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Abstract

This paper studies the testing of conditional rank similarity, a key identi�cation assumption for

the instrumental variable quantile regression estimator (IV-QRE) of Chernozhukov and Hansen (2005).

Di¤erent from the unconditional rank similarity test, no covariates are required in the conditional test.

The basic idea is that conditional rank similarity implies no "di¤erence (across treatment statuses) in

di¤erence (across marginal populations)", so "cross (marginal populations) mismatching" under the two

treatment statuses would generate power. Tests are developed in the framework of Heckman and Vytlacil

(2005) and three cases are considered: discrete instruments and no covariates, discrete instruments

and general covariates, and general instruments and general covariates. In each case, two tests are

proposed and extensions are discussed, and the exchangeable bootstrap is suggested to obtain critical

values. Simulations corroborate the theoretical results and the tests are applied to the empirical study

of Chernozhukov and Hansen (2006) to show the validity of IV-QRE.
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1 Introduction

Quantile treatment e¤ects (QTEs), as an alternative of average treatment e¤ects (ATEs), have attracted

much attention in recent developments of program evaluation; see Abbring and Heckman (2007) and Yu

(2014a) for a summary of relevant literature. Roughly speaking, there are three frameworks to study the

QTEs. The �rst framework assumes unconfoundedness; see, e.g., Firpo (2007) and Donald and Hsu (2014).

The other two frameworks assume the existence of endogeneity but in di¤erent forms. Chernozhukov and

Hansen (2005) (CH hereafter) assume only the selection e¤ect, so can identify the "global" QTE by the so-

called instrumental variable quantile regression estimator (IV-QRE). This is not possible when the essential

heterogeneity also exists. With the presence of essential heterogeneity and a binary instrumental variable,

Abadie et al. (2002) estimate the local quantile treatment e¤ect (LQTE), which is the counterpart of the local

average treatment e¤ect (LATE) of Imbens and Angrist (1994) (IA hereafter). When continuous instruments

exist, Carneiro and Lee (2009) and Yu (2014a) identify and estimate the marginal quantile treatment e¤ect

(MQTE), which is the counterpart of the marginal treatment e¤ect (MTE) of Heckman and Vytlacil (2005)

(HV hereafter). For a careful comparison of these two endogenous quantile frameworks, see Yu (2016).

This paper is about testing a key identi�cation assumption of CH. As will be explained in Section 2, to

identify the "global" QTE, CH impose a key assumption called (conditional) rank similarity. This assumption

excludes the essential heterogeneity in the QTE context. CH�s identi�cation scheme is important because

the "global" QTE has better external validity than the "local" QTEs such as LQTE and MQTE. However, to

apply this scheme, we must guarantee rank similarity holds; otherwise, CH�s IV-QRE will converge to some

pseudo-true value as explained in Wüthrich (2015b) and Yu (2016). The goal of this paper is to test this key

assumption in the framework of HV. As detailed in Section 2, HV�s framework accommodates the essential

heterogeneity and meanwhile imposes a monotonicity assumption which facilitates the testing procedure.

In Section 3, we overview our testing ideas; speci�cally, we motivate and develop the population version

of our test statistics. We �rst express the null hypothesis in forms of objects that can be identi�ed in an

ideal scenario, and then consider three practical cases where only part of these objects can be identi�ed. The

basic idea of our tests is that conditional rank similarity implies no "di¤erence (across treatment statuses)

in di¤erence (across marginal populations)", so "cross (marginal populations) mismatching" under the two

treatment statuses would generate power. The three practical cases under consideration include (i) discrete

instruments and no covariates; (ii) discrete instruments and general covariates; (iii) general instruments and

general covariates. In each case, two "oracle" forms of test statistics are proposed and shown to be optimal

in the sense that they exhaust the testable implication of the data distribution, and then the corresponding

"practical" forms of test statistics are provided. In the following three sections, we consider the �nite-sample

analogs of the practical test statistics in each case. Speci�cally, we construct the test statistics, develop their

asymptotic distributions under the null and alternative, obtain critical values by the exchangeable bootstrap

and prove its validity. We consider also two extensions of our test statistics in each case. We use Case (i) to

illustrate our testing idea and provide most details, and treat Case (ii) and (iii) as technical extensions.

Before proceeding, we brie�y discuss an independent work by Kim and Park (2016) where the authors

try to conduct the same test as in this paper. Their paper uses the framework of LQTE and ours uses

the framewok of HV. As explained in Vytlacil (2002) and Yu (2015b), these two frameworks are essentially

equivalent. Nevertheless, there are indeed a few key di¤erences between these two papers. First, Kim and

Park�s test is based on the inverse probability weighting method of Abadie (2003) and is essentially the �rst

test of our two main tests, while our tests are based on the distribution regression suggested by Yu (2014a)

and take two main forms and two extensive forms. Second, they consider only Case (ii) especially for the

case where the instrument takes only three values, while we consider also Case (i) to show that no covariates
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are required to generate power and Case (iii) where instruments can take continuous values. Third, their test

involves the counterfactual mapping of Vuong and Xu (2016), while we express such a mapping explicitly in

our �rst test. Consequently, it is easy to derive local powers for our tests while it is hard for theirs (they

actually did not derive the local power for their test). These local power expressions make it clear why a

binary instrument cannot generate power no matter covariates exist or not. In summary, our paper and

theirs are more complements than substitutes.

In Section 7, we discuss the connection and di¤erence of this paper with other related literature. Espe-

cially, we show that although Heckman et al. (2010)�s tests of correlated random coe¢ cient models cannot be

applied to the problem in this paper, the tests in both papers are overidenti�cation tests. We also show that

the unconditional rank preservation (URP) tests in Yu (2015a) are also overidenti�cation tests except using

di¤erent overidenti�cation information from that used in this paper. There are also some papers considering

similar topics. For example, Dong and Shen (2015) test the "unconditional" rank similarity (URS) for all

"unconditional" compliers (i.e., all compliers regardless of the covariate value) in the framework of HV with

a binary instrument (see also Frandsen and Lefgren (2015) for a regression-based implementation); however,

CH require only "conditional" rank similarity for all "conditional" individuals (i.e., all individuals given

a speci�c covariate value).1 Consequently, di¤erent from Dong and Shen (2015) or Frandsen and Lefgren

(2015), we do not require covariates to generate power. Section 8 provides some simulation results, Section

9 applies our tests to the dataset from Angrist and Krueger (1991) which is also used as an illustration of

IV-QRE in Chernozhukov and Hansen (2006), and Section 10 concludes. To save space, we relegate some

discussions to two supplementary materials S.1 and S.2. S.1 contains the proofs that are not given in the

main text, and S.2 contains points that we do not want to expand in the main text.

Some notations are collected here for future reference. The letter d is always used for indicating the

two treatment statuses, so is not written out explicitly as "d = 0; 1" throughout the paper. Yd is used for

potential outcome and X is used for covariates. supp(X) for a random variable X denotes the support of

the distribution of X. The capital letters such as X denote random variables and the corresponding lower

case letters such as x denote the potential values they may take. For a random variable Y and a random

vector X, FY jX , fY jX , QY jX mean the conditional cumulative distribution function (cdf), the conditional

probability density function (pdf) and the conditional quantile function of Y given X. Fd, fd and Qd mean

the unconditional cdf, pdf and quantile function of Yd. F
�1
d and Qd are used exchangeably for notational

convenience. �(�) and �(�) are the cdf and pdf of the standard normal distribution.  and
� signify the

weak convergence and the weak convergence in probability, respectively.2 n is the sample size. U denotes

the common rank under the null - rank similarity. C (I) is the space of continuous functions on a set I.
`1 (F) as the space of real-valued bounded functions on the index set F equipped with the supremum norm

k�k`1(F). VW is a short for van der Vaart and Wellner (1996), and CFM for Chernozhukov, Fernández-Val

and Melly (2013).

1 In a comment on Dong and Shen (2015), Edward Vytlacil mentioned a simple example to show that CRS is more interesting
than URS: if Y1 = �1 + �1X + "1, Y1 = �0 + �0X + "0 with (X;D)? ("1; "0), P (X = 1) = p 2 (0; 1) ; P (X = 0) = 1 � p,
and "1 and "0 are continuously distributed, then CRS holds. Suppose "1 = �"0; URS holds if and only if �1 = ��0. A similar
example can be found in Example 2 of Yu (2015a). Nevertheless, as shown in Dong and Shen (2015), Frandsen and Lefgren
(2015) and Yu (2015a), URS is indeed relevant in practice.

2Recall from Section 2.9 of VW that Z�n
� Z in a separable normed space (D; d) if suph2BL1(D) jE

� [h(Z�n)]� E [Z]j
p�! 0,

where BL1 = fh : D ! [0; 1]j jh(x)� h(y)j � kx� yk for all x; yg, and E� is the expectation with respect to the bootstrap
measure conditional on the original data.
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2 Frameworks and Hypotheses

We �rst repeat the framework of CH in our notations; see Chernozhukov and Hansen (2013) for most updated

developments on their framework. By the Skorohod representation, the outcome equation is

Yd = Qd(UdjX); d = 0; 1; (1)

where Qd(UdjX) is written as q (d;X;Ud) in CH, Qd(� jx) is the �th conditional quantile of Yd given X = x,

and Ud conditional on X = x is the rank variable of Yd for the subpopulation X = x.3 Ud represents some

unobserved characteristic of Yd, e.g., ability or proneness, and UdjX � U(0; 1), the uniform distribution on

(0; 1). The selection equation is

D = �(Z;X; V ) (2)

for some unknown function � and random vector V , where Z represents the instruments (usually some policy

variables) for the choice process. Both X and Z appearing as the arguments of � does not lose generality

since �(Z;X; V ) may not depend on all elements of X. Because Z does not show up in (1), the exclusion

assumption is implicitly assumed. CH further impose the following assumptions on the model:

A1. Potential Outcomes: Qd(� jx) is strictly increasing in � for d = 0; 1 and any x 2 supp(X).
A2. Independence: (U1; U0) ? ZjX, where �?�denotes independence (c.f., Dawid (1979)) and variables to
the right of �j�are the conditioning variables.
A3. Rank Similarity (RS): FU1jX;Z;V (ujx; z; v) = FU0jX;Z;V (ujx; z; v) for u 2 (0; 1) ; (x; z; v) 2supp(X;Z; V ).
A4. Observed Variables: Observed variables consist of W � (Y;D;X;Z), where Y = DY1 + (1 � D)Y0 =
QD(UDjX).

A2 is the orthogonal condition; note that it does not require V ? ZjX (see IA for some important examples

in which the instrument Z is assigned depending on D). CH also discuss a stronger version of RS, called rank

invariance (RI), but for identi�cation of Qd(� jx), RS is enough. Because this version of RS is conditional on
X, we label it as conditional rank similarity (CRS). The target of CH is to estimate the QTE,

�(� jx) = Q1(� jx)�Q0(� jx);

for � 2 (0; 1) and x 2supp(X).
As argued in Yu (2016), CH�s framework imposes stronger restrictions on the outcome equation and

less restrictions on the selection equation compared with HV�s framework. For concreteness, we repeat the

framework of HV in the quantile context (see Yu (2014a)). The selection equation is

D = 1(�D(X;Z)� V � 0);

where V is a scalar random error in the participation decision, and 1(�) is the indicator function. By

transforming �D(X;Z) and V by the conditional cdf FV jX;Z , we can rewrite

D = 1(p(X;Z)� V � 0); (3)

where we still use V to represent the transformed error to conform to CH�s notations as much as possible,

3This Ud is di¤erent from the Ud in Yu (2015a) where Ud represents the unconditional rank of Yd. For comparison, UdjX=x
in this paper is the Uxd in Yu (2015a); in other words, Ud in this paper is the U

X
d in Yu (2015a), where UdjX=x means Ud is

restricted at X = x.
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V jX;Z � U(0; 1), and p(X;Z) is the propensity score.4 Compared with (2), (3) takes the additive latent

index form with only one random error while (2) imposes almost no restrictions on D. (3) implies the

monotonicity assumption of IA, which is called the uniformity assumption by HV. The outcome equation is

Yd = Qd (UdjX;V ) with Udj (X;V ) � U(0; 1): (4)

Compared with (1), Yd in (4) has two random errors. In other words, the quantile of Yd depends not only

on X but on V ; i.e., for each slice of individuals with V = v who have the same propensity of participation,

even if their X values are the same, their quantile functions of potential outcomes need not be the same. In

term of Y which can be represented as QD (UDjX;V ) � q (D;X; V; UD), its quantile depends not only on D
but on the error term of D separately. Of course, by applying the Skorohod representation, we can always

represent Yd in the form of (1) although the de�nitions of Ud in (1) and (4) are di¤erent. In other words,

although we can identify the quantile function of Yd for each slice of individuals with X = x and V = v, we

may be only interested in the quantile function of Yd for the slice of individuals with X = x (i.e., combining

the v slices). As to the relationship between Z and the error terms, HV assume the ignorability condition

(U1; U0; V ) ? ZjX, while CH require only (U1; U0) ? ZjX and Z can be dependent of V .

To ease our testing procedure and study the �ne structure of CRS assumption, we maintain the framework

of HV throughout the paper. This framework is equivalent to IA�s framework in some sense; see Yu (2015b)

for a bare comparison of these two frameworks. Although this is a serious restriction, fortunately, we can

test the validity of this framework; see Kitagawa (2015) and references therein. In HV�s framework, due to

(U1; U0; V ) ? ZjX, the CRS assumption can be restated as

H0 : FU1jX;V (ujx; v) = FU0jX;V (ujx; v) for any u 2 (0; 1) ; v 2 (0; 1) and x 2 supp (X) :

This is our null hypothesis. Its opposite statement

H1 : FU1jX;V (ujx; v) 6= FU0jX;V (ujx; v) for some u 2 (0; 1) ; v 2 (0; 1) and x 2 supp (X)

is the alternative hypothesis. Although CH interpret H0 as the "slippage" distributions of U1 and U0 from

a common rank U are the same, it should be emphasized that theoretically, U1 and U0 can be independent.

To see why, suppose (Y1; Y0) are fully unconfounded, which is a special case of CH�s framework; then

FUdjX;V (ujx; v) = FUd(u) = u for both U1 and U0 even if U1 ? U0. Essentially, the CRS assumption is a

restriction on the two marginal distributions, while the rank invariance assumption, U1j (X;V ) = U0j (X;V ),
is a further restriction on the joint distribution.

We conclude this section by summarizing the framework and the corresponding assumptions we maintain

in this paper. The outcome and selection equations are

Yd = Qd(UdjX); d = 0; 1;
D = 1(p(X;Z)� V � 0); V jX;Z � U(0; 1):

(5)

The maintained assumptions are

Assumption M:

(M1) supp(YdjX = x; V = v) = Sxd, the conditional density fYdjX;V (ydjx; v) is continuous in (yd; v) for any
x 2supp(X), yd 2 Sxd, d = 0; 1, and v 2 (0; 1), where Sx0 =

h
y
x0
; yx0

i
and Sx1 =

h
y
x1
; yx1

i
need not be

compact and need not be the same.

4 In (3), we use V rather then UD as in HV because we have already used UD for DU1 + (1�D)U0 as in CH.

4



(M2) (U1; U0; V ) ? ZjX.
(M3) p(X;Z) is a nondegenerate random variable conditional on X.

(M4) 1 > P (D = 1jX) > 0.
(M5) X1 = X0, where Xd denotes a potential value of X if D is set to d.

(M1) assumes Yd to be continuously distributed. supp(Yd) can be bounded or unbounded. We also allow

supp(YdjX = x; V = v) to depend on d and x as in usual applications. We may also allow supp(YdjX = x; V = v)

to depend on v and fYdjX;V (ydjx; v) to be discontinuous at some v values, but we impose such regularity
conditions to avoid unnecessary complicity in notations. (M2) is the ignorability assumption. As shown in

Yu (2016), in the framework of HV, (M3) is equivalent to the monotone likelihood ratio condition of CH

and can be used to identify Qd(�j�) in (5). (M4) is the usual overlap assumption. (M5) is the "no feedback"
condition which excludes the e¤ect of D on X so conditioning on X does not mask the e¤ects of D. Note

that the framework and Assumption M are understood to be maintained only almost surely. For example,

"for any x 2supp(X)" in (M1) and H0;H1 can be replaced by "for PX almost sure x", but we will not

impose such a quali�er everywhere unless necessary. Also, when covariates do not exist (i.e., X = 1), we

neglect the subscript x in all notations, e.g., Sxd is written as Sd; similarly, some notations are adjusted
correspondingly, e.g., W = (Y;D;Z) :

3 An Overview of Testing Ideas

We �rst state a key testing implication of H0. To simplify notations, we will depress the conditioning on X

unless necessary.

Theorem 1 In the framework (5), suppose Assumption M holds. Then H0 is satis�ed if and only if

FY1jX;V
�
QY1jX(� jx)jx; v

�
= FY0jX;V

�
QY0jX(� jx)jx; v

�
(6)

for any � 2 (0; 1) ; v 2 (0; 1) and x 2supp(X).

Proof. Note that

FY1jV (y1jv) = P (Y1 � y1jV = v) = P (U1 � F1 (y1) jV = v) = FU1jV (F1 (y1) jv): (7)

Similarly,

FY0jV (y0jv) = FU0jV (F0 (y0) jv):

As a result,

FY1jV (Q1(�)jv) = FU1jV (F1 (Q1(�)) jv) = FU1jV (� jv)
= FU0jV (� jv) = FU0jV (F0 (Q0(�)) jv) = FY0jV (Q0(�)jv)

where the middle equality is from H0.

From the proof, FY1jV (Q1(�)jv) � FY0jV (Q0(�)jv) = FU1jV (� jv) � FU0jV (� jv). In other words, we can

plot FY1jV (Q1(�)jv) and FY0jV (Q0(�)jv) as a function of � for each v; the di¤erence between them is the

cdf di¤erence of U1 and U0 for the subpopulation V = v. The intuition for why compound functions

FYdjV (Qd(�)j�) in (6) are used is as follows: from the Skorohod representation, Yd contains two parts of

information - the value information Qd (�) and the rank information Ud; as rank similarity is related only to
the rank information, we use a compound function to o¤set the value information such that only the rank
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information remains. It is also interesting to observe that H0 is weaker than unconfoundedness since H0

states FU1jV (ujv) = FU0jV (ujv) for any u and v while unconfoundedess implies further that both are equal
to u. In terms of FY1jV (Q1(�)jv) and FY0jV (Q0(�)jv), unconfoundedness implies they are not only equal
but equal to � .

The following corollary states more implications of (6).

Corollary 1 Under the assumptions of Theorem 1, FY1jX;V
�
QY1jX(� jx)jx; v

�
= FY0jX;V

�
QY0jX(� jx)jx; v

�
for any � 2 (0; 1) ; v 2 (0; 1) and x 2 supp (X) is equivalent to that for any x 2 supp (X),

QY1jX;V (FY0jX;V (y0jx; v)jx; v) = QY1jX
�
FY0jX(y0jx)jx

�
for y0 2 S0x;

QY0jX;V (FY1jX;V (y1jx; v)jx; v) = QY0jX
�
FY1jX(y1jx)jx

�
for y1 2 S1x;

or

FY1jX;V (QY1jX;V (� jx; v) jx; v0) = FY0jX;V (QY0jX;V (� jx; v) jx; v0) for any � 2 (0; 1) ; (8)

where v; v0 2 (0; 1), v0 6= v, v0 is arbitrary and v can be �xed or arbitrary.

The �rst group of results are labelled as counterfactual-quantiles matching in Yu (2016), and counterfactual

mapping in Vuong and Xu (2016). The second group of results show that the matching can be applied

not only between the marginal population V = v and the population but across di¤erent marginal popula-

tions.5 This group of results also imply F1
�
QY1jV (� jv)

�
� F0

�
QY0jV (� jv)

�
=
R
FY1jV

�
QY1jV (� jv)jv0

�
dv0 �R

FY0jV
�
QY0jV (� jv)jv0

�
dv0 = 0. WithoutH0, although FY1jV

�
QY1jV (� jv)jv

�
�FY0jV

�
QY0jV (� jv)jv

�
= ��� =

0, F1
�
QY1jV (� jv)

�
�F0

�
QY0jV (� jv)

�
need not be zero. It is also interesting to note that cross matching with

a �xed v is equivalent to cross matching with an arbitrary v; the �xed v is like a "hub" for other v�s to get

connected through it.

For comparison, consider the unconfounded case again, where FYdjV (ydjv) = FYdjV (ydjv0) = Fd (yd),

so Fd
�
QYdjV (� jv)jv0

�
= Fd (Qd(�)) = � . In the current case, FYdjV (ydjv) need not equal Fd (yd) so that

Fd
�
QYdjV (� jv)jv0

�
need not equal � ; however, it still holds that F1

�
QY1jV (� jv)jv0

�
= F0

�
QY0jV (� jv)jv0

�
. In

other words, unconfoundedness implies no "di¤erence" in Fd (ydjv) across v (for any d) while H0 implies

no "di¤erence in di¤erence" in Fd (ydjv), where the �rst "di¤erence" is across d and the second "di¤er-
ence" is across v. This is somewhat like the usual di¤erence-in-di¤erence (DID) method or the changes-

in-changes (CIC) method of Athey and Imbens (2006), where the time T plays the role of V . In the

former, although E [UdjT = 0] 6= E [UdjT = 1], E [U1jT = 1] � E [U1jT = 0] = E [U0jT = 1] � E [U0jT = 0],
where Ud = Yd � E[Yd]. In the latter, although Fd (ydjT = 0) 6= Fd (ydjT = 1), F1 (Q1 (� jT = 0) jT = 1) =
F0 (Q0 (� jT = 0) jT = 1). The de-meaning in the former and the de-scaling in the latter are corresponding
operations to nullify the value information in Yd in the ATE and QTE evaluation, respectively.

In practice, the variation in Z may not be large enough to identify all V marginals. We will consider

three practical cases in this paper. Case (i): discrete Z and no X. We use this case to illustrate that

unlike the unconditional rank similarity test in Dong and Shen (2015) and Frandsen and Lefgren (2015), no

covariates are required to test conditional rank similarity. Case (ii): discrete Z and general X. This is the

most practical case since most data sets in applications satisfy this condition. In some applications, both X

and Z may include continuous variables, so we also discuss Case (iii): general Z and general X. We will �rst

overview here how our test statistics are constructed for these three cases. In the following three sections,

we will provide construction details and asymptotics for each case.

5Note that we are conditioning on X = x, so the marginal population is actually V = v;X = x, and the population is X = x.
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3.1 Case (i)

Suppose Z can take K values fz1; � � � ; zKg such that 0 = p0 < p1 < p2 < � � � < pK < pK+1 = 1 with pk =

p (zk).6 Then the always-takers A � fV � p1g, the kth compliers Ck � fpk < V � pk+1g, k = 1; � � � ;K � 1,
are individuals who are induced to switch from D = 0 to D = 1 as Z changes from zk to zk+1, and the

never-takers N � fV > pKg. The proportion of each group of individuals in the population is p1; pk+1� pk,
k = 1; � � � ;K � 1, and 1� pK , respectively.
We will propose two tests. The �rst test is based on the following corollary which is the version of (6) in

Case (i).

Corollary 2 In the framework (5), suppose Assumption M holds with X = 1 and Z being discrete. If H0 is

satis�ed, then

FY1jCk (Q1(�)) = FY0jCk (Q0(�)) (9)

for any � 2 (0; 1) and k = 1; � � � ;K � 1.

Proof. Note that

FYdjCk (yd) =
1

pk+1 � pk

Z pk+1

pk

FYdjV (ydjv) dv =
1

pk+1 � pk

Z pk+1

pk

FUdjV (Fd (yd) jv)dv:

where the last equality is from (7). If FU1jV (ujv) = FU0jV (ujv) = FU jV (ujv), u; v 2 (0; 1), then

FY1jCk (y1) = FU jCk (F1 (y1)) and FY0jCk (y0) = FU jCk (F0 (y0)) ;

where

FU jCk (u) �
1

pk+1 � pk

Z pk+1

pk

FU jV (ujv)dv

As a result,

FY1jCk (Q1(�)) = FU jCk (F1 (Q1(�))) = FU jCk (�) = FU jCk (F0 (Q0(�))) = FY0jCk (Q0(�)) :

Di¤erent from Theorem 1, (9) does not imply H0 because we cannot observe all v�s. In other words, H0

is refutable but nonveri�able - if the null is rejected, then we are sure that H0 is wrong; while if the null

is not rejected, H0 need not be correct. See Breusch (1986) for a general discussion and Kitagawa (2015)

for a recent example of this kind of hypothesis. On the other hand, since Ck; k = 1; � � � ;K � 1, is the only
identi�able set of V marginals, we expect (9) exhausts the testable implication of the data distribution. The

following proposition rigorously states this result.

Proposition 1 Suppose the assumptions of Corollary 2 hold. If FY1jCk (Q1(�)) and FY0jCk (Q0(�)) satisfy
(9), then there exists a joint distribution of (Y1; Y0; V; Z) that satis�es H0, generates the joint data distribution

of (Y;D;Z), and induces FYdjCk (Qd(�)) for � 2 (0; 1) and k = 1; � � � ;K � 1.

