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Abstract

This paper studies asymptotic properties of the direct estimator of average derivatives when the

density of regressors is not zero on the boundary of its support. It is shown that the estimator cannot

achieve the
p
n convergence rate while does not su¤er from the curse of dimensionality either. We

also show that the average derivative estimator associated with a discrete regressor can achieve the
p
n convergence rate. The di¤erences in the convergence rates are attributed to whether the average

derivative or the average level is estimated. We further study the information content of the index

structure in a special single index model (i.e., the linear regression) where the parameter of average

derivative is usually motivated.
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1 Introduction

Average derivatives are useful parameters for semiparametric index models and nonparametric demand

analysis. For the former, see Stoker (1986, 1991a), and for the latter, see Härdle et al. (1991). Suppose

y = m(x) + "; E["jx] = 0;

where x 2 Rd has a density f(x), and then the parameter of interest is

� = E [m0(x)] : (1)

When m(x) = g(x0�) as in the single index model,

� = E [@g(x0�)=@(x0�)]�; (2)

which is the scaled �.

A key observation in estimating � is that if f(x) = 0 on the boundary of x values, then integration by

parts in (1) gives

� = E [y`(x)] = E[m(x)`(x)]; (3)

where `(x) = �f 0(x)=f(x) is the negative log-density derivative. Estimators based on this observation are
usually labeled as indirect estimators. Stoker (1986) provides an indirect estimator by assuming that f(x)

takes a parametric form. His estimator has a variant which takes the form of an instrumental variable

estimator. Härdle and Stoker (1989) develop the counterpart estimators when f(x) is nonparametric. Stoker

(1991b) provides two other direct estimators, and shows that all four estimators are �rst-order equivalent.

Since f(x) = 0 on the boundary of x�s support, we need to trim the estimator of f(x) in the estimation of

�. To avoid this problem, Powell et al. (1989) suggest to estimate the weighted average of derivatives with

the weight equal to f(x). Powell and Stoker (1996) derive the optimal bandwidth for this density-weighted

average. This optimal bandwidth is smaller than the optimal pointwise bandwidth, so undersmoothing

(and higher-order kernel) is required to avoid the bias problem in the pointwise estimation of f 0(x). As

an alternative, Cattaneo et al. (2014) develop asymptotics that are robust to the bandwidth (and kernel)

selection.

When f(x) 6= 0 on the boundary of x�s support, a weight w(x) is usually put on the derivatives such

that w(x)f(x) = 0 on the boundary of x�s support. Newey and Stoker (1993) discuss the semiparametric

e¢ ciency bound for this parameter and show that the estimators in Härdle and Stoker (1989) and Stoker

(1991b) are e¢ cient if properly adjusted. They also develop the e¢ ciency bound for � in the single index

model. This e¢ ciency bound is generally lower than that of � because the index includes more information

on the derivative of m(x).

It remains unknown what the asymptotic properties of a direct estimator of � based on averaging the

estimates of m0(x) would be if f(x) 6= 0. It is only known that the convergence rate of such an estimator

is slower than
p
n. To understand this result, we repeat the discussion following Assumption 3.1 in Newey

and Stoker (1993). Suppose x is a scalar and uniformly distributed on [0; 1]. Then

E [m0(x)] =

Z 1

0

m0(x)dx = m(1)�m(0);

which cannot be estimated in
p
n rate since the semiparametric variance bound is in�nite in this case. In

this paper, we study the asymptotic properties of such a direct estimator of �. We consider both the cases
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with continuous x and with a discrete regressor in x. It turns out that the � estimator in the former case has

a slower-than-
p
n convergence rate but does not su¤er from the curse of dimensionality and the � estimator

in the latter case can achieve
p
n consistency. Such results are developed in Section 2. Furthermore, since

� is often motivated in the single index model as in (2), we discuss in Section 3 the information content of

the index structure in a simple single index model - the linear regression. Finally, Section 4 concludes. All

proofs are contained in a technical appendix.

2 Estimation of the Average Derivative

When all regressors are continuous, we consider the direct estimator of � in (1). When some regressors are

discrete, we assume only one regressor is discrete and this regressor is binary. Now,

y = m(D;x) + "; E["jD;x] = 0;

where D can take only two values, 0 and 1, and x is continuous. The counterpart of the average derivative

of D is

� = E [m(1; x)�m(0; x)] � E [�(x)] ;

which is reminiscent of the average treatment e¤ects (ATE) under unconfoundedness.

