
 tries to maximize b�(
)� b�(
0), where
b�(
) = 1

nh

n
X
i=n(
�h)

k�

�
i� n

nh

�
yi �

1

nh

n(
+h)X
i=n
+1

k+

�
i� n

nh

�
yi: (22)

For j
 � 
0j � �, and 
 < 
0, we have

b�(
)� b�(
0)
=

"
1
nh

n
P
i=n(
�h)

k�
�
i�n

nh

�
yi � 1

nh

n(
+h)P
i=n
+1

k+
�
i�n

nh

�
yi

#
�
"

1
nh

n
0P
i=n(
0�h)

k�
�
i�n
0
nh

�
yi � 1

nh

n(
0+h)P
i=n
0+1

k+
�
i�n
0
nh

�
yi

#

=

"
�+ 1

nh

n
P
i=n(
�h)

k�
�
i�n

nh

�
ui � �

nh

n
0P
i=n
+1

k+
�
i�n

nh

�
� 1

nh

n(
+h)P
i=n
+1

k+
�
i�n

nh

�
ui

#

�
"
�+ 1

nh

n
0P
i=n(
0�h)

k�
�
i�n
0
nh

�
ui � 1

nh

n(
0+h)P
i=n
0+1

k+
�
i�n
0
nh

�
ui

#

� ��
 

1
nh

n
0P
i=n
+1

k+
�
i�n

nh

�!
+ 1

nh

n
P
i=n(
�h)

h
k�
�
i�n

nh

�
� k�

�
i�n
0
nh

�i
ui +

1
nh

n(
0+h)P
i=n
0+1

h
k+
�
i�n
0
nh

�
� k+

�
i�n

nh

�i
ui

� 1
nh

n
0P
i=n
+1

�
k+
�
i�n

nh

�
+ k�

�
i�n

nh

��
ui

= �O
�
�
R 
0�


h
0

k+(v)dv

�
+Op

 
k0�(0)

r
1
nh

R 0
�1

�

0�

h

�2
dv + k0+(0)

r
1
nh

R 1
0

�

�
0
h

�2
dv

!

�Op

 r
1
nh

R 
0�

h

0

�
k+(v) + k�

�

0�

h

� v
��2

dv

!
:

If� is �xed, k+(0) = 0 and k0+(0) > 0, then
R 
0�


h

0
k+(v)dv = O

��

0�

h

�2�
,
R 0
�1

�

0�

h

�2
dv =

R 1
0

�

�
0
h

�2
dv =�


0�

h

�2
and

R 
0�

h

0

�
k+(v) + k�

�

0�

h � v

��2
dv = O

��

0�

h

�3�
. As a result, Q0(
)�Q0(
0) = O

�
�2=h2

�
and �n (�) =

q
�2=h3 since

�

0�

h

�3
= o

��

0�

h

�2�
. Suppose b
 � 
0 = Op

�
r�1n
�
; solving 1

r2nh
2 �

p
1=r2np
nh3

,

we get rn =
p
n=h.

For comparison, consider the IDKE in YP and in Method III. In the former,
R 
0�


h

0
k+(v)dv =


0�

h ,R 0

�1

�

0�

h

�2
dv =

R 1
0

�

�
0
h

�2
dv =

�

0�

h

�2
, and

R 
0�

h

0

�
k+(v) + k�

�

0�

h � v

��2
dv = 
0�


h since k�(0) >

0. As a result, Q0(
) � Q0(
0) = O (�=h) and �n (�) =
p
�=h2 since

�

0�

h

�2
= o

�

0�

h

�
. Solv-

ing 1
rnh

�
p
1=rnp
nh2

, we get rn = n. In the latter (as will be detailed in the next section), � ! 0, so

Q0(
)�Q0(
0) = O (��=h) and �n (�) =
p
�=h2. Solving �

rnh
�
p
1=rnp
n=h2

, we get rn = n�2.

Figure 4 illustrates these heuristics. For example, in Method II, because Q0(
) � Q0(
0) is quadratic

(in the neighborhood of 
0) as in the regular parameter case, we expect b
 to have an asymptotic normal
distribution. The extra h in the convergence rate

p
n=h arises because the variations in Q0(
) � Q0(
0)

and �n (�) are both in the scale of h in this nonparametric setup. In YP, Q0(
) � Q0(
0) is a nonsmooth

function of 
 (in the neighborhood of 
0) such that 
 can be more easily identi�ed than in Method II, so

31Locally, qi follows a uniform distribution on [
0 � h; 
0 + h], so we assume it follows the discrete form of U [0; 1] here.
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Figure 4: Balancing Q0(
)�Q0(
0) and
�n(�)p

n
in Method II, YP and Method III

the convergence rate n is faster than
p
n=h. In Method III, Q0(
) � Q0(
0) is still nonsmooth but the

nonsmoothness is less severe (the left and right derivatives of Q0(
) �Q0(
0) at 
0 are O (�=h), less than

O (1=h) order in YP), so the convergence rate is slower than that in YP.32 In YP and Method III, the

convergence rates of b
 are actually the same as in the parametric cases.
For inference of 
 based on inverting the t statistic, we need to estimate � in Theorem 3. A straightforward

approach is to use the sample analog. Speci�cally, we can estimate � by

b� = 1
n

Pn
i=1 kh(qi � b
)b�2i (b
) bf2(xi)2bu2i �(1)�

1
n

Pn
i=1 kh(qi � b
)b�2i (b
) bf�1(xi; b
) bf(xi)�2 k0+(0)2 ;

where

b�2i (
) =
�bm�(xi; 
) bf�(xi; 
)� bm+(xi; 
) bf+(xi; 
)� ;

bf(xi) =
1

n� 1

nX
j=1;j 6=i

Kx
h;ij ;

bf(xi; 
) = 1

n� 1

nX
j=1;j 6=i

Kx
h;ijkh(qj � 
);

bui (
) = yi � bm�(xi; 
)1(qi � 
)� bm+(xi; 
)1(qi > 
); bui = bui (b
)
32To understand the convergence rates of b
 in Methods I and II, we can compare these rates with those in Seo and Linton

(2007) where a parametric TR model is considered. In the SLSE of Seo and Linton (2007), 1(qi > 
) in the objective function of

the LSE is changed to K
�
qi�

h

�
with K (�) being a cdf, which results in a convergence rate of

p
n=h, which is exactly the same

as in Method II; when h is �xed, the convergence rate reduces to
p
n, the same as in Method I. On the other hand, although

the convergence rate of Method II and that of Seo and Linton are the same, the asymptotic distributions are still di¤erent.
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with

bm�(xi; 
) =
1

n�1
Pn

j=1;j 6=iK
x
h;ijk

�
h (qj � 
)yj

1
n�1

Pn
j=1;j 6=iK

x
h;ijk

�
h (qj � 
)

;

bf�(xi; 
) =
1

n� 1

nX
j=1;j 6=i

Kx
h;ijk

�
h (qj � 
):

The next result establishes that b� is consistent.
Theorem 4 Under the assumptions of Theorem 3, b� p�! �.