This proposition implies that a test based on

T1o =
K�1X
k=1

wk

Z 1

0

�
FY1jCk (Q1(�))� FY0jCk (Q0(�))

�2
d�k (�)

6 If p1 = 0 or pK = 1, some of the following analysis can be simpli�ed.

7



is optimal in the sense that if T1o = 0 then any other feature of the data distribution cannot contribute to

invalidate CRS further, where wk > 0,
PK�1

k=1 wk = 1, �k (�) > 0 for almost every � 2 (0; 1),
R 1
0
d�k (�) = 1

and the subscript o is for "oracle". Note that the choice of wk and �k (�) does not a¤ect the optimality of
T1o, but may improve its power in case that we have prior information on the group of compliers or quantile

indices on which FU1jCk(�) 6= FU0jCk(�). Uniform priors wk = 1=k and �k (�) = 1 indicate that no prior

information is imposed. In practice, wk and �k (�) can be constructed based on some pilot tests.

From Corollary 2 and Proposition 1, our �rst test statistic in Case (i) can be based on a truncated version

of T1o,

T1 =
K�1X
k=1

wk

Z
T

�
FY1jCk (Q1(�))� FY0jCk (Q0(�))

�2
d�k (�) ;

where T is a compact subset of [�; 1� �] for some � > 0. We truncate the quantile index for three reasons.
First, when the supports of Y1 and Y0 are not bounded, e.g., Y is the weekly wage rate, we can avoid the

technical di¢ culties in estimating extremal quantiles (see, e.g., Chernozhukov (2005) and Chernozhukov and

Fernández-Val (2011)). Second, it is commonly believed that at extremal quantiles, the CRS assumption

is easier to hold. For example, the extreme rich (poor) complier tends to be extremely rich (poor) after

participating a social program. Third, if Y is censored at bottom or top as in, e.g., weekly wage rate, we

can avoid the contribution from point masses of censored quantiles to T1.

Our second test is based on the following corollary which is the version of (8) in Case (i).

Corollary 3 Suppose the assumptions of Corollary 2 hold. Under H0,

FY1jCk
�
QY1jC1(�)

�
= FY0jCk

�
QY0jC1(�)

�
(10)

for any � 2 (0; 1) ; k 2 f2; � � � ;K � 1g.

Proof. By the similar logic as in the proof of Corollary 2, FY1jCk
�
QY1jC1(�)

�
= FU jCk

�
F�1U jC1(�)

�
=

FY0jCk
�
QY0jC1(�)

�
.

From the proof above, FUdjCk need not equal FUdjC1 as in the unconfounded case; however, under the

null, the di¤erence between FU1jCk and FU1jC1 (FU1jCk
�
F�1U1jC1(�)

�
) and the di¤erence between FU0jCk and

FU0jC1 (FU0jCk
�
F�1U0jC1(�)

�
) are similar. In other words, the second test is based on the "similarity between

di¤erences". Like (8) in Corollary 1, (10) is equivalent to FY1jCk
�
QY1jCl(�)

�
= FY0jCk

�
QY0jCl(�)

�
for k; l 2

f1; � � � ;K � 1g and k 6= l. For future reference, we label this result as cross compliers matching (or simply

cross matching) and its opposite that FY1jCk
�
F�1Y1jC1(�)

�
6= FY0jCk

�
F�1Y0jC1(�)

�
for some k 2 f2; � � � ;K � 1g

and � 2 (0; 1) as cross compliers mismatching (or simply cross mismatching).
Like (9), (10) does not imply H0. It seems also that it does not imply (9) because Qd (�) cannot be

recovered solely from (10). Actually, (9) and (10) include the same testable information as shown in the

following proposition.

Proposition 2 Suppose the assumptions of Corollary 2 hold. If FY1jCk
�
QY1jC1(�)

�
and FY0jCk

�
QY0jC1(�)

�
satisfy (10), then there exists a joint distribution of (Y1; Y0; V; Z) that satis�es H0, generates the joint data

distribution of (Y;D;Z), and induces FY1jCk
�
QY1jC1(�)

�
and FY0jCk

�
QY0jC1(�)

�
for � 2 (0; 1) and k =

2; � � � ;K � 1.

This seemingly surprising result is due to the fact that Qd (�) in (9) cannot be identi�ed from the data

distribution. We in Section 4 identify it by imposing H0, which loses one more degree of freedom. That is

why (9) includes K � 1 constraints while (10) includes only K � 2 constraints. A straightforward corollary

8



of the proof of Proposition 2 is that if K = 2, H0 does not impose any restriction on the data generating

process, i.e., no tests can have power.

As in the cae of T1o, a test based on

T2o =
K�1X
k=2

wk

Z 1

0

�
FY1jCk

�
QY1jC1(�)

�
� FY0jCk

�
QY0jC1(�)

��2
d�k (�)

is optimal, where wk and �k (�) are similarly de�ned as in T1o. Similar to T1, our second test statistic is

based on a truncated version of T2o,

T2 =
K�1X
k=2

wk

Z
T

�
FY1jCk

�
QY1jC1(�)

�
� FY0jCk

�
QY0jC1(�)

��2
d�k (�) :

For K � 1 groups of compliers, there are totally K � 2 cross matchings. Here, we select C1 as the hub
complier; in practice, we can select Cl with the largest proportion (pl+1 � pl) as the hub complier to improve
�nite-sample performance.

That T1o and T2o explore the same testable implication of the data distribution does not mean they

would have the same power; see Section 4.2 for a detailed analysis. This is just like that both tests have

power in any feasible direction of violating H0 but their power functions may be very di¤erent. Also, as

suggested after Theorem 1, we can plot FY1jCk (Q1(�)) versus FY0jCk (Q0(�)) in (9) or FY1jCk
�
QY1jC1(�)

�
versus FY0jCk

�
QY0jC1(�)

�
in (10) as a function of � to check the violation of H0.

3.2 Case (ii)

Suppose supp(X) = X and for each X = x, Z can take K values fz1; � � � ; zKg, K � 2. For each x, p(x;Z)
takes K distinct values fpx1; � � � ; pxKg, with pxk = p (x; zk) and 0 = px0 < px1 < px2 < � � � < pxK <

px;K+1 = 1. We can extend to the case where the support of (X;Z) is not a Cartesian product of two

sets, but such a generalization will not add any further insights except complicate notations.7 Also, we can

allow p(x; z) not to be increasing in z, but by rearranging the Z values within each x value we can always

make p(x; z) strictly increase in z. We assume p (x; zk) is distinct for each zk; if two zk values generate

the same propensity score, they are combined and relabelled as one value. Under these notations, among

the individuals with X = x, the always-takers Ax � fV � px1g, the compliers Cxk � fpxk < V � px;k+1g ,
k = 1; � � � ;K � 1, and never-takers Nx � fV > pxKg. As in Case (i), we can show the test based on either

TX1o =
K�1X
k=1

Z
X
wk(x)

Z 1

0

h
F kY1jX

�
QY1jX(� jx)jx

�
� F kY0jX

�
QY0jX(� jx)jx

�i2
d�k (� jx) dx

or

TX2o =
K�1X
k=2

Z
X
wk(x)

Z 1

0

h
F kY1jX

�
Q1Y1jX(� jx)jx

�
� F kY0jX

�
Q1Y0jX(� jx)jx

�i2
d�k (� jx) dx

7Think about the binary Z case. If we interpret Z as the theoretical assignment and D as the realized treatment status, then
the independence of supp(Z) on X means that the assignment Z is genuinely randomized for each value of X. This assumption
corresponds to the assumption 0 < E [ZjX] < 1 in IA.
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is optimal, where F kYdjX(�jx) is the cdf of Yd for Cxk given X = x.8 The weight wk(x), satisfying wk(x) > 0

for PX almost sure x and
R
X wk(x)dx = 1, can depend on both x and Cxk. Similarly, �k (� jx), satisfying

�k (� jx) > 0 for almost every � 2 (0; 1) and
R 1
0
d�k (� jx) = 1 for PX almost sure x, can depend on both x

and Cxk. As in the case of T1 and T2, our two tests in Case (ii) are based on

TX1 =
K�1X
k=1

Z
X
wk(x)

Z
T

h
F kY1jX

�
QY1jX(� jx)jx

�
� F kY0jX

�
QY0jX(� jx)jx

�i2
d�k (� jx) dx

and

TX2 =
K�1X
k=2

Z
X
wk(x)

Z
T

h
F kY1jX

�
Q1Y1jX(� jx)jx

�
� F kY0jX

�
Q1Y0jX(� jx)jx

�i2
d�k (� jx) dx;

where Q1YdjX (�jx) is the quantile function of Yd for Cx1 given X = x. As to the choice of wk(x), if X is discrete

and can take J values fx1; � � � ; xJg, then wk(x) = wjk; if P (X = xj) for some xj is small, we can truncate

such xj and pick only xj�s with enough data points; when the proportion of some Cxjk within xj is small,
we can further truncate it by setting the corresponding wjk = 0. Typically, we can set wk(x)dx = dFX (x)

independent of k. Similarly, we can set �k (� jx) = 1 independent of both x and k.
As mentioned in the introduction, Kim and Park�s test is related to our TX1 , where

h
F kY1jX

�
QY1jX(� jx)jx

�
� F kY0jX

�
QY0jX(� jx)jx

�i2
is replaced by infy02Y0(x)

���F kY1jX (y1jx)� F kY0jX (y0jx)��� with Y0(x) = Sx0 under our assumption M1. Under
H0, the in�mum 0 is actually achieved at y0 = QY0jX(FY1jX(y1jx)jx). In other words, we express their
in�mum explicitly in our TX1 .

3.3 Case (iii)

Suppose supp(X) = X , supp(ZjX = x) = Z independent of x and supp(p (X;Z) jX = x) = Px dependent
on x. We impose the following assumption on Px.

Assumption P: Px =
h
p
x
; px

i
� [0; 1] for each x 2 X . In other words, the conditional density function of

p(X;Z) given X = x, say fP (X;Z)jX(pjx), is positive for p 2
�
p
x
; px

�
.

This assumption tries to re�ect the reality of the support of p(X;Z). Usually, the support of p(X;Z) is

di¤erent for di¤erent x values and is a subset of [0; 1] staying in the middle of [0; 1]. We can relax this

assumption by allowing the support of p(X;Z) to be segments of intervals without di¢ culty, but we �nd

Assumption P will provide clean results without losing the essence of our problem. For each x, we can

identify counterfactual distributions of the marginal population V = v 2 Px.
Following the similar proof idea of Proposition 1, we can show thatZ

X

Z
Px
w(x; v)

Z 1

0

h
FY1jX;V

�
QY1jX(� jx)jx; v

�
� F kY0jX;V

�
QY0jX(� jx)jx; v

�i2
d� (� jx; v) dvdx

is optimal, where w(x; v) is a weight function on XPx � f(x; px) jx 2 X ; px 2 Pxg, and � (� jx; v) is a weight
function on (0; 1) which may depend on x and v. This suggests a test statistic such asZ

X

Z
Px
w(x; v)

Z
T

h
FY1jX;V

�
QY1jX(� jx)jx; v

�
� F kY0jX;V

�
QY0jX(� jx)jx; v

�i2
d� (� jx; v) dvdx; (11)

8 In Kim and Park (2016),
h
Fk
Y1jX

�
QY1jX(� jx)jx

�
� Fk

Y0jX
�
QY0jX(� jx)jx

�i2
is replaced by

infy02Y0(x)

���FkY1jX (y1jx)� FkY0jX (y0jx)���, where Y0(x) = Sx0 under our assumption M1. Under H0, the in�mum 0 is

actually achieved at y0 = QY0jX(FY1jX(y1jx)jx). In other words, we express the in�mum explicitly in our TX1o .
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which can be treated as an extension of TX1 . However, this form of test is not feasible due to a techinical

di¢ culty in the inference of QYdjX(� jx) as explained in Section 6. As an alternative, we suggest two variants
of TX2 . Speci�cally,

TX3 =

Z
X

Z
Px:v 6=vo

w(x; v)

Z
T

�
FY1jX;V

�
QY1jX;V (� jx; vo)jx; v

�
� FY0jX;V

�
QY0jX;V (� jx; vo)jx; v

��2
d� (� jx; v) dvdx;

where vo is the hub v. Following Proposition 2, we can show if T is replaced by (0; 1), then TX3 is op-
timal. We can select vo as the median of Fp(X;Z)jX(�jx) so it may depend on x. When v is close to vo,
FY1jX;V

�
QY1jX;V (� jx; vo)jx; v

�
is close to FY0jX;V

�
QY0jX;V (� jx; vo)jx; v

�
since both are close to � . As a re-

sult, such v�s will include more noise than information to power, and it is better to kick out a neighborhood
of vo in the integration about v. However, it is hard to determine how large a neighborhood should be kicked
out or a good kick-out may be data-dependent. To avoid such a di¢ culty, we suggest another variant of TX2 :

TX4 = max

�Z
X

Z px

vo

w(x; v)

Z
T

�
FY1jX;V

�
QY1jX;V (� jx; v1)jx; v

�
� FY0jX;V

�
QY0jX;V (� jx; v1)jx; v

��2
d� (� jx; v) dvdx ;Z

X

Z vo

p
x

w(x; v)

Z
T

�
FY1jX;V

�
QY1jX;V (� jx; v2)jx; v

�
� FY0jX;V

�
QY0jX;V (� jx; v2)jx; v

��2
d� (� jx; v) dvdxg;

where v1 2 (px; vo) and v2 2 (vo; px). We can select v1; v0; v2 as the �rst quartile, median and third quartile
of Fp(X;Z)jX(�jx). Note that in TX4 , we have two hub v�s - v1 and v2. The range of integration relative to
the �rst hub is [vo; px], which is far from v1; similarly for the integration relative to v2. Also, because vo is

included in both ranges of integration, as argued after Corollary 1, all cross-v comparisons are covered. As

a result, if T is replaced by (0; 1) in TX4 , then it is optimal.
We close this section by some additional comments. All the test statistics above take the form of

Cramer-von Mises (CM) statistics; an alternative formulation is in the form of Kolmogorov-Smirnov (KS)

statistics. The reason for departing from KS statistics is that our simulation experiments suggested that

CM-type statistics have somewhat better power properties than those based on the KS-type statistics. In

the following sections, we will also discuss some extensions of T1; T2; TX1 ; T
X
2 ; T

X
3 and TX4 ; we did not discuss

these extensions here to emphasize the basic ideas of our tests.

4 Testing With Discrete Instruments and No Covariates

To construct the �nite-sample analog of T1, we need to estimate Qd (�) and FYdjCk (�). The estimation of
Qd (�) is based on the IV-QRE of CH, which is consistent under H0. Speci�cally, the moment conditions

used by the IV-QRE are

E

" 
1

p(Z)

!
(� � 1 (Y � Q�0(�) +D ���(�)))

#
= 0; (12)

where ��(�) = Q�1 (�)�Q�0(�), and we use the superscript � to indicate that Q�d(�) and ��(�) identi�ed by
the moment conditions need not be the true values when H0 does not hold. As shown in Yu (2016) (see also

Wütherich (2015) for the case with Z being the instrument), the moment conditions imply

F �1 (y1) = p1FY1jA (y1) +
K�1X
k=1

(pk+1 � pk)
n
FY1jCk(y1)

�
1� Fp(Z)(pk)

�
+ FY0jCk(

eF�10 eF1 (y1))Fp(Z)(pk)o
+(1� pK)FY0jN ( eF�10 eF1 (y1))
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and

F �0 (y0) = p1FY1jA(
eF�11 eF0 (y0)) + K�1X

k=1

(pk+1 � pk)
n
FY1jCk(

eF�11 eF0 (y0)) �1� Fp(Z)(pk)�+ FY0jCk(y0)Fp(Z)(pk)o
+(1� pK)FY0jN (y0) ;

where

eFd (yd) = K�1X
k=1

(pk+1 � pk)h(pk+1)FYdjCk(yd) with h(pk+1) =
Cov (p(Z); 1 (p(Z) � pk+1))

V ar (p(Z))

is the potential cdf of a mixed compliers with weights ((p2 � p1)h(p1); � � � ; (pK � pK�1)h(pK)) on Ck, so
we can estimate F �d (�) by estimating FY1jA, FYdjCk and FY0jN and then plugging in these two formulas.

Speci�cally, from Abadie (2002) and Imbens and Rubin (1997),

FY1jA (y1) =
E [1 (Y � y1)DjZ = z1]

P (D = 1jZ = z1)
;

FYdjCk(yd) =
E [1 (Y � yd) � 1 (D = d) jZ = zk+1]� E [1 (Y � yd) � 1 (D = d) jZ = zk]

P (D = djZ = zk+1)� P (D = djZ = zk)
;

FY0jN (y0) =
E [1 (Y � y0) (1�D) jZ = zK ]

P (D = 0jZ = zK)
:

An alternative estimation method is the inverse quantile regression estimator of Chernozhukov and Hansen

(2006), but their estimator does not use the information in (3) and usually targets on a constant quantile

treatment e¤ect rather than Qd so will not be used in this paper. As discussed in Wütherich (2015) and Yu

(2016), F �d involves using the estimables to replace the unestimables, e.g., the true F1(y1) = p1FY1jA(y1) +PK�1
k=1 (pk+1 � pk)FY1jCk(y1) + (1 � pK)FY1jN (y1), but FY1jN is not estimable so F �1 uses FY0jN ( eF�10 eF1) to

substitute it and meanwhile uses a weighted average of FY1jCk(y1) and FY0jN ( eF�10 eF1) to substitute FY1jCk .
There are also two methods to estimate FYdjCk . The �rst method is to employ the FYdjCk above. The second

method is the inverse probability weighting method suggested by Abadie (2003). We use the �rst method

to unify the estimation procedure in all three cases.

4.1 Construction of Test Statistics

Our test statistics are constructed as follows.

Step 1: Let

bFY1jA (y1) =
n�11

Pn
i=1 1 (Yi � y1)Di1 (Zi = z1)

n�11
Pn

i=1Di1 (Zi = z1)
;

bFYdjCk(yd) =
n�1k+1

Pn
i=1 1 (Yi � yd) 1 (Di = d) 1 (Zi = zk+1)� n�1k

Pn
i=1 1 (Yi � yd) 1 (Di = d) 1 (Zi = zk)

n�1k+1
Pn

i=1 1 (Di = d) 1 (Zi = zk+1)� n�1k
Pn

i=1 1 (Di = d) 1 (Zi = zk)
;

bFY0jN (y0) =
n�1K

Pn
i=1 1 (Yi � y0) (1�Di) 1 (Zi = zK)

n�1K
Pn

i=1 (1�Di) 1 (Zi = zK)
;

and

bpk = n�1k
Pn

i=1Di1 (Zi = zk) ;bh(bpk+1) =
PK

l=k+1 nl

�bpl � bp�PK
l=1 nl

�bpl � bp�2 ;
12



where nk =
Pn

i=1 1 (Zi = zk), and bp =PK
l=1

nl
n bpl = n�1

Pn
i=1Di.

Step 2: Let

bF1(y1) = bp1 bFY1jA (y1) + K�1X
k=1

(bpk+1 � bpk)� bFY1jCk(y1) h1� bFZ (zk)i+ bFY0jCk �beF�10 beF 1 (y1)� bFZ (zk)�
+(1� bpK) bFY0jN �beF�10 beF 1 (y1)�

and

bF0(y0) = bp1 bFY1jA�beF�11 beF 0 (y0)�+ K�1X
k=1

(bpk+1 � bpk)� bFY1jCk �beF�11 beF 0 (y0)�h1� bFZ (zk)i+ bFY0jCk(y0) bFZ (zk)�
+(1� bpK) bFY0jN (y0) ;

which are consistent to F �d (yd), where

bFZ (zk) = n�1
nX
i=1

1 (Z � zk) ; beF d (yd) = K�1X
k=1

(bpk+1 � bpk)bh(bpk+1) bFYdjCk(yd):
Step 3: Let

T1n =
K�1X
k=1

Z
T

h bFY1jCk � bF�11 (�)
�
� bFY0jCk � bF�10 (�)

�i2
d�;

and

T2n =

K�1X
k=2

Z
T

h bFY1jCk � bF�1Y1jC1(�)�� bFY0jCk � bF�1Y0jC1(�)�i2 d� ;
where we use a uniform prior on Ck and T for simplicity. In practice, the integration in T1n and T2n
can be replaced by a summation with respect to f� ig�ni=1, where �n !1, and f� ig

�n
i=1 gets dense in T

as �n !1.

Even if FYdjCk(yd) is a genuine cdf, bFYdjCk need not be, e.g., bFYdjCk (yd)may be out of [0; 1] and nonmonotonic.9
So we suggest to conduct the monotone rearrangement operator of Chernozhukov et al. (2010) and truncatebFYdjCk (yd) to [0; 1] before further operations on it.10 Note also that in practical implementation,
beF 1 (y1) =

XK�1

k=1
bh(bpk+1) �n�1k+1Pn

i=1 1 (Yi � y1)D1 (Zi = zk+1)� n�1k
Pn

i=1 1 (Yi � y1)D1 (Zi = zk)
�
;beF 0 (y0) =

XK�1

k=1
bh(bpk+1) �n�1k Pn

i=1 1 (Yi � y0) (1�D) 1 (Zi = zk)� n�1k+1
Pn

i=1 1 (Yi � y0) (1�D) 1 (Zi = zk+1)
�

do not involve any denominator; similarly, bF1(y1) and bF0(y0) do not involve any denominator which may be
too small to a¤ect the �nite-sample performance of our tests.

9Note that bFY1jA (y1) and bFY0jN (y0) must be monotone and in [0; 1].
10We can also rearrange beF d and bFd until we need to do it. Usually, beF d and bFd are more likely to be monotone and stay in

[0; 1] than bFYdjCk because they are averages of a few correlated cdfs, while the two terms in the in�uence function of bFYdjCk are
independent such that the variation in bFYdjCk is quite large. When K is large and there are covariates, we need to pay more

attention since each Cxk cell usually contains fewer data points. In the simulation study of Section 8, rearranging bFYdjCk before
further operations on it works better.
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4.2 Asymptotics for T1n and T2n

The following theorems state the asymptotic distribution of T1n and T2n under H0. We also consider the

local alternative

H�
1 : FU1jV (ujv)� FU0jV (ujv) =

� (ujv)p
n

;

where � (ujv) falls in

F =
�
g(�j�) 2 C

�
[0; 1]

2
���� g(0jv) = g(1jv) = 0;

Z 1

0

g(ujv)dv = 0; u; v 2 [0; 1]
�
;

where g(0jv) = g(1jv) = 0 because FU1jV (0jv) = FU0jV (0jv) = 0 and FU1jV (1jv) = FU0jV (1jv) = 1, andR 1
0
g(ujv)dv = 0 because

R 1
0
FU1jV (ujv)dv =

R 1
0
FU0jV (ujv)dv = u. Because

R 1
0
g(ujv)dv = 0, g(ujv) cannot

be the same for all v 2 [0; 1] unless g(ujv) = 0. We assume g(�j�) 2 C
�
[0; 1]

2
�
; otherwise, there is a point

mass shift in u for some v, or there is a sharp change in the shape of FUdjV (ujv) for two close v values.
Actually, since we have only three types of individuals, we can equivalently specify

H�
1 : FU1jtype(�)� FU0jtype(�) =

�type (�)p
n

where type 2 fA; Ck; k = 1; � � � ;K � 1;Ng, and � (�) �
�
�A (�) ; f�Ck (�)g

K�1
k=1 ; �N (�)

�0
falls in

F 0 =
n
g(�) 2 C ([0; 1])K+1

��� g(0) = g(1) = 0 � (0; � � � ; 0)0K+1 ;

p1g1 (�) +
XK�1

k=1
(pk+1 � pk) gk+1 (�) + (1� pK) gK+1 (�) = 0; � 2 [0; 1]

�
:

The relationship between � (�) and � (ujv) is �k(�) = 1
pk+1�pk

R pk+1
pk

�(� jv)dv where k = 0; 1; � � � ;K � 1;K
corresponds to type = A; fCkgK�1k=1 ;N , p0 = 0 and pK+1 = 1. We also impose the following assumption.

Assumption LA: The joint distribution of W implied by the local alternative is contiguous to that implied

under H0.

The requirement for the contiguity of the local alternative to the null is standard in analyzing the local

power. A su¢ cient condition for contiguity in Case (i) is that

sup
y:f

(0)

Ydjty p e
(y)>0

f
(1)
Ydjtype(y)

f
(0)
Ydjtype(y)

<1;

where f (1)Ydjtype(y) and f
(0)
Ydjtype(y) are the densities of Yd for di¤erent types under H

�
1 and H0 respectively.

Intuitively, this would be the case when f (1)Ydjtype(y) has lighter tails than f
(0)
Ydjtype(y).

To ease the statement of the following theorems, de�ne f'ig
1
i=1 as a class of orthonormal and complete

basis functions of L2 (T ), that is,
R
T 'i (�)'j (�) d� = 1(i = j) and any function f such that

R
T f(�)

2d� <1
can be approximated arbitrarily well by selecting enough many 'i�s, where 1(�) is the indicator function;
de�ne the eigenvalues of a real valued positive semi-de�nite continuous function on T �T , say, �(�1; �2), as
f�ig1i=1 such that Z

T
�(�1; �2)'i (�2) d� = �i'i (�1) ;

where �i � 0 need not be distinct, and
P1

i=1 �i <1.
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Theorem 2 Suppose the assumptions of Corollary 2 hold.

(i) Under H0,

nT1n  
K�1X
k=1

1X
i=1

�
(1)
ki "

(1)2
ki ;

where "(1)ki are iid N(0; 1) random variables, �
(1)
ki �s are eigenvalues of �

(1)
k (�1; �2) � E

h
Z
(1)
k (�1)Z

(1)
k (�2)

i
with the zero-mean Gaussian process Z(1)k (�); � 2 T , de�ned in the proof, and the covariance between
"
(1)
ki and "

(1)
lj , k; l 2 f1; � � � ;K � 1g and k 6= l, i; j = 1; 2; � � � , is determined by the correlation structure

of Z(1)k (�) and Z(1)l (�) and is de�ned in the proof.