2.1 When x is Continuous

Given the de�nition of �, we can estimate it by its sample analog,

b� = 1

n

nX
i=1

bb(xi);
where bb(xi) is the local polynomial estimator (LPE) of @E[yijxi]=@x0.
To de�ne (ba(xi);bb(xi)0)0 with ba(xi) being the LPE of E[yijxi], we �rst de�ne the generalized kernel

function below. The following discussion on the generalized kernel function is borrowed from Müller (1991).

De�nition: kh(�; �) is called a univariate generalized kernel function of order p if kh(u; t) = 0 if u > t or
u < t� 1 and for all t 2 [0; 1],

Z t

t�1
ujkh(u; t)du =

(
1;

0;

if j = 0;

if 1 � j � p� 1:

To simplify the construction of kh(u; t), we put the following constraints on the support of x.

Assumption S: (y; x0)0 2 R�X � Rd+1, and X = [0; 1]d.

The restriction of the support of x as [0; 1]d is not really restrictive, up to some monotone transformations

such as the empirical percentile transformation. The assumption of the compactness of X is necessary for

imposing positivity on f(x) on the boundary of X . Now, de�ne k+(�; �) and k�(�; �) as follows:

(i) The support of k�(x; r) is [�1; r]� [0; 1] and the support of k+(x; r) is [�r; 1]� [0; 1].

(ii) k�(�; r) 2Mp ([�1; r]) and k+(�; r) 2Mp ([�r; 1]) :
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(iii) k+(x; r) = k�(�x; r).

where

Mp ([a; b]) =

(
g 2 Lip ([a; b]) ;

Z b

a

xjg(x)dx =

(
1;

0;

if j = 0;

if 1 � j � p� 1

)
;

and Lip([a; b]) denotes the space of Lipschitz continuous functions on [a; b]. Then

kh(u; t) =

8><>:
1
hk
�
u
h

�
;

1
hk+

�
u
h ;

t
h

�
;

1
hk�

�
u
h ;

1�t
h

�
;

if h � t � 1� h;
if 0 � t � h;
if 1� h � t � 1;

(4)

where

k(�) = k+(�; 1) = k�(�; 1) 2Mp ([�1; 1]) .

We can show that kh(u; t) is a generalized kernel function of order p. Further, we construct a multivariate

generalized kernel function of order p by the product of univariate generalized kernel functions of order p.

Since the LPE is used, we only need kh(u; t) to be a second-order kernel function. Formally,

Assumption K: kh(u; t) takes the form of (4) with p = 2.

De�ne

Kx
h;ij =

Yd

l=1
kh(xlj � xli; xli) � Kx

h (xj � xi; xi) �
1

hd
Kx

�
xj � xi
h

; xi

�
:

Then the LPE (ba(xi);bb(xi)0)0 is the �rst (d+ 1) elements of the solution to
min
�

nX
j=1;j 6=i

�
yj � (x0j � x0i)Sp�

�2
Kx
h;ij ;

where p � 1, for a row (column) vector � 2 Rd, �Sp = (�S(�))�2f0;��� ;pg is a row (column) vector, �
S(�) =

(�s)jsj=� is a row (column) vector of length (� + d� 1)!=�!(d�1)!, s = (s1; � � � ; sd) is a vector with all its ele-
ments being nonnegative integers, the norm of s is de�ned as jsj � s1+� � � sd, and �s = �s11 � � � �

sd
d = (s1! � � � ; sd!).

For convenience, we assume that f(s1; � � � ; sd)g in the de�nition of �Sp are ordered lexicographically. xi is
excluded in the construction of bb(xi) to let b� take the form of a U-statistic instead of a V-statistic. From

Theorem 3 of Heckman et al. (1998), ba(xi) and bb(xi) are asymptotically linear, so b� is indeed asymptotically
a U-statistic. To guarantee this linear approximation, we need the following assumptions.

Assumption F: The density of x, f(x), is continuously di¤erentiable on X , and 0 < f � f(x) � f <1 for

x 2 X .

f(x) is bounded away from zero to avoid trimming the low-density area of X as in Heckman et al. (1998).