Another method of inference is based on inverting the LR statistic. Although this method has been

proposed in the small-threshold-e¤ect framework by Hansen (2000), it seems new in the current setting. Our

LR statistic can be used to test whether 
 = 
0 and is de�ned as

LR(1)n (
) = nh
k0+(0)

�(1)

E[�f (xi)�if(xi)jqi = 
0]

E[�2f (xi)f2(xi)(�2+(xi) + �2�(xi))jqi = 
0]

� bQn (b
)� bQn (
)� :
Corollary 3 Under the assumptions of Theorem 3,

LR(1)n (
0)
d�! �21:

To construct a CI for 
 based on LR(1)n we need to estimate E[�f (xi)�if(xi)jqi=
0]j
E[�2

f (xi)f
2(xi)(�2+(xi)+�

2
�(xi))jqi=
0]

. The natural

estimator is
1
n

Pn
i=1 kh(qi�b
)b�2

i (b
) bf�1(xi;b
) bf(xi)
1
n

Pn
i=1 kh(qi�b
)b�2

i (b
) bf2(xi)2bu2i , which is consistent from Theorem 4. Hence, the (1� �)100%

LR-CI for 
 is �

 :dLR(1)n (
) � cv�

�
;

wheredLR(1)n (
) replaces E[�f (xi)�if(xi)jqi=
0]j
E[�2

f (xi)f
2(xi)(�2+(xi)+�

2
�(xi))jqi=
0]

in LR(1)n (
) by its estimate, and cv� is the (1�
�)100% quantile of �21.

5 Inference Based on the IDKE with Shrinking Threshold E¤ects

In the previous section, the IDKE was adjusted by letting k�(0) = 0 to construct a CI for 
 and the threshold

e¤ect was taken as �xed. In this section, the IDKE is adjusted from a di¤erent perspective by allowing for

the threshold e¤ect to shrink to zero with the sample size but requiring that k�(0) > 0.

5.1 Optimal Rate of Convergence for 


First, we discuss the interpretation of a shrinking threshold e¤ect. As argued in Section 2.4 of YP, the local

shifter 1(q > 
) plays the role of an instrument. When q shifts from the left side of 
 to its right side, the

shift in the mean of y shrinks to zero. This behavior can be interpreted as the manifestation of a weak IV

problem in the threshold regression context. A natural question that then arises is the identi�ability of 


as � shrinks to zero. To put this question a di¤erent way, we can ask what is the minimum magnitude of �

that ensures identi�cation of 
. For this purpose, we cast the model in the following framework.

Suppose P is a family of probability models on some �xed measurable space (
;A). Let 
 be a functional
de�ned on P. Given an estimator b
 of 
 and a loss function L (b
; 
), the maximum expected loss over P 2 P
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is de�ned to be

R (b
;P) = sup
P2P

EP [L (b
; 
(P ))] ;
where EP is the expectation operator under the probability measure P . A popular loss function (e.g., Stone
(1980)) is the 0-1 loss

L (b
; 
) = 1njb
 � 
j > �

2

o
for some �xed � > 0, which will be used in this paper. Under this loss, R (b
;P) is the maximum probability

that b
 is not in the �=2 neighborhood of 
. The goal is to �nd an achievable lower bound for the minimax
risk de�ned by

infb
 R (b
;P) = infb
 supP2P
EP [L (b
; 
(P ))] : (23)

Only if � is large enough, will the right side converge to zero. The best rate of convergence of R (b
;P) to
zero is then called the optimal rate of convergence or the minimax rate of convergence. Now P 2 P in our

model is characterized by m�(x; q) and 
 as follows:

P(s;B) =

�
Pm�;
 :

dPm�;


d�
= f(x; q)'x;q (y �m�(x; q)1(q � 
)�m+(x; q)1(q > 
)) ;

m�(x; q) 2 Cs
�
B;X � ���

�
;m+(x; q) 2 Cs

�
B;X � �+�

�
;

Z
u'x;q(u)du = 0; 
 2 �

�
;

where � is Lebesgue measure on Rd, 'x;q(u) is the conditional density of u given (x0; q)
0, and Cs (�; �) is

de�ned in Section 2.2.

To formulate a precise statement of our next result, let

�n =

sZ
X
(m�(x; 
)�m+(x; 
))

2
f(xj
)dx;

where 
 = 
(P ), and f(xj
) can be replaced by any weight function w(x) with 0 < c � w(x) � C <1 andR
X w(x) = 1. If E["jx; q] is continuous, then �n =

��E [xjq = 
]
0
�n
�� = O (k�nk), similar to the k�nk in Section

3.

Theorem 5 Suppose Assumptions F, S and U hold, and P 2 P(s;B) with s � 1. If n s
2s+1 �n !1, then

lim
n!1

infb
 sup
P2P(s;B)

P
�
n�2n jb
 � 
(P )j > �

2

�
� C;

and if n
s

2s+1 �n = O (1), then

lim
n!1

infb
 sup
P2P(s;B)

P
�
jb
 � 
(P )j > �

2

�
� C;

for some positive constant C and small � > 0.

