
Econometric Reviews, 35(4):586–637, 2016
Copyright © Taylor & Francis Group, LLC
ISSN: 0747-4938 print/1532-4168 online
DOI: 10.1080/07474938.2013.833831

Understanding Estimators of Treatment Effects in
Regression Discontinuity Designs
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In this paper, we propose two new estimators of treatment effects in regression discontinuity
designs. These estimators can aid understanding of the existing estimators such as the local
polynomial estimator and the partially linear estimator. The first estimator is the partially
polynomial estimator which extends the partially linear estimator by further incorporating
derivative differences of the conditional mean of the outcome on the two sides of the
discontinuity point. This estimator is related to the local polynomial estimator by a
relocalization effect. Unlike the partially linear estimator, this estimator can achieve the
optimal rate of convergence even under broader regularity conditions. The second estimator
is an instrumental variable estimator in the fuzzy design. This estimator will reduce to
the local polynomial estimator if higher order endogeneities are neglected. We study the
asymptotic properties of these two estimators and conduct simulation studies to confirm the
theoretical analysis.
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1. INTRODUCTION

The regression discontinuity design (RDD) has got much popularity in applied
econometric practice for identifying treatment effects since its introduction by
Thistlewaite and Campbell (1960). Classical applications include Angrist and Lavy (1999),
Battistin and Rettore (2002), Black (1999), Card et al. (2008), Chay and Greenstone
(2005), Chay et al. (2005), Dell (2010), DesJardins and McCall (2008), DiNardo and
Lee (2004), Jacob and Lefgren (2004), Lee (2008), Ludwig and Miller (2007), Pence
(2006), and Van der Klaauw (2002) among others. See Cook (2008) for a historical
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UNDERSTANDING ESTIMATORS OF TREATMENT EFFECTS 587

introduction of RDDs in three academic disciplines, and see Imbens and Lemieux (2008),
Lee and Lemieux (2010), and Van der Klaauw (2008) for excellent reviews on up-to-date
theoretical developments and applications.

We know human behaviors always evolve smoothly unless an abrupt change happens
exogenously. This observation lies in the heart of RDDs. Suppose a treatment t is given
based on an observed forcing variable x by

t =
{

T1, if x ≥ �,

T0, if x < �,

where the cut-off point � is known, and both T0 and T1 follow the Bernoulli distribution
with different conditional means especially at x = �. Let Y1 and Y0 be the potential
outcomes corresponding to the two treatment assignments, then the observed outcome
is y = tY1 + (1 − t)Y0. Trochim (1984) divides RDDs into the sharp design and fuzzy
design depending on t being a deterministic function of x or not. In the sharp design, the
treatment assignment T1 = 1 and T0 = 0 almost surely. Hahn et al. (2001) show that if
E �Y0 | x� and E �Y1|x� are continuous at �, then in the left and right neighborhoods of the
threshold �, the treatment is assigned as if in a randomized experimental design. So the
individuals marginally below the threshold represent a valid counterfactual for the treated
group just above the threshold. As a result, the expected causal effect of the treatment
can be identified as

� ≡ E �Y1 − Y0 | x = �� = E �y | x = �+� − E �y | x = �−� ,

where E �y | x = �+� = limx↓� E �y | x�, and E �y | x = �−� = limx↑� E �y | x�. In the fuzzy
design, T1 and T0 are random, but the propensity scores E �T1 | x = �+� �= E �T0|x = �−�.
In this case, Hahn et al. (2001) show that � can be identified under a further local
unconfoundedness condition. Specifically,

� ≡ E �Y1 − Y0 | x = �� = E �y | x = �+� − E �y | x = �−�

E �t | x = �+� − E �t | x = �−�
�

In both cases, � only involves the difference of two estimable conditional means.
Until today, many estimators of treatment effects in RDDs have been developed. Hahn

et al. (2001) and Porter (2003) notice the bias problem in the Nadaraya–Watson estimator
(NWE) of E �y | x = �+�, E �y | x = �−�, E �t | x = �+� and E �t | x = �−�, and the former
suggests to use the local linear estimator (LLE), while the latter suggests to use the local
polynomial estimator (LPE) which generalizes the LLE. Porter (2003) also puts forward
another estimator called the partially linear estimator (PLE). He shows that the PLE
can achieve the optimal rate of convergence only under the more stringent assumption
(Assumption 2(b) of Porter, 2003) on the data generating process (DGP), while the LPE
can achieve the optimal rate under a broader assumption (Assumption 2(a) of Porter,
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588 P. YU

2003) on the DGP. There is an immediate logic gap: what is the relationship between
the PLE and the LPE? Why cannot the PLE achieve the optimal rate under the broader
assumption? To shed light on these questions, this paper puts forward a new estimator
called the partially polynomial estimator (PPE) which builds a connection between the
LPE and PLE. This estimator generalizes the PLE by considering derivative differences
of E[y | x] (besides the level difference as in the PLE) on the two sides of the threshold �.
By locally putting the PPE and the LPE in the threshold regression framework, we show
that the PPE can be generated by imposing a relocalization effect on the LPE, and it
can achieve the optimal rate of convergence just as the LPE. The second contribution of
this paper is to provide a new instrumental variable estimator (IVE) in the fuzzy design.
This estimator can aid understanding of the LPE in the fuzzy design. It is well known
that the LPE in the fuzzy design can solve the endogeneity problem without introducing
extra instrumental variables, but from the construction of the LPE, it is hard to see
why endogeneity is even involved. Hahn et al. (2001) interpret the LPE as the Wald
estimator in a simple case. Imbens and Lemieux (2008) and Lee and Lemieux (2010)
reexpress the LPE in the general case as a 2SLS estimator so that it can be treated as
a generalization of the Wald estimator. Despite the numerical equivalence between the
LPE and the 2SLS estimator, it is still unclear where the endogeneity is from and how
it is eliminated by the LPE. To understand this problem, we localize the model in the
neighborhood of the threshold and put forward the new IVE. It is shown that the LPE
is constructed essentially by neglecting higher order endogeneities in the model, while
the IVE eliminates such endogeneities directly. We derive the asymptotic distributions of
the PPE and IVE, and also conduct some simulation studies to confirm the theoretical
analysis. A technical contribution of this paper is to linearize the LPE. In the literature
where a nonparametric estimator of conditional mean is used as an intermediate input,
the local constant estimator combined with a higher order kernel is often employed for
technical convenience. In this paper, we show that the LPE can also be used and is
asymptotically equivalent to a higher order kernel estimator, while regularity conditions
can be somewhat weakened.

The rest of this paper is organized as follows. In Section 2, we construct the PPE in the
sharp design, discuss its relationship with the LPE, derive its asymptotic distributions, and
provide a variance estimator. Section 3 discusses two new estimators in the fuzzy design:
the PPE and the new IVE. Section 4 includes some simulation studies and Section 5
concludes. The proof of theorems and related lemmas are given in three appendices. A
word on notations: ≈ means the higher-order terms are omitted or a constant term is
omitted (depending on the context). Since the LPE of m(x) ≡ E �yi | xi = x� (for a response
y and an interior point x on the support of xi) is the building block of the PPE, we here
review its main properties and define necessary notations for the following development.
From Fan and Gijbels (1996), the pth order LPE of m(x) is a linear functional of
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UNDERSTANDING ESTIMATORS OF TREATMENT EFFECTS 589

y ≡ (y1, � � � , yn)
′:

�n
x (y) =

n∑
j=1

W n
j (x)yj , (1)

where W n
j (x) is a weight function depending on the rescaled kernel kh(·), �xi�

n
i=1 and x,

and
∑n

j=1 W n
j (x) = 1. kh (·) = 1

h k
( ·

h

)
with k (·) being a kernel density and h being the

bandwidth. The notation � is due to the fact that the LPE can be treated as a projection
estimator; see Mammen et al. (2001). As shown in Lemma 2.1 of Fan et al. (1997), �n

x is
equivalent to the linear functional �x asymptotically:

�x (y) = 1
nhf(x)

n∑
j=1

K∗
p

(
xj − x

h

)
yj ,

where f(·) is the density of xi,

K∗
p (u) = e′

1	
−1 (1, u, � � � , up)′ k(u) ≡ e′

1	
−1
(u), (2)

is a kernel of order p + 1 when p is odd and of order p + 2 when p is even as
defined by Gasser et al. (1985),1 e1 = (1, 0, � � � , 0)′

(p+1)×1 whose dimension is determined
by the context without further explanation, 	 = (�i+j−2)1≤i,j≤p+1 is invertible with �j =∫

ujk(u)du, and 
(u) = (k(u), uk(u), � � � , upk(u))′.

2. PARTIALLY POLYNOMIAL ESTIMATION IN THE SHARP DESIGN

This section discusses the partially polynomial estimation in the sharp design. We first
review the existing estimators in the literature, then discuss the construction of the PPE
and its connection with the LPE, and conclude with the asymptotic theory of the PPE
and its variance estimation.

2.1. The Existing Estimators in the Sharp Design

In RDDs, the outcome equation is

y = m(x) + �(x)t + �,

where the forcing variable x is some basic determinant of the outcome, m(x) is the
baseline effect and assumed to be continuous, t is the treatment status, � may depend
on t and is denoted as �t if necessary, and E[�|x, t] = 0, t = 0, 1. The treatment effect at

1Or equivalently, as shown in Ruppert and Wand (1994), K∗
p(u) = ∣∣	(u)

∣∣ / ∣∣	∣∣ k(u), where 	(u) is the same
as 	 , but with the first column replaced by (1, u, � � � , up)′. When p = 0 and 1, K∗

p (u) = k(u) if k is symmetric.
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590 P. YU

x is � (x) + �1 − �0, where � (x) is the average treatment effect at x and is assumed to
be continuous in x. In the sharp design, t = d ≡ 1 (x ≥ �), where 1(A) is the indicator
function with value 1 when the event A is true and 0 otherwise. We are interested in
the average treatment effect at x = �, that is, E �� (x) + �1 − �0|x = �� = � (�) ≡ �. In the
sharp design, the outcome equation can be written as

y = m0(x) + �d + � ≡ m(x) + �, (3)

where m(x) = E[y | x] = m(x) + d�(x), and m0(x) ≡ E �y | x� − �d = m(x) + d(�(x) − �)

shifts m(x) down by the size � on x ≥ � so is continuous.
Since Porter (2003), the benchmark estimator of � is the local polynomial estimator

(LPE). In the sharp design, it is defined as

�̃ = m̂+(�) − m̂−(�), (4)

where m̂+(�) is the LPE of m+(�) ≡ E[y | x = �+] = m(�) + � and is determined by the
minimizer â in the following problem:

min
a,b1,���,bp

1
n

n∑
i=1

kh (xi − �) di �yi − a − b1 (xi − �) − · · · − bp (xi − �)p�2 ,

where p is a nonnegative integer, and di = 1 (xi ≥ �). m̂−(�) is the LPE of m−(�) ≡
E[y | x = �−] = m(�) and is similarly defined as m̂+(�) with di substituted by dc

i ≡ 1 −
di. When p = 0, �̃ is the NWE. As argued in Section 3 of Hahn et al. (2001) and
Section 3.2 of Porter (2003), this estimator suffers from the usual boundary problem
in conditional mean estimation. Hahn et al. (2001) suggest p = 1, which results in the
LLE. This estimator avoids the boundary problem of the NWE, and also shares some
efficiency property as discussed in Fan (1992, 1993). Imbens and Lemieux (2008) and Lee
and Lemieux (2010) also mention a related estimator based on the pooled regression:

min
a,�,b1,1

1
n

∑
xi∈N0

�yi − a − �di − b1 (xi − �) − 1di (xi − �)�2 (5)

where N0 = [� − h, � + h]. The resulting estimator of � is numerically equivalent to (4)
when k is the uniform kernel and p = 1. This estimator can be easily extended to the case
with p > 1 and a general kernel by considering the following minimization problem:

min
a,�,b1,1,���,bp ,p

1
n

n∑
i=1

kh (xi − �) �yi − a − �di − b1 (xi − �) − 1di (xi − �)

− · · · − bp (xi − �)p − pdi (xi − �)p �2� (6)
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UNDERSTANDING ESTIMATORS OF TREATMENT EFFECTS 591

A good property of this estimator is that the standard error of the estimated treatment
effect can be directly obtained from the regression since the usual standard error of the
least square estimation is valid (which will be shown as a corollary of Theorem 5 in
Section 3.3). We label this estimator as the least squares estimator (LSE).

