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Abstract

In this paper, we calibrate the con�dence intervals (CIs) in Hansen (2000) to achieve better coverage

and/or length. For the threshold point, when the threshold e¤ect is strong, we suggest smaller critical
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the threshold e¤ect is weak, we suggest a LR-CI based on the least favorable distribution to eliminate or

mitigate the undercoverage problem. For slope parameters, when the threshold e¤ect is strong, the usual

t-CI works well, and when the threshold e¤ect is weak, we rigorize the Bonferroni-type CI in Hansen

(2000). Simulation studies and two empirical applications illustrate the usefulness of our new CIs in

practice.
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1 Introduction

Threshold regression (TR), as a parsimonious model of nonlinear relationships between a response and some

covariates, is very popular in current practice of econometrics; see Hansen (2011) for an excellent review of

applications in time series, cross sections and panel data. The TR model usually assumes

yi = x0i�11 (qi � ) + x0i�21 (qi > ) + "i (1)

= x0i�2 + x
0
i�n1 (qi � ) + "i;

where yi is the dependent variable or the response, qi is the threshold variable which is used to split the

sample, xi = (1; x0i; qi)
0 2 Rk is the set of covariates and may include qi as a component, "i is the error term

and satis�es E ["ijFi�1] = 0 with Fi�1 being the sigma �eld generated by fxi�j ; qi�j ; "i�1�j jj � 0g, and the
parameter of interest is � =

�
; �0

�0
with � =

�
�01; �

0
2

�0
, or equivalently, � =

�
; �02; �

0
n

�0
with �n = �1 � �2

being the threshold e¤ect in conditional mean of yi. Note here that we use subscript n in �n to emphasize

the dependence of �1 � �2 on n. This model is similar to the linear regression except that the regression
coe¢ cients depend on whether the threshold variable q crosses the threshold point .

Because E ["ijFi�1] = 0, we can estimate � based on least squares. Speci�cally, � is estimated by

minimizing the following objective function,

Sn (�) =

nX
i=1

(yi � x0i�11 (qi � ) + x0i�21 (qi > ))
2
:

Denote the least squares estimator (LSE) of � as b� = �b; b�01; b�02�0. Often, a two-step procedure is used to
obtain b�. First, given , run least squares on data with qi �  and qi >  separately to obtain b�1 () andb�2 (). Second, minimize the concentrated objective function

Sn () =
nX
i=1

�
yi � x0ib�1 () 1 (qi � ) + x0ib�2 () 1 (qi > )�2

to obtain b and set b�` = b�` (b), ` = 1; 2. The threshold e¤ect �n is estimated by b� = b�1 � b�2. This paper
concerns about the con�dence intervals (CIs) for  and � with good performances in coverage.

Currently, the dominant CI for  in the literature is the LR-CI of Hansen (2000). Such a CI relies on the

shrinking-threshold-e¤ect asymptotics borrowed from the structural change literature such as Picard (1985)

and Bai (1997). It is well known that the aim of any asymptotic argument is to provide useful small sample

approximations. However, as shown in our simulations in the following Section 4 , the LR-CI undercovers

when the threshold e¤ect is small (i.e., the CI is too short) and overcovers when the threshold e¤ect is large

(i.e., the CI is too long), so it is desirable to conctruct a CI for  which has approximate correct coverage

irrespective of the magnitude of the threshold e¤ect. This implies that we should use a longer CI when the

threshold e¤ect is small and a shorter CI when the threshold e¤ect is large. One purpose of this paper is to

provide such a LR-type CI. Usually, when the threshold e¤ect is large, the LR-CI is quite narrow (i.e., quite

informative) although it overcovers, so the undercoverage problem when the threshold e¤ect is small seems

more urgent.

Hansen�s framework involves a shrinking-to-zero threshold e¤ect but the e¤ect is large enough (n1=2 k�nk !
1) such that the usual tests for a threshold e¤ect would reject the null of no threshold e¤ect (with the p-value
converging to zero); in other words, the threshold e¤ect is large enough such that the threshold model under

consideration is out of the contiguous neighborhood (n1=2�n = b 2 Rk) of the linear regression model. Such a
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"large" threshold e¤ect makes the inference for the presence of a threshold trivial although the location of the

threshold remains uncertain. Actually, as we will show in Section 5, the contiguous model provides a better

approximation to the �nite-sample distribution of the LR statistic when the threshold e¤ect is "small". Such

a local analysis is standard in the weak IV literature such as those started by Staiger and Stock (1997). In

such an analysis, both the presence and the location of the threshold are uncertain.

There is some related literature on the CI construction for the break date in the structural change model.

Table 1 in Elliot and Müller (2007, EM hereafter) shows that when the break size is small, the CI for the break

date that inverts the t-statistic of Bai (1997) (labelled as t-CI hereafter) also su¤ers from the undercoverage

problem; see also Bai and Perron (2006) and Eo and Morley (2015). EM propose the invariant-to-� CI that

is invariant to the magnitude of �2 and � under the null and meanwhile maximizes the weighted average

power over the break date and �.1 It turns out that EM�s CI is based on the inversion of a sequence of tests

for an additional break given a maintained break date. Their tests are constructed under the assumption

that n1=2�n = b.2 Although the EM-CI has accurate coverage even when the threshold e¤ect is small, it is

typically much longer than the t-CI (when the t-CI does not undercover or b is large) and LR-CI as observed

in EM and Eo and Morley (2015) so is not as informative as the LR-CI in practice.3We will employ di¤erent

CI-construction procedures for small and large b values to avoid this problem. Section 5.2 of Elliot, Müller

and Watson (2015, EMW hereafter) improves the power of EM�s test in the simple case with x = 1 by

neglecting the invariance to � (but maintaining only the invariance to �2). They show the limit experiment

for testing the location of the break date is a Brownian bridge plus a drift which has a kink at the break date.

By searching for the approximate least favorable distribution, they develop a nearly optimal (in the weighted

average power) test which has a much higher power than EM�s test so induces a shorter CI. However, there

are two di¢ culties in applying EMW�s test in the TR context. First, the limit experiment in TR is much

more complicated. One may suggest to use the transformation in Lee and Wang (2022) to convert TR to

structural change, but their transformation excludes q as a regressor (otherwise, sorting qi will introduce a

time trend in the regression). Second, when k is larger than a small number, say 2, EMW�s procedure is

computationally intractable.

Hansen (2000) suggests a Bonferroni-type CI for � that takes union of CIs for � when  falls in a 80%

CI. There are two problems associated with this CI. First, the coverage 80% is arbitrary, so may not perform

universally well in all applications. Second, as shown in the simulations of Section 4, when �n is large, the

Bonferroni-type CI tends to overcover, i.e., is too long. Taking n1=2�n = b, we suggest to use the Bonferroni-

type CI with the coverage for  appropriately chosen when b is small, and use the usual t-CI when b is

large.

There is also some related literature on the CI construction for � in the structural change model. Mc-

Closkey (2017) proposes three Bonferroni-based size-corrected critical values which is uniformly valid and

possesses desirable power properties by assuming n1=2�n = b with b 2 Rk1 and R1 = R [ f�1;1g, while
due to the complexity of the asymptotic distribution of b� (see Section 5), his size correction procedure is
not feasible when k is moderately large. Elliot and Müller (2014, EW2 hereafter) consider the CI for each

component of �`. By developing the limit experiment (which is a Brownian motion plus a kinked drift with

the kink location at the break date) under the assumption that n1=2�n = b, they follow EMW and construct

1Under both H0 and H1, the test is invariant to �2.
2Such a small-threshold-e¤ect assumption (i.e.,

p
n k�nk is small, which can be implied by either small n or small k�nk) is

relevant in practice. For example, in the application of Hansen (2000), the p-value for the threshold model using initial per
capital output as q is 0:088 and for the threshold model using the initial literacy rate as q is 0:078, both of which are only
marginally signi�cant. In this example, the small

p
n k�nk may be due to the small n (n = 96 and 78 for these two threshold

models).
3This is understandable by noticing that the weighting scheme in their test statistic puts null probability on large b values

(note that the scale in the covariance matrix of the weighting Gaussian distribution is close to zero).
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the CI by inverting an approximately weighted average power maximizing test.4 However, the two di¢ culties

mentioned above in applying EMW�s procedure to constructing a CI for  still apply here. To circumvent

these di¢ culties, Andrews et al. (2021) consider conditional and unconditional inference on � (b) by extend-
ing Andrews et al. (2019)�s procedure where the nuisance parameter (like  here) is de�ned by maximizing

the level of an asymptotically normal random variable to the case where the nuisance parameter is de�ned

by maximizing the norm of an asymptotically normal random vector, where � (b) is the pseudo-true value of
� when the true  is equal to b. However, we are interested in � not � (b). Also, their procedure restricts 
to stay in a �nite set, which seems irrelevant in practice, but is problematic in theory. In our setup,  stays

in an expanding (with n) �nite set which contains in�nite possible values in the limit. Because there are

su¢ cient discussions on the inference of � in the literature, we will focus on the inference of  in this paper.

This paper is organized as follows. Section 2 reviews the CI construction in Hansen (2000). Section 3

shows what the genuine critical value should be when we use the convex hull of the set that is created by

inverting the LR statistic for  (i.e., a genuine interval). Section 4 motivates our new CIs using the same

simulation studies in Hansen (2000). Section 5 develops the local asymptotics for the LSE of , � and the

LR statistic when n1=2�n = b 2 Rk. Section 6 constructs our new CIs for  and �. Section 6 includes some
simulation results, Section 7 includes two empirical applications, and Section 8 concludes.

A word on notation: the symbol ` is used to indicate the two regimes in (1) and, to simplify notation

in what follows, the explicit values "` = 1; 2" are often omitted. For a; b 2 R, a ^ b = min (a; b), and

a_b = max (a; b). For two random vectors x; y, x ? y means x is independent of y. 1(�) denotes the indicator
function.

2 Review of Hansen (2000)

To review the asymptotic distribution of b� in the framework of Hansen (2000), we �rst replicate his Assump-
tion 1 as Assumption D below. First, we de�ne some notations. Let f(q) be the density function of q, and

0 be the true value of ,

M () = E [xix
0
i1(qi � )] ;M = E [xix

0
i] ;

D () = E [xix
0
ijqi = ] ; D = D (0) ;

V () = E
�
xix

0
i"
2
i jqi = 

�
; V = V (0) :

Assumption D:

1. (xi; qi; "i) is strictly stationary, ergodic and �-mixing, with �-mixing coe¢ cients satisfying
P1

m=1 �
1=2
m <

1.

2. E ["ijFi�1] = 0.

3. E
h
jxij4

i
<1 and E

h
jxi"ij4

i
<1.

4. For all  2 �, E
h
jxij4 j"ij4 jqi = 

i
� C and E

h
jxij4 jqi = 

i
� C for some C <1, and f () � f <1,

where � is the parameter space of .

4When b is large, EW2 employs a switching scheme such that their procedure nearly reduces to the standard inference, and
increase their critical values to account for this switch.Speci�cally, they suggest to use a �xed critical value for the supF test
(such as 90) and then adjust the critical value from 1:96 to 2:01 if the null of no structural change is rejected to ensure overall
size control in the t-test for �.

3



5. f (), D (), and V () are continuous at  = 0.

6. �n = cn�', with c 6= 0 and ' 2 (0; 1=2).

7. c0Dc > 0, c0V c > 0, and f = f (0) > 0.