This is also the main di¤erence of this paper from the existing literature of the average derivative estimation.

To impose restrictions on m(x) and the bandwidth, we de�ne the smoothness index s of m(x) as follows:

m(x) is s-times continuously di¤erentiable and its s-th derivative satis�es Hölder�s condition.

Assumption M: m(x) has the smoothness index s > d for all x 2 X .

Assumption H: h! 0, nhp+1+d=2 ! [0;1), nhd+2 ! 0, and nhd= lnn!1.
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This assumption is parallel to Assumption 3 of Heckman et al. (1998). The assumption that nhp+1+d=2 !
[0;1) is to guarantee the asymptotic bias in the asymptotic distribution of b� is �nite. Assumption of

Heckman et al. (1998) also requires that nh2s ! [0;1). Given Assumption M, s � d+1, so this assumption
is implied by nhd+2 ! 0. To derive the asymptotic distribution of b�, we also need some restrictions on the
conditional moment of ":

Assumption E: E["4jx] is uniformly bounded on x 2 X .

The following theorem states the asymptotic distribution of b�. To ease our exposition, we de�ne some
notations here. M is the square matrix of size

Pp
�=0 (� + d� 1)!=�!(d � 1)! with the l-th row, t-th column

"block" being Z
uS(l) (u0)

S(t)
K (u) du; 0 � l; t � p;

where K (u) =
Qd
l=1 k(ul). B is a

Pp
�=0 (� + d� 1)!=�!(d� 1)! by (p+ d)!=(p+ 1)!(d� 1)! matrix with the

l-th block being Z
uS(l) (u0)

S(p+1)
K (u) du:

el is a
Pp

�=0 (� + d� 1)!=�!(d � 1)! by 1 vector with the lth element being 1 and all other elements being
0, l = 1; � � � ; d+ 1. (0; Id;0) is a d�

Pp
�=0 (� + d� 1)!=�!(d� 1)! matrix with the �rst zero matrix being a

column vector and Id being an identity matrix of size d. m(p+1)(x) is a (p+ d)!=(p+ 1)!(d� 1)! by 1 vector
of the partial derivatives of m(x).

Theorem 1 Under Assumptions E, F, H, K, M and S,

nh1+d=2
�b� � � � hp (0;Id;0)M�1B � E[m(p+1)(x)]

�
d�! N

�
0;

Z
�2(x)dx � �

�
;

where �2(x) = E["2jx], and the (l; t) element of � isZ �
e0l+1M

�1uSpK (u)
� �
e0t+1M

�1uSpK (u)
�
du;

for l; t = 1; � � � ; d.

Since nhd+2 ! 0, nh1+d=2 = o(
p
n), i.e., the convergence rate of b� is slower than pn. If minimizing the

asymptotic mean squared error (AMSE) of b�, we have
h = O

�
n�

2
2p+2+d

�
;

and the square root of the AMSE (RAMSE) of b� is O �n� 2p
2p+2+d

�
. When d is large, this RAMSE is large, so

it seems that b� su¤ers from the curse of dimensionality. This is not the case. Actually, from Section 2.5 of Yu
(2013), we expect that the convergence rate of b� is pnh rather than nh1+d=2 = pnhpnhd. If the convergence
rate is

p
nh, b� does not su¤er from the curse of dimensionality. Our convergence rate is faster than

p
nh

given that nhd ! 1, so we expect b� does not su¤er from the curse of dimensionality in practice. To be

speci�c, recall that the optimal RAMSE of the one-dimensional slope estimation is of O
�
n�

p
2p+2+1

�
, so when

p � d
2 �2, the convergence rate of b� is not slower than that in the one-dimensional slope estimation. Usually,

d � 6, so even the local linear estimator will achieve a convergence rate at least as fast as the-one dimensional
slope estimator. The faster convergence rate is due to the fact that b� � � can actually be represented as a
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degenerate U-statistic. To appreciate why this can happen, note that
R
e0l+1M

�1uSpK (u) du = 0, so the

�rst-order projection of U-statistic does not contribute to the asymptotic distribution.