(ii) Under H�
1 and Assumption LA,

nT1n  
K�1X
k=1

1X
i=1

�
b
(1)
ki +

q
�
(1)
ki "

(1)
ki

�2
;

where b(1)ki =
R
T b

(1)
k (�)'i (�) d� with

b
(1)
k (�) = �Ck(�)�

XK�1

l=1
(pl+1 � pl)h(pl+1)�Cl(�)

being a linear map of � (�). Thus, for any c > 0, P
�
nT1n > cjH�

1

�
� P (nT1n > cjH0), where the

equality holds if and only if b(1)ki = 0 for any k = 1; � � � ;K � 1 and i = 1; 2; � � � .

(iii) Under the �xed alternative H1 with T1 = plimn!1 T1n > 0,

lim
n!1

P (nT1n > cn) = 1

for any sequence of random variables fcn : n � 1g with cn = Op(1).

A corollary of Theorem 2 is the asymptotic distribution of bFd(�) and the QTE,
b�(�) � bF�11 (�)� bF�10 (�):

Corollary 4 Suppose the assumptions of Corollary 2 hold. Under H0,

p
n

 bF1(y1)� F1(y1)bF0(y0)� F0(y0)
!
 
 
Z1 (y1)

Z0 (y0)

!
in `1 (Y1)� `1 (Y0) ;

and
p
n
�b�(�)��(�)� Z0

�
F�10 (�)

�
f0
�
F�10 (�)

� � Z1
�
F�11 (�)

�
f1
�
F�11 (�)

� in `1 (T ) ;
where Zd (yd) is de�ned in the proof, and Yd is a compact interval in Sd and contains an �-enlargement of
the set

�
F�1d (�)j; � 2 T

	
.

Theorem 3 Suppose the assumptions of Corollary 2 hold.

(i) Under H0,

nT2n  
K�1X
k=2

1X
i=1

�
(2)
ki "

(2)2
ki ;
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where "(2)ki are iid N(0; 1) random variables, �
(2)
ki �s are eigenvalues of �

(2)
k (�1; �2) � E

h
Z
(2)
k (�1)Z

(2)
k (�2)

i
with the zero-mean Gaussian process Z(2)k (�); � 2 T , de�ned in the proof, and the covariance between
"
(2)
ki and "

(2)
lj , k; l 2 f2; � � � ;K � 1g and k 6= l, i; j = 1; 2; � � � , is determined by the correlation structure

of Z(2)k (�) and Z(2)l (�) and is de�ned in the proof.

(ii) Under H�
1 and Assumption LA,

nT2n  
K�1X
k=2

1X
i=1

�
b
(2)
ki +

q
�
(2)
ki "

(2)
ki

�2
;

where b(2)ki =
R
T b

(2)
k (�)'i (�) d� with

b
(2)
k (�) = �Ck(F

�1
U jC1(�))�

fU jCk

�
F�1U jC1(�)

�
fU jC1

�
F�1U jC1(�)

� �C1(F�1U jC1(�))
being a linear map of � (�). Thus, for any c > 0, P

�
nT2n > cjH�

1

�
� P (nT2n > cjH0), where the

equality holds if and only if b(2)ki = 0 for any k = 2; � � � ;K � 1 and i = 1; 2; � � � .

(iii) Under the �xed alternative H1 with T2 = plimn!1 T2n > 0,

lim
n!1

P (nT2n > cn) = 1

for any sequence of random variables fcn : n � 1g with cn = Op(1).

We provide some comments on the asymptotic distributions of T1n and T2n under H0. From the proof,

both T1n and T2n converge weakly to a sum of
R
T Zk (�)

2
d� for some zero-mean Gaussian processes Zk (�). We

express
R
T Zk (�)

2
d� in the two theorems as

P1
i=1 �ki"

2
ki for �ki being the eigenvalues of Zk (�)�s covariance

kernel �k(�1; �2) and "ki being iid N(0; 1). Such a representation for a single Zk (�) process was �rst
introduced to the econometric literature by Birens and Ploberger (1997) through Mercer�s theorem although

such a form of weak limit as
R
T Zk (�)

2
d� appears even in the classical CM statistic. Though such a

representation is standard in econometrics now, here we mention some intuition to aid understanding. First

note that Zk (�) is a collection of uncountably many normal random variables; however, the independent

"variation" in Zk (�) is only countable - f"kig1i=1. The key reason is that Zk (�) is a continuous process on a
compact set T , where the continuity is implied by the continuity of �k(�1; �2). Since a continuous function
on a compact set must be square-integrable, i.e., Zk (�) 2 L2 (T ), while L2 (T ) is separable,

R
T Zk (�) d� can

be represented as a sum of countably many normal random variables. As to why f�kig1i=1 appear, think
of the distribution of

PL
l=1 Z

2
l , where (Z1; � � � ; ZL) are jointly normal with positive semi-de�nite covariance

matrix �. From some elementary analysis, it can be represented as
PL

l=1 �i"
2
i , where �i � 0, i = 1; � � � ; L, are

the eigenvalues of � and need not be distinct, and "i, i = 1; � � � ; L, are iid N(0; 1); in other words,
PL

l=1 Z
2
l

follows a mixed chi-square distribution.
R
T Zk (�)

2
d� is a natural extension of

PL
l=1 Z

2
l ; note here that the

eigenvalues get smaller and smaller since
P1

i=1 �ki < 1. When there are multiple Gaussian processes, we
need to take into account the correlation structure between di¤erent processes, which is expressed through

the correlation between "ki and "lj , k 6= l, i; j = 1; 2; � � � , in the theorems.
We next provide some comments on the local power of T1n and T2n. First, although bFd in T1n usesbFY0jN (y0) and bFY1jA (y1), b(1)k (�) = �Ck(�) �

PK�1
l=1 (pl+1 � pl)h(pl+1)�Cl(�) does not involve �A (�) and

�N (�). Intuitively, since we can only identify FY1jA and FY0jN but not FY0jA and FY1jN , there is no
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information on the contrast of FU1jA vs. FU0jA and FU1jN vs. FU0jN . Second, b
(1)
k (�) comes from two

resources - one from the misspeci�cation of Fd as F �d under H�
1 and the other from FY1jCk

�
F�11 (�)

�
�

FY0jCk
�
F�10 (�)

�
= FU1jCk (�)�FU0jCk (�) 6= 0 under H�

1 . Third, note that b
(1)
k (�) is �Ck(�) minus a weighted

average of f�Cl(�)g
K�1
l=1 since (pl+1 � pl)h(pl+1) > 0 and

PK�1
l=1 (pl+1 � pl)h(pl+1) = 1. So unless �Cl(�) =

�Ck(�) for all k 6= l, bk (�) cannot be zero for all k = 1; � � � ;K � 1, and our test will have power. In the
function space F 0, this event can rarely happen; the larger K is, the rarer this event is. To see why this

event is rare, note that

p1�A (�) +
XK�1

k=1
(pk+1 � pk) �Ck (�) + (1� pK) �N (�) = 0;

so �Ck(�) = �C(�) for all k implies

p1�A (�) + (pK � p1) �C(�) + (1� pK) �N (�) = 0;

i.e., a weighted average of three functions in C ([0; 1]) is luckily to be zero. Fourth, since
PK�1

k=1 (pk+1 � pk)h(pk+1)b
(1)
k (�) =

0, the "net" source of power is (K � 2) dimensional. In other words, when K = 2 (i.e., Z is binary), T1n
does not have power as discussed after Proposition 2. Two dimensions are lost because we need to esti-

mate two parameters in (12). So in essence, T1n is an overidenti�cation test; the power comes from cross

mismatching; see Section 7 for more discussions on this point. Fifth, the power of T2n also comes from

cross mismatching. However, unlike b(1)k (�) which is a function of only �Ck (�), b
(2)
k (�) involves also nuisance

densities fU jCk
�
F�1U jC1(�)

�
, k = 1; � � � ;K � 1. Generally,

n
b
(2)
k (�)

oK�1
k=2

is also K � 2 dimensional because

b
(2)
k (�) = 0 requires

�Ck(F
�1
U jC1(�))

�C1(F
�1
U jC1(�))

=
fU jCk

�
F�1U jC1(�)

�
fU jC1

�
F�1U jC1(�)

� ;
which can rarely happen. Finally, the asymptotic distribution under H0 in (i) is a special case of that under

H�
1 , and the consistency of the test statistics in (iii) is well understood, so we will state only the asymptotic

distribution under H�
1 in sections 5 and 6.

As discussed above, the power dimension of T1n is K�2, while T1n is a sum of K�1 Gaussian processes,
so it would improve power by combining these K � 1 processes into K � 2 processes. More speci�cally, let

T 01n =

K�2X
k=1

Z
T

h bF (k)Y1jC

� bF�11 (�)
�
� bF (k)Y0jC

� bF�10 (�)
�i2

d� ;

where bF (k)YdjC (yd) =
XK�1

l=1
!kl bFYdjCl (yd) ; !k � (!k1; � � � ; !k;K�1) 2 SK�2; k = 1; � � � ;K � 2: (13)

with Sn�2 �
n
(x1; � � � ; xn�1) jxi � 0;

Pn�1
i=1 xi = 1

o
being a (n � 2)-simplex. In practice, we can choose

the weights !k distinct enough from b! � �(bp2 � bp1)bh(bp2); � � � ; (bpK � bpK�1)bh(bpK)� to magnify power. For
example, we can choose the weights as the �rst K � 2 maximizers of max!l kb! � !lk, where k�k is the
Euclidean norm, and !l is the lth standard base vector in RK�1. In a similar fashion, we can modify T2n as
T 02n below to improve its �nite-sample performance,

T 02n =
K�2X
k=1

Z
T

� bF (k)Y1jC

�beF�11 (�)

�
� bF (k)Y0jC

�beF�10 (�)

��2
d� ;
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where the mixed compliers is used as the hub, and bF (k)Y1jC is de�ned in (13). Other mixed compliers with

mixing weights di¤erent from those of eFd can also be used. For example, if we use weight pk+1�pk
pK�p1 on Ck,

then we are replacing beF d (yd) by
c !
F d (yd) =

n�1K
Pn

i=1 1 (Yi � yd) 1 (Di = d) 1 (Zi = zK)� n�11
Pn

i=1 1 (Yi � yd) 1 (Di = d) 1 (Zi = z1)

n�1K
Pn

i=1 1 (Di = d) 1 (Zi = zK)� n�11
Pn

i=1 1 (Di = d) 1 (Zi = z1)
:

The following corollary states the asymptotic properties of T 01n and T
0
2n under H

�
1 .

Corollary 5 Suppose the assumptions of Corollary 2 hold. Under H�
1 and Assumption LA,

nT 01n  
K�2X
k=1

1X
i=1

�
b
0(1)
ki +

q
�
0(1)
ki "

0(1)
ki

�2
;

and

nT 02n  
K�2X
k=1

1X
i=1

�
b
0(2)
ki +

q
�
0(2)
ki "

0(2)
ki

�2
;

where b0(1)ki =
PK�1

l=1 !klb
(1)
li , "

0(1)
ki =

PK�1
l=1 !kl"

(1)
li , �

0(1)
ki �s are eigenvalues of

�
0(1)
k (�1; �2) � E

��XK�1

l=1
!klZ

(1)
l (�1)

��XK�1

l=1
!klZ

(1)
l (�2)

��
=
XK�1

l=1

XK�1

m=1
!kl!kmE

h
Z
(1)
l (�1)Z

(1)
m (�2)

i
;

b
0(2)
ki =

R
T b

0(2)
k (�)'i (�) d� with

b
0(2)
k (�) =

XK�1

l=1
!kl�Ck(

eF�1U (�))�

PK�1
l=1 !klfU jCk

� eF�1U (�)
�

efU � eF�1U (�)
� e�( eF�1U (�));

eFU (u) =
XK�1

k=1
(pk+1 � pk)h(pk+1)FU jCk(u); efU (u) =XK�1

k=1
(pk+1 � pk)h(pk+1)fU jCk(u);e�(u) =

XK�1

k=1
(pk+1 � pk)h(pk+1)�Ck(u);

and �0(2)ki and "0(2)ki are de�ned in the proof.

Although b0(1)ki and "0(1)ki , k = 1; � � � ;K�2, have straightforward relationship with b
(1)
ki and "

(1)
ki , k = 1; � � � ;K�

1, it seems hard to express �0(1)ki , b
0(2)
ki , "

0(2)
ki and �0(2)ki as functions of �(1)ki , b

(2)
ki , "

(2)
ki and �

(2)
ki .

4.3 Bootstrapping Critical Values of T1n and T2n

The eigenvalues �(1)ki and �
(2)
ki are necessary inputs to determine the critical values of our tests, but they

depend on the data-generating process under the null and are hard to estimate.11 To make our testing

procedure more applicable, we suggest to use the bootstrap to obtain the critical values.

Suppose we use the exchangeable bootstrap to conduct the inference; the detailed procedure is as follows.

Let (!1; � � � ; !n) be a vector of nonnegative random variables that satisfy the following Assumption EB.

For example, (!1; � � � ; !n) is a multinomial vector with dimension n and probabilities (1=n; � � � ; 1=n) in the
11Nevertheless, Bierens and Ploberger (1997) provide case-independent upper bounds of the asymptotic critical values of

the ICM test; Horowitz (2006) and Blundell and Horowitz (2007) consistently estimate the asymptotic critical values in two
speci�cation tests. The situation in our case is more complicated since the correlation structure among "ki and "lj is also
required.
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empirical bootstrap. The exchangeable bootstrap uses the components of (!1; � � � ; !n) as random sampling

weights in the construction of the bootstrap version of the estimators. More speci�cally, we use the following

three parallel steps as in the construction of T1n and T2n, where the objects with a superscript � in this
subsection indicate the samples or estimators based on the bootstrap measure.

Step 1: Let

bF �Y1jA (y1) =
n��1

Pn
i=1 !i1 (Yi � y1)Di1 (Zi = z1)

n��1
Pn

i=1 !iDi1 (Zi = z1)
;

bF �YdjCk(yd) =
n��1k+1

Pn
i=1 !i1 (Yi � yd) 1 (Di = d) 1 (Zi = zk+1)� n��1k

Pn
i=1 !i1 (Yi � yd) 1 (Di = d) 1 (Zi = zk)

n��1k+1

Pn
i=1 !i1 (Di = d) (Zi = zk+1)� n��1k

Pn
i=1 !i1 (Di = d) (Zi = zk)

;

bF �Y0jN (y0) =
n��1

Pn
i=1 !i1 (Yi � y0) (1�Di) 1 (Zi = zK)

n��1
Pn

i=1 !i (1�Di) 1 (Zi = zK)
;

and

bp�k = n��1k

Pn
i=1 !iDi1 (Zi = zk) ;bh�(bp�k+1) =

PK
l=k+1 n

�
l

�bp�l � bp��PK
l=1 n

�
l

�bp�l � bp��2 ;
where n� =

Pn
i=1 !i, n

�
k =

Pn
i=1 !i1 (Zi = zk), and bp� =PK

l=1
n�l
n� bp�l = n��1

Pn
i=1 !iDi.

Step 2: Let

bF �1 (y1) = bp�1 bF �Y1jA (y1) + K�1X
k=1

�bp�k+1 � bp�k�� bF �Y1jCk(y1) h1� bF �Z (zk)i+ bF �Y0jCk �beF ��10
beF �1 (y1)� bF �Z (zk)�

+(1� bp�K) bF �Y0jN �beF ��10
beF �1 (y1)�

and

bF �0 (y0) = bp�1 bF �Y1jA�beF ��11
beF �0 (y0)�+ K�1X

k=1

�bp�k+1 � bp�k�� bF �Y1jCk �beF ��11
beF �0 (y0)�h1� bF �Z (zk)i+ bF �Y0jCk(y0) bF �Z (zk)�

+(1� bp�K) bF �Y0jN (y0) ;
which are consistent to bFd (yd), where

bF �Z (zk) = n��1
nX
i=1

!i1 (Z � zk) ; beF �d (yd) = K�1X
k=1

�bp�k+1 � bp�k�bh�(bp�k+1) bF �YdjCk(yd):
Step 3: Let

T �1n =
K�1X
k=1

Z
T

h� bF �Y1jCk � bF ��11 (�)
�
� bFY1jCk � bF�11 (�)

��
�
� bF �Y0jCk � bF ��10 (�)

�
� bFY0jCk � bF�10 (�)

��i2
d� ;

and

T �2n =
K�1X
k=2

Z
T

h� bF �Y1jCk � bF ��1Y1jC1(�)
�
� bFY1jCk � bF�1Y1jC1(�)��� � bF �Y0jCk � bF ��1Y1jC1(�)

�
� bFY0jCk � bF�1Y1jC1(�)��i2 d� :
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Use the (1� �)th quantile of n�T �1n, c�1n(�), and the (1� �)th quantile of n�T �2n, c�2n(�), as the critical
values for nT1n and nT2n, respectively, where � 2 (0; 1=2) is some prespeci�ed signi�cance level.

In practice, we can simulate T �1n B times to get fT �1nbg
B
b=1 for B large enough, and then reject H0 if

nT1n > bc�1n(�), where bc�1n(�) is the (1� �)th quantile of fn�T �1nbgBb=1 which approximates c�1n(�). Of

course, we can also check whether the p-value B�1
PB

b=1 1(n
�T �1nb � nT1n) is less than � to decide whether

to reject H0. A similar simulation scheme can be applied to T �2n.

We now describe Assumption EB.

Assumption EB: (!1; � � � ; !n) is an exchangeable, nonnegative random vector, which is independent of the
data fWigni=1 such that for some � > 0,

E
�
!2+�1

�
<1; n�1

Xn

i=1
(!i � !)2

P�
�! 1; ! = n�1

Xn

i=1
!i

P�
�! 1;

where P�
�! signi�es the convergence in the probability of bootstrap measure.12

By appropriately selecting (!1; � � � ; !n), the exchangeable bootstrap covers many bootstrap schemes (besides
the empirical bootstrap) as special cases. For example, the weighted bootstrap corresponds to the case where

!1; � � � ; !n are iid nonnegative random variables with E[!1] = V ar(!1) = 1, e.g., standard exponential. The

m out of n bootstrap corresponds to letting (!1; � � � ; !n) be equal to
p
n=m times multinomial vectors

with parameter m and probabilities (1=n; � � � ; 1=n). The subsampling bootstrap corresponds to letting

(!1; � � � ; !n) be a row in which the number m(n � m)�1=2m�1=2 appears m times and 0 appears n � m
times ordered at random, independent of the data. See Section 3.6.2 of VW for more detailed descriptions.

Each bootstrap scheme is useful to a speci�c application. For example, in small samples with categorical

covariates, we might want to use the weighted bootstrap to gain good accuracy and robustness to "small

cells", whereas in large samples, where computational tractability can be an important consideration, we

might prefer subsampling.

Theorem 4 Suppose the assumptions of Corollary 2 and Assumption EB hold.

(i) Under H0,

lim
n!1

P (nT1n > c�1n(�)) = �:

(ii) Under H�
1 and Assumption LA,

lim
n!1

P (nT1n > c�1n(�)) � �:

(iii) Under the �xed alternative H1 with T1 = plimn!1 T1n > 0,

lim
n!1

P (nT1n > c�1n(�)) = 1:

(iv) (i)-(iii) hold also for T2n and c�2n(�).

(i) implies that under H0, c�1n(�)
p�! c1(�), where c1(�) is the (1� �)th quantile of the asymptotic dis-

tribution of nT1n, and the randomness in the probability convergence includes both the randomness of the

original sample and the independent randomness of the bootstrap simulations (this also applies to other

statements in Theorem 4). (ii) states that T1n using c�1n(�) as the critical value is asymptotically locally

unbiased. (iii) implies that T1n using c�1n(�) as the critical value is consistent. This result is a corollary of

12This assumption can be relaxed a little bit as in (3.6.8) of VW.
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Theorem 2(iii) since c�1n(�) is bounded in probability under the �xed alternative. Finally, (iv) implies that

these comments also apply to T2n. Note further that a corollary of Theorem 4) is that the exchangeable

bootstrap is also valid for the inference of the QTE process b�(�), � 2 T .
5 Testing With Discrete Instruments and General Covariates

We in this section discuss the �nite-sample analog of TX1 and TX2 . For this purpose, we need to estimate

FYdjX (�jx) and F kYdjX(�jx), k = 1; � � � ;K � 1. We still estimate FYdjX (�jx) by the IV-QRE whose moment
conditions are speci�ed as

E

" 
1

p(X;Z)

!
(� � 1 (Y � Q�0(� jX) +D ���(� jX)))

�����X = x

#
= 0; (14)

where Q�0 (�j�) and �� (�j�) are similarly de�ned as in (12). As shown in Yu (2016), the moment conditions
imply

F �Y1jX(y1jx) =
KP
k=0

(px;k+1 � pxk)
n
F kY1jX(y1jx)

�
1� Fp(X;Z)jX(pxkjx)

�
+

F kY0jX

� eF�1Y0jX � eFY1jX (y1jx)���x����x�Fp(X;Z)jX(pxkjx)o ;
and

F �Y0jX(y0jx) =
KP
k=0

(px;k+1 � pxk)
n
F kY0jX(y0jx)Fp(X;Z)jX(pxkjx)+

F kY1jX

� eF�1Y1jX � eFY0jX (y0jx)���x����x� �1� Fp(X;Z)jX(pxkjx)�o ;
where px0 = 0, px;K+1 = 1, Fp(X;Z)jX(px0jx) = 0, Fp(X;Z)jX(pxK jx) = 1;

F 0Y1jX(y1jx) =
E [1 (Y � y1)DjX = x;Z = z1]

P (D = 1jX = x;Z = z1)

is the cdf of Y1 for always-takers Ax,

FKY0jX(y0jx) =
E [1 (Y � y0) (1�D) jX = x; Z = zK ]

P (D = 0jX = x;Z = zK)

is the cdf of Y0 for never-takers Nx,

eFYdjX (ydjx) = K�1X
k=1

(px;k+1 � pxk)h(px;k+1)F kYdjX(ydjx);

with

h(px;k+1) =
Cov (p(X;Z); 1 (p(X;Z) � px;k+1) jX = x)

V ar (p(X;Z)jX = x)
;

and

F kYdjX(ydjx) =
E[1(Y�yd)�1(D=d)jX=x;Z=zk+1]�E[1(Y�yd)�1(D=d)jX=x;Z=zk]

P (D=djX=x;Z=zk+1)�P (D=djX=x;Z=zk) ; (15)

k = 1; � � � ;K � 1, being the cdf of Yd for compliers Cxk. Consequently, we can estimate F �YdjX(ydjx) by
estimating F kY1jX (y1jx), k = 0; 1; � � � ;K � 1 and F

k
Y0jX (y0jx), k = 1; � � � ;K and then plugging in the above

formulas.
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5.1 Construction of Test Statistics

Our test statistics are based on the distribution regression (DR) proposed by Foresi and Peracchi (1995) and

extended by CFM. The details are described as follows.

Step 1: Let

bFY jX;p(X;Z);D(ydjx; p; d) = �
�
T (x; p)

0 b�d(yd)� ;bpxk � bp (x; zk) = � (R(x; zk)0b) ; k = 1; � � � ;K;bqxk � bqk (x) = qk (B(x);b�) ; k = 1; � � � ;K � 1;bqxK = 1�
XK�1

l=1
bqxl;

where yd 2 Yd with Yd being a compact set in R, �(�) is a link function, qk (x) = P (Z = zkjX = x),

T (X; p(X;Z)) =
PK

k=1 1 (Z = zk)Tk (X; p(X; zk)) is a vector of transformation of X and p and Tk
may be di¤erent for di¤erent k, R(X;Z) =

PK
k=1 1 (Z = zk)Rk(X) is a vector of transformations of X

and Z and Rk may be di¤erent for di¤erent k, B(X) is a vector of transformation of X,

b�d(yd) = argmax
�

nX
i=1

1(Di = d)
�
1 (Yi � yd) ln�

�
T (Xi; bpi)0 ��+ 1 (Yi > yd) ln

�
1� �

�
T (Xi; bpi)0 ����

(16)

with bpi = bp (Xi; Zi),

b = argmax


nX
i=1

[Di ln� (R(Xi; Zi)
0) + (1�Di) ln (1� � (R(Xi; Zi)

0))] ; (17)

and

b� = argmax
�

nX
i=1

KX
k=1

1 (Zi = zk) ln qk (B(Xi); �) ;

with qK = 1�
PK�1

l=1 ql.