8. M > M () > 0 for all  2 �.

Hansen (2000) provides detailed discussions on these assumption after his Assumption 1, so we only brie�y

mention some key points. First, Assumption D6 assumes that �n shrinks to zero but stays out of the

contiguous neighborhood of �n = 0 (i.e., �n = cn�1=2) so that  can still be point identi�es. Assumption D7

excludes the continuous threshold model discussed in Chan and Tsay (1998) and Hansen (2017). Second,

Assumption D8 restricts � to be a proper subset of the support of qi. In practice, we often set � =
�
; 

�
,

where  and  are the lower and upper �% quantiles of fqigni=1. This guarantees that each regime contains
at least �% of the whole dataset for some � > 0 (typically, 5, 10 or 15). Note that Sn () is constant on

[q(i); q(i+1)), where
�
q(i)
	n
i=1

is the sorted fqigni=1. This is why we need only check  2 �n to search for b in
practice, where �n = fqijqi 2 �g. In other words, b is taken as the left endpoint of the minimizing interval
of Sn (). Yu (2012, 2015) suggests to take the middle point of this interval as b to improve its �nite-sample
performance, but under Assumption D6, taking any point in this interval as b does not a¤ect its asymptotic
properties. Intuitively, this is because the convergence rate of b is slower than n, while the distance between
q(i) and q(i+1) is O

�
n�1

�
.

Under Assumption D, Theorem 1 of Hansen (2000) shows that

n bf
�b�0 bDb��2b�0 bV b� (b � 0) d�! argmax

v

�
�jvj
2
+B (v)

�
; (2)

where bf ,; bD and bV are consistent estimators of f , D, and V , respectively. The con�dence interval of  can

be constructed by inverting the t statistic in testing H0 :  = 0 vs. H1 :  6= 0. Speci�cally, a (1� �) CI
is 264b � ct�=2

n bf b�0 bV b��b�0 bDb��2 ; b +
ct�=2

n bf b�0 bV b��b�0 bDb��2
375 ;

where ct� is the upper �th quantile of the distribution of argmax
v

h
� jvj

2 +B (v)
i
which is developed in

Bhattacharya and Brockwell (1976). In the homoskedastic case where E
�
"2jx

�
= E

�
"2
�
= �2,

b�0 bV b�
(b�0 bDb�)2 can

be replaced by b�2b�0 bDb� , where b�2 is a consistent estimator of �2.
Because  cannot be identi�ed when �n = 0, following Dufour (1997), Hansen (2000) suggests to use the

LR-based CI to improve the performance,5 where the LR statistic is

LRn () = n
Sn ()� Sn (b)

Sn (b) :

It can be shown that

LR�n (0) :=
LRn (0)b�2 d�! �;

5Another advantage of LR-CI over t-CI is that the former is shorter than the latter both asymptotically and in �nite samples
as shown in Eo and Morley (2015) in the structural change context. Technically, this is because the t-test is less powerful than
the LR test.
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where b�2 = b�0 bV b�b�2b�0 bDb� is a consistent estimator of

�2 =
�0nV �n

�2�0nD�n
=

c0V c

�2c0Dc
=:

�

�2�
;

b�2 is an estimator of �2 = E �"2� such as bSn (b) =n, and � = maxv [� jvj+ 2B (v)]. When E �"2jx� = �2, b�2
can be replaced by 1. As a result, a (1� �) CI is

b� (1� �) = f : LR�n () � c�g ;
where c� is the upper �th quantile of the distribution of � which is P (� � x) =

�
1� e�x=2

�2
. Compared

with the t-CI, the LR-CI does not need to estimate f and D in the homoskedastic case.

Quite ofen, b� (1� �) is a union of segments rather than an interval, so a common practice is to take
the convex hull of b� (1� �) as the CI for , denoted as convnb� (1� �)o. Because LRn () is �at on

[q(i); q(i+1)), the convex hull of b� (1� �) takes the form of [q(i); q(j)) for some i < j. For comparison, the

t-CI is always an interval. The disjointness of LR-CI is also observed in the structural change literature,

e.g., Siegmund (1986, 1988), where the convex CI is also considered.6 Note that P
�
0 2 conv

nb� (1� �)o� �
P
�
0 2

nb� (1� �)o�! 1��, so the critical value c� is too large for conv
nb� (1� �)o. We label P �0 2 convnb� (1� �)o�

as the interval coverage, and P
�
0 2 b� (1� �)� as the actual coverage.

Under Assumption D, b�` is asymptotically normal; also, b�1, b�2 and b are asymptotically independent.
Hansen (2000) suggests a Bonferroni-type CI for � and �n. Speci�cally, the (1� �) con�dence set (CS) for
� and �n takes the form of b�� = [

2b�(�)
b�(1� �j) ;

where b�(1� �j) is the (1� �) CI for a component of � or �n given that the threshold value were known
as . More speci�cally, the (1� �) con�dence set (CS) for �` is

bB`;1�� = [
2b�(1��)

bB` (1� �`j)
with �` = � and the (1� �) CS for �n is

bB1�� = [
2b�(1��)

bB (1� ��j) ;
with �� = �, where � = 0:2, bB` (1� �`j) is the (1� �`) CS for �` given , and bB (1� ��j) is the (1� ��)
CS for �n given . Of course, if we are interest in one component of �` or �n, we can replace the CS by a CI.

3 Genuine Critical Values in Hansen�s Framework

From the discussion in the last section, we know the critical value c� is too large if we use the conv
nb� (1� �)o

instead of b� (1� �) as the CI for . A natural question is what the genuine critical value should be if

conv
nb� (1� �)o is employed. The following theorem answers this question.

6As commented on page 391 of Siegmund (1986), "In fact, because of the rapid �uctuations of Brownian sample paths, with
probability 1 it consists of the union of in�nitely many open intervals."
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Figure 1: Comparison Between � and Exp (2)

Theorem 1 Under Assumption D,

P (0 2 conv f : LR�n () � xg)! p (x) := P
�
max [�1; �2]�min [�1; �2] �

x

2

�
= 1� e� x

2 ;

where �1 and �2 are independent and both follow Exp (1).

For comparison, in Hansen (2000),

P (LR�n (0) � x) ! P
�
max [�1; �2] �

x

2

�
= P

�
� � x

2

�
� P

�
max [�1; �2]�min [�1; �2] �

x

2

�
:

Note that 1 � e� x
2 is the cdf of exponential distribution with mean 2, denoted as Exp (2). Now, p�1 (x) =

�2 log (1� x) while F�1� (x) = �2 log (1�
p
x). Figure 1 shows the di¤erence between these two distribu-

tions. Because Exp (2) has a much thinner right tail than �, its critical values are signi�cantly smaller and

p
�
F�1� (1� �)

�
> 1� � as shown in Table 1.

1� � :80 :85 :90 :925 :95 :975 :99

F�1� (1� �) 4:497 5:101 5:939 6:528 7:352 8:751 10:592

p (c�) 0:894 0:922 0:949 0:962 0:975 0:987 0:995

p�1 (1� �) 3:219 3:794 4:605 5:181 5:991 7:378 9:210

Table 1: Calibrating Critical Values

One may wonder why we need not consider the di¤erence between these two types of CIs for regular

parameters. To explain the reason, consider the LR-CI for �, where � is the mean of a normal distribution

with unit variance, i.e., we observe iid Xi � N (�; 1), i = 1; � � � ; n. The LR statistic is

Ln (�) = 2 log
Ln (b�)
Ln (�)

= n
�
X � �

�2
;

where b� = X is the MLE of �, and Ln (�) is the likelihood function for �. As a result, f� : Ln (�) � c�g =h
X � n�1=2c1=2� ; X + n�1=2c

1=2
�

i
, exactly the same as the t-CI, where c� is the upper �th quantile of �2 (1).
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Figure 2: Comparion of the CI Construction for � and 

Why we need only check whether Ln (�0) � c� to determine whether the CI covers �0? This is because

Ln (�0) � c� is equivalent to �0 2 f� : Ln (�) � c�g when f� : Ln (�) � c�g is an interval. On the contrary,
for the LR-CI of  in TR, the event fLR�n (0) � c�g is smaller than f0 2 conv f : LR�n () � c�gg. The
following Figure 2 illustrates this point. From the two upper graphs, we can see if Ln (�0) � c�, then the
CI covers �0, and vice versa. On the contrary, from the two lower graphs, although LR�n (0) � c� implies
the CI covers 0, LR

�
n (0) > c� does not imply the interval CI excludes 0.

4 Motivation of New Con�dence Intervals

To motivate our new con�dence intervals for  and �, we re-examine the simulation studies in Hansen (2000),

where x = (1; zi)
0 with zi = qi or zi = xi being either iid N (0; 1), "i � N (0; 1), qi � N (2; 1), �2 = 0,

�n = (0; �20)
0, and 0 = 2. We label the case with zi = qi as DGP1 and zi = xi as DPG2. We set

�20 = 0; 0:25; 0:5; 1 and n = 50; 100; 500 to check the sensitivity of coverage, and we use 10000 replications

to improve the preciseness of simulation.

We �rst con�rm the result in Dufour (1997) in our scenario, i.e., when �20 is close to zero, the length of

the t-CI tends to be in�nite. To be speci�c, the normalization factor in (2) converges to

nf

�
�00D�0

�2
�00V �0

= n
�00D�0p
2�

=
n�220D22p

2�
;

where D = E

" 
1

q

!
(1; q)

����� q = 2
#
=

 
1 2

2 4

!
or D = E

" 
1

x

!
(1; x)

#
=

 
1 0

0 1

!
=: I2, and

V = D. So in terms of the normalization factor, 2�20 when z = x is similar to �20 when z = q. Obviously,

this normalization factor tends to zero as �20 shrinks to zero such that the t-CI diverges to the whole line.
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z = q z = x

n& �20 �! 0 0:25 0:5 1 0 0:5 1 2

50
0:753

0:891

0:783

0:893

0:851

0:909

0:940

0:949

0:783

0:894

0:834

0:903

0:903

0:931

0:957

0:962

Coverage 100
0:700

0:897

0:787

0:907

0:887

0:925

0:956

0:960

0:745

0:905

0:848

0:917

0:929

0:945

0:970

0:974

500
0:571

0:893

0:881

0:932

0:938

0:955

0:967

0:970

0:615

0:893

0:919

0:945

0:946

0:958

0:975

0:979

50 2:154 2:022 1:597 0:530 2:184 1:872 1:097 0:350

Length 100 2:744 2:374 1:287 0:168 2:792 1:904 0:578 0:169

500 3:782 1:277 0:098 0:024 3:844 0:394 0:091 0:033

Table 2: Coverage and Length of 90% LR-CI

Note: for coverage, the upper is actual coverage and the lower is interval coverage;

the length is the average length of convf : LR�n () � c0:9g

We then report the coverage and length of 90% LR-CI for  in Table 2, where we report the coverage for

both b� (1� �) and convnb� (1� �)o with the latter larger. From Table 2, we draw the following conclusions.
First, although P (LR�n (0) � c0:9) < 0:9 when �20 is small, P (0 2 conv f : LR�n () � c0:9g) matches the
nominal coverage pretty well even when �20 is small. Especially, when �20 is close to zero, P (LR�n (0) � c0:9)
gets smaller when n gets larger while P (0 2 conv f : LR�n () � xg) is quite stable and close to 0.9. Second,
When �20 is large, both probabilities exceed 0:9. Third, when �20 is small, the gap between these two

probabilities is large, while when �20 gets larger, the gap diminishes. Actually, only if �20 is large, b� (1� �)
tends to be an interval such that the two coverages are close. Fourth, the CI becomes shorter when �20 gets

larger for each n, but need not become shorter as n gets larger when �20 is small. Fifth, the parameter space

�n is the qi�s after deleting the �ve smallest and �ve largest qi�s, so the expected length of �n is 2:56, 3:29

and 4:65 when n = 50; 100 and 500, respectively. When z = q and �20 = 0, the length ratio of the CI to �n
is 2:154=2:56 = 0:841, 2:744=3:29 = 0:834 and 3:782=4:65 = 0:813, when n = 50; 100 and 500, all less than

0:9, which implies that the distribution of b is not uniform although its distribution must be very disperse.