We begin our discussion of this result by clarifying a key di¤erence between the parametric and nonpara-

metric threshold models with shrinking threshold e¤ects. In the former, as long as the jump size is n�� with

0 < � < 1=2 (i.e., larger than n�1=2), 
 can be identi�ed; in the latter, however, we require a jump size larger

than n�
s

2s+1 to identify 
. In other words, the minimum rate of convergence for 
 in the nonparametric

model must be larger than n
1

2s+1 rather than any rate diverging to in�nity as in the parametric model. In

the parametric model, s = 1, so n� s
2s+1 = n�1=2 and n�

1
2s+1 = 0, i.e., the parametric result is a limiting
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special case of Theorem 5 as s!1. Such a di¤erence between the parametric model and the nonparametric
model does not seem to have been explicitly recognized in the literature. For example, Müller and Song

(1997) show that the convergence rate of the DKE is n�2n when q is the only regressor by implicitly assuming

a trade o¤ in rates under which �n is taken to be larger than n
� s
2s+1 . In fact, when 
 can be identi�ed, the

optimal rate of convergence for 
 is the same as in the parametric case. This rate is achieved by the IDKE,

as shown in the next section.

5.2 Asymptotics for b

To facilitate �nding an expression for the limit distribution of b
, we de�ne the following quantities

Dn = E[�f (xi)�if(xi)jqi = 
0]=�
2
n;

V1n = E[�2f (xi)f2(xi)�2�(xi)jqi = 
0]=�
2
n;

V2n = E[�2f (xi)f2(xi)�2+(xi)jqi = 
0]=�
2
n;

where �n is evaluated at 
0. We also impose the following conditions on the bandwidth h.

Assumption H0: h! 0,
p
nhd= lnn!1, �n ! 0, �n=h

s !1, nh�2n !1.

If we employ the optimal bandwidth h = O
�
n�

1
2s+1

�
, then

p
nhd= lnn = n

2(s�d)+1
2(2s+1) = lnn ! 1 under

Assumption G0 (s � d). Also, �n=h
s !1 and nh�2n !1 hold when n

s
2s+1 �n !1. The limit distribution

of b
 is given in the following theorem.
Theorem 6 Under Assumptions F, G0, H0, I, K0, S and U, if Dn ! D and V`n ! V` as n!1, then

n�2n(b
 � 
0) d�! ! � � (�) ;

where ! = 1
fq(
0)

V1
D2 , and

� (�) = argmax
r

8<:W1(�r)� jrj
2 ; if r � 0;

p
�W2(r)� jrj

2 ; if r > 0;

with � = V2=V1, and W`(r), ` = 1; 2, being two independent standard Wiener processes on [0;1).

In some special cases, the asymptotic distribution of b
 can be simpli�ed. For example, if �2�(xi) = �210
and �2+(xi) = �220, so that the model is locally homoskedastic within each regime, then � = �220=�

2
10; if

�2�(xi) = �2+(xi) = �20, so that the model is homoskedastic locally around 
0, then � = 1. To compare with

the asymptotic distribution of b
 in Method II, note that by Slutsky�s theorem,
n�2n

fq(
0)D
2
n

V1n
(b
 � 
0) d�! � (�)

in Method III, whereas s
n�2n
h

fq(
0)D
2
n

V1n (1 + �)

k0+(0)
2

�(1)
(b
 � 
0) d�! N (0; 1) (24)

in Method II, so we use a di¤erent normalization on (b
 � 
0) to achieve a nondegenerate limit distribution.
We can show that when �n ! 0, the result in (24) still holds and the CI based on LR

(1)
n (
) remains

valid. The convergence rate of b
 in Method II is pn�2n=h. Since pn�2n=h=n�2n = p1= (nh�2n) ! 0, the b
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Figure 5: Comparison Between the PDFs of N (0; 1) and � (�): � = 0:5; 1; 2

estimator in Method II has a slower convergence rate. But its convergence rate is still faster than that of the

2SLS estimator in Section 3 because
p
n�2n=h=

q
n k�nk2 = O

�p
1=h
�
!1. Figure 5 shows the di¤erence

between the N (0; 1) and � (�) limit densities, where the analytic form of the density of � (�) is reported in

Appendix B of Bai (1997), viz.,

p(x) =

8><>: � 1
2�

�
�
p
jxj
2

�
+ 1

2

�
1 + 2

�

�
exp

�
1
2
1
�

�
1 + 1

�

�
jxj
�
�

�
� (1+

2
� )
p
jxj

2

�
;

� 1
2��

�
� 1
2

p
x
�

�
+
�
1 + 1

2�

�
exp

�
1+�
2 x

�
�
�
�
�p

�+ 1
2
p
�

�p
x
�
;

if x < 0;

if x > 0;

with � (�) being the cdf of N (0; 1). Intuitively, when the heteroskedasticity measure � > 1, it is more likely
that � (�) achieves the maximum at r > 0: This intuition explains why the right tail of � (�) is heavier than

the left tail. Interestingly, the e¤ects of � on the limit distributions of the two 
 estimators are di¤erent: its

e¤ect on the estimator b
 in Method II is to increase variance (but maintain symmetry), whereas its e¤ect
on the estimator b
 in Method III is to introduce skewness.
For comparison, we state the limit distribution of the DKE in the following corollary. For this purpose,

we adjust Assumption H0 as follows.

Assumption H00: h ! 0,
p
nhd= lnn ! 1, �o ! 0, �o=hs ! 1, nhd�2o ! 1, where �o is de�ned in

(21) and is equal to (1; x0o; 
0) �n when E["jx; q] is continuous.

The optimal bandwidth h = O
�
n�

1
2s+d

�
satis�es Assumption H00.

Corollary 4 Under Assumptions F, G0, H00, I, K0, S and U,

nhd�1�2o(e
 � 
0) d�! !o � � (�o; �) ;

29



where !o =
�2�(xo)

f(xo;
0)
, and

� (�o; �) = argmax
r

8<:W1(�r)� jrj
2� ; if r � 0;

p
�oW2(r)� jrj

2� ; if r > 0;

with �o =
�2+(xo)

�2�(xo)
, �2 being de�ned in (21), and standard Brownian motions W`(r), ` = 1; 2, as in Theorem

6.

