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Abstract

This paper studies the testing of conditional rank similarity, a key identification assumption for
the instrumental variable quantile regression estimator (IV-QRE) of Chernozhukov and Hansen (2005).
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difference (across marginal populations)", so "cross (marginal populations) mismatching" under the two
treatment statuses would generate power. Tests are developed in the framework of Heckman and Vytlacil
(2005) and three cases are considered: discrete instruments and no covariates, discrete instruments
and general covariates, and general instruments and general covariates. In each case, two tests are
proposed and extensions are discussed, and the exchangeable bootstrap is suggested to obtain critical
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1 Introduction

Quantile treatment effects (QTEs), as an alternative of average treatment effects (ATEs), have attracted
much attention in recent developments of program evaluation; see Abbring and Heckman (2007) and Yu
(2014a) for a summary of relevant literature. Roughly speaking, there are three frameworks to study the
QTEs. The first framework assumes unconfoundedness; see, e.g., Firpo (2007) and Donald and Hsu (2014).
The other two frameworks assume the existence of endogeneity but in different forms. Chernozhukov and
Hansen (2005) (CH hereafter) assume only the selection effect, so can identify the "global" QTE by the so-
called instrumental variable quantile regression estimator (IV-QRE). This is not possible when the essential
heterogeneity also exists. With the presence of essential heterogeneity and a binary instrumental variable,
Abadie et al. (2002) estimate the local quantile treatment effect (LQTE), which is the counterpart of the local
average treatment effect (LATE) of Imbens and Angrist (1994) (IA hereafter). When continuous instruments
exist, Carneiro and Lee (2009) and Yu (2014a) identify and estimate the marginal quantile treatment effect
(MQTE), which is the counterpart of the marginal treatment effect (MTE) of Heckman and Vytlacil (2005)
(HV hereafter). For a careful comparison of these two endogenous quantile frameworks, see Yu (2016).
This paper is about testing a key identification assumption of CH. As will be explained in Section 2, to
identify the "global" QTE, CH impose a key assumption called (conditional) rank similarity. This assumption
excludes the essential heterogeneity in the QTE context. CH’s identification scheme is important because
the "global" QTE has better external validity than the "local" QTESs such as LQTE and MQTE. However, to
apply this scheme, we must guarantee rank similarity holds; otherwise, CH’s IV-QRE will converge to some
pseudo-true value as explained in Wiithrich (2015b) and Yu (2016). The goal of this paper is to test this key
assumption in the framework of HV. As detailed in Section 2, HV’s framework accommodates the essential
heterogeneity and meanwhile imposes a monotonicity assumption which facilitates the testing procedure.
In Section 3, we overview our testing ideas; specifically, we motivate and develop the population version
of our test statistics. We first express the null hypothesis in forms of objects that can be identified in an
ideal scenario, and then consider three practical cases where only part of these objects can be identified. The
basic idea of our tests is that conditional rank similarity implies no "difference (across treatment statuses)
in difference (across marginal populations)", so "cross (marginal populations) mismatching" under the two
treatment statuses would generate power. The three practical cases under consideration include (i) discrete
instruments and no covariates; (ii) discrete instruments and general covariates; (iii) general instruments and
general covariates. In each case, two "oracle" forms of test statistics are proposed and shown to be optimal
in the sense that they exhaust the testable implication of the data distribution, and then the corresponding
"practical" forms of test statistics are provided. In the following three sections, we consider the finite-sample
analogs of the practical test statistics in each case. Specifically, we construct the test statistics, develop their
asymptotic distributions under the null and alternative, obtain critical values by the exchangeable bootstrap
and prove its validity. We consider also two extensions of our test statistics in each case. We use Case (i) to
illustrate our testing idea and provide most details, and treat Case (ii) and (iii) as technical extensions.
Before proceeding, we briefly discuss an independent work by Kim and Park (2016) where the authors
try to conduct the same test as in this paper. Their paper uses the framework of LQTE and ours uses
the framewok of HV. As explained in Vytlacil (2002) and Yu (2015b), these two frameworks are essentially
equivalent. Nevertheless, there are indeed a few key differences between these two papers. First, Kim and
Park’s test is based on the inverse probability weighting method of Abadie (2003) and is essentially the first
test of our two main tests, while our tests are based on the distribution regression suggested by Yu (2014a)
and take two main forms and two extensive forms. Second, they consider only Case (ii) especially for the
case where the instrument takes only three values, while we consider also Case (i) to show that no covariates



are required to generate power and Case (iii) where instruments can take continuous values. Third, their test
involves the counterfactual mapping of Vuong and Xu (2016), while we express such a mapping explicitly in
our first test. Consequently, it is easy to derive local powers for our tests while it is hard for theirs (they
actually did not derive the local power for their test). These local power expressions make it clear why a
binary instrument cannot generate power no matter covariates exist or not. In summary, our paper and
theirs are more complements than substitutes.

In Section 7, we discuss the connection and difference of this paper with other related literature. Espe-
cially, we show that although Heckman et al. (2010)’s tests of correlated random coefficient models cannot be
applied to the problem in this paper, the tests in both papers are overidentification tests. We also show that
the unconditional rank preservation (URP) tests in Yu (2015a) are also overidentification tests except using
different overidentification information from that used in this paper. There are also some papers considering
similar topics. For example, Dong and Shen (2015) test the "unconditional" rank similarity (URS) for all
"unconditional" compliers (i.e., all compliers regardless of the covariate value) in the framework of HV with
a binary instrument (see also Frandsen and Lefgren (2015) for a regression-based implementation); however,
CH require only "conditional" rank similarity for all "conditional" individuals (i.e., all individuals given
a specific covariate Value)ﬂ Consequently, different from Dong and Shen (2015) or Frandsen and Lefgren
(2015), we do not require covariates to generate power. Section 8 provides some simulation results, Section
9 applies our tests to the dataset from Angrist and Krueger (1991) which is also used as an illustration of
IV-QRE in Chernozhukov and Hansen (2006), and Section 10 concludes. To save space, we relegate some
discussions to two supplementary materials S.1 and S.2. S.1 contains the proofs that are not given in the
main text, and S.2 contains points that we do not want to expand in the main text.

Some notations are collected here for future reference. The letter d is always used for indicating the
two treatment statuses, so is not written out explicitly as "d = 0,1" throughout the paper. Yy is used for
potential outcome and X is used for covariates. supp(X) for a random variable X denotes the support of
the distribution of X. The capital letters such as X denote random variables and the corresponding lower
case letters such as x denote the potential values they may take. For a random variable Y and a random
vector X, Fy|x, fy|x, Qy|x mean the conditional cumulative distribution function (cdf), the conditional
probability density function (pdf) and the conditional quantile function of Y given X. Fy, fq and Q4 mean
the unconditional cdf, pdf and quantile function of Yy. F ! and Qg are used exchangeably for notational
convenience. ®(-) and ¢(-) are the cdf and pdf of the standard normal distribution. ~» and ~> signify the
weak convergence and the weak convergence in probability, respectivelyﬂ n is the sample size. U denotes
the common rank under the null - rank similarity. C (Z) is the space of continuous functions on a set 7.
£ (F) as the space of real-valued bounded functions on the index set F equipped with the supremum norm
[l () VW is a short for van der Vaart and Wellner (1996), and CFM for Chernozhukov, Ferndndez-Val
and Melly (2013).

'Tn a comment on Dong and Shen (2015), Edward Vytlacil mentioned a simple example to show that CRS is more interesting
than URS: if Y1 = aq + 8; X 4+ €1, Y1 = ap + BoX + €0 with (X,D) L(e1,e0), P(X=1)=p € (0,1),P(X=0) =1—p,
and e1 and g are continuously distributed, then CRS holds. Suppose €1 = oeg; URS holds if and only if 8; = 0,. A similar
example can be found in Example 2 of Yu (2015a). Nevertheless, as shown in Dong and Shen (2015), Frandsen and Lefgren
(2015) and Yu (2015a), URS is indeed relevant in practice.

2Recall from Section 2.9 of VW that Z* ~5 Z in a separable normed space (D, d) if supnepr, (p) | B [R(Z})] — E[Z]| L0,
where BL1 = {h: D — [0,1]| |h(z) — h(y)| < ||z — y|| for all z,y}, and E* is the expectation with respect to the bootstrap
measure conditional on the original data.



2 Frameworks and Hypotheses

We first repeat the framework of CH in our notations; see Chernozhukov and Hansen (2013) for most updated

developments on their framework. By the Skorohod representation, the outcome equation is
Yi=Qu(Uy4|X),d=0,1, (1)

where Q4(Uy|X) is written as ¢ (d, X, Ug) in CH, Qq(7|x) is the Tth conditional quantile of Yy given X = z,
and Uy conditional on X = z is the rank variable of Yy for the subpopulation X = xﬂ U, represents some
unobserved characteristic of Yy, e.g., ability or proneness, and Uy|X ~ U(0,1), the uniform distribution on

(0,1). The selection equation is
D=62,X,V) (2)

for some unknown function ¢ and random vector V', where Z represents the instruments (usually some policy
variables) for the choice process. Both X and Z appearing as the arguments of ¢ does not lose generality
since §(Z, X, V) may not depend on all elements of X. Because Z does not show up in , the exclusion
assumption is implicitly assumed. CH further impose the following assumptions on the model:

Al. Potential Outcomes: Qq(7|z) is strictly increasing in 7 for d = 0,1 and any z € supp(X).

A2. Independence: (Up,Up) L Z|X, where “L” denotes independence (c.f., Dawid (1979)) and variables to
the right of “|” are the conditioning variables.

A3. Rank Similarity (RS): Fy, |x,z,v (ulz, 2,v) = Fy, x,z,v (u|z, 2,v) for u € (0,1), (2, 2,v) €supp(X, Z, V).
A4. Observed Variables: Observed variables consist of W = (Y, D, X, Z), where Y = DY, + (1 — D)Y, =
@p(UplX).

A2 is the orthogonal condition; note that it does not require V'L Z|X (see IA for some important examples
in which the instrument Z is assigned depending on D). CH also discuss a stronger version of RS, called rank
invariance (RI), but for identification of Q4(7|z), RS is enough. Because this version of RS is conditional on
X, we label it as conditional rank similarity (CRS). The target of CH is to estimate the QTE,

A(rlz) = Qu(r|z) — Qo(T|z),

for 7 € (0,1) and = €supp(X).
As argued in Yu (2016), CH’s framework imposes stronger restrictions on the outcome equation and
less restrictions on the selection equation compared with HV’s framework. For concreteness, we repeat the

framework of HV in the quantile context (see Yu (2014a)). The selection equation is
D= 1(IJ‘D(X7Z) -V > 0)7

where V' is a scalar random error in the participation decision, and 1(-) is the indicator function. By

transforming pp (X, Z) and V' by the conditional cdf Fy|x, z, we can rewrite

where we still use V' to represent the transformed error to conform to CH’s notations as much as possible,

3This Uy is different from the Uy in Yu (2015a) where Uy represents the unconditional rank of Yy. For comparison, Ug|x =,
in this paper is the U? in Yu (2015a); in other words, Uy in this paper is the UX in Yu (2015a), where Ug|x =, means Uy is
restricted at X = z.



V|X,Z ~U(0,1), and p(X, Z) is the propensity Scoreﬂ Compared with , takes the additive latent
index form with only one random error while imposes almost no restrictions on D. implies the

monotonicity assumption of IA, which is called the uniformity assumption by HV. The outcome equation is
Yd = Qd (Ud|X, V) with Ud‘ (X, V) ~ U(O, ].) (4)

Compared with , Yy in has two random errors. In other words, the quantile of Y; depends not only
on X but on V; i.e., for each slice of individuals with V' = v who have the same propensity of participation,
even if their X values are the same, their quantile functions of potential outcomes need not be the same. In
term of Y which can be represented as Qp (Up|X,V) = q (D, X,V,Up), its quantile depends not only on D
but on the error term of D separately. Of course, by applying the Skorohod representation, we can always
represent Yy in the form of although the definitions of Uy in and are different. In other words,
although we can identify the quantile function of Yy for each slice of individuals with X =z and V = v, we
may be only interested in the quantile function of Yy for the slice of individuals with X = z (i.e., combining
the v slices). As to the relationship between Z and the error terms, HV assume the ignorability condition
(U1,00,V) L Z|X, while CH require only (U,Up) L Z|X and Z can be dependent of V.

To ease our testing procedure and study the fine structure of CRS assumption, we maintain the framework
of HV throughout the paper. This framework is equivalent to IA’s framework in some sense; see Yu (2015b)
for a bare comparison of these two frameworks. Although this is a serious restriction, fortunately, we can
test the validity of this framework; see Kitagawa (2015) and references therein. In HV’s framework, due to
(U1,Up,V) L Z| X, the CRS assumption can be restated as

Hy : Fy,x,v(ulz,v) = Fyy x,v(u|z,v) for any v € (0,1),v € (0,1) and = € supp (X).
This is our null hypothesis. Its opposite statement
Hy : Fy,x,v(ulz,v) # Fy, x,v(ulz,v) for some v € (0,1),v € (0,1) and = € supp (X)

is the alternative hypothesis. Although CH interpret Hy as the "slippage" distributions of U; and Uy, from
a common rank U are the same, it should be emphasized that theoretically, U; and Uy can be independent.
To see why, suppose (Y7,Yy) are fully unconfounded, which is a special case of CH’s framework; then
Fy,x,v(ulr,v) = Fy,(u) = u for both Uy and Uy even if Uy L Up. Essentially, the CRS assumption is a
restriction on the two marginal distributions, while the rank invariance assumption, Uz | (X, V) = Up| (X, V),
is a further restriction on the joint distribution.

We conclude this section by summarizing the framework and the corresponding assumptions we maintain

in this paper. The outcome and selection equations are

Yo =Qa(UqlX),d=0,1,

D=1p(X,Z) -V >0),V|X,Z ~U(0,1). (5)

The maintained assumptions are
Assumption M:
(M1) supp(Yq|X = 2,V = v) = Szq4, the conditional density fy, x,v(ya|z,v) is continuous in (y4,v) for any

x €supp(X), yg € Sezd, d = 0,1, and v € (0,1), where Sy = {Qmo@w} and S,1 = [ﬂm’?wl} need not be
compact and need not be the same.

4n ., we use V rather then Up as in HV because we have already used Up for DUy + (1 — D)Up as in CH.



(M2) (U1,U0,,V) L Z|X.

(M3) p(X, Z) is a nondegenerate random variable conditional on X.
(M4) P(D=1]X)>0.

(M5)
(

1>
M5) X1 = Xp, where Xy denotes a potential value of X if D is set to d.

M1) assumes Yy to be continuously distributed. supp(Yy) can be bounded or unbounded. We also allow
supp(Yy| X = 2,V = v) to depend on d and z as in usual applications. We may also allow supp(Yy|X = z,V = v)
to depend on v and fy,|x,v(yalz,v) to be discontinuous at some v values, but we impose such regularity
conditions to avoid unnecessary complicity in notations. (M2) is the ignorability assumption. As shown in

u (2016), in the framework of HV, (M3) is equivalent to the monotone likelihood ratio condition of CH
and can be used to identify Qq4(-|-) in (§). (M4) is the usual overlap assumption. (M5) is the "no feedback"
condition which excludes the effect of D on X so conditioning on X does not mask the effects of D. Note
that the framework and Assumption M are understood to be maintained only almost surely. For example,
"for any x €supp(X)" in (M1) and Hy, H; can be replaced by "for Px almost sure z", but we will not
impose such a qualifier everywhere unless necessary. Also, when covariates do not exist (i.e., X = 1), we
neglect the subscript = in all notations, e.g., S;q is written as Sy; similarly, some notations are adjusted

correspondingly, e.g., W = (Y, D, 7).

3 An Overview of Testing Ideas

We first state a key testing implication of Hy. To simplify notations, we will depress the conditioning on X

unless necessary.

Theorem 1 In the framework (@, suppose Assumption M holds. Then Hy is satisfied if and only if
Fyyx,v (Qviix (T]2)lz,v) = Py, x,v (Qvyix (7]2)]2, v) (6)

for any T € (0,1),v € (0,1) and = €supp(X).

Proof. Note that
Fy,jv(yilv) = P (Y1 <y1|V =v) = P (U1 < F1 (y1) |V = v) = Fy, v (F1 (Y1) [v). (7)

Similarly,
Fy, v (yolv) = Fuy v (Fo (vo) [v).

As a result,

Fyv (Qi(T)|v) = Fy,jv(F1(Qi(7)) [v) = Fy, v (t]v)
Fuo v (7v) = Fu v (Fo (Qo(7)) [v) = Fyy v (Qo(7)|v)

where the middle equality is from Hy. =

From the proof, Fy,|v (Q1(7)lv) — Fy,jv (Qo(7)|v) = Fy,jv(7|v) — Fy,jv(rlv). In other words, we can
plot Fy, v (Q1(7)[v) and Fy, v (Qo(7)|v) as a function of 7 for each v; the difference between them is the
cdf difference of U; and Uy for the subpopulation V' = v. The intuition for why compound functions
Fy,v (Qa()|) in @ are used is as follows: from the Skorohod representation, Y; contains two parts of
information - the value information @4 (-) and the rank information Uy; as rank similarity is related only to

the rank information, we use a compound function to offset the value information such that only the rank



information remains. It is also interesting to observe that Hy is weaker than unconfoundedness since Hy
states Fy, v (ulv) = Fy, v (ulv) for any v and v while unconfoundedess implies further that both are equal
to u. In terms of Fy,|yv (Q1(7)lv) and Fy,)y (Qo(7)|v), unconfoundedness implies they are not only equal
but equal to 7.

The following corollary states more implications of @

Corollary 1 Under the assumptions of Theorem Fy,x,v (le‘X(T|IE)|SC,’U) = Fy,|x,v (QYO|X(T|x)|m,v)
forany T € (0,1),v € (0,1) and x € supp (X) is equivalent to that for any x € supp (X),

Qvy 1 x,v (Fyy x,v(wolz,v)|z,v) = Qyyx (Fyyx Wolz)|z) for yo € Sou,
Qvoix,v(Fyyx,vwilz, v)z,v) = Qyyx (Fyyx(mlz)lz) for yi € Sia,
or
Fy, 1 x,v( Qv x,v (T|z,0) |2,0") = Fyy x v(Qyy x,v (T2, 0) |2,0") for any 7 € (0,1), (8)

where v,v’" € (0,1), v' # v, v is arbitrary and v can be fized or arbitrary.

The first group of results are labelled as counterfactual-quantiles matching in Yu (2016), and counterfactual
mapping in Vuong and Xu (2016). The second group of results show that the matching can be applied
not only between the marginal population V' = v and the population but across different marginal popula-
tions This group of results also imply Fj (le|v(7|v)) - F (QYO‘V(T|U)) = [Fyv (QYI|V(T\U)|1/) dv' —
[ Fyoiv (Qyy v (T|)[v") dv' = 0. Without Hy, although Fy, v (Qy; v (7]v)|v) —Fyy v (Qyy v (T]v)|v) = 7—7 =
0, Fi (le‘v(ﬂv)) —Fy (QYO‘V(’T|U)) need not be zero. It is also interesting to note that cross matching with
a fixed v is equivalent to cross matching with an arbitrary v; the fixed v is like a "hub" for other v’s to get
connected through it.

For comparison, consider the unconfounded case again, where Fy, v (ya|v) = Fy,jv (ya|v’) = Fa(ya),
50 Fy (Qy, v (Tlv)[v') = F4(Qa(r)) = 7. In the current case, Fy,y (yalv) need not equal Fy(yq) so that
Fy (Qy,v(7|v)|v") need not equal 7; however, it still holds that Fy (Qy, v (7]v)[v') = Fo (Qvy v (T]v)[v'). In
other words, unconfoundedness implies no "difference" in Fj (yq|v) across v (for any d) while Hy implies
no "difference in difference" in Fy (yq4|v), where the first "difference" is across d and the second "differ-
ence" is across v. This is somewhat like the usual difference-in-difference (DID) method or the changes-
in-changes (CIC) method of Athey and Imbens (2006), where the time T plays the role of V. In the
former, although E [Uy|T =0] # E[U4|T =1), E[U1|T =1] - E[U|T =0] = E[Uy|T = 1] — E[Uy|T = 0],
where Uy = Yy — E[Yy]. In the latter, although Fy (y4|T =0) # Fy(ya|T =1), F1 (Q1 (r|T=0)|T =1) =
Fy (Qo (7|T =0)|T = 1). The de-meaning in the former and the de-scaling in the latter are corresponding
operations to nullify the value information in Yy in the ATE and QTE evaluation, respectively.

In practice, the variation in Z may not be large enough to identify all V' marginals. We will consider
three practical cases in this paper. Case (i): discrete Z and no X. We use this case to illustrate that
unlike the unconditional rank similarity test in Dong and Shen (2015) and Frandsen and Lefgren (2015), no
covariates are required to test conditional rank similarity. Case (ii): discrete Z and general X. This is the
most practical case since most data sets in applications satisfy this condition. In some applications, both X
and Z may include continuous variables, so we also discuss Case (iii): general Z and general X. We will first
overview here how our test statistics are constructed for these three cases. In the following three sections,

we will provide construction details and asymptotics for each case.

5Note that we are conditioning on X = x, so the marginal population is actually V = v, X = x, and the population is X = z.



3.1 Case (i)

Suppose Z can take K values {z1,-+-,zx} such that 0 = pg < p1 < p2 < -+ < px < pr4+1 = 1 with p;, =
D (zk) Then the always-takers A = {V < p;}, the kth compliers Cy, = {pr. <V < ppt1}, k=1,--- | K —1,
are individuals who are induced to switch from D = 0 to D = 1 as Z changes from zj to zx41, and the
never-takers N = {V > px}. The proportion of each group of individuals in the population is p1, pg+1 — P,
k=1,---,K—1,and 1 — pg, respectively.