Recall also that the slope estimation at a single point on X has the optimal RAMSE of O
�
n�

p
2p+2+d

�
, so

the average derivative estimator has a much faster convergence rate than the pointwise derivative estimator.

To be speci�c, let d = 1 and p = 1. Then the former has the optimal RAMSE of O
�
n�

2
5

�
, which is the

same as in the one-dimensional level estimation, and the latter has the optimal RAMSE of O
�
n�

1
5

�
.

The bias and variance of b� take the form of integrated bias and variance of bb(xi) at all xi. This is under-
standable from the construction of b�. The asymptotic variance matrix in the theorem can be consistently

estimated by its sample analog. Such results are standard in the literature, so are omitted here.

2.2 When x Contains a Discrete Regressor

From Hahn (1998), � can be estimated in
p
n rate, and the asymptotic variance bound is

E

�
�21(x)

p(x)
+

�20(x)

1� p(x) + (�(x)��)
2

�
;

where p(x) = E[Djx] is the propensity score, and �2d(x) = V ar(yjx;D = d), d = 0; 1, is the conditional

variance in each treatment state. So di¤erent from the case with continuous covariates, we can estimate the

counterpart of the average derivative of a discrete covariate in
p
n rate. The existing methods of estimating

� in the literature are summarized in Imbens (2004).

A natural question here is that why � can be estimated in
p
n rate while � cannot. Basically, this is

because � is an average of levels m(1; x) and m(0; x), while � is an average of slopes m0(x). It is well known

that slopes are harder to estimate than levels. To appreciate this result, note that when � can be expressed

as an average of levels (see (3)), it can also be estimated in
p
n rate.

The key assumption to achieve the
p
n convergence rate in the estimation of � is that D cannot be

perfectly predicted by x. Otherwise, the variance bound diverges to in�nity. In the treatment e¤ects

literature, this assumption is called the overlapping or matching assumption, that is, for each x, there must

be some individuals treated and some untreated. To understand this result, assume the treatment e¤ect is

constant for each x. In other words,

m(D;x) = D�+m(x): (5)

This is the partially linear model considered in Robinson (1988). It implies that @m(1; x)=@x = @m(0; x)=@x.

From the Theorem in Robinson (1988), when D can be perfectly predicted by x, � cannot be identi�ed.1

Finally, we close this section by some discussions on the e¢ ciency bound of Hahn (1998). It is well known

that when the model is homoskedastic, that is, E["2jx;D] = �2, the asymptotic variance bound for � in (5) is
�2=E[p(x) (1� p(x))], which is the same as predicted by Hahn (1998). However, when �2(x;D) = E["2jx;D]
depends on (x0; D)0 or only depends on x, the e¢ ciency bound predicted by Hahn (1998) is not the same as

that in Chamberlain (1992). Hahn�s bound is

E

�
�21(x)

p(x)
+

�20(x)

1� p(x)

�
;

1Strictly speaking, to identify � in (5), we require only that D cannot be perfectly predicted by x at some values of x, i.e.,
we allow that D can be perfectly predicted by x at some values of x. However, for the general model, we require that D cannot
be perfectly predicted by x at all values of x.
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which reduces to E
h

�2(x)
p(x)(1�p(x))

i
when �21(x) = �

2
0(x) = �

2(x). While Chamberlain�s bound is

1

,(
E

�
D

�2(x;D)

�
� E

"
E

�
D

�2(x;D)

����x�2
,
E

�
1

�2(x;D)

����x�
#)

= 1

,
E

24 1
�21(x)
p(x) +

�20(x)
1�p(x)

35 ;
which reduces to 1

.
E
h
p(x)(1�p(x))

�2(x)

i
when �21(x) = �20(x) = �2(x). By Jensen�s inequality, the former is

larger than the latter. This is because Chamberlain�s bound is based on the conditional moment restrictions,

while Hahn�s bound is based on the general setup of the treatment model. In other words, in the constant

treatment model, more information is available, and such information is unavailable in the general treatment

model.

3 Information Content in the Index Structure

As mentioned in the introduction, the parameter of average derivative is usually motivated in the single index

model. In this section, we study the information content of the index structure in the single index model.

From the last section, � cannot be estimated in
p
n rate. However, when an index structure is imposed,

e.g., m(x) = g(x0�), Ichimura (1993) shows that � can be estimated in
p
n rate up to a scale factor. To

understand the information content of the index structure, we consider in this section a special single index

model, i.e., the linear regression, where the scale factor is 1.