Step 2: Let

bF kY1jX(y1jx) =
bFY jX;p(X;Z);D(y1jx; bpx;k+1; 1)bpx;k+1 � bFY jX;p(X;Z);D(y1jx; bpxk; 1)bpxkbpx;k+1 � bpxk ;

bF kY0jX(y0jx) =
bFY jX;p(X;Z);D(y0jx; bpxk; 0) (1� bpxk)� bFY jX;p(X;Z);D(y0jx; bpx;k+1; 0) (1� bpx;k+1)bpx;k+1 � bpxk ;

for k = 1; � � � ;K � 1,

bF 0Y1jX(y1jx) = bFY jX;p(X;Z);D(y1jx; bpx1; 1);bFKY0jX(y0jx) = bFY jX;p(X;Z);D(y0jx; bpxK ; 0);
and

bh(bpx;k+1) =
PK

l=k+1 bqxl �bpxl � bpx�PK
l=1 bqxl �bpxl � bpx�2

where bpx =PK
l=1 bqxlbpxl. Conduct rearrangement if bF kYdjX(ydjx) is not monotone.
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Step 3: Let bFY1jX(y1jx) = KP
k=0

(bpx;k+1 � bpxk)n bF kY1jX(y1jx) h1� bFZjX(zkjx)i+bF kY0jX � beF�1Y0jX � beFY1jX (y1jx)
����x�����x� bFZjX(zkjx)� ;

and bFY0jX(y0jx) = KP
k=0

(bpx;k+1 � bpxk)n bF kY0jX(y0jx) bFZjX(zkjx)+bF kY1jX � beF�1Y1jX � beFY0jX (y0jx)
����x�����x�h1� bFZjX(zkjx)i� ;

which are consistent to F �YdjX(ydjx), where

bFZjX (zkjx) = kX
l=1

bqxl; beFYdjX (ydjx) = K�1X
k=1

(bpx;k+1 � bpxk)bh(bpx;k+1) bF kYdjX(ydjx):
Step 4: Let

TX1n =
1

n

nX
i=1

K�1X
k=1

Z
T

h bF kY1jX � bF�1Y1jX(� jXi)
���Xi

�
� bF kY0jX � bF�1Y0jX(� jXi)

���Xi

�i2
d�

and

TX2n =
1

n

nX
i=1

K�1X
k=2

Z
T

h bF kY1jX � bQ1Y1jX(� jXi)
���Xi

�
� bF kY0jX � bQ1Y0jX(� jXi)

���Xi

�i2
d� ;

where bQ1YdjX is the inverse function of bF 1YdjX , wk(x) = FX (x) independent of k and a uniform prior

on T is used for simplicity.

We provide a few comments on the procedure above. First, when X is discrete and takes J values

fx1; � � � ; xJg, J � 2, the estimation procedure can be simpli�ed. Actually, the three-step procedure in

Section 4 can be applied conditional on each xj cell. This is equivalent to using saturated speci�cation in

T (�; �), R (�; �) and B (�). In practice, when J is large such that the data size in some cells is limited, the
estimation procedure as above is preferred because it imposes some restriction on the relationship among

cells and has less coe¢ cients to estimate. Second, although T (�; �), R (�; �) and B (�) can take quite �exible
functional forms, e.g., polynomials, B-splines, trigonometric polynomials, wavelets, etc, the number of terms

in T (�; �), R (�; �) and B (�) does not depend on n, which facilitates the asymptotic inference.13 Third, as

mentioned at the end of Section 4.2, we can construct the counterparts of T 01n and T
0
2n, say T

0X
1n and T 0X2n ,

to improve the �nite-sample performance. Although we can allow !kl in (13) to depend on x, it seems

more convenient in practice not to allow so. Speci�cally, we can choose !k, k = 1; � � � ;K � 2, as the
�rst K � 2 maximizers of max!l

Pn
i=1 kb!Xi

� !lk2, where !l is the lth standard base vector in RK�1, and
13Note that our �d(yd) estimation is semi-parametric because �d(yd) varies nonparametrically as y varies. As in the supple-

mentary materials of Yu (2015a), we can combine a goodness of �t test of these semi-parametric speci�cations with our test,
but a detailed analysis is beyond the scope of this paper. Also, it is clear that our test is an omnibus test for CRS, framework
(5), Assumption M and the semi-parametric speci�cation.
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b!x = �(bpx2 � bpx1)bh(bpx2); � � � ; (bpxK � bpx;K�1)bh(bpxK)�0, and then construct
T 0X1n =

1

n

nX
i=1

K�2X
k=1

Z
T

h bF (k)Y1jX

� bF�1Y1jX(� jXi)
���Xi

�
� bF (k)Y0jX

� bF�1Y0jX(� jXi)
���Xi

�i2
d� ;

T 0X2n =
1

n

nX
i=1

K�2X
k=1

Z
T

� bF (k)Y1jX

� beF�1Y1jX(� jXi)

����Xi

�
� bF (k)Y0jX

� beF�1Y0jX(� jXi)

����Xi

��2
d�:

where bF (k)YdjX (ydjx) =
XK�1

l=1
!kl bF lYdjX (ydjx) ; k = 1; � � � ;K � 2:

Since the asymptotic properties of T 0X1n and T 0X2n can be similarly developed as in Corollary 5, we omit the

details in the following subsection. Finally, unlike in the case of T1n, when the support of X is large, it is

not easy to plot bF kY1jX � bF�1Y1jX(� jX)���X� and bF kY0jX � bF�1Y0jX(� jX)���X� in TX1n as a function of � to provide
intuitions on how the null is violated. To summarize information, we can integrate X out in the construction

of TX1n. From Frölich (2007), the unconditional cdfs of always-takers A, compliers Ck and never-takers N can

be obtained as follows:

bFY1jA (y1) =
n�1

Pn
i=1 bpXi;1

bFY jX;p(X;Z);D(y1jXi; bpXi;1; 1)bp1 ;

bFY1jCk(y1) =
n�1

Pn
i=1

h bFY jX;p(X;Z);D(y1jXi; bpXi;k+1; 1)bpXi;k+1 � bFY jX;p(X;Z);D(y1jXi; bpXi;k; 1)bpXi;k

i
bpk+1 � bpk ;

bFY0jCk(y0) =
n�1

Pn
i=1

h bFY jX;p(X;Z);D(y0jXi; bpXi;k; 0) (1� bpXi;k)� bFY jX;p(X;Z);D(y0jXi; bpXi;k+1; 0) (1� bpXi;k+1)
i

bpk+1 � bpk ;

bFY0jN (y0) = n�1
Pn

i=1 (1� bpXi;K)
bFY jX;p(X;Z);D(y0jXi; bpXi;K ; 0)

1� bpK ;

where bpk = n�1
Pn

i=1 bpXi;k, k = 1; � � � ;K. Then follow the procedure in Section 4.1 to construct bFY1jCk � bF�11 (�)
�

and bFY0jCk � bF�10 (�)
�
and plot them as a function of � to provide intuitions. Except for the purpose of pro-

viding intuitions, it is not suggested to use the unconditional counterpart of TX1n as the test statistic because

it is expected to have less power than TX1n. Similar comments apply to T
X
2n, T

0X
1n and T

0X
2n .

5.2 Asymptotics for TX1n and T
X
2n

The following theorems state the asymptotic distribution of TX1n and T
X
2n. We �rst impose the following

regularity assumptions.

Assumption DR: (a) pxk � p(x; zk) = � (R(x; zk)0), k = 1; � � � ;K, FY jX;p(X;Z);D(ydjx; p; d) = �
�
T (x; p)

0
�d(yd)

�
,

and qxk � qk (x) = qk (B(x); �) ; k = 1; � � � ;K � 1, for all y 2 Yd, x 2 X , z 2 fz1; � � � ; zKg and
p 2 fpx1; � � � ; pxKg, where � is either Probit or Logit link function, and qk is derived from multinomial Logit,
conditional Logit or multinomial Probit. (b) The region of interest Yd is a compact interval in

T
x2X Sxd

and contains an �-enlargement of the set
�
QYdjX(� jx)jx 2 X ; � 2 T

	Sn
Q1YdjX(� jx)jx 2 X ; � 2 T

o
. The

conditional density fY jX;Z;D(yjx; z; d) exists, is uniformly bounded and uniformly continuous in (y; x) in the
conditional support of (Yd; X) given z 2 fz1; � � � ; zKg. X is compact. (c) E

h
k(R; T;B)k2

i
< 1 and the
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minimum eigenvalue of

Jp � E
" e�2ep [1� ep]RR0

#
; Jq � E

"XK

l=1

1(Z = zk)

qk (B; �)
2

@qk (B; �)

@�

@qk (B; �)

@�0

#

and

Jd(yd) � E
�
1(D = d)

�d(yd)
2

�d (yd) [1� �d (yd)]
TT 0

�
is bounded away from zero uniformly over y 2 Yd, where � is the derivative of �, R = R(X;Z), ep = �(R0),e� = �(R0), T = T (X; p(X;Z)), �d (yd) = � (T 0�d(yd)), �d(yd) = �(T 0�d(yd)) and B = B(X).

We also consider the local alternative

H�
1 : F

k
U1jX(� jx)� F

k
U0jX(� jx) =

�k (� jx)p
n

where � (� jx) �
�
�k (� jx) jk = 0; 1; � � � ;K

�
falls in

FX =
n
g(�j�) 2 C ([0; 1]X )K+1

��� g(0jx) = g(1jx) = 0;

px1g1 (� jx) +
XK�1

k=1
(px;k+1 � pxk) gk+1 (� jx) + (1� pK) gK+1 (� jx) = 0; � 2 [0; 1]; x 2 X

�
:

Theorem 5 In the framework (5), suppose Assumptions M and DR hold. Under H�
1 and Assumption LA,

nTX1n  
K�1X
k=1

Z
X

Z
T

�
Z
(1)
k (� ; x) + b

(1)
k (� ; x)

�2
d�dFX(x);

where Z(1)k (� ; x) is de�ned in the proof, and

b
(1)
k (� ; x) = �k(� jx)�

XK�1

l=1
(px;l+1 � pxl)h(px;l+1)�l(� jx)

is a linear map of � (� jx). Thus, for any c > 0, P
�
nTX1n > cjH�

1

�
� P

�
nTX1n > cjH0

�
, where the equality

holds if and only if b(1)k (� ; x) = 0 for any k = 1; � � � ;K � 1, � 2 T , and PX almost sure x.

Theorem 6 In the framework (5), suppose Assumptions M and DR hold. Under H�
1 and Assumption LA,

nTX2n  
K�1X
k=2

Z
X

Z
T

�
Z
(2)
k (� ; x) + b

(2)
k (� ; x)

�2
d�dFX(x);

where Z(2)k (� ; x) is de�ned in the proof, and

b
(2)
k (� ; x) = �k(Q1U jX(� jx)jx)�

fkU jX

�
Q1U jX(� jx)jx

�
f1U jX

�
Q1U jX(� jx)jx

��1(Q1U jX(� jx)jx)
is a linear map of � (� jx), Q1U jX(� jx) is the inverse function of F 1U jX(� jx) and fkU jX (� jx) is the density of
F kU jX(� jx), k = 1; � � � ;K � 1. Thus, for any c > 0, P

�
nTX2n > cjH�

1

�
� P

�
nTX2n > cjH0

�
, where the equality

holds if and only if b(2)k (� ; x) = 0 for any k = 2; � � � ;K � 1, � 2 T , and PX almost sure x.
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The comments on Theorem 2 and 3 can be similarly applied here. The only di¤erence is that the covariates

X complicate the null distribution and local power. The exchangeable bootstrap is also valid as detailed in

S.2.1.

6 Testing With General Instruments and General Covariates

We �rst explain why the form of test statistic (11) is not applicable in this general setup. As shown in Yu

(2016), when Z includes continuous components, the moment conditions (14) imply

F �Y1jX(y1jx) =
R p

x
0 FY1jX;V (y1jx; v)dv +

R 1
px
FY0jX;V

� eF�1Y0jX � eFY1jX (y1jx)���x����x; v� dv;
+
R px
p
x

h
FY1jX;V (y1jx; v)(1� Fp(X;Z)jX(vjx)) + FY0jX;V

� eF�1Y0jX � eFY1jX (y1jx)���x����x; v�Fp(X;Z)jX(vjx)i dv
and

F �Y0jX(y0jx) =
R p

x
0 FY1jX;V

� eF�1Y1jX � eFY0jX (y0jx)���x����x; v� dv + R 1px FY0jX;V (y0jx; v)dv
+
R px
p
x

h
FY1jX;V

� eF�1Y1jX � eFY0jX (y0jx)���x����x; v� (1� Fp(X;Z)jX(vjx)) + FY0jX;V (y0jx; v)Fp(X;Z)jX(vjx)i dv;
where

eFY1jX (y1jx) = Z px

p
x

FY1jX;V (y1jx; v)h (vjx) dv, eFY0jX (y0jx) = Z px

p
x

FY0jX;V (y0jx; v)h (vjx) dv;

and

h(vjx) = Cov (p(X;Z); 1 (p(X;Z) � v) jX = x)

V ar (p(X;Z)jX = x)
:

From Yu (2014a), we can identify FY1jX;V (y1jx; v) and FY0jX;V (y0jx; v) for x 2 X and v 2 Px =
h
p
x
; px

i
by

FY1jX;V (y1jx; v) =
dE[1(Y�y1)DjX=x;p(X;Z)=p]

dp

���
p=v

= FY jX;p(X;Z);D (y1jx; v; 1) + v
dFY jX;p(X;Z);D(y1jx;p;1)

dp

���
p=v

;

FY0jX;V (y0jx; v) = �
dE[1(Y�y0)(1�D)jX=x;p(Z)=p]

dp

���
p=v

= FY jX;p(X;Z);D (y0jx; v; 0)� (1� v)
dFY jX;p(X;Z);D(y0jx;p;0)

dp

���
p=v

;

(18)

so that eFYdjX (y1jx) and the R pxp
x

term of F �YdjX(y1jx) can be identi�ed. Also,

R p
x

0 FY1jX;V (y1jx; v)dv = E
h
1 (Y � y1)DjX = x; p(X;Z) = p

x

i
= p

x
FY jX;p(X;Z);D(y1jx; px; 1);R 1

px
FY0jX;V (y0jx; v)dv = E [1 (Y � y0) (1�D)jX = x; p(X;Z) = px] = (1� px)FY jX;p(X;Z);D(y0jx; px; 0)

are also identi�able. The di¢ culty in the inference comes from the estimation of p
x
and px. We can estimate

p
x
and px by bpx = min1�i�n (bp (x;Zi)) ;bpx = max1�i�n (bp (x; Zi)) for some estimator of p(�; �), where allbp (x;Zi) are used in estimation because we assume Z does not depend on x (otherwise, only bp (x;Zi) in

the neighborhood of x can be used). However, even if p (x; Zi) were observable, the convergence rates and

asymptotic distributions of bp
x
and bpx depend on the tail properties of p(x; Z); even if we assume the density

of p(x;Z) is strictly positive on Px so that min1�i�n (p (x;Zi)) and max1�i�n (p (x;Zi)) are n-consistent
and do not a¤ect the asymptotic distribution of the test statistic, the convergence rates (and asymptotic

distributions) of bp
x
and bpx are still unknown if p (x;Zi) is replaced by bp (x;Zi). Of course, we can avoid

deriving the asymptotic distribution if the bootstrap is valid; however, the bootstrap validity is not warranted

in the boundary estimation (see, e.g., Yu (2014b)). This di¢ culty does not exist when Z is discrete; this is
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also why we switch to tests based on TX3 and TX4 where only FY1jX;V (y1jx; v) and FY0jX;V (y0jx; v) for x 2 X
and v 2 Px need to be estimated.

6.1 Construction of Test Statistics

From (18), to estimate FYdjX;V (ydjx; v), we need to estimate FY jX;p(X;Z);D (ydjx; p; d). Our estimation is
based on distribution regression as in Section 5.1; see also Yu (2014a). More speci�cally, we use the following

three-step procedure.

Step 1: Let

bFY jX;p(X;Z);D(ydjx; p; d) = �
�
T (x; p)

0 b�d(yd)� ;bp (x; z) = � (R(x; z)0b) ;
where yd 2 Yd with Yd being a compact set in R, �(�) is a link function, and T (X; p) and R(X;Z) are
vectors of general transformations of (X; p) and (X;Z) respectively,

b�d(yd) = argmax
�

nX
i=1

1(Di = d)
�
1 (Yi � yd) ln�

�
T (Xi; bpi)0 ��+ 1 (Yi > yd) ln

�
1� �

�
T (Xi; bpi)0 ����

with bpi = bp (Xi; Zi), and

b = argmax


nX
i=1

[Di ln� (R(Xi; Zi)
0) + (1�Di) ln (1� � (R(Xi; Zi)

0))] :

Step 2: Let

bFY1jX;V (y1jx; v) = bFY jX;p(X;Z);D(y1jx; v; 1) + v @T (x; p)0
@p

����
p=v

b�1(y1) � ��T (x; v)0 b�1(y1)� ;
and

bFY0jX;V (y0jx; v) = bFY jX;p(X;Z);D(y0jx; v; 0)� (1� v) @T (x; p)0
@p

����
p=v

b�0(y0) � ��T (x; v)0 b�0(y0)� :
Conduct rearrangement if bFYdjX;V (ydjx; v) is not monotone.

Step 3: Let

TX3n =
1

n2

nX
i=1

X
j:bpij 6=vo

Z
T

h bFY1jX;V � bF�1Y1jX;V (� jXi; vo)
���Xi; bpij�� bFY0jX;V � bF�1Y0jX;V (� jXi; vo)

���Xi; bpij�i2 d�
and

TX4n = max

(
1

n2

nX
i=1

nX
j=1

1(bpij � vo)

Z
T

h bFY1jX;V � bF�1
Y1jX;V (� jXi; v1)

���Xi; bpij�� bFY0jX;V � bF�1
Y0jX;V (� jXi; v1)

���Xi; bpij�i2 d�;
1

n2

nX
i=1

nX
j=1

1(bpij � vo)

Z
T

h bFY1jX;V � bF�1
Y1jX;V (� jXi; v2)

���Xi; bpij�� bFY0jX;V � bF�1
Y0jX;V (� jXi; v2)

���Xi; bpij�i2 d�) :
Here, bpij = bp (Xi; Zj), and (v1; vo; v2) can be chosen as the �rst quartile, median and third quartile of
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fbpijgnj=1; implicitly, w(x; v) = FX;p(X;Z) (x; v) and a uniform prior on T are used in TX3n and TX4n for
simplicity.

As mentioned at the end of Section 4.2, we can use a di¤erent hub from vo; v1 and v2 to improve the

performance. For example, as in T 02n, we can use eFd as the hub and employ di¤erent mixed v-subpopulations
for comparison. First, let

beFYdjX(ydjXi) =
n�1X
j=1

(bpi;j+1 � bpij)bh(bpi;j+1) bFYdjX;V (ydjXi; bpij) + bFYdjX;V (ydjXi; bpi;j+1)
2

�
n�1X
j=1

(bpi;j+1 � bpij)bh(bpi;j+1) bF jYdjX(ydjXi);

where suppose bpi1 � bpi2 � � � � � bpin,
bh(bpi;j+1) = bE [p(X;Z)1 (p(X;Z) � bpi;j+1) jX = Xi]� bE [p(X;Z)jX = Xi] bE [1 (p(X;Z) � bpi;j+1) jX = Xi]bE [p(X;Z)2jX = Xi]� bE [p(X;Z)jX = Xi]

2

(19)

with bE [g(X;Z)jX = x] = H (x) (
Pn

i=1H (Xi)H(Xi)
0)
�1
(
Pn

i=1H (Xi) bg(Xi; Zi))

for various g functions, bg is g replacing p by bp, and H (X) is a vector of transformations of X. Second, choose
!k, k = 1; � � � ;Kn, as the �rst Kn maximizers of max!l

Pn
i=1 kb!Xi � !lk

2 such that k!k � !jk � cn, j < k,

where !k = (!k1; � � � ; !k;n�1) 2 Sn�2, b!Xi
=
�
(bpi2 � bpi1)bh(bpi2); � � � ; (bpin � bpi;n�1)bh(bpin)�0, and cn > 0 is

to make sure the weights !k are distinct enough. Finally, construct

T 0X3n =
1

nKn

nX
i=1

KnX
k=1

Z
T

� bF (k)Y1jX

� beF�1Y1jX(� jXi)

����Xi

�
� bF (k)Y0jX

� beF�1Y0jX(� jXi)

����Xi

��2
d� :

where bF (k)YdjX (ydjx) =
Xn�1

l=1
!kl bF lYdjX (ydjx) ; k = 1; � � � ;Kn:

In practice, we can set cn as c �
qPn

i=1 kb!Xi
k2 for c being a small positive number, e.g., 0:1. Also, we can

monitor the p-value of T 0X3n as a function of Kn to choose Kn, e.g., choose Kn as the smallest positive integer

such that the p-values get "stable".

To avoid the estimation of bh(bpi;j+1) in (19), we may use other mixed v-subpopulations as the hub. For
example, choose

�
p; p
�
as a compact subset of

T
x2X Px, and use the equally weighted v-subpopulations on�

p; p
�
as the hub; denote its cdfs as

 !
F YdjX . This hub is very convenient since

c !
F Y1jX(y1jx) =

p bFY jX;p(X;Z);D(y1jx; p; 1)� p bFY jX;p(X;Z);D(y1jx; p; 1)
p� p ;

c !
F Y0jX(y0jx) =

�
1� p

� bFY jX;p(X;Z);D(y0jx; p; 0)� (1� p) bFY jX;p(X;Z);D(y0jx; p; 0)
p� p ;

and no di¤erentiation as in bFYdjX;V (ydjx; v) is required. Proceed to select hpk; pki, k = 1; � � � ;Kn, as the �rst

Kn maximizers of
R p
p

���� 1
p�p �

1(p
k
<v�pk)
pk�pk

���� dv such that pk � pk � pn and R pp
���� 1(pk<v�pk)pk�pk

�
1
�
p
j
<v�pj

�
pj�pj

���� dv �
28



cn, j < k; then obtain

c !
F
(k)

Y1jX(y1jx) =
pk bFY jX;p(X;Z);D(y1jx; pk; 1)� pk bFY jX;p(X;Z);D(y1jx; pk; 1)

pk � pk
;

c !
F
(k)

Y0jX(y0jx) =

�
1� p

k

� bFY jX;p(X;Z);D(y0jx; pk; 0)� (1� pk) bFY jX;p(X;Z);D(y0jx; pk; 0)
pk � pk

;

where pn > 0 is to guarantee enough data points are used in the estimation of
c !
F
(k)

YdjX(y1jx), and cn > 0 is to
guarantee the uniform weights on

h
p
k
; pk

i
, k = 1; � � � ;Kn, are distinct enough. In practice, we may choose

pn such that n � pn = 100, i.e., at least about 100 data points are used in the estimation of
c !
F
(k)

YdjX(ydjx),
and choose cn to be a small positive number, e.g., cn = 0:1. Finally, construct the test statistic

T 0X4n =
1

nKn

nX
i=1

KnX
k=1

Z
T

"c !
F
(k)

Y1jX

�c !
F
�1

Y1jX(� jXi)

����Xi

�
� c !F (k)

Y0jX

�c !
F
�1

Y0jX(� jXi)

����Xi

�#2
d�:

As in T 0X1n and T
0X
2n , we neglect the asymptotic properties of T

0X
3n and T

0X
4n . Also, as mentioned at the end of

Section 5.1, we can integrate X out to aid intuition.

6.2 Asymptotics for TX3n and T
X
4n

The following theorems state the asymptotic distribution of TX3n and T
X
4n. We �rst impose the following

regularity assumptions.

Assumption DR0: (a) p(x; z) = � (R(x; z)0) and FY jX;p(X;Z);D(ydjx; p; d) = �
�
T (x; p)

0
�d(yd)

�
for all y 2

Yd, x 2 X , z 2 Z and p 2 Px, where � is either Probit or Logit link function. (b) The region of interest Yd is a
compact interval in

T
x2X Sxd and contains an �-enlargement of the set

�
QYdjX;V (� jx; v)jx 2 X ; � 2 T ; v 2 Px

	
.

The conditional density fY jX;Z;D(yjx; z; d) exists, is uniformly bounded and uniformly continuous in (y; x; z)
in the support of (Yd; X; Z). XZ is compact. (c) E

h
k(R; T )k2

i
<1 and the minimum eigenvalue of

Jp � E
" e�2ep [1� ep]RR0

#
and Jd(yd) � E

�
1(D = d)

�d(yd)
2

�d (yd) [1� �d (yd)]
TT 0

�

is bounded away from zero uniformly over y 2 Yd, where R, ep, e�, T , �d (yd) and �d(yd) are similarly de�ned
as in Assumption DR.

We also consider the local alternative

H�
1 : FU1jX;V (� jx; v)� FU0jX;V (� jx; v) =

� (� jx; v)p
n

;

where � (� jx; v) falls in

F 0X =
�
g(�j�; �) 2 C

�
[0; 1]

2 X
���� g(0jx; v) = g(1jx; v) = 0;

Z 1

0

g(ujx; v)dv = 0; u; v 2 [0; 1]; x 2 X
�
:

Theorem 7 In the framework (5), suppose Assumptions M, DR0 and P hold. Under H�
1 and Assumption
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LA,

nTX3n  
Z
X

Z
Px

Z
T

�
Z(3) (� ; x; v) + b(3) (� ; x; v)

�2
d�FX;p(X;Z)(x; v);

where Z(3) (� ; x; v) is de�ned in the proof, and

b(3) (� ; x; v) = �(QU jX;V (� jx; vo)jx; v)�
fU jX;V

�
QU jX;V (� jx; vo)jx; v

�
fU jX;V

�
QU jX;V (� jx; vo)jx; vo

��(QU jX;V (� jx; vo)jx; vo)
is a linear map of � (� jx; v). Thus, for any c > 0, P

�
nTX3n > cjH�

1

�
� P

�
nTX3n > cjH0

�
, where the equality

holds if and only if b(3) (� ; x; v) = 0 for any � 2 T and PX;p(X;Z) almost surely (x; v).