Similar conclusions apply to the z = x case. Sixth, when �20 = 0, the CI is the longest when n = 500. This

is because such a data size provides a sharp signal that there is no threshold e¤ect, while when n is small,

the noise may provide a fake signal that the threshold e¤ect exists so that the CI is smaller.

The good match of P (0 2 conv f : LR�n () � c0:9g) with 0:9 is the result of misusage of the critical
value c0:9. Actually, we should compare the interval coverage with p (c0:9) = 0:949, so there is also serious

undercoverage just like the actual coverage. Only because we use a larger (than appropriate) critical value,

the interval coverage seems to match the target coverage. Table 3 reports the coverage and length of

P
�
LR�n (0) � p�1 (0:9)

�
. Because the critical value is smaller, the coverage is smaller and the length are

shorter compared with Table 2. Using the modi�ed critical value, we have undercoverage when �20 is small

while su¤er less overcoverage when �20 is large. A better strategy is to use a larger critical value to maintain

the coverage when �20 is small while use a smaller critical value like p�1 (1� �) to alleviate the overcoverage
when �20 is large. In the following sections, we will discuss how to determine whether �20 is small or large

and how to obtain a larger critical value when �20 is small.
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z = q z = x

n& �20 �! 0 0:25 0:5 1 0 0:5 1 2

50 0:823 0:825 0:840 0:913 0:827 0:833 0:879 0:938

Coverage 100 0:828 0:833 0:868 0:930 0:829 0:851 0:905 0:949

500 0:815 0:867 0:899 0:942 0:814 0:897 0:928 0:957

50 1:917 1:749 1:301 0:409 1:968 1:626 0:881 0:304

Length 100 2:439 1:991 0:989 0:140 2:483 1:547 0:465 0:146

500 3:278 0:966 0:074 0:020 3:324 0:314 0:075 0:029

Table 3: Coverage and Length of 90% LR-CI Using Modi�ed Critical Value p�1 (0:9)

We next discuss the CI for �2. As mentioned in Section 2, Hansen (2000) suggests � = 0:2 and

�` = �� = 0:05 when � = 0:05.7 We are only sure that the coverage of his CI is greater than 0:95 in his

framework but not sure whether the coverage is greater than 0:95 when �20 is smaller. Table 4 reports the

coverage and length of 95% CIs for �2. From Table 4, we draw the following conclusions. First, as expected,bB0:8 always has a larger coverage and is longer than bB0. When pn�20 is small, bB0:8 is much longer than bB0,
while when

p
n�20 is large, they get close in length.8 Second, both bB0 and bB0:8 get shorter when either n or

�20 gets larger because the uncertainty in b and b�2 gets smaller. Third, the coverage of bB0 increases when
either n or �20 gets larger, while the coverage of bB0:8 �rst increases and then decreases with �20. Fourth, bB0
has undercoverage when

p
n�20 is small while perfect coverage when

p
n�20 is large. On the other hand, bB0:8

has perfect coverage when �20 is small while has overcoverage when
p
n�20 is large (so is long). A better CI

can combine the advantages of both bB0 and bB0:8 �when pn k�nk is small, use the Bonferroni-type CS to
guarantee coverage, and when

p
n k�nk is large, use the standard CS to keep the volume of CS small.

z = q z = x

n& �20 �! 0 0:25 0:5 1 0 0:5 1 2

50
0:694

0:950

0:715

0:953

0:747

0:955

0:878

0:949

0:615

0:925

0:780

0:952

0:902

0:968

0:933

0:949

Coverage 100
0:735

0:961

0:762

0:972

0:832

0:970

0:929

0:963

0:618

0:946

0:868

0:976

0:933

0:971

0:945

0:954

500
0:757

0:973

0:875

0:979

0:936

0:973

0:949

0:963

0:670

0:965

0:960

0:982

0:961

0:966

0:964

0:965

50
4:551

16:24

4:405

14:41

3:269

10:238

2:051

3:844

2:043

5:625

1:771

4:302

1:436

2:186

1:136

1:251

Length 100
2:880

8:349

2:401

7:017

1:684

4:096

1:323

1:571

1:238

2:793

0:963

1:841

0:799

0:975

0:794

0:838

500
1:116

2:712

0:650

1:265

0:584

0:689

0:583

0:621

0:527

1:205

0:355

0:424

0:351

0:373

0:351

0:359

Table 4: Coverage and Length of 95% CIs for �2
Note: the upper is bB0 and the lower is bB0:8

7Because he uses a larger critical value as argued in Section 3, his critical value at � = 0:2 is roughly equivalent to p�1 (0:9)
from Table 1.

8This echos the comment in EW2�s Introduction, "A Bonferroni procedure based on uniformly valid con�dence sets for the
break date developed by EM performs well for large breaks, but has poor power for breaks of moderate magnitude".
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5 Local Asymptotics

As shown in the simulations in the last section, we should pay special attention to the case where k�nk is
small. Following the literature, we assume

p
n�n ! b 2 Rk, and then study the asymptotic behavior of the

LSE and the LR statistics.

The following theorem states the asymptotic distribution of b�1, b�2 and b, where we use subscript n to
emphasize the dependence of the true value of �1 and �2 on n. We �rst strengthen Assumption D.5 and D.8

as D.50 and D.80 below.

Assumption D.50: Over  2 �, f (), D (), and V () are continuous, and f () > f > 0, D () > 0, and
V () > 0.

Assumption D.80: M > M () > 0 and E
�
xx0"2

�
> E

�
xx0"21(q�)

�
> 0 for all  2 �.

Because E
�
xx01(1<q�2)

�
=
R 2
1
D () f () d, and E

�
xx0"21(1<q�2)

�
=
R 2
1
V () f () d, Assumption

D.50 implies both terms are positive de�nite as long as 1 < 2 and 1; 2 2 �. Assumption D.80 implies
E
h
xx0"21(q�)

i
> 0, and E

�
xx0"21(q>)

�
> 0.

Theorem 2 Under Assumptions D.1-D.4, D.50 and D.80, if
p
n�n ! b 2 Rk, then�b;pn�b�1 � �1n; b�2 � �2n�� d�! argmax

h
� (hj0; b) ;

where

� (hj0; b) = �

8>>><>>>:
u01M ()u1 + (b� u2)0M (; 0) (b� u2) + u02M (0)u2

�2u01W ()� 2u02W (0) + 2 (b� u2)
0
W (; 0) , if  � 0;

u01M (0)u1 + (b+ u1)
0
M (0; ) (b+ u1) + u

0
2M ()u2

�2u01W (0)� 2u02W ()� 2 (b+ u1)0W (0; ) , if  > 0;

with h = (; u01; u
0
2)
0 2 � � Rk � Rk, M (1; 2) = M (2) �M (1) and W (1; 2) = W (2) �W (1) for

1 � 2, M () = M (;1) and W () = W (;1), and W () is a Gaussian process with the covariance

kernel equal to

K (1; 2) = K (1 ^ 2) := E
�
xx0"21(q�1^2)

�
so that W () is a Gaussian process with the covariance kernel equal to

K (1; 2) = K (1 _ 2) := E
�
xx0"21(q�1_2)

�
:

We provide a few comments on Theorem 2 here. First, when �n shrinks to zero in the rate of
p
n, 0 is

not identi�able, but �n still is. Second, b� and b are not asymptotically independent, which is dramatically
di¤erent from the case in Hansen (2000). Third, consider � (h) in some special cases. When b = 0, � (hj0; b)
can be further simpli�ed as

� (h) = �u01M ()u1 � u02M ()u2 + 2u
0
1W () + 2u02W () ;

which does not depend on 0 at all. The form of � (h) also reveals that b�1 and b�2 are dependent throughb. Fourth, when q ? (x; "), then W () = K1=2B (F ()) with K = E
�
xx0"2

�
and B (�) being a standard

k-dimensional Brownian motion, where F (�) is the cdf of q.

Corollary 1 Under the assumptions of Theorem 2, if
p
n�n ! b 2 Rk, then

b d�! argmax
2�

� (j0; b) =: e;
10



where

� (j0; b) =

8>>><>>>:
W ()

0
M ()

�1
W () +

�
W () +M (; 0) b

�0
M ()

�1 �
W () +M (; 0) b

�
�b0M (; 0) b� 2W (; 0)

0
b, if  � 0;

W ()
0
M ()

�1
W () + (W ()�M (0; ) b)

0
M ()

�1
(W ()�M (0; ) b)

�b0M (0; ) b+ 2W (0; )
0
b, if  > 0:

(ii)

p
n
�b�1 � �1n� d�!M (e)�1W (e)� 1(e>0)M (e)�1M (0; e) b;

p
n
�b�2 � �2n� d�!M (e)�1W (e) + 1(e�0)M (e)�1M (e; 0) b;

p
nb� � b d�!M (e)�1W (e)�M (e)�1W (e)� n1(e>0)M (e)�1M (0; e) + 1(e�0)M (e)�1M (e; 0)o b:

(iii)

LRn (0)
d�! LR1 (0jb) :=

max2� � (j0; b)� � (0)
�2

;

where �(0)
�2 = �(0j0;b)

�2 = W (0)
0

� M (0)
�1 W (0)

� + W (0)
0

� M (0)
�1 W (0)

� does not depend on b and follows

�22k in the homoskedastic case.