The distribution of � (�o; �) is derived in Proposition 1 of Stryhn (1996). Since it will not be used for

inference, it is omitted here. Compared with the convergence rate of b
 (viz., n�2n), the convergence rate ofe
 (viz., nhd�1�2o) is much slower especially when d is large. But it is still faster than the convergence rate
of the DKE in Method II because the ratio nhd�1�2o=

p
nhd�2�2o =

p
nhd�2o ! 1. To compare with the

limit distribution of e
 in Method II, note that by Slutsky�s theorem,
nhd�1�2o

f(xo; 
0)

�2�(xo)
(e
 � 
0) d�! � (�o; �)

in Method III, whereas s
nhd�1�2o

h

f(xo; 
0)

�2�(xo) (1 + �o)

k0+(0)
2

�2�(1)
(e
 � 
0) d�! N (0; 1)

in Method II. The limit distributions of e
 in both methods involve only information local to xo. Similar
to � in the limit distributions of b
, �o a¤ects only the variance of e
 in Method II, but a¤ects symmetry in
Method III. A new factor �2 also appears in the limit distributions of e
; di¤erent from �o, the factor �2

increases variance but does not a¤ect symmetry in either case.

It is also interesting to notice that the limit distribution of b
 in Method III does not depend on the kernel
choice whereas the limit distribution of e
 in Method III does depend on the kernel choice on x (although
not on q). These results echo Theorem 1 and Corollary 1 of YP where �n is �xed and k�(0) > 0. But

when k�(0) = 0, from Theorem 3, the asymptotic distribution of b
 depends on the kernel choice on q, and
from (21), the asymptotic distribution of e
 depends on the kernel choice on both x and q. In other words,
whether k�(0) = 0 or not does indeed a¤ect the role of the kernel on q with respect to data usage (and hence

e¢ ciency) of the estimators.

We next discuss inference concerning the threshold parameter 
 based on our IDKE approach. Although

we can construct a CI for 
 by inverting the asymptotic distribution of b
 in Theorem 6, Hansen (2000) shows
that such CIs perform poorly due to the identi�cation failure when �n = 0. He suggests constructing CIs for


 by inverting the LR statistic instead, which in our case is de�ned as

LR(2)n (
) = nh
1

4k+(0)

Dn

V1n

� bQn (b
)� bQn (
)� :
To do so, we make use of the following result.

Corollary 5 Under the assumptions of Theorem 6,

LR(2)n (
0)
d�!M (�) ;

where M (�) follows the distribution P (M (�) � z) = (1� e�z)(1� e�z=�) with � de�ned in Theorem 6.

To construct CIs for 
, we need to estimate Dn=V1n and �. By similar procedures to those of the last
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section, we can show that

bDnbV1n =
1
n

Pn
i=1 kh(qi � b
)b�2i (b
) bf�1(xi; b
) bf(xi)
1
n

Pn
i=1 k

�
h (qi � b
)b�2i (b
) bf2(xi)bu2i ;

b� =
1
n

Pn
i=1 k

+
h (qi � b
)b�2i (b
) bf2(xi)bu2i

1
n

Pn
i=1 k

�
h (qi � b
)b�2i (b
) bf2(xi)bu2i

are the required consistent estimators, where b�i(b
), bf(xi; b
), bf(xi) and bui are de�ned in the last section. If
�2�(xi) = �210 and �

2
+(xi) = �220, then � can be simply estimated by the ratio

b� = 1
n

Pn
i=1 k

+
h (qi � b
)bu2i

1
n

Pn
i=1 k

�
h (qi � b
)bu2i :

Given all these components, the (1� �) LR-CI for 
 is�

 :dLR(2)n (
) � bcv�� ;

wheredLR(2)n (
) replaces Dn=V1n in LR
(2)
n (
) by its estimates, and bcv� is the (1��) quantile ofM obtained

by replacing � by its estimate.

To compare the LR statistic LR(2)n (
) with LR(1)n (
) in the last section, note that LR(1)n (
) can be

expressed as

LR(1)n (
) = nh
k0+(0)

�(1)

Dn

V1n + V2n

� bQn (b
)� bQn (
)� :
If bQn (b
)� bQn (
) are the same in these two LR statistics, then

LR
(1)
n (
)

LR
(2)
n (
)

= 4
k+(0)k

0
+(0)

�(1)

V1n
V1n + V2n

=: Rn: (25)

If the model is locally homoskedastic in each regime, then Rn = 4
�210

�210+�
2
20

k+(0)k
0
+(0)

�(1)
, which is further simpli�ed

to 2
k+(0)k

0
+(0)

�(1)
when the model is locally homoskedastic in both regimes. However, bQn (b
) � bQn (
) are not

the same in LR(1)n (
) and LR(2)n (
) because the employed kernels are di¤erent and the b
�s are di¤erent. To
compare the asymptotic distributions of these two LR statistics, we plot the asymptotic pdfs in Figure 6

and report their 95% critical values in Table 2.

Test Stat. LR
(1)
n LR

(2)
n (� = 0:5) LR

(2)
n (� = 1) LR

(2)
n (� = 2)

95% crit 3:841 3:040 3:676 6:081

Table 2: 95% Critical Values of LR(1)n and LR(2)n for � = 0:5; 1; 2

5.3 Comparison With the Parametric LSE

We close this section by comparing the IDKE with the LSE in the parametric case (see, e.g., Hansen (2000)).