Theorem 8 In the framework (5), suppose Assumptions M, DR0 and P hold. Under H�
1 and Assumption

LA,

nTX4n  max

(Z
X

Z px

vo

Z
T

�
Z
(4)
1 (� ; x; v) + b

(4)
1 (� ; x; v)

�2
d�dFX;p(X;Z)(x; v);Z

X

Z vo

p
x

Z
T

�
Z
(4)
2 (� ; x; v) + b

(4)
2 (� ; x; v)

�2
d�dFX;p(X;Z)(x; v)

)
;

where Z(4)1 (� ; x; v) and Z(4)2 (� ; x; v) are de�ned in the proof,

b
(4)
1 (� ; x; v) = �(QU jX;V (� jx; v1)jx; v)�

fU jX;V
�
QU jX;V (� jx; v1)jx; v

�
fU jX;V

�
QU jX;V (� jx; v1)jx; v1

��(QU jX;V (� jx; v1)jx; v1)
and

b
(4)
2 (� ; x; v) = �(QU jX;V (� jx; v2)jx; v)�

fU jX;V
�
QU jX;V (� jx; v2)jx; v

�
fU jX;V

�
QU jX;V (� jx; v2)jx; v2

��(QU jX;V (� jx; v2)jx; v2)
are linear maps of � (� jx; v). Thus, for any c > 0, P

�
nTX4n > cjH�

1

�
� P

�
nTX2n > cjH0

�
, where the equality

holds if and only if for any � 2 T , b(4)1 (� ; x; v) = 0 for PX;p(X;Z) almost surely (x; v) 2 X � [vo; px] and
b
(4)
2 (� ; x; v) = 0 for PX;p(X;Z) almost surely (x; v) 2 X �

h
p
x
; vo

i
.

We can still use the exchangeable bootstrap to obtain critical values for TX3n and T
X
4n; see S.2.2 for the details.

7 Discussion

We in this section compare the tests in this paper with two groups of tests. The �rst group of tests are the

tests of correlated random coe¢ cient models in Heckman et al. (2010) and Heckman and Schmierer (2010).

The second group of tests are the URP tests of Yu (2015a).

To test the correlated random coe¢ cient model, represent Yi as Yi = �i + �iDi, where �i = Y0i and

�i = Y1i � Y0i. The target is to test H0 : Cov (Di; �i) = 0 vs. H1 : Cov (Di; �i) 6= 0. If HV�s framework

is maintained, then this is essentially testing the presence of essential heterogeneity - E [U1jV ] = E [U0jV ].
Although Yu (2016) shows that E [U1jV ] = E [U0jV ] and FU1jV (ujv) = FU0jV (ujv) do not imply each other,
the similarity of form between them makes the latter a natural counterpart of the former in the quantile

context. Heckman et al. develop two kinds of tests in HV�s framework. The �rst kind of test is based on the

observation that under H0, two di¤erent instrumental variable estimators are both consistent to the average
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treatment e¤ect, so signi�cant di¤erence between two such estimators indicates violation of H0. This idea

cannot be applied in the context of this paper although it is somewhat like the cross matching idea in T2.

As shown in Yu (2016), if p(Z) is replaced by a general instrument, say J(Z), in (12), then eF1 and eF0 need
not be genuine cdfs and thus eF�11 and eF�10 are not well de�ned. As a result, bF1(�) and bF0(�) cannot be
constructed, and so does the test statistic based on their di¤erence. The second kind of test is based on the

observation that E [Y jp(Z) = p] = a+ bp is a linear function of p under H0, so any violation of the linearity

is an indicator of the falsity of H0. However, as shown in Yu (2014a),

@P (Y � yjp(Z) = p)

@p
= FY1jV (yjp)� FY0jV (yjp)

= FU1jV (F1 (y) jp)� FU0jV (F0 (y) jp) = FU jV (F1 (y) jp)� FU jV (F0 (y) jp)

under our H0, where the right hand side generally depends on p (and y), so P (Y � yjp(Z) = p) is not linear

in p in general. Nevertheless, from (18),

@E [1(Y � y)Djp(Z) = p]

@p
= FU1jV (F1 (y) jp) ;

@E [1(Y � y) (1�D) jp(Z) = p]

@p
= �FU0jV (F0 (y) jp) ;

so
@E[1(Y�F�1

1 (�))Djp(Z)=p]
@p +

@E[1(Y�F�1
0 (�))(1�D)jp(Z)=p]

@p = FU1jV (� jp)� FU0jV (� jp) = 0

under H0. In other words,

E
�
1(Y � F�11 (�))Djp(Z) = p

�
+ E

�
1(Y � F�10 (�)) (1�D) jp(Z) = p

�
=

Z p

0

FU jV (� jv) dv +
Z 1

p

FU jV (� jv) dv = FU (�) = �

does not depend on p. Hence the test statistic can be based on

E
�
1(Y � F�11 (�))D + 1(Y � F�10 (�)) (1�D)� � jp(Z) = p

�
= 0: (20)

As in Heckman et al. (2010), we can use the Wald test or Bierens conditional moment test to carry out the

test. But as argued in Section 6, the di¢ culty in our framework is the estimation of Fd (�) when Z includes
continuous components. When Z is discrete, (20) is equivalent to

E
�
1(Y � F�11 (�))D + 1(Y � F�10 (�)) (1�D)� � jZ = zk

�
= 0;

k = 1; � � � ;K. To cancel � , we take di¤erence for Z = zk+1 and zk to have

E
�
1(Y � F�11 (�))DjZ = zk+1

�
� E

�
1(Y � F�11 (�))DjZ = zk

�
= E

�
1(Y � F�10 (�)) (1�D) jZ = zk

�
� E

�
1(Y � F�10 (�)) (1�D) jZ = zk+1

�
;
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which is exactly the testing idea of T1 by noticing that

FY1jCk(F
�1
1 (�)) =

E
�
1
�
Y � F�11 (�)

�
DjZ = zk+1

�
� E

�
1
�
Y � F�11 (�)

�
DjZ = zk

�
P (D = 1jZ = zk+1)� P (D = 1jZ = zk)

;

FY0jCk(F
�1
0 (�)) =

E
�
1(Y � F�10 (�)) (1�D) jZ = zk

�
� E

�
1(Y � F�10 (�)) (1�D) jZ = zk+1

�
P (D = 0jZ = zk)� P (D = 0jZ = zk+1)

and P (D = 1jZ = zk+1)� P (D = 1jZ = zk) = P (D = 0jZ = zk)� P (D = 0jZ = zk+1).

Although the testing ideas of Heckman et al. cannot be generally applied in the quantile context of

this paper, there is indeed some similarity. First of all, both Heckman et al.�s tests and our tests are

overidenti�cation tests. As argued in Section 4 of Heckman et al. (2010), their two kinds of tests can be

treated as special cases of conditional moment tests based on

E

" 
1

Jk(Z)

!
(Y � a� b � p(Z))

#
= 0; k = 1; � � � ;K;

where K � 2 implies overidenti�cation information. Consequently, their tests require multiple instruments
or multiple (more than two) values if only one instrument is available. For comparison, our tests are based

on moment conditions

FY1jCk (Q1(�))� FY0jCk (Q0(�)) = 0; k = 1; � � � ;K � 1; � 2 T ;

or

FY1jCk
�
QY1jC1(�)

�
� FY0jCk

�
QY0jC1(�)

�
= 0; k = 2; � � � ;K � 1; � 2 T :

As in the comments on Theorem 2, we need K � 1 � 2 to generate power, which requires Z to take at

least three values. The power of our tests also originates from the overidenti�cation information - cross

mismatching.

We next compare the tests in this paper and the URP tests in Yu (2015a). As argued in Yu (2015a), the

power of URP tests also originates from some overidenti�cation information; however, the overidenti�cation

information there is di¤erent from that in this paper. To be precise, let U1 and U0 be the unconditional

ranks in the two treatment statuses; then the null of URP tests is U1 = U0. This null implies the following

moment conditions,

QY1jX(FY0jX(Q0(U0)jx)jx)�Q1 (U0) = 0; x 2 X ;

where we follow the notational convention of this paper. The intuition for this moment condition is that

under the null, the counterfactual Y1 of Y0 = Q0(U0) when the conditional (on X = x) rank is preserved,

QY1jX(FY0jX(Q0(U0)jx)jx), must equal the counterfactual Y1 of Y0 when the unconditional rank is preserved,
Q1 (U0). Obviously, if X includes only a single point, then QY1jX(FY0jX(Q0(U0)jx)jx) = Q1 (F0 (Q0(U0))) =

Q1 (U0) by de�nition and no testing power is possible. So the overidenti�cation information (or power) of

URP tests comes from the multiple (more than one) values of X, while the power of tests in this paper comes

from the multiple (more than two) values of Z and no X is required.

8 Simulations

We conduct some simulations in this section to assess the performance of our tests in the benchmark case

- Case (i). We will compare the performances of T1n, T2n with di¤erent hubs, T 01n and T 02n. N = 500
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replications of two experiments with sample size 1000 and 2000 are considered. In bootstrapping critical

values, the repetition number B = 399 for n = 1000 and B = 199 for n = 2000. The signi�cance level � is

set at 5%. T = [0:2; 0:8] and 61 uniformly distributed points on T are used to approximate the integration
on T . Our simulation study is quite limited due to computational cost since a bootstrap cyle is embedded
inside a Monte Carlo cycle.14

Our data generating process (DGP) takes the form

Yd = 0:5��1 (Ud) ;

D = 1(p(Z)� V � 0); V jZ � U(0; 1);

where Z takes K = 3 values, z1; z2; z3 = �1; 0; 1, with equal probability, p1; p2; p3 = 0:1; 0:5; 0:9, respectively,
and 0B@ ��1 (U1)

��1 (U0)

��1 (V )

1CA � N
0B@
0B@ 0

0

0

1CA ;

0B@ 1 a b

a 1 c

b c 1

1CA
1CA ; a; b; c 2 [0; 1]:

Our DGP implies

FU1jV (ujv) = P (U1 � ujV = v) = P
�
��1 (U1) � ��1 (u) j��1 (V ) = ��1 (v)

�
= P

�
N
�
b��1 (v) ; 1� b2

�
� ��1 (u)

�
= �

�
��1 (u)� b��1 (v)p

1� b2

�
;

FU0jV (ujv) = �

�
��1 (u)� c��1 (v)p

1� c2

�
;
� (ujv)p

n
= FU1jV (ujv)� FU0jV (ujv) :

NeitherH0 norH1 involves a, a correlation measure between U1 and U0. UnderH0, b = c and underH1, b 6= c.

To guarantee the covariance matrix to be positive semi-de�nite, a needs to satisfy a2+b2+c2�2abc�1 � 0.
So under H0, a2 + 2b2 � 2ab2 � 1 � 0, which does not exclude a = 0 (i.e., U1 and U0 can be independent as
mentioned in Section 2) if b � 1=

p
2 or a = 1 (i.e., U1 = U0). Under H1, if a = 1, then b2 + c2 � 2bc � 0,

which is impossible if b 6= c, but a can be zero if b2+ c2 � 1. To signify H0 and H1 by a scalar, set a = c = 0

and b 2 [0; 1), which implies U0 is exogenous, so we use a scalar b to control the level of both endogeneity
and violation of H0. We will consider four b values, 0; 0:3; 0:6 and 0:9, indicating the null, small, medium

and large local alternatives, respectively. The two upper panels of Figure 1 show FUdjtype (�) under H0 and

H�
1 and the implied �type (�) =

p
n when b = 0:9. Recall that the power comes only from �C1 (�) =

p
n and

�C2 (�) =
p
n.

Under our DGP, P (C1) = p2 � p1 = 0:4 = p3 � p2 = P (C2). Since

P (D = 1jCk) = P (V � p(Z)jpk < V � pk+1) =
PK

l=1 P (V � pl; pk < V � pk+1)P (Z = zl)

pk+1 � pk

=

PK
l=k+1 P (pk < V � pk+1)P (Z = zl)

pk+1 � pk
=
XK

l=k+1
P (Z = zl) ;

we have

P (D = 1; C1) = (p2 � p1)
X3

l=2
P (Z = zl) = 0:4� 2=3 = 0:27;

P (D = 1; C2) = (p3 � p2)P (Z = z3) = 0:4� 1=3 = 0:13;
14 I did not consider the with-covariate case because it is very time-consuming, e.g., the computation in the application of

next section takes more than one week on my PC, where N = 1.
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Figure 1: FUdjtype under H0 and H�
1 with Implied �type=

p
n, b(1)k ; b

(2)
k and b0(2)k : b = 0:9

and similarly

P (D = 0; C1) = 0:13; P (D = 0; C2) = 0:27:

In other words, in construction of bFY0jC1 and bFY1jC2 , we are using only about 130 data points when n = 1000.
The speci�cation of p(Z) and the distribution of Z imply E [D] = 0:5, and

h(p2) =
Cov (p(Z); 1 (p(Z) � p2))

V ar (p(Z))
=

(p2 � 0:5) =3 + (p3 � 0:5) =3
(p1 � 0:5)2 =3 + (p2 � 0:5)2 =3 + (p3 � 0:5)2 =3

=
5

4
;

h(p3) =
Cov (p(Z); 1 (p(Z) � p3))

V ar (p(Z))
=

(p3 � 0:5) =3
(p1 � 0:5)2 =3 + (p2 � 0:5)2 =3 + (p3 � 0:5)2 =3

=
5

4
;

so

eF1 (y1) = 0:4� 5
4
� FY1jC1(y1) + 0:4�

5

4
� FY1jC2(y1)

=
0:5

0:5� 0:1

Z 0:5

0:1

�

�
y1 � b��1 (v)p

1� b2

�
dv +

0:5

0:9� 0:5

Z 0:9

0:5

�

�
y1 � b��1 (v)p

1� b2

�
dv

=
5

4

Z 0:9

0:1

�

�
y1 � b��1 (v)p

1� b2

�
dv;

eF0 (y0) = � (y0) :

In T2n, we use either C2 or C1 as the hub, and the resulting test statistics and b
(2)
k (�) are denoted

as T (1)2n , T
(2)
2n , b

(2)
1 (�) and b(2)2 (�), respectively. We consider also T 01n and T

0
2n using the weight selection

procedure suggested at the end of Section 4.2. To assess the performance of our weight selection procedure,

we consider also T (1)1n ; T
(2)
1n ; T

0(1)
2n and T 0(2)2n . The �rst two are variants of T1n which use only C1 and C2 in the

construction of T1n, and the last two are variants of T 02n which use directly, rather than select, C1 and C2 in
T 02n. So totally, we will consider nine test statistics, T1n; T

(1)
2n ; T

(2)
2n ; T

0
1n; T

(1)
1n ; T

(2)
1n ; T

0
2n; T

0(1)
2n and T 0(2)2n . Note
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that in these nine statistics, except T1n, the summation with respect to k includes only one term. Since

(p2 � p1)h(p2) = (p3 � p2)h(p3) = 0:5, we select C1 and C2 with equal probability in T 01n and T 02n. As a
result, b0(1)k is b(1)1 or b(1)2 with equal probability in T 01n, and b

0(2)
k is b0(2)1 or b0(2)2 with equal probability in T 02n,

where

b
0(2)
k (�) = �Ck(

eF�1U (�))�
fU jCk

� eF�1U (�)
�

efU � eF�1U (�)
� e�( eF�1U (�)); k = 1; 2;

with eF ; ef and e� being equally weighted averages of the counterparts for C1 and C2. Here, we assume the null
rank cdf FU jCk satis�es FU1jCk(�) + FU0jCk(�) = 2FU jCk(�), k = 1; 2. For example,

FU jC1 (u) =
1

2 (0:5� 0:1)

Z 0:5

0:1

�

�
��1 (u)� b��1 (v)p

1� b2

�
dv +

u

2
;

FU jC2 (u) =
1

2 (0:9� 0:5)

Z 0:9

0:5

�

�
��1 (u)� b��1 (v)p

1� b2

�
dv +

u

2
;

and

fU jC1 (u) =
1

2 (0:5� 0:1)

Z 0:5

0:1

�

�
��1 (u)� b��1 (v)p

1� b2

�
1p

1� b2� (��1 (u))
dv +

1

2
;

fU jC2 (u) =
1

2 (0:9� 0:5)

Z 0:9

0:5

�

�
��1 (u)� b��1 (v)p

1� b2

�
1p

1� b2� (��1 (u))
dv +

1

2
:

To intuitively illustrate the formation of local power, we plot b(1)1 =
p
n; b

(1)
2 =
p
n; b

(2)
1 =
p
n; b

(2)
2 =
p
n; b

0(2)
1 =
p
n

and b0(2)2 =
p
n for � 2 T in the two lower panels of Figure 1. Note that 0:5� b(1)1 +0:5� b(1)2 = 0 as expected.

n! 1000 2000

b! 0 0:3 0:6 0:9 0 0:3 0:6 0:9

T1n 0.044 0.164 0.550 0.982 0.050 0.268 0.856 1.000

T
(1)
2n 0.054 0.172 0.558 0.986 0.052 0.272 0.860 1.000

T
(2)
2n 0.050 0.172 0.554 0.970 0.050 0.274 0.848 1.000

T 01n 0.050 0.122 0.570 0.978 0.048 0.256 0.820 1.000

T
(1)
1n 0.040 0.164 0.562 0.984 0.050 0.282 0.858 1.000

T
(2)
1n 0.044 0.154 0.512 0.972 0.054 0.242 0.830 1.000

T 02n 0.050 0.112 0.568 0.980 0.048 0.250 0.830 1.000

T
(1)0
2n 0.054 0.126 0.592 0.984 0.046 0.264 0.840 1.000

T
(2)0
2n 0.044 0.112 0.532 0.970 0.048 0.248 0.816 1.000

Table 1: Size and Power of Various Forms of T1n, T 01n, T2n and T
0
2n:

� = 0:05; N = 500

Table 1 summarizes the simulation results. From Table 1, a few conclusions can be drawn. First, all tests

perform satisfactorily well - the sizes are close to the nominal level 5%, and the powers are reasonably high;

as expected, the powers when n = 2000 are better than those when n = 1000. Second, the power of T1n is

between those of T (1)1n and T (2)1n . Third, the powers of T
(1)
2n (T (2)2n ) are generally better than those of T

(1)
1n (T (2)1n )

and T (1)02n (T (2)02n ), which matches the local power functions shown in the two lower panels of Figure 1. Fourth,

the performance of T 02n is between those of T
(1)0
2n and T (2)02n , while the relative performance of T

0
1n compared to

T
(1)
1n and T (2)1n depends on b and n. Basically, adaptively selecting the weights will introduce extra uncertainty

to the test statistics, so the relative performances of the tests using adaptive weights depend on the trade-o¤
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between the power bene�t and the extra uncertainty. This is not a problem in practice since we have only

one dataset, so we can just report the performances of T (1)1n , T
(2)
1n , T

(1)0
2n and T (2)02n and check the sensitivity of

the testing results. Of course, when K is large, it is still meaningful to report only T 01n and T
0
2n for simplicity.

9 Application

We use the dataset of Angrist and Krueger (1991) to illustrate some main points of this paper. This dataset

is also used in the empirical study of Chernozhukov and Hansen (2006) as an illustration of IV-QRE, so

the tests in this section can serve as pretests for their estimation. Angrist and Krueger (1991) estimate

schooling coe¢ cients using quarter of birth as instrument in a sample of 329509 men born 1930-39 from the

1980 census. Quarter of birth is correlated with educational attainment because of a mechanical interaction

between compulsory school attendance laws and age at school entry. See the appendix to Angrist and

Krueger (1991) for a detailed description of the data.

To �t the data into the framework of this paper, de�ne D = 1(S > 12) to be the indicator of a high school

graduate, where S 2 f0; 1; � � � ; 20g is the years of schooling. Y is the log weekly wage, and X is a vector

of covariates consisting of state and year of birth �xed e¤ects.15 Z can take four values, indicating the four

quarters of birth. However, the marginal information when Z increases from one to four is decreasing, so

we combine the third and fourth quarter to condense information. More speci�cally, if Z takes four values,bpk = 0:3881; 0:3962; 0:4023; 0:4054 for k = 1; 2; 3; 4, so bp2 � bp1 = 0:008 > bp3 � bp2 = 0:006 > bp4 � bp3 = 0:003.
If Z takes K = 3 values, then bpk = 0:3881; 0:3962; 0:4038 for k = 1; 2; 3, so bp2 � bp1 = 0:008 is comparable tobp3 � bp2 = 0:0075. Obviously, the instrument is quite weak, but since n = 329509 is very large, n (bp2 � bp1) =
2677 and n (bp3 � bp2) = 2494, and we have enough data points to estimate the cdfs for compliers. Another
reason to combine Z = 3 and Z = 4 is that bFYdjC3 and bFYdjC4 are not very stable if Z takes four values. One
key assumption imposed in this paper is the monotonicity assumption whose validity is shown in Angrist

and Imbens (1995).

Although X is discrete, it can take 510 possible values with the minimal cell containing only 3 data points

(and the maximal cell containing 3203 data points), so it is better not to use the saturated speci�cation of

X but to impose some restriction on the relationship among cells. Speci�cally, our conditional distribution

of the returns to schooling is speci�ed as

P (Y � yjX; p(X;Z) = p;D = d) = �
��
p; p2

�
�d(y) +X

0�d(y)
�
; 16

and the treatment status is determined by

D = 1(V � X 01 + Z
02);

where �(�) is the cdf of the standard normal, and V follows a standard normal distribution. Unlike in

Chernozhukov and Hansen (2006), D is binary rather than the years of schooling S to �t in the framework

of this paper. Also, we use dummies for the three quarters of birth rather than both the linear projection

of S onto X and the three dummies as instruments. The distribution regression is conducted by the matlab

function glm�t; we estimate bFY jX;p(X;Z);D(ydjx; p; d) at 200 yd values uniformly from [bqd (0:01) ; bqd (0:99)] and
15The state and year of birth �xed e¤ects include 59 dimensions. We add a constant in X in the outcome equation but

exclude the constant in the participation equation due to the speci�cation of Z.
16We also tried cubic polynomials of p, and the results are qualitatively similar. Note here that even if we use the saturated

speci�cation for X, the speci�caiton is not fully saturated to both X and p. The fully saturated model should include the
interaction terms of p and X. We neglect such interaction terms because Px includes only three points and does not include
much variation given that the instruments are relatively weak.

36



interpolate other yd values, where bqd (�) is the �th sample quantile of Y withD = d. All components of b2 are
positive, which guarantees the propensity score is increasing in Z for any X value. Among b1, the coe¢ cients
on the year of birth dummies are increasing with the year, indicating that attending college is more popular

in later years. In the algorithm in Section 5.1, we need also estimate qk(x) = P (Z = zkjX = x). We tried

the multinomial Logit model by using the matlab function mnr�t, where

qk (B(x); �) =
exp fx0�kgPK
l=1 exp fx0�lg

with � =
�
�01; � � � ; �0K

�0
, but almost all coe¢ cients are insigni�cant at the 5% level.17 This is, of course,

because Z (i.e., the quarter of birth) is independent of any other variables. As a result, we let qk(x) = qk

independent of x. Another justi�cation of Z ? X is that in the sample,Z
p(x;Z)dFX(x) =

Z
E [DjX = x;Z] dFX(x) =

Z
E [DjX = x; Z] dFXjZ(xjZ) = E [DjZ] � p(Z)

hold perfectly.

Tests T
X(1)
2n T

X(2)
2n T

0X(1)
2n T

0X(2)
2n

Test Stat. 7:801� 10�4 0:0012 7:947� 10�4 7:591� 10�4

p-values 1:000 0:995 1:000 1:000

Table 2: Test Statistics and p-values for Four Tests

As suggested by the simulation study in Section 8, we check the performance of T1n; T
(1)
1n ; T

(2)
1n ; T

(1)
2n ; T

(2)
2n ; T

0(1)
2n

and T 0(2)2n with covariates. However, the �rst three test statistics perform badly. This is because bFY0jN sta-

tistically dominates beF 0 (for each X value) such that bFY0jN �beF�10 (�)
�
takes very small values. Given that

the probability of never takers is large (e.g., in the unconditional model, this probability is about 0:6), bFY1
is quite small (e.g., max

� bFY1 (�)� can be around 0:2 for some X values) such that bF�1Y1 in the �rst three

test statistics does not perform well, which signi�cantly a¤ects their performances. As a result, we report

only the last four test statistics in Table 2. In construction of the test statistics, T = [0:2; 0:8] and 61

uniformly distributed points on T are used to approximate the integration on T . In bootstrapping critical
values, the repetition number B = 199. From Table 2, the dominating conclusion from all tests is that

we cannot reject the null, i.e., the IV-QRE in Chernozhukov and Hansen (2006) is justi�ed at least based

on our current tests. Note also that the optimal complier based on max
l=1;2

nPJ
j=1

b!xj � !l2 bpxjo, where
b!x = �

(bpx2 � bpx1)bh(bpx2); (bpx3 � bpx2)bh(bpx3)�0, bpxj = n�1
Pn

i=1 1 (Xi = xj) and J = 510, as suggested in

Section 5.1 is C1.
To provide more intuition on the testing result, we plot the unconditional cdfs in Figure 2 as suggested at

the end of Section 5.1. Some interesting conclusions can be drawn from Figure 2. First, from the upper left

panel, (i) FY1jC1 and FY1jC2 are almost the same, while FY0jC2 stochastically dominates FY0jC1 , so if the rank

is preserved, then the QTEs for C1 are larger than those for C2. This explains why C1 is more eager to enter
college than C2. (ii) FY1jA tends to be stochastically dominated by FY1jC1 and FY1jC2 at most y values, i.e.,
Y1 for always-takers tends to be lower than compliers; parallely, Y0 for never-takers tends to be higher than

compliers. It is possible that Y0 for always-takers is even lower (e.g., fewer chances if not going to college),

so the return to college is much higher for them than compliers; parallely, since Y0 for never-takers is already

17We can also try the multinomial Probit model, but it is quite time-consuming since usually the simulation method such as
the GHK simulator would be employed.
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Figure 2: Unconditional Versions of Various Forms of TX1n; T
X
2n and T

0X
2n

high (e.g., more chances due to better family backgrounds), it is not necessary for them to go to college.