We provide a few comments on Corollary 1 here. First, from (i), the asymptotic distribution of b
depends on 0, b, �, K (�; �) and M (�; �), but not �2 (which is why we set �2 = 0 in our simulations

of Section 4).9 Second, from (ii), we cannot treat  as known in the inference on � because there are

some bias terms in the asymptotic distribution of b�1 and b�2 beyond M (e)�1W (e) and M (e)�1W (e)
unless b = 0; in other words, the asymptotic distribution of b�` is a mixed normal with a bias. Third,
b, as a local parameter, cannot be consistently estimated. Actually, b� tends to underestimate �n in ab-
solute value. For example, if x = 1 and b > 0, then E

hp
nb�i converges to E hF (0)F (e)

i
b whose ab-

solute value is less than jbj. This is intuitively correct since when b > 0, plimb�1 would be an av-
erage of �1 and �2 such that the di¤erence between b�1 and b�2 would be smaller than �n in absolute
value; similar analysis applies to b < 0. Fourth, if b were consistent, then the distribution of e would
degenerate to a point mass at 0 and M (e)�1W (e) � 1(e>0)M (e)�1M (0; e) b = M (0)

�1
W (0)

and M (e)�1W (e) + 1(e�0)M (e)�1M (e; 0) b = M (0)
�1
W (0) as usual. Fifth, the proof of (iii)

also shows that LRn (0) has a di¤erent asymptotic distribution from LR1n (0) =
Sn(0;b�)�Sn(b;b�)

Sn(b;b�)=n and

LR2n (0) =
Sn(0;b�(0))�Sn(b(b�(0));b�(0))

Sn(b;b�)=n , where b �b� (0)� = argmin2� Sn �; b� (0)�. This is dramati-
cally di¤erent from the case with 0 being identi�able where LRn (0) ; LR1n (0) and LR2n (0) have the

same distribution. Sixth, LR1 (0jb) depends on b, which is why the coverage in Tables 2 and 3 varies with
the size of �20. This fact reveals a key di¤erence between the nonregular parameter  and the usual regular

parameter under weak identi�cation, e.g., Staiger and Stock (1997) show that the LR statistic for slope

parameters is invariant to the identi�cation strength in the weak IV model. Seventh, in the homoskedastic

9Note that due to the symmetricity of the Gaussian distribution, � (j0; b) and � (j0;�b) have the same distribution,
which implies the asymptotic distribution of b is symmetric in the sign of b.
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case, � (j0; b) =�2 reduces to

�o (j0; bo) =

8>>><>>>:
Wo ()

0
M ()

�1
Wo () +

�
W o () +M (; 0) bo

�0
M ()

�1 �
W o () +M (; 0) bo

�
�b0oM (; 0) bo � 2Wo (; 0)

0
bo, if  � 0;

W o ()
0
M ()

�1
W o () + (Wo ()�M (0; ) bo)

0
M ()

�1
(Wo ()�M (0; ) bo)

�b0oM (0; ) bo + 2Wo (0; )
0
bo, if  > 0;

whereWo () is a Gaussian process with the covariance kernel equal toKo (1; 2) =M (1 ^ 2),W o (1; 2)

and W o () are similarly de�ned as W (1; 2) and W (), and bo = b=�. Eighth, when b = 0, � (j0; b)
reduces to

� () =W ()
0
M ()

�1
W () +W ()

0
M ()

�1
W () ;

which does not depend on 0. In the homoskedastic case, B� () := M ()
�1=2

W () =� (and B+ () :=
M ()

�1=2
W () =�) is a Gaussian process with the variance kernel equal toM (1)

�1=2
M (1 ^ 2)M (2)

�1=2

(M (1)
�1=2

M (1 _ 2)M (2)
�1=2) which is Ik when 1 = 2, so � () is a �

2 process B� ()0 B� () +
B+ ()0 B+ () which follows �22k at any . Ninth, max2� � ()�� (0) is di¤erent from the null distribution
of the LR test in testing H0 : �1 = �2 vs. H1 : �1 6= �2. Suppose the test statistic is n

�e�2 � b�2�, where
e�2 = 1

n

nX
i=1

e"2i and b�2 = 1

n

nX
i=1

b"2i = Sn (b)
n

with e"i being the residual in regressing yi on xi and b"i being the residual in threshold regression; then from
Chan and Tong (1990), the asymptotic null distribution is

max
2�

� ()
0 �
M ()�M ()M�1M ()

��1
� () ;

where � () is a Gaussian process with the covariance kernel equal to K (1; 2)�M (1)M
�1KM�1M (2).

In the homoskedastic case, the null distribution of n
�e�2 � b�2� =b�2 takes the same form sup � ()0 �M ()�M ()M�1M ()

��1
� (),

but the covariance kernel of � () reduces to M (1 ^ 2) �M (1)M
�1M (2), so the null distribution is

a �2 process. The di¤erence is due to e�2 6= Sn(0)
n , where ne�2 �Pn

i=1 "
2
i converges to �W 0M�1W , while

Sn (0) �
Pn

i=1 "
2
i converges to �� (0), and � (0) 6= W 0M�1W , where W = W (1) � N (0;K). Tenth,

when � is known, then

� (j0; b) = �
(
b0M (; 0) b+ 2b

0W (; 0) , if  � 0;
b0M (0; ) b� 2b0W (0; ) , if  > 0;

when assume further that b = 0, then � (j0; b) = 0 as expected.
In the following two examples, we show that the asymptotic distributions of b appear in the structural

change literature can be expressed as special cases of our Theorem 2 and Corollary 1.

Example 1 In the structural change case, q ? (x; ") and follows U [0; 1], so that � (j0; b) can be much
simpli�ed. If q � U [0; 1], then F () = , M (1; 2) = (2 � 1)M with 1 < 2, and W () = K

1=2B ().
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Now,

� (j0; b) =

8>>>><>>>>:
W ()0M�1W ()

 + (W (; 1) + (0 � )Mb)
0 M�1

1� (W (; 1) + (0 � )Mb)
� (0 � ) b0Mb� 2W (; 0)

0
b, if  � 0;

W (;1)0M�1W (;1)
1� + (W ()� ( � 0)Mb)

0 M�1

 (W ()� ( � 0)Mb)
� ( � 0) b0Mb+ 2W (0; )

0
b, if  > 0;

d
=
fW ()0M�1fW ()


+

�fW (1)�fW ()�0M�1
�fW (1)�fW ()�

1�  � C;

where fW () = W () � 1(>0) ( � 0) �xb,
10 d
= means "equal in distribution", and C = (1� 0) b0Mb +

2b0W (0; 1) is a random variable that does not depend on . Also,

p
n
�b�1 � �1n� d�! 1eM�1W (e)� 1(e>0) e � 0e b;

p
n
�b�2 � �2n� d�! 1

1� eM�1W (e; 1) + 1(e�0) 0 � e1� e b;
p
nb� � b d�!M�1W (e)� eW (1)e (1� e) �

1(e>0) (1� e) (e � 0) + 1(e�0)e (0 � e)e (1� e) b;

which implies
p
nb� d�!M�1M (e)� eM (1)e (1� e) ;

where e = argmax
2�

� (j0; b). These asymptotic distributions are the same as claimed in Proposition 1 of
EM.

Example 2 Jiang et al. (2018) consider the structural change model where x = 1 and E
�
"2
�
= �2 which

implies M = 1 and W () = �B (). If �n were known, then

� (j0; b)
d
= � j � 0j b2 � 2�bB ( � 0) ;

where B (�) is a standard two-sided Brownian motion. As a result,

b2

�2
(b � 0) d�! arg max

v2 b2

�2
(��0)

2�2
�
�jvj
2
+B (v)

�
= arg max

v2 b2

�2
(��0)

�
�jvj
2
+B (v)

�
;

which is the in-�ll asymptotic distribution in their Theorem 4.1(a) when � = (0; 1). If �n is unknown, then

fW ()0M�1fW ()


+

�fW (1)�fW ()�0M�1
�fW (1)�fW ()�

1� 

= C +

8>><>>:
�2
�
B()�B(1)p

(1�)
+

(1�0)
p
p

1�
b
�

�2
, if  � 0;

�2
�
B()�B(1)p

(1�)
+ 0

p
1�p


b
�

�2
, if  > 0;

= C + �2

 
G ()� G (1)p

 (1� )

!2
;

10Note that EM�s d is like our �b, and fW () is their M ().
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where G () = B () + b
� min (; 0) and C = �

2
�
B (1) + (1� 0) b�

�2
does not depend on . So

b d�! argmax
2�

8>><>>:
�
B()�B(1)p

(1�)
+

(1�0)
p
p

1�
b
�

�2
, if  � 0;�

B()�B(1)p
(1�)

+ 0
p
1�p


b
�

�2
, if  > 0;

which is the in-�ll asymptotic distribution in their Theorem 4.2(a) when � = (0; 1). When b = 0, the objective

function
�
B()�B(1)p

(1�)

�2
appears in the null distribution of testing for structural change (see, e.g., Theorem

3 of Andrews (1993)).

Note that although the in-�ll asymptotics of Jiang et al. (2018) are seminal in the structural change

literature, they do not seem applicable in threshold regression because q is usually dependent of (x; "1; "2)

(e.g., q 2 x) and does not follow U [0; 1].

In the online supplement, we show the distribution of e and b under the two DGPs of Section 4.
5.1 Interval Coverage

As in Section 3, we can also study the interval coverage when b 2 Rk.

Theorem 3 When �n = n�1=2b,

P (0 2 conv f : Ln () � xg) ! P[�] (x) = P

�
LR[�] (0jb)

�2
� x

�

: = P

0@max
h
�b1 (0) ; �

b
2 (0)

i
�min

h
�b1 (0) ; �

b
2 (0)

i
�2

� x

1A ;
where x 2 R+ := (0;1), �b1 (0) = max��0 f� (j0; b)g and �

b
2 (0) = max0�� f� (j0; b)g.

For comparison,

P (Ln (0) � x) ! PLR (x) := P

�
max
2�

� (j0; b)� � (0) � �2x
�

= P
�
max

h
�b1 (0) ; �

b
2 (0)

i
� � (0) � �2x

�
� P

�
max

h
�b1 (0) ; �

b
2 (0)

i
�min

h
�b1 (0) ; �

b
2 (0)

i
� �2x

�
= P[�] (x) :

Di¤erent from Theorem 1, �b1 (0) and �
b
2 (0) are correlated and depend on b and 0 (and also �). Often,

we suppress the dependence on 0 and write �
b
1 (0) and �

b
2 (0) as �

b
1 and �

b
2 if this would not introduce any

confusion.

5.2 Numerical Illustration

In the subsection, we analyze the simulation evidences in Section 4 using the asymptotics developed in

Theorem 3 and Corollary 1. Because the asymptotic distributions of b and LRn (0) depend on �, we set
� = [1; 3]. The asymptotics in Hansen (2000) cannot explain why when

p
n�20 is small, the CI based on

inverting the LR statistics does not match the target coverage. To simplify our discussion, we consider only

the n = 100 case.
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Figure 3: Finite Sample Density of LRn (0) and Its Asymptotic Approximation � for z = q or x and
Di¤erent �20 Values

First, we show intuitively why the actual coverage may be di¤erent from 0:9. Figure 3 shows the �nite

sample distribution of LRn (0) and �. When the right tail of the �nite sample distribution is thicker than

that of the asymptotic distribution, the actual coverage is smaller than 90%, and vice versa. Interestingly,

even when �20 is large, the distribution of LRn (0) does not coincide with that of �. In other words, the

joint asymptotic as n and b diverge to 1 simultaneously is di¤erent from the sequential asymptotic by �rst

letting n diverge to 1 and then letting b diverge to 1.

Table 5 reports PLR (c0:9), P[�] (c0:9), P
�1
LR (0:9), and P

�1
[�] (0:9), where P

�1
LR (�) and P

�1
[�] (�) are inverse

functions of PLR (�) and P[�] (�). To obtain PLR (�) and P[�] (�), we need to get M () and K (�). In DGP1,

M () = K () = E

" 
1

q

!
(1; q) 1(q�)

#

=

 
� ( � 2) 2� ( � 2)� � ( � 2)

2� ( � 2)� � ( � 2) 4� ( � 2)� 4� ( � 2) + � ( � 2)� ( � 2)� ( � 2)

!