We will propose two tests. The first test is based on the following corollary which is the version of @ in

Case (i).

Corollary 2 In the framework @, suppose Assumption M holds with X =1 and Z being discrete. If Hy is
satisfied, then

FYl\Ck (Ql(T)) = FY0|Ck- (QO(T)) (9)
forany T € (0,1) and k=1,--- ,K — 1.

Proof. Note that

1 Pr+1 1 Pr+1
Fre, (0a) = -—— [ Py (o) do = ——— [ F (Fa ) o).
Pr+1 = Pk Jp, Pk+1 — Pk Jp,

where the last equality is from @ If Fy, v (ulv) = Fy, v (ulv) = Fyv(ulv), u,v € (0,1), then

Fy,ic. (y1) = Fue, (F1(y1)) and Fy, e, (Yo) = Fue, (Fo (o)) »

where
Fye, (u) = m /pk Fyv (ulv)dv
As a result,
Fy e, (Q1(7)) = Fyje, (F1(Q1(7))) = Fuje, (1) = Fuye, (Fo (Qo(7))) = Fyyie,, (Qo(7)) -
n

Different from Theorem @ does not imply Hj because we cannot observe all v’s. In other words, Hy
is refutable but nonverifiable - if the null is rejected, then we are sure that H, is wrong; while if the null
is not rejected, Hy need not be correct. See Breusch (1986) for a general discussion and Kitagawa (2015)
for a recent example of this kind of hypothesis. On the other hand, since Cx,k = 1,--- , K — 1, is the only
identifiable set of V' marginals, we expect @[) exhausts the testable implication of the data distribution. The
following proposition rigorously states this result.

Proposition 1 Suppose the assumptions of Corollary |4 hold. If Fy,c, (Q1(7)) and Fy,c, (Qo(T)) satisfy
(@, then there exists a joint distribution of (Y1, Yy, V, Z) that satisfies Hy, generates the joint data distribution
of (Y, D, Z), and induces Fy,c, (Qa(7)) for 7€ (0,1) and k =1,--- | K — 1.

This proposition implies that a test based on

K-1 1 5
T = S wn [ [P @r) = Fieje, (Qu(r)]* di (7)
k=1 0

6If p1 =0 or px = 1, some of the following analysis can be simplified.



is optimal in the sense that if 77, = 0 then any other feature of the data distribution cannot contribute to
invalidate CRS further, where wy > 0, Zf:_ll wg, = 1, py, (1) > 0 for almost every 7 € (0, 1), fol duy, (1) =1
and the subscript o is for "oracle". Note that the choice of wy and puy (+) does not affect the optimality of
T1,, but may improve its power in case that we have prior information on the group of compliers or quantile
indices on which Fy, ¢, (T) # Fyy|c, (7). Uniform priors wy = 1/k and py, (1) = 1 indicate that no prior
information is imposed. In practice, wy and py, (7) can be constructed based on some pilot tests.

From Corollary [2fand Proposition |1} our first test statistic in Case (i) can be based on a truncated version
of Tio,

K-1
7= 3w [ [Frje, (@) = Frije, (Qo(r)]” di (7).,
k=1 k

where 7 is a compact subset of [e,1 — €] for some € > 0. We truncate the quantile index for three reasons.
First, when the supports of Y7 and Y are not bounded, e.g., Y is the weekly wage rate, we can avoid the
technical difficulties in estimating extremal quantiles (see, e.g., Chernozhukov (2005) and Chernozhukov and
Fernandez-Val (2011)). Second, it is commonly believed that at extremal quantiles, the CRS assumption
is easier to hold. For example, the extreme rich (poor) complier tends to be extremely rich (poor) after
participating a social program. Third, if Y is censored at bottom or top as in, e.g., weekly wage rate, we
can avoid the contribution from point masses of censored quantiles to T7.

Our second test is based on the following corollary which is the version of (8)) in Case (i).

Corollary 3 Suppose the assumptions of Corollary[q hold. Under Hy,

Fyie, (@viie, (7)) = Fygles (@yoles (7)) (10)
forany T €(0,1),ke{2,--- K —1}.

Proof. By the similar logic as in the proof of Corollary Fy,c, (le|cl (T)) = Fye, (Ffjllh (T)) =

FYole (QY0|01 (T)) u
From the proof above, Fy,|c, need not equal Fy,c, as in the unconfounded case; however, under the

null, the difference between Fy, ¢, and Fy, e, (Fu,c, (F[;IIIC1 (7))) and the difference between Fy; ¢, and

Fusier (Fugie, (FJOlcl (7'))) are similar. In other words, the second test is based on the "similarity between
differences". Like in Corollary is equivalent to Fy,|c, (le‘cl (7—)) = Fy,c, (Qy0|cl (7)) for k,l €
{1,---, K — 1} and k # [l. For future reference, we label this result as cross compliers matching (or simply
cross matching) and its opposite that Fy,c, (F;lllc1 (T)) # Fy,c, (F;Olcl (T)) for some k € {2,--- | K — 1}
and 7 € (0,1) as cross compliers mismatching (or simply cross mismatching).

Like @[), does not imply Hy. It seems also that it does not imply @[) because Qg (+) cannot be
recovered solely from . Actually, @D and include the same testable information as shown in the
following proposition.

Proposition 2 Suppose the assumptions of Corollary@ hold. If Fy,|c, (Qyﬂcl (T)) and Fy,c, (QYO‘CI (T))
satisfy (@), then there exists a joint distribution of (Y1,Yy,V,Z) that satisfies Hy, generates the joint data
distribution of (Y,D,Z), and induces Fy,|c, (Qvyjc,(7)) and Fy,ic, (Qyyic, (7)) for 7 € (0,1) and k =
2, K —1.

This seemingly surprising result is due to the fact that Qg (-) in @D cannot be identified from the data
distribution. We in Section [ identify it by imposing Hy, which loses one more degree of freedom. That is
why @D includes K — 1 constraints while includes only K — 2 constraints. A straightforward corollary



of the proof of Proposition [2|is that if K = 2, Hy does not impose any restriction on the data generating
process, i.e., no tests can have power.
As in the cae of T7,, a test based on

K—-1 1 5
Too= 3w / [Fraier (@wiie: (1) = Frajer (Qvaer (1))]% disg (7)
k=2

is optimal, where wy, and py (7) are similarly defined as in T3,. Similar to T3, our second test statistic is

based on a truncated version of T5,,

K-1
= Z wk/ [Fyl‘ck (QY1|C'1 (T)) - FYo\Ck (QY0|6'1 (T))]2 dp (1) -
k=2 T

For K — 1 groups of compliers, there are totally K — 2 cross matchings. Here, we select C; as the hub
complier; in practice, we can select C; with the largest proportion (p;+1 — p;) as the hub complier to improve
finite-sample performance.

That T, and T3, explore the same testable implication of the data distribution does not mean they
would have the same power; see Section for a detailed analysis. This is just like that both tests have
power in any feasible direction of violating Hy but their power functions may be very different. Also, as
suggested after Theorem |I, we can plot Fy,|c, (Q1(7)) versus Fy;c, (Qo(7)) in @) or Fy,ic, (Qyviic, (7))
versus Fyc, (Qy0|cl (T)) in as a function of 7 to check the violation of Hj.

3.2 Case (ii)

Suppose supp(X) = X and for each X = z, Z can take K values {21, - ,2x}, K > 2. For each z, p(z, Z)
takes K distinct values {pz1,- - ,Par}, With prrx = p(z,2) and 0 = pyo < Po1 < Pz < -+ < Par <
Pz k+1 = 1. We can extend to the case where the support of (X, Z) is not a Cartesian product of two
sets, but such a generalization will not add any further insights except complicate notationsm Also, we can
allow p(z,z) not to be increasing in z, but by rearranging the Z values within each x value we can always
make p(x, z) strictly increase in z. We assume p (z, z;) is distinct for each zy; if two z values generate
the same propensity score, they are combined and relabelled as one value. Under these notations, among
the individuals with X = z, the always-takers A, = {V < p1}, the compliers Cpr, = {pak <V < prit1},
k=1,--- K —1, and never-takers N, ={V > p,x}. Asin Case (i), we can show the test based on either

K—-1 1
75 = 3 [ wle) [ [Fhix (@uipx (o)) = By @ups(rla)le)] di (i) da
k=1

or

T = Kg o) [ B (@riole) — iy (Qariole)]” do ()

"Think about the binary Z case. If we interpret Z as the theoretical assignment and D as the realized treatment status, then
the independence of supp(Z) on X means that the assignment Z is genuinely randomized for each value of X. This assumption
corresponds to the assumption 0 < E [Z]|X] < 1 in IA.



is optimal, where F{id‘x(-\ac) is the cdf of Yy for Cyp, given X = wﬁ The weight wy(z), satisfying wy(z) > 0
for Px almost sure = and [, wy(z)dz = 1, can depend on both z and Cyj. Similarly, s, (7]z), satisfying
wy, (T|z) > 0 for almost every 7 € (0,1) and fol dpy, (T|z) = 1 for Px almost sure z, can depend on both x
and C,. As in the case of T1 and T5, our two tests in Case (ii) are based on

TX:Kz_:l/ wk(x)/ {Fk (Qvy x(|2)]z) — F (@ (T|m)|x)rd (7)) d=
1 2 [y - vi|x \Wyi|x Yo X \WYo|X H

and

X ‘I,:Z__;/X‘”’“m/f (B (@b xrloler) — B (Q§O‘X(r|z)|x>]2duk (r|z) da,

where Q%@\X (+|z) is the quantile function of Yy for C,; given X = x. As to the choice of wy(z), if X is discrete
and can take J values {x1,--- , 2}, then wi(x) = wj; if P (X = x;) for some x; is small, we can truncate
such x; and pick only x;’s with enough data points; when the proportion of some C,; within z; is small,
we can further truncate it by setting the corresponding w,; = 0. Typically, we can set wi(z)dx = dFx (z)
independent of k. Similarly, we can set p (7|x) = 1 independent of both x and k.

As mentioned in the introduction, Kim and Park’s test is related to our T}%, where {F{ﬁl X (Qvy x (1|2)|z) — F}@O‘X (Qyyx (7

is replaced by infy cy,(a) F}I%\X (y1]|x) — F}]%\X (y0|x)) with Vo(z) = S0 under our assumption M1. Under
Hy, the infimum 0 is actually achieved at yo = Qy,x (Fy,|x(y1]2)|z). In other words, we express their

infimum explicitly in our T}%.

3.3 Case (iii)

Suppose supp(X) = X, supp(Z|X = z) = Z independent of = and supp(p (X, Z) |X = z) = P, dependent

on z. We impose the following assumption on P,.
Assumption P: P, = [gm,ﬁw] C [0,1] for each z € X. In other words, the conditional density function of
p(X, Z) given X = x, say fp(x,z)x(pl|z), is positive for p € (Qz,ﬁw)

This assumption tries to reflect the reality of the support of p(X, Z). Usually, the support of p(X, Z) is
different for different x values and is a subset of [0, 1] staying in the middle of [0,1]. We can relax this
assumption by allowing the support of p(X, Z) to be segments of intervals without difficulty, but we find
Assumption P will provide clean results without losing the essence of our problem. For each z, we can
identify counterfactual distributions of the marginal population V =v € P,.

Following the similar proof idea of Proposition [1} we can show that

1 2
/ / w(m,v)/ [FYI‘X,V (le‘x(r|x)|x,v) — F{ﬁO‘X)V (QYO‘X(T|x)|x,v)} dp (1|x,v) dvdx
xJp, 0

is optimal, where w(x,v) is a weight function on XP, = {(z,p.) |z € X,p, € P}, and p (7|z,v) is a weight
function on (0, 1) which may depend on = and v. This suggests a test statistic such as

/ / w(:c,v)/ |:Fy1|X7V (Qy1|X(T|x)|z,v) *F¢0|X,V (QY0|X(T|$)|Z’,U)]2dﬂ(7'|$7v) dvdzx, (11)
xJp, T

2
8In Kim and Park (2016), [F{ﬁllx (QYI‘X(T\x)p:) — F{ﬁolx (QYO‘X(T\x)p:)] is replaced by
infy) cyo(x) F}’ﬁl‘x (yﬂx)—F{io‘X (yo\x)’, where Yo(x) = Sgo under our assumption M1. Under Hp, the infimum 0 is

actually achieved at yo = Qyy|x (Fy;|x (y1]|z)|z). In other words, we express the infimum explicitly in our .
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which can be treated as an extension of 7;%. However, this form of test is not feasible due to a techinical
difficulty in the inference of Qy,|x (7|z) as explained in Section@ As an alternative, we suggest two variants
of T5X. Specifically,

2
TSX/X/’P # w(x,v)/T[Fy”X,V (le‘X7V(T|:z:,vo)|x,v) - Fy,x,v (QYO‘Xy(T\x,voﬂx,v)} dy (1|2, v) dvdz,

where v, is the hub v. Following Proposition [2, we can show if 7 is replaced by (0,1), then T3 is op-
timal. We can select v, as the median of Fj, x z)x(:|z) so it may depend on x. When v is close to v,,
Fy,x,v (QYI|X7‘/(T|$,’UO)‘$, v) is close to Fy,|x,v (QY0|X7v(T|$,UO)‘.’£, v) since both are close to 7. As a re-
sult, such v’s will include more noise than information to power, and it is better to kick out a neighborhood
of v, in the integration about v. However, it is hard to determine how large a neighborhood should be kicked
out or a good kick-out may be data-dependent. To avoid such a difficulty, we suggest another variant of Ts¥:

E(E
T4X = max{/ / w(m,v)/ [FYl\X,V (Qy1|x,v(7"$,’l)1)|x,1)) - FY0|X,V (QYO‘va(TL’IJ,’Ul)‘J?,v)}Qd'u, (T|x,1}) dvdz 5
X Ju, T

/X/ ‘ w(z,v) /T [Fyl‘x’v (Qy1|x’v(7"$,1}2)|1‘,1}) — Py, 1x,v (Qyo‘x,v(ﬂx,vg)\x,v)]Qdu (T|x,v) dvdz},
pa:
where v € (Bx’ v,) and v € (v,,P,). We can select vy, vg, v2 as the first quartile, median and third quartile
of Fy(x,7)x(-|z). Note that in T, we have two hub v’s - v; and ve. The range of integration relative to
the first hub is [v,,P,], which is far from vy; similarly for the integration relative to vy. Also, because v, is
included in both ranges of integration, as argued after Corollary [I} all cross-v comparisons are covered. As
a result, if 7 is replaced by (0,1) in 7%, then it is optimal.

We close this section by some additional comments. All the test statistics above take the form of
Cramer-von Mises (CM) statistics; an alternative formulation is in the form of Kolmogorov-Smirnov (KS)
statistics. The reason for departing from KS statistics is that our simulation experiments suggested that
CM-type statistics have somewhat better power properties than those based on the KS-type statistics. In
the following sections, we will also discuss some extensions of 17, T, TIX , T2X , T3X and T4X ; we did not discuss

these extensions here to emphasize the basic ideas of our tests.

4 Testing With Discrete Instruments and No Covariates

To construct the finite-sample analog of 71, we need to estimate Qg (-) and Fy,c, (). The estimation of
Q4 (+) is based on the IV-QRE of CH, which is consistent under Hy. Specifically, the moment conditions
used by the IV-QRE are

(p(l )(T—l(Y<Q6‘(T)+D~A*(T))) =0, (12)

where A*(1) = Q7 (1) — Qj(7), and we use the superscript * to indicate that Q}(7) and A*(7) identified by
the moment conditions need not be the true values when Hy does not hold. As shown in Yu (2016) (see also
Wiitherich (2015) for the case with Z being the instrument), the moment conditions imply

K—-1

Fr(n) = piFyvalyn) + i: (Pr+1 — Pk) {FY1|ck(2/1) (1= Fyz)(on)] + Frgje, (Fy ' Fy (yl))Fp(z)(pk)}
k=1

+(1 = p) Py (Fg ' Fy (1))

11



and

K-—1
Fy(yo) = piFyyaFr Fy (o)) + > (rr1 — {chk(F Fo (%)) [1 = Fyz) (pr)] +FYo|ck(yo)Fp(z)(pk)}
k=1
+ (1= pr) Fyyv (%) 5
where

Cov (p(Z),1(p(Z) > pr+1))
Var (p(Z))

K-1
Fy (ya) = > (pr+1 — Pr) h(pPrs1) Fyy i, (ya) with h(ps) =
k=1

is the potential cdf of a mixed compliers with weights ((p2 — p1) h(p1), -, (px — pr—1) h(pK)) on C, so
we can estimate F(-) by estimating Fy,|4, Fy,¢, and Fy,n and then plugging in these two formulas.
Specifically, from Abadie (2002) and Imbens and Rubin (1997),

E[1(Y <y1)D|Z = 2]

Frialy) = PD=1Z=2)

Py () = E[1(Y <ya) 1(D=d)|Z = zk41] —E[L(Y <ya) - 1(D =d)|Z = %]
valex\Wa) = P(D=dZ=z211)—P(D=d|Z = ) ’
FYOW(yo) = E[l(ifgoz%;l_))zf):z[(].

An alternative estimation method is the inverse quantile regression estimator of Chernozhukov and Hansen
(2006), but their estimator does not use the information in and usually targets on a constant quantile
treatment effect rather than @4 so will not be used in this paper. As discussed in Wiitherich (2015) and Yu
(2016), F; involves using the estimables to replace the unestimables, e.g., the true Fi(y1) = p1Fy,14(y1) +
ZkK:_ll (Pr+1 — Pr) Fyyje, (1) + (1 — pr) Py, nv (1), but Fy, o is not estimable so F}* uses Fyow(ﬁo_lﬁl) to
substitute it and meanwhile uses a weighted average of Fy, ¢, (y1) and Fy N(f‘o_lfl) to substitute Fy,|c, .
There are also two methods to estimate Fy,c,. The first method is to employ the Fy, ¢, above. The second
method is the inverse probability weighting method suggested by Abadie (2003). We use the first method

to unify the estimation procedure in all three cases.

4.1 Construction of Test Statistics

Our test statistics are constructed as follows.

Step 1: Let

Fy, ) = i 2iny LY S ) Dil (Zi = 1)

B 71 n 5
Z’L 1D’L]- (Z = Zl)

ﬁy\c (ya) = k+1221 (Vi <ya) 1(Di =d) 1(Zi = zjy1) — . " S L(Yi < ya) 1(D; = d) 1(Z; = zp,)
o kil i 1D = d)1(Zi = zp11) =y P 300, 1(Ds = d) 1(Z; = 2)
! S (1-D)1(Zimor)

and

K ~ =
Zl:k+1 nl (pl *p)
2
Zl 17U (pl p)

P =1y S0 Dl (Zi = )  h(Prg) =

12



where nj, = S°1' | 1(Z; = z1,), and p = Zfl Lp=n~tY" | D

Step 2: Let
~ ~ Kl ~ ~ ~ ~—1la ~
Fity) = DiFvia()+ Y Brsr — br) {Fylck(yl) [1 — Iz (Zk)] + Fy, e, (Fo Fy (y1)> Fz (Zk)}
k=1
~ 21z
+ (1 = pk) Fyy v (Fo Fy (?h))
and
~ ~—la K1 ~ it ~ ~ ~
Fo(yo) = lFY |A (Fl Fo (yo ) + Z Dk+1 — Dk {Fylck (Fl Fq (y0)> [1 - Fyz (Zk)} + Fyyie,, (vo) Fz (Zk)}

k=1
+ (1 = pk) Fyyixv (%0)

which are consistent to F}} (yq), where

n ~ K-1
Fy (z) =n~" Z (Z < zi) (Pr+1 — Pi) M(Pr+1) Fy,\c,, (Ya)-
i=1 k=1
Step 3: Let
K-1
. _ ~ . 2
Tin =) /T Pje. (F'() = Byye, (B ()] ar,
k=1
and

K-1
~ ~ ~ ~ 2
TQn = E /T [FYﬂCk (ijcl (T)) - FYOlck (FY01\C1 (T)>:| dT,
k=2

where we use a uniform prior on Cy and 7 for simplicity. In practice, the integration in T3, and Ty,
can be replaced by a summation with respect to {7;}.",, where x,, — oo, and {7;}.", gets dense in T

as K, — 00.

Evenif Fy, ¢, (ya) is a genuine cdf, F\dek need not be, e.g., F\Yd|ck (yq) may be out of [0, 1] and nonmonotonic

So we suggest to conduct the monotone rearrangement operator of Chernozhukov et al. (2010) and truncate

ﬁyd‘ck (ya) to [0, 1] before further operations on it Note also that in practical implementation,

= K—-1~

Fi(y) = Zk:l h(Drs1) [nity Sy 1(Yi S y1) DL(Zi = zjga) — ' o0 1(Yi 1) D1(Z; = 21)]
Foo) = 3 hlPee) [np" Sy 1Y S0) (1 - D) 1(Zi = 24) — gy Tiy (¥ < o) (- D) 1(Z; = 2541)

do not involve any denominator; similarly, ﬁl(yl) and Fy (yo) do not involve any denominator which may be
too small to affect the finite-sample performance of our tests.