Another estimator put forward in Porter (2003) is the PLE. This estimator is motivated
by the observation that (3) takes the partially linear form of Robinson (1988), so � can be
treated as the parametric coefficient in the partially linear model. The PLE is defined as

arg min
�

n∑
i=1

⎡⎣yi − �di −
n∑

j=1

wi
j

(
yj − �dj

)⎤⎦2

= arg min
�

n∑
i=1

⎡⎣yi −
n∑

j=1

wi
jyj − �

⎛⎝di −
n∑

j=1

wi
jdj

⎞⎠⎤⎦2

,

where wi
j = kh

(
xi − xj

)
/
∑n

l=1kh (xi − xl) .
∑n

j=1 wi
j

(
yj − �dj

)
can be treated as an

estimator of m0(x) at xi. Actually, the PLE in Robinson (1988) can be equivalently
redefined in this way. Note that di −∑n

j=1 wi
jdj = 0 when xi is out of a O(h)

neighborhood of �, so only the information in the h-neighborhood of � is used to estimate
�. As a result, the PLE only has a nonparametric convergence rate instead of the

√
n rate

in Robinson (1988); see Section 3.3 of Porter (2003) for more discussions on this point.
Porter (2003) shows that the LPE can achieve the optimal rate of convergence for a

general form of m0(x). However, the PLE can achieve this optimal rate only if m0(x) is
smooth enough in a neighborhood of � such as in the constant treatment effects case.

2.2. Construction of the Partially Polynomial Estimator

Because the PLE only explores the information that m(x) (rather than its derivatives) has
a jump at �, it cannot achieve the optimal rate of convergence when m0(·) is known to be
only continuous at �. Now, we generalize the PLE to the PPE by explicitly considering
the jumps of the derivatives of m(x) at �. Specifically, let

yi = mq(xi) + Xd′
i � + �i, (7)

where

Xd
i = (di, di(xi − �), � � � , di(xi − �)q)′, � = (�, 1, � � � , q

)′
,

and mq(xi) ≡ m(xi) − Xd′
i � is an extension of m0(xi) in (3) and has continuous derivatives

at � to qth order, � = m(�)
+ (�)−m(�)

− (�)

�! , � = 1, � � � , q, is the scaled difference of the �th
derivatives of m(x) in the left and right neighborhoods of �, and m(�)

+ (�) and m(�)
− (�) are
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592 P. YU

FIGURE 1 mq(x) in partially polynomial estimation with different orders.

the �th order right and left derivatives of m(x) at �.2 mq(x) is shown in Fig. 1, where

m(x) =
{

1 + 0�16x − 0�29x2, if x < 0;

2 + 1�43x + 0�19x2, if x ≥ 0�
In this special case, � = 1, 1 = 1�27, and 2 =

0�48. Note that q = 0 corresponds to the PLE of Porter (2003). Obviously, its m0(x) may
not be smooth at 0.

The estimator of �, �̂, is the first element of the minimizer �̂ in the following problem:

min
�

1
n

n∑
i=1

[
ỹi (�) − �n

xi

(
ỹ (�)

)]2
, (8)

where

ỹi (�) = yi − Xd′
i �, ỹ (�) = (ỹ1 (�) , � � � , ỹn (�))′ ,

and �n
xi

(
ỹ (�)

)
is the pth order LPE of E �ỹi (�) |xi� which is equal to mq(xi) when � is

evaluated at its true value. To explore the qth order smoothness of mq(·), we assume p ≥
q, though p and q are not necessarily the same. From Lemma 2.1 of Fan et al. (1997),
�n

xi

(
ỹ (�)

)
is equivalent to the local constant estimator with a higher-order kernel. Because

the kernel function in Porter (2003) is allowed to be higher order, the PPE distinguishes

2(7) is a partially linear regression in Robinson (1988) because the parametric component of (7) is linear
in the parameters. The term PPE is to distinguish (7) from the partially linear regression in Porter (2003).
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UNDERSTANDING ESTIMATORS OF TREATMENT EFFECTS 593

from the PLE mainly by considering the difference of derivatives at � in (8) rather than
using the LPE to estimate mq(xi). Since the derivative differences of m(x) at � are taken
into account in the PPE, � is more or less like an interior point on x’s support, and
�n

xi

(
ỹ (�)

)
is like estimating the conditional mean at an interior point xi.

2.3. Connection with the Local Polynomial Estimator

We now build a connection between the PPE �̂ and the LPE �̃. For this purpose, we
compare the PPE to the LSE in threshold regression; see Chan (1993), Hansen (2000),
and Yu (n.d., 2012) for more discussions on threshold regression. A typical setup of the
PPE is p = q, so we only concentrate on this case. In threshold regression,

y =
{

x′1 + e1, z < �;

x′2 + e2, z ≥ �;
(9)

where z is the threshold variable used to split the sample, x ∈ �p+1 is the covariate
with the first element being a constant,  ≡ (′

1, ′
2)

′ ∈ �2(p+1) and � ≡ (�1, �2)
′ are

parameters in mean and variance in the two regimes of (9), the error terms e1 and e2

allow for conditional heteroskedasticity and are not necessarily the same, and all the
other variables have the same definitions as in the linear regression framework. A useful
reparametrization of (9) is

y = x′1 + x′ (2 − 1) 1 (z ≥ �) + e, (10)

where e = e1 when z < �, and e = e2 when z ≥ �. Returning to the regression
discontinuity model, (9) is only satisfied locally. Note that the approximation in (7) can
be written in two equivalent ways:

y =
{

a− + b−
1 (x − �) + · · · + b−

p (x − �)p + �0, x < �;

a+ + b+
1 (x − �) + · · · + b+

p (x − �)p + �1, x ≥ �;
(11)

and

y = a− + b−
1 (x − �) + · · · + b−

p (x − �)p + [� + 1 (x − �)

+ · · · + p (x − �)p]1 (x ≥ �) + �, (12)

where a− + b−
1 (x − �) + · · · + b−

p (x − �)p is the Taylor expansion of mq(x) to order p in
the left neighborhood of � with a− = m−(�) and b−

� = m(�)
− (�) /�!, � = 1, � � � , p,(

a+, b+
1 , � � � , b+

p

) = (a−, b−
1 , � � � , b−

p

)+ (�, 1, � � � , p

)
,
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594 P. YU

and the threshold variable z in (9) is just x. Obviously, (a−, b−
1 , � � � , b−

p ),
(�, 1, � � � , p), (1 (x − �) · · · (x − �)p)′ and (�0, �1) play the role of 1, 2 − 1, x, and
(e1, e2), respectively, in (10).

The main concern in threshold regression is the threshold point �. In contrast, in
RDDs, � is generally known from the design, and the main concern is the mean difference
� between the two regimes. In threshold regression, we can set up the objective functions
of the least squares estimation for the two equivalent models (9) and (10) as follows:

Obj1 =
n∑

i=1

(
yi − x′

i11(zi < �) − x′
i21(zi ≥ �)

)2
,

Obj2 =
n∑

i=1

(
yi − x′

i (2 − 1) 1 (zi ≥ �) − x′
i1

)2
�

Suppose � is known, then in Obj1, 2 − 1 is estimated in two steps. First estimate 2

using the data with zi ≥ � and estimate 1 using the data with zi < �, and then take
difference of the estimates of 2 and 1 in step 1 as the estimator of 2 − 1. In contrast,
Obj2 uses a profiled procedure: first fix 2 − 1 and regress yi − x′

i (2 − 1) 1 (zi ≥ �) on
xi to get an estimate of 1 (as a function of 2 − 1), and then minimize Obj2 with respect
to 2 − 1 to estimate 2 − 1.

In RDDs, we only use the data local to � to estimate �, so the weight kh(xi −
�) is imposed on each summand, and also, xi, 1, and 2 − 1 are substituted by the
counterparts of RDDs. The estimates of � based on Obj1 and Obj2 correspond to the
LPE and LSE in Section 2.1, respectively. To relate the LPE (or equivalently, the LSE)
to the PPE, we express the LSE in (6) as the minimizer �̃ in

min
�

n∑
i=1

kh(xi − �)
[
ỹi (�) − �n

�

(
ỹ (�)

)]2
�

On the other hand, the PPE is the minimizer �̂ in

min
�

n∑
i=1

[
ỹi (�) − �n

xi

(
ỹ (�)

)]2
�

There are two differences between these two objective functions. First, the local weight
kh(xi − �) is removed in the PPE. From Lemma 1 in Appendix C, only the data in the
h neighborhood of � will contribute to the objective function of the PPE. Equivalently,
the local weight kh(xi − �) with a uniform kernel is used in the PPE, which may lose
some efficiency compared to other kernels such as the Epanechinikov kernel. Second, the
LPE of E[ỹi (�) |xi] rather than E[ỹi (�) |xi = �] is used in the PPE. Obviously, �n

xi

(
ỹ (�)

)
should be a better estimator of E[ỹi (�) |xi] than �n

�

(
ỹ (�)

)
. Disregarding the difference

in the local weight kh(xi − �), the PPE will reduce to the LSE by a relocalization effect.
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UNDERSTANDING ESTIMATORS OF TREATMENT EFFECTS 595

Nevertheless, since only xi ∈ N0 contributes to the estimation, the performance of these
two estimators should be similar; simulations in Section 4 confirm this result. However,
the following subsection shows that their asymptotic properties are quite different.

2.4. Asymptotic Theory of �̂

First, we specify some regularity conditions required in deriving the asymptotic
distribution of �̂. These assumptions roughly correspond to those in Section 3.1 of Porter
(2003). For example, Assumptions K, F, M(a), M(b), and E correspond to Assumptions 1,
the first half of 2(a), the second half of 2(a), 2(b), and 3 in Porter (2003), respectively.
See the discussions there for the role of these assumptions in the development of the
asymptotic theory.

Assumption K. k(·) is a symmetric, bounded, Lipschitz function, zero outside a
bounded set �−1, 1�, and

∫
k(u)du = 1.

We assume that k(·) has a bounded support [−1, 1] only to simplify the proof. Also,
k(·) is a second-order kernel; no higher order kernels are required.