=

 
� ( � 2) 2� ( � 2)� � ( � 2)

2� ( � 2)� � ( � 2) 5� ( � 2)� ( + 2)� ( � 2)

!
;

and in DGP2,

M () = K () = E

" 
1

x

!
(1; x) 1(q�)

#
= �( � 2) I2;

where � (�) and � (�) are the cdf and pdf of standard normal, respectively. Compared with Table 2 when n =
100, PLR (c0:9) and P[�] (c0:9) match their �nite-sample counterparts, say, Pn;LR (c0:9) and Pn;[�] (c0:9), quite

well. The appropriate critical values depend on b2 and may be larger or smaller than c0:9. Correspondingly,
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PLR (c0:9) and P[�] (c0:9) may be larger or smaller than 0:9 and p (c0:9) = 0:949.

z = q z = x

b = 0 2:5 5 10 0 5 10 20 1
PLR (c0:9) 0:703 0:781 0:889 0:948 0:724 0:832 0:913 0:944 0:900

P[�] (c0:9) 0:917 0:920 0:938 0:961 0:915 0:916 0:943 0:958 0:949

P�1LR (0:9) 8:508 7:723 6:200 4:554 8:267 7:241 5:620 4:712 5:939

P�1[�] (0:9) 5:538 5:541 4:992 4:035 5:594 5:553 4:787 4:195 4:605

Table 5: Asymptotic Approximate Coverage and Critical Value

Note: c0:9 = 5:939 = F
�1
� (0:9)

In the following, we provide more detailed analysis on PLR (�), P[�] (�), Pn;LR (�) and Pn;[�] (�). First, Figure
4 shows PLR (�) for di¤erent b2 values and Pn;LR (�) for the corresponding �20 values. From the �gure, we can
draw three conclusions. (i) PLR (�) and Pn;LR (�) match quite well especially in the right tail, while � matches
Pn;LR (�) closely in the right tail only when �20 = 0:5 when z = q and �20 = 1 when z = x. (ii), the ranking
of the distributions of PLR (�) (or Pn;LR (�)) and � in the right tail depends on the value of b2. In other words,
the actual coverage based on the critical value c0:9 depends on b2, which matches the simulation results in

Table 2. (iii) When b2 6= 0, there is a point mass at zero in the distributions of PLR (�), which matches the
�nite sample distribution in Figure 3. Actually, when jb2j ! 1, PLR (�) converges to a point mass at zero.
This can be seen from the form of LR1 (0jb). When jbj ! 1, the term �b0M ( ^ 0;  _ 0) b dominates,
and its maximum is achieved at  = 0 so that LR1 (0jb) = 0.11 Second, Figure 5 shows P[�] (�) and Pn;[�] (�)
corresponding to Figure 4. The three conclusions can be parallelly applied here.

In summary, di¤erent from the regular case as discussed in Sections 4.4-4.7 of Andrews and Cheng (2012),

the distribution of LR1 (0jb) (and LR[�] (0jb)) when b 2 Rk is very di¤erent from that when maxj jbj j ! 1
(as n!1) such that the LR-CI based on � is not reliable.

Finally, Figure 6 shows the distribution of
���pn�b�2 � �20����, its asymptotic approximation in Corollary 1,

and the usual normal approximation. Although the approximation in Corollary 1 has a thinner tail then the

�nite-sample distribution, it is still better than the normal approximation in most cases, while the normal

approximation is good only when b2 is large (which is much expected).

5.3 Least Favorable Distribution

Because LR1 (0jb) depends on b, and b cannot be consistently estimated, we take the least favorable
distribution of LR1 (0jb) to avoid undercoverage.12 We guess b = 0 is the least favorable case. Speci�cally,
for minb2Rk P (0 2 fjLR1 (jb) � c1�� ()g) � 1� �, we need show that

P

�
max
2�

� (j0; b) � x
�
� P

�
max
2�

� () � x
�

(3)

11This may seem di¤erent from the distribution of �. However, � is achieved by maximizing Sn (0)�Sn () over the
localized parameter space

n
 :  = 0 + a

�1
n v; v 2 R; an = n1�2�

o
which is dramatically di¤erent from �. The point is that

which approximation would match the �nite sample distribution better.
12As in McCloskey (2017), one may suggest to consider the least favorable distribution over b in a con�dence set instead Rk1,

but this is infeasible in practice as discussed in the Introduction although such a least favorable distribution is more informative.
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Figure 4: PLR (�) and Pn;LR (�)
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Figure 6: Distribution of
���pn�b�2 � �20���� and Its Asymptotic Approximation

for any b 6= 0 and x 2 R+, and for minb2Rk P
�
0 2 conv

�
jLR1 (jb) � c1�� ()

	�
� 1� �, we need show

that

P
�
max

h
�b1; �

b
2

i
�min

h
�b1; �

b
2

i
� x

�
� P

�
max

�
�01; �

0
2

�
�min

�
�01; �

0
2

�
� x

�
(4)

for any b 6= 0 and x 2 R+, where P (LR1 (0j0) � c1�� (0)) = 1 � �, and P
�
LR[�] (0j0) � c1�� (0)

�
=

1��. Note that because LR1 (0j0) and LR[�] (0j0) are not pivotal to 0, the critical values c1�� (0) and
c1�� (0) depend on 0. When maxj jbj j =1, we need further show

P
�
�2� � x

�
� P

�
max
2�

� ()� � (0) � �2x
�

(5)

and

P
�
2�2 (max [�1; �2]�min [�1; �2]) � x

�
� P

�
max

�
�01; �

0
2

�
�min

�
�01; �

0
2

�
� �2x

�
(6)

for any x 2 R+ to justify that b = 0 is the least favorable case, where note that � is the asymptotic distribution
of LRn (0) =b�2 while (max2� � ()� � (0)) =�2 is the asymptotic distribution of LRn (0) so that �2� is
comparable with (max2� � ()� � (0)) =�2, similarly, 2�2 (max [�1; �2]�min [�1; �2]) is comparable with�
max

�
�01; �

0
2

�
�min

�
�01; �

0
2

��
=�2, and �1 and �2 are de�ned in Theorem 1.

In practice, we always use an interval to cover 0, so we need only check (4) and (6). To check these two

inequalities in practice, we need to simulate � (j0; b) for b 2 Rk which requires the estimation of nuisance
parameters like K (�; �) and M (�); see Section 6.1 below for the details of such estimation.13 In Figures 4
and 5, these four inequalities all hold under the DGPs of our simulation where �2 = 1. We guess they would

still hold in the general case but this is not easy to show due to the complicated forms of LR1 (0jb) and
LR[�] (0jb). Finally, note that we have only the stochastic dominance but not the almost sure dominance in
13 In practice, we could simulate b uniformly from a big ball centering at 0 and check the �rst two inequalities hold only for

these b values in a speci�c application. Actually, we need only check half of the ball because � (j0; b) and � (j0;�b) share
the same distribution.
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(3) and (4), i.e., the stronger results max2� � (j0; b) � max2� � () and
�
max

h
�b1; �

b
2

i
�min

h
�b1; �

b
2

i�
��

max
�
�01; �

0
2

�
�min

�
�01; �

0
2

��
do not hold.

6 New Con�dence Intervals

In this section, we develop our CIs for  and �.

6.1 Con�dence Interval for 

Given b 2 Rk, we can show that

p
nb� = E

�
xx01(q�b)��1 n�1=2 nX

i=1

xi"i1(qi�b) � E �xx01(q>b)��1 n�1=2 nX
i=1

xi"i1(qi>b)
+
n
1� 1(b>0)E �xx01(q�b)��1E �xx01(0<q�b)�� 1(b�0)E �xx01(q>b)��1E �xx01(b<q�0)�o b+ op(1)

= : T1 + T2 + T3 + op(1);

where E
�
xx01(q�b)� := E

�
xx01(q�)

�
j=b , and other expectation terms involving b are similarly de�ned.

Obviously,

T1 + T2
d�!M (e)�1W (e)�M (e)�1W (e)

in Corollary 1. The following Proposition 1 shows that

b� (b) := cM (b)�1 bK (b)cM (b)�1 +cM (b)�1 bK (b)cM (b)�1
can be used to estimate the asymptotic variance matrix of T1 + T2, where

cM () =
1

n

nX
i=1

xix
0
i1(qi�);

cM () =
1

n

nX
i=1

xix
0
i1(qi>);

bK () =
1

n

nX
i=1

xix
0
ib"2i 1(qi�); bK () = 1

n

nX
i=1

xix
0
ib"2i 1(qi>):

Proposition 1 For any b 2 Rk, cM ()
p�!M (), cM ()

p�!M (), bK () p�! K (), and bK () p�! K ()

uniformly in  2 �, where K () := E
�
xx0"21(q�)

�
, and K () := E

�
xx0"21(q>)

�
.

Denote the diagonal matrix by extracting the diagonal elements of b� (b) as diagnb�21; � � � ; b�2ko. Because
T3 = Op(1),

p
n
���b�j��� =b�j = Op(1). Picking �n such that �n ! 1 as n ! 1, we can guarantee that

p
n
���b�j��� =b�j � �n with probability approaching one. In other words, if maxj npn ���b�j��� =b�jo > �n, we are sure

that maxj jbj j ! 1 as n!1 and the approximations in Hansen (2000) and Theorem 1 are appropriate. If
p
n
���b�j��� =b�j � �n, maxj jbj j is either �nite or diverges to in�nite, but we can assume b = 0 (or �nd the least

favorable b by simulation as in Section 5.3) and simulate the critical value as in the following Algorithm G.

Some popular choices of �n are as follows. Hansen (2005) suggests
p
2 log log n by applying the law of the

iterated logarithm (LIL), Andrews and Soares (2010) suggest
p
lnn by applying the BIC, and Chen et al.

(2007) suggest lnn. In our simulations of Section 7, we �nd
p
2 log log n seems too small while lnn seems

too large, so we suggest
p
lnn in practice.14

14We can calibrate �n by bootstrapping from the original data with the true threshold b and choose �n to match the target
coverage. But this is computationally too intensive, so is not pursued in this paper.
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Algorithm G:

Step 1: Check whether maxj
np
n
���b�j��� =b�jo > �n. If Yes, use the critical value in Table 2 to construct the

CI.

Step 2: If maxj
np
n
���b�j��� =b�jo � �n, simulate the least favorable critical value. For each 0 2 �n, we

simulate �1 (0) := �01 (0) = max��0 f� ()g and �2 (0) := �02 (0) = max0�� f� ()g and
calculate

P
�
max [�1 (0) ; �2 (0)]�min [�1 (0) ; �2 (0)] � �2x

�
to �nd the critical value bc1�� (0) at the � signi�cance level. Then check whether LRn (0) � bc1�� (0)
to determine whether 0 should be included in the CI. The ultimate CI would be the convex hull of

all accepted 0.

The simulation in Step 2 is similar to the grid bootstrap (see, e.g., Hansen (1999) and Mikusheva (2007)

among others). In practice, we can search from  and ; at each side, stop when some 0 is accepted. This

can save simulation time because the least favorable distribution is employed so that the CI tends to be

wide and consequently the algorithm would stop near  and .15 This also implies that the undercoverage

problem when
p
n�20 is small in Table 3 can be alleviated.