9Note that ﬁYl\A (y1) ar}\d F\YO‘N (yo) must be monotone and in [0, 1/1

10yWe can_also rearrange Fg and Fy until we need to do it. Usually, Fg and Fy; are more likely to be monotone and stay in
[0,1] than Fy,|c, because they are averages of a few correlated cdfs, while the two terms in the influence function of Fy. ¢, are
independent such that the variation in ﬁYd\Ck is quite large. When K is large and there are covariates, we need to pay more

attention since each Cy cell usually contains fewer data points. In the simulation study of Section rearranging ﬁYd\Ck before
further operations on it works better.
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4.2 Asymptotics for 7}, and T3,

The following theorems state the asymptotic distribution of 73, and T5, under Hy. We also consider the
local alternative

HY : Fy, v (ulv) = Fyyv(ulv) = 6%}),

where ¢ (u|v) falls in

F= {g(..) cC ([o, 1]2) \ g(0) = g(1]v) = o,/o1 g(ulv)dv = 0,u,v € [0, 1]} :

where g(0|v) = g(1v) = 0 because FU1|V(0|U) = Fy,v(0lv) = 0 and FUI‘V(1|11) = Fy,v(1jv) = 1, and
fo (u|v)dv = 0 because fo Fy, v (uv)dv = fo Fy, v (ulv)dv = u. Because fo (u|v)dv = 0, g(u|v) cannot
be the same for all v € [0, 1] unless g(ulv) = 0. We assume g(-|-) € C ([ ,1] ); otherwise, there is a point
mass shift in u for some v, or there is a sharp change in the shape of Fy;,y (u|v) for two close v values.

Actually, since we have only three types of individuals, we can equivalently specify

Otype (1)

Hf : FU1|typc(T) - FUO\WPC(T) = \/ﬁ

where type € {A,Cr,k=1,--- K —1,N}, and § (1) = ((5A (1), {dc, (T)}kK;I1 L ON (T))l falls in
F={g0) € O 9(0) = g(1) =0 = (0, ,0))y,

P191 ( +Zk L Prir = pr) gk (7) + (1 = pr) g 41 (1) = 0,7 € [0»1]}-

The relationship between § (7) and § (u|v) is 0x(7) = Plc+1 — fp'““ d(r|v)dv where k = 0,1,--- K — 1, K

corresponds to type = A, {Ck}kK;ll ,N, po=0and pgy1 = 1. We also impose the following assumption.

Assumption LA: The joint distribution of W implied by the local alternative is contiguous to that implied
under Hy.

The requirement for the contiguity of the local alternative to the null is standard in analyzing the local

power. A sufficient condition for contiguity in Case (i) is that

1)
su de\tYPe(y) < 00
O ot @)
Uiy vpe >0y type Y

where de|typc( y) and de\ typc( y) are the densities of Yy for different types under HY and Hj respectively.
Intuitively, this would be the case when fY It”)C( y) has lighter tails than f}(/?1)|typc(y)

To ease the statement of the following theorems, define {¢;};~, as a class of orthonormal and complete
basis functions of L? (T), that is, [ ¢; () ¢, (7) dT = 1(i = j) and any function f such that [ f(7)%dr < co
can be approximated arbitrarily well by belectlng enough many ¢,;’s, where 1(-) is the indicator function;
define the eigenvalues of a real valued positive semi-definite continuous function on 7 x 7, say, ¥.(71,72), as

{Ai};2, such that
/Eﬁmw%ﬁﬂM:N%Um
T

where ); > 0 need not be distinct, and Y o, A; < co.
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Theorem 2 Suppose the assumptions of Corollary[q hold.

(i) Under Hy,

=

—1

(o]
nThL ~ E )\m €,ﬂ y

1 i=1

~
Il

where s,(cli) are itd N (0, 1) random variables, )\,(;i) ’s are eigenvalues ofE,(gl) (t1,72) = F |:ZI(€1)(7‘1)Z£1) (72)}

with the zero-mean Gaussian process Zél)(r),T € T, defined in the proof, and the covariance between
(1)

€y and 6l(;), kle{l,--- , K—1} andk #1,i,5=1,2,---, is determined by the correlation structure
of Z](cl)(’l') and Zl(l)(T) and is defined in the proof.
(i) Under H{ and Assumption LA,
K—-1 oo
T 35 () - )
k=1 i=1

where bgl) J5 by bV ( (1) dT with

K-1

b (1) = beu (1) = D0 (peer = p) Alprsa)de, (7)

being a linear map of 6 (7). Thus, for any ¢ > 0, P (nTy, > c|H)) > P (nTi, > c|Hy), where the
equality holds if and only if b,gli) =0 foranyk=1,--- K—1andi=1,2,---

(iii) Under the fized alternative Hy with Ty = plimy, o0 T1pn > 0,

lim P (nTy, >cp) =1

for any sequence of random variables {c, : n > 1} with ¢, = O,(1).

A corollary of Theorem [2|is the asymptotic distribution of ﬁd(') and the QTE,

Corollary 4 Suppose the assumptions of Corollary[q hold. Under Hy,

(1) = Fi(y) Z1 (1) in 0> o
(90) = Fo(yo) ) < Zo (o) ) £ (V1) x £ (o),

> =

.

and

R A L B E) 2 (FE)
f(A() A()) 0 ET) > (T),

where Zq (ya) is defined in the proof, and Vg is a compact interval in Sy and contains an e-enlargement of
the set {Fd_l(T)|,T €T}.
Theorem 3 Suppose the assumptions of Corollary[q hold.

(i) Under Hy,
K—-1 oo

7’LT‘2n“"> E )\k‘l Ekz s
k=2 i=1
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where sg) are 1d N (0, 1) random variables, )\,(j) s are eigenvalues ong) (t1,72) = F [Z,(f)(n)Z,f) (72)]

with the zero-mean Gaussian process Z]gz)(T),T € T, defined in the proof, and the covariance between

6,(? and 51(]2)7 kile{2,---  K—1} andk #1,14,5=1,2,---, is determined by the correlation structure

of Z,(f)(T) and ZZ(Q) (1) and is defined in the proof.
(ii) Under H{ and Assumption LA,

K—-1 oo 2
o 33 <b,g3> n A,g?s,g?) ,
k=2 i=1

where b,(j) =/ b,(f) (1) @; (1) dT with

- fuies (FJ|101 (T))
foie, (Fie, ()

b (1) = de, (Fe, (7)) de, (Fye, (7))

being a linear map of 6 (). Thus, for any ¢ > 0, P (nTgn > c|Hf) > P (nTs, > c|Hyp), where the
equality holds if and only if b,(j.) =0foranyk=2,---  K—1andi=1,2,---.

(iii) Under the fized alternative Hy with Ty = plimy, oo Tan > 0,

lim P (nTy, >c¢,) =1

n—oo

for any sequence of random variables {c, : n > 1} with ¢, = O,(1).

We provide some comments on the asymptotic distributions of T3, and T5, under Hy. From the proof,
both T1,, and Ts,, converge weakly to a sum of fT Zy, (7')2 dr for some zero-mean Gaussian processes Zj, (-). We
express fT Zy, (7)2 dr in the two theorems as > .-, )\;ﬂ-sii for \; being the eigenvalues of Zj (-)’s covariance
kernel 3y (71,72) and eg; being iid N(0,1). Such a representation for a single Zj (-) process was first
introduced to the econometric literature by Birens and Ploberger (1997) through Mercer’s theorem although
such a form of weak limit as [ Zj (7')2 dr appears even in the classical CM statistic. Though such a
representation is standard in econometrics now, here we mention some intuition to aid understanding. First
note that Zj (-) is a collection of uncountably many normal random variables; however, the independent
"variation" in Zj (-) is only countable - {ej;};-,. The key reason is that Zj (-) is a continuous process on a
compact set 7, where the continuity is implied by the continuity of (71, 72). Since a continuous function
on a compact set must be square-integrable, i.e., Z; (-) € L (T), while L? (T) is separable, [~ Z (-) dr can
be represented as a sum of countably many normal random variables. As to why {Ax;};—, appear, think
of the distribution of EZL:1 Z%, where (Zy,--- ,Z1,) are jointly normal with positive semi-definite covariance
matrix X. From some elementary analysis, it can be represented as ZzL:1 \ieZ, where \; > 0,i=1,---, L, are
the eigenvalues of 2 and need not be distinct, and ¢;, i = 1,--- , L, are iid N(0,1); in other words, Zlel 7z}
follows a mixed chi-square distribution. fT Z, (7')2 dr is a natural extension of Zlel Z?; note here that the
eigenvalues get smaller and smaller since Y .- Ay; < co. When there are multiple Gaussian processes, we
need to take into account the correlation structure between different processes, which is expressed through
the correlation between ex; and €5, k #1, 4,5 = 1,2, -, in the theorems.

We next provide some comments on the local power of Ty, and T5,. First, although ﬁd in 13, uses
ﬁYoW (yo) and ﬁylm (y1), bg) (1) = de, (1) — Z{i}l (Pi+1 — 1) h(pi41)de,(7) does not involve 0.4 (1) and
on (7). Intuitively, since we can only identify Fy,|4 and Fy,nr but not Fy, 4 and Fy, s, there is no
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information on the contrast of Fyy |4 vs. Fy 4 and Fy a vs. Fyga- Second, bl(cl) (1) comes from two
resources - one from the misspecification of Fy; as F} under H{ and the other from Fy,c, (Fl_l(r)) —
Fy e, (Fy () = Fuyje (1) = Fugie, () # 0 under HY. Third, note that bg) (1) is d¢,, (7) minus a weighted
average of {d¢, (T)}llizl since (pi+1 — 1) h(pr41) > 0 and Zfi}l (pi+1 — 1) h(pi41) = 1. So unless d¢, (1) =
dc, (1) for all k # I, by (1) cannot be zero for all k = 1,--- | K — 1, and our test will have power. In the
function space F’, this event can rarely happen; the larger K is, the rarer this event is. To see why this
event is rare, note that

p10a (T +Zk , Prrr = i) de, (T) + (1= pi) O (1) = 0,

0 dc, (1) = dc(7) for all k implies

104 (T)+ (px — 1) dc(T) + (1 — pK) O (T) = 0;

i.e., a weighted average of three functions in C ([0, 1]) is luckily to be zero. Fourth, since Zf:_ll (Pk+1 — Pk) h(pk+1)b§€1) ()=
0, the "net" source of power is (K — 2) dimensional. In other words, when K = 2 (i.e., Z is binary), T3,
does not have power as discussed after Proposition Two dimensions are lost because we need to esti-
mate two parameters in . So in essence, T4, is an overidentification test; the power comes from cross
mismatching; see Section [7] for more discussions on this point. Fifth, the power of T5, also comes from

cross mismatching. However, unlike b,(gl) (7) which is a function of only d¢, (7), bff) (7) involves also nuisance

K-1
densities fyc, (F17|1cl (7’)), k=1,---,K — 1. Generally, {bff) (T)} is also K — 2 dimensional because

b,(f) (1) = 0 requires

be (Fie, (7)) foew (Fiie, (7))
de, (F_llc1 (1)) foies (FJ|161 (T)) ;

which can rarely happen. Finally, the asymptotic distribution under Hy in (i) is a special case of that under
HY, and the consistency of the test statistics in (iii) is well understood, so we will state only the asymptotic
distribution under H? in sections [5| and @

As discussed above, the power dimension of T3, is K — 2, while T7,, is a sum of K —1 Gaussian processes,

so it would improve power by combining these K — 1 processes into K — 2 processes. More specifically, let

T — Z / (B8, (B ) - B (B ()] .

where
) N R = Sk_o, k=1, K —2 13
Yy|C (yd)_zl:1 Wkl Yal|Ci (yd)vwk:(wklv”' 7wk,K—1) ESKg-2, k=1, 4. ( )
with S,,_o = {(ml, s Tpe) | > 0,500 Ly, = 1} being a (n — 2)-simplex. In practice, we can choose

the weights wy, distinct enough from & = ((ﬁQ — 1) h(ﬁg), <, (D — ﬁK,l)ﬁ(ﬁK)) to magnify power. For
example, we can choose the weights as the first K — 2 maximizers of max,, || — w;||, where |-|| is the
Euclidean norm, and w; is the [th standard base vector in RE~1. In a similar fashion, we can modify T5,, as
T5,, below to improve its finite-sample performance,

T4, = Z / 0 (B ) - (?ol<r>)rdn
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where the mixed compliers is used as the hub, and F; F®) s defined in . Other mixed compliers with

vilC
mixing weights different from those of Fd can also be used. For example, if we use weight % on Cg,
then we are replacing Fy (yq) by

= g S 106 S ) 1(Ds = )1 (2 = ) =t T 10 S ) LD = D12 = =)

Fa(ya) = nt S 1Dy =d)1(Zi=z2k) —ny Sor  1(Dy =d)1(Z; = 1)

The following corollary states the asymptotic properties of T}, and T4, under H?.

Corollary 5 Suppose the assumptions of C’orollary@ hold. Under HY and Assumption LA,

K—-2 oo
nTL Z Z (b;c(il) + /(1) k(21)> ’

k=1 i=1
and
K—-2 oo 2
Wty - 3% <b< n x<2>g;§3>> ,
k=1 i=1
where by, (1) Zl 1 L on bl(L , sk(Zl) Zl 1 wsz“) )\( Vs are eigenvalues of

K-1

E;“(l)(Tl’TQ) = [(Zl=1 wklZl(l)(Tl)) (Zz=1 wklZ ﬂ Zz 1 Z wklwkm Zl(l)(Tl)Z$)<T2>] ’
/(2) _ fT b;c(z) (1) p; (1) dT with

St wrifulc, (1551(7)) -

0w = 3 e (B () - AGD 5(Fy (7).
ﬁU(U) = ZZ:; (Pr+1 — pi) R(Pr11) Fue, (), fU(U) = ZkK:_ll (Pr+1 — Pi) R(Pr+1) furie, (),

~ K-1

6(u) = Zk:l (Pr+1 — pi) h(Pr+1)dc, (u),
and )\;c(f) and 5;(12) are defined in the proof.

Although b;g(il) and sgil), k=1,---, K—2, have straightforward relationship with bg) and 5&.), k=1,--- | K—

1, it seems hard to express )\;511)7 b;(f), 5;;2) and A;fl) as functions of /\,(:7), b,(ﬂ), El(j) and )\,(j.).

4.3 Bootstrapping Critical Values of 7}, and 75,

The eigenvalues )\,(cli) and )\,(fi) are necessary inputs to determine the critical values of our tests, but they
depend on the data-generating process under the null and are hard to estimateE To make our testing
procedure more applicable, we suggest to use the bootstrap to obtain the critical values.

Suppose we use the exchangeable bootstrap to conduct the inference; the detailed procedure is as follows.
Let (w1, ,wy) be a vector of nonnegative random variables that satisfy the following Assumption EB.
For example, (w1, - ,wy,) is a multinomial vector with dimension n and probabilities (1/n,--- ,1/n) in the

I Nevertheless, Bierens and Ploberger (1997) provide case-independent upper bounds of the asymptotic critical values of
the ICM test; Horowitz (2006) and Blundell and Horowitz (2007) consistently estimate the asymptotic critical values in two
specification tests. The situation in our case is more complicated since the correlation structure among er; and ¢;; is also
required.
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empirical bootstrap. The exchangeable bootstrap uses the components of (wq,- - ,w,) as random sampling
weights in the construction of the bootstrap version of the estimators. More specifically, we use the following
three parallel steps as in the construction of T3, and 75,, where the objects with a superscript * in this

subsection indicate the samples or estimators based on the bootstrap measure.

Step 1: Let

ﬁ* ( ) _ n*t Z:L 1LL)7 (Y <y1)D1(ZZ:,Zl)

A WS oDl (Zi =)
B () np Y wil (Y' <ya)1(Ds = d)1(Z; = zp41) —nfy ' Y wil (Vs < wa) 1(Di = d) 1(Z; = 2)

) = — n )

Ya|Ck ’rLk+1 Zz 1 wz ( i = d) (Zi = Zk+1) — Ny ! Zi:l wil (D,’ = d) (ZL = Zk)
o) = T wil (Vi < wo) (1= D) 1(Z; = 2k)

Yol 10 N w, (1= D)1 (Z = 2)
and _

- St i (B -5)
pr=ny 'Y wiDl(Z; = 2), W (Pry1) = >
Zl 1 (ﬁf - )
where n* = Y0 w;, nf = > 1 wil(Z; = z), and p P = Zl 1 n—l =n 1Y wD
Step 2: Let

R K—1 N ~x—1 ~x N

Fr) = Pl + 3 (i - {ka () [1 = B ()] + By e, <F F, (yo) F; (zw}
=1
~ okl
=70 B (Fo Frow)

and

- . ~x—1 ~% K-1 ~x—1 ~x R

Fy(yo) = ﬁikF;ﬂA (Fl Fo (Yo > + Pk+1 {Fy |Ch (F1 Fy (@/0)) {1 —Fy (Zk)} JFl*ﬂyo\ck(yo)F (Zk)}

k=1
(1 _pK)FYUU\/ (Yo)
which are consistent to Fy (y4), where
e K-1
Fy(z) =n"" 120% (Z < z) Fd Ya) Z h*(ﬁ+1)FYd\ck (Ya)-
=1 =1

Step 3: Let

=3 [ (B (5 00) = e (20)) = (B (B5740) =B ()
k=1
and

T;, = KZ /T [(Bre, (B )~ Frie, (Brle ) = (Brge, (Bt ) ~ Bres (Bre, ()]
k=2
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Use the (1 — a)th quantile of n*T7,, ¢i,,(a), and the (1 — a)th quantile of n*T%,,, ¢4, («), as the critical
values for nTy,, and nTs,, respectively, where o € (0,1/2) is some prespecified significance level.

In practice, we can simulate 77, B times to get {Tl*nb}bﬂ;1 for B large enough, and then reject Hy if
nTy, > ¢, (), where ¢, () is the (1 — a)th quantile of {n*Tf‘nb};)B:1 which approximates cj,(«). Of
course, we can also check whether the p-value B~! Zle 1(n*Ty,, > nT1y) is less than « to decide whether
to reject Hp. A similar simulation scheme can be applied to T5;,.

We now describe Assumption EB.

Assumption EB: (wq, -+ ,w,) is an exchangeable, nonnegative random vector, which is independent of the
data {W;}!_, such that for some € > 0,

B3] <oon™ 3 w2 Lot@=nt 3w 2o,

where £ signifies the convergence in the probability of bootstrap measure

By appropriately selecting (w1, - - - ,ws, ), the exchangeable bootstrap covers many bootstrap schemes (besides
the empirical bootstrap) as special cases. For example, the weighted bootstrap corresponds to the case where
w1, -+ ,wy are iid nonnegative random variables with Ffw;] = Var(w1) = 1, e.g., standard exponential. The
m out of n bootstrap corresponds to letting (wq,- - ,w,) be equal to \/n/im times multinomial vectors
with parameter m and probabilities (1/n,---,1/n). The subsampling bootstrap corresponds to letting
(w1, ,wy) be a row in which the number m(n — m)~%2m='/2 appears m times and 0 appears n — m
times ordered at random, independent of the data. See Section 3.6.2 of VW for more detailed descriptions.
Each bootstrap scheme is useful to a specific application. For example, in small samples with categorical
covariates, we might want to use the weighted bootstrap to gain good accuracy and robustness to "small
cells", whereas in large samples, where computational tractability can be an important consideration, we

might prefer subsampling.
Theorem 4 Suppose the assumptions of Corollary[9 and Assumption EB hold.

(i) Under Hy,
lim P (nTy, > cf,(a)) = a.
n—oo

(i) Under H{ and Assumption LA,
lim P (nTy, > cf,(a)) > a.

n—oo

(iii) Under the fized alternative Hy with Ty = plim, oo T1, > 0,

lim P (nTy, > cj, (o)) = 1.

n—oo
(iv) (i)-(iii) hold also for Ts, and c, ().

(i) implies that under Hy, ¢, () == ¢1(a), where ¢1(a) is the (1 — a)th quantile of the asymptotic dis-
tribution of nTy,, and the randomness in the probability convergence includes both the randomness of the
original sample and the independent randomness of the bootstrap simulations (this also applies to other
statements in Theorem [4). (ii) states that 71, using cf, () as the critical value is asymptotically locally

unbiased. (iii) implies that T3, using c}, () as the critical value is consistent. This result is a corollary of

12This assumption can be relaxed a little bit as in (3.6.8) of VW.
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Theorem [2{(iii) since ¢}, (c) is bounded in probability under the fixed alternative. Finally, (iv) implies that
these comments also apply to T5,. Note further that a corollary of Theorem [4)) is that the exchangeable
bootstrap is also valid for the inference of the QTE process A (r), 7eT.

5 Testing With Discrete Instruments and General Covariates

We in this section discuss the finite-sample analog of 7% and T5°. For this purpose, we need to estimate
Fy, x (-|z) and F{id‘X(~|:c), k=1,---,K —1. We still estimate Fy, x (:|z) by the IV-QRE whose moment

conditions are specified as

E

1 ) ) 1
( p(X,Z) ) (r—1(Y <Q5(r|X)+D-A (T|X)))’X_x1 -0, (14)

where QF (+|) and A* (-|-) are similarly defined as in (I2)). As shown in Yu (2016), the moment conditions
imply
* X, k
Y x(nlz) = g_:o (P2, k41 — Dak) {FY1|X(?J1|93) [1 = Fyx,2)1x (Pokl7)] +
F¥ \x (F;UTX (Fyl\x (y1|$))$) ’ ﬂf) Fp(X,Z)IX(pxk|x)}v
and
< k
Fioae0ol) = 32 (s = per) { B x ole) Fyoe 2 el +
Y \x (F;jx (FYO\X (yo|$)‘ fﬂ) ’ iE) [1 = Fyx.2))x (k| )] } ;

where po = 0, pr 11 = 1, Fyx,z)x (Pzolz) = 0, Fy(x,2))x (P2xc|7) = 1,

EQ(Y <y1) DX =2,Z = 2]
0 _ )
Fy, i x(nlz) = P(D=1X=x,7=z)

is the cdf of Y] for always-takers A,,

BIL(Y <) (1= D) |X = 2,7 = 2]
P(D=0|X=2,Z = zg)

Fg|x(yo|$) =

is the cdf of Yy for never-takers N,

K—1
Fy,|x (ya|r) = (Pakt1 = Dak) h(Da k1) FY, x (val ),
k=1
with
h(p ): CO’U(p(X,Z),l(p(X,Z) pr,k+1)|X:x)
wht Var (p(X, Z)|X = 2) ’
and
_ E[L(Y<ya)-1(D=d)|X=x,Z=211]— E[L(Y <yq)-1(D=d)| X =2, Z=z]
Fiﬁd\x(yd‘x) = - P(D:d\X:z,Z:z::ll)7P(D:d|?;?:x,Z:zk) £, (15)

k=1,---,K — 1, being the cdf of Y; for compliers C,;. Consequently, we can estimate F;}d‘X(yd|m) by
estimating F{ﬁl‘X (y1]z), k =0,1,--- , K — 1 and FSEOIX (yo|x), k =1,--- , K and then plugging in the above
formulas.