Assumption F. For some compact interval N of � with � ∈ int(N ), f is lf times
continuously differentiable and bounded away from zero.

This assumption roughly assumes that there is no manipulation of the forcing variable;
see McCrary (2008) for more discussions about this assumption and a test on its validity.

Assumption M.

(a) m0(x) is lm times continuously differentiable for x ∈ N\ ���, and m0(x) is continuous
and has finite right- and left-hand derivatives to order lm at �.

(b) Right- and left-hand derivatives of m0(x) to order lm are equal at �.3

The typical case where Assumption M(b) holds is the constant treatment effects model.
In such a model, Y1i − Y0i = � (x) + �1 − �0 = � is constant across individuals, so m0(x) is
smooth up to order lm, and we need not consider the derivative differences.

Assumption E.

(a) �2(x) = E
[
�2|x] is continuous for x ∈ N\ ���, and the right and left-hand limits at

� exist.
(b) For some � > 0, E

[ ∣
�
∣2+�
∣∣ x] is uniformly bounded on N .

3In this case, estimators of �, � = 1, � � � , q, converge to zero.
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596 P. YU

Assumption B below restricts the range of h, which will affect the bias properties of
the PPE.

Assumption B. n�/(2+�)h

ln n
→ ∞,

√
nh

ln n
→ ∞.

(a)
√

nhhq+3 → 0,
√

nhhq+1 → Ca, where 0 ≤ Ca < ∞.
(b1)

√
nhhp+3 → 0,

√
nhhp+1 → Cb1, where 0 ≤ Cb1 < ∞.

(b2)
√

nhhp+3 → 0,
√

nhhp+2 → Cb2, where 0 ≤ Cb2 < ∞.

The following Theorem 1 provides the asymptotic results for the PPE under different
sets of regularity conditions when q ≥ 1. As in the PLE, since only the data with xi in an
h-neighborhood of � contribute to �̂, the convergence rate is

√
nh.

Theorem 1. Suppose p ≥ q ≥ 1, and Assumptions E, F, and K hold with lf ≥ 1.

(a) If Assumption M(a) holds with lm ≥ q + 1, and Assumption B(a) holds, then

√
nh
(
�̂ − �

) d−→ N
(

−CaBa,
V

f(�)

)
,

Here,

Ba = e′
1N −1

p

[
m(q+1)

+ (�)

(q + 1)! Q+
pq + m(q+1)

− (�)

(q + 1)! Q−
pq

]
,

V = e′
1N −1

p

[
�2

+(�)�+
p + �2

−(�)�−
p

]
N −1

p e1

with �2
+(�) = E

[
�2|x = �+], �2

−(�) = E
[
�2|x = �−],

Np (i, j) =
∫ 1

0
K∗

p(

+
i−1(w))K∗

p(

+
j−1(w))dw

+
∫ 0

−1
K∗

p(

−
i−1(w))K∗

p(

−
j−1(w))dw,

Q+
pq(i) =

∫ 1

0
K∗

p(

+
i−1(w))

(∫ 1

−w
K∗

p (u) (w + u)q+1 du − wq+1

)
dw

+
∫ 0

−1
K∗

p(

−
i−1(w))

(∫ 1

−w
K∗

p (u) (w + u)q+1 du
)

dw,

Q−
pq(i) =

∫ 1

0
K∗

p(

+
i−1(w))

(∫ −w

−1
K∗

p (u) (w + u)q+1 du
)

dw

+
∫ 0

−1
K∗

p(

−
i−1(w))

(∫ −w

−1
K∗

p (u) (w + u)q+1 du − wq+1

)
dw,
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UNDERSTANDING ESTIMATORS OF TREATMENT EFFECTS 597

�+
p (i, j) =

∫ 1

0

[
K∗

p(

+
i−1(w)) −

(∫ 1

0
K∗

p(

+
i−1(v))K∗

p (w − v) dv

+
∫ 0

−1
K∗

p(

−
i−1(v))K∗

p (w − v) dv
)]

[
K∗

p(

+
j−1(w)) −

(∫ 1

0
K∗

p(

+
j−1(v))K∗

p (w − v) dv

+
∫ 0

−1
K∗

p(

−
j−1(v))K∗

p (w − v) dv
)]

dw,

�−
p (i, j) =

∫ 0

−1

[
K∗

p(

−
i−1(w)) −

(∫ 1

0
K∗

p(

+
i−1(v))K∗

p (w − v) dv

+
∫ 0

−1
K∗

p(

−
i−1(v))K∗

p (w − v) dv
)]

[
K∗

p(

−
j−1(w)) −

(∫ 1

0
K∗

p(

+
j−1(v))K∗

p (w − v) dv

+
∫ 0

−1
K∗

p(

−
j−1(v))K∗

p (w − v) dv
)]

dw,

and

K∗
p(


+
i−1(w)) = wi−1 −

∫ 1

−w
K∗

p(u)(w + u)i−1du,

K∗
p(


−
i−1(w)) = −

∫ 1

−w
K∗

p(u)(w + u)i−1du,

i, j = 1, � � � , q + 1, K∗
p(u) being defined in (2).

(b1) If Assumption M(b) holds with lm ≥ p + 1, and Assumption B(b1) holds, then when
p is odd,

√
nh
(
�̂ − �

) d−→ N
(

−Cb1Bb1,
V

f(�)

)
,

where

Bb1 =
(∫ 1

−1
K∗

p (u) up+1du
)

m(p+1)
0 (�)

(p + 1)! e′
1N −1

p Qp

with

Qp(i) =
∫ 1

0
K∗

p(

+
i−1(w))dw +

∫ 0

−1
K∗

p(

−
i−1(w))dw,

i = 1, � � � , q + 1.
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598 P. YU

(b2) If Assumption M(b) holds with lm ≥ p + 2, and Assumption B(b2) holds, then when
p is even,

√
nh
(
�̂ − �

) d−→ N
(

−Cb2Bb2,
V

f(�)

)
,

where

Bb2 =
(∫ 1

−1
K∗

p (u) up+2du
)(

m(p+1)
0 (�)f ′(�)

(p + 1)!f(�)
+ m(p+2)

0 (�)

(p + 2)!

)
e′

1N −1
p Qp�

Theorem 1 is surprising in two aspects. First, under Assumption M, the PPE can
achieve the optimal rate by incorporating the derivative differences in the left and right
neighborhoods of �. For example, if m(x) is in Cr , r > 1, of Porter (2003), where Cr is
the set of functions satisfying Assumption M(a) with lm = r, then the PPE with p ≥ q =
r − 1 can achieve the optimal convergence rate. If m(x) is in Cr , r > 2, of Porter (2003),
where Cr is the set of functions satisfying Assumption M(b) with lm = r, then the PPE
with 0 < q ≤ p = r − 1 (r − 2 when r is even) can achieve the optimal convergence rate.
Second, the PLE is indeed very special. In our notation, when q = 0, Q+

pq = Q−
pq = 0, so

the bias in (a) is O(
√

nhh2) instead of O(
√

nhh) as illustrated in Theorem 2(a) of Porter
(2003). In (b1) and (b2), Qp = 0, so a higher-order bias O(

√
nhhp+2+1(p is even)) appears as

shown in Theorem 2(b) of Porter (2003). This is basically because 1 (xi ≥ �) and 1 (xi < �)

are symmetric, and the lower-order biases in the left and right neighborhoods of � offset
each other. In the PPE, (xi − �)l1 (xi ≥ �), l ≥ 1, and 1 (xi < �) are not symmetric, so
the lower-order bias remains. The order of the biases in the PLE, LPE and PPE is
summarized in Table 1. Note that when the kernel is symmetric, the order s of the kernel
k(·) in the PLE of Porter (2003) must be even. Roughly speaking, s plays a similar role
as p + 1 when p is odd and p + 2 when p is even in the PPE. In the LPE, when p is odd
and Assumption M(b) holds, the lower-order biases in the two neighborhoods of � offset
each other, and a higher-order bias appears.

As discussed above, the PLE with a higher-order kernel is essentially equivalent to the
PPE with q = 0 and some p > q. But there is indeed some subtle difference between them:
Theorem 1 needs less stringent conditions on the smoothness of f(x) than Theorem 2 of

TABLE 1
Biases of Four Estimators (the b in

√
nhh

b)

Assumption M(a)/A(a) Assumption M(b)/A(b)

PLE (q = 0, p ≥ q) 2 p + 2 + 1 (p is even)

PPE (p ≥ q > 0) q + 1 p + 1 + 1 (p is even)

LPE (p ≥ 0) p + 1 p + 1 + 1 (p is odd)

IVE (p ≥ q ≥ 0) q + 1 p + 1
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UNDERSTANDING ESTIMATORS OF TREATMENT EFFECTS 599

Porter (2003). For example, in (a), Porter (2003) requires lf ≥ 2 while Theorem 1 only
requires lf ≥ 1; in (b1) and (b2), Porter (2003) requires lf ≥ s, while Theorem 1 only
requires lf ≥ 1. This is the role played by the PPE more than the higher-order kernel
estimator; that is, the PPE adapts automatically to the smoothness of the density of x.

Note that the first parts of Bb1 and Bb2 are the same as those appearing in Theorem 4.1
of Ruppert and Wand (1994) where the conditional mean at an interior point is estimated,
which confirms our intuition that � can be treated as an interior point in the PPE. In
case (a), the optimal bandwidth to minimize the mean squared error (MSE) is O(n− 1

2q+3 );
in case (b1), the optimal bandwidth is O(n− 1

2p+3 ); in case (b2), the optimal bandwidth
is O(n− 1

2p+5 ). So when we have more smoothness in m(x), the optimal bandwidth gets
larger. Note also that Np, �+

p , �−
p , Q+

pq, Q+
pq and Qp only depend on the kernel function,

which validates the conventional insight that the bandwidth affects the convergence rate
while the kernel only affects the efficiency constant. Also, K∗

p (·) instead of k(·) appears
in these notations. This is consistent with the observation in the introduction that the
LPE at a interior point is equivalent to the local constant estimator with a higher-order
kernel. When q = p = 0, K∗

p (u) = k(u), and Np reduces to 2
∫ 1

0 K2
0(w)dw in Porter (2003),

where K0(w) = ∫ 1
w k(u)du. We can check some special cases of (a) to show the results in

Theorem 1 are correct. Suppose m(q+1)
+ (�) = m(q+1)

− (�), then

Q+
pq(i) + Q−

pq(i)

=
∫ 1

0
K∗

p(

+
i−1(w))

(∫ 1

−1
K∗

p (u) (w + u)q+1 du − wq+1

)
dw

+
∫ 0

−1
K∗

p(

−
i−1(w))

(∫ 1

−1
K∗

p (u) (w + u)q+1 du − wq+1

)
dw

=

⎧⎪⎪⎨⎪⎪⎩
0, if q < p;(∫ 1

−1 K∗
p (u) up+1du

)
Qp(i), if q = p and p odd;

0, if q = p and p even;

which matches the asymptotic biases in (b1) and (b2).
Another good property of the PPE is that it automatically generates the (scaled)

derivative difference of m0(·) at the left and right side of �. From the proof of Theorem 1,
we can show that

√
nhH

(
�̂ − �

)
d−→ N

(
−CB,

V
f(�)

)
, (13)

where C is the constant in each case of Theorem 1, H =diag�1, h, � � � , hq�(q+1)×(q+1), and
B and V are defined as B and V in each case with e1 and e′

1 deleted. To estimate the
derivative difference, we can multiply the left hand side of (13) by D =diag�0!, 1!, � � � , q!�
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600 P. YU

to get

√
nhHD

(
�̂ − �

)
d−→ N

(
−CDB,

DVD
f(�)

)
�

This asymptotic result can be used to test hypotheses like D� = 0; that is, there is no
treatment effect up to qth order derivative.