(iii) As a weighted average of FYdjC1 and FYdjC2 , eFYd stays between FYdjC1 and FYdjC2 , but F
�
1 does not

stay among FY1jA; FY1jC1 and FY1jC2 , and F
�
0 does not stay among FY0jC1 , FY0jC2 and FY1jN . Nevertheless,eFY1 and F �1 stochastically dominate eFY0 and F �0 , respectively. Second, from the other three panels, we

can see that bFY1jCk � bF�11 (�)
�
and bFY0jCk � bF�10 (�)

�
for k = 1; 2, bFY1jC1 � bF�1Y1jC2(�)� and bFY0jC1 � bF�1Y0jC2(�)�,bFY1jC2 � bF�1Y1jC1(�)� and bFY0jC2 � bF�1Y0jC1(�)�, bFY1jCk �beF�11 (�)

�
and bFY0jCk �beF�10 (�)

�
for k = 1; 2, are all close

to each other, which explains why we cannot reject the null.

10 Conclusion

In this paper, we test the conditional rank similarity assumption of CH which is a key identi�cation assump-

tion for the IV-QRE. Di¤erent from the unconditional rank similarity test, no covariates are required here.

We test this assumption in the framework of HV, and consider three cases, covering discrete/continuous

instruments with/without covariates. For each case, we propose two tests and two extensions, and we also

suggest to use the bootstrap to obtain critical values.

There are some problems not covered in this paper. First, our simulation and application concentrate

on the discrete instrument case, and more simulation studies and applications on the continuous instrument

case would provide a more complete picture on the performance of our tests. Second, one key assumption

of this paper is the monotonicity assumption of the participation equation. This assumption facilitates our

testing procedure but is not required for the consistency of IV-QRE. One possible test when this assumption

is relaxed is the Hausman-type test: use two di¤erent sets of instruments to construct two inverse quantile

regression estimators of QTE as in Chernozhukov and Hansen (2006) and use their di¤erence as an indicator

of violation of the null. Third, we did not discuss the power optimality of our testing procedure. For example,
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in the formulation of T1 and T2, it is unknown which wk and �k (�) would provide the optimal power. In T
0
1n

and T 02n, we propose some simple procedures to improve power; however, the optimal !k, k = 1; � � � ;K � 2,
and the optimal hub depend on not only b! but �(1)ki and the correlation structure of "(1)ki for T 01n and �(2)ki
and the correlation structure of "(2)ki for T

0
2n, and seem hard to develop.
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Supplementary Material S.1

We �rst collect the notations that will be used in the following proofs. Gn (f(y)) =
p
n (Pn � P ) f(y) with

Pn being the empirical measure is the empirical process indexed by ff(y)jy 2 Yg for a compact set Y, and
G (f (y)) is a zero-mean Gaussian process with the covariance function E [G(f(y))G(f(y0))] = E [f(y)f(y0)]�
E [f(y)]E [f(y0)]. For a parameter �, d� means its dimension.

Proof of Corollary 1. We show �rst QY1jV (FY0jV (y0jv)jv) = Q1 (F0(y0)); QY0jV (FY1jV (y1jv)jv) =
Q0 (F1(y1)) can be similarly proved. Note that FY1jV (Q1(�)jv) = FY0jV (Q0(�)jv) implies

QY1jV (� jv) = Q1
�
F0
�
QY0jV (� jv)

��
: (21)

Letting � = FY0jV (y0jv), we have

QY1jV (FY0jV (y0jv)jv) = Q1
�
F0
�
QY0jV (FY0jV (y0jv)jv)

��
= Q1 (F0(y0))

as required, where the last equality uses QY0jV (FY0jV (y0jv)jv) = y0. Conversely, if QY1jV (FY0jV (y0jv)jv) =
Q1 (F0(y0)), then FY1jV (y1jv) = FY0jV (Q0F1 (y1) jv). So

FY1jV (Q1(�)jv) = FY0jV (Q0F1 (Q1(�)) jv) = FY0jV (Q0(�)jv):

We next show FY1jV (QY1jV (� jv) jv0) = FY0jV (QY0jV (� jv) jv0) for arbitrary v0 6= v. First, FY1jV (Q1(�)jv) =
FY0jV (Q0(�)jv) implies

FY1jV (y1jx; v) = FY0jV (Q0 (F1(y1)) jv) :

So combined with (21),

FY1jV (QY1jV (� jv) jv0) = FY0jV
�
Q0
�
F1(QY1jV (� jv))

�
jv0
�

= FY0jV
�
Q0
�
F1(Q1

�
F0
�
QY0jV (� jv)

��
)
�
jv0
�
= FY0jV (QY0jV (� jv) jv0):

Conversely, if FY1jV (QY1jV (� jv) jv0) = FY0jV (QY0jV (� jv) jv0) for arbitrary v0 6= v, then FY1jV (y1jv0) =
FY0jV (QY0jV

�
FY1jV (y1jv) jv

�
jv0), so

F1(y1) =

Z
FY0jV (QY0jV

�
FY1jV (y1jv) jv

�
jv0)dv0 = F0

�
QY0jV

�
FY1jV (y1jv) jv

��
:

As a result, QY0jV (FY1jV (y1jv)jv) = Q0 (F1(y1)), which has been shown to imply FY1jV (Q1(�)jv) = FY0jV (Q0(�)jv).
Finally, we show that �xed v or arbitrary v does not matter. For this purpose, we need only show that

(8) holds for �xed v implies it holds for arbitrary v. Suppose FY1jV (QY1jV (� jv) jv0) = FY0jV (QY0jV (� jv) jv0)
for a �xed v and arbitrary v0 6= v; we try to show that FY1jV (QY1jV (� jv00) jv0) = FY0jV (QY0jV (� jv00) jv0)
for any v00 6= v and v0 6= v00. First, FY1jV (QY1jV (� jv) jv0) = FY0jV (QY0jV (� jv) jv0) implies FY1jV (y1jv0) =
FY0jV (QY0jV

�
FY1jV (y1jv) jv

�
jv0) and QY1jV (� jv0) = QY1jV (FY0jV

�
QY0jV (� jv0) jv

�
jv) for any v0 6= v. If

v0 6= v00 but equals v, then

FY1jV (QY1jV (� jv00) jv) = FY1jV (QY1jV (FY0jV
�
QY0jV (� jv00) jv

�
jv)jv) = FY0jV

�
QY0jV (� jv00) jv

�
:
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If v0 6= v00 and v, then

FY1jV (QY1jV (� jv00) jv0) = FY0jV (QY0jV
�
FY1jV

�
QY1jV (� jv00) jv

�
jv
�
jv0)

= FY0jV (QY0jV
�
FY1jV

�
QY1jV (FY0jV

�
QY0jV (� jv00) jv

�
jv)jv

�
jv
�
jv0) = FY0jV

�
QY0jV (� jv00) jv0

�
:

Proof of Proposition 1. Since Z is independent of (Y1; Y0; V ), we can specify the distributions of

(Y1; Y0; V ) and Z separately, where the distribution of Z is implied by the observable data distribution.

Specify the joint distribution of (Y1; Y0; V ) as

FY1;Y0;V (y1; y0; v) = FY1jV (y1)FY0jV (y0) v;

i.e., Y1 and Y0 are conditionally independent given V , where FV (v) = v because the distribution of V is

uniform on (0; 1). The joint data distribution of (Y;D;Z) is

FY;D;Z (y; d; z) = FY;DjZ (yjd; z)FZ(z) =
( R p(z)

0
FY1jV (yjv)dvFZ(z);R 1

p(z)
FY0jV (yjv)dvFZ(z);

if d = 1;

if d = 0;

in the framework (5) and under Assumption M. In summary, we need to specify FY1jV (y1) and FY0jV (y0)

such that Z p(z)

0

FY1jV (yjv)dv = FY;DjZ (y; 1jz) ; y 2 S1; z 2 fz1; � � � ; zKg ;Z 1

p(z)

FY0jV (yjv)dv = FY;DjZ (y; 0jz) ; y 2 S0; z 2 fz1; � � � ; zKg ;

1

pk+1 � pk

Z pk+1

pk

FYdjV (Qd (�) jv) dv = FYdjCk (Qd (�)) ; � 2 (0; 1) ; k = 1; � � � ;K � 1;

with Q�1d (y) =

Z 1

0

FYdjV (yjv)dv =
KX
k=0

Z pk+1

pk

FYdjV (yjv)dv, y 2 Sd;

FY1jV (Q1 (�) jv) = FY0jV (Q0 (�) jv) ; � 2 (0; 1) ; v 2 (0; 1) ;
with FY1jCk (Q1 (�)) = FY0jCk (Q0 (�)) ; � 2 (0; 1) ; k = 1; � � � ;K � 1;

where pk, k = 1; � � � ;K, is implied by the the observable data distribution, the �rst and second equations are
to match the joint distribution of (Y;D;Z), the third equation is to match FYdjCk (Qd (�)) which is exactly

the de�nition of FYdjCk (�) in our framework and contains no further information, and the last equation is
to match H0 with (9) holds. The question is whether we can �nd some FY1jV (y1) and FY0jV (y0) to satisfy

these equations simultaneously. Obviously, we need only �nd feasibleZ pk+1

pk

FYdjV (yjv)dv; d = 0; 1; k = 0; 1; � � � ;K:

R pk+1
pk

FYdjV (yjv)dv, k = 1; � � � ;K�1, is determined by FY;DjZ (y; djzk+1)�FY;DjZ (y; djzk),
R p1
0
FY1jV (yjv)dv

is determined by FY;DjZ (y; 1jz1), and
R 1
pK
FY0jV (yjv)dv is determined by FY;DjZ (y; 0jzK), so the only remain-

ing freedom is
R p1
0
FY0jV (yjv)dv and

R 1
pK
FY1jV (yjv)dv or FY0jA (y0) and FY1jN (y1).

In summary, the question is whether there exist FU jCk ; k = 1; � � � ;K � 1, FU jA, FU jN , FY1jN and FY0jA

2



such that

FU jCk (F1 (y1)) = FY1jCk (y1) ; k = 1; � � � ;K � 1;

FU jCk (F0 (y0)) = FY0jCk (y0) ; k = 1; � � � ;K � 1;

FU jA (F1 (y1)) = FY1jA (y1) ; FU jA (F0 (y0)) = FY0jA (y0) ;

FU jN (F0 (y0)) = FY0jN (y0) ; FU jN (F1 (y1)) = FY1jN (y1)

with

F1 (y1) = p1FY1jA (y1) +
K�1X
k=1

(pk+1 � pk)FY1jCk (y1) + (1� pK) FY1jN (y1) ;

F0 (y0) = p1 FY0jA (y0) +
K�1X
k=1

(pk+1 � pk)FY0jCk (y0) + (1� pK)FY0jN (y0) :

Equivalently, we need to �nd FU jCk ; k = 1; � � � ;K � 1, FU jA, FU jN , FY1jN and FY0jA such that for any data

distribution of FYdjCk , k = 1; � � � ;K � 1, FY1jA and FY0jN ,

p1FY1jA (y1) +
K�1X
k=1

(pk+1 � pk)FY1jCk (y1) + (1� pK) FY1jN (y1) = F�1U jCk

�
FY1jCk (y1)

�
; k = 1; � � � ;K � 1;

= F�1U jA
�
FY1jA (y1)

�
= F�1U jN

�
FY1jN (y1)

�
; y1 2 S1;

p1 FY0jA (y0) +
K�1X
k=1

(pk+1 � pk)FY0jCk (y0) + (1� pK)FY0jN (y0) = F�1U jCk

�
FY0jCk (y0)

�
; k = 1; � � � ;K � 1;

= F�1U jA

�
FY0jA (y0)

�
= F�1U jN

�
FY0jN (y0)

�
; y0 2 S0:

Take any k = 1; � � � ;K � 1 and � 2 (0; 1), we must allow F�1U jCk (�) to satisfy two equations

p1FY1jA

�
F�1Y1jCk (�)

�
+
K�1X
j=1

(pj+1 � pj)FY1jCj
�
F�1Y1jCk (�)

�
+ (1� pK) FY1jN

�
F�1Y1jCk (�)

�
= F�1U jCk (�) ;

p1 FY0jA

�
F�1Y0jCk (�)

�
+
K�1X
j=1

(pj+1 � pj)FY0jCj
�
F�1Y0jCk (�)

�
+ (1� pK)FY0jN

�
F�1Y0jCk (�)

�
= F�1U jCk (�) ;

F�1U jA to satisfy

p1� +
K�1X
j=1

(pj+1 � pj)FY1jCj
�
F�1Y1jA (�)

�
+ (1� pK) FY1jN

�
F�1Y1jA (�)

�
= F�1U jA (�) ;

p1� +
K�1X
j=1

(pj+1 � pj)FY0jCj
�
F�1Y0jA (�)

�
+ (1� pK)FY0jN

�
F�1Y0jA (�)

�
= F�1U jA (�) ;
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and F�1U jN to satisfy

p1FY1jA

�
F�1Y1jN (�)

�
+
K�1X
j=1

(pj+1 � pj)FY1jCj
�
F�1Y1jN (�)

�
+ (1� pK) � = F�1U jN (�) ;

p1 FY0jA

�
F�1Y0jN (�)

�
+
K�1X
j=1

(pj+1 � pj)FY0jCj
�
F�1Y0jN (�)

�
+ (1� pK) � = F�1U jN (�)

simultaneously. This is possible if we let FY1jV (Q1 (�) jv) = FY0jV (Q0 (�) jv) = FU jV (� jv) since then
FY1jA

�
F�1Y1jCk (�)

�
= FY0jA

�
F�1Y0jCk (�)

�
= FU jA

�
F�1U jCk (�)

�
, etc.

Proof of Proposition 2. From the proof of Proposition 1, only cross matching is required.

Proof of Theorem 2. (i) The test statistic involves the following processes (f bFY1jCk (y1) ; bFY0jCk (y0)gK�1k=1 ,bQ1(�), bQ0(�)), � 2 T , y1 2 Y1 � fQ1(�)j� 2 T g and y0 2 Y0 � fQ0(�)j� 2 T g, where ( bQ1(�); bQ0(�))
involves ( bFY1jA(y1); f bFY1jCk(y1), bFY0jCk (y0)gK�1k=1 ;

bFY0jN (y0); fbpl; bqlgKl=1) with bql = nl=n. Lemma 1 derives

the weak limit of these components. Now, since (
�
FY1jCk (y1) ; FY0jCk (y0)

	K�1
k=1

; F1(�); F0(�)) is a Hadamard

di¤erentiable map of (FY1jA(y1); fFY1jCk(y1), FY0jCk (y0)g
K�1
k=1 ; FY0jN (y0); fpl; qlg

K
l=1), by Lemma 1 and the

functional Delta method, we have

p
n

0BBB@
bFY1jCk (y1)� FY1jCk (y1)bFY0jCk (y0)� FY0jCk (y0)bF1(y1)� F1(y1)bF0(y0)� F0(y0)

1CCCA 	(2)y

�
	(1)y

�
G
�
'y(W )

���
in `1 (Y)2K ; (22)

where 	(1)y
�
G
�
'y(W )

��
� G( A1 (W; y1); f k1(W; y1);  k0(W; y0)gK�1k=1 ;  

N
0 (W; y0); f�l (D;Z) ; 'q (Z)gKl=1) is

de�ned in Lemma 1. The operation of the linear map 	(2)y (�) : C (Y)4K ! `1 (Y)2K on � (y) = (�A1 (y1),

f�k1(y1), �k0(y0)gK�1k=1 , �
N
0 (y0), f�l; lgKl=1)0 2 C (Y)4K is explained as follows. The �rst 2 (K � 1) ele-

ments of 	(2)y (� (y)) is straightforward, so we concentrate on the last two elements. First, since h(pk+1) =PK
l=k+1 ql(pl�

PK
`=1 p`q`)PK

l=1 qlp
2
l�(

PK
l=1 qlpl)

2 is a di¤erentiable function of fpl; qlgKl=1, de�ne �
k+1
h (�; ) = hk+10p � + hk+10q , where

hk+1p and hk+1q are the partial derivatives of h(pk+1) with respect to p and q respectively, p = (p1; � � � ; pK)0

and q = (q1; � � � ; qK)0. Second, since eFd (yd) =PK�1
k=1 (pk+1 � pk)h(pk+1)FYdjCk(yd), de�ne

e d ���kd(yd)	K�1k=1
; �; 

�
=
PK�1

k=1 (pk+1 � pk)h(pk+1)�kd(yd) +
PK�1

k=1 (pk+1 � pk)FYdjCk(yd)�
k+1
h (�; )

+
PK�1

k=1 h(pk+1)FYdjCk(yd)
�
�k+1 � �k

�
(23)

as a linear map from C (Y)3K�1 ! `1 (Y). Third, since F �1 (y1) = p1FY1jA (y1)+
PK�1

k=1 (pk+1 � pk) fFY1jCk(y1)(1�Pk
l=1 ql)+FY0jCk(

eF�10 eF1 (y1))Pk
l=1 qlg+(1� pK)FY0jN ( eF�10 eF1 (y1)), the second-to-last component of	(2)y (� (y))

is

p1�
A
1 (y1) +

XK�1

k=1
(pk+1 � pk)

�
1�

Xk

l=1
ql

�
�k1(y1) +

XK�1

k=1
(pk+1 � pk)

�Xk

l=1
ql

�

�

24�k0( eF�10 eF1 (y1))� fY0jCk(
eF�10 eF1 (y1))ef0 � eF�10 eF1 (y1)�

�e 0�n�k0 � eF�10 eF1 (y1)�oK�1
k=1

; �; 

�
� e 1 ���k1 (y1)	K�1k=1

; �; 
��35

+(1� pK)

24�N0 ( eF�10 eF1 (y1))� fY0jN (
eF�10 eF1 (y1))ef0 � eF�10 eF1 (y1)�

�e 0�n�k0( eF�10 eF1 (y1))oK�1
k=1

; �; 

�
� e 1 ���k1 (y1)	K�1k=1

; �; 
��35
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+�1FY1jA (y1) +
XK�1

k=1

�
�k+1 � �k

�
FY1jCk(y1)

�
1�

Xk

l=1
ql

�
�
XK�1

k=1
(pk+1 � pk)

�
FY1jCk(y1)

Xk

l=1
l

+FY0jCk(
eF�10 eF1 (y1))Xk

l=1
l

�
+ (1� �K)FY0jN ( eF�10 eF1 (y1));

where the f function is the pdf of the corresponding F function. The last component of 	(2)y (� (y)) can

be similarly derived. Note that since p1; (pk+1 � pk) and (1� pK) will o¤set the denominator of FY1jA (y1),
FYdjCk(yd) and FY0jN in eFd (yd) and eFd (yd), some terms involving � will o¤set each other.
Next, since

�
FY1jCk

�
F�11 (�)

�
; FY0jCk

�
F�10 (�)

�	K�1
k=1

is a Hadamard di¤erentiable map of (fFY1jCk (y1) ; FY0jCk (y0)g
K�1
k=1 ,

F1(�); F0(�)), we can apply the functional Delta method again to have

p
n

0@ bFY1jCk � bF�11 (�)
�
� FU1jCk(�)bFY0jCk � bF�10 (�)

�
� FU0jCk(�)

1A 	(3)�

�
	(2)y

�
	(1)y

�
G
�
'y(W )

�������
y1=F

�1
1 (�);y0=F

�1
0 (�)

in `1 (T )2(K�1) :

Here, for � (y) =
�
f�k1(y1); �k0(y0)gK�1k=1 ; �1(y1); �0(y0)

�0 2 C (Y)2K , the linear map 	(3)� (�) : C (Y)2K !
`1 (T )2(K�1) evaluated at � (y) is de�ned as follows. The term associated with bFY1jCk � bF�11 (�)

�
is

�k1
�
F�11 (�)

�
�
fY1jCk

�
F�11 (�)

�
f1
�
F�11 (�)

� �1(F
�1
1 (�));

and the term associated with bFY0jCk � bF�10 (�)
�
is

�k0
�
F�10 (�)

�
�
fY0jCk

�
F�10 (�)

�
f0
�
F�10 (�)

� �0(F
�1
0 (�)):

Finally, T1 =
PK�1

k=1

R
T
�
FY1jCk (Q1(�))� FY0jCk (Q0(�))

�2
d� is a continuous functional of fFY1jCk

�
F�11 (�)

�
,

FY0jCk
�
F�10 (�)

�
gK�1k=1 , so by the continuous mapping theorem,

nT1n �
XK�1

k=1

Z
T
Z
(1)
kn (�)

2
d�

 
XK�1

k=1

Z
T

24 	
(3)
k1�

�
	
(2)

F�1
1 (�)

�
	
(1)

F�1
1 (�)

�
G
�
'F�1

1 (�)(W )
����

�	(3)k2�
�
	
(2)

F�1
0 (�)

�
	
(1)

F�1
0 (�)

�
G
�
'F�1

0 (�)(W )
���� 352 d�

�
XK�1

k=1

Z
T
Z
(1)
k (�)

2
d� ;

where 	(3)� =
n
	
(3)
k�

oK�1
k=1

and 	(3)k� =
�
	
(3)
k1� ;	

(3)
k2�

�
, the index of y in 	(3)k1� is replaced by F

�1
1 (�) since only

processes indexed by y1 are involved, and similarly for the index of y in 	
(3)
k2� . We can equivalently express

	
(3)
k1�

�
	
(2)

F�1
1 (�)

�
	
(1)

F�1
1 (�)

�
G
�
'F�1

1 (�)(W )
����

as G
�
	
(3)
k1�

�
	
(2)

F�1
1 (�)

�
	
(1)

F�1
1 (�)

�
'F�1

1 (�)(W )
����

; similarly

for 	(3)k2�
�
	
(2)

F�1
0 (�)

�
	
(1)

F�1
0 (�)

�
G
�
'F�1

0 (�)(W )
����

.

Since Zk (�), k = 1; � � � ;K � 1, are correlated Gaussian processes, we must extend Mercer�s theorem
(see, e.g., Lemma 1 of Bierens and Ploberger (1997)) to express

PK�1
k=1

R
T Zk (�)

2
d� as a mixed chi-square

5



distribution. First, by Mercer�s theoremZ
T
Z
(1)
k (�)

2
d� �

1X
i=1

�
(1)
ki "

(1)2
ki ;

where "(1)ki �s and �
(1)
ki �s are de�ned in the theorem. For k 6= l, we must study the correlation between "(1)ki

and "(1)lj . Since

"
(1)
ki =

Z
T
Z
(1)
k (�)'i (�) d� and "

(1)
lj =

Z
T
Z
(1)
l (�)'j (�) d� ;

the covariance of "(1)ki and "
(1)
lj is

E

�Z
T
Z
(1)
k (�)'i (�) d�

Z
T
Z
(1)
l (�)'j (�) d�

�
=

Z
T

Z
T
�
(1)
kl (�1; �2)'i (�1)'j (�2) d�1d�2;

where �(1)kl (�1; �2) = E
h
Z
(1)
k (�1)Z

(1)
l (�2)

i
need not be a positive semi-de�nite continuous function on T �T ,

so
R
T �

(1)
kl (�1; �2)'j (�1) d�1 need not be a multiple of 'j (�2) such that this covariance depends on four

indices (k; l; i; j).