The next question is how to simulate � (). To simulate � (), we need to simulate W () andW () and

estimate M () and M (). For this purpose, we need only have uniformly consistent estimators of K (),

K (), M () and M () for all  2 �. This have been done in Proposition 1. Given these estimators, we
estimate � () by b� () = cW ()

0 cM�1 ()cW () +cW ()
0cM�1

()cW () ;

where cW () is a Gaussian process with the covariance kernel equal to bK (1 ^ 2), cW () is a Gaussian

process with the covariance kernel equal to bK (1 _ 2).16 In practice, we need only simulate cW () andcW () at
�
q(1); � � � ; q(m)

	
, which is the set of sorted qi�s in the trimming set �n; this is because for  values

between q(i) and q(i+1), bK () and bK () do not change. Note also that in simulating cW () and cW (), we

need bK (2) � bK (1) to be positive de�nite for any 1 < 2. This is guaranteed only if 2 � 1 covers at
least k q(i)�s due to the �nite-sample estimation of K ().

In the homoskedastic case, the covariance kernel of cW () and cW () can be replaced by cM () andcM ().

Then calculate P (max [�1 (0) ; �2 (0)]�min [�1 (0) ; �2 (0)] � x) to �nd the critical value bc1�� (0) and
check whether LRn (0) � bc1�� (0) or check whether

P (max [�1 (0) ; �2 (0)]�min [�1 (0) ; �2 (0)] � LRn (0)) � 1� �

to determine whether 0 should be included in the CI.

6.2 Con�dence Interval for �

In the following Algorithm B, we discuss the con�dence sets for �` and �. By replacing the Wald statistic

by the t statistic, we can similarly construct CIs for each element of � and �.

Algorithm B:

15Here we assume maxj
np

n
���b�j��� =b�jo � �n, i.e., k�0k is small. When maxj

np
n
���b�j��� =b�jo > �n, a �xed critical value for

all 0 (rather than a simulated critical value for each 0) is used so the CI for  can be easily constructed.
16Note that cW () cannot be replaced by bK1=2 ()B () because the covariance kernels are di¤erent; similarly for cW ().
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Step 1: Check whether maxj
n���b�j��� =b�jo > �n=pn. If No, construct a (1� �) CS for , say, b� (1� �) as

in the last section.

Step 2: For each  2 b� (1� �), construct a (1� �`) CS for �`, say, bB` (1� �`j) in the following way:�
�`jn

�b�` � �`�0 bV` ()�b�` � �`� � c1��`� ;
where bV1 () = cM�1 () bK ()cM�1 (), bV2 () = cM�1

() bK ()cM�1
(), and c1��` is the (1� �`)

quantile of �2k. The ultimate CS for �` is

bB`;1�� (1� �`) = [
2b�(1��)

bB` (1� �`j) :
Because  is the true value, limn!1 P

�
�0 2 bB (1� �`j)� � 1� �`. So

lim
n!1

P
�
�0 =2 bB`;1�� (1� �`)� � lim

n!1
P
�
�0 =2 bB`;1�� (1� �`) ;  2 b� (1� �)�+ lim

n!1
P
�
 =2 b� (1� �)�

� �` + � = �:

For �, replace bB` (1� �`j) and bB`;1�� (1� �`) by
bB (1� ��j) =

�
�jn
�b� � ��0 bV ()�b� � �� � c1���� ;

bB1�� (1� ��) =
[

2b�(1��)
bB (1� ��j) ;

where �� = �` = �� � , and bV () = bV1 () + bV2 ().
Step 3: If Yes, then construct the (1� �) CS for �` as bB` (1� �jb) and the (1� �) CS for � as bB (1� �jb).
As for the selection of � and �`, we can set � = �` = �=2 in practice. Of course, we can also set

� 2 [�; �] with � > 0, � < � and �` = � � � , and then select � by minimizing the length of the
corresponding CI. As a result, for di¤erent elements of � and �, � need not be the same.

7 Simulations

In this section, we use the two DGPs in Section 4 to illustrate the performance of our new calibrated CIs.

The replication time is 1000; in simulating b� (), the simulation time is 999.
Table 5 reports the coverage and length of 90% calibrated LR-CI for . From Table 5, we can draw the

following conclusions. First, when
p
n�20 is small, the new CI has a better coverage (i.e., closer to 90%) than

the interval coverage in Table 3, and when
p
n�20 is large, the coverage is similar to the interval coverage in

Table 3. Second, corresponding to the coverage, the new CI is generally longer the "old" CI when
p
n�20 is

small, and has a similar length when
p
n�20 is large. Third, similar as in Table 3, the CI becomes shorter

when �20 gets larger for each n, but need not become shorter as n gets larger when �20 is small. Fourth, we

check P (�n) := P
�
maxj

n���b�j��� =b�jo � �n=pn� for �n = plnn. When pn�20 is large, P (�n) is close to 0.
Anyway, when �20 = 0, P (�n) is not close to 1 especially when n is small. As discussed in Section 4, when
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n is small, a fake threshold may emerge in the noise of the data. In summary, we can safely claim that our

new CI of  performs better than the "old" CI.

z = q z = x

n& �20 �! 0 0:25 0:5 1 0 0:5 1 2

50 0.828 0.849 0.868 0.922 0:829 0.839 0.880 0.933

Coverage 100 0.865 0.873 0.881 0.932 0.836 0.864 0.910 0.954

500 0.883 0.894 0.911 0.950 0.870 0.890 0.936 0.950

50 2:298 2:187 1:675 0:470 2:254 1:819 0:972 0:297

Length 100 2:632 2:336 1:289 0:135 2:515 1:554 0:471 0:155

500 2:812 1:136 0:081 0:022 2:681 0:311 0:076 0:029

50 0.636 0.630 0.578 0.386 0.365 0.189 0.034 0

P (�n) 100 0.691 0.684 0.612 0.207 0.470 0.122 0 0

500 0.812 0.689 0.211 0 0.649 0 0 0

Table 5: Coverage and Length of 90% Calibrated LR-CI for 

Note: P (�n) is the probability of maxj
n���b�j��� =b�jo � �n=pn

Table 6 reports the coverage and length of 95% calibrated CI for �2. From Table 6, we can draw the

following conclusions. First, when
p
n�20 is small, there is a little undercoverage, but the undercoverage is

not serious as the usual t-CI. Second, when
p
n�20 is large, the coverage is very close to 95%, and does not

su¤er the overcoverage as bB0:8. Third, like bB0 and bB0:8, the length of our CI decreases with n and �20.
Fourth, when

p
n�20 is small, our CI has a similar length as bB0:8, but when pn�20 is large, our CI is shorter.

z = q z = x

n& �20 �! 0 0:25 0:5 1 0 0:5 1 2

50 0.924 0.934 0.909 0.926 0.897 0.907 0.937 0.952

Coverage 100 0.943 0.945 0.911 0.942 0.926 0.935 0.962 0.948

500 0.936 0.928 0.960 0.940 0.933 0.964 0.939 0.947

50 16.92 15.25 13.02 4.394 5.153 4.446 2.751 1.212

Length 100 9.332 8.732 5.966 1.541 2.804 2.086 1.005 0.814

500 3.176 1.972 0.654 0.588 1.102 0.379 0.354 0.352

Table 6: Coverage and Length of 95% Calibrated CI for �2

8 Empirical Applications

In this section, we apply our calibrating method to two datasets in economics to check its performance. The

�rst dataset is the growth data used in Durlauf and Johnson (1995) and reanalyzed in Hansen (2000). The

second dataset is the tipping points data used in Pan (2015). As in Hansen (2000), we will concentrate on

the CI for .
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8.1 Growth and Multiple Equilibria

In this application, the concern is whether there is a threshold e¤ect in the GDP growth. The growth theory

with multiple equilibria motivates the following threshold regression model:

ln
�
Y
L

�
i;1985

� ln
�
Y
L

�
i;1960

=

(
�10 + �11 ln

�
Y
L

�
i;1960

+ �12 ln
�
I
Y

�
i
+ �13 ln (ni + g + �) + �14 lnSi + "i;

�20 + �21 ln
�
Y
L

�
i;1960

+ �22 ln
�
I
Y

�
i
+ �23 ln (ni + g + �) + �24 lnSi + "i;

if qi � ;
if qi > :

For each country i,
�
Y
L

�
i;t
is the real GDP per member of the population aged 15-64 in year t,

�
I
Y

�
i
is the

investment to GDP ratio, ni is the growth rate of the working-age population, and Si is the fraction of

working-age population enrolled in secondary schools. The variables not indexed by t are annual averages

over the period 1960-1985. Following Durlauf and Johnson (1995), we set g + � = 0:05. As suggested in

Hansen (2000), we will check two possible threshold variables; the �rst one is ln
�
Y
L

�
i;1960

and the second

one is the adult literacy rate in 1960, LRi;1960. Also following Hansen (2000), we will consider only the

heteroskedastic-consistent procedures.

In the �rst stage, we use ln
�
Y
L

�
i;1960

as qi. The middle-point LSE of  is $871, which generates the

same sample splitting as the left-endpoint LSE $863. Since maxj
np
n
���b�j��� =b�jo = 2:563 > 2:136 =

p
lnn,

we are employing the critical value in Table 1 to construct the CI for . The 95% critical value is 5:991,

much smaller than 7:352 as suggested in Hansen (2000). If we use the kernel method to estimate �2, then

both Hansen�s critical value and ours generate the same CI for , [$594; $1842). The left graph of Figure 7

illustrates these two CIs. Obviously, this CI is quite wide since it covers 40 out of the 96 countries in the

sample.

In the second stage, we use LRi;1960 as qi and apply threshold regression to the right regime in the �rst

stage de�ned by ln
�
Y
L

�
i;1960

> 871. The middle-point LSE of  is 47%. Since maxj
np
n
���b�j��� =b�jo = 2:570 >

2:087 =
p
lnn, we will use the critical value in Table 1 to construct the CI for . It turns out that Hansen�s

CI is [19%; 61%), while ours is [29%; 61%), which is much shorter. Hansen�s CI covers 19 while ours covers

14 out of the 78 countries in the subsample. The right graph of Figure 7 illustrates these two CIs.

This application shows that our CI is generally shorter than Hansen�s CI. As commented in Hansen

(2000), his CI is su¢ ciently large that there is considerable uncertainty regarding the threshold value. This

paper shows that his CI can be much shortened by using an appropriate critical value.

8.2 Tipping Points in Dynamic Segregation

Since the seminal work by Schelling (1971), dynamic segregation models have been intensively studied in the

literature. For instance, Card et al. (2008) estimate a dynamic segregation model of neighborhood racial

composition between 1970 and 2000; Pan (2015) investigates how tipping points impact the dynamics of

occupational gender segregation in the labor market between 1940 and 1990.

Pan (2015) speci�es the following TR model to study the dynamic segregation,

Dmisrj;t = p (fisrj;t�10) + d1(fisrj;t�10 > f
�
rj;t�10) +X

0
isrj;t�10� + "isrj;t; (7)

where misrj;t and fisrj;t�10 are the shares of male and female employment in occupation i, state s, region

r, and the group of white-collar or blue-collar occupations j in year t or t � 10, respectively. The depen-
dent variable Dmisrj;t is the net change in male employment growth, de�ned as the di¤erence between

male and female employment growth rate between year t and t � 10. The f�rj;t�10 represents the tipping
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Figure 7: Con�dence Interval Construction for  in Two Stages

point at the region r and the white-collar or blue-collar level j; p(�) is a fourth-order polynomial func-
tion; Xisrj;t�10 includes white-collar region �xed e¤ects, occupation characteristics (average age, education,

and log male wages) in the initial period, and one-digit occupation �xed e¤ects; "isrj;t is the error term.