From YP, the LSE b
LSE obtained by minimizing
min
�;�

(Y �X� �X�
�)
0
(Y �X� �X�
�) = Y 0Y � Y 0P
Y (26)
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is equivalent to estimation by maximizing�b�0X 0
� h
X (X 0X)

�1
X 0
>
X>
 (X

0X)
�1
X 0
�
X�
 (X

0X)
�1
X 0
i �
Xb�� ; (27)

where P
 is the projection matrix onto span (X;X�
), b� (
) is the LSE of � based on splitting according
to the threshold 
, and X and X�
 are de�ned in (2) with a similar de�nition for X>
 . Here, Xb� (
) =n
x0i
b� (
)on

i=1
, and x0ib� (
) is an estimator of the conditional mean di¤erential �(xi; 
). Since b�i (
) is

estimating �(xi; 
) f(xi; 
), Xb� (
) is mimicing nb�i (
) =f (xi; 
)on
i=1
. In the parametric case, f(xi; 
0)

and f(xi) do not appear in Dn, V1n and V2n, so �2nD
2
n=V1n reduces to

E[�2
i jqi=
0]

2

E[�2
iu

2
i jqi=
0�]

and � reduces to
E[�2

iu
2
i jqi=
0+]

E[�2
iu

2
i jqi=
0�]

; if �2�(xi) = �210 and �2+(xi) = �220, then �2nD
2
n=V1n further reduces to

E[�2
i jqi=
0]
�210

and �

further reduces to �220
�210
. A natural question is how to generate the same asymptotic distribution as in the

parametric case when E["jx; q] is continuous. By careful inspection of the derivations in the proofs we can
show that, if the objective function of the IDKE changes to

1

n

nX
i=1

bf (xi; 
)bf (xi)
24 1
n�1

Xn

j=1;j 6=i
yjK


�
h;ij

1
n�1

Xn

j=1;j 6=i
K
�
h;ij

�
1

n�1

Xn

j=1;j 6=i
yjK


+
h;ij

1
n�1

Xn

j=1;j 6=i
K
+
h;ij

352 ;
then the asymptotic distribution of the IDKE is the same as that of the parametric LSE, where bf (xi; 
)
and bf (xi) are consistent estimators of f (xi; 
) and f (xi), respectively. Asymptotically, we impose a weight
fqjx(
0jxi) on �2i . This weight is intuitive in the sense that when there are more data points in the neighbor-
hood of q = 
0 at xi, we impose a larger weight on �

2
i . In fact, we can also show that the IDKE using this
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objective function has the same asymptotic distribution as the LSE even in the framework of YP.33 In other

words, the complex-looking weights in the square bracket of the objective function (27) are asymptotically

equivalent to
�
fqjx(
0jxi)

	n
i=1

: Such an equivalence result is not at all obvious from the original least squares

objective function (26).

6 Two Speci�cation Tests

In this section, we study limit theory of the two speci�cation tests in Section 2.2. We �rst specify some

regularity conditions which are modi�cations of Assumptions F, G and U given earlier.

Assumption F0: f(x; q) 2 C1 (B;X �Q).
Assumption F00: f(x; q) 2 C� (B;X � ��) with � � 1, and 0 < f � f(x; q) � f <1 for (x0; q)0 2 X � ��.
Assumption G00: (i) g(x; q) 2 Cs (B;X �Q) with s � 2; (ii) g(x; q) 2 Cs (B;X � ��) with s � 2;
Assumption U0:

(a) f(ujx; q) is continuous in u for (x0; q)0 2 X � Q� and (x0; q)0 2 X � Q+, where Q� = [q; 
0] and

Q+ = (
0; q].
(b) f(ujx; q) is Lipschitz in (x0; q)0 for (x0; q)0 2 X �Q� and (x0; q)0 2 X �Q+.
(c) E[u4jx; q] is uniformly bounded on (x0; q)0 2 X �Q.

The following Assumptions B1 and B2 are made on the bandwidths used in the �rst and second tests.

Assumption B1: nhd !1, h! 0:

Assumption B2: nhd !1, b! 0, h=b! 0, nhd=2b2� ! 0, where � = min (�+ 1; s).

Given d > 1, h=b ! 0 implies hd=2=b ! 0, so nhd ! 1 implies that nhd=2b ! 1, where nhd=2b is the
magnitude of I(2)n under H(2)

1 . The quantity nhd=2b2� is the bias of I(2)n under H(2)
0 , so the assumption

nhd=2b2� ! 0 guarantees that I(2)n is centered at the origin. Under H(1)
0 , the bias of I(1)n is hd=2, so h ! 0

ensures that I(1)n is also centered at the origin. The condition h=b ! 0 requires that h is smaller than b;

which helps to generate power under H(2)
1 and shrink the bias under H(2)

0 to zero. Intuitively, if h=b ! 0,

then the term Kh;ij in I
(2)
n makes the product beibej behave like a squared term, producing an e¤ect that

generates power. In the �rst test, m(x; q) under H(1)
0 is parametric, so the corresponding bandwidth of b

is a constant so that h ! 0 necessarily implies h=b ! 0. In testing H(2)
0 versus H(2)

1 , our test statistic I(2)n

still applies when E["jx; q] is not smooth at q = 
0. But in this case the null hypothesis is better modi�ed

to the equivalence m�(x) = m+(x) for all x 2 X and g in Assumption G00 does not need to be smooth at

q = 
0. Also, we need to add the requirement nh
d=2b3 ! 0 to Assumption B2, where nhd=2b3 is the bias of

I
(2)
n attributed to the cusp of m(x; q) at q = 
0.

In the second test, we impose the following assumption on the kernel lb (�; t).

Assumption L: lb(�; t) takes the form of (3) with order p = s+ �� 1.

Thus, lb(�; t) may be a higher order kernel to reduce the bias in byi.
33Using such an objective function, the asymptotic distribution of the IDKE with k�(0) = 0 in Section 4

would also change. For example, � would change to

�
E[�2

iu
2
i jqi=


�
0 ]+E[�

2
iu

2
i jqi=


+
0 ]
�
�(1)

fq(
0)(E[�2
i jqi=
0])

2
k0+(0)

2
, and LR

(1)
n (
) changes to

nh
k0+(0)
�(1)

E[�2
i jqi=
0]

E[�2
iu

2
i jqi=


�
0 ]+E[�

2
iu

2
i jqi=


+
0 ]

� bQn (b
)� bQn (
)�.
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6.1 Limit Theory for the Two Tests

The following two theorems give the limit distribution of I(`)n under the null H(`)
0 and local power under H(`)

1 .

Note that the main component of I(`)n under H(`)
0 is a degenerate U-statistic, so the asymptotic distribution

is normal rather than a functional of a chi-square process, as in the usual structural change literature.