2.5. Variance Estimation

For inference, we need to estimate the asymptotic bias and variance of �̂. For the bias,
higher order derivatives of m(x) at x = � are involved. It is a standard exercise to estimate
these derivatives, see, e.g., Härdle (1990), Pagan and Ullah (1999), and Li and Racine
(2007). In practice, it is more popular to use undersmoothing to avoid calculating the
bias. As to the variance, we need only to estimate �2

+(�), �2
−(�), and f(�) since other

components are just complicated functionals of the kernel. The estimation of f(�) is
straightforward, so we concentrate on the estimation of �2

+(�) and �2
−(�) in the following.

First get the sample analog of �i:

�̂i = yi − Xd′
i �̂ − m̂(xi),

where Xd
i = (di, di(xi − �), � � � , di(xi − �)q), and m̂(xi) is determined by the minimizer â

in

min
a,b1,���,bp

1
n

n∑
j=1

kh

(
xj − x

) [
yj − Xd′

j �̂ − a − b1

(
xj − xi

)− · · · − bp

(
xj − xi

)p
]2

�

Then �2
+(�) is estimated as the minimizer â in

min
a,b1,���,bp

1
n

n∑
i=1

kh (xi − �) di

[
�̂2

i − a − b1 (xi − �) − · · · − bp (xi − �)p
]2

,

and �2
−(�) is similarly estimated with di replacing dc

i . The estimators are denoted as �̂2
+(�)

and �̂2
−(�). The following theorem shows the consistency of �̂2

+(�) and �̂2
−(�).

Theorem 2. If the assumptions in part (a) of Theorem 1 holds with � in Assumption
E satisfying � ≥ 2, and

√
nh2

ln n
→ ∞, then

�̂2
+(�)

p−→ �2
+(�) and �̂2

−(�)
p−→ �2

−(�)�
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UNDERSTANDING ESTIMATORS OF TREATMENT EFFECTS 601

3. THE FUZZY DESIGN

In the fuzzy design, we study two estimators, the PPE and the newly proposed IVE. As
in the sharp design, we first review the existing estimators in the fuzzy design.

3.1. The Existing Estimators in the Fuzzy Design

As (3), we can write t in the form of s(x) + d + �, E[� | x] = 0. Note here that it is
not necessary to introduce the notation (x) for the following development, and s(x) is
similar to m0(x) in (3). Note also that in the fuzzy design, y generally cannot be written as
y = m0(x) + �t + � for some m0(x). This is because y = �m(x) + t (�(x) − �)� + t� + � ≡
m0(x, t) + t� + �, where m0(x, t) depends on t unless �(x) = �. To express y in this form,
we need to redefine the error term:

y = �m(x) + (s(x) + d + �) (�(x) − �)� + t� + �

= �m(x) + (s(x) + d) (�(x) − �)� + t� + �� (�(x) − �) + �� �

We can also express y in the form of (3):

y = t(m(x) + �(x) + �1) + (1 − t)(m(x) + �0)

= (s(x) + d + �) (m(x) + �(x) + �1) + (1 − s(x) − d − �) (m(x) + �0)

= (s(x) + d)
(
m(x) + �(x)

)+ (1 − s(x) − d) m(x)

+ (s(x) + d) �1 + (1 − s(x) − d) �0 + �(x)� + � (�1 − �0)

≡ �m(x) + s(x)�(x) + d (�(x) − �)� + d� + R

≡ m0(x) + d� + R ≡ m(x) + R, (14)

where

R = (s(x) + d) �1 + (1 − s(x) − d) �0 + �(x)� + � (�1 − �0) � (15)

So the jump size of E[y | x] at � is � ≡ �, and the error term changes to R.
The LPE (or LSE) can be easily extended to the fuzzy design. The resulting estimator

�̃f = �̃

̃
,

where �̃ and ̃ are the LPEs (or LSEs) based on �yi, xi�
n
i=1 and �ti, xi�

n
i=1, respectively.

Hahn et al. (2001) show that this estimator is numerically equivalent to the Wald
estimator when the uniform kernel is used and p = 0. Imbens and Lemieux (2008) and
Lee and Lemieux (2010) mention that this estimator is numerically equivalent to the 2SLS
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602 P. YU

estimator based on the following model of regression with endogeneity when the uniform
kernel is used and p = 1:

yi = �0 + �1di (xi − �) + �2dc
i (xi − �) + ti� + ri,

ti = �0 + �1di (xi − �) + �2dc
i (xi − �) + di + �i,

where only the data such that xi ∈ N0 are used in the estimation, the endogenous variable
is ti, and the excluded exogenous variable is di. As in the LSE of the sharp design, the
standard error of the 2SLS estimator is valid. Also, this estimator can be easily extended
to the case with p > 1 and a general kernel as in (6). When � and  are estimated by the
PLE (instead of the LPE), we get the PLE of � in the fuzzy design.

3.2. PPE

For the PPE in the fuzzy design, we estimate � by

�̂f = �̂

̂
,

where �̂ and ̂ are the PPEs based on �yi, xi�
n
i=1 and �ti, xi�

n
i=1, respectively. The

following theorem states the asymptotic distribution of �̂f . First, we give some extra
assumptions. Assumption S is the counterpart of Assumption M for s(x). Also, the
original Assumption M is replaced by Assumption A.

Assumption S.

(a) s(x) is ls times continuously differentiable for x ∈ N\ ���, and s(x) is continuous and
has finite right and left-hand derivatives to order ls at �.

(b) Right- and left-hand derivatives of s(x) to order ls are equal at �.

Assumption A. m(x) and �(x) are lm and l� times continuously differentiable for x ∈
N , respectively.

(a) �(q+1)(�) �= 0.
(b) �(�)(�) = 0, � = 1, � � � , l�.

Assumption E in Section 3.3 is replaced by Assumption E′ below.

Assumption E′.

(a) �2
1(x) ≡ E

[
�2

1|x
]

and �2
0(x) ≡ E

[
�2

0|x
]

are continuous for x ∈ N .

(b) For some � > 0, E
[ ∣∣�1

∣∣2+�
∣∣∣ x] and E

[ ∣∣�0

∣∣2+�
∣∣∣ x] are uniformly bounded on N .
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UNDERSTANDING ESTIMATORS OF TREATMENT EFFECTS 603

We also need the local unconfoundedness (LU) condition of Hahn et al. (2001) (see
their Theorem 2).

Assumption LU. E[� (�1 − �0) |x] = 0 for x ∈ N .

Without this assumption, E[R|x] �= 0 for x ∈ N , where R is defined in (15).

Theorem 3. Suppose p ≥ q, q ≥ 1, and Assumptions E′, F, K, and LU hold with lf ≥ 1.

(a) If Assumption A(a) and S(a) hold with lm ≥ q + 1, l� ≥ q + 1, ls ≥ q + 1, and
Assumption B(a) holds, then

√
nh
(
�̂f − �

) d−→ 1


N
(

−Ca

(
B�

a − �B
a

)
,

V� − 2�C� + �2V

f(�)

)
,

where

B�
a = e′

1N −1
p

[
m(q+1)

+ (�)

(q + 1)! Q+
pq + m(q+1)

− (�)

(q + 1)! Q−
pq

]
,

B
a = e′

1N −1
p

[
s(q+1)
+ (�)

(q + 1)! Q+
pq + s(q+1)

− (�)

(q + 1)! Q−
pq

]
,

V� = e′
1N −1

p

[
E
[
R2|x = �+]�+

p + E
[
R2|x = �−]�−

p

]
N −1

p e1,

C� = e′
1N −1

p

[
E[R� | x = �+]�+

p + E[R� | x = �−]�−
p

]
N −1

p e1,

V = e′
1N −1

p

[
(s(�) + )(1 − s(�) − )�+

p + s(�)(1 − s(�))�−
p

]
N −1

p e1,

with s(q+1)
+ (�) and s(q+1)

− (�) being the (q + 1)th order right and left derivatives of
s(x) at � and m(x) being defined in (14).

(b1) If Assumption A(b) and S(b) hold with lm ≥ p + 1, l� ≥ p + 1, ls ≥ p + 1, and
Assumption B(b1) holds, then when p is odd,

√
nh
(
�̂f − �

) d−→ 1


N
(

−Cb1

(
B�

b1 − �B
b1

)
,

V� − 2�C� + �2V

f(�)

)
,

where

B�
b1 =

(∫ 1

−1
K∗

p (u) up+1du
)

m(p+1)
0 (�)

(p + 1)! e′
1N −1

p Qp,

B
b1 =

(∫ 1

−1
K∗

p (u) up+1du
)

s(p+1)(�)

(p + 1)! e′
1N −1

p Qp,

with m0(x) being defined in (14).
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604 P. YU

(b2) If Assumption A(b) and S(b) hold with lm ≥ p + 2, l� ≥ p + 2, ls ≥ p + 2, and
Assumption B(b2) holds, then when p is even,

√
nh
(
�̂f − �

) d−→ 1


N
(

−Cb2

(
B�

b2 − �B
b2

)
,

V� − 2�C� + �2V

f(�)

)
,

where

B�
b2 =

(∫ 1

−1
K∗

p (u) up+2du
)(

m(p+1)
0 (�)f ′(�)

(p + 1)!f(�)
+ m(p+2)

0 (�)

(p + 2)!

)
e′

1N −1
p Qp,

B
b2 =

(∫ 1

−1
K∗

p (u) up+2du
)(

s(p+1)(�)f ′(�)

(p + 1)!f(�)
+ s(p+2)(�)

(p + 2)!
)

e′
1N −1

p Qp,

with m0(x) being defined in (14).

In (a), by the form of m(x), we can see m(q+1)
+ (�) = m(q+1)(�) + (s(�) + )�(q+1)(�) +

�s(q+1)
+ (�), and m(q+1)

− (�) = m(q+1)(�) + s(�)�(q+1)(�) + �s(q+1)
− (�). In (b1), m(p+1)

0 (�) =
m(p+1)(�) + �s(p+1)(�) and in (b2), m(p+2)

0 (�) = m(p+2)(�) + �s(p+2)(�). The comments on
Theorem 1 can still be applied here. Theorem 3 assumes that m(·), �(·) and s(·) are
similarly smooth. When this assumption does not hold, we should adjust the biases and
variances in this theorem, but we will not pursue this point in this paper.