Pan assumes that there is only threshold e¤ect in the intercept, so many formulas can be simpli�ed, e.g.,

�2 = E
�
"2i jqi = 0

�
=�2 because �0nD�n = d

2 and �0nV �n = d
2E
�
"2i jqi = 0

�
. For simplicity, we just assume

the model is homoskedastic, i.e., �2 = 1; the heteroskedastic case shares quantitatively similar features.

Table 7 contains the  estimates and the associated 95% CIs for each decadal period from 1940 to 1990.

First check the estimate of d. The bd values for all periods are negative, which indicates that there is indeed
occupational gender segregation between 1940 and 1990. The magnitude and the time trend (�rst increase

and then decrease) of the decline are mostly consistent with the results in Table 3 of Pan (2015). Because��� bd��� =se > �n for all periods, we just use the modi�ed critical values in Table 1 to construct the CI for f�rj;t�10.
In general, our CIs are shorter than Hansen�s CI, and in some period, e.g., 1970-1980, our CI covers much

less fisrj;t�10�s than Hansen�s CI. Figure 8 intuitively illustrates the CI construction for f�rj;t�10 in these �ve

periods.

Time Period 1940-1950 1950-1960 1960-1970 1970-1980 1980-1990
\f�rj;t�10

Hansen�s CI

Our CI

#j#

0:275

[0:255; 0:305)

[0:255; 0:300)

14j13

0:404

[0:363; 0:421)

[0:363; 0:421)

17j17

0:314

[0:291; 0:352)

[0:291; 0:355)

14j13

0:201

[0:140; 0:233)

[0:174; 0:232)

114j58

0:312

[0:295; 0:331)

[0:297; 0:331)

97j91bd
se��� bd��� =se
�n

�0:393
0:0666

5:898

2:668

�0:439
0:0682

6:432

2:680

�0:497
0:0653

7:607

2:707

�0:224
0:0351

6:374

2:759

�0:202
0:0187

10:827

2:916

Table 7: Estimates of f�rj;t�10 and the 95% CI: �n =
p
lnn, se is the standard error of bd,

#j# is the number of data points covered by Hansen�s CI and our CI
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Figure 8: Con�dence Interval Construction for f�rj;t�10 in Five Periods

In both applications, maxj
np
n
���b�j��� =b�jo > �n; this is because the usual speci�cation test such as

Hansen (1996) strongly rejects the null that there is no threshold e¤ect. This is the typical case in practice

because we usually consider the inference of  only after we got a strong rejection in the speci�cation

testing of no threshold e¤ects. When the economic theory indicates that there should be threshold e¤ects,

but maxj
np
n
���b�j��� =b�jo � �n, then we may need to employ the simulation method in Algorithm G. The

discussion here also indicates that we can determine whether maxj jbj j ! 1 as n!1 by checking whether

the p-value in the speci�cation test shrinks to zero (see, e.g., Proposition 8 of Bai and Perron (1998)), but

the rate of shrinking to zero seems hard to calibrate to achieve good performances.

9 Conclusion

In this paper, we calibrate the CIs in Hansen (2000) to achieve better coverage and/or length. Basically,

we construct CIs for  and � based on whether the threshold e¤ect is strong or weak. For the threshold

point , when the threshold e¤ect is strong, we suggest smaller critical values to obtain shorter LR-CIs with

less overcoverage; when the threshold e¤ect is weak, we suggest a least favorable distribution for the LR

statistic such that the undercoverage problem of the usual LR-CI can be eliminated or mitigated. For the

slope parameter �, when the threshold e¤ect is strong, the usual t-CI works well; when the threshold e¤ect

is weak, we rigorize the Bonferroni-type CI in Hansen (2000). Our simulations and empirical applications

show that our new CIs indeed have better performances than those in Hansen (2000).
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Appendix A: Proofs

We here collect some notations for future reference. an = n1�2'.  signi�es weak convergence over a metric

space. u = (u01; u
0
2) and v are local parameters for � and .

Proof of Theorem 1. Note that when  = 0 + a
�1
n v, the true  value is still 0. Re-write LRn () as

LRn () =

h
Sn

�
; b� ()�� Sn (0; �0)i� hSn �b; b��� Sn (0; �0)ih
Sn

�b; b��� Sn (0; �0)i =n+ Sn (0; �0) =n :

Because Sn
�
0 + a

�1
n v; �0 + n

�1=2u
�
� Sn (0; �0) u01E

�
xx01(q�0)

�
u1 + u

0
2E
�
xx01(q>0)

�
u2 � 2u01W1 �

2u02W2 + � jvj+ 2
p
�W (v), where � = c0Dcf and � = c0V cf , we have

Sn

�
; b� ()�� Sn (0; �0) �W 0

1E
�
xx01(q�0)

��1
W1 �W 0

2E
�
xx01(q>0)

��1
W2 + � jvj+ 2

p
�W (v) ;

by taking minimum with respect to u, and

Sn

�b; b��� Sn (0; �0) �W 0
1E
�
xx01(q�0)

��1
W1 �W 0

2E
�
xx01(q>0)

��1
W2 +min

v

n
� jvj+ 2

p
�W (v)

o
by taking minimum with respect to both u and v. As as result,

LRn
�
0 + a

�1
n v

�
 LR1 (v) :=

1

�2

h
� jvj+ 2

p
�W (v)�min

v

n
� jvj+ 2

p
�W (v)

oi
d
=
1

�2

�
� jvj+ 2

p
�W (v) + sup

v

n
�� jvj+ 2

p
�W (v)

o�
:

The interval coverage converges to

P

�
inf
v�0
LR1 (v) � �2c� and inf

v�0
LR1 (v) � �2c�

�
;

where c� is the upper �th quantile of supv f� jvj+ 2W (v)g. Since

inf
v�0
LR1 (v) =

1

�2

�
inf
v�0

�
�

���� ��2 v
����+ 2p�W �

�

�2
v

��
� inf

v

�
�

���� ��2 v
����+ 2p�W �

�

�2
v

���
=

�

�2�

�
inf
v�0

fjvj+ 2W (v)g � inf
v
fjvj+ 2W (v)g

�
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and similarly, inf
v�0
LR1 (v) = �

2

�
inf
v�0

fjvj+ 2W (v)g � infv fjvj+ 2W (v)g
�
, we have

p (c�) = P

�
inf
v�0

fjvj+ 2W (v)g+ � � c� and inf
v�0

fjvj+ 2W (v)g+ � � c�
�

= P (�2�1 + 2max [�1; �2] � c� and � 2�2 + 2max [�1; �2] � c�)
= P

�
max [�1; �2]�min [�1; �2] �

c�
2

�
= P

�
�1 � �2 �

c�
2
and �1 > �2

�
+ P

�
�2 � �1 �

c�
2
and �2 > �1

�
= 2

Z 1

0

h�
1� e�

c�
2 ��2

�
�
�
1� e��2

�i
e��2d�2

= 2

Z 1

0

�
e��2 � e�

c�
2 ��2

�
e��2d�2

= 2
�
1� e�

c�
2

�Z 1

0

e�2�2d�2 = 1� e�
c�
2 ;

where � = � infv fjvj+ 2W (v)g d
= supv f� jvj+ 2W (v)g, �1 := supv�0

n
� jvj

2 +W (v)
o
� Exp (1) and

�2 := supv�0

n
� jvj

2 +W (v)
o
� Exp (1) are independent.

Proof of Theorem 2. The
p
n-consistency of b� is proved in Lemma 1. Given that �b;pn�b� � �n�� =

argmin(;u)

n
Sn

�
; �n +

up
n

�
� Sn (�n; n)

o
, we can apply an argmax continuous mapping theorem such as

Theorem 3.2.2 in van der Vaart and Wellner (1996) to �nd the asymptotic distribution of
�b;pn�b� � �n;��.

For this purpose, we need only show Sn
�
; �n +

up
n

�
� Sn (�n; n)  �� (h) on every U � �, where U is

any compact subset in R2k, � (h) is continuous and possess a unique maximum at bh with bh = Op(1). The
weak convergence is proved in Lemma 2, the continuity of � (h) is implied by the continuity of its covariance

kernel and Assumption D.50, and the uniqueness of argmaxh � (h) is implied by Lemma 2.6 of Kim and

Pollard (1990). As to bh = Op(1), note that b 2 � is Op(1),
bu1 () = ( M ()

�1
W () , if  � 0;

M ()
�1
(�M (0; ) b+W (0) +W (0; )) , if  > 0;

and bu2 () = ( M ()
�1 �

M (; 0) b+W (0) +W (; 0)
�
, if  � 0;

M ()
�1
W () , if  > 0;

both satisfying sup2� bu` () = Op(1).
Proof of Corollary 1. For  � 0, note that

� (h) = �
�
u1 �M ()

�1
W ()

�0
M ()

�
u1 �M ()

�1
W ()

�
+W ()

0
M ()

�1
W ()

�
�
u2 �M ()

�1 �
M (; 0) b+W (0) +W (; 0)

��0
M () (� � � )

+
�
M (; 0) b+W (0) +W (; 0)

�0
M ()

�1
(� � � )� b0M (; 0) b� 2b0W (; 0) ;

so the concentrated � (h) is equal to � (bu1 () ; bu2 () ; ) = � (j0; b) in the corollary. Simiar argument
applies to the case where  > 0.
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Given the distribution of argmax � (j0; b) as G (), the distribution of bu1 is the same asZ 0



M ()
�1
W () dG () +

Z 

0

M ()
�1
(�M (0; ) b+W ()) dG () ;

and the distribution of bu2 is the same asZ 0



M ()
�1 �

M (; 0) b+W ()
�
dG () +

Z 

0

M ()
�1
W () dG () :

The asymptotic distribution of
p
nb� � b is bu1 � bu2.

Finally,

LRn (n) =

h
Sn

�
n;

b� (n)�� Sn (n; �n)i� hSn �b; b��� Sn (n; �n)ih
Sn

�b; b��� Sn (n; �n)i =n+ Sn (n; �n) =n :

From the proof in Lemma 2, we can see

Sn

�
n;

b� (n)�� Sn (n; �n) d�! min
u1;u2

�
u01M (0)u1 + u

0
2M (0)u2 � 2u01W (0)� 2u02W (0)

	
= �W (0)

0
M (0)

�1
W1 (0)�W (0)

0
M (0)

�1
W (0) =: �� (0) ;

and h
Sn

�b; b��� Sn (n; �n)i d�! min
2�

f�� (j0; b)g = Op (1) :

So

LRn (n)
d�! �� (0)�min2� f�� (j0; b)g

�2
=
max2� � (j0; b)� � (0)

�2
:

This is di¤erent from the asymptotic distribution of

LR1n (n) =
Sn

�
n;

b��� Sn �b; b��
Sn

�b; b�� =n
=

h
Sn

�
n;

b��� Sn (n; �n)i� hSn �b; b��� Sn (n; �n)ih
Sn

�b; b��� Sn (n; �n)i =n+ Sn (n; �n) =n
because

Sn

�
n;

b��� Sn (n; �n) d�! bu01M (0) bu1 + bu02M (0) bu2 � 2bu01W (0)� 2bu02W (0)

6= �W (0)
0
M (0)

�1
W1 (0)�W (0)

0
M (0)

�1
W (0) = �� (0) ;

given that bu1 6= M (0)
�1
W1 (0) =: eu1 and bu2 6= M (0)

�1
W (0) =: eu2. This is also di¤erent from the
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asymptotic distribution of