(ii) Denote FYdjCk and Fd under H
�
1 as F

n
YdjCk and F

n
d respectively. Under Assumption LA, we know by

Lemma 2.8.7 of VW (p. 174) that

p
n
� bFY1jCk � bF�11 (�)

�
� FnY1jCk

�
Fn�11 (�)

��
�
p
n
� bFY0jCk � bF�10 (�)

�
� FnY0jCk

�
Fn�10 (�)

��
=
p
n
� bFY1jCk � bF�11 (�)

�
� bFY0jCk � bF�10 (�)

��
�
p
n
�
FnY1jCk

�
Fn�11 (�)

�
� FnY0jCk

�
Fn�10 (�)

��
 Zk (�) ;

so it remains to derive
p
n
�
FnY1jCk

�
Fn�11 (�)

�
� FnY0jCk

�
Fn�10 (�)

��
. From Yu (2016),

p
n
�
Fn�11 (�)� F�11 (�)

�
! � DF1 (�) (�)

f1
�
F�11 (�)

� ;
p
n
�
Fn�10 (�)� F�10 (�)

�
! � DF0 (�) (�)

f0
�
F�10 (�)

� ;
where

DF1 (�) (�) =

PK�1
k=1 (pk+1 � pk)Fp(Z)(pk)fU0jCk (�) + (1� pK)fU0jN (�)PK�1

k=1 (pk+1 � pk)h(pk+1)fU0jCk(�)

�
XK�1

k=1
(pk+1 � pk)h(pk+1)�Ck(�)

�
�XK�1

k=1
(pk+1 � pk)Fp(Z)(pk)�Ck(�) + (1� pK)�N (�)

�
;

DF0 (�) (�) = �
p1fU1jA (�) +

PK�1
k=1 (pk+1 � pk)

�
1� Fp(Z)(pk)

�
fU1jCk (�)PK�1

k=1 (pk+1 � pk)h(pk+1)fU1jCk (�)

�
XK�1

k=1
(pk+1 � pk)h(pk+1)�Ck(�)

+

�
p1�A(�) +

XK�1

k=1
(pk+1 � pk)

�
1� Fp(Z)(pk)

�
�Ck(�)

�
;

6



with

fU1jA(�) =
1

p1

Z p1

0

fU1jV (� jv) dv;

fUdjCk (�) =
1

p2 � p1

Z p2

p1

fUdjV (� jv) dv;

fU0jN (�) =
1

1� p2

Z 1

p2

fU0jV (� jv) dv;

so

p
n
�
FnY1jCk

�
Fn�11 (�)

�
� FnY0jCk

�
Fn�10 (�)

��
=
p
n
�
FnU jCk

�
F1
�
Fn�11 (�)

��
� FU jCk

�
F0
�
Fn�10 (�)

���
=
p
n
�
FnU jCk

�
F1
�
Fn�11 (�)

��
� FU jCk

�
F1
�
Fn�11 (�)

���
+
p
n
�
FU jCk

�
F1
�
Fn�11 (�)

��
� FU jCk

�
F1
�
F�11 (�)

���
+
p
n
�
FU jCk

�
F0
�
F�10 (�)

��
� FU jCk

�
F0
�
Fn�10 (�)

���
! �Ck(�)� fU jCk (�) f1

�
F�11 (�)

� DF1 (�) (�)

f1
�
F�11 (�)

� + fU jCk (�) f0 �F�10 (�)
� DF0 (�) (�)

f0
�
F�10 (�)

�
= �Ck(�)� fU jCk (�) [DF1 (�) (�)�DF0 (�) (�)] � b

(1)
k (�) ;

where FnU jCk = FU jCk + �Ck=
p
n, FU jCk (u) = FU0jCk (u) =

1
p2�p1

R p2
p1
FU0jV (ujv) dv, and fU jCk (�) is similarly

de�ned. b(1)k (�) can be further simpli�ed:

b
(1)
k (�) = �Ck(�)� fU jCk (�)

266666664

PK�1
k=1 (pk+1�pk)Fp(Z)(pk)fU0jCk (�)+(1�pK)fU0jN (�)PK�1

k=1 (pk+1�pk)h(pk+1)fU0jCk (�)
�
PK�1

k=1 (pk+1 � pk)h(pk+1)�Ck(�)

+
p1fU1jA(�)+

PK�1
k=1 (pk+1�pk)(1�Fp(Z)(pk))fU1jCk (�)PK�1

k=1 (pk+1�pk)h(pk+1)fU1jCk (�)
�
PK�1

k=1 (pk+1 � pk)h(pk+1)�Ck(�)

�
hPK�1

k=1 (pk+1 � pk)Fp(Z)(pk)�Ck(�) + (1� pK)�N (�)
i

�
h
p1�A(�) +

PK�1
k=1 (pk+1 � pk)

�
1� Fp(Z)(pk)

�
�Ck(�)

i

377777775
= �Ck(�)�

p1fU jA (�) +
PK�1

k=1 (pk+1 � pk) fU jCk (�) + (1� pK)fU jN (�)PK�1
k=1 (pk+1 � pk)h(pk+1)

�
XK�1

k=1
(pk+1 � pk)h(pk+1)�Ck(�) +

�
p1�A(�) +

XK�1

k=1
(pk+1 � pk) �Ck(�) + (1� pK)�N (�)

�
fU jCk (�)

= �Ck(�)�
XK�1

l=1
(pl+1 � pl)h(pl+1)�Cl(�);

where the second equality uses fU1jtype = fU0jtype = fU jtype in the limit, and the last equality uses p1fU jA (�)+PK�1
k=1 (pk+1 � pk) fU jCk (�)+(1�pK)fU jN (�) = 1, p1�A(�)+

PK�1
k=1 (pk+1 � pk) �Ck(�)+(1�pK)�N (�) = 0,

and
PK�1

k=1 (pk+1 � pk)h(pk+1) = 1. As a result,

T1n  
XK�1

k=1

Z
T

�
Z
(1)
k (�) + b

(1)
k (�)

�2
d� =

XK�1

k=1

P1
i=1

�q
�
(1)
ki "

(1)
ki + b

(1)
ki

�2
under H�

1 , where b
(1)
ki =

R
T b

(1)
k (�)'

(1)
i (�) d� .

De�ne T (1)ki =
PK�1

k=1

P
j 6=i(

q
�
(1)
ki "

(1)
ki + b

(1)
ki )

2. By repeated application of P (
PK�1

k=1

P1
i=1(

q
�
(1)
ki "

(1)
ki +

b
(1)
ki )

2 > c) � (PT (1)ki + �
(1)
ki "

(1)2
ki > c), we get the result, where the inequality is strict if b(1)ki 6= 0. So unless
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b
(1)
ki = 0 for all k and i, which is equivalent to b

(1)
k (�) = 0 for any k and � , the strict inequality holds.

(iii) From the analysis in (ii),

nT1n �
XK�1

l=1

Z
T

h eZ(1)k (�) +
p
n
�
FY1jCk

�
F ��11 (�)

�
� FY0jCk

�
F ��10 (�)

��i2
d� = Op(n)::

Here, eZ(1)k (�) depends onH1; it may be di¤erent from Z
(1)
k (�) (equals Z(1)k (�) underH0), but is a tight mean

zero Gaussian process. So nT1n is dominated by
PK�1

l=1

R
T
�p
n
�
FY1jCk

�
F ��11 (�)

�
� FY0jCk

�
F ��10 (�)

���2
d�

which is O(n).

Proof of Corollary 4. From the proof of Theorem 2, Z1 (y1) is the second-to-last component of

	
(2)
y

�
	
(1)
y

�
G
�
'y(W )

���
in (22) and Z0 (y0) is the last component of 	

(2)
y

�
	
(1)
y

�
G
�
'y(W )

���
. Then by

the functional Delta method, it is not hard to get the weak limit of b�(�).
Proof of Theorem 3. The proof is quite similar to the Theorem 2, so we only outline the di¤erences.

(i) In 	(1)y
�
G
�
'y(W )

��
, we need only terms associated with

�
FY1jCk (y1) ; FY0jCk (y0)

	K�1
k=1

; in other words,

de�ne

	(1
0)

y

�
G
�
'y(W )

��
= G

�
f k1(W; y1);  k0(W; y0)gK�1k=1

�
:

We do not need 	(2)y , and change 	(3)� to 	(4)� below. The linear map 	(4)� : C (Y)2(K�1) ! `1 (T )2(K�2) is
de�ned as follows. For � (y) =

�
f�k1(y1); �k0(y0)gK�1k=1

�0 2 C (Y)2(K�1), the term associated with bFY1jCk � bF�1Y1jC1(�)�
in the image of 	(4)� (� (y)) is

fY1jCk

�
F�1Y1jC1(�)

�
�k1

�
F�1Y1jC1(�)

�
�
fY1jCk

�
F�1Y1jC1(�)

�
fY1jC1

�
F�1Y1jC1(�)

��11(F�1Y1jC1(�));
and the term associated with bFY0jCk � bF�1Y0jC1(�)� is

fY0jCk

�
F�1Y0jC1(�)

�
�k0

�
F�1Y0jC1(�)

�
�
fY0jCk

�
F�1Y0jC1(�)

�
fY0jC1

�
F�1Y0jC1(�)

��10(F�1Y0jC1(�)):
In summary,

T2n �
XK�1

k=1

Z
T
Z
(2)
kn (�)

2
d�

 
Z
T

�
	
(4)
k1�

��
	
(10)

F�1
Y1jC1

(�)

�
G
�
'F�1

Y1jC1
(�)(W )

����
�	(4)k2�

�
	
(10)

F�1
Y0jC1

(�)

�
G
�
'F�1

Y0jC1
(�)(W )

����2
d�

�
XK�1

k=1

Z
T
Z
(2)
k (�)

2
d� ;

where 	(4)� =
n
	
(4)
k�

oK�1
k=2

and 	(4)k� =
�
	
(4)
k1� ;	

(4)
k2�

�
.

(ii) We need only to calculate the limit of
p
n
�
FnY1jCk

�
Fn�1Y1jC1(�)

�
� FnY0jCk

�
Fn�1Y0jC1(�)

��
to determine the

8



local power.

p
n
�
FnY1jCk

�
Fn�1Y1jC1(�)

�
� FnY0jCk

�
Fn�1Y0jC1(�)

��
=
p
n
�
FnU jCk

�
F1

�
F�11 Fn�1U jC1(�)

��
� FU jCk

�
F0

�
F�10 F�1U jC1(�)

���
=
p
n
�
FnU jCk

�
Fn�1U jC1(�)

�
� FU jCk

�
F�1U jC1(�)

��
=
p
n
�
FnU jCk

�
Fn�1U jC1(�)

�
� FU jCk

�
Fn�1U jC1(�)

��
+
p
n
�
FU jCk

�
Fn�1U jC1(�)

�
� FU jCk

�
F�1U jC1(�)

��
! �Ck(F

�1
U jC1(�))�

fU jCk

�
F�1U jC1(�)

�
fU jC1

�
F�1U jC1(�)

� �C1(F�1U jC1(�)):

Proof of Corollary 5. From the construction of T 01n, it is not hard to see that

nT 01n  
XK�2

k=1

Z
T

�XK�1

l=1
!kl

�
Z
(1)
l (�) + b

(1)
k (�)

��2
d� :

By Mercer�s theorem, we can represent the weak limit in the form of Corollary 5. As to T 02n, �rst note

that the weak limit of beF d(yd) is stated in (23) and the weak limit of bFYdjCk(yd) is stated in Lemma
1. For future reference, we denote them as G

�e d(W; yd)� and G� kd(W; yd)�, respectively. Next, sincen
F
(k)
Y1jC

� eF�11 (�)
�
; F

(k)
Y0jC

� eF�10 (�)
�oK�2

k=1
is a Hadamard di¤erentiable map of (fFY1jCk (y1) ; FY0jCk (y0)g

K�1
k=1 ,eF1(�); eF0(�)), we can apply the functional Delta method to have

p
n

0B@ bF (k)Y1jC

�beF�11 (�)

�
� F (k)U1jC(�)bF (k)Y0jCk

� bF�10 (�)
�
� F (k)U0jC(�)

1CA 
0BB@ e	(k)1� �G�e 1(W; y1)� ;nG� l1(W; y1)�oK�1

l=1

�
e	(k)0� �G�e 0(W; y0)� ;nG� l0(W; y0)�oK�1

l=1

�
1CCA
��������
y1= eF�1

1 (�);y0= eF�1
0 (�)

in `1 (T )2(K�2), where

F
(k)
UdjC(�) =

XK�1

l=1
!klFUdjCl

� eF�1Ud (�)� with eFUd(u) =XK�1

l=1
(pl+1 � pl)h(pl+1)FUdjCl (u) ; (24)

and for �d (yd) =
�e�d (yd) ;��ld(yd)	K�1l=1

�0
2 C (Y)K , the linear map e	(k)d� (�) : C (Y)K ! `1 (T ) evaluated

at � (y) is de�ned as follows,

e	(k)1� (�1 (y1)) =
XK�1

l=1
!kl�

l
1

� eF�11 (�)
�
�

PK�1
l=1 !klfY1jCl

� eF�11 (�)
�

ef1 � eF�11 (�)
� e�1 � eF�11 (�)

�
;

e	(k)0� (�0 (y0)) =
XK�1

l=1
!kl�

l
0

� eF�10 (�)
�
�

PK�1
l=1 !klfY0jCl

� eF�10 (�)
�

ef0 � eF�10 (�)
� e�0 � eF�10 (�)

�
:

9



As to b0(2)k (�), by a similar analysis as in the proof of Theorem 3(ii), it is not hard to see that

b
0(2)
k (�) =

XK�1

l=1
!kl�Ck(

eF�1U (�))�

PK�1
l=1 !klfU jCk

� eF�1U (�)
�

efU � eF�1U (�)
� e�( eF�1U (�));

where eFU (u) is de�ned in (24), efU (u) is similarly de�ned, and e�(u) = PK�1
k=1 (pk+1 � pk)h(pk+1)fU jCk(u).

Finally, applying the continuous mapping theorem, we have

nT 02n  
XK�2

k=1

Z
T

�
Z
0(2)
k (�) + b

0(2)
k (�)

�2
d� ;

where Z 0(2)k (�) = e	(k)1� (G(e 1(W; eF�11 (�))); fG( l1(W; eF�11 (�)))gK�1l=1 )�e	(k)0� (G(e 0(W; eF�10 (�))); fG( l0(W; eF�10 (�)))gK�1l=1 ).

By Mercer�s theorem, we can represent this weak limit in the form of Corollary 5.

Proof of Theorem 4. (i) First,

Gn
�
'y(W )

�
 G

�
'y(W )

�
in `1 (Y)5K

by Lemma 1. From the proof of Theorem 2, the process
�
FY1jCk

�
F�11 (�)

�
; FY0jCk

�
F�10 (�)

��
, � 2 T , is

Hadamard di¤erentiable at E
�
'y(W )

�
tangentially to C(Y)5K , so by the functional Delta method for the

bootstrap (see, e.g., Theorem 3.9.11 of VW),

p
n

0@ bF �Y1jCk � bF ��11 (�)
�
� bFY1jCk � bF�11 (�)

�
bF �Y0jCk � bF ��10 (�)

�
� bFY0jCk � bF�10 (�)

� 1A � 	(3)�

�
	(2)y

�
	(1)y

�
G
�
'y(W )

�������
y1=F

�1
1 (�);y0=F

�1
0 (�)

in `1 (T )2(K�1). Finally, by the continuous mapping theorem,

nT �1n =
K�1X
k=1

Z
T

hp
n
� bF �Y1jCk � bF ��11 (�)

�
� bFY1jCk � bF�11 (�)

��
�
p
n
� bF �Y0jCk � bF ��10 (�)

�
� bFY0jCk � bF�10 (�)

��i2
d�

� 
XK�1

k=1

Z
T
Z
(1)
k (�)

2
d�

as desired. It follows that c�1n(�) = c1(�) + op(1) under H0, where c1(�) is the (1� �)th quantile of the
asymptotic distribution of nT1n. This implies that nT1n and nT1n � (c�1n(�)� c1(�)) converges to the same
limiting distribution as n!1, and hence we have that P (nT1n > c�1n(�)) = �+ o(1).

(ii) By Corollary 2.1 of Bickel and Ren (2001, p. 97), the bootstrap is valid for f bFY1jCk( bF�11 (�)); bFY0jCk( bF�10 (�))gK�1k=1

if H�
1 is contiguous to H0, and thus the arguments in (i) can still go through to show that c�1n(�) =

c1(�) + op(1) under H�
1 . By Theorem 2(ii), the result follows.

(iii) Under a �xed alternative, nT �1n
� 
PK�1

l=1

R
T

h eZ(1)k (�)
i2
d� , where

neZ(1)k (�)
oK�1
k=1

are de�ned in the

proof of Theorem 2(iii), and thus c�1n(�) = Op(1). As a result, for any � > 0, there exists a constant M such

that P (c�1n(�) > M) < �+ o(1). Using elementary inequalities, we also have that

P (nT1n � c�1n(�)) = P (nT1n � c�1n(�); c�1n(�) �M) + P (nT1n � c�1n(�); c�1n(�) > M)

� P (nT1n �M) + P (c�1n(�) > M):

From Theorem 2(iii), we know that P (nT1n � M) = o(1), and thus P (nT1n � c�1n(�)) < � + o(1), which

implies the statement of the theorem since � can be chosen arbitrarily small.
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(iv) The proof is parallel to that for T1n.

Proof of Theorem 5. The test statistic involves the following processes (f bF kY1jX (y1jx) ; bF kY0jX (y0jx)gK�1k=1 ,bF�1Y1jX(� jx), bF�1Y0jX(� jx); bFX(x)), � 2 T , yd 2 Yd, x 2 X , where ( bF�1Y1jX(� jx); bF�1Y0jX(� jx)) involves ( bF 0Y1jX(y1jx),
f bF kY1jX(y1jx); bF kY0jX(y1jx)gK�1k=1 ;

bFKY0jX(y0jx); fbpxl; bqxlgKl=1). Lemma 2 derives the weak limit of these compo-
nents. Now, since (fF kY1jX (y1jx) ; F

k
Y0jX (y0jx)g

K�1
k=1 , FY1jX(y1jx); FY0jX(y0jx)) is a Hadamard di¤erentiable

map of (fF kY1jX(y1jx)g
K�1
k=0 ; fF kY0jX(y0jx)g

K
k=1; fpxl; qxlg

K
l=1), by Lemma 2 and the functional Delta method,

we have

p
n

0BBB@
bF kY1jX(y1jx)� F kY1jX(y1jx)bF kY0jX(y0jx)� F kY0jX(y0jx)bFY1jX(y1jx)� FY1jX(y1jx)bFY0jX(y0jx)� FY0jX(y0jx)

1CCCA 	(3)yx

�
	(2)yx

�
	(1)yxp

�
�J�1(y)G

�
'y;�

����
in `1 (YX )2K ;

where 	(2)yx
�
	
(1)
yxp

�
�J�1(y)G

�
'y;�

���
is de�ned in Lemma 2, and 	(3)yx (�) : C (YX )4K ! `1 (YX )2K is

similarly derived as in the proof of Theorem 2 due to similar structures. Next, since fF kY1jX
�
F�1Y1jX(� jx)jx

�
,

F kY0jX

�
F�1Y0jX(� jx)jx

�
gK�1k=1 is a Hadamard di¤erentiable map of (fF kY1jX (y1jx) ; F

k
Y0jX (y0jx)g

K�1
k=1 ; FY1jX(y1jx),

FY0jX(y0jx)), we can apply the functional Delta method again to have

p
n

0@ bF k
Y1jX

� bF�1
Y1jX(� jx)jx

�
� F k

U1jX(� jx)bF k
Y0jX

� bF�1
Y0jX(� jx)jx

�
� F k

U0jX(� jx)

1A 	(4)�x

�
	(3)yx

�
	(2)yx

�
	(1)yxp

�
�J�1(y)G

�
'y;�

��������
y1=QY1jX (� jx);y0=QY0jX (� jx)

(25)

in `1 (T X )2(K�1), where 	(4)�x : C (YX )2K ! `1 (T X )2(K�1) is similarly derived as in the proof of Theorem
2 due to similar structures. Finally, by the continuous mapping theorem and Slutsky theorem, we have under
H0,

nTX1n �
XK�1

k=1

Z
X

Z
T
Z
(1)
kn (� ; x)

2 d�d bFX(x)
=

XK�1

k=1

Z
X

Z
T
Z
(1)
kn (� ; x)

2 d�dFX(x) + op(1)

 
XK�1

k=1

Z
X

Z
T

h
	
(4)
k1�x

�
	
(3)

QY1jX (� jx)x

�
	
(2)

QY1jX (� jx)x

�
	
(1)

QY1jX (� jx)xp

�
�J�1(QY1jX(� jx))G

�
'QY1jX (� jx);�

(W )
�����

�	(4)k2�x
�
	
(3)

QY0jX (� jx)x

�
	
(2)

QY0jX (� jx)x

�
	
(1)

QY0jX (� jx)xp

�
�J�1(QY0jX(� jx))G

�
'QY0jX (� jx);�

(W )
�����i2

d�dFX(x)

�
XK�1

k=1

Z
X

Z
T
Z
(1)
k (� ; x)2 d�dFX(x);

where	(4)�x =
n
	
(4)
k�x

oK�1
k=1

with	(4)k�x =
�
	
(4)
k1�x;	

(4)
k2�x

�
, and the second equality is due to supx2X

��� bFX(x)� FX(x)��� =
op(1) and

R
T Z

(1)
kn (� ; x)

2
d� is tight in `1 (X ) under H0. The proof under H�

1 is completely the same as that

of Theorem 2(ii) except that the calculation is conditional on X = x.

Proof of Theorem 6. We only derive Z(2)k (� ; x) to signify the di¤erence from Theorem 5. In	(2)yx (	
(1)
yxp(�J�1(y)G('y;�))),

we need only terms associated with fF kY1jX (y1jx) ; F
k
Y0jX (y0jk)g

K�1
k=1 , so de�ne	

(20)
yx

�
	
(1)
yxp

�
�J�1(y)G

�
'y;�

���
2

`1 (YX )2(K�1) as the corresponding elements of 	(2)yx
�
	
(1)
yxp

�
�J�1(y)G

�
'y;�

���
. We do not need 	(3)yx , and

change 	(4)�x to 	
(5)
�x below. The linear map 	

(5)
�x : C (YX )2(K�1) ! `1 (T X )2(K�2) is de�ned as follows. For

� (y; x) =
�
f�k1(y1; x); �k0(y0; x)gK�1k=1

�0 2 C (YX )2(K�1), the term associated with bF kY1jX � bQ1Y1jX(� jx)jx� in

11



the image of 	(5)�x (� (y; x)) is

fkY1jX

�
Q1Y1jX(� jx)jx

�
�k1

�
Q1Y1jX(� jx); x

�
�
fkY1jX

�
Q1Y1jX(� jx)jx

�
f1Y1jX

�
Q1Y1jX(� jx)jx

��11(Q1Y1jX(� jx); x);
and the term associated with bF kY0jX � bQ1Y0jX(� jx)jx� is

fY0jCk

�
Q1Y0jX(� jx)jx

�
�k0

�
F�1Y0jC1(�); x

�
�
fkY0jX

�
Q1Y0jX(� jx)jx

�
f1Y0jX

�
Q1Y0jX(� jx)jx

��10(Q1Y0jX(� jx); x):
In summary,

p
n

0@ bF kY1jX � bQ1Y1jX(� jx)jx�� F kU1jX(� jx)bF kY0jX � bQ1Y0jX(� jx)jx�� F kU0jX(� jx)
1A 	(5)�x

��
	(2

0)
yx

�
	(1)yxp

�
�J�1(y)G

�
'y;�

��������
y1=Q1

Y1jX
(� jx);y0=Q1

Y0jX
(� jx)

in `1 (T X )2(K�2), and

nTX2n �
XK�1

k=2

Z
X

Z
T
Z
(2)
kn (� ; x)

2
d�d bFX(x)

 
XK�1

k=2

Z
X

Z
T

�
	
(5)
k1�x

�
	
(20)

Q1
Y1jX

(� jx)x

�
	
(1)

Q1
Y1jX

(� jx)xp

�
�J�1(Q1Y1jX(� jx))G

�
'Q1

Y1jX
(� jx);�(W )

����
�	(5)k2�x

�
	
(2)

Q1
Y0jX

(� jx)x

�
	
(1)

Q1
Y0jX

(� jx)xp

�
�J�1(Q1Y0jX(� jx))G

�
'Q1

Y0jX
(� jx);�(W )

�����2
d�dFX(x)

�
XK�1

k=2

Z
X

Z
T
Z
(2)
k (� ; x)

2
d�dFX(x);

where 	(5)�x =
n
	
(5)
k�x

oK�1
k=2

with 	(5)k�x =
�
	
(5)
k1�x;	

(5)
k2�x

�
.