In linear regression,

yi = �0 + x
0
i�1 + "i � x0i� + "i; E["ijxi] = 0;

where xi = (1; x0i)
0 2 Rd+1 and � = (�0; �

0
1)
0. The most popular estimator is the ordinary least squares

estimator (LSE), combined with the heteroskedasticity-robust standard error, although the weighted least

squares estimator is more e¢ cient under the conditional moment restriction. It is well known that the LSE

of �, b�LSE � (b�0;LSE ; b�01;LSE)0, has the asymptotic distribution
p
n
�b�LSE � �� d�! N

�
0; E [xx0]

�1
E
�
xx0"2

�
E [xx0]

�1
�
:

Although this result is standard, we try to answer two seemingly naive questions in this paper. First, why

can b�LSE achieve the pn rate given that b� cannot. Second, why b�1;LSE , as a slope estimator, has the same
convergence rate as b�0;LSE which is an intercept (or level) estimator. Our answer is that this is because the
LSE uses the index structure in the conditional mean of y.

Since � = �1 in linear regression, b� is estimating �1. Since �0 = E[y]� E[x]0�1, it can be estimated as
b�(1)0 = y � x0b�;

where x and y are the sample averages of x and y. Of course, given that �0 = E[E[yjx] � x0�], it can also
be estimated as b�(2)0 =

1

n

nX
i=1

�ba(xi)� x0ib�� � bA� x0b�;
where bA = n�1Pn

i=1

�ba(xi)� x0ib��. Neither b�(1)0 and b�(2)0 uses the index structure of linear regression.2 If

2Of course, the additive structure of m(x) is used.
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we use the index structure, we can regress ba(xi) on xi to get an estimator of �,
e� =  nX

i=1

xix
0
i

!�1 nX
i=1

xiba(xi)! :
The following theorem states the asymptotic distributions of

�b�(1)0 ; b�(2)0 � and e�.
Theorem 2 Under Assumptions E, F, H, K, and S, b�(1)0 � �0 and b�(2)0 � �0 have the same asymptotic
distribution. When E[x] 6= 0, their asymptotic distribution is the same as �E[x]0

�b� � ��; when E[x] = 0,
their asymptotic distribution is the same as ". The asymptotic distribution of e� is the same as that of b�LSE.
We do not need assumption M since m(x) is in�nitely di¤erentiable in linear regression. Also, assumption

E can be relaxed as E["2+�jx] is uniformly bounded on x 2 X for some � > 0.

From this theorem, the asymptotic properties of the intercept estimators are indeed di¤erent from those

of the slope estimator. Usually, we use �0 to summarize the level information of m(x), so it is natural

to assume E[x] = 0 or center xi at x. In this case, the intercept estimators have the same asymptotic

distribution as ", i.e., they achieve the
p
n convergence rate even though the index structure is not imposed.

This result is much expected from the discussion in Section 2.2. When E[x] 6= 0, the convergence rate of the
intercept estimators is contaminated by the slower convergence rate of b�. It is also interesting to observe that
using either y or bA to estimate E[y] does not a¤ect the asymptotic distribution of the intercept estimators.
When E[x] = 0, note that b�0;LSE has the same asymptotic distribution as ", so the index structure does

not provide any extra information for the intercept. On the contrary, when the index structure is imposed,e�1 has a faster convergence rate than b� and its asymptotic distribution is the same as b�1;LSE . So the index
structure mainly contains information about the global derivatives of m(x).

4 Conclusion

In this paper, we study asymptotic properties of the direct estimator of average derivatives when the density

of regressors is not zero on the boundary of its support. We show that the estimator cannot achieve the
p
n convergence rate; nevertheless, it does not su¤er from the curse of dimensionality either. We also show

that the average derivative estimator associated with a discrete regressor can achieve the
p
n convergence

rate. The di¤erences in the convergence rates can happen because the former is estimating an average of

slopes while the latter is estimating an average of levels. Given that the parameter of average derivative is

usually motivated in the single index model, we further study the information content of the index structure

in a special single index model - the linear regression, and show that the index structure mainly contains

information about derivatives rather than levels.