3.3. IVE

To define the IVE, we first put regression discontinuity designs in the usual regression
framework with endogeneity:

y = m(x) + t�(x) + �t,

t = s(x) + d + �,

where �t = �0 + t(�1 − �0), t is endogenous, and d is an instrumental variable (IV). Local
to �, we approximate m(x), �(x), and s(x) by constants, and then the IV estimator is just
the Wald estimator. If we approximate m(x), �(x), and s(x) by polynomials around �,
we will get

y ≈ �0 + �1 (x − �) + · · · + �p (x − �)p

+ t(� + �1 (x − �) + · · · + �q (x − �)q ) + �t,
(16)

t ≈ �0 + �1 (x − �) + · · · + �p (x − �)p

+ d( + �1 (x − �) + · · · + �q (x − �)q ) + �,
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UNDERSTANDING ESTIMATORS OF TREATMENT EFFECTS 605

where we localize m(·) and s(·) around � (instead of xi as in the PPE).4 The endogenous
variables are (t, t(x − �), � � � , t(x − �)q), and the excluded IVs are (d, d(x − �), � � � ,
d(x − �)q). Indeed, the instruments may be correlated with �t as argued in Hahn et al.
(2001), but since the arguments are local to �, the corresponding orthogonality condition
should be

E �(d, d (x − �) , � � � , d (x − �)q)′�t|x ∈ N � = 0,

which reduces to E �(d, d (x − �) , � � � , d (x − �)q)′ (�0 + t(�1 − �0)) |x� = 0 as long as
f(x) > 0, x ∈ N . Notice that

E �(d, d (x − �) , � � � , d (x − �)q)′ (�0 + t(�1 − �0)) |x�

= E[(d, d (x − �) , � � � , d (x − �)q)′

(�0 + (s(x) + d + �) (�1 − �0)) |x] = 0,

where the last equality is from the LU assumption. But it is easy to see that

E �(t, t (x − �) , � � � , t (x − �)q)′ (�0 + t(�1 − �0)) |x�

is generally not zero, so there is endogeneity even in the neighborhood N . In summary,
the validity of the orthogonality condition relies on the smoothness of m(x) and �(x)

such that they can be approximated as polynomials for x ∈ N and also the LU condition,
which are exactly the conditions required for identification in Theorem 2 of Hahn et al.
(2001). Given the IVs, the IVE of � ≡ (�, �1, � � � , �q, �0, � � � , �p

)′
is

�̂ =
[∑

xi∈N0

(
Xd

i

Xi

) (
Xt

i
′ X′

i

)]−1 ∑
xi∈N0

(
Xd

i

Xi

)
yi, (17)

where N0 = [� − h, � + h], Xi = (1, (xi − �), � � � , (xi − �)p)′, Xt
i = (ti, ti(xi − �), � � � , ti(xi −

�)q)′, and Xd
i = (di, di(xi − �), � � � , di(xi − �)q)′. The following theorem states the

asymptotic distribution of �̂I , which is the first element of �̂.

Theorem 4. Suppose p ≥ q ≥ 0 and Assumptions E′, F, LU, S hold with lf ≥ 0 and ls ≥ 0.

(i) Under Assumption A(a) with lm ≥ p + 1, and l� ≥ q + 1,
√

nhhq+1 → Ca with 0 ≤
Ca < ∞,

√
nh
(
�̂I − �

) d−→ N
(

CaBI
a,

VI

f(�)

)
,

4Note here that we localize s(x) around � as �0 + �1(x − �) + · · · + �p(x − �)p + d(�1(x − �) + · · · +
�q(x − �)q) just as we localize m0(x) in (7).
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606 P. YU

where

BI
a = e′

1

(
(s(�) + ) 	

qq
+ 	

qp
+

s(�)	pq + 	
pq
+ 	pp

)−1

⎡⎢⎢⎢⎢⎣
1(p = q) m(p+1)(�)

(p+1)!

(
�+

p+1,p+q+1

�p+1,2p+1

)

+ �(q+1)(�)
(q+1)!

(
(s(�) + ) �+

q+1,2q+1

s(�)�q+1,p+q+1 + �+
q+1,p+q+1

)
⎤⎥⎥⎥⎥⎦ ,

VI = e′
1

(
(s(�) + ) 	

qq
+ 	

qp
+

s(�)	pq + 	
pq
+ 	pp

)−1

(
E
[
�2

t

∣∣ x = �+] 	qq
+ E

[
�2

t

∣∣ x = �+] 	qp
+

E
[
�2

t

∣∣ x = �+] 	pq
+ E

[
�2

t

∣∣ x = �+] 	pp
+ + E

[
�2

t

∣∣ x = �−] 	pp
−

)

·
(

(s(�) + ) 	
qq
+ s(�)	qp + 	

qp
+

	
pq
+ 	pp

)−1

e1,

with

	
qq
+ = (�+

i+j−2)1≤i,j≤q+1, 	pp = (�i+j−2)1≤i,j≤p+1,

�+
q+1,2q+1 = (

�+
q+1, � � � , �+

2q+1

)′
, �p+1,2p+1 = (�p+1, � � � , �2p+1

)′
,

�+
j =

∫ 1

0
ujdu, �j =

∫ 1

−1
ujdu,

and other 	 and � terms being similarly defined.
(ii) Under Assumption A(b) with lm ≥ p + 1, and l� ≥ p + 1,

√
nhhp+1 → Cb with 0 ≤

Cb < ∞,

√
nh
(
�̂I − �

) d−→ N
(

CbBI
b,

VI

f(�)

)
,

where

BI
b = m(p+1)(�)

(p + 1)! e′
1

(
(s(�) + ) 	

qq
+ 	

qp
+

s(�)	pq + 	
pq
+ 	pp

)−1 (
�+

p+1,p+q+1

�p+1,2p+1

)

From Theorem 4, the bias is O(
√

nhhq+1) under Assumption A(a) and O(
√

nhhp+1)

under Assumption A(b). This implies that the Wald estimator has a bias of order
Op(

√
nhh), same as the NW estimator in Section 3.2 of Porter (2003). This bias
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UNDERSTANDING ESTIMATORS OF TREATMENT EFFECTS 607

information is added to Table 1; the bias properties of the IVE are comparable with the
LPE and PPE. Note also that s(x) is only required to be continuous for the IVE while
the LPE requires ls ≥ p + 1.

In what follows, we point out some connection between the IV estimator and the 2SLS
estimator in Section 4.3 of Imbens and Lemieux (2008) and Section 4.3.2 of Lee and
Lemieux (2010). As mentioned in Section 3.1, those authors claim that for x ∈ N0, the
model can be approximated as

y ≈ �0 + �1d (x − �) + �2dc (x − �) + t� + r,
(18)

t ≈ �0 + �1d (x − �) + �2dc (x − �) + d + �,

while the approximation in (16) is

y ≈ �0 + �1 (x − �) + t� + �1t (x − �) + �t,
(19)

t ≈ �0 + �1 (x − �) + d + �1d (x − �) + ��

Here, we take the local linear form to emphasize the essence of the problem. In (18), the
endogenous variable is only t, while in (19), the endogenous variables include both t and
t(x − �). If we substitute t in the second equation of (19) to t (x − �) in the first equation
and neglect higher order terms of (x − �), then we have

y ≈ �0 + (�1 + �1�0) (x − �) + �1d (x − �) + t� + �t,

which is exactly the approximation in (18). In this sense, the 2SLS estimator first
substitutes the t in higher order endogeneity (t(x − �) is higher order endogeneity relative
to t for x ∈ N0) by its reduced form, and then apply the IV estimation. In contrast,
our IVE apply the IV estimation directly to all endogeneities. Given that the system is
just identified, it is easy to show that the 2SLS estimator based on (18) is numerically
equivalent to the LPE, so the discussion above provides a connection between the IVE
and the LPE. Since the two estimators are constructed differently, their asymptotic
distributions are quite different. Putting all discussions together, we get the relationships
in Fig. 2. All estimators in the figure can be applied in the fuzzy design, while the IVE
and the 2SLS estimator cannot be applied in the sharp design due to obvious reasons.

Given the formulas of the biases and variances, we can estimate them by their sample
analogs as usual, so we will not pursue them here. As an alternative of the usual variance
estimation, we propose to use the standard error of the IVE as the standard error of �̂I

since it can be easily read from popular econometric software packages such as Stata.
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608 P. YU

FIGURE 2 Relationship between known estimators.

Recall that for the IVE, the standard error can be obtained from the matrix

�̂ =
[∑

xi∈N0

(
Xd

i

Xi

) (
Xt′

i X′
i

)]−1 [∑
xi∈N0

(
Xd

i

Xi

) (
Xd′

i X′
i

)
�̂2

ti

][∑
xi∈N0

(
Xt

i

Xi

) (
Xd′

i X′
i

)]−1

,

where �̂ti = yi − (Xt′
i X′

i

)
�̂. We show below the consistency of this estimator.

Theorem 5. If the assumptions in part (a) of Theorem 4 hold with � in Assumption E′

satisfying � ≥ 2, then

nhe′
1�̂e1

p−→ VI

f(�)
�

Theorem 5 implies that the usual standard error in the IV estimation is valid in RDDs.
An immediate corollary is that the usual standard error for the 2SLS estimator is also
consistent for the LPE. Another corollary is that the usual standard error in regressing yi

on (Xd′
i X′

i) for xi ∈ N0 in the sharp design is consistent; that is, the standard error of the
usual least squares regression is valid for the LSE in the sharp design, where we need only
change Xt

i in �̂ to Xd
i and �̂ti to �̃i = yi − (Xd′

i X′
i)(�̃

′, ̃′
−)′ with (�̃′, ̃′

−)′ being the LSE of
(�, 1, � � � , p, a−, b−

1 , � � � , b−
p )′ in (12). Also, we see from Theorems 4 and 5 that the IVE

uses the uniform kernel. Of course, we can use other kernels in practice, and then �̂ will
change to

�̂ =
[

n∑
i=1

(
Xd

i

Xi

) (
Xt′

i X′
i

)
k
(

xi − �

h

)]−1 n∑
i=1

(
Xd

i

Xi

)
yik
(

xi − �

h

)
�
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UNDERSTANDING ESTIMATORS OF TREATMENT EFFECTS 609

For �̂, we just multiply
(
Xd′

i Xt′
i X′

i yi

)
by

√
k
(

xi−�
h

)
and plug in the formula of �̂.

Obviously, �̂ is also equivalent to (17) under such a substitution.

4. SIMULATIONS

In this section, we conduct some simulations to check the finite-sample performance of
the estimators discussed in this paper. We will use similar specifications as in Fig. 1.
Specifically, the following two DGPs for y are used:

DGPy1 : y = 1 + 0�16x − 0�29x2 + t + �,

DGPy2 : y = 1 + 0�16x − 0�29x2 + t
(
1 + 1�27x + 0�48x2

)+ �,

where � follows N (0, 0�22), and x follows the uniform distribution on [−1, 1]. DGPy1
corresponds to constant treatment effects: (Assumption M(b) or A(b)) and DGPy2
corresponds to variable treatment effects (Assumption M(a) or A(a)). t in the fuzzy design
also follows two DGPs:

DGPt1 : t = 0�25 + 0�2x + 0�05x2 + 0�5 · 1 (x ≥ 0) + �,

DGPt2 : t = 0�25 + 0�2x + 0�05x2 + (0�5 + 0�15x − 0�2x2
) · 1 (x ≥ 0) + �,

where s(x) in DGPt1 (DGPt2) satisfies Assumption S(b) (S(a)), and � and � are
independent. For each DGP, we consider the PLE, PPE, LPE, and IV estimator
for p = q = 0, 1 or 2. The kernel function is set as the Epanechinikov kernel k(u) =
3
4

(
1 − u2

)
1 (
∣u∣ ≤ 1). In the PLE, the corresponding equivalent kernels are used. Both the

sample size n and the number of replications are set as 500. The bandwidth is set as fixed
from [0�1, 1]. We do not discuss the bandwidth selection in this paper; see Porter and Yu
(2010) for a summary of the existing bandwidth selection methods in RDDs. Figures 3
and 4 summarize the bias and root mean squared error (RMSE) of the estimators in the
sharp design, and Figs. 5 and 6 in the fuzzy design.