21



5.1 Construction of Test Statistics

Our test statistics are based on the distribution regression (DR) proposed by Foresi and Peracchi (1995) and
extended by CFM. The details are described as follows.

Step 1: Let
Frixpoxzo(Wae,p.d) = A (T (@,p) Balua))
ﬁxk = ﬁ(x’zk):A(R(xvzk)/’/y\)’k:]-7"'7K7
Gor = G (@) =q (Bx),n),k=1,--- | K —1,
K-1
qu = 1 - lel q-’l)lv

where yg € Vg with Yy being a compact set in R, A(-) is a link function, ¢x (z) = P (Z = 2| X = ),
T(X,p(X,2)) = Zszl 1(Z = 2z,) T (X, p(X, 21)) is a vector of transformation of X and p and T}
may be different for different k, R(X, Z) = Zle 1(Z = 2x) Ri(X) is a vector of transformations of X
and Z and Ry may be different for different k, B(X) is a vector of transformation of X,

Ed(yd) = argmﬁaxz U(D; =d) [1(Y; <ya)InA (T (Xi,ﬁi)/ﬁ) +1(Y;>yg)In(1-A(T (XZ,@)/B))]

i=1

(16)
with ]’)\i = ﬁ(Xu Z,’),
N = arg maxz [D;In A (R(X;, Z;)'y) + (1 — D) In (1 — A (R(X;, Z;)'v))], (17)
R
and
n K
i =argmaxy Y 1(Z = z) ma (BX:), ),
i=1 k=1

with qK = 1-— Z{i}l qr.

Step 2: Let
Fy\x px,2),0 (U117, Do k1, DD k1 — Fy | x,p(x,2),0 (Y1125 Dk, 1) Dk

ﬁk Yi|T = — — 5
vl i) De,k+1 — Pzk

PE(ole) = Fy | x p(x,2),0("0|Z, Dak, 0) (1 = Paer) — Fy|x p(x,2),0¥0|T, P k+1,0) (1 = D ky1)
0 - —~ ~ )
YolX Pz k+1 — Pak

fork=1,--- K —1,

x(nle) = Fyixpexz).0le P, 1),
B x(olz) = Fyixpx,2).0®0lT Pk, 0),

and
K ~ ~ =
Zl:k-{-l qxl (pml - pz)

2
K ~ ~ =
Zl:l qxl (pxl - px)

W(Papr1) =

where p, = Z{il Gr1Pz1- Conduct rearrangement if ﬁ{id‘ +(ya|x) is not monotone.
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Step 3: Let
~ K ~ ~
Frx(nle) = 3 Bewn — o) { B i (nle) [1 = Fopx (Gl +

: l’) 33) ﬁZ|X(Zk|x)} )

~ K ~ ~
Fyyix (wole) = > (Paks1 = Pak) {F§];0|X(y0|m)FZ|X(zk|x)+

h=0 m) x) {1 - ﬁZ|X(Z’€|x)} }

~ ~-1 ~
F}’%|X <FY0|X <FY1|X (y1]z)

and

~ ~—1 =
Y x (Fylx (FYOX (yolx)

which are consistent to Fy. | v (ya|z), where

k

K-1
Fzix (2k|z) = quclyFY(”X (Walz) = > Pekr1 — Do) h(Br k1) FY, x (al2).
1=1 k=1

Step 4: Let
n K-1 2
Tl)fz = Z Z/ Yl\X Y|X(T|Xi) Xi) FY X (FY1|X(T|Xi) X,)} dr
=1 k=1
and

n K-1

T;fz_ ZZ/ FS]%\X QY|X(T‘X)

where @%,d‘ « is the inverse function of ﬁ%,d‘ +» Wg(x) = Fx (x) independent of k and a uniform prior

Xl)} ’ dr,

) B ﬁ{ﬁo\X (Q\%’0|X(T|Xi)

on 7 is used for simplicity.

We provide a few comments on the procedure above. First, when X is discrete and takes J values
{z1, - ,z;5}, J > 2, the estimation procedure can be simplified. Actually, the three-step procedure in
Section E| can be applied conditional on each z; cell. This is equivalent to using saturated specification in
T(,-), R(-,-) and B(:). In practice, when .J is large such that the data size in some cells is limited, the
estimation procedure as above is preferred because it imposes some restriction on the relationship among
cells and has less coefficients to estimate. Second, although T'(-,-), R(-,-) and B (-) can take quite flexible
functional forms, e.g., polynomials, B-splines, trigonometric polynomials, wavelets, etc, the number of terms
in T'(-,-), R(-,-) and B (-) does not depend on n, which facilitates the asymptotic inference[”| Third, as
mentioned at the end of Section we can construct the counterparts of Ty, and T4, say Tix and T4X,
to improve the finite-sample performance. Although we can allow wg; in to depend on z, it seems
more convenient in practice not to allow so. Specifically, we can choose wg, k = 1,--- | K — 2, as the
first K — 2 maximizers of max,, > ., [|[@x, — w;||?, where wy is the Ith standard base vector in R~ and

13Note that our Bq(ya) estimation is semi-parametric because B4(yq) varies nonparametrically as y varies. As in the supple-
mentary materials of Yu (2015a), we can combine a goodness of fit test of these semi-parametric specifications with our test,
but a detailed analysis is beyond the scope of this paper. Also, it is clear that our test is an omnibus test for CRS, framework
, Assumption M and the semi-parametric specification.
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o~ ~ /
a:r = ((1/7\12 - 1/7\:51) h(me)a Tt (me - px,Kfl) h(p:rK)) ’ and then construct

n K-2
1 ) R R 2
. ) (p-1 A (Pl
T = 5 /[ ity (Prlx 10| i) = gy (Fyfx(r1%0)| X3) | ar,
i=1 k=1
| k=2 o (2l s (1 i
o - /T {F}(fl)x (FYlX(T|Xz) Xi) —F}(,O‘)X (FYUX(7'|X1') Xi):| dr.
=1 k=1

where

~(k K-1  ~
Pl (ale) =3 wniFYyx (ale) k=1, K =2,

Since the asymptotic properties of TjxX and ThX can be similarly developed as in Corollary [5, we omit the
details in the following subsection. Finally, unlike in the case of T},, when the support of X is large, it is
not easy to plot ﬁsﬁl\x (ﬁ;ﬁX(T‘X)‘ X) and ﬁ{ﬁo\x (ﬁ;{ﬁx(ﬂX)‘ X) in T{% as a function of T to provide
intuitions on how the null is violated. To summarize information, we can integrate X out in the construction
of T7 . From Frolich (2007), the unconditional cdfs of always-takers A, compliers C; and never-takers N can

be obtained as follows:
n Y px Py ixp(x,2),0 W1l X, Px, 1, 1)

FY1|A (yl) = ﬁl 5

n~t Yo |:FY|X,p(X,Z),D(y1‘XivﬁXi,kJrlv Dpx, k+1 — Fyx px,2),0 W11 X, Dx, ks 1)@@»,4

ﬁYc Y1 = = =
1‘k( ) Pk+1 — Pk ’

n~ty [FY|XA,p(X,Z),D(yO‘XizﬁX,-,kv 0) (1 = px,.x) — Fyx,p(x,2),0 (%0l Xi, Px; k41,0) (1 — ﬁxi7k+1)]

F\Yo\ck (yo)

)

Dk+1 — Dk

n~t 3 (1= Dx,k) Fyix px,2),0 (%ol Xi; Px, k,0)
1-pk

)

Fy,inv (%o) =

where pj, = n ! > Pxs ks k=1,---, K. Then follow the procedure in Sectionto construct ﬁyﬂck (ﬁfl(r))

and ﬁy0|ck (F\gl(r)) and plot them as a function of 7 to provide intuitions. Except for the purpose of pro-
viding intuitions, it is not suggested to use the unconditional counterpart of T}% as the test statistic because

it is expected to have less power than T5%. Similar comments apply to Ty, 77X and T5X.

5.2 Asymptotics for T\ and Tj,

The following theorems state the asymptotic distribution of 775, and T5%. We first impose the following

regularity assumptions.

Assumption DR: (a) por = p(x, 21) = A (R(z, 2)'7), k= 1,- -+, K, Fy|x p(x,2),0(Walz,p,d) = A (T (z,p)’ B4(ya)),
and ¢ = qx (z) = qp (B(x),n),k = 1,--- K -1, forall y € Yy, € X, z € {z, -+ ,2x} and
p € {Ps1, - ,Pzk |, where A is either Probit or Logit link function, and ¢, is derived from multinomial Logit,
TEX Szd
and contains an e-enlargement of the set {Qy,x(7|z)|z € X,7 € T} {Q%/le(T|x)|:r eX,Te ’T}. The
conditional density fy|x z p(y|z,z,d) exists, is uniformly bounded and uniformly continuous in (y, ) in the

conditional support of (Y, X) given z € {z1,---,zx}. X is compact. (c) F [||(R7 T, B)||2} < oo and the

conditional Logit or multinomial Probit. (b) The region of interest ); is a compact interval in [
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minimum eigenvalue of

X ) L[N U2 = 2 dan (Bm) Oai (B.)
J,=E lﬁ[l _mRR J,=E lel B’ o o7
and
Ja(ya) = E {1(17 = d) Aa(ya)® TT’]
W= ~ VN (a) 1 A ()]

is bounded away from zero uniformly over y € )y, where A is the derivative of A, R = R(X, Z), p = A(R'y),
A=ARY), T=T(X,p(X,Z)), Ad (ya) = A(T'Ba(ya)); Aa(ya) = MT"B4(ya)) and B = B(X).

We also consider the local alternative

6F (1))
NG

HY : F&\X(ﬂx) - F(]?O\X(ﬂx) =
where d (7]|z) = <5k (r|z) |k =0,1,--- ,K) falls in

Fx = {gth) e C0,112) | g(0]2) = g(1]2) = 0,
Pa1g1 (Tlz) + ZkK:_ll (P2k+1 = Pak) grt1 (7]7) + (1 = pr) greya (7)) = 0,7 € [0, 1],z € X} :

Theorem 5 In the framework (@, suppose Assumptions M and DR hold. Under HY and Assumption LA,
K—1 )
T~ Z / / (Z,El) (1,2) + b,(;) (T,m)) drdFx(z),
k=17XJT

where Z,il) (1,2) is defined in the proof, and

K—1 ;
(Pa,i+1 — Pat) h(Dz141)0 (T|2)

b (ra) = 6" (r]z) =

=1

is a linear map of 8 (v|x). Thus, for any ¢ > 0, P (n1ty > c|H{) > P (n1fy > c|Hy), where the equality
holds if and only if bg) (r,2) =0 forany k=1,--- ,K =1, 7 € T, and Px almost sure x.

Theorem 6 In the framework (@, suppose Assumptions M and DR hold. Under H{ and Assumption LA,

K-1
2
nTsx ~ Z /X/T (Z,EZ) (r,2) + b,(f) (7’,:17)) drdFx(z),
k=2

where Z,?) (1,2) is defined in the proof, and

ix (Qb|x(7'|$)|$) 5

b (1,2) = 85 (Qlyx (T]2)|2) —
’ o Fix (@b (o))

(Qux (Tl2)|z)

is a linear map of 0 (7|x), Qb‘X(ﬂx) is the inverse function of F5|X(T‘I) and f(]}‘X (t|z) is the density of
F[’}‘X(T\x), k=1,--- ,K —1. Thus, for any c >0, P (nTQXn > c|Hf) >P (nTQXn > c|H0), where the equality
holds if and only if b,(f) (r,2) =0 forany k=2,--- , K — 1, 7 € T, and Px almost sure x.

25



The comments on Theorem [2| and [3 can be similarly applied here. The only difference is that the covariates
X complicate the null distribution and local power. The exchangeable bootstrap is also valid as detailed in
S.2.1.

6 Testing With General Instruments and General Covariates

We first explain why the form of test statistic is not applicable in this general setup. As shown in Yu
(2016), when Z includes continuous components, the moment conditions imply

* Bm 1 n— o
Fxile) = I3 B tnle,o)do + 3 Frpx (Bl (Fax @il o) |2.0) do
+f [mev yilz,0)(1 = Fyix z)x (012)) + Fyyxv ( By (Frax (w1]z) |« x,v) Fp(X,Z)\X(v|$)] dv

and

* —x — - 1
Fy x (wolz) = fop Fy,x,v (Fyll\x (FY0|X (y0|x)’ m) ‘ x,v) dv + fﬁm Fyy1x,v (yolz,v)dv
+ f;: {me,v (Fyl‘x (FYng (yo|$)‘ 93) ‘ fcw) (1 = Fyx,2)1x (v]2)) + Fyy x,v (yolz, v) Fyx, 2y x (v |$)] v,

where

- D - Do
Fy, 1 x (y1lz) =/ Py, x v(yilz,v)h (v|z) dv, Fy, x (yolx) = Fy,1xv (yolz,v)h (v|z) dv

P p

=z x

wnd Cov (X, 72),1 (X, Z) > v) |X =)

hlvlz) = Var (p(X,2)|X = z)

From Yu (2014a), we can identify Fy, x v (y1]z,v) and Fy, x v (yol|z,v) for x € & and v € P, = [Qz,ﬁw] by

FY1|X,V(y1|xaU) _ dE[l(YSyl)D|£:I,P(X’Z):P] ’ — FY\X,p(X7Z),D (y1|sc,v, 1) + o dFy | x p(x, Z)pD(yﬂw,p, ) ’
= p=v
dE[1(Y <yo)(1—D)|X =z.,p(Z)= dF p,0
FYO|X,V(?JO|$7U) _ _dBE(Y<yo)(1 dp)l z,p(Z)=p] - _ FY|X,p(XZ (y0|x v,0) — (1 —v) Y|X,p(x,zzn,D(yo\zP ) .
(18)

so that Fyd‘x (y1]z) and the fp‘ term of FY. |y (y1|2) can be identified. Also,

Jo Fyix.v (i, v)dv = E [1 Y <y)DIX =z,p(X,Z2)=p_ | =p Fy|xpx.2).0Hlz,p 1),
L Propx.v (ol v)dv = E[1(Y < o) (1= D)|X =, p(X, Z) = Dol = (1 = Do) Fy | x,p(x,2),0 (Y0|, Py, 0)

are also identifiable. The difficulty in the inference comes from the estimation of p, and p,. We can estimate
p, and p, by p_ = mini<i<n (P (2, Z;)) Py = maxi<i<p (P(z, Z;)) for some estimator of p(-,-), where all
p(x,Z;) are used in estimation because we assume Z does not depend on z (otherwise, only p(x,Z;) in
the neighborhood of x can be used). However, even if p (z, Z;) were observable, the convergence rates and
asymptotic distributions of @x and 1:% depend on the tail properties of p(z, Z); even if we assume the density
of p(x, Z) is strictly positive on P, so that minj<;<, (p (2, Z;)) and maxi<;<, (p(z, Z;)) are n-consistent
and do not affect the asymptotic distribution of the test statistic, the convergence rates (and asymptotic
distributions) of p and P, are still unknown if p (z, Z;) is replaced by p(z, Z;). Of course, we can avoid
deriving the asymptotic distribution if the bootstrap is valid; however, the bootstrap validity is not warranted

in the boundary estimation (see, e.g., Yu (2014b)). This difficulty does not exist when Z is discrete; this is
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also why we switch to tests based on T3 and T;* where only Fy,|x,v (y1|z,v) and Fy,|x v (yo|z,v) for z € X
and v € P, need to be estimated.

6.1 Construction of Test Statistics

From 7 to estimate Fy,|x v (yalz,v), we need to estimate Fy |x ,(x,z),p (yalz,p,d). Our estimation is
based on distribution regression as in Section [5.1} see also Yu (2014a). More specifically, we use the following

three-step procedure.

Step 1: Let

FY|X,p(XZ pdlz,p,d) = A (T ($7p)lgd(yd)) ;
pz,z) = A(R(z,2)7),
where y4 € Yy with Yy being a compact set in R, A() is a link function, and T' (X, p) and R(X, Z) are

vectors of general transformations of (X, p) and (X, Z) respectively,

6 (yq) = arg maxz =d) [1 (YV; <yq)InA (T (Xi,@)lﬁ) +1(Y; > yq4)In (1 —A (T (X“@)/ﬁ))]

i=1

with Z/?\Z = ﬁ(sz Zl)v and

5 = arg maxz [D;InA (R(X:, Z:)y)+ (1 — D) In (1 — A(R(X;, Z:)'v))] -

i=1
Step 2: Let
By ke 0) = By ool es 1) 0 T8 3 3 (0 By
-
and
Ry ol ) = By oy ool 2,0~ (- 0) 28N 5000 (7.0, Byt
-

Conduct rearrangement if Fy,|x v (ya|T,v) is not monotone.

Step 3: Let
~ ~ . - 2
Tih = o) Z > / {me,v (F;jx,v(ﬂxi,vo) XiaPij) — Fyyix,v (F;UTX,V (71X, v0) Xiapij)} dr
i=1 j:pij #vo
and
1 2
Tszz = {nzz Pzg Z%)/ [FY1|XV(FY1|XV(T‘X17'U1)‘XMPZ]) FY0|XV(FY |XV(T|X“U1).X“I)’LJ):| dr,

X,,,p“)]QdT} .

Here, pi; = p(X;, Z;), and (v1,v,,v2) can be chosen as the first quartile, median and third quartile of

Xzapm) - FY0|X,V (FY0|X,V (7—|X17U2)

1
1By < v [ [P (Bl (71X va)
i=1 j—1 T
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Di; ¥ s implicitly, w(z,v) = Fx px.z) (x,v) and a uniform prior on 7 are used in T35 and T;X for
Dij j=1 P p(X,2) 3n 4in
simplicity.

As mentioned at the end of Section we can use a different hub from v,,v; and vy to improve the
performance. For example, as in Tj,,, we can use F; as the hub and employ different mixed v-subpopulations
for comparison. First, let

n—1

= . N Fy, X,v(yd|X',ﬁ")+ﬁY x,v (YalXs, Pij1)
Fy,x(yalX;) = Z (Pi,j+1 — Pij) h(Dij+1) 4l i» Dij 5 al iy Di,j
j=1
n—1 . .
= Y (Biger — D) h(Big1) FY, x (yal X0),
j=1
where suppose p;1 < Pi2 < -+ < Din,
h(piji1) = Ep(X,Z2)1(p(X,Z) > Pij+1) |1 X = Xi] - E[p(X, 2)|X = X;] E[L (p(X, Z) > Py j+1) | X = X]]
o Elp(X, 2)’|X = Xi] - E[p(X, 2)|X = X;]’
(19)
with

= n —1 n ~

Elg(X,Z2)|X =a] = H (x) 22, H (X)) H(X3)") ™ (i1 H (X:) 9(Xi, Z4))
for various g functions, g is g replacing p by p, and H (X) is a vector of transformations of X. Second, choose
wk, k=1, ,K,, as the first K,, maximizers of max,, > ., [|®x, — wi||? such that [jwy, — w]|| >cp, j <k,

where Wi = (wkly e awk,n—l) S Sn—27 ZJXZ' - ((ﬁﬂ _ﬁil) h(ﬁﬂ)v 7(p1n pz,n—l) h(pzn)) 5 and Cn > 0 is
to make sure the weights wj are distinct enough. Finally, construct
2
Xz):| dr.

T = ZZ/ A (Fraxr1x| ) - By (Frnri)

" i=1 k=1

where X
k. n— ~
Pl (wala) = D0 wnY x (vala) k=1, K.

In practice, we can set ¢, as ¢+ /> ., |@x, |? for ¢ being a small positive number, e.g., 0.1. Also, we can
monitor the p-value of T éff as a function of K, to choose K, e.g., choose K,, as the smallest positive integer
such that the p-values get "stable".