Theorem 7 Under Assumptions B1, F0, G00(i), K, S, and U0, the following hold:

(i)
I(1)n

d�! N
�
0;�(1)

�
uniformly over H(1)

0 , where

�(1) = 2

Z
k2d(u)duE

�
f (x; q)�4 (x; q)

�
; with �2 (x; q) = E[u2jx; q];

which can be consistently estimated by

v(1)2n =
2hd

n(n� 1)
X
i

X
j 6=i

K2
h;ijbe2i be2j :

Hence, a test based on the studentized test statistic T (1)n = I
(1)
n =v

(1)
n

t(1)n = 1
�
T (1)n > z�

�
;

has signi�cance level �, where z� is the 1� � quantile of N(0; 1).34

(ii) If under H(1)
1 , m(x; q)�m(x; q) = n�1=2h�d=4�n(x; q) such that

R
�n(x; q)

2f(x; q)2dxdq ! �, then

I(1)n
d�! N

�
�;�(1)

�
and T (1)n

d�! N
�
�=
p
�(1); 1

�
;

so that the test t(1)n is consistent and Pm
�
T
(1)
n > z�

�
! 1 for anym (�) such that

R
(m(x; q)�m(x; q))2 f(x; q)2dxdq 6=

0. Furthermore, the result continues to hold when z� is replaced by any nonstochastic constant

Cn = o
�
nhd=2

�
.

According to this result, I(1)n has only trivial power if E
h
(m(x; q)�m(x; q))2 f(x; q)

i
= 0. Consider the

following special example to illustrate. Suppose m(x; q) under H(1)
0 is x0�+x0�1 (q � 
), and the alternative

is m(x; q) = x0� + x0�1 (q � 
) + x0� + x0�1 (q � 
), then obviously, E
h
(m(x; q)�m(x; q))2 f(x; q)

i
= 0

under H(1)
1 and I(1)n has no discriminatory power against such m(x; q). This point was observed for classical

speci�cation testing without threshold e¤ects �see, e.g., Bierens and Ploberger (1997, p. 1135). Possible

cases that do generate non-trivial power include models where (i) m(x; q) takes the same parametric form

but has a di¤erent threshold point from m(x; q), and (ii) m(x; q) takes a nonparametric form for whichR
(m(x; q)�m(x; q))2 f(x; q)2dxdq > 0.

Theorem 8 Under Assumptions B2, F00, G00(ii), K, L, S, and U, the following hold:

(i)
I(2)n

d�! N
�
0;�(2)

�
34The test is one-sided because I(1)n is based on the L2-distance between m(�) and m(�).
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uniformly over H(2)
0 , where

�(2) = 2

Z
k2d(u)duE

�
1�q f (x; q)�

4 (x; q)
�
;

which can be consistently estimated by

v(2)2n =
2hd

n(n� 1)
X
i

X
j 6=i

1�i 1
�
jK

2
h;ijbe2i be2j :

As a result, the test based on the studentized test statistic T (2)n = I
(2)
n =v

(2)
n

t(2)n = 1
�
T (2)n > z�

�
;

has signi�cance level �, where z� is the 1� � quantile of N (0; 1).

(ii) If under H(2)
1 , m�(x)�m+(x) = n�1=2h�d=4b�1=2�n(x) such that

R
�n(x)

2f(x; 
0)
2dx! �, then

I(2)n
d�! N

�
��;�(2)

�
and T (2)n

d�! N
�
��=

p
�(2); 1

�
;

where � = 2
R 1
0

�R 1
v
l(u)du

�2
dv; and the test t(2)n is consistent with Pm

�
T
(2)
n > z�

�
! 1 for any m

such that
R
(m�(x)�m+(x))

2
f(x; 
0)

2dx 6= 0. The result continues to hold when z� is replaced by

any nonstochastic constant Cn = o
�
nhd=2b

�
.

These two theorems show that I(1)n and I(2)n have power against di¤erent deviations of m(x; q) from H0.

For I(1)n , power is generated from global deviations ofm(x; q) from H0; just as in classical speci�cation testing

(see, e.g., Theorem 3 of Zheng (1996) and Theorem 3.1 of Fan and Li (2000)). For I(2)n , power is generated

only from local deviations in the neighborhood of q = 
0. In consequence, we need a larger deviation for

I
(2)
n than for I(1)n to generate non-trivial power �speci�cally, n�1=2h�d=4b�1=2=n�1=2h�d=4 = b�1=2 !1.

6.2 Bootstrapping Critical Values

As is evident from the proofs of Theorems 7 and 8, the convergence rates of T (1)n and T (2)n to the standard

normal is slow. The bias under H(1)
0 is hd=2 and under H(2)

0 is nhd=2b2�. Both these rates are low for some

standard choices of bandwidth. As argued in the literature of classical speci�cation testing (see, e.g., Härdle

and Mammen (1993), Li and Wang (1998), Stute et al. (1998), Delgado and Manteiga (2001), and Gu et al.

(2007)), an improved approximation of the �nite-sample distribution of T (`)n can be obtained using the wild

bootstrap (Wu, 1986; Liu, 1988). We therefore suggest that the following algorithm WB be used in both

tests, with bei and byi having di¤erent de�nitions in the two tests.
Algorithm WB:

Step 1: For i = 1; � � � ; n, generate the two-point wild bootstrap residual u�i = bei �1�p5� =2 with proba-
bility

�
1 +

p
5
�
=
�
2
p
5
�
, and u�i = bei �1 +p5� =2 with probability �p5� 1� = �2p5�, then E� [u�i ] = 0,

E�
�
u�2i
�
= be2i and E� �u�3i � = be3i , where E� [�] = E [�jFn] and Fn = f(x0i; qi; yi)gni=1.
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Step 2: Generate the bootstrap resample fy�i ; xi; qig
n
i=1 by

35

y�i = byi + u�i :
Then obtain the bootstrap residuals be�i = y�i � by�i , where by�i is de�ned similarly to byi except that yi in
the construction of byi is replaced by y�i .