Proof of Theorem 7. From Yu (2014a),

p
n

 bFY1jX;V (y1jx; p)bFY0jX;V (y0jx; p)
!
 	(1)yxp

�
W�(y)

�
in `1 (YXPx)2 ;

where	(1)yxp : C (Y)d� �! `1 (YXPx)2 is a linear map, andW�(y) = �
 
J0(y0)

�1 �J0p(y0)J�1p W +W0(y0)
�

J1(y1)
�1 �J1p(y1)J�1p W +W1(y1)

� !
is the weak limit of b�(y) as derived in (26). For � (y) = (�1 (y1) ; �0 (y0)) 2 C (Y)d� , the �rst element of
	
(1)
yxp(� (y)) is de�ned as�

�
�
T (x; p)

0
�1(y1)

�
+ p

@T (x; p)
0

@p
�1(y1) � �0

�
T (x; p)

0
�1(y1)

��
T (x; p)0�1(y1)

+ p
@T (x; p)

0

@p
�1(y1) � �

�
T (x; p)

0
�1(y1)

�
;

12



and the second element is de�ned as�
�
�
T (x; p)

0
�0(y0)

�
� (1� p)@T (x; p)

0

@p
�0(y0) � �0

�
T (x; p)

0
�0(y0)

��
T (x; p)0�0(y0)

� (1� p)@T (x; p)
0

@p
�0(y0) � �

�
T (x; p)

0
�0(y0)

�
:

Next, applying the functional Delta method again to have

p
n

0@ bFY1jX;V � bF�1Y1jX;V (� jx; vo)���x; v�� FY1jX;V �F�1Y1jX;V (� jx; vo)���x; v�bFY0jX;V � bF�1Y0jX;V (� jx; vo)���x; v�� FY0jX;V �F�1Y0jX;V (� jx; vo)���x; v�
1A 	(2)�xv

�
	(1)yxp

�
W�(y)

��
;

in `1 (T XPx)2, where	(2)�xv : C (YXPx)2 ! `1 (T XPx)2 is a linear map. For � (y; x; p) = (�1 (y1; x; p) ; �0 (y0; x; p)) 2
C (YXPx)2, the �rst element of 	(2)�xv(� (y; x; p)) is de�ned as

fY1jX;V

�
F�1Y1jX;V (� jx; vo)jx; v

�
�1

�
F�1Y1jX;V (� jx; vo); x; v

�
�
fY1jX;V

�
F�1Y1jX;V (� jx; vo)jx; v

�
fY1jX;V

�
F�1Y1jX;V (� jx; vo)jx; vo

��1 �F�1Y1jX;V (� jx; vo); x; vo� ;
and the second element is de�ned as

fY0jX;V

�
F�1Y0jX;V (� jx; vo)jx; v

�
�0

�
F�1Y0jX;V (� jx; vo); x; v

�
�
fY0jX;V

�
F�1Y0jX;V (� jx; vo)jx; v

�
fY0jX;V

�
F�1Y0jX;V (� jx; vo)jx; vo

��0 �F�1Y0jX;V (� jx; vo); x; vo� :
Finally, since XZ is compact, fbpijgnj=1 converges uniformly to fpijgnj=1 in probability. As a result, the

empirical distribution of fXi; bpijg, say bFX;p(X;Z)(x; v), converges uniformly to FX;p(X;Z)(x; v) in probability.
Note that

nTX3n =

Z
X

Z
Px

Z
T

hp
n
� bFY1jX;V � bF�1

Y1jX;V (� jx; vo)
���x; v�� bFY0jX;V � bF�1

Y0jX;V (� jx; vo)
���x; v��i2 d�d bFX;p(X;Z)(x; v) + op(1)

=

Z
X

Z
Px

Z
T

hp
n
� bFY1jX;V � bF�1

Y1jX;V (� jx; vo)
���x; v�� bFY0jX;V � bF�1

Y0jX;V (� jx; vo)
���x; v��i2 d�dFX;p(X;Z)(x; v) + op(1);

where the �rst op(1) is due to n
n2

nP
i=1

R
T [
bFY1jX;V ( bF�1Y1jX;V (� jXi; vo)jXi; vo)� bFY0jX;V ( bF�1Y0jX;V (� jXi; vo) jXi; vo)]

2d� =

op(1) uniformly inXi, and the second op(1) is due to
R
T [
bFY1jX;V ( bF�1Y1jX;V (� jx; vo)jx; v)� bFY0jX;V ( bF�1Y0jX;V (� jx; vo) jx; v)]2d�

is tight in `1 (XPx) under H0. By the continuous mapping theorem and Slutsky theorem,

nTX3n  
Z
X

Z
Px

Z
T
Z(3) (� ; x; v)

2
d�dFX;p(X;Z)(x; v);

where Z(3) (� ; x; v) = 	(2)1�xv
�
	
(1)
yxp

�
W�(y)

��
�	(2)2�xv

�
	
(1)
yxp

�
W�(y)

��
with 	(2)�xv =

�
	
(2)
1�xv;	

(2)
2�xv

�
.

Under H�
1 , we need only calculate b

(3) (� ; x; v). The calculation is an extension of the proof of Theorem

3(ii).

Proof of Theorem 8. We only outline the di¤erence from the proof of Theorem 7. First de�ne Z(4)1 (� ; x; v)

and Z(4)2 (� ; x; v). They are the same as Z(3) (� ; x; v) in the proof of Theorem 7 except that vo in Z(3) (� ; x; v)
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is replaced by v1 for Z
(4)
1 (� ; x; v) and is replaced by v2 for Z

(4)
2 (� ; x; v). Then

nTX4n  max

(Z
X

Z px

vo

Z
T
Z
(4)
1 (� ; x; v)

2
d�dFX;p(X;Z)(x; v);

Z
X

Z vo

p
x

Z
T
Z
(4)
2 (� ; x; v)

2
d�dFX;p(X;Z)(x; v)

)

under H0. The derivation of the local power is also similar to that in the proof of Theorem 7(ii) except

replacing vo by v1 and v2 at suitable places.

Lemma 1 Under the assumptions of Corollary 2,

p
n
� bFY1jA (y1)� FY1jA (y1)�  G

�
 A1 (W; y1)

�
in `1 (Y1) ;

p
n
� bFYdjCk(yd)� FYdjC(yd)�  G

�
 kd(W; yd)

�
in `1 (Yd) ;

p
n
� bFY0jN (y0)� FY0jN (y0)�  G

�
 N0 (W; y0)

�
in `1 (Y0) ;

and p
n (bpl � pl) G (�l (D;Z)) ;

p
n (bql � ql) G ('l (Z)) :

where the weak convergence holds jointly, and the functions
�
 A1 ;

n
 k1 ;  

k
0

oK�1
k=1

;  Ck1 ; f�l; 'lg
K
l=1

�
are de�ned

in the proof.

Proof. The building blocks for all these objects are a class of functions
�
'y(W )jy 2 Y1 � Y0

	
, where

'y(W ) =

0BBBBBB@
1 (Y � y1)D1(Z = zk)

1 (Y � y0) (1�D) 1(Z = zk)

D1(Z = zk)

(1�D) 1(Z = zk)

1(Z = zk)

1CCCCCCA ; k = 1; � � � ;K;

with W = (D;Y; Z) and y = (y1; y0) being the index, and 'y is a 5K � 1 vector by stacking the zk blocks.18

Since the class of functions
�
'y(D;Y; Z)jy 2 Y1 � Y0

	
is VC,

Gn
�
'y(W )

�
 G

�
'y(W )

�
in `1 (Y)5K

by Donsker�s theorem, where Y � Y1 � Y0. Now, by the functional Delta method (see, e.g., Theorem 3.9.4

of VW), we get

p
n

0BBBBBBBB@

bFY1jA (y1)� FY1jA (y1)bFY1jCk(y1)� FY1jCk(y1)bFY0jCk(y0)� FY0jCk(y0)bFY0jN (y0)� FY0jN (y0)bpl � plbql � ql

1CCCCCCCCA
 	(1)y

�
G
�
'y(W )

��
in `1 (Y)4K ;

where 	(1)y : C (Y)5K ! `1 (Y)4K is the Hadamard derivative of (FY1jA (y1) ;
�
FY1jCk(y1); FY0jCk (y0)

	K�1
k=1

,

FY0jN (y0); fpl; qlg
K
l=1) with respect to E

�
'y
�
. Note that bFY1jA (y1) uses only 1 (Y � y1)D1(Z = z1) and

18 In 'y , some randomness is redundant, e.g., D1(Z = zk) + (1�D) 1(Z = zk) = 1(Z = zk), but this form of 'y is easier to
use below.
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D1(Z = z1), FY1jCk(y1) uses only 1 (Y � y1)D1(Z = zk); 1 (Y � y1)D1(Z = zk+1); D1(Z = zk) and D1(Z =
zk+1), FY0jCk(y0) uses only 1 (Y � y0) (1�D) 1(Z = zk); 1 (Y � y0) (1�D) 1(Z = zk+1); (1�D) 1(Z = zk)

and (1�D) 1(Z = zk+1), FY0jN (y0) uses only 1 (Y � y0) (1�D) 1(Z = zK) and (1�D) 1(Z = zK), pl uses
only D1(Z = zl) and 1(Z = zl), and ql uses only 1(Z = zk). This usage of information determines the
structure of correlation between each pair of processes, e.g., pl is only correlated with processes involving
D1(Z = zl) and 1(Z = zl) and ql is only correlated with processes involving 1(Z = zl). Given the correlation
structure, we can state the weak limit of each process separately. Speci�cally,

 A1 (W; y1) =

�
1 (Y � y1)� FY1jA (y1)

�
E [D1 (Z = z1)]

D1 (Z = z1) ;

 
Ck
1 (W; y1) =

�
1 (Y � y1)� FY1jCk (y1)

�
D � E

��
1 (Y � y1)� FY1jCk (y1)

�
DjZ = zk+1

�
P (Ck) qk+1

1(Z = zk+1)

�
�
1 (Y � y1)� FY1jCk (y1)

�
D � E

��
1 (Y � y1)� FY1jCk (y1)

�
DjZ = zk

�
P (Ck) qk

1(Z = zk)

 
Ck
0 (W; y0) =

�
1 (Y � y0)� FY0jCk (y0)

�
(1�D)� E

��
1 (Y � y0)� FY0jCk (y0)

�
(1�D) jZ = zk

�
P (Ck) qk

1(Z = zk)

�
�
1 (Y � y0)� FY0jCk (y0)

�
(1�D)� E

��
1 (Y � y0)� FY0jCk (y0)

�
(1�D) jZ = zk+1

�
P (Ck) qk+1

1(Z = zk+1)

 N0 (W; y0) =
1 (Y � y0)� FY0jN (y0)
E [(1�D) 1(Z = zK)]

(1�D) 1(Z = zK);

and

�l (D;Z) =
D � pl

P (Z = zl)
1(Z = zl); 'l (Z) = 1(Z = zl)� ql;

where each term has mean zero, and the two terms in  Ckd (W; yd) are uncorrelated.

Lemma 2 Under the assumptions of Theorem 5,� bF 0Y1jX(y1jx);n bF kY1jX(y1jx); bF kY0jX(y0jx)oK�1k=1
; bFKY0jX(y0jx); fbpxk; bqxkgKk=1�

�
�
F 0Y1jX(y1jx);

n
F kY1jX(y1jx); F

k
Y0jX(y0jx)

oK�1
k=1

; FKY0jX(y0jx); fpxk; qxkg
K
k=1

�
 	(2)yx

�
	(1)yxp

�
�J�1(y)G

�
'y;�

���
in `1 (YX )4K ;

where 	(2)yx ;	
(1)
yxp; J(y) and 'y;� are de�ned in the proof.

Proof. The building blocks for all these objects are
nb�d(yd); b;b�o. We apply Lemma E.3 of CFM to

derive their weak limits. If we use the notation of CFM, u = y � (y0; y1)0; �(u) = (�1(y)0; �0(y)0; 0; �0)
0 �

(�(y)0; 0; �0)
0 2 Rd� , and U = Y � Y1Y0 = f(y1; y0)jy1 2 Y1; y0 2 Y0g. Let

'y;�(W ) =

0BBB@
D [�(T 0�1)� 1(Y � y1)]H(T 0�1)T;
(1�D) [�(T 0�0)� 1(Y � y0)]H(T 0�0)T;
(ep�D)H(R0)R;PK

l=1 1(Z = zk)
@qk(B(X);�)=@�
qk(B(X);�)

1CCCA
where H(�) = �(�)= f�(�) [1� �(�)]g. Let 	(�; y) = P

�
'y;�

�
and b	(�; y) = Pn

�
'y;�

�
. From the �rst order

conditions, b�(y) = �(b	(�; y); 0) for each y 2 Y, where � is the Z-map de�ned in Appendix E.1 of CFM.
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Applying Lemma E.3 of CFM, we have

p
n
�b�(y)� �(y)� �J�1(y)G �'y;�� in `1 (Y)d� ;

where the four components of G
�
'y;�

�
�
�
W1(y1)

0;W0(y0)
0;W 0

 ;W
0
�

�0
are independent of each other, and

_	�(y);y =

0BBB@
J1(y0) 0 J1p(y0) 0

0 J0(y1) J0p(y1) 0

0 0 Jp 0

0 0 0 Jq

1CCCA � J(y);
with

J1p(y1) = E

�epe��1(y1)H1(y1)
@T (X; ep)0�1(y1)

@p
TR0

�
;

J0p(y0) = E

�
(1� ep)e��0(y0)H0(y0)

@T (X; ep)0�0(y0)
@p

TR0
�
;

Hd(yd) = H(T 0�d(yd)) and other components of J(y) being de�ned in the main text. The veri�cation of

conditions of Lemma E.3 is similar to that in the proof of Theorem 2 of Yu (2014a). b� is asymptotically
independent of

�b�1(y1); b�0(y0); b� which are dependent of each other. It can be further shown that
p
n
�b�(y)� �(y)� � J1(y1)

�1 �J1p(y1)J�1p W +W1(y1)
�

J0(y0)
�1 �J0p(y0)J�1p W +W0(y0)

� ! in `1 (Y)d� : (26)

Next, since FY jX;p(X;Z);D(ydjx; p; d) = �
�
T (x; p)

0
�d(yd)

�
, pxk = �(Rk(x)

0), qxk = qk (B(x); �), k =

1; � � � ;K � 1, and qK(x) = 1�
PK�1

l=1 ql(x), by the functional Delta method,

p
n

0B@ bFY jX;p(X;Z);D(ydjx; p; d)� FY jX;p(X;Z);D(ydjx; p; d)bpxk � pxkbqxk � qxk
1CA 	(1)yxp

�
�J�1(y)G

�
'y;�

��
in `1 (YXPx)2K+2 ;

where the linear map	(1)yxp : C (Y)d� ! `1 (YXPx)2K+2 is the Hadamard derivative of (FY jX;p(X;Z);D(y1jx; p; 1),
FY jX;p(X;Z);D(y0jx; p; 0); fpxkgKk=1 ; fqk (x)g

K
k=1) with respect to �(y). More speci�cally, for � (y) = (�1(y1)

0,

�0(y0)
0; �0 ; �

0
�) 2 C (Y)d� , the �rst block of 	(1)yxp (� (y)) is �

�
T (x; p)

0
�d(yd)

�
T (x; p)

0
�d(yd), the second

block is � (R(x; zk)0)R(x; zk)0� , k = 1; � � � ;K, the third block is @qk(B(x);�)
@�0 ��, k = 1; � � � ;K � 1,

�
PK�1

l=1
@ql(B(x);�)

@�0 ��, k = K. The block associated with fbqxkgKk=1 is dependent within the block but
independent of other blocks which are dependent within and across blocks.

Finally, since
�
F 0Y1jX(y1jx);

n
F kY1jX(y1jx); F

k
Y0jX(y0jx)

oK�1
k=1

; FKY0jX(y0jx); fpxk; qxkg
K
k=1

�
is Hadamard dif-

ferentiable with respect to (FY jX;p(X;Z);D(y1jx; p; 1), FY jX;p(X;Z);D(y0jx; p; 0); fpxkgKk=1 ; fqxkg
K
k=1), we can

apply the functional Delta method again to derive the target weak limit. The remaining is to derive the

Hadamard derivative, say, 	(2)yx : C (YXPx)2K+2 ! `1 (YX )4K . The Hadamard derivative corresponding to
fpxk; qxkgKk=1 is trivial, so we concentrate on the F functions. For � (y; x; p) = (�1(y1; x; p); �0(y0; x; p); f�pkg

K
k=1,

f�qkgKk=1) 2 C (YXPx)
2K+2, the element of 	(2)yx (� (y; x; p)) corresponding to F 0Y1jX(y1jx) is

�1(y1; x; px1) + �
�
T (x; px1)

0
�1(y1)

� @T (x; px1)0
@p

�1(y1)�p1;
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the element corresponding to F kY1jX(y1jx), k = 1; � � � ;K � 1, is

px;k+1�1(y1;x;px;k+1)�pxk�0(y0;x;pxk)
px;k+1�pxk +

FY jX;p(X;Z);D(y1jx;px;k+1;1)+px;k+1�(T (x;px;k+1)0�1(y1))
@T(x;px;k+1)

0

@p �1(y1)�Fk
Y1jX

(y1jx)
px;k+1�pxk �p;k+1

�FY jX;p(X;Z);D(y1jx;pxk;1)+pxk�(T (x;pxk)
0�1(y1))

@T(x;pxk)
0

@p �1(y1)�Fk
Y1jX

(y1jx)
px;k+1�pxk �pk;

the element corresponding to F kY0jX(y0jx), k = 1; � � � ;K � 1, is

(1�pxk)�0(y0;x;pxk)�(1�px;k+1)�0(y0;x;px;k+1)
px;k+1�pxk � FY jX;p(X;Z);D(y0jx;pxk;0)�(1�pxk)�(T (x;pxk)0�0(y0))

@T(x;pxk)
0

@p �0(y0)�Fk
Y0jX

(y0jx)
px;k+1�pxk �pk

+
FY jX;p(X;Z);D(y0jx;px;k+1;0)�(1�px;k+1)�(T (x;px;k+1)0�0(y0))

@T(x;px;k+1)
0

@p �0(y0)�Fk
Y0jX

(y0jx)
px;k+1�pxk �p;k+1;

and the element corresponding to FKY0jX(y0jx) is

�0(y0; x; pxK) + �
�
T (x; pxK)

0
�0(y0)

� @T (x; pxK)0
@p

�0(y0)�pK :

Di¤erent from the no-covariate case, except fbqxkgKk=1 all other estimators are correlated with each other.
Supplementary Material S.2

S.2.1 Bootstrapping Critical Values of TX1n and T
X
2n

We still suggest to use the exchangeable bootstrap to obtain the critical values for TX1n and T
X
2n. To ease

implementation, we provide the detailed bootstrap procedure below; all notational conventions follow Section

4.3.

Step 1: Let

bF �Y jX;p(X;Z);D(ydjx; p; d) = �
�
T (x; p)

0 b��d(yd)� ;bp�xk � bp� (x; zk) = � (R(x; zk)0b�) ; k = 1; � � � ;K;bq�xk � bq�k (x) = qk (B(x);b��) ; k = 1; � � � ;K � 1;bq�xK = 1�
XK�1

l=1
bq�xl;

where

b��d(yd) = argmax
�

nX
i=1

!i1(Di = d)
�
1 (Yi � yd) ln�

�
T (Xi; bp�i )0 ��+ 1 (Yi > yd) ln

�
1� �

�
T (Xi; bp�i )0 ����

with bp�i = bp� (Xi; Zi),

b� = argmax


nX
i=1

!i [Di ln� (R(Xi; Zi)
0) + (1�Di) ln (1� � (R(Xi; Zi)

0))] ;

and

b�� = argmax
�

nX
i=1

KX
k=1

!i1 (Zi = zk) ln qk (B(Xi); �) ;
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with qK = 1�
PK�1

l=1 ql.

Step 2: Let

bF k�Y1jX(y1jx) =
bF �Y jX;p(X;Z);D(y1jx; bp�x;k+1; 1)bp�x;k+1 � bF �Y jX;p(X;Z);D(y1jx; bp�xk; 1)bp�xkbp�x;k+1 � bp�xk ;

bF k�Y0jX(y0jx) =

bF �Y jX;p(X;Z);D(y0jx; bp�xk; 0) (1� bp�xk)� bF �Y jX;p(X;Z);D(y0jx; bp�x;k+1; 0)�1� bp�x;k+1�bp�x;k+1 � bp�xk ;

for k = 1; � � � ;K � 1,

bF 0�Y1jX(y1jx) = bF �Y jX;p(X;Z);D(y1jx; bp�x1; 1);bFK�Y0jX(y0jx) = bF �Y jX;p(X;Z);D(y0jx; bp�xK ; 0);
and

bh�(bp�x;k+1) =
PK

l=k+1 bq�xl �bp�xl � bp�x�PK
l=1 bq�xl �bp�xl � bp�x�2

where bp�x =PK
l=1 bq�xlbp�xl. Conduct rearrangement if bF k�YdjX(ydjx) is not monotone.

Step 3: Let bF �Y1jX(y1jx) = KP
k=0

�bp�x;k+1 � bp�xk�n bF k�Y1jX(y1jx) h1� bF �ZjX(zkjx)i+bF k�Y0jX � beF ��1Y0jX

� beF �Y1jX (y1jx)����x�����x� bF �ZjX(zkjx)� ;
and bF �Y0jX(y0jx) = KP

k=0

�bp�x;k+1 � bp�xk�n bF k�Y0jX(y0jx) bF �ZjX(zkjx)+bF k�Y1jX � beF ��1Y1jX

� beF �Y0jX (y0jx)����x�����x�h1� bF �ZjX(zkjx)i� ;
which are consistent to bFYdjX(ydjx), where

bF �ZjX (zkjx) = kX
l=1

bq�xl; beF �YdjX (ydjx) = K�1X
k=1

�bp�x;k+1 � bp�xk�bh�(bp�x;k+1) bF k�YdjX(ydjx):
Step 4: Let

TX�1n =
1

n

nX
i=1

K�1P
k=1

Z
T

h� bF k�Y1jX � bF ��1Y1jX(� jXi)jXi

�
� bF kY1jX � bF�1Y1jX(� jXi)

���Xi

��
�
� bF k�Y0jX � bF ��1Y0jX(� jXi)jXi

�
� bF kY0jX � bF�1Y0jX(� jXi)

���Xi

��i2
d�

and

TX�2n =
1

n

nX
i=1

K�1P
k=2

Z
T

h bF k�Y1jX � bQ1�Y1jX(� jXi)jXi

�
� bF kY1jX � bQ1Y1jX(� jXi)

���Xi

�
�
� bF k�Y0jX � bQ1�Y0jX(� jXi)jXi

�
� bF kY0jX � bQ1Y0jX(� jXi)

���Xi

��i2
d� ;
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where Xi can be replaced by X�
i (i.e., the weight !i can be imposed on Xi). Use the (1� �)th quantile

of n�TX�1n , say c
�X
1n (�), and (1� �)th quantile of n�TX�2n , say c

�X
2n (�), as the critical values for nT

X
1n and

nTX2n, respectively.

For completeness, we state the validity of the bootstrap procedure above without proof.

Theorem 9 In the framework (5), suppose Assumptions M, DR and EB hold.

(i) Under H0,

lim
n!1

P
�
nTX1n > c�X1n (�)

�
= �:

(ii) Under H�
1 and Assumption LA,

lim
n!1

P
�
nTX1n > c�X1n (�)

�
� �:

(iii) Under the �xed alternative H1 with TX1 = plimn!1 TX1n > 0,

lim
n!1

P
�
nTX1n > c�X1n (�)

�
= 1:

(iv) (i)-(iii) hold also for TX2n and c
�X
2n (�).

S.2.2 Bootstrapping Critical Values of TX3n and T
X
4n

We still suggest to use the exchangeable bootstrap to obtain the critical values for TX3n and T
X
4n. To ease

implementation, we provide the detailed bootstrap procedure below; all notational conventions follow Section

4.3.

Step 1: Let

bF �Y jX;p(X;Z);D(ydjx; p; d) = �
�
T (x; p)

0 b��d(yd)� ;bp� (x; z) = � (R(x; z)0b�) ;
where

b��d(yd) = argmax
�

nX
i=1

!i1(Di = d)
�
1 (Yi � yd) ln�

�
T (Xi; bp�i )0 ��+ 1 (Yi > yd) ln

�
1� �

�
T (Xi; bp�i )0 ����

with bp�i = bp� (Xi; Zi), and

b� = argmax


nX
i=1

!i [Di ln� (R(Xi; Zi)
0) + (1�Di) ln (1� � (R(Xi; Zi)

0))] :

Step 2: Let

bF �Y1jX;V (y1jx; v) = bF �Y jX;p(X;Z);D(y1jx; v; 1) + v @T (x; p)0@p

����
p=v

b��1(y1) � ��T (x; v)0 b��1(y1)� ;
and

bF �Y0jX;V (y0jx; v) = bF �Y jX;p(X;Z);D(y0jx; v; 0)� (1� v) @T (x; p)0@p

����
p=v

b��0(y0) � ��T (x; v)0 b��0(y0)� :
19



Conduct rearrangement if bF �YdjX;V (ydjx; v) is not monotone.
Step 3: Let

TX�3n =
1

n2

nX
i=1

X
j:bpij 6=vo

Z
T

h bF �Y1jX;V � bF ��1Y1jX;V (� jXi; vo)
���Xi; bpij�� bFY1jX;V � bF�1Y1jX;V (� jXi; vo)

���Xi; bpij�
�
� bF �Y0jX;V � bF ��1Y0jX;V (� jXi; vo)

���Xi; bpij�� bFY0jX;V � bF�1Y0jX;V (� jXi; vo)
���Xi; bpij��i2 d�

and

TX�4n = max

(
1
n2

nP
i=1

nP
j=1

1(bpij � vo)
R
T

h bF �
Y1jX;V

� bF ��1
Y1jX;V (� jXi; v1)

���Xi; bpij�� bFY1jX;V � bF�1
Y1jX;V (� jXi; v1)

���Xi; bpij�
�
� bFY0jX;V � bF�1

Y0jX;V (� jXi; v1)
���Xi; bpij�� bF �

Y0jX;V

� bF ��1
Y0jX;V (� jXi; v1)

���Xi; bpij��i2 d�;
1
n2

nP
i=1

nP
j=1

1(bpij � vo)
R
T

h bF �
Y1jX;V

� bF ��1
Y1jX;V (� jXi; v2)

���Xi; bpij�� bFY1jX;V � bF�1
Y1jX;V (� jXi; v2)

���Xi; bpij�
�
� bF �

Y0jX;V

� bF ��1
Y0jX;V (� jXi; v2)

���Xi; bpij�� bFY0jX;V � bF�1
Y0jX;V (� jXi; v2)

���Xi; bpij��i2 d�� ;
where (Xi; bpij) can be replaced by �X�

i ; bp�ij� with bp�ij = bp� (Xi; Zj). Use the (1� �)th quantile of
n�TX�3n , say c

�X
3n (�), and (1� �)th quantile of n�TX�4n , say c

�X
4n (�), as the critical values for nT

X
3n and

nTX4n, respectively.

For completeness, we state the validity of the bootstrap procedure above without proof.

Theorem 10 In the framework (5), suppose Assumptions M, DR0, P and EB hold.

(i) Under H0,

lim
n!1

P
�
nTX3n > c�X3n (�)

�
= �:

(ii) Under H�
1 and Assumption LA,

lim
n!1

P
�
nTX3n > c�X3n (�)

�
� �:

(iii) Under the �xed alternative H1 with TX3 = plimn!1 TX3n > 0,

lim
n!1

P
�
nTX3n > c�X3n (�)

�
= 1:

(iv) (i)-(iii) hold also for TX4n and c
�X
4n (�).
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