From Figs. 3 and 4, a few results of interest are summarized as follows. First, from
p = 0 in both figures, the NWE (the LPE in the figures) indeed has larger biases relative
to the PLE (which is equivalent to the PPE with p = 0). Second, the biases and RMSEs
of the PLE is not quite stable compared to the PPE and LPE when p = 1 and 2 especially
in the variable treatment effects case.5 Third, the performances of the PPE and the LPE
are quite similar. When p = 1 or 2, their biases almost disappear. Compared with p = 1,
p = 2 seems to have smaller bias but larger variance just as expected. We then switch

5Note that the lines labeled as PLE when p = 1 is the same as when p = 0. They are drawn on for
comparison. Note also that in the constant treatment effects case with p = 2, the PLE seems to have better
bias and RMSE properties than the PPE and LPE for some range of bandwidth; this is understandable from
the theoretical analysis: the bias is O(h5) for the PLE and is O(h4) for the PPE and O(h3) for the LPE.
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610 P. YU

FIGURE 3 Bias and RMSE of PLE, PPE, and LPE in DGPy1 of sharp design.

FIGURE 4 Bias and RMSE of PLE, PPE, and LPE in DGPy2 of sharp design.

to the fuzzy design. In Figs. 5 and 6, we delete the results for the PLE and PPE since
they are much worse than the LPE and IVE.6 From these two figures, the LPE and IVE
perform similarly especially when p = 1. p = 0 will have large biases while p = 2 will have
large variances. These four figures also indicate two well-known results: (i) models with
variable treatment effects are harder to estimate than models with constant treatment
effects; (ii) fuzzy designs are harder to estimate than sharp designs.

From this simulation study, our suggestion is as follows: in the sharp design, use the
LPE with p = 1, and in the fuzzy design, use the LPE or IVE with p = 1. Our suggestion

6Given that the performance of the PPE is similar to the LPE in the sharp design, we can conclude that
the PPE does not work well in estimating ; recall  is the jump size of the propensity score E �t | x� =
s(x) + d.
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UNDERSTANDING ESTIMATORS OF TREATMENT EFFECTS 611

FIGURE 5 Bias and RMSE of LPE and IVE in DGPy1 and DGPt1 of fuzzy design.

FIGURE 6 Bias and RMSE of LPE and IVE in DGPy2 and DGPt2 of fuzzy design.

is based on two facts: (i) These estimators have good balance between bias and variance;
(ii) It is easy to report standard errors for these estimators.

5. CONCLUSION

This paper tries to deepen understanding of the existing estimators in regression
discontinuity designs such as the local polynomial estimator and the partially linear
estimator. For this purpose, we propose two new estimators of treatment effects. The
first estimator is the partially polynomial estimator which extends the partially linear
estimator in Porter (2003). Unlike the partially linear estimator, this estimator can achieve
the optimal rate of convergence even under broader conditions of the data generating
process. This estimator is also related to the popular local polynomial estimator by a
relocalization effect. The second estimator is a new instrumental variable estimator in the

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
H

on
g 

K
on

g 
L

ib
ra

ri
es

] 
at

 1
8:

50
 1

7 
M

ay
 2

01
6 



612 P. YU

fuzzy design. This estimator will reduce to the local polynomial estimator if higher order
endogeneities are neglected. We study the asymptotic properties of these two estimators
and use simulation studies to confirm the theoretical analysis.

APPENDIX A: PROOF OF THEOREM 1

First, we review the LPE of m(x) ≡ E �yi|xi = x� at the end of the introduction and
introduce some notations:

m̂(x) = �n
x (y) ≡ e′

1

(
X (x)′ K (x) X (x)

)−1
X (x)′ K (x) y,

= e′
1

(
H−1X (x)′ Kh (x) X (x) H−1

)−1
H−1X (x)′ Kh (x) y,

≡ e′
1

(
Z (x)′ Kh (x) Z(x)

)−1
Z (x)′ Kh (x) y,

= e′
1

⎛⎝1
n

n∑
j=1

Zj (x) Z′
j (x) kh

(
xj − x

)⎞⎠−1⎛⎝1
n

n∑
j=1

Zj (x) kh

(
xj − x

)
yj

⎞⎠ ,

≡ e′
1S−1

n (x)r̃ (y(x)) , (20)

where

X (x) =

⎛⎜⎜⎝
1 x1 − x · · · (x1 − x)p

���
���

���
���

1 xn − x · · · (xn − x)p

⎞⎟⎟⎠
n×(p+1)

≡
⎛⎜⎝X1 (x)′

���
Xn (x)′

⎞⎟⎠ ≡ (X0 (x) , � � � , Xp (x)
)

,

K (x) = diag
{

k
(

x1 − x
h

)
, � � � , k

(
xn − x

h

)}
n×n

,

Kh (x) = diag �kh (x1 − x) , � � � , kh (xn − x)�n×n ,

e1 = (1, 0, � � � , 0)′
(p+1)×1 , H = diag �1, h, � � � , hp�(p+1)×(p+1) ,

Z(x) = X (x) H−1,

Zj (x) =
(

1,
xj − x

h
, � � � ,

(
xj − x

h

)p)′

(p+1)×1

≡ (Z0
j (x) , Z1

j (x) , � � � , Zp
j (x)

)′
�

The dimensions of e1 and H are determined by the context without further explanation.
Denote e′

1

(
X (x)′ K (x) X (x)

)−1 · X (x)′ K (x) as W n(x)′ = (W n
1 (x), � � � , W n

n (x)
)
, which is
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UNDERSTANDING ESTIMATORS OF TREATMENT EFFECTS 613

the weight in (1). Sn(x) converges in probability to S(x) ≡ 	f(x), which generates the
equivalent kernel K∗

p(·).
Some calculus shows that in (8),

�̂ = (Xd′Xd
)−1

Xd′y and �̂ = e′
1

(
Xd′Xd

)−1
Xd′y, (21)

where

Xd =

⎛⎜⎜⎝
Xd

1
′ − �n

x1

(
Xd
)′

���

Xd
n

′ − �n
xn

(
Xd
)′
⎞⎟⎟⎠ ≡

⎛⎜⎜⎝
Xd

1
′

���

Xd
n

′

⎞⎟⎟⎠
n×(q+1)

≡ (X0d, � � � , Xqd
)

n×(q+1)
,

= Xd − e′
1

(
X′KX

)−1
X′KIXd =

(
In − e′

1

(
X′KX

)−1
X′KI

)
Xd,

with �n
x1

(
Xd
)

operating on each column of Xd to get a row vector,

Xd =

⎛⎜⎜⎝
1 (x1 ≥ �) (x1 − �) 1 (x1 ≥ �) · · · (x1 − �)q 1 (x1 ≥ �)

���
���

���
���

1 (xn ≥ �) (xn − �) 1 (xn ≥ �) · · · (xn − �)q 1 (xn ≥ �)

⎞⎟⎟⎠

≡

⎛⎜⎜⎝
Xd

1
′

���

Xd
n

′

⎞⎟⎟⎠
n×(q+1)

≡ (X0d, � � � , Xqd
)

n×(q+1)
,

In = diag �1, � � � , 1�n×n , e1 = diag �e1, � � � , e1�n(p+1)×n = In ⊗ e1,

X = diag �X (x1) , � � � , X (xn)�n2×n(p+1) ,

e = (1, 1, � � � , 1)′
n×1 , I = (e ⊗ In)n2×n , ⊗ is the Kronecker product,

K = diag �Kh (x1) , � � � , Kh (xn)�n2×n2 ,

and

y =

⎛⎜⎜⎝
y1 − �n

x1
(y)

���

yn − �n
xn

(y)

⎞⎟⎟⎠ =
(

In − e′
1

(
X′KX

)−1
X′KI

)
y,

with

y = mq(x) + Xd� + � ≡ ỹ + Xd�, mq(x) = (mq(x1), � � � , mq(xn)
)′

,
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614 P. YU

x = (x1, � � � , xn)
′, � = (�1, � � � , �n)

′ ,

ỹ = mq(x) + � = (ỹ1, � � � , ỹn)
′ , ỹi is ỹi (�) evaluated at the true value of ��

To simplify notations, we use m(x) to denote mq(x) during the proof of Theorem 1.
Some explanations on �̂ are in order. Xd and y are the demeaned Xd and y by the “local

polynomial operator” �n
x . In − e′

1 (X′KX)−1 X′KI ≡ In − �n
x is like a demeaned operator on

a vector in �n at x. Note that

(
Xd′Xd

)−1
Xd′y = (

Xd′Xd
)−1

Xd′ (Xd� + ỹ − �n
x

(
ỹ
))

= � + H−1

(
1

nh
H−1Xd′XdH−1

)−1 1
nh

H−1Xd′ỹ

≡ � + H−1

(
1

nh
Zd′Zd

)−1 1
nh

Zd′ (m(x) − m̃(x) + � − �̃
)

= � + H−1

(
1

nh

n∑
l=1

Zd
l Zd′

l

)−1

×
(

1
nh

n∑
l=1

Zd
l ((m(xl) − m̃(xl) + �l − �̃l))

)
, (22)

where Zd = XdH−1 is the normalized Xd like Z(x) in �n
x , Zd

l = H−1Xd
l , l = 1, � � � , n, and

ỹ = ỹ − ỹ(x) with

ỹ(x) = (ỹ(x1), � � � , ỹ (xn))
′ = �n

x

(
ỹ
)

= (
�n

x1
(m(x)) , � � � ,�n

xn
(m(x))

)′ + (�n
x1

(�) , � � � ,�n
xn

(�)
)′

≡ (m̃(x1), � � � , m̃(xn))
′ + (�̃1, � � � , �̃n)

′

≡ m̃(x) + �̃�

From Lemma 1 in Appendix C, Xd
l = 0 for

∣∣xl − �
∣∣ > h, l = 1, � � � , n, so only the xl’s in

the h neighborhood of � will contribute to �̂. In consequence, the convergence rate of �̂ is√
nh instead of

√
n. In the proof follows, we will show that Zd′ (m(x) − m̃(x)) contributes

to the bias, and Zd′ (� − �̃
)

contributes to the variance. Presence of �̃ in Zd′ (� − �̃
)

makes
the asymptotic variance derivation much more complicated than the usual LPE.