The main purpose of this paper is to attract more attentions on this obvious problem in the average

derivative estimation, so only basic analyses are conducted. There are many interesting questions unsolved

in this paper. For example, what is the optimal (or minimax) rate of convergence of � given that it cannot

be estimated in
p
n rate? Is the bootstrap valid for the inference of b�?3

3For the indirect estimator of �, the bootstrap validity has already been discussed in Nishiyama and Robinson (2005).
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Appendix: Proofs

Proof of Theorem 1. First derive the mathematical formula for b�. Following Appendix A.1 of Heckman
et al. (1998), we have�ba(xi);bb0(xi)�0 = (Id+1;0) (X

0
iWiXi)

�1
X 0
iWiY

= (Id+1;0)H
�1 �H�1X 0

iWiXiH
�1��1H�1X 0

iWiY

= (Id+1;0)H
�1 (Z 0iWiZi)

�1
Z 0iWiY

= (Id+1;0)H
�1

0@ 1
n

nX
j=1;j 6=i

zijz
i0
j w

i
j

1A�10@ 1
n

nX
j=1;j 6=i

zijw
i
jyj

1A
� (Id+1;0)H

�1 (Mi)
�1
ri;

where

Xi =

0BBBBBBBBBBBB@

(x01 � x0i)Sp
...

(x0i�1 � x0i)Sp
0

(x0i+1 � x0i)Sp
...

(x0n � x0i)Sp

1CCCCCCCCCCCCA
n�

Pp
�=0(�+d�1)!=�!(d�1)!

; Y =

0BBBBBBBBBBBB@

y1
...

yi�1

0

yi+1
...

yn

1CCCCCCCCCCCCA
n�1

;

H = diag
�
1; hId; � � � ; hI(p+d�1)!=p!(d�1)!

	
; Zi = XiH

�1; zi0j = (x
0
j � x0i)SpH�1;

Wi = diag fKx
h (x1 � xi; xi) ; � � � ;Kx

h (xn � xi; xi)g = diag
�
wi1; � � � ; win

	
n�n :

Now, b� = 1

n

nX
i=1

bb(xi):
Given assumptions E, F and H, we can apply the arguments in Theorem 3 of Heckman et al. (1998) to

have
p
nh
�b� � �� = hp+1p

n

nX
i=1

(0;Id;0)
�
M i

��1
rmi +

1p
n

nX
i=1

(0;Id;0)
�
M i

��1
r"i + op(1)

where � = n�1
Pn

i=1m(xi), M i is the square matrix of size
Pp

�=0 (� + d� 1)!=�!(d� 1)! with the l-th row,
t-th column "block" being, for 0 � l; t � p,Z

(u0)
S(l)0

(u0)
S(t)

Kx (ux; xi) f(xi + uh)du;

rmi is a
Pp

�=0 (� + d� 1)!=�!(d� 1)! by 1 vector with the t-th block beingZ
uS(t)

h
(u0)

S(p+1)
m(p+1)(xi)

i
Kx (u; xi) f(xi)du;

9



and

r"i =
1

n

nX
j=1;j 6=i

zijw
i
j"j :

The terms associated with rmi will contribute to the bias and the terms associated with r"i , which is a

second-order U-statistic, will contribute to the variance.

First, analyze the bias.

E

"
1

n

nX
i=1

(0;Id;0)
�
M i

��1
rmi

#

= (0;Id;0)

Z �
M i

��1
rmi f(xi)dxi ! (0;Id;0)M

�1B � E[m(p+1)(x)];

where M and B are de�ned in the main text. Note here that the kernel Kx is replaced by K because the

data in the h neighborhood of the boundary of X can be neglected asymptotically. Also, we can calculate

the variance of this term is O
�
1
n

�
= o(1), so it converges in probability to its expectation.