LR2n (n) =
Sn

�
n;

b� (n)�� Sn �b �b� (n)� ; b� (n)�
Sn

�b; b�� =n
=

h
Sn

�
n;

b� (n)�� Sn (n; �n)i� hSn �b �b� (n)� ; b� (n)�� Sn (n; �n)ih
Sn

�b; b��� Sn (n; �n)i =n+ Sn (n; �n) =n
because

Sn

�b �b� (n)� ; b� (n)��Sn (n; �n) d�! min
2�

f�� (; eu1; eu2)g 6= min
2�

f�� (bu1 () ; bu2 () ; )g = min
2�

f�� (j0; b)g :

Proof of Theorem 3. Note that when  2 �, the true  value is still 0. As in the proof of Theorem 1,

LRn () =

h
Sn

�b� () ; �� Sn (�0; 0)i� hSn �b�; b�� Sn (�0; 0)ih
Sn

�b�; b�� Sn (�0; 0)i =n+ Sn (�0; 0) =n :

Because

Sn

�
�0 + n

�1=2u; 
�
� Sn (�0; 0) �� (hj0; b) ;

we have

Sn

�b� () ; �� Sn (�0; 0) �� (j0; b)

and

Sn

�b�; b�� Sn (�0; 0) min
2�

f�� (j0; b)g = �max
2�

� (j0; b) :

As a result,

LRn () LR1 (jb) =
max2� � (j0; b)� � (j0; b)

�2
:

The interval coverage converges to

P

�
inf

��0
LR1 (jb) � c� and inf

0��
LR1 (jb) � c�

�
= P

�
max
��

f� (j0; b)g �min
�
max

��0
f� (j0; b)g ; max

0��
f� (j0; b)g

�
� �2c�

�
= P

�
max

h
�b1; �

b
2

i
�min

h
�b1; �

b
2

i
� �2c�

�
;

where �b1 = max��0 f� (j0; b)g and �
b
1 = max0�� f� (j0; b)g.

Proof of Proposition 1. We take bK () as an example because the proof for bK () is similar and forcM () and cM () is easier.

WLOG, assume b < 0; then
b"i = yi � x0ib�11(qi�b) � x0ib�21(qi>b)

= "i � x0i
�b�1 � �10� 1(qi�b) + x0i ��10 � b�2� 1(b<qi�0) � x0i �b�2 � �20� 1(qi>0)
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so b"2i = "2i + "ix0iO �n�1=2�+O �n�1=2�xix0iO �n�1=2� ;
where �10 � b�2 = �10 � �20 � �b�2 � �20� = n�1=2b+Op �n�1=2� = Op �n�1=2�. As a result,

bK () =
1

n

nX
i=1

xix
0
ib"2i 1(qi�)

=
1

n

nX
i=1

xix
0
i"
2
i 1(qi�) +

1

n

nX
i=1

xix
0
i"ix

0
iO
�
n�1=2

�
+
1

n

nX
i=1

xix
0
iO
�
n�1=2

�
xix

0
iO
�
n�1=2

�
;

where O
�
n�1=2

�
is uniform in . Since 1

n

Pn
i=1 xix

0
i"
2
i 1(qi�)

p�! K� () uniformly in , we need only show

that the other two terms are op (1) uniformly in . First, 1n
nX
i=1

xix
0
i"ix

0
iO
�
n�1=2

� � O �n�1=2� 1n
nX
i=1

kxik3 j"ij = O
�
n�1=2

�
Op(1) = O

�
n�1=2

�
;

where Op(1) is because of E
h
kxik3 j"ij

i
<1 by Hölder�s inequality and the LLN. Second,

 1n
nX
i=1

xix
0
iO
�
n�1=2

�
xix

0
iO
�
n�1=2

� � O �n�1� 1n
nX
i=1

kxik4 = O
�
n�1=2

�
Op(1) = O

�
n�1=2

�
;

where Op(1) is because of E
h
kxik4

i
<1 and the LLN.

Appendix B: Lemmas

Lemma 1 Under the assumptions of Theorem 2, b� � �n = Op(n�1=2).
Proof. Take b�1 as an example since b�2 can be similarly analyzed. Note that

p
n
�b�1 � �1n� =

 
1

n

nX
i=1

xix
0
i1(qi�b)

! 
� 1
n

nX
i=1

xix
0
i1(n<qi�b)pn�n + 1p

n

nX
i=1

xi"i1(qi�b)
!
:

From Lemma 1 of Hansen (1996), we have 1
n

Pn
i=1 xix

0
i1(qi�b) = Op(1), and 1

n

Pn
i=1 xix

0
i1(n<qi�b) = Op(1).

From Lemma A.3 of Hansen (2000), 1p
n

Pn
i=1 xi"i1(qi�b) = Op(1). Given that

p
n�n ! b 2 Rk, we have

p
n
�b�1 � �1n� = Op(1):

Lemma 2 Under the assumptions of Theorem 2�uniformly for u 2 U with U being any compact set of R2k

and  2 �,

Sn

�
; �n +

up
n

�
� Sn (n; �n)

 u01E
�
xx01(q�^0)

�
u1 + u

0
2E
�
xx01(q>_0)

�
u2 + (b+ u1)

0
E
�
xx01(0<q�_0)

�
(b+ u1)

+ (b� u2)0E
�
xx01(^0<q�0)

�
(b� u2)�W (u; ) +D (u; ) ;
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where

W (u; ) = 2u01W ( ^ 0) + 2u02 (W (1)�W ( _ 0)) ;
D (u; ) = 2 (b� u2)0 (W (0)�W ( ^ 0))� 2 (b+ u1)

0
(W ( _ 0)�W (0)) ;

with W () de�ned in Theorem 2.

Proof. By Lemma 1 of Hansen (1996), as n ! 0, uniformly in (u; ) 2 U � �,

Sn

�
; �n +

up
n

�
� Sn (n; �n)

=
nP
i=1

�
u01

xix
0
i

n u1 � 2u01p
n
xi"i

�
1(qi�^n) +

nP
i=1

�
u02

xix
0
i

n u2 � 2u02p
n
xi"i

�
1(qi>_n)

+
nP
i=1

�
(
p
n�n � u2)0 xix

0
i

n (
p
n�n � u2) + 2

�p
n�n�u2p

n

�0
xi"i

�
1(^n<qi�n)

+
nP
i=1

�
(
p
n�n + u1)

0 xix0i
n (

p
n�n + u1)� 2

�p
n�n+u1p

n

�0
xi"i

�
1(n<qi�_n)

= u01E
�
xx01(q�^0)

�
u1 + u

0
2E
�
xx01(q>_0)

�
u2

+(b� u2)0E
�
xx01(^0<q�0)

�
(b� u2) + (b+ u1)0E

�
xx01(0<q�_0)

�
(b+ u1)

�Wn (u; ) +Dn (u; ) + oP (1) ;

where Wn (u; ) =W1n (u1; ) +W2n (u2; ) with

W1n (u1; ) =
2u01p
n

nX
i=1

xi"i1(qi�^n) and W1n (u1; ) =
2u02p
n

nX
i=1

xi"i1(qi>_n);

and Dn (u; ) = D1n (u1; ) +D2n (u2; ) with

D1n (u1; ) = 2

�
b� u2p
n

�0 nX
i=1

xi"i1(^n<qi�n) and D2n (u1; ) = �2
�
b+ u1p
n

�0 nX
i=1

xi"i1(n<qi�_n):

By Lemma A.3 of Hansen (2000),

1p
n

nX
i=1

xi"i1(qi�^n)  W ( ^ 0) :

Similarly,

1p
n

nX
i=1

xi"i1(qi>_n)  W (1)�W ( _ 0) ;

1p
n

nX
i=1

xi"i1(^n<qi�n)  W (0)�W ( ^ 0) ;

1p
n

nX
i=1

xi"i1(n<qi�_n)  W ( _ 0)�W (0) :

The results of this lemma follow.

33



Online Supplement for "Calibrating the Con�dence Intervals in
Threshold Regression"

More on the Distribution of e
First, we explain why argmax2� � () is more likely near the boundary of

�
; 

�
. Consider the simple

structural change model with x = 1. In this case, the covariance of M�1=2 ()W () (M
�1=2

()W ()) at

s and t with s < t is s�1=2st�1=2 =
p
s=t ((1 � s)�1=2(1 � t)(1 � t)�1=2 =

p
(1� t)=(1� s)), which is not

independent of s and t. The total covariance is
p
s=t+

p
(1� t)=(1� s) is maximized when s and t are at the

middle of
�
; 

�
and minimized when s and t are at the boundary of

�
; 

�
. In other words, there would be

more variation at the boundary than in the middle of
�
; 

�
inW ()

0
M�1 ()W ()+W ()

0
M

�1
()W ().

As a result, argmax2� � () happens more likely near the boundary of
�
; 

�
. This is justi�ed in Figure 9,

where e has two modes at the two boundary points in both DGPs when b = 0.
As already shown in Table 2 in �nite samples, argmax2� � () will not follow the uniform distribution

on �. The distribution of argmax2� � () depends on its covariance kernel. Whether this distribution is

symmetric about the center of � depends on whether K () is symmetric about the center of �, say, c; if

K () = K (2c � ), then e is symmetrically distributed. From Figure 9, even if K () is asymmetric about

the center of � as in DGP1, the distribution of e is close to be symmetric. The distribution of b does not have
modes at the boundary of � because in �nite samples, � is not �xed so that the two modes of e are dispersed
out of �. Jiang et al. (2019) show in a simple structural change model that when b 6= 0, the distribution

of e (and also b since their � is �xed) is asymmetric when 0 6= 0:5 and tri-modal at the two boundaries of
� and 0. Here, we show that trimodality reduces to bimodality and asymmetry becomes symmetry when

b = 0. This is because 0 is not identi�able when b = 0 so there is no obvious center for the distribution ofe; as a result, the modality at 0 disappears and asymmetry when 0 6= 0:5 become symmetry about 0:5.

Figure 10 and 11 show the distribution of b (and e) as �20 = 0:25 (b2 = 2:5) in DGP1 and �20 = 0:5 (b2 = 5)
in DGP2 when 0 = 2 and 0 = 1, respectively. When 0 = 2, the distributions of b and e are symmetric
in DGP2 and close to be symmetric in DGP1; while when 0 = 1, the distributions are asymmetric in both

DGPs. The distribution of e are tri-modal in both DGPs for both 0 = 2 and 0 = 1, while the modes of b
at the two boundaries of � are dispersed out as in the �20 = 0 (b2 = 0) case.

Finally, the distributions ofmax2� � ()�� (0) andmax [�1 (0) ; �2 (0)]�min [�1 (0) ; �2 (0)] depends
on 0. Althoughmax2� � () = max [�1 (0) ; �2 (0)] does not depend on 0, � (0) andmin [�1 (0) ; �2 (0)]

indeed depend on 0. Because argmax2� � () is more likely near the boundary, max2� � ()�� (0) tends
to be zero (i.e., small) when 0 near the boundary. This implies that the critical value tends to be small;

however, Ln (0) may also tend to be small so that Ln (0) is smaller than the critical value. Note further

that in (3)-(6), we need to check the inequalities for any 0 2 �; Figures 4 and 5 show these four inequalities
hold only for the true 0.
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Figure 9: Density of b and e: n = 100
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Figure 10: Density of b and e: n = 100, 0 = 2
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Figure 11: Density of b and e: n = 100, 0 = 1
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