From (21) and (22),

√
nh
(
�̂ − �

) = e′
1

(
1

nh

n∑
l=1

Zd
l Zd′

l

)−1(
1√
nh

n∑
l=1

Zd
l (m(xl) − m̃(xl) + �l − �̃l)

)
�
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UNDERSTANDING ESTIMATORS OF TREATMENT EFFECTS 615

We first analyze the numerator, then the denominator. For 1 ≤ i ≤ q + 1, the ith term of
Zd

l is

(
xl − �

h

)i−1

1 (xl ≥ �) − 1
hi−1

�n
xl
(Xi−1,d)

= e′
1S−1

n (xl)(S+
n (xl) + S−

n (xl))e1

(
xl − �

h

)i−1

dl

− e′
1S−1

n (xl)
1
n

n∑
j=1

Zj (xl) kh

(
xj − xl

) (xj − �

h

)i−1

dj

= e′
1S−1

n (xl)
1
n

n∑
j=1

Zj (xl) kh

(
xj − xl

) (
Zi−1

l (�)dl − Zi−1
j (�)

)
dj

+ e′
1S−1

n (xl)
1
n

n∑
j=1

Zj (xl) kh

(
xj − xl

)
Zi−1

l (�)dldc
j

≡ e′
1S−1

n (xl)

+
n,i−1(xl) + e′

1S−1
n (xl)


−
n,i−1(xl) ≡ e′

1S−1
n (xl)
n,i−1(xl)� (23)

Here, S+
n (x) (S−

n (x)) is replacing Zj(x) in Sn(x) by Zj(x)dj (Zj(x)dc
j ), 
+

n,i−1(xl) plays the
role of −f̂+(xl)dc

l , 
−
n,i−1(xl) plays the role of f̂−(xl)dl, and Sn(xl) plays the role of f̂(xl)

in Porter (2003).

Numerator

Concentrate on the ith term and take an expansion to linearize. We need different
linearizations under Assumptions M(a) and M(b). We first discuss the case under
Assumption M(a), and then under Assumption M(b).

Under Assumption M(a)

The ith term of the numerator is

1√
nh

n∑
l=1

e′
1S−1

n (xl)
n,i−1(xl) (m(xl) − m̃(xl) + �l − �̃l)

= 1√
nh

n∑
l=1

e′
1S(xl)

−1
i−1(xl)
(−L(�m(xl)) + �l − �xl (�)

)
+ 1√

nh

n∑
l=1

e′
1S(xl)

−1
i−1(xl)
(
L(�m(xl)) − L(�m(xl))

)
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616 P. YU

+ 1√
nh

n∑
l=1

Li−1(xl)�l + Rn

≡ Term1 + Term2 + Term3 + Rn,

where

L(�m(x)) = e′
1S−1 (x) r(�m(x)) − e′

1S−1 (x) (Sn (x) − S (x)) S−1 (x) r(�m(x))

+ e′
1S−1 (x) (r̃(�m(x)) − r(�m(x))) ,

L(�m(x)) = e′
1S−1 (x) r(�m(x)) − e′

1S−1 (x)
(
S (x) − S (x)

)
S−1 (x) r(�m(x)),

Li−1(x) = e′
1S

−1
(x)
(

n,i−1(x) − 
i−1(x)

)
− e′

1S
−1

(x)
(
Sn (x) − S (x)

)
S

−1
(x)
i−1(x),

�x (�) = e′
1S−1 (x) r̃(�(x)),


i−1(x) = 

+
i−1(x) + 


−
i−1(x),

with

r̃(�m(x)) = 1
n

n∑
j=1

Zj(x)kh

(
xj − x

) {
m(xj) − m(x) −

q∑
�=1

m(�)(x)

�!
(
xj − x

)�}

r̃(�(x)) = 1
n

n∑
j=1

Zj(x)kh

(
xj − x

)
�j ,

r(�m(x)) =
∫


(u)f(x + uh)

{
m(x + uh) − m(x) −

q∑
�=1

m(�)(x)

�! (uh)�

}
du,

S (x) = E
[
Zj (x) Z′

j (x) kh

(
xj − x

)]
=
(∫

ui+j−2k (u) f(x + uh)du
)

(p+1)×(p+1)

,



+
i−1(x) = E

[
Zj (x) kh

(
xj − x

) ((x − �

h

)i−1

1(x ≥ �) −
(

xj − �

h

)i−1
)

dj

]

=
(∫ 1

−1

(u)

((
x − �

h

)i−1

1(x ≥ �) −
(

x − �

h
+ u
)i−1

)

f(x + uh)1 (x + uh ≥ �) du
)

(p+1)×1

,
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UNDERSTANDING ESTIMATORS OF TREATMENT EFFECTS 617



−
i−1(x) = E

[
Zj (x) kh

(
xj − x

) (x − �

h

)i−1

1(x ≥ �)dc
j

]

=
(∫ 1

−1

(u)

(
x − �

h

)i−1

1(x ≥ �)f(x + uh)1(x + uh < �)du
)

(p+1)×1

,

and Rn is the remainder term including quadratic terms in the expansion:

Rn = − 1√
nh

n∑
l=1

e′
1S

−1
(xl)
i−1(xl)R(ỹ(xl))

+ 1√
nh

n∑
l=1

Ri−1(xl) (m(xl) − ỹ(xl) + �l)

+ 1√
nh

n∑
l=1

Li−1(xl) (m(xl) − ỹ(xl)) ,

with

R(ỹ(x)) = e′
1S−1 (x) (Sn (x) − S (x)) S−1(x) (Sn (x) − S (x)) S−1

n (x)r(�m(x))

− e′
1S−1 (x) (Sn (x) − S (x)) S−1

n (x) (r̃(ỹ(x)) − r(�m(x))) ,

r̃(ỹ(x)) = r̃(�m(x)) + r̃(�(x)),

Ri−1(x) = e′
1S

−1
(x)
(
Sn (x) − S (x)

)
S

−1
(x)
(
Sn (x) − S (x)

)
S−1

n (x)
i−1(x)

− e′
1S

−1
(x)
(
Sn (x) − S (x)

)
S−1

n (x)
(

n,i−1(x) − 
i−1(x)

)
�

The validity of including qth order Taylor expansion of m(·) in r̃(�m(x)) and r(�m(x))

can be justified by the discrete orthogonality relation in the LPE (see, e.g., (2.4) of Fan
et al. (1997); note that p ≥ q), L(�m(x)) is the linear expansion of �n

x (m(x)) − m(x)

as shown in Lemma 2 of Appendix C, and L(�m(x)) is its mean. Li−1(x) is the linear
expansion of e′

1S−1
n (x)
n,i−1(x) at e′

1S
−1

(x)
i−1(x). Note that e′
1S−1

n (x)
n,i−1(x) is linearized
at S

−1
(x) and 
i−1(x) instead of their limits which are S−1(x) and 0, respectively.7 This is

mainly because 
i−1(x) is not a smooth function of x when x is in a neighborhood of �.
As a result, S−1

n (x) cannot be linearized at S−1(x); otherwise, Ri−1(x) cannot be a higher-
order term.

Our analysis includes three steps. In step 1, we show Rn = op(1). In step 2, we
show Term 3 = op(1) and Term 2 = op(1). In step 3, we show −L(m(xl)) in Term 1

7In Porter (2003), f +(xl)dc
l and f −(xl)dl converges to 0 for a fixed xl when h converges to zero. This

result can be applied to 

−
0 (xl) and 


+
0 (xl). For i > 1, it is still true for hi−1


+
i−1(xl) and hi−1


−
i−1(xl).

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
H

on
g 

K
on

g 
L

ib
ra

ri
es

] 
at

 1
8:

50
 1

7 
M

ay
 2

01
6 



618 P. YU

contributes to the bias, and �l − �̃l contributes to the variance. Although there is
randomness in Term 2, it does not contribute to the asymptotic distribution. With the
three steps in hand, the Liapunov central limit theorem is applied to find the asymptotic
distribution.

Step 1. First, some basic results. From Lemma B5 of Porter (2003) and

Lemmas 3 and 4 of Appendix C, supx∈N0
|Sn(x) − S(x)| =

(
Op

(√
ln n
nh

)
+ h
)

, supx∈N0

S−1
n (x) = supx∈N0

S
−1

(x) + op(1) = Op(1), supx∈N0
| 
n,i−1 (x) − 
i−1(x) | = Op

(√
ln n
nh

)
,

supx∈N0

i−1(x) = O(1), supx∈N0

e′
1S

−1
(x)
i−1(x) = O(1), supx∈N0

r(�m(x)) = O(hq+1),

supx∈N0
|r̃(ỹ(x)) − r(�m(x))| = Op

(√
ln n
nh

)
, supx∈N0

|ỹ(x) − m(x)| = Op

(√
ln n
nh + hq+1

)
,

1
nh

∑n
l=1|�l|1(� − h ≤ xl ≤ � + h) = Op(1), supx∈N0

1
f(x)

= O(1), where N0 = [� − h, � + h].
(i) 1√

nh

n∑
l=1

e′
1S

−1
(xl)
i−1(xl) · e′

1S−1 (xl) (Sn (xl) − S (xl)) S−1(xl)

(Sn (xl) − S (xl)) S−1
n (xl)r(�m(xl))

≈ 1√
nh

n∑
l=1

e′
1	

−1
i−1(xl) · e′
1	

−1

(Sn (xl) − S (xl)) 	−1 (Sn (xl) − S (xl)) 	−1r(�m(xl))

≈ 1√
nh

n∑
l=1

O(1)

(
Op

(√
ln n
nh

)
+ h

)(
Op

(√
ln n
nh

)
+ h

)
O(hq+1)

= √
nhOp

(√
ln n
nh

+ h

)
Op

(√
ln n
nh

+ h

)
O(hq+1)

= Op

((
ln n√

nh
+ h

√
ln n + h2

√
nh
)

hq+1

)
,

and

1√
nh

n∑
l=1

Ri−1(xl)(m(xl) − m̃(xl))

≈ √
nh

[
Op

(√
ln n
nh

)
Op

(√
ln n
nh

)
+ Op

(√
ln n
nh

)
Op

(√
ln n
nh

)]

×
(

Op

(√
ln n
nh

)
+ hq+1

)
= Op

(
ln n

√
ln n

nh
+ ln n√

nh
hq+1

)
�
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UNDERSTANDING ESTIMATORS OF TREATMENT EFFECTS 619

(ii)
1√
nh

n∑
l=1

Ri−1(xl)�l ≈ √
nhOp

(√
ln n
nh

)
Op

(√
ln n
nh

)

×
(

1
nh

n∑
l=1

∣∣�l

∣∣ 1 (� − h ≤ xl ≤ � + h)

)
= Op

(
ln n√

nh

)
�

(iii) 1√
nh

n∑
l=1

e′
1S

−1
(xl)
i−1(xl) · e′

1S−1 (xl) (Sn (xl) − S (xl)) S−1
n (xl)

× (r̃(ỹ(xl)) − r(�m(xl)))

≈ √
nhOp

(√
ln n
nh

+ h

)
Op

(√
ln n
nh

)
= Op

(
ln n√

nh
+ h

√
ln n
)

�

(iv) 1√
nh

n∑
l=1

Li−1(xl) (m(xl) − ỹ(xl))

≈ √
nhOp

(√
ln n
nh

)(
Op

(√
ln n
nh

)
+ hq+1

)

= Op

(
ln n√

nh
+ hq+1

√
ln n
)

�

From Assumption B(a) and (i)–(iv), Rn = op(1).