Second, analyze the variance. Take the lth element of 1p
n

nP
i=1

(0;Id;0)
�
M i

��1
r"i , l = 1; � � � ; d, which is

asymptotically equivalent to
1p
n3

nX
i=1

nX
j=1;j 6=i

e0l+1
�
M i

��1
zijw

i
j"j :

From Lemma 8.4 of Newey and McFadden (1994), this U-statistic is asymptotically equivalent to 1p
n

nP
i=1

mn(xi; "i),

where

mn(xj ; "j) = E
h
e0l+1

�
M i

��1
zijw

i
j"j

���xj ; "ji = "j Z e0l+1
�
M i

��1
zijw

i
jf(xi)dxi:

We apply the Liapunov central limit theorem to derive its asymptotic distribution. It is standard to check

that the Liapunov condition is satis�ed, so we concentrate on calculating its asymptotic variance. Note that

E

"
"2j

�Z
e0l+1

�
M i

��1
zijw

i
jf(xi)dxi

�2#
= E

"
"2j

�Z
e0l+1M

�1uSpK (u) du

�2#
+ o(1)! 0;

where the last equality is because
R
e0l+1M

�1uSpK (u) du = 0. In other words, the associated U-statistic is

degenerate.

To derive the asymptotic distribution of b� � �, we apply Theorem 1 of Hall (1984). De�ne

Un =

nX
i=1

X
j>i

Hn(Zi; Zj);

where Zi = (xi; "i), and Hn(Zi; Zj) = hd=2
h
e0l+1

�
M i

��1
zijw

i
j"j + e

0
l+1

�
M j

��1
zjiw

j
i "i

i
. It is not hard to

check that E[H2
n(Z1; Z2)] <1 for each n. We now check

E
�
G2n(Z1; Z2)

�
+ n�1E[H4

n(Z1; Z2)]

E2[H2
n(Z1; Z2)]

! 0 as n!1; (6)
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where Gn(Z1; Z2) = E[Hn(Z3; Z1)Hn(Z3; Z2)jZ1; Z2].

Gn(Z1; Z2) = hdE
h�
e0l+1

�
M3

��1
z31w

3
1"1 + e

0
l+1

�
M1

��1
z13w

1
3"3

��
e0l+1

�
M3

��1
z32w

3
2"2 + e

0
l+1

�
M2

��1
z23w

2
3"3

����Z1; Z2i
= hdE

h�
e0l+1

�
M3

��1
z31w

3
1"1

��
e0l+1

�
M3

��1
z32w

3
2"2

����Z1; Z2i
= hd"1"2h

�dO

�
K

�
x2 � x1 � uh

h

��
;

so

E
�
G2n(Z1; Z2)

�
= O(hd):

Since

E[H4
n(Z1; Z2)] = O(h

�d); E2[H2
n(Z1; Z2)] = O(1);

(6) is satis�ed under Assumption H. So by Theorem 1 of Hall (1984),

Un

,r
1

2
n2E [H2

n(Z1; Z2)] =

p
n3hd=2

p
nh
�b�l � �l�q

n2�2
R �
e0l+1M

�1uSpK (u)
�2
du

d�! N(0; 1);

where

1

2
n2E

�
H2
n(Z1; Z2)

�
=

1

2
n2hdE

��
e0l+1

�
M1

��1
z12w

1
2"2 + e

0
l+1

�
M2

��1
z21w

2
1"1

�2�
=

1

2
n2hd

�
E

��
e0l+1

�
M1

��1
z12w

1
2"2

�2�
+ E

��
e0l+1

�
M2

��1
z21w

2
1"1

�2��
�! 1

2
n2hd

2
R
�2(x)dx

hd

Z �
e0l+1M

�1uSpK (u)
�2
du

= n2
Z
�2(x)dx

Z �
e0l+1M

�1uSpK (u)
�2
du:

That is,
p
nh
p
nhd

�b�l � �l� d�! N

�
0;

Z
�2(x)dx

Z �
e0l+1M

�1uSpK (u)
�2
du

�
:

Also, for l 6= t,

hdE
h�
e0l+1

�
M1

��1
z12w

1
2"2 + e

0
l+1

�
M2

��1
z21w

2
1"1

��
e0t+1

�
M1

��1
z12w

1
2"2 + e

0
t+1

�
M2

��1
z21w

2
1"1

�i
= hdE

h�
e0l+1

�
M1

��1
z12w

1
2

��
e0t+1

�
M1

��1
z12w

1
2

�
"22

i
+ hdE

h�
e0l+1

�
M2

��1
z21w

2
1

��
e0t+1

�
M2

��1
z21w

2
1

�
"21

i
= 2

Z
�2(x)dx

Z �
e0l+1M

�1uSpK (u)
� �
e0t+1M

�1uSpK (u)
�
du;

so the asymptotic covariance between b�l and b�t is R �2(x)dx R �e0l+1M�1uSpK (u)
� �
e0t+1M

�1uSpK (u)
�
du.