To avoid the estimation of B(@JH) in , we may use other mixed v-subpopulations as the hub. For
example, choose [}2, ]3] as a compact subset of [ . P, and use the equally weighted v-subpopulations on

g
L, ﬁ} as the hub; denote its cdfs as F'y,|x. This hub is very convenient since

o~

= pFY\X »(x,2),0(Y1]2,D, 1) — BFY|X »(x,2),0(y1]2,p, 1)
Fyx(yilz) = :
p—p
= (1—p) Fyixp(x,2),0(Wolz,p,0) = (1 = D) Fy|x,p(x,2),0(Y0o|z, D, 0)
FY0|X(y0|x) = — )
p—p
and no differentiation as in ﬁyd|X7v(yd|a:, v) is required. Proceed to select {Bk,ﬁk,} ,k=1,---,K,, as the first

1(pg<vsme) _ Y, <vspy)
Pr—p, p;—P

.. D 1(p, <v<py
K, maximizers of f; ﬁ — %
p p kTP,

dv such that Hﬁk —QkH > p,, and ff
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Cn, J < k; then obtain

=) Dby x p(x,2),0 W12 P, 1) — P, Fy|x p(x,2),0(Y1]7, P, 1)
F Y1|X(y1|x) = — )
Py — Bk
=) (1 - Bk) Fyx p(x,2),0(%0|2,p,, 0) — (1 = Di) Fy|x,p(x,2),0(Y0|2, Py, 0)
F Y0|X(yo|$) = — s
Pr — Bk
=(k)
where p, > 0 is to guarantee enough data points are used in the estimation of F Yd|X(y1|x), and ¢, > 01is to
guarantee the uniform weights on [Bk,ﬁk}, k=1,---,K,, are distinct enough. In practice, we may choose
U]
g

pn such that n - p, = 100, i.e., at least about 100 data points are used in the estimation of F Yd‘X(yd|m),
and choose ¢, to be a small positive number, e.g., ¢,, = 0.1. Finally, construct the test statistic

LS Xi)rdf.

i=1 k=1
Also, as mentioned at the end of

=1

=(k)
FY1|X ( FYl\X(T|Xi)

—~ (k) -1
> >
ngf = Xi) - FYD\X ( FYO\X(T|Xi)

As in T}X and T5X, we neglect the asymptotic properties of T4X and Tjx .

Section [5.1] we can integrate X out to aid intuition.

6.2 Asymptotics for 75X and T}%

The following theorems state the asymptotic distribution of T4\, and Tj%. We first impose the following

regularity assumptions.

Assumption DR': (a) p(z,2) = A (R(x, 2)'y) and Fy|x p(x,2),0(alz,p,d) = A (T (z,p)’ B4(ya)) for all y
Vi, z € X,z € Zand p € P,, where A is either Probit or Logit link function. (b) The region of interest ), is a

compact interval in [ 8.4 and contains an e-enlargement of the set {de|X$V(T|x, v)lre X, reT,ve Px}.

zeX
The conditional density fy|x,z p(y|z, 2, d) exists, is uniformly bounded and uniformly continuous in (y, z, z)

in the support of (Yy, X, Z). XZ is compact. (c) E {H(R, T)||2} < oo and the minimum eigenvalue of

~2

AN Aa(ya)®
-

M- Al L

R/

J,=E and Jy(yq4) = F {1(D =d)

is bounded away from zero uniformly over y € Yy, where R, p, A, T, Aq (yq) and Ag(yq) are similarly defined
as in Assumption DR.

We also consider the local alternative

0 (7|x,v)
\/ﬁ )

Hy : Fy,ixv(7|z,v) = Fyy x,v(Tlz,v) =

where § (7|z,v) falls in

Fy = {g(..’ yecC ([O, 1]2X>‘g(0|a:,v) =g(llz,v) = O,/O1 g(ulz,v)dv =0,u,v € [0,1],z € X} .

Theorem 7 In the framework (@, suppose Assumptions M, DR' and P hold. Under H{ and Assumption
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LA,
2
nTgfLw// /(Z(3) (T,x,v)—i—b(B) (T,J?,U)) dTFx p(x,2)(2,v),
xJp, JT

where Z®) (1, x,v) is defined in the proof, and

fU\X,V (QU|X,V(T|5U,%)|$,U)
foixv (Quix,v (Tlz, vo)|x, v,)

b(3) (T,.’b, U) = 5(QU|X,V(T|m7v0)‘x’v) - 6(QU\X,V(T“%) Uo)|mvvo)

is a linear map of 6 (t|x,v). Thus, for any ¢ > 0, P (nTs% > ¢|[H{) > P (nT5, > c|Hy), where the equality
holds if and only if b®) (1,z,v) =0 for any 7 € T and Px p(x,2) almost surely (z,v).

Theorem 8 In the framework (@, suppose Assumptions M, DR' and P hold. Under H{ and Assumption
LA

7

P 2
nT[ffl ~s max {/ / / (Zf‘l) (r,z,v) + 654) (r, z,v)) drdFx (x,7)(2,v),
X Jou, T

Vo 2
/ / \/11 (Z§4) (Tv x, U) + bgl) (Ta x, U)) deFX,p(X,Z) (‘T7 U)} )
X P,

where Z£4) (1,2z,v) and Z§4) (1,2,v) are defined in the proof,

fU\X,V (QU|X,V(T|$aU1)|$a'U)
fU\X,V (QU\X,V(T\I, Ul)|93,111)

Y (r,2,v) = 8(Quix.v (T|z, v1)|z, v) — 8(Quix.v (T]z,v1)|z, v1)

and

fU\X,V (QUlX,V(T|xaU2)|$>U)
fU\X,V (QU\X,V(T\% U2)|$,U2)

554) (1y2,v) = §(Quix v (7|2, v2) |7, 0) — §(Quix,v (7], v2)|z, v2)
are linear maps of 6 (t|z,v). Thus, for any ¢ > 0, P (nT5y > c|H{) > P (nT5y > c|Hy), where the equality
holds if and only if for any T € T, b(14) (1,2,v) = 0 for Px px,z) almost surely (x,v) € X X [v,,D,] and

bgl) (1,2,v) = 0 for Px ,(x,7) almost surely (x,v) € X X Qz,vo}.

We can still use the exchangeable bootstrap to obtain critical values for T5y and TjX ; see S.2.2 for the details.

7 Discussion

We in this section compare the tests in this paper with two groups of tests. The first group of tests are the
tests of correlated random coefficient models in Heckman et al. (2010) and Heckman and Schmierer (2010).
The second group of tests are the URP tests of Yu (2015a).

To test the correlated random coeflicient model, represent Y; as Y; = a; + §,;D;, where a; = Y; and
B; = Y1, — Yo;. The target is to test Hy : Cov (D;, ;) = 0 vs. Hy : Cov (D;, ;) # 0. If HV’s framework
is maintained, then this is essentially testing the presence of essential heterogeneity - E [U1|V] = E [Up|V].
Although Yu (2016) shows that E [U1|V] = E [Up|V] and Fy, v (uv) = Fy, v (u|v) do not imply each other,
the similarity of form between them makes the latter a natural counterpart of the former in the quantile
context. Heckman et al. develop two kinds of tests in HV’s framework. The first kind of test is based on the

observation that under Hy, two different instrumental variable estimators are both consistent to the average
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treatment effect, so significant difference between two such estimators indicates violation of Hy. This idea
cannot be applied in the context of this paper although it is somewhat like the cross matching idea in T5.
As shown in Yu (2016), if p(Z) is replaced by a general instrument, say J(Z), in , then Fy and Fy need
not be genuine cdfs and thus ]51_1 and 150_1 are not well defined. As a result, Fy(-) and Fy(-) cannot be
constructed, and so does the test statistic based on their difference. The second kind of test is based on the
observation that E [Y|p(Z) = p] = a+ bp is a linear function of p under Hy, so any violation of the linearity

is an indicator of the falsity of Hy. However, as shown in Yu (2014a),

OP (Y <ylp(Z) = p)
dp

= Fy,vlp) — Fy,v(ylp)

= Fy, v (F1 () Ip) — Fugv (Fo (v) Ip) = Fuv (F1 (y) [p) — Fuv (Fo (y) |p)

under our Hy, where the right hand side generally depends on p (and y), so P (Y < y|p(Z) = p) is not linear
in p in general. Nevertheless, from ,

OE [1(Y < y)D[p(Z) = p]
dp
OE[1(Y <y)(1—D)|p(Z) = p]
dp

= Fy,v (F1(y)lp),

= —Fyv (Fo () |p),

SO
OE[1(Y <F () Dlp(Z)=p] |, OE[I(Y<F;'(r))(1-D)|p(Z)=
[ 1 - P 1"] + [ 0 T P p] _ FU1|V (T|P) _ FUO\V (T|p) -0

under Hy. In other words,
E[I(Y < F ' (1))DIp(Z) = p] + E[L(Y < Fy ' (7)) (1 - D) [p(2) = p]
_ /Op Fupy (rlo) do + /p1 Fup (rfo)dv = Fy (1) = 7
does not depend on p. Hence the test statistic can be based on
EIY <FT'(r)D+ 1Y < E;' (7)) (1 - D) — 7|p(Z) = p| = 0. (20)

As in Heckman et al. (2010), we can use the Wald test or Bierens conditional moment test to carry out the
test. But as argued in Section |§|, the difficulty in our framework is the estimation of Fy (-) when Z includes

continuous components. When Z is discrete, is equivalent to
EY <F'(r)D+ 1Y <F;' (1)) (1= D) —7|Z = 2] =0,

k=1,---,K. To cancel 7, we take difference for Z = z;41 and z; to have

= EQY <K' (M) (1-D)Z=2]-E[Y <F (7)) (1= D)|Z = zp41],

E[IY < FTY(1)D|Z = 21| — E[1(Y < F{ ' (1))D|Z = 2]
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which is exactly the testing idea of T} by noticing that

.  EQ(Y<F'(7)D|Z=21| —E[1(Y <F{' (7)) D|Z = 2]
Frije.(Fr (1) = P(D:1|Z:z;;1)—P(D:1|Z:zk) ’
E[L(Y <F'(1)A-D)|Z=2] - E[LY < F' (1)) (1= D) |Z = 241

P(D=0]Z=z)—P(D=0/Z=211)

FY0|Ck (Foil (T>) =

and P(D=1|Z=zp41)—P(D=1|Z=2;,)=P(D=0|Z =2z,) — P(D=0|Z = z.11).

Although the testing ideas of Heckman et al. cannot be generally applied in the quantile context of
this paper, there is indeed some similarity. First of all, both Heckman et al.’s tests and our tests are
overidentification tests. As argued in Section 4 of Heckman et al. (2010), their two kinds of tests can be

treated as special cases of conditional moment tests based on

1
<Jk(Z) )(Y—a—b~p<z>>

where K > 2 implies overidentification information. Consequently, their tests require multiple instruments

E =0,k=1,---,K,

or multiple (more than two) values if only one instrument is available. For comparison, our tests are based

on moment conditions

Fy,ic, (Q1(7)) — Fyyie, (Qo(7)) =0,k =1,--- K -1,7€T,

or
F‘Y1|C1C (QYl\Cl(T)) - FYU|Ck (QYO\Cl(T)) = 07k = 2a e 7K - 177— eT.

As in the comments on Theorem [2] we need K — 1 > 2 to generate power, which requires Z to take at
least three values. The power of our tests also originates from the overidentification information - cross
mismatching.

We next compare the tests in this paper and the URP tests in Yu (2015a). As argued in Yu (2015a), the
power of URP tests also originates from some overidentification information; however, the overidentification
information there is different from that in this paper. To be precise, let U; and Uy be the unconditional
ranks in the two treatment statuses; then the null of URP tests is U; = Uy. This null implies the following

moment conditions,

Qvyx (Fyy 1 x (Qo(Uo)|z)|x) — @1 (Up) = 0,2 € X,

where we follow the notational convention of this paper. The intuition for this moment condition is that
under the null, the counterfactual Y7 of Yy = Qo(Up) when the conditional (on X = z) rank is preserved,
Qv x (Fyyx (Qo(Uo)|x)|z), must equal the counterfactual Y7 of Yy when the unconditional rank is preserved,
Q1 (Up). Obviously, if & includes only a single point, then Qy, | x (Fy,|x (Qo(Uo)|z)|z) = Q1 (Fo (Qo(lh))) =
Q1 (Up) by definition and no testing power is possible. So the overidentification information (or power) of
URP tests comes from the multiple (more than one) values of X, while the power of tests in this paper comes

from the multiple (more than two) values of Z and no X is required.

8 Simulations

We conduct some simulations in this section to assess the performance of our tests in the benchmark case
- Case (i). We will compare the performances of Ti,, Ts, with different hubs, Ty, and T3,. N = 500
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replications of two experiments with sample size 1000 and 2000 are considered. In bootstrapping critical
values, the repetition number B = 399 for n = 1000 and B = 199 for n = 2000. The significance level « is
set at 5%. 7 = [0.2,0.8] and 61 uniformly distributed points on 7 are used to approximate the integration
on 7. Our simulation study is quite limited due to computational cost since a bootstrap cyle is embedded
inside a Monte Carlo cyclelEI

Our data generating process (DGP) takes the form

Y, = 05071 (Uy),
D 1(p(Z) =V >0),V|Z ~U(0,1),

where Z takes K = 3 values, 21, 22, 23 = —1,0, 1, with equal probability, p1, p2, p3s = 0.1,0.5, 0.9, respectively,
and

-1 () 0 1 a b
o1 (Uy) | ~N 0|, a 1 ¢ ,a,b,c € [0,1].
o1 (V) 0 boe 1

Our DGP implies

Fov (ufv) = PUL<ulV=0)=P (@ " (1) <2 (0)[@7 (V) =0"" (v))
-1 2 -1 ! (u) — b®™
= PNV (b0 (0),1— ) < & (u) cp(

)
VI-1? ’
() —ecd (v 0 (u|v
P (o) = @ (=2 W) 20 g o) = R (ulo).

Neither Hg nor Hy involves a, a correlation measure between Uy and Uy. Under Hy, b = c and under Hy, b # c.
To guarantee the covariance matrix to be positive semi-definite, a needs to satisfy a® 4+ b2 +c? — 2abc—1 < 0.
So under Hy, a? + 2b* — 2ab® — 1 < 0, which does not exclude a = 0 (i.e., U; and Uy can be independent as
mentioned in Section 2) if b < 1/v/2 or a = 1 (i.e., Uy = Up). Under Hy, if a = 1, then b> + ¢ — 2bc < 0,
which is impossible if b # ¢, but a can be zero if b* + ¢?> < 1. To signify Hy and H; by a scalar, set a = ¢ = 0
and b € [0, 1), which implies Uy is exogenous, so we use a scalar b to control the level of both endogeneity
and violation of Hy. We will consider four b values, 0,0.3,0.6 and 0.9, indicating the null, small, medium
and large local alternatives, respectively. The two upper panels of Figure (1| show Fy,|iype (7) under Hy and
H? and the implied 6;ype (7) //7 when b = 0.9. Recall that the power comes only from ¢, (7) /y/n and
dc, (1) /v/n.
Under our DGP, P(Cy) = pa2 — p1 = 0.4 = p5 — po = P(C2). Since

_ ZzilP(V <pipr <V <pry1) P(Z = 2)

P(D = 1|Ck) =PV <p(2)lpr <V < prt1) =
Pk+1 — Pk

K
. P <V< P(Z = K

_ Zl_k+1 (Pk < prt1) P ( z1) _ Z P(Z=2),

Pk+1 — Pk I=k+1
we have
3

P(D = 1,C) = (ps—pm1) Zl_g P(Z=2z)=04x2/3=0.21,
P(D = 1,02) = (pg —pQ)P (Z = 2'3) =04 x 1/3 = 013,

11 did not consider the with-covariate case because it is very time-consuming, e.g., the computation in the application of
next section takes more than one week on my PC, where N = 1.
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Figure 1: Fy,jiype under Hy and HY with Implied Siype/ V1, b;cl), b,(f) and b;c(Q): b=10.9

and similarly
P(D=0,C,)=0.13,P(D =0,Cy) = 0.27.

In other words, in construction of ﬁYOlcl and ﬁyl‘cw we are using only about 130 data points when n = 1000.
The specification of p(Z) and the distribution of Z imply E [D] = 0.5, and

hips) = Cov(p(2),1(p(Z) 2 p2)) _ (P2 =0.5) /3 + (p3 —0.5) /3 _3
Var (p(Z)) (p1 —0.5)° /3+ (p2 —0.5)° /3 + (p3 — 0.5)* /3 4’
hips) — Cov (p(2),1(p(Z) > ps)) _ (ps —0.5) /3 _5
Var (p(Z)) (p1 —0.5)* /3 + (po — 0.5)% /3 + (p3 — 0.5)* /3 4

SO

~ 5 5
Fi(y1) = 04x e Fy,ic, (y1) +0.4 x 1% Fy, e, (y1)
0.5 T 0.9 T
_ 0.5 / o bd ! (v) do+ 0.5 / o bd~ ! (v) d
0501 o4 N 0.9 05 Jos N
0.9 T
s (amo,,
4 Joa V1-—0b?

Folyo) = @(yo).

In T, we use either C3 or C; as the hub, and the resulting test statistics and b;f) (1) are denoted
as Tz(rll), Téi), bg2) (1) and béz) (1), respectively. We consider also 77, and T3, using the weight selection
procedure suggested at the end of Section To assess the performance of our weight selection procedure,
we consider also T’ 1(,,1L), T 1(5), T 2/53 ) and TQ/ELZ). The first two are variants of 77, which use only C; and Cs in the
construction of T, and the last two are variants of T3, which use directly, rather than select, C; and Cs in

T3,,. So totally, we will consider nine test statistics, Tiy, Téi), Téi), Ty, Tl(}l), Tl(i), T4, TQIS) and TQIS). Note
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that in these nine statistics, except T1,, the summation with respect to k£ includes only one term. Since
(p2 — p1) h(p2) = (ps — p2) h(ps) = 0.5, we select C; and Cy with equal probability in 77,, and Tj,. As a
result, bgl) is bgl) or bgl) with equal probability in 77,,, and b;f) is b/1(2) or b;(2) with equal probability in 73,
where ~

fuie. (F51(7)>g ~

b (1) = e, (7 (7)) — > (15_1( )) (F7h ),k =1,2,
U v \T

with F, fand 5 being equally weighted averages of the counterparts for C; and Co. Here, we assume the null
rank cdf Fye, satisfies Fy, ¢, (7) + Fuy\c, (T) = 2Fye, (7), k = 1,2. For example,

B 1 05/ d~1 (u) — bd~ ! (v) u

Foe. () = 5501 /., ‘D( Vi w )d”f

B 1 09/ d=1 (u) — bd~ 1 (v) u

Foe. () = 5505 /), © ( Vi w ) Wty

and

_ 1 05 =1 (u) — bd 1 (v) 1 1
Joje (W) =3 (0.5—0.1) /0,1 ¢ ( V112 ) VI—02¢ (-1 (u))d” o
B 1 09 /=1 (u) —bd 1 (v) 1 1
foie (W) = 3 (0.9—0.5) /0.5 ¢ < V1—12 > VI— 024 (! (u))d” Ty

To intuitively illustrate the formation of local power, we plot bgl)/\/ﬁ, bg)/\/ﬁ, ng)/\/ﬁ, bf)/\/ﬁ, b/1(2)/\/ﬁ
and b;(Z)/\/ﬁ for 7 € T in the two lower panels of Figure|l} Note that 0.5 x bgl) +0.5 x bgl) = 0 as expected.

n— 1000 2000
b— | 0 03 06 09 | 0 03 06 09

Ty, |0.044 0164 0550 0.982 | 0.050 0.268 0.856 1.000
TSV | 0054 0172 0558 0.986 | 0.052 0.272 0.860 1.000
782 1 0.050 0172 0.554 0970 | 0.050 0.274 0.848 1.000
0.050 0.122 0.570 0.978 | 0.048 0.256 0.820 1.000
) | 0040 0164 0562 0.984 | 0.050 0.282 0.858 1.000
7 10044 0154 0512 0972 | 0.054 0242 0.830 1.000
Ty, 10050 0112 0568 0.980 | 0.048 0.250 0.830 1.000
TS 1 0.054 0126 0592 0.984 | 0.046 0.264 0.840 1.000
752" 1 0.044 0112 0532 0970 | 0.048 0.248 0.816 1.000

Table 1: Size and Power of Various Forms of T1,,, T7,,, To, and T4,
a = 0.05, N = 500

Table 1 summarizes the simulation results. From Table 1, a few conclusions can be drawn. First, all tests
perform satisfactorily well - the sizes are close to the nominal level 5%, and the powers are reasonably high;
as expected, the powers when n = 2000 are better than those when n = 1000. Second, the power of T}, is
between those of Tl(}l) and Tl(i). Third, the powers of TQ(}) (T2(727,)) are generally better than those of Tl(}l) (Tl(?)
and TQ(,ll)' (Tz(i)/), which matches the local power functions shown in the two lower panels of Figure|l} Fourth,
the performance of T3, is between those of T2(71L)/ and TQ(?/, while the relative performance of T}, compared to
Tl(,lL) and T 1(2) depends on b and n. Basically, adaptively selecting the weights will introduce extra uncertainty

to the test statistics, so the relative performances of the tests using adaptive weights depend on the trade-off
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between the power benefit and the extra uncertainty. This is not a problem in practice since we have only
one dataset, so we can just report the performances of Tl(}t), T 1(3), T 2(71)/ and Téi)' and check the sensitivity of

the testing results. Of course, when K is large, it is still meaningful to report only 77, and T3, for simplicity.

9 Application

We use the dataset of Angrist and Krueger (1991) to illustrate some main points of this paper. This dataset
is also used in the empirical study of Chernozhukov and Hansen (2006) as an illustration of IV-QRE, so
the tests in this section can serve as pretests for their estimation. Angrist and Krueger (1991) estimate
schooling coefficients using quarter of birth as instrument in a sample of 329509 men born 1930-39 from the
1980 census. Quarter of birth is correlated with educational attainment because of a mechanical interaction
between compulsory school attendance laws and age at school entry. See the appendix to Angrist and
Krueger (1991) for a detailed description of the data.