Step 3: Use the bootstrap samples to compute the statistics

I(1)�n =
nhd=2

n (n� 1)
X
i

X
j 6=i

Kh;ijbe�i be�j ;
I(2)�n =

nhd=2

n (n� 1)
X
i

X
j 6=i

1�i 1
�
jKh;ijbe�i be�j ;

and the estimated asymptotic variances

v(1)�2n =
2hd

n(n� 1)
X
i

X
j 6=i

K2
h;ijbe�i 2be�2j ;

v(2)�2n =
2hd

n(n� 1)
X
i

X
j 6=i

1�i 1
�
jK

2
h;ijbe�i 2be�2j :

The studentized bootstrap statistics are T (`)�n = I
(`)�
n =v

(`)�
n . Here, the same b and h are used as in I(`)n

and v(`)2n in Theorems 7 and 8.36

Step 4: Repeat steps 1-3 B times, and use the empirical distribution of
n
T
(`)�
n;k

oB
k=1

to approximate the

null distribution of T (`)n . We reject H(`)
0 if T (`)n > T

(`)�
n(�B), where T

(`)�
n(�B) is the upper �-percentile ofn

T
(`)�
n;k

oB
k=1

.

In Step 1, a popular way to simulate u�i in the second test is based on bei�s centralized counterpart bei = bei�be
rather than bei itself, where be = nP

i=1

bei1�bi � nP
i=1

1�bi , �b =
�

 � b; 
 + b

�
; see, e.g., Gijbels and Goderniaux

(2004) and Su and Xiao (2008). Such a formulation can lead to
nP
i=1

bei1�bi � nP
i=1

1�bi = 0,37 which will not

a¤ect the asymptotic results but may a¤ect the �nite sample performance of Algorithm WB especially under

H
(2)
1 .

The bootstrap sample is generated by imposing the null hypothesis. Therefore, the bootstrap statistic

T
(`)�
n will mimic the null distribution of T (`)n even when the null hypothesis is false. When the null is false, bei
is not a consistent estimate of "i or ui. Nevertheless, the following theorem shows that the above bootstrap

procedure is valid. This is because our studentized test statistic T (`)n is invariant to the variance of e. But

the wild bootstrap procedure is not valid if the test statistic I(`)n is used instead of T (`)n .38

35To construct I(2)�n , we need only the data with qi 2
h

 � b; 
 + b

i
:

36 If we use a data-adaptive bandwidth such as cross-validation based on each bootstrap sample, then the algorithm is
extremely time-consuming. See Chapter 3 of Mammen (1992) for related discussions.
37 In the �rst test, 1

n

nP
i=1

bei = 1
n

nP
i=1

bei1(qi � b
) + 1
n

nP
i=1

bei1(qi > b
) = 0 since the covariates include a constant term.
38The wild bootstrap for I(2)n should be valid because the misspeci�cation in the variance of e happens only in a b neighborhood

of 
0.
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Theorem 9 Under the assumptions of Theorem 7 and 8,

sup
z2R

���P �T (`)�n � zjFn
�
� �(z)

��� = op (1) ;

where �(�) is the cdf of N (0; 1).

7 Simulations

We report simulations designed to assess the performance of our CIs and tests. We will concentrate on

procedures whose performance is unclear in the literature. For inference, we will check only the CIs that

invert the two LR statistics in Sections 4 and 5. It is unnecessary to compare the performance of the IDKE

and the DKE because YP have already shown that the former performs much better than the latter in

�nite samples. Similarly, we do not check the performance of estimators and CIs based on our 2SLS or

e¢ cient GMM procedure because these are compared in YLP with other estimators and CIs that employ

instruments. Further, we do not report the performance of CIs based on inverting the t statistics because in

Method II its performance is similar to the LR-based CI and in Method III its performance is worse. For the

two speci�cation tests, we investigate only the two nonparametric tests developed in the main text because

the performances of parametric tests developed in Supplement D are widely available in the literature.39

Another reason for focusing on these two CI constructions and two speci�cation tests is that neither involves

instruments. As mentioned in the Introduction, good instruments are hard to �nd and justify in practice,

so these methods have appeal in applied work.

We use a similar DGP as in YP for the simulation designs. Speci�cally, y = �11(q � 
) + ", i.e., the

threshold e¤ect does not depend on x, where 
 = 0 and � = [�0:1; 0:1], x and q are independent and each
is uniformly distributed over [�0:5; 0:5], and "j (x; q) � N(��2q3; 0:12). In CI construction, we let �1 = 0:1
and 0:2, indicating small and large threshold e¤ects, respectively, and �2 = 1, indicating severe endogeneity.

In testing endogeneity, we let �1 = 0:2 and �2 = 0; 0:2; 0:5 and 1, where �2 = 0 corresponds to the null. In

testing threshold e¤ects, �1 = 0; 0:1; 0:2 and 0:5, and �2 = 1, where �1 = 0 corresponds to the null. For the

IDKE with k�(0) = 0,

k�(x; r) = �x(1 + x)1(�1 � x � r)

��
1

6
� 1
2
r2 � 1

3
r3
�
; 0 � r � 1;

and for the IDKE with shrinking threshold e¤ects,

k�(x; r) =
3

4
(1� x2)1(�1 � x � r)

��
1

2
+
3

4
r � 1

4
r3
�
; 0 � r � 1; (28)

which degenerates to the Epanechnikov kernel when r = 1; k+(x; r) = k�(�x; r).40 In both tests, the kernel
in Kh;ij is speci�ed in (28), and in the second test, byi is estimated by the local linear smoother which implies
a second-order boundary kernel in Lb;ij as required in Assumption L. Following DH, three bandwidths h

are used based on the formula Cn�1=2 with proportionality constants C = 2, 3 and 4; in the second test,

b = 1
2h

1=2 to guarantee h=b ! 0 and nhd=2b2� ! 0 with � = 2.41 The simulation study in Müller (1991)
39Although the literature (e.g., Zheng, 1996; Li and Wang, 1998) provides simulation results when the approximation functionem(x; q) in (7) is smooth, there are no corresponding results when em(x; q) is discontinuous. Also, although Porter and Yu (2015)

investigate the �nite sample performance of a similar structural change test as I(2)n , no covariates x are included in that work.
40These kernel functions imply �(1) = 12 and k

0
+ (0) = 6 in Corollary 3 and k+(0) = 1:5 in Corollary 5. So Rn = 2

k+(0)k
0
+(0)

�(1)
=

1:5 in our DGP.
41Notice that the range of bandwidths chosen is quite large, since the ratio of the proportionality constants between the
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shows that a bandwidth without boundary adjustment works well, and we therefore use the same bandwidth

for both interior and boundary points. N = 500 replications with sample size 500 and 1000 are used. In

Algorithm WB, B = 399 when n = 500 and B = 199 when n = 1000. For CI construction the con�dence

level used is 95%, and for testing the level of signi�cance is 5%.