Finally, note that

nh1+d=2
�b� � �� = nh1+d=2 �b� � ��+ nh1+d=2 �� � �� :

Since � � � = Op(n
�1=2), nh1+d=2

�
� � �

�
= Op

�
n1=2h1+d=2

�
= op(1) under Assumption H. As a result,

nh1+d=2
�b� � �� has the same asymptotic distribution as nh1+d=2 �b� � ��.
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Proof of Theorem 2. We �rst discuss the asymptotic properties of bA. From the proof in the last theorem,
p
n
� bA�m� =

1p
n

nX
i=1

e01
�
M i

��1
r"i + op(1)

=
1p
n3

nX
i=1

nX
j=1;j 6=i

e01
�
M i

��1
zijw

i
j"j + op(1);

where m = 1
n

Pn
i=1E[yijxi] = �0 + x0�1, Note here that the linear representation does not include the bias

term since higher-order derivatives of E[yijxi] are zero in linear regression. Correspondingly, the bias term
in Theorem 1 does not appear in linear regression. From Lemma 8.4 of Newey and McFadden (1994), the

U-statistic representation of
p
n
� bA�m� is asymptotically equivalent to 1p

n

nP
i=1

mn(xi; "i), where

mn(xj ; "j) = E
h
e01
�
M i

��1
zijw

i
j"j

���xj ; "ji = "j Z e01
�
M i

��1
zijw

i
jf(xi)dxi:

By the Liapunov central limit theorem,

p
n
� bA� �0 � x0�1� d�! N(0; �2);

where �2 = E["2]. This asymptotic variance is from

E

"
"2j

�Z
e01
�
M i

��1
zijw

i
jf(xi)dxi

�2#
= E

"
"2j

�Z
e01M

�1uSpK (u) du

�2#
+ o(1)! �2;

where the last equality is from that fact that
R
e01M

�1uSpK (u) du = e01M
�1 R uSpK (u) du = 1.

Now we discuss the asymptotic properties of b�(1)0 and b�(2)0 . b�(1)0 = y � x0b�, so
b�(1)0 � �0 = �x0

�b� � �1�+ ":
If E[x] 6= 0, its asymptotic distribution is the same as �x0

�b� � �1� or �E[x]0 �b� � �1�. If E[x] = 0,
p
n

�b�(1)0 � �0
�
= �

�p
nx0
� �b� � �1�+pn" = pn"+ op(1):

Given that b�(2)0 � �0 = bA � �0 � x0b�1 = � bA� �0 � x0�1� � x0 �b�1 � �1� and bA � �0 � x0�1 has the same
asymptotic distribution as ", b�(2)0 � �0 has the same asymptotic distribution as b�(1)0 � �0.
As to e�, note that

p
n
�e� � �� =

 
1

n

nX
i=1

xix
0
i

!�1 
1p
n

nX
i=1

xi (ba(xi)� xi�)!

=

 
1

n

nX
i=1

xix
0
i

!�1
1p
n3

nX
i=1

xi

nX
j=1;j 6=i

e01
�
M i

��1
zijw

i
j"j + op(1):

We �rst derive the asymptotic distribution of 1p
n3

nP
i=1

xi
nP

j=1;j 6=i
e01
�
M i

��1
zijw

i
j"j , which is a second-order
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U-statistic. From Lemma 8.4 of Newey and McFadden (1994), this U-statistic is asymptotically equivalent

to 1p
n

nP
i=1

mn(xi; "i), where

mn(xj ; "j) = E
h
xie

0
1

�
M i

��1
zijw

i
j"j

���xj ; "ji = "j Z xie
0
1

�
M i

��1
zijw

i
jf(xi)dxi:

We apply the Liapunov central limit theorem to derive its asymptotic distribution. It can be shown that

E [mn(xi; "i)mn(xi; "i)
0] �! E

�
xix

0
i"
2
i

�
;

so the asymptotic distribution of e� is the same as that of the LSE.
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