To fit the data into the framework of this paper, define D = 1(S > 12) to be the indicator of a high school
graduate, where S € {0,1,---,20} is the years of schooling. Y is the log weekly wage, and X is a vector
of covariates consisting of state and year of birth fixed effectsE Z can take four values, indicating the four
quarters of birth. However, the marginal information when Z increases from one to four is decreasing, so
we combine the third and fourth quarter to condense information. More specifically, if Z takes four values,
D = 0.3881,0.3962,0.4023,0.4054 for k = 1,2,3,4, so p, — p1 = 0.008 > p3 — p2 = 0.006 > py — p3 = 0.003.
If Z takes K = 3 values, then p; = 0.3881,0.3962, 0.4038 for k = 1,2, 3, so p» — p1 = 0.008 is comparable to
D3 — p2 = 0.0075. Obviously, the instrument is quite weak, but since n = 329509 is very large, n (p2 — p1) =
2677 and n (p3 — p2) = 2494, and we have enough data points to estimate the cdfs for compliers. Another
reason to combine Z = 3 and Z = 4 is that ﬁYd|C3 and ﬁyd‘c4 are not very stable if Z takes four values. One
key assumption imposed in this paper is the monotonicity assumption whose validity is shown in Angrist
and Imbens (1995).

Although X is discrete, it can take 510 possible values with the minimal cell containing only 3 data points
(and the maximal cell containing 3203 data points), so it is better not to use the saturated specification of
X but to impose some restriction on the relationship among cells. Specifically, our conditional distribution

of the returns to schooling is specified as
P(Y <ylX,p(X,Z) = p,D =d) = A((p,0°) aaly) + X'Ba(y))
and the treatment status is determined by
D=1V < X'y, +2'y,),

where A(-) is the cdf of the standard normal, and V follows a standard normal distribution. Unlike in
Chernozhukov and Hansen (2006), D is binary rather than the years of schooling S to fit in the framework
of this paper. Also, we use dummies for the three quarters of birth rather than both the linear projection
of S onto X and the three dummies as instruments. The distribution regression is conducted by the matlab

function glmfit; we estimate ﬁY\X,p(X,Z),D(yd|$7P7 d) at 200 y,4 values uniformly from [g; (0.01), gy (0.99)] and

15The state and year of birth fixed effects include 59 dimensions. We add a constant in X in the outcome equation but
exclude the constant in the participation equation due to the specification of Z.

16We also tried cubic polynomials of p, and the results are qualitatively similar. Note here that even if we use the saturated
specification for X, the specificaiton is not fully saturated to both X and p. The fully saturated model should include the
interaction terms of p and X. We neglect such interaction terms because P, includes only three points and does not include
much variation given that the instruments are relatively weak.
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interpolate other y4 values, where gy (7) is the 7th sample quantile of Y with D = d. All components of 7, are
positive, which guarantees the propensity score is increasing in Z for any X value. Among 7, the coefficients
on the year of birth dummies are increasing with the year, indicating that attending college is more popular
in later years. In the algorithm in Section we need also estimate gi(x) = P (Z = 2| X = z). We tried

the multinomial Logit model by using the matlab function mnrfit, where

B(x),n) = exp {a'S}, }
@ (B, Zlf;exp{ﬂ?'ﬁz}

with n = (5’1, e 7ﬁ'K)/7 but almost all coefficients are insignificant at the 5% level This is, of course,
because Z (i.e., the quarter of birth) is independent of any other variables. As a result, we let gi(z) = g

independent of x. Another justification of Z L X is that in the sample,
/p(x, Z)dFx(x) = /E[D|X =, Z]dFx(z) = /E[D|X =z, 7] dFX‘Z(x|Z) =FE[D|Z] =p(Z)

hold perfectly.

Tests Ty Ty @ M 5@
Test Stat. | 7.801 x 10~* 0.0012 7.947 x 10~* 7.591 x 10~*
p-values 1.000 0.995 1.000 1.000

Table 2: Test Statistics and p-values for Four Tests

As suggested by the simulation study in Section we check the performance of T7,,, T 72 (1), TQ(,?, Tég)

In >+ 1n >+ 2n
and T: Q/f) with covariates. However, the first three test statistics perform badly. This is because Fy; - sta-
= ~ ~—1
tistically dominates Fy (for each X value) such that Fy, <F0 ()> takes very small values. Given that
the probability of never takers is large (e.g., in the unconditional model, this probability is about 0.6), ﬁyl
is quite small (e.g., max (ﬁy1 ()) can be around 0.2 for some X values) such that f;ll in the first three
test statistics does not perform well, which significantly affects their performances. As a result, we report
only the last four test statistics in Table 2. In construction of the test statistics, 7 = [0.2,0.8] and 61
uniformly distributed points on 7 are used to approximate the integration on 7. In bootstrapping critical
values, the repetition number B = 199. From Table 2, the dominating conclusion from all tests is that
we cannot reject the null, i.e., the IV-QRE in Chernozhukov and Hansen (2006) is justified at least based

on our current tests. Note also that the optimal complier based on max {Z}Izl H‘A"z] — le2 P, }, where

~ _~ !/
Wy = ((@2 — Dz1) h(Pa2), (Pa3 —@CQ)h(ﬁz?,)) , Py = 7' 1(X; =x;) and J = 510, as suggested in
Section [5.1]is Cy.

To provide more intuition on the testing result, we plot the unconditional cdfs in Figure[2] as suggested at
the end of Section Some interesting conclusions can be drawn from Figure 2| First, from the upper left
panel, (i) Fy,|¢, and Fy, ¢, are almost the same, while Fy; ¢, stochastically dominates Fy;c,, so if the rank
is preserved, then the QTEs for C; are larger than those for C5. This explains why C; is more eager to enter
college than Co. (ii) Fy,|4 tends to be stochastically dominated by Fy,|¢, and Fy,|c, at most y values, i.e.,
Y for always-takers tends to be lower than compliers; parallely, Y, for never-takers tends to be higher than
compliers. It is possible that Yy for always-takers is even lower (e.g., fewer chances if not going to college),

so the return to college is much higher for them than compliers; parallely, since Y| for never-takers is already

1TWe can also try the multinomial Probit model, but it is quite time-consuming since usually the simulation method such as
the GHK simulator would be employed.
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Figure 2: Unconditional Versions of Various Forms of 75X, T5% and TX

high (e.g., more chances due to better family backgrounds), it is not necessary for them to go to college.
(iii) As a weighted average of Fy ¢, and Fy,c,, ﬁyd stays between Fy,c, and Fy,c,, but F}" does not
stay among Fy, |4, Fy,|c, and Fy,|c,, and F{ does not stay among Fy;c,, Fyy|c, and Fy,|n. Nevertheless,
ﬁyl and Fy stochastically dominate ﬁyo and Fy, respectively. Second, from the other three panels, we
can see that F\yl‘ck (ﬁf1(7)> and ﬁYoICk (ﬁoil(T)) for k = 1,2, ﬁy1|cl (ﬁ;jcz (T)) and ﬁy0|c1 (ﬁyjol\cQ (T)),

~ ~ ~ ~ ~ ~—1 ~ ~—1
Fy,ic, (F;jcl (T)) and Fy,c, (F;()l‘c1 (T)), Fy, e, (F1 (7’)> and Fy,c, <Fo (7)> for k = 1,2, are all close

to each other, which explains why we cannot reject the null.

10 Conclusion

In this paper, we test the conditional rank similarity assumption of CH which is a key identification assump-
tion for the IV-QRE. Different from the unconditional rank similarity test, no covariates are required here.
We test this assumption in the framework of HV, and consider three cases, covering discrete/continuous
instruments with/without covariates. For each case, we propose two tests and two extensions, and we also
suggest to use the bootstrap to obtain critical values.

There are some problems not covered in this paper. First, our simulation and application concentrate
on the discrete instrument case, and more simulation studies and applications on the continuous instrument
case would provide a more complete picture on the performance of our tests. Second, one key assumption
of this paper is the monotonicity assumption of the participation equation. This assumption facilitates our
testing procedure but is not required for the consistency of IV-QRE. One possible test when this assumption
is relaxed is the Hausman-type test: use two different sets of instruments to construct two inverse quantile
regression estimators of QTE as in Chernozhukov and Hansen (2006) and use their difference as an indicator

of violation of the null. Third, we did not discuss the power optimality of our testing procedure. For example,
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in the formulation of T} and T, it is unknown which wy and pu,, (7) would provide the optimal power. In T7,,
and T3, , we propose some simple procedures to improve power; however, the optimal wy, k=1,--- | K — 2,

and the optimal hub depend on not only @ but )\,(cli) and the correlation structure of 5,2? for T7,, and )\,(j)
and the correlation structure of 5,&3) for T3,,, and seem hard to develop.
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Supplementary Material S.1

We first collect the notations that will be used in the following proofs. G, (f(y)) = v/n (P, — P) f(y) with
P,, being the empirical measure is the empirical process indexed by {f(y)|y € Y} for a compact set Y, and
G (f (y)) is a zero-mean Gaussian process with the covariance function E [G(f(v))G(f(v'))] = E [f(y) f(y')]—
E[f(y)] E[f(y")]. For a parameter 6, dy means its dimension.

Proof of Corollary We show first Qy, v (Fyyv(volv)lv) = Q1 (Fo(vo)); Qvyv(Fyy v (yilv)|v) =
Qo (F1(y1)) can be similarly proved. Note that Fy, |y (Q1(7)|v) = Fy,jv (Qo(7)|v) implies

Qyvy v (TIv) = Q1 (Fo (Qyy v (7]0))) - (21)

Letting 7 = Fy,|v (yolv), we have

Qvy v (Fyy v (yolv)[v) = Q1 (Fo (Qvy v (Fyy v (%olv)|v))) = Q1 (Fo(yo))

as required, where the last equality uses Qy, v (Fy,|v (yo|v)|v) = yo. Conversely, if Qy, v (Fy,v (yolv)|v) =
Q1 (Fo(yo)), then Fy, v (y1]v) = Fy, v (QoF1 (y1) [v). So

Fy, v (Q1(7)|v) = Fy, v (QoF1 (Q1(7)) [v) = Fyy v (Qo(T)[v).

We next show Fy, v (Qy, v (T]v) [v") = Fy, v (Qyyv (T]v) [v") for arbitrary v # v. First, Fy,|v (Q1(7)v) =
Fy, v (Qo(7)|v) implies
FY1|V(y1“rv U) = FY0|V (QO (Fl(yl)) ‘U) .

So combined with ,

Fyiv(@yy v (TIo) [v') = Fyyv (Qo (FL(Qypv (7)) V')
= Fyv (Qo (F1(Q1 (Fo (Qyyv (T]v))))) [v") = Fyyjv (Qyy v (o) [0).

Conversely, if Fy,jv(Qy,jv (T]v) [v) = Fy,jv(Qy,v (t]v)[v") for arbitrary v’ # v, then Fy,jv(yi|v') =
Fyy v (Qvov (Fyy v (y1v) [v) [0"), so

Fi(y1) = /FY0|V(QY0|V (Fyy v (malv) [v) [v")dv" = Fo (Qyyv (Fyypv (m1lv) [v)) -

Asaresult, Qv v (Fy; v (¥1|v)|v) = Qo (Fi(y1)), which has been shown to imply Fy, v (Q1(7)|v) = Fy,v (Qo(7)[v).
Finally, we show that fixed v or arbitrary v does not matter. For this purpose, we need only show that

holds for fixed v implies it holds for arbitrary v. Suppose Fy, |y (Qy; v (7]v) [v) = Fy v (Qy, v (T]v) [v')

for a fixed v and arbitrary v # v; we try to show that Fy, v (Qy, v (T]v") V") = Fy,jv(Qyy v (T]0") [v")

for any v" # v and v # v". First, Fy,|v(Qy, v (T|v) [v") = Fyy v (Qy, v (T|v) [v') implies Fy, |y (y1]v”) =

Fyyv Qo v (B v (11]o) [v) [v') and Qy, v (T]v') = Qv v (Fyy v (Qvgiv (T]0)) [v) o) for any o' # v. If

v’ # v” but equals v, then

Fyv @y v (T10") [0) = Fyy v @y v (Fyg v (Qyopv (TI0) [v) [0)[0) = Fygiv Qg v (7[0) v) -



If v' # v"” and v, then

By v(Qyyv (T") [v') = Fyyv (Qyvoiv (Fya v (Qvypv (T10") v) [v) [0)
= Fyiv@Qvoiv (Friv (Quiv (Fyov (Qygpv (T10") [0) [0)[v) [0) [v) = Fyg v (Qygpv (T]0") [0') -

|

Proof of Proposition Since Z is independent of (Y1,Yy, V), we can specify the distributions of
(Y1,Y0,V) and Z separately, where the distribution of Z is implied by the observable data distribution.
Specify the joint distribution of (Y7,Yy, V) as

Fy, vo.v (y1,90,v) = Fy,jv (1) Fyy v (%o) v

i.e., Y7 and Yj are conditionally independent given V', where Fy (v) = v because the distribution of V is
uniform on (0, 1). The joint data distribution of (Y, D, Z) is

JP By (ylo)duFy(z),  ifd =1,

F .d, F d,z) F
ros 2 = o Bl ) {fp(z)Fy0|v<>dvFZ<z>, it d =0,

in the framework and under Assumption M. In summary, we need to specify Fy, |y (y1) and Fy,v (yo)
such that

p(2)
/ Fy,v(ylv)dv = Fypz(y,12),y €S,z € {x, - ,z2x},
0
1
/( )FYOW(Z/\U)dU = Fypiz([y,002),y € So,z€ {21, , 2K},
p(z
1 Pr+1
7/ FYd|V(Qd(T)|U)dU = FYd|Ck(Qd(T))aT€(Oal)ak:17"'7K_17
Pr+1 — Pk Jp,

Pr+1
with Q;'(y) = / Fy, v (ylv)dv = Z/ Fy, v (ylv)dv, y € Sy,

FY1|V (Ql (T) |’U) = FYOIV (QO( ) |U)7 (071)7 (071)7
with Fyﬂck (Ql (T)) - FYOlck (QO (T)),TE(O,I),]{JZL'-- K —1,
where pi, k =1, -+, K, is implied by the the observable data distribution, the first and second equations are

to match the joint distribution of (Y, D, Z), the third equation is to match Fy,c, (Qq (7)) which is exactly
the definition of Fy, ¢, (-) in our framework and contains no further information, and the last equation is
to match Hy with @[) holds. The question is whether we can find some Fy,|v (y1) and Fy, v (yo) to satisfy

these equations simultaneously. Obviously, we need only find feasible

Prk+1
/ Fy,v(ylv)dv,d =0,1,k=0,1,--- | K.
Pk
L Fy,v(ylv)do, k=1, K —1, is determined by Fy p|z (y,d|zk+1) = Fyp|z (v, d|zx), [o" Fy,v (ylv)dv
is determined by Fy p|z (y, 1]21), and fle Fy, v (y|v)dv is determined by Fy, p|z (y,0/zk ), so the only remain-

. . 1
ing freedom is [* Fy, v (y|v)dv and Lo Friv (ylv)dv or Fyg 4 (yo) and Fy;|n (y1).
In summary, the question is whether there exist Fyc,,k =1,--- , K — 1, Fyja, Fun, Fy, v and Fy;ja



such that

(Fl (1)) = Fyye, (1), k=1,--- K —1,
(Fo (v0)) = Fyye. (Wo),k=1,--- K —1,
|Foa(Fr ) = Fria )| Foa] (Fo (w)) =| Fyopa] (o)
Fow |[(Fo () = Fyow (w0) | Fuu | (Fa (02)) = | Fijae | ()
with
K-1
Fi(y1) = piFyjay)+ Z Prt1 — Pr) Fyy e, (y1)+(1—PK)(y1),
k;l )
Fo(yo) = Pl (yo) + > (Pr+1 — k) Frje, (W0) + (1= pc) Fygin (w0) -
k=1

7K7
17 FY1|.A and FYQ|N7

Equivalently, we need to find Fyc,,k=1,---
distribution of Fy,co, k=1, K —

1, Fy|a, Fuin, Fy, v and Fyg| 4 such that for any data

K-1
PPy () + D7 (ke = pr) Fraje, () + (1= pi) | Fraw [0) = | Fe, | (Frije, () b =1, K =1
k=1
= FU‘; (Fyija (1))
= szﬁv ((yl)) Y1 € S,
K-1
pl (yo) + Z Prt1 — Pr) Fyyie, (o) + (1 = pi) Fyy v (Yo) = FJ‘Ck (Fyoicr W0)) ,k=1,--- K —1
k=1
1
= | Fia| (o] o)
= FJW (Fyo v (0)) 5 50 € So.
Take any k=1,--- ,K —1 and 7 € (0,1), we must allow F[jllck (1) to satisfy two equations
K-1
plFY1|A ( Y1\Ck ) + Z pg+1 pj FYl\C (F;l}ck (T)) +(1 _pK) (Fchk (T )) = FU\ICk (1),
j=1
K-1
P Proia] (Frife, M) + X (i1 = 22) Frae, (Fiafe, (1) + (U= pi0) Frw (Fife, ) = [ Fe, [0,
j=1
Fljﬁét to satisfy
K-1
nr+ Y B =) Frie, (Fra (D) + 0= ) [Frw [ (Frla (M) = | Fol| )
j=1
—1
pir+ Z s =) B, ([Pl 0) + 0 =i B ([Bla]0) = [Fald] .

)

)



and Fy; IN to satisfy

K—1
PlFY1|A<F§11N >+ (pj+1 — pj) Fyye; <F§11N (7)> +(=pr)T = | Fi (),
j=1
K-1
pl( y|/\/ )"’ pJ-i-l bj FY0|C (F}?‘N(T))+(1—p1{)7’ = FJ\/\/’ (7')
j=1

simultaneously. This is possible if we let Fy, v (Q1(7)[|v) = Fy,jv (Qo(7)[v) = Fyjv (7|v) since then
Froa (Frle, (1)) = (Frife, (1) = Foa (Frt, (7)), cte. m

Proof of Proposition |2l From the proof of Proposition [I] only cross matching is required. =

Proof of Theorem I. ) The test statistic involves the following processes ({Fy1|ck (y1), ﬁy0|ck (yo)}kK:_ll,
Qi(1). Qolr). 7 € Ty € Y1 = {Qu(lr € T} and 3o € Yo = {Qo(r)lr € T}, where (Qu(r). Qo(r))
involves (Fy1|A(y1) {Fy1|ck (y1), Fy0|ck (yo)}kK=7117Fyo|N(y0),{@,qu}lIil) Wghlal = ny/n. Lemma 1 derives
the weak limit of these components. Now, since ({Fy,c, (¥1) , Fyq|c, (yo)}kz_1 , F1(7), Fo(7)) is a Hadamard
differentiable map of (Fy,|4(y1), {Fy,ic, (¥1), Fyyc, (yo)}kK:_ll,FyO|N(y0), {pl,ql}fil), by Lemma 1 and the
functional Delta method, we have

lfmck (y1) — Fyye,. (y1)
Fypie (o) = Fyplen W0) | g (g i 0% (V2K
Al P | em o
0(¥o) — Fo(vo)

where ¥, (€ (p,(W)) = G W,0), (1002, W6V 00) S 4 (W), (64D, 2), 2y ()} i
defined in Lemma 1. The operation of the linear map \Ilzg ) ():C (y) = 02 (V)*X on a(y) = (o (),
{af (1), ab(wo)} i, o (o), {81, 3E,) € C (V)* is explained as follows. The first 2 (K — 1) ele-

ments of \Il?(f) (a (y)) is straightforward, so we concentrate on the last two elements. First, since h(pg41) =

Sl a(Pi—30 pear k1
i{{:’“:r;p?(_(zl{l ;pl)z) is a differentiable function of {p, ql}l 1, define ¢ (B,7) = h’;“’ﬁ + h’;“'fy, where

h’;“ and h’;“ are the partial derivati~ves of h(pry1) with respect to p and q respectively, p = (p1,--- ,pr)’
and ¢ = (g1, ,qx)'. Second, since Fy (ya) = S pry (Drs1 — Pi) h(prs1) Fyy e, (ya), define

oy ({a’é(yd)}kK: 7577) = ZkK:_f (Prt1 — i) h(Prs1)al(ya) + ZkK:_ll (Pr+1 — pr) Fyyc (a)or ™ (8,7)
+ ZkK;ll h(pri1)Fy,ic, (Wa) (Bryr — Br)
(23)
as a linear map from C ()))“?’1{71 — £>°(Y). Third, since F{'(y1) = p1Fy, |4 (y1)+2,§=711 (Pr+1 — o) {Fyi e, (y1) (1—
Sy @)+ Fyyie, (Fy ' Fy (1) iy ai} + (1 — prc) Fyy e (Fy ' Fi (1)), the second-to-last component of W4 (a (y))
is

k

proit(y1) + ZkK:_ll (Pk+1 — D) (1 - 21;1 (Il) af(y) + Z::ll (Pk+1 — Pk (Zf_l m)

Sl fo k(ﬁilﬁl( 1)) ~ =17 K-1 ~ -
B0 AT o (4 5 0)) ) (o £55)

+(1—px) [o (Fy ' Fy (1)) — fzzfléil;iy(il))) (&0 <{a’g(ﬁ01ﬁ1 (yl))}f: 75,7> — ({a’f ()}, ,B,v))



k K-1 k

+B1Fyv; 14 (1) + Z ﬁk+1 Br) Frije, (v1) (1 - 21:1 qz) - Zkzl (Prt1 — Pr) {FYllck (v1) 21:1 Vi

e, (B i i)Y, %} + (1= Br) Py (Fy ' Fa (1)),

where the f function is the pdf of the corresponding F' function. The last component of \P512) (a(y)) can
be similarly derived. Note that since p1, (pr41 — px) and (1 — px) will offset the denominator of Fy, |4 (y1),
Fy,ic,(ya) and Fy,) in Fy (yq) and Fy (y4), some terms involving 3 will offset each other.
K-1. . . _
Next, since {Fy1|ck (F Yr )) Fy,ic, (FO )) }kZl is a Hadamard differentiable map of ({ Fy, |c, (¥1) » Fyy|c, (yo)},i(:ll,
Fi(7), Fo(r)), we can apply the functional Delta method again to have

FY1|Ck Ffl(T) - FU1|Ck (T)

R ~ in ¢ (7)2K-D
FY0|Ck, FO (T) - FU0|Ck (T)

—u® (v (00 (@ (¢, 1))

y1=F ' (7),yo=F5 (1)

Here, for o(y) = ({o§ (1), of (o) ", 01 (1), a0 (y0))” € C (V)" the linear map w8 () : C(»)*F —
£ (7)2(K_1) evaluated at « (y) is defined as follows. The term associated with ﬁyl‘ck (ﬁf1(7)> is

fY1|Ck (Ffl(T))

aq 71’7’ y
fEm)

of (Fr(7)) =
and the term associated with ﬁYole (ﬁal(T)) is

fY0|Ck (Fo_l(T))

ak (F1(r)) —
S ) T )

ao(E5 (7).