7.1 Two LR-Based CIs

The coverage and average length of the two LR-based CIs are reported in Table 3. From Table 3, both

methods perform well in coverage. Reductions in bandwidth and expansion of sample size both marginally

improve coverage. On the other hand, di¤erent bandwidths and sample sizes have a big impact on CI lengths.

Speci�cally, under our DGP, the medium bandwidth seems to perform satisfactorily for CI length among

various scenarios and a larger sample size shrinks the length signi�cantly. Another phenomenon deserving

of mention is that CI length decreases sharply when the jump size doubles in both methods. This outcome

is expected because larger threshold e¤ects make the threshold point easier to identify. Comparing Method

II to Method III, the latter behaves a little better in coverage. This may stem from the fact that the latter

makes full use of the data information around 
0 (k�(0) > 0) while the former makes only marginal use of

such information (k�(0) = 0). This improvement comes at the cost that the CIs in Method III are generally

longer than those in Method II.

7.2 Two Nonparametric Speci�cation Tests

The size and power of the two nonparametric speci�cation tests are reported in Tables 4 and 5, respectively.

From these two tables, all tests have size close to the nominal 5% except in the second test with a large h

where the test is undersized. A large h implies a large bias in I(2)n so the rejection probability is adversely

a¤ected. The power of the endogeneity test is very good - even when �2 = 1 and n = 500, the power is 100%.

The power of the second test is also very good - even when �1 = 0:5 and n = 500, the power is close to

100%. As a benchmark, �1 = 0:2 corresponds to two standard deviations of the error term u which follows

N
�
0; 0:12

�
.

k�(0) = 0

Coverage Length (�10�2)
n 500 1000 500 1000

�1 0:1 0:2 0:1 0:2 0:1 0:2 0:1 0:2

C = 2 0.998 0.962 0.998 0.964 17.6 7.11 15.23 4.27

C = 3 0.994 0.958 1 0.964 16.12 6.85 11.49 3.71

C = 4 0.984 0.954 0.992 0.970 15.98 7.52 10.62 4.07

�n ! 0

Coverage Length (�10�2)
n 500 1000 500 1000

�1 0:1 0:2 0:1 0:2 0:1 0:2 0:1 0:2

C = 2 1 0.980 1 0.972 18.52 7.83 17.94 5.46

C = 3 1 0.986 1 0.984 17.23 5.11 14.59 2.47

C = 4 0.998 0.984 1 0.898 16.27 4.45 11.72 15.78

�rst and the last is 2. In the estimation of 
, the bandwidth is smaller than the usual optimal bandwidth (which is of rate

n
� 1
2s+d = n�

1
6 ), just as suggested in Porter and Yu (2015). In the second test, N = n � (2 � 1

2
C1=2n�1=4)2 = Cn1=2 data

points are used to obtain byi. When C = 2 and n = 500, N � 45. When C = 4 and n = 1000, N � 126.
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Table 3: Comparison of Inferential Methods: Coverage and average length

for nominal 95% con�dence for 
 with �2 = 1 and bandwidth proportionality constant C:

n 500 1000

�2 0 0:2 0:5 1 0 0:2 0:5 1

C = 2 5.2 8 52.8 100 5 11.8 78.2 100

C = 3 5.8 10.2 68.8 100 3.6 15.8 94 100

C = 4 5.2 10.8 78.8 100 3.8 21 97.2 100

Table 4: Size and Power of T (1)n (%): Nominal signi�cance level 5%; �1 = 0:2

n 500 1000

�1 0 0:1 0:2 0:5 0 0:1 0:2 0:5

C = 2 4.4 17.4 78.2 99.4 3 29 93 100

C = 3 4.0 22.2 78.4 100 2.8 46.2 98.6 100

C = 4 3.8 17.2 68.6 99.4 1.8 49.8 98.8 100

Table 5: Size and Power of T (2)n (%): Nominal signi�cance level 5%; �2 = 1

8 Conclusion

All three methods of estimation presented here for threshold point regression remain valid and invariant to

endogeneity of the threshold variable. To the best of our knowledge these methods are the only ones in the

literature o¤ering such robustness. The �rst method is a nonlinear 2SLS method and requires instruments,

while the other two methods are based on smoothing the objective function of the IDKE and do not require

any instrumentation in their implementation. These are important advantages in empirical work where valid

instruments are often scarce.

Our development and discussion of the 2SLS method clari�es some puzzles in the current literature about

the properties of threshold regression estimation. We draw attention in particular to the following matters

that are resolved in the paper: (i) why the usual GMM method cannot identify the threshold point in

structural change models; (ii) why two groups of moments are required to identify the threshold point when

the threshold variable is exogenous and correlated with the covariates and instruments, whereas only one

group of moments is su¢ cient when the threshold variable is endogenous; and (iii) why the bootstrap is valid

for our 2SLS method while it is generally invalid for the usual GMM approach.

In discussing the two IDKE-smoothing methods, we show that these IDKEs use di¤erent normalizations to

obtain operable asymptotic distributions under di¤erent assumptions and we explain why their convergence

rates are di¤erent. We further show how to construct con�dence intervals by inverting the LR statistics

in both methods. Our three inferential methods provide considerable �exibility to practitioners. When

instruments are available, the 2SLS method of estimation can be used, coupled with use of the bootstrap for

inference. When instruments are absent, the other two methods can be used.

Two speci�cation tests are suggested, one designed to check for the presence of endogeneity and the other

to check for threshold e¤ects. Our results show that it is possible to test for threshold e¤ects in the absence

of instrumentation even if endogeneity is present. An important implication of the test for endogeneity in

empirical work is that it helps to assess whether instruments are required to achieve consistent estimation

of the structural coe¢ cients. Both tests are similar to score tests and have convenient asymptotic normal

distributions, although a wild bootstrap procedure is suggested to determine critical values for improved

�nite sample performance.
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