Finally, 77 = Zk T [Fyllck (Q1(7)) = Fy, e, (Qo(T))]2 dr is a continuous functional of { Fy, ¢, (Fl_l(T)),
Fy e, (Fo_l( ))}kzl , so by the continuous mapping theorem,

nTln Zk 1 /

‘I’fi)r ‘I’(Z) 1(r) (‘I’Evl)% ) (G (WF?I(T)(W)»))

RV A BTN AR )]
Yo A

where ¥ = {\I/,(;’T)}k:1 and \I',(C?’T) (\IJ,(C?;)T, \IJ,(C?;)T> the index of ¥ in \IJ,(cl)T is replaced by F;'(7) since only
processes indexed by y; are involved, and similarly for the index of y in \I/(BQ)T We can equivalently express
2 1) 2 e
Vil (\I'( L(T) (\I’Eﬂ‘l(r) (G (wFf 1<T>(W)>))) o G( kT (‘I’( o (‘I’( b (“"FJWT)(W)))))’ similarly
(3) (2) 1

for 9, (V) (Vi (8 (20 0) )

Since Zj (1), k = 1,--- , K — 1, are correlated Gaussian processes, we must extend Mercer’s theorem
(see, e.g., Lemma 1 of Bierens and Ploberger (1997)) to express ZkK:_ll I Z (7)? dr as a mixed chi-square



distribution. First, by Mercer’s theorem

/VTZ(1 2 ZA’C% kz )

Where 5,(61)’3 and )\,(Cli)’s are defined in the theorem. For k # [, we must study the correlation between al(cli)

and al . Since
= [ 2 e and o) = [ 200y (ar,

(1)

. 1
the covariance of Eri (1)

and e} is
E{ /T 70N (1) ¢, (1) dr /T Z (1) p; (7) dT} = /T /7 20 (71, 72) @3 (11) @; (72) dT1dT,

where E%) (r1,72) = FE {Z,(fl) (Tl)Zl(l)(TQ)] need not be a positive semi-definite continuous function on 7 x 7,

SO fT Zgl) (71,72) ¢; (T1) dT1 need not be a multiple of ¢, (72) such that this covariance depends on four
indices (k,1,1, 7).

(ii) Denote Fy,|c, and Fy under HY as Fﬁd‘ck and F)}' respectively. Under Assumption LA, we know by
Lemma 2.8.7 of VW (p. 174) that

Vi (Baje. (FT10) = R, (Fr710)) = Vi (Baje, (F10) = Fe, (F271(0))
)-

= Vi (Bre (BT M) = Baje (F')) = v (B e, (FEH0) = Fe, (B (1)) ~ 20 (),
S0 it remains to derive v/t (P o, (FI'™1(7)) = B ¢, (Fy™'(7)) ). From Yu (2016),

VAT - P — 2R

VAR - Fn) - e

where

So (prsr — i) Foz) () fug ey, () + (1 = pK) fugia (T)

Dp (6) (1) =
n O Sy (et — pi) h(prs1) fuoie, (7)
'ZZ:; (Pr+1 — Pr) M(Pr41)dc, (T)
- {Zf_f (prs1 = pr) Foiz) (o), (7) + (1 - pmzsN(T)} ,
Dr (6)(7) = _pifuyga(T) + S o (ks — i) (1= Foizy (1)) fojen (7)

S (ke — pr) h(pres) fog e, (1)
S e —m) )i

{pﬂh + Z pk+1 — k) (1= Fpz)(pr)) dc, (7')] ;



with

fU1|A(7') = pil Opl fUl\V (T]v) dv
foaer @) = o [y ey
on\N (1) = 1 ij . ng|V (Tfv) dv
Vi (B, (P17 ) e (F371D))
= \/E(FU\ck Fy (F7H (7)) = Fue, (Fo (F5~ 1(T))))
= Vi (Fhe, (B (F77()) = Fue, (B (F77()) )
+Vn (Fyie, (Fu (F7H(T))) = Fuje, (Fy (FTH(7)))
+vn (Fyie, (Fo (Fy (7)) = Fuje, (Fo (F5~1(1))))
! Dp, (9) (1) 1 Dp, (6) (7)
— e, () — Tuic, (1) fr (F1 (7)) m + fulc, (1) fo (Fo (T)) m
= d¢.(7) = fuie, (1) [Dr, (8) () = Dr, (0) (D] = 0 (1),
where Fjo = Fyje, + de /M, Fue, (u) = Fyge, (u) = p;pl o * Fyojv (ulv) dv, and fyc, (-) is similarly

defined. bg) (1) can be further simplified:

S Prt1—Pr) Fo(z) (08) (M) +1—px) fugin (1) K-1
= k;i;—fl(pkfl)_pi)hrj(;':fl)fwck(TI; QoA Sy (Prg1 — i) B(prs1)de,, (1)

p1fu \A(T)+Zf;11(Pk+1—Pk)(1—Fp(z)(Pk))fU 1cy (T) K—1
+ 1 =t 1%k . - _ h 6 )
bV (1) = beu(r) — fuie, () S pr PR (P ) o 10y (7) 2=t (Prets = pr) Ppria e, (7)

— [255 prsr — pi) Fy (o)dc, (7) + (1 — pqu

— 1p10a(r) + Spy (k1 — 1) (1 — Fpizy(p1)) 8¢y (7)

p1fuia (T)- 50 ke — 1) fuie, () + (1= pr) fuin (7)
S (P — pr) h(Prs1)

= 6Ck (T) -

‘Zf:_ll (Pr+1 — Pr) R(Pr+1)dc, (T) + [P15A + Z pk+1 —pr) o, (1) + (1 pK)5N(T)} fuie, (1)

K-1

Sen(T) =D (prrr =) h(pra)e, (7),

where the second equality uses fu, iype = fUoltype = fUtype i the limit, and the last equality uses py fyj4 (7)+
S o (rsr — pr) fuie, () +(L—pr) fon (1) = 1, p18.a(7) + S0y (a1 — pi) e, (T) +(1—pr)dar(T) = 0,
and Zfz_ll (Pk+1 — Pk) h(pr+1) = 1. As a result,

nwzkl/ (2" () + 0 (7 )dr—zk12“<\/» + ! )2

under H?, where b( ) = [, b b ( (1) (r )dT

Define T,Eil) = kK 11 Zﬁgz(\/ /\](612 5,” + b )2. By repeated application of P( K ! 1 Do (\/)\Eclz 6,“ +
bfcli))2 >c) > (PT,S) )\(1) (1)2 > ¢), we get the result, where the inequality is strict 1f b( ) # 0. So unless




b,(el) = 0 for all k and 4, which is equivalent to b( ) (1) =0 for any k and 7, the strict inequality holds.

(iii) From the analysis in (ii),
T~ Y / )+ Vi (Frije, (Fr () — By, (F574(7))] dr = 0yn)..

Here, Z(l (1) depends on Hq; it may be different from Z(l) (1) (equals Z,gl) (1) under Hy), but is a tight mean
zero Gaussian process. So nTh, is dominated by Zl 1 7 [V (Fyv, e, (FrH(m) - Fy,c, (Fa‘_l(T)))]2 dr
which is O(n). =
Proof of Corollary |4 From the proof of Theorem [2 ' Z1 (y1) is the second-to-last component of
\11512) (\Ill(,l) (G (goy(W)) 3 in and Zg (yo) is the last component of \11(2) ( ?(,) ((G (<py(W)))) Then by
the functional Delta method, it is not hard to get the weak limit of A( ). m
Proof of Theorem The proof is quite similar to the Theorem [2| so we only outline the differences.
(i) In \Ilg(,l) (G (¢,(W))), we need only terms associated with {Fy,|c, (1), Fy;|c, (yo)}fz_ll; in other words,
define

v (G (p, (W) = G (LW, ), 0b (W, g) HS) -

We do not need \1'3(,2), and change 73 to U below. The linear map ¥{¥ : C (y)2<K‘” — (> (T)Q(K_Q) is
defined as follows. For a (y) = ({of (v1), o (yo) f:_ll)/ € C (¥)* 57V the term associated with Fy, s <ﬁ;jcl (7-))

in the image of U{" (a(y)) is

( ) - Tyiie, (F;ﬂcl( ))

friicn (F;llcl( )) a’f (F;jcl T e (F_l (7')) (F;l|c1( 7))
1/C1 Y1|C1

and the term associated with ﬁYole (F; |C1( )) is

e (Fryie, (1)
) o) 22 ko)

In summary,

Ty = Zkl/Z@ 2

T

where ¥ = {\If,(f)}k:z and Wi = (Wi wi}).

(ii) We need only to calculate the limit of /n (FQIC;C (F{,’llcll( )) —Fy e, (F;()—\cll (7’))) to determine the



local power.

FYIICk (Fx71|c11 ) ~ P, (F;;o-‘gl (7')))
biee (B (F 'Fia (™)) ~ Fore, (Fo (B Fi, () )
Cr ( ) Fuie, (FUTCI (T))
(Fz?lcl )) = Fute, (Fiiel(0)
B Tviex ( J\cl T )
o (P T) Fyie, (7

)
)+ (Foie, (Fick (7)) = Fuie, (Fi, (1))

N
Proof of Corollary From the construction of 77, it is not hard to see that

2
nTy, ~ Zk . / [ wkl Zl(l)( )+bl(€1) (T))] dr.

By Mercer’s theorem, we can represent the weak limit in the form of Corollary As to Ty, first note
that the weak limit of Fy(yg) is stated in and the weak limit of ﬁyd‘ck (yq) is stated in Lemma
1. For future reference, we denote them as G (id(W yd)) and G (wS(W yd)), respectively. Next, since

~ _ K—2
{Fﬁ(/lf?c (Fl_l(T)) ’Fx(/]:|)c (F0_1(7)> }k:1 is a Hadamard differentiable map of ({Fy1|ck (y1) Py, e, (yo)}kK:_ll,

Fi(7), Fy(7)), we can apply the functional Delta method to have

s (F () 79 (G (W, G (v (W, o
/i Fyfe (F1 (7')) — Ffe(7) 17 (wl( ,y1)>,{ (1/)1( 7y1))}l:1

~ ~ OGN ESSP ~ -1

P, (') = Ffle(n) WP (6 (2Wa0)  {G (whWp0)) } ) )

= y1=F"(7),y0=F; ' (7)
in £ (T)Q(K )| where
K—-1 ~ ~ K-1
Fa(r) = >, waFue (FJdl(T)) with Fy, (W) =) (pra1 = p0) hlpin) Fugie, (u) (24)

and for oy (yq) = (&d (ya), {ab(yd)}lfizl)’ € C ()", the linear map le(k) () : C (V) = 2 (T) evaluated

at a (y) is defined as follows,

K-1 -1 T
B ) = X el () - 2 f“(fgc(fs )., (F),

S wafe (Br()

RE) (7).

‘T’(()]i) (@0 (y0))

|
L
€
z
R
S-
/N
ek
3
——



As to b;c@) (1), by a similar analysis as in the proof of Theorem ii), it is not hard to see that

K—1 - S wkfuies (ﬁ51(7)>~ _
v () = wiide, (F71(r)) — S(F7H(T)),
©) (1) = 3 b, (Fi () R )

where Fy(u) is defined in , fu(u) is similarly defined, and (u) = Zf;ll (Pr+1 — pr) hM(prs1) fuie, (w).
Finally, applying the continuous mapping theorem, we have

K—-2 2
o~ [ (22 0 +62 @) ar.

where Z,%) () = W (G, (W, Fy (1) AGWA (W, B (m)) S =80 (G (W, By (1) AGWH(W, Fy (M) HG).
By Mercer’s theorem, we can represent this weak limit in the form of Corollary 5] m
Proof of Theorem .. ) First,

G (9, (W) ~ G (p,(W)) in £=(P)*F

by Lemma 1. From the proof of Theorem [2| the process (Fy,c, (Fi )) s Fy,ie, (Fo_l(T)))7 TeT,is
Hadamard differentiable at £ [goy(W)] tangentially to C())°% so by the functional Delta method for the
bootstrap (see, e.g., Theorem 3.9.11 of VW),

ﬁ (7)) - F 2 Fl(r
N - Y1 |Ch A1 (1) AY ICx \F'1 1( )
(7)

) e (w5 (90 @ e, 0)
YolCh FHT)) = Frope, (Fo ( v ( v Y ))

n=F; ' (r),yo=F; (1)

in £ (T)2<K_1). Finally, by the continuous mapping theorem,

/ [ (F;ﬂck (F*_ (7 )> - ﬁyl\ck (ﬁl_l(T)>) B \/>( Yo|Cr (F* 1( )> B ﬁYO‘Ck (ﬁO_l(T)))}sz

-1

as desired. It follows that ¢}, (a) = c1(a) + 0,(1) under Hy, where ¢;(a) is the (1 — a)th quantile of the
asymptotic distribution of nT4,. This implies that nTy, and nTy, — (¢}, (o) — c1(@)) converges to the same
limiting distribution as n — oo, and hence we have that P (nTy, > i, (@) = a + o(1).
(ii) By Corollary 2.1 of Bickel and Ren (2001, p. 97), the bootstrap is valid for {ﬁy1|ck (ﬁfl(T))7 ﬁyﬂck (13(;1(7)) Kt
if HY is contiguous to Hy, and thus the arguments in (i) can still go through to show that c},(a) =
c1(a) + 0p(1) under HY. By Theorem 2] I ii), the result follows.
(iii) Under a fixed alternative, nT5;, ~» Zl 1 T [Z,El) (T)] ’ dr, where {Zﬁl) (T)}K_l are defined in the
proof of Theorem [2) l(nl , and thus ¢}, (o) = Op(1). As a result, for any € > 0, there exiks?s1 a constant M such
that P(cj, (o) > M) < e+ o(1). Using elementary inequalities, we also have that

PT, < cy(a)) = P < (@), cip(@) < M)+ P(nTi, < o, (@), i, (@) > M)
P(nTy, < M)+ P(ci, (o) > M).

A

From Theorem [2{iii), we know that P(nTi, < M) = o(1), and thus P(nT, < c},(a)) < €+ o(1), which

implies the statement of the theorem since € can be chosen arbitrarily small.

10



(iv) The proof is parallel to that for T},. =
Proof of Theorem [5. The test statistic involves the following processes ({F¥ vax (Wlz), F YoIX (yolz) 11,
Fyll\x( Tlx), Y0|X( 7|z), Fx(2)), 7 € T, y4 € Va, ¢ € X, where (FY }X(T|£L') YO‘X( 7|x)) involves (Fyl\x(yl|$)a
{FY ix (1)), Y0|X(y1|$)}£( 11,Fé§|X(y0|:c) {Dut, qul}lKl) Lemma 2 derives the weak limit of these compo-
nents. Now, since ({FY |X (y1|x) YO‘X (vol2)} ity Py, x (w1]), Fyy x (yolz)) is a Hadamard differentiable

map of ({F} ‘X(y1|x) AR ‘X(y0|x)}k 1 {pu,q“}l 1)» by Lemma 2 and the functional Delta method,

we have
Y1|X(ZJ1|$) Y1|X(y1|$)
1x (Yol@) — (yolz) _ e 2K
e oy | 982 (482 (455 7 06 ) e 00
Fy,ix (wolz) — Fyy x (yol)

where \117821) (\Il?glx)p (I Hy)G (cpyyg))) is defined in Lemma 2, and \IJ(?’) () : (yX)4K A (yX)

similarly derived as in the proof of Theorem a due to similar structures. Next, since {F{i X (F; | X(T|:E)|£C>

Fyix (F;O|X(T|x)\m) K1 is a Hadamard differentiable map of ({ F¥ Vix WlT), By (volz) ert's Fyy x (w1 ]2),

Fy,x (yo|z)), we can apply the functional Delta method again to have

Vi ( fon §F‘“'X( 'm; et ) D (W2 (92 (342, (7 6 (,0)))

FYO\X Fy_o|x( |z) |z _Frﬁo\x(ﬂx)

v1=Qy; | x (7]2),90=Qyq | x (T]7)
(25)

in £ (’TX)Q(Kfl) where \Ilm : (yX)QK — f° (’TX) s similarly derived as in the proof of Theorem

[2due to similar structures. Finally, by the continuous mapping theorem and Slutsky theorem, we have under

Hy,

wrf = S / / 7 (r,2)? drdFx ()
= Zk 1//2,‘3) 7,2)% drdFx (z) + 0p(1)
” Z: 11// it ( S)mxmz)z (\P(szfl\x(flz)z (‘I’(Ql)mxmmp (—I7 @nix (TG (90, (1.6M)))) )
O (e (YD e (B8 s (T @ ()G ((pQYO‘X(T‘I)yg(W))))))}2 drdFy (z)

Zk . / / ZV (r,z)* drdFx (z),

where U4 = {\I/gi)z }k . with U(H = (\I/,(ﬁ)m, \111(642)”) , and the second equality is due to sup,, ¢ y ‘ﬁx (x) — Fx (a:)‘ =

kTx
op(1) and [, Z,(;l) (7,x)? dr is tight in £>° (X) under Hy. The proof under H? is completely the same as that
of Theorem ii) except that the calculation is conditional on X =x. =

Proof of Theorem@. We only derive Z( ) (7, x) to signify the dlfference from Theorem In \Ifyx) (\II‘E,J,,),,(—J_1 ¥)G(py0)));
2 1 _

we need only terms associated with { F'% Ya|X (y1]x) , F, YoIX (yolk) 1o}, so define \I/?(ﬂ) ( éz)p (- '(y)G (cpy,a))) €

0 (VX)X =Y a5 the corresponding elements of ol <\Ilyslz)p (—J Hy)G (gpyﬂ))). We do not need U2, and

change %) to U below. The linear map o) ()JX) (K=1) _, goo (TX)2(K72) is defined as follows. For
o (y,2) = ({ok(yr,2), ok (yo, ) kK:11) c C’(yX)2(K U the term associated with Fx}%\x (@§1|X(T|x)|x) in

11



the image of ¥ (a(y,x)) is

P (@ x (o))
Faix (@ Clole)

R (@ x Flo)lz) af (@Y x (7). =) - ol (@Y, x (7l). ),

and the term associated with ﬁ}]%ﬂx (@%,O‘X(T|$)|£C> is

Fox (Qhyx(rlola)
o (@l (7la)lz)

Froiee (Qx (lo)lz) af (Frife, (7)) - ab(Qby x (7la). ):

In summary,

f( n EQH( b 3 i ) = 0 (v (42, (7 E (2,0))))

Fy x @y x (TI2)]2) = Ff x (7))

n1=Qy, x (712).50=Q}, | x (7|2)
in £ (TX)2(K72), and

nTs< Zk , / / Z2) (7,2)* drdFx (z)
(5 2) 1) —1/1
~ Zk 2// [‘I’klm< QY x (rlo)z <\I’Q%{1|X(T|I)xp (—J (Qy1|x(7'|$))G(<PQ1Y1X(Tx),e(W)»))
2
(5) (2) (1) 11
00 (V2 e (V8 oo (2T @hupn 1S (s, o)) ) )| st

P (7', x)" drdFx (z),
k=2 Jx JT

where () = {w{?) }K: with w7, = (v, v, ). =

kTtx kTxz

Proof of Theorem From Yu (2014a),

ﬁY | X V(Z/1|.7;‘,p) . .
\/ﬁ P w\:[lm W IHEOO(yX,P:E) ’
FYo|X,v(y0|x,p) yxp ( B(y))

Jo(yo) ™t (Jop(yo)J, "Wy + Wo(y0))
Ji(y1) ™ (Jap(yr) Ty " Woy + Wi(y1))

is the weak limit of 3(y) as derived in . For o (y) = (o1 (11), a0 (o)) € C (P)™, the first clement of
\Il?glm)p(a (y)) is defined as

where \yélz)p - C (y)dﬂ — f™ (;)JX’PJC)2 is a linear map, and Wy, = — (

M () B2() + 072 0) N (7 (o) 5100)| TG (n)
P ) A (T (o) ).
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and the second element is defined as

(TG Bola0) — (1= 9 2 ) (7 (o) Gola)| TG ()
- (1= 9T a0 40) A (7 (o) o).

Next, applying the functional Delta method again to have

x,v) — Py, xv (F;ll‘x’v(ﬂx,vo)

FYl\X,V (FEZ}X,V(TMT’UO)
x,v) - Fy,x,v (F;O}X’V(ﬂmmo)

x,v) @) (\IJ(D (Wﬁ(y)))’

TTV yTp
xT,v

vn

Fyyixv (F;ol\x,v (7|2, vo)

in £*° (TXPI)Q, where U2, : C ()U('Pm)2 — £ (T)C'PI)2 is a linear map. For a (y, x,p) = (a1 (y1,x,p) , @0 (Yo, x,p)) €
C (YXP,)?, the first element of v, (a(y,x,p)) is defined as

fY1|X,V (F;'ITX’V(T|:£;’UO)|$,,U) _1
)a1 (FY1|X7V(T|$,UO),$,%) ,

fY1|X,V (F}Zl\x,v(ﬂxvvo)mav) Qg (F}Zl\X,V(T‘xﬂvo),xav - -
fY1\X7V (Fy1|X,V(T|x7'U0)|xaU0

and the second element is defined as

F;(jx,v(ﬂfv Vo), T, vo> .

1 . fY0|X,V (F;[)}X’V(T'xva)lxvv)
Tvolx,v (FYO\X,V(T|5”’”0)|5E’”) oo (FYO\X,V(T‘x’UO)’m7v — - g (
Py (Pl (71, 00)le, v, )

Finally, since X' Z is compact, {p;; };Lzl converges uniformly to {pij}?zl in probability. As a result, the

empirical distribution of {X;,p;;}, say F\Xyp(xﬁz)(:c, v), converges uniformly to Fx ,(x, z)(x,v) in probability.

N()te tlla‘
/ / /’] [\/E (ﬁ X ( /\Y |X,V( “’I"7 1)0)
X = 1

/X /z /; [\/E (ﬁY”X*V (ﬁY_lllx,v(T\@’vvo)

where the first o,(1) is due to .75 >~ fT[ﬁYﬂX,V(ﬁ;jx,v(ﬂXia Vo) | X, vo)—FYO‘X,V(F;Ol‘Xy (71 X4, v0) | X4, v0)]2dT =
=1

2
nTsy x,v))] ATdFx p(x,7)(x,v) + 0p(1)

134)) — Fyyx,v (Fy_ol|x.,v (]2, vo)

> U))] 2 drdFx p(x,7)(7,v) + 0p(1),

x, v) — Fyyix,v (F;()llxy (7|, vo)

0p(1) uniformly in X;, and the second 0, (1) is due to fT[ﬁyl‘X7v(F\;11‘X’V(T‘$, vo)|z, U)_F\Yo\X,V(ﬁx%}X,v (]2, v0) |2, v)]%dr

is tight in £*° (XP,) under Hy. By the continuous mapping theorem and Slutsky theorem,

”T?ﬁ”‘}// /Z(3) (T,.T,’U)QdeFX)p(X’Z)(l‘,’U),
xJp, JT

where Z(%) (7, z,v) = ‘I’(12T)m (‘1’7(;11)17 (WB(y))> - \Ilg')m (‘I’&v)p (Wﬁ(y))> with U1, = (\Il(li)xiﬂ \Ijgi)zv)'
Under H{, we need only calculate b (1, 2,v). The calculation is an extension of the proof of Theorem

B(ii). m
Proof of Theorem We only outline the difference from the proof of Theorem@ First define Z{4) (1,2,v)
and Z§4) (7,2,v). They are the same as Z®) (7, z,v) in the proof of Theorem@exeept that v, in Z®) (1, z,)
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is replaced by vy for Z£4) (1,z,v) and is replaced by vy for Z2(4) (1,2,v). Then

D Vo
nTAffL ~» max {/); / /T Z£4) (1,z, v)2 drdFx ,(x,z)(x,v), /X/ /T Z2(4) (7',1?,1))2 drdFx p(x,7) (x,v)}
Vo p,

under Hy. The derivation of the local power is also similar to that in the proof of Theorem ii) except

replacing v, by v; and vy at suitable places. =

Lemma 1 Under the assumptions of Corollary[3,

Vit (Fria ) = Frja @) = G (v W) in £ (0),
\/ﬁ(ﬁyd\ck(yd)—ch(yd)) ~ G(¢§(Wyd)> in 7 (Va) ,
Vi (Brow () = Frow (o)) = G (6" (W) in € (30),

and
V(B —pi) ~ G (¢ (D, Z)) V(@ — a) ~ G (¢, (2)).
A RS E K
where the weak convergence holds jointly, and the functions (wl , {wl,wo}k_l L7 {9y, ‘Pl}z—1> are defined
in the proof.

Proof. The building blocks for all these objects are a class of functions {cpy(W)|y € V1 x Yo}, where

LY <y1) DUZ = 2)
1(Y <yo)(1—D)1(Z = z)
o,(W)=| DUZ = z) k=
(1-D)1(Z = )
1(Z = Zk)
with W = (D, Y, Z) and y = (y1, o) being the index, and ¢, is a 5K x 1 vector by stacking the z blocksm
Since the class of functions {¢,(D,Y, Z)ly € Y1 x Yo} is VC,

G (¢, (W) ~ G (¢, (W)) in €= (Y)°F

by Donsker’s theorem, where Y = ) x ). Now, by the functional Delta method (see, e.g., Theorem 3.9.4
of VW), we get

lfYnA (1) = Fyy1a (1)
Fyijen (1) = Fyije, (1)
Fyie,. (yo) — Fyyje, (vo) 1 . 4K
V| L olex WD (G (p, (W) in £ (D)™,
Fy,inv (yo) — Fyynv (o) v (€ (e, (m)
p—m
a—aq

where WS : C(V)*% — 2 (0)** is the Hadamard derivative of (Fy, 4 (41)  { Fyijcx (41)s Fyoice (%0) kK:‘ll,

Fy,ix(yo), {pl,ql}{il) with respect to E [gpy} Note that ﬁYllA (y1) uses only 1 (Y <y;)D1(Z = 21) and

181n ,, some randomness is redundant, e.g., D1(Z = zx) + (1 — D) 1(Z = zx) = 1(Z = z), but this form of ¢, is easier to

use below.
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DI(Z = z1), Fy,ic, (y1) uses only 1 (Y < y1) DI(Z = 2z,), 1 (Y < 1) DI(Z = 2p41), DI(Z = z;) and D1(Z =
zi41), Fypley (o) uses only 1(Y < yo) (1 = D) 1(Z = 2;,), 1 (Y < yo) (1 = D) U(Z = 211), (1 = D) L(Z = 2)
and (1 — D) 1(Z = zpy1), Fy,wv (yo) uses only 1(Y <o) (1 — D) 1(Z = zk) and (1 — D) 1(Z = zk), pi uses
only DI(Z = z) and 1(Z = z), and ¢, uses only 1(Z = z). This usage of information determines the
structure of correlation between each pair of processes, e.g., p; is only correlated with processes involving
D1(Z = z) and 1(Z = z;) and q; is only correlated with processes involving 1(Z = z;). Given the correlation
structure, we can state the weak limit of each process separately. Specifically,

1Y <w1) = Fyyja ()]

V(W) = FDiz=ay Pl =2,
ch (Y <y1) = Py, (1)) D= E[(1(Y < 1) — Fyyje, (1)) DIZ = 2zjia]
Uit (W) = P(Cr) s 1(Z = zit1)
(Y <y1) = Frije (1) D= E[(L(Y < 1) = Fyyje, (1)) DIZ = 2] 1Z = )
P (Ck) gk -k
d)gk(VV’ y) = (1 (Y <o) — FYO\Ck(yO)) (1-D)-FE [(1 (Y <o) — FYO\Ck(yO)) 1-D)|Z= Zk} UZ = =)
P (Ck) qx
_ (1(Y < yo) = Fyyie, (0)) (1 = D) = E[(1(Y < y0) — Fyyje, (0)) (1 = D) |Z = 241 17 = 2e41)
P (Cr) qr+1 F1

LY <o) — Fyyn (%0)

B(1-D)1Z =z DT

wn (W, y0) =

and D
— b
D, 7)=———"—1(Z= 2)=1Z=2z)—-
¢l( ) ) P(Z:Zl) ( Zl)agol( ) ( Zl) qi,
where each term has mean zero, and the two terms in 1/)2’”‘ (W, yq) are uncorrelated. m

Lemma 2 Under the assumptions of Theorem [5],

~ ~ ~ K—1 K
(F&X(ynx), (B x (nlo). B x ol } P (ola), {Fows G i
K-1
. K
— (#8,xnlo). { ), B k) B ol e,
— . o) K
~ \1'1(1296) (\Il;v)p (—J LG (wy,g))) mn L (yX)4

where \I/;E,i), \I/Z%)p, J(y) and ¢, o are defined in the proof.

Proof. The building blocks for all these objects are {Bd(yd)ﬁ,ﬁ}. We apply Lemma E.3 of CFM to

derive their weak limits. If we use the notation of CFM, u =y = (yo,y1)",0(u) = (8, (), Bo () s, 7)) =
By v',n) €R¥, and U =Y = W1V = {(y1,%0)|y1 € V1,50 € Do} Let

[ (T/B ) (Y < yl)] (Tlﬁl)T,
Py o(W) = E ; A (( ;J) — 1Y <o) H(T'B,)T,
Y, 1(Z = 2) 2B O

where H(-) = A(+)/ )[L—AQ)]}. Let ¥(0,y) = P (¢, ) and U(0,y) =P, (¢y.9)- From the first order
)

{A(:
conditions, g(y = qS(\fl( y),0) for each y € Y, where ¢ is the Z-map defined in Appendix E.1 of CFM.
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Applying Lemma E.3 of CFM, we have
Vi (0) = 6) ~ —T WG (¢,.9) in €= ()",

where the four components of G (<py79) = (W1 (y1)', Wo(yo)', W3, W,’])/ are independent of each other, and

Jilyo) 0 Jip(ye) O
Wo(y). = g Joi)yl) JOPJ(pyI) 8 = J(y),
0 0 0o J,
with
Dalon) = B [Pl o) D P e
Jop(yo) = E [(1 —@XAO(yO)Ho(yo)WTR'] ,

Hy(ya) = H(T'B4(ya)) and other components of J(y) being defined in the main text. The verification of
conditions of Lemma E.3 is similar to that in the proof of Theorem 2 of Yu (2014a). 7 is asymptotically
independent of (El (y1), ﬁo(yo),ﬁ) which are dependent of each other. It can be further shown that

Ji(y) ™ (Jip(yr) Ty " Wo + Wi(y1))

vn (5(3/) - ,B(y)) T ( Jo(o) ™ (Jop(yo) Ty "Wy + Wo(yo))

) in 0 (V)% . (26)

NeXta since FY|X,p(X,Z),D(yd|Iapad) =A (T (Iap)lﬂd(yd))v Pzt = A(Rk(IE)/")/), qzk = 4k (B(x)vn)7 k=
1,---,K—1,and gg(z) =1 — Zfi}l qi(z), by the functional Delta method,

ﬁY|X,p(X,Z),D(yd|xapa d) — Fy|x p(x,2),p(Yalz, p, d) N
. _ . 2K +2
N Dk — Dok ~ ‘I’g(,la;)p (—J )G ((py,g)) in (2 (YXP,)* T2,
z]\xk — qzk

where the linear map \Pé?,, L C (V)% — 1 (YXP,)* ™ is the Hadamard derivative of (Fy|x,p(x,2),0W1lz,p, 1),
Fy | x p(x,2),0(Wolz,p,0), {pxk}szl A ar (m)}le) with respect to 6(y). More specifically, for « (y) = (a1 (y1)’,
ao(yo)', oy, ay) € C (Y)%, the first block of \IJZ(,;),, (a(y)) is AT (2,p) Ba(ya)) T (z,p)" ca(ya), the second
block is A (R(z,z)'y) R(x,z,) ay, k = 1,---, K, the third block is %Wan, k=1---,K—1,
K-1 wam k = K. The block associated with {@;k}le is dependent within the block but

- =1 on
independent of other blocks which are dependent within and across blocks.
K—1
Finally, since (F31|X(y1|x)7 {F5];1|X<y1|37>7F)’%lx(yo‘x)}k_l L FS x (yol), {p$k7q$k}5_1) is Hadamard dif-

. . K K

ferentiable with respect to (FY|X,p(X,Z),D(y1|mvpv 1), FY|X,p(X,Z),D(yO|m7p7 0), {pxk}kzl ) {sz}kzl), we call
apply the functional Delta method again to derive the target weak limit. The remaining is to derive the
Hadamard derivative, say, \I/?(f:,;) :C (VX ’ch)ﬂ('|r2 — L (VX )*%. The Hadamard derivative corresponding to
{Daks qu}szl is trivial, so we concentrate on the F functions. For « (y, z,p) = (a1 (y1,x,p), ao(yo, x, p), {apk}le,
{aqk}szl) € C(YXP,)* 12 the element of \Il,(,,zx) (a (y,z,p)) corresponding to F391|X(yl‘x) is

6T (xapwl)/

al(y17xupzl)+)‘(T(x7p$1>/51(y1)) ap B](yl)aph
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the element corresponding to F}@I‘X(yﬂm), k=1,--- ,K—1,is

’
F (vl D+ AT ) By ( ))Mﬁ (1)~ F, x (1]2)
Pa,k+101(Y1,%,Pz k+1) —Pak 0 (Y0,Z,Dxk) + Y|X,p(X,2),DY1|T,Pa k41, Pa,k+1 TPz, k+1) P1(Y1 op 1(y1 vy | x (Y1|T

«
P, k+1—Dak Pz, k+1—DPaxk pk+1

AT (z,pyp )’
Py ixop06,2),0 Wil pee D) 4pas A (T(@pas) By (9)) T8 3 (51) < FE | (3a]a)

Pz, k+1—Pxk Pk

the element corresponding to F}@O‘X(y0|x), k=1,--- ,K—1,is

oT (z,pg1)"
(A=par)@0(Y0,2,Pak) = (1 =Pz, k+1) 0 (Y0,TsPa,k+1) FY\XYP(X’Z%D(yo‘w’pzk70)7(171’“)A(T(aj’pzk)/ﬂo(y‘)))%BO(ZIO)*F\%IX“/OW)a
Da,kt+1—Dak , Da,kt+1—Dak Pk
oT (2,pp ps1 ,
+FY\X,p(X,Z),D(yU|x7pm,k+110)_(1_pz,k+1))\(T($aP1‘,k+1),/Bo(yo))(aia;)ﬁo(yo)_}?}%\x(yle)a
Pa,k+1—Pak p,k+1
. K .
and the element corresponding to Fy7, v (yo|) is
I
8T (xasz)

a0 (Yo, T, Par) + A (T (2, p2x) Bo(yo)) Tﬁo(yo)apx.

Different from the no-covariate case, except {quk}kK:l all other estimators are correlated with each other. m

Supplementary Material S.2

S.2.1 Bootstrapping Critical Values of 7X and Tj.

We still suggest to use the exchangeable bootstrap to obtain the critical values for 7% and Ts%,. To ease

implementation, we provide the detailed bootstrap procedure below; all notational conventions follow Section

Z3

Step 1: Let

By xpixz0Walwpd) = A(T(@.p) Bywa))
]/5:/’]6 =S 1/)\*(337’2]@):A(R(:L‘7Zk7)/a*)7k:17"' 7K7
Zj;k = l/]\;;(l'):qk(B(l'),ﬁ*),k:l,,K—L
K-1
ZI\.’*I:K = 1- lel A:h

where

Balya) = argmngwil(Di =d) [1(Y; <ya) In A (T (X;,57) ) + 1(Ys > ya) In (1 = A (T (X4, 57)' 8))]
=1

7" = argmax Y w; [DiInA (R(X;, Z:)'v) + (1 — D) In (1 — A (R(X;, Z:)'y))],
v i=1

and
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Wltth—l—Zl 1 ql

Step 2: Let
- F;;|X,p(X,Z)7D(y1|‘T7mka Dp%s,

Y

Sk F;;|X,p(X,Z),D(y1|‘T7m,k+1’ 1)1/’;,“1
FYﬂX(y1|x) - f)\* _j)\k

x,k+1 xk
— Do) — F}t|X,p(X,Z),D(y0|m’i):,k+17 0) (1 - Z/):Jwrl)

7

[~y F;|X,p(X,Z),D(y0|x7f)\;k;aO) (1
FYO‘X(y0|x) = ~ _
pz,kJrl prk

fork=1,--- K —1,

Fixnle) = Fixpxz,.0le P, 1),
K Tk
FYO\X(ZUO|95) = FY|X7p(X,Z)7D(y0|x7ﬁ;K70)7
and
K =*
~ Zl:k+1 Ty (ﬁ;l - Px>

W (P k1) =

K~ [~ =\ 2
Zl:l ') (pzl _px)

where p. pVL = Zl 1 @y, Conduct rearrangement if F Vi ** ¢ (yaz) is not monotone.

Step 3: Let
~ K R R
S x (i) = kZO (ﬁ;?kﬂ —]’5’;k> {F{;l*‘x(ylm {1 - Fng(ka] I
- ~ f:*—l ~% .
F{%X (FY0|X (FY1|X (y1|.%') T .7;) F§|X<Zk|$)},
and

~ K ~ ~
B (wole) = 3 (Pe = o) { ool B (onf)+

o)|o) [t Frntain)] |

~*

~ ~x—1
Fll;f\X (FYIX (FYOX (vol)

which are consistent to ﬁy(” x (yalx), where

k o~

K—1
F§|X (zklx) = Z(T;la Fy,x (yalz) = Z Dak1 — ﬁik) h*@;,kﬂ)F)}%X(ydW)-
k=1

Step 4: Let
T - izjg [ 1R (Frhxaisa) = B (Bl (el x2)
(B (B e1X01%,) = By (Bt 10| X)) e
and
T = }lzfg [ (B (@ (r1301:) = B (@b r120| )
: (B (@ 01X01X0) = B (@b (71X0[ X))
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where X; can be replaced by X/ (i.e., the weight w; can be imposed on X;). Use the (1 — a))th quantile

X X

of n*TX*, say ciX (), and (1 — a)th quantile of n*T5%*, say c5X (), as the critical values for n7;% and

nTst , respectively.
For completeness, we state the validity of the bootstrap procedure above without proof.
Theorem 9 In the framework (@, suppose Assumptions M, DR and EB hold.
(i) Under Hy,

lim P (nTy5 > ¢ix () = o

n—oo

(i) Under H{ and Assumption LA,
lim P (nT7\ > ¢iX (a)) > a.

n—oo

(iii) Under the fized alternative Hy with T5X = plim,,_ o Tjy, > 0,

lim P (nTys > cix (o)) = 1.

n—oo

(iv) (3)-(iii) hold also for Ts\ and c5X(a).

S.2.2 Bootstrapping Critical Values of Tj;. and Tj*

We still suggest to use the exchangeable bootstrap to obtain the critical values for T5¢ and Ty%. To ease

implementation, we provide the detailed bootstrap procedure below; all notational conventions follow Section

Z3l

Step 1: Let

ﬁ;;|X,p(X,Z),D(yd|xap7 d) = A (T (‘rap)/Bd(yd)) )
pr(z,2) = AR(z,2)77),

where

Bitua) = angmax > wid (s = d) [1( < ya) A (T (X0 50)'8) + 104 > a) In (1= A (T (X0, 57)' )]
i=1
with pf = p* (X;, Z;), and

y = argmngwi [D;In A (R(X;, Z;)'y) + (1 — D) In (1 — A(R(X;, Z;)'))] -
i=1

Step 2: Let
% D 8T ((E,p) ~% o~k
FY1|X,v(yl|$aU) = FY\X,p(X,Z),D(y1|mvv7 1)+wv Tp 1(y1) - A (T (x,v)/ﬁl(yl)) )
p=v
and
ik i aT (xvp)/ * rR*
Y x v (Wolz,v) = Fy x pix,2),0(Wol, 0,0) = (1 —v) “op o(yo) - A (T (z,v) 50(y0)> .
p=v
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. A* .
Conduct rearrangement if FYd‘ X’V(yd\x, v) is not monotone.

Step 3: Let

n

1 _ ~
Xk * *—1
13, = ﬁz > /:r [Fyl\x,v (Fy1|X,V(T|Xz’,Uo)

i=1 jipis vo

Xi;ﬁij) — Py xv (FQTX,V(T|X1',%) Xi;ﬁij)

X)) o

~ (B (Biky (1X000)| XoBis ) = Proper (Bl (71X o)

n n ~ ~

T, = max{ 21 _211(1% > o) [7 [F?ﬂx,v (F;J}v(T\XiaUl)‘ Xz'»@'j) —Fyiixyv (Fiﬁx,v(T\thl)’ Xi,@'j)
i=1j=
2
Xuﬁu))] dT7

Xu@'j)

3

- (FYO\X,V (FQOI‘X,V (T]Xs,v1) Xv:»ﬁij) - Fyxv (F{;{];{v (T]Xi,v1)

= 221 < v) [ [F?ﬂx,v (F;J§,v(T\XiaU2)‘ Xi»ﬁz‘j) — Py xv (Fﬁx,v(T\qu)
i=1j=

~ ~ —~ 2
- (F%\x,v (F;(jig,v (TlXuvz)‘ Xi,pz‘j) - Fyyx,v (F;Ol‘x,v (TlevUz)‘ Xivpij))] dT} ;

where (X;,p;;) can be replaced by (X;*,ﬁj) with p; = p* (Xi, Z;). Use the (1 —a)th quantile of

n*T5* say c5X (), and (1 — a)th quantile of n*Ti ¥, say ;X (), as the critical values for nTsy, and

nTiX | respectively.
For completeness, we state the validity of the bootstrap procedure above without proof.
Theorem 10 In the framework (@), suppose Assumptions M, DR', P and EB hold.

(i) Under Hy,
lim P (nTs > c5X (a)) = o
n—0oo

(i) Under H? and Assumption LA,
lim P (nT5\, > c5X(a)) > a.

n—oo

(iii) Under the fized alternative Hy with T5X = plim,, o Ts > 0,

lim P (nTs > ¢y (o)) = 1.

n— oo

(iv) (i)-(iii) hold also for Ti\ and c;X(a).
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