Step 2. To prove Term 3 = op(1), we will use the U and V-statistic projection. First,
note that

1√
nh

n∑
l=1

Li−1(xl)�l = 1√
nh

n∑
l=1

e′
1S

−1
(xl)

(

+

n,i−1(xl) − 

+
i−1(xl)

)
�l

+ 1√
nh

n∑
l=1

e′
1S

−1
(xl)

(

−

n,i−1(xl) − 

−
i−1(xl)

)
�l

− 1√
nh

n∑
l=1

e′
1S

−1
(xl)

(
Sn (xl) − S (xl)

)
S

−1
(xl)


+
i−1(xl)�l

− 1√
nh

n∑
l=1

e′
1S

−1
(xl)

(
Sn (xl) − S (xl)

)
S

−1
(xl)


−
i−1(xl)�l

≡ T1 + T2 + T3 + T4�

Let zl = (xl, �l)
′. For T1,

1√
nh

n∑
l=1

e′
1S

−1
(xl)


+
n,i−1(xl)�l =

√
n
h

1
n2

n∑
l=1

n∑
j=1

bn(zl, zj),

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
H

on
g 

K
on

g 
L

ib
ra

ri
es

] 
at

 1
8:

50
 1

7 
M

ay
 2

01
6 



620 P. YU

where

bn(zl, zj) = e′
1S

−1
(xl)Zj (xl) kh

(
xj − xl

) ((xl − �

h

)i−1

dl −
(

xj − �

h

)i−1
)

dj�l�

Note that bn(zl, zl) = 0 so that this term is a U-statistic. Under the Assumptions in
Section 3.3, it is easy, although tedious in notations, to show that E

[
bn(zl, zj)

2
] = O(1).

Then by standard U-statistic projection results,

T1 =
√

n
h

Op

((
E
[
bn(zl, zj)

2
])1/2

n

)
= Op

(
1√
nh

)
= op (1) �

T2 follows similarly.
For T3, let

bn(zl, zj) = e′
1S

−1
(xl)

(
Zj (xl) Z′

j (xl) kh

(
xj − xl

))
S

−1
(xl)


+
i−1(xl)�l�

Then

1√
nh

n∑
l=1

e′
1S

−1
(xl)Sn (xl) S

−1
(xl)


+
i−1(xl)�l =

√
n
h

1
n2

n∑
l=1

n∑
j=1

bn(zl, zj)�

As above, E
[
bn(zl, zj)

2
] = O(1). Also, it is easy to show that E

[∣∣bn(zl, zl)
∣∣] = O(1) for

n large enough. By a V-statistic projection theorem; see, e.g., Lemma 8.4 of Newey and
McFadden (1994),

T3 =
√

n
h

Op

((
E
[
bn(zl, zj)

2
])1/2

n
+ E

[∣∣bn(zl, zl)
∣∣]

n

)
= Op

(
1√
nh

)
�

T4 follows similarly.
To prove Term2 = op(1), we will use the V-statistic projection again. First, note that

Term2 =

⎛⎜⎜⎜⎝
1√
nh

∑n
l=1e′

1S(xl)
−1
i−1(xl)e′

1S−1 (xl)(
Sn (xl) − S (xl)

)
S−1 (xl) r(�m(xl))

− 1√
nh

∑n
l=1e′

1S(xl)
−1


i−1(xl)e′
1S−1 (xl) (r̃(�m(xl)) − r(�m(xl)))

⎞⎟⎟⎟⎠ ≡ T5 − T6�

For T5, let

bn(xl, xj) = e′
1S(xl)

−1
i−1(xl)e′
1S−1 (xl)

× (Zj (xl) Z′
j (xl) kh

(
xj − xl

))
S−1 (xl) r(�m(xl))�
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UNDERSTANDING ESTIMATORS OF TREATMENT EFFECTS 621

Then

1√
nh

n∑
l=1

e′
1S(xl)

−1
i−1(xl)e′
1S−1 (xl) Sn (xl) S−1 (xl) r(�m(xl))

=
√

n
h

1
n2

n∑
l=1

n∑
j=1

bn(xl, xj)�

It is easy to show that E
[
bn(xl, xj)

2
] = O(h2(q+1)) and E

[∣∣bn(xl, xj)
∣∣] = O(hq+1), so

T5 =
√

n
h

Op

((
E
[
bn(xl, xj)

2
])1/2

n
+ E

[∣∣bn(xl, xj)
∣∣]

n

)
= Op

(
hq+1

√
nh

)
= op(1)�

A similar proof can be applied to T6 except now

bn(xl, xj) = e′
1S(xl)

−1
i−1(xl)e′
1S−1 (xl) Zj(xl)kh

(
xj − xl

)
×
{

m(xj) − m(xl) −
q∑

�=1

m(�)(xl)

�!
(
xj − xl

)�}
�

Step 3. First, analyze the bias term 1√
nh

∑n
l=1e′

1S
−1

(xl)
i−1(xl)(−L(�m (xl))):

E

[
1√
nh

n∑
l=1

e′
1S

−1
(xl)
i−1(xl)L(�m(xl))

]

≈
√

n
h

∫ [∫ 1

�−x
h

K∗
p (u)

((
x − �

h

)i−1

1(x ≥ �) −
(

x − �

h
+ u
)i−1
)

f(x + uh)du

+
∫ �−x

h

−1
K∗

p (u)

(
x − �

h

)i−1

1(x ≥ �)f(x + uh)du

]
·

e′
1	

−1

f(x)

(∫

(u)f(x + uh)

{
m(x + uh) − m(x) −

q∑
�=1

m(�)(x)

�! (uh)�

}
du

)
dx

= √
nh
∫ [∫ 1

−1
K∗

p (u) wi−11(w ≥ 0)
f(� + wh + uh)

f(� + wh)
du

× −
∫ 1

−w
K∗

p (u) (w + u)i−1 f(� + wh + uh)

f(� + wh)
du
]

(∫
K∗

p (u) f(� + wh + uh)
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622 P. YU

×
{

m(� + wh + uh) − m(� + wh) −
q∑

�=1

m(�)(� + wh)

�! (uh)�

}
du
)

dw

≈ √
nhf(�)

∫ 1

0

[
wi−1 −

∫ 1

−w
K∗

p (u) (w + u)i−1du
]

×
(∫ 1

−w
K∗

p (u)
m(q+1)

+ (�)

(q + 1)!
(
((w + u) h)q+1 − (wh)q+1)du

+
∫ −w

−1
K∗

p (u)
m(q+1)

− (�) ((w + u) h)q+1 − m(q+1)
+ (�) (wh)q+1

(q + 1)! du

)
dw

− √
nhf(�)

∫ 0

−1

(∫ 1

−w
K∗

p (u) (w + u)i−1du
)

×
(∫ 1

−w
K∗

p (u)
m(q+1)

+ (�) ((w + u) h)q+1 − m(q+1)
− (�) (wh)q+1

(q + 1)! du

+
∫ −w

−1
K∗

p (u)
m(q+1)

− (�)

(q + 1)!
(
((w + u) h)q+1 − (wh)q+1)du

)
dw

≡ √
nhhq+1 f(�)

(q + 1)!
[
m(q+1)

+ (�)Q+
pq(i) + m(q+1)

− (�)Q−
pq(i)

]
,

where the third equality is from the Taylor expansion of both m(� + wh + uh) and
m(� + wh) at m(�).

Second, analyze the variance term 1√
nh

∑n
l=1e′

1S(xl)
−1
i−1(xl)

(
�l − �xl (�)

)
. By the

V-statistic projection, this term is statistically equivalent to

1√
nh

n∑
j=1

e′
1S(xj)

−1
i−1(xj)�j − 1√
nh

n∑
j=1

Exl

[
e′

1S(xl)
−1
i−1(xl)

K∗
p

( xj−xl

h

)
hf(xl)

]
�j ,

where Exl is taking expectation with respect to xl. The (i, k) term of the variance matrix
is

1
nh

E

⎧⎨⎩
⎡⎣ n∑

j=1

(
e′

1S(xj)
−1
i−1(xj) − Exl

[
e′

1S(xl)
−1
i−1(xl)

K∗
p

( xj−xl

h

)
hf(xl)

])
�j

⎤⎦
·
⎡⎣ n∑

j=1

(
e′

1S(xj)
−1
k−1(xj) − Exl

[
e′

1S(xl)
−1
k−1(xl)

K∗
p

( xj−xl

h

)
hf(xl)

])
�j

⎤⎦⎫⎬⎭
= �2

+ (�)

∫ 1

0

(
e′

1S(� + wh)−1
i−1(� + wh) − Exl

[
e′

1S(xl)
−1
i−1(xl)

K∗
p

(
�+wh−xl

h

)
hf(xl)

])
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UNDERSTANDING ESTIMATORS OF TREATMENT EFFECTS 623(
e′

1S(� + wh)−1
k−1(� + wh) − Exl

[
e′

1S(xl)
−1
k−1(xl)

K∗
p

(
�+wh−xl

h

)
hf(xl)

])
f(� + wh)dw

+ �2
− (�)

∫ 0

−1

(
e′

1S(� + wh)−1
i−1(� + wh) − Exl

[
e′

1S(xl)
−1
i−1(xl)

K∗
p

(
�+wh−xl

h

)
hf(xl)

])
(

e′
1S(� + wh)−1
k−1(� + wh) − Exl

[
e′

1S(xl)
−1
k−1(xl)

K∗
p

(
�+wh−xl

h

)
hf(xl)

])
f(� + wh)dw

≈ f(�)
[
�2

+ (�) · �+
p (i, k) + �2

− (�) · �−
p (i, k)

]
�

To apply the Liapunov central limit theorem, it suffices that for some � > 0,

n∑
j=1

E

∣∣∣∣∣ 1√
nh

[
e′

1S(xj)
−1
i−1(xj) − Exl

[
e′

1S(xl)
−1
i−1(xl)

K∗
p

( xj−xl

h

)
hf(xl)

]]
�j

∣∣∣∣∣
2+�

= o(h(i−1)(2+�))�

The left-hand side is bounded by C
∑n

j=1

[
E
∣∣∣ 1√

nh
e′

1S(xj)
−1
i−1(xj)�j

∣∣∣2+� + E
∣∣∣ 1√

nh
Exl[

e′
1S(xl)

−1
i−1(xl)
K∗

p(
xj −xl

h )

hf(xl)

]
�j

∣∣∣2+�
]

for some C > 0. Now,

n∑
j=1

E

∣∣∣∣ 1√
nh

e′
1S(xj)

−1
i−1(xj)�j

∣∣∣∣2+�

≤ 1

(nh)�/2 sup
x∈N0

E
[∣
�
∣2+�
∣∣ x] sup

x∈N0

∣∣∣e′
1S(x)−1
i−1(x)

∣∣∣2+� 1
h

E �1 (� − h ≤ x ≤ � + h)�

≤ O
(

1

(nh)�/2

)
= o(1)�

Another term can be bounded similarly, so the Liapunov condition is satisfied.

Under Assumption M(b)

Under Assumption 2(b), redefine

r̃(�m(x)) = 1
n

n∑
j=1

Zj(x)kh

(
xj − x

) {
m(xj) − m(x) −

p∑
�=1

m(�)(x)

�!
(
xj − x

)�}
,

r(�m(x)) =
∫


(u)f(x + uh)

{
m(x + uh) − m(x) −

p∑
�=1

m(�)(x)

�! (uh)�

}
du�

When p is odd, there is no essential change in the proof above except that q is replaced
by p in a few places. The asymptotic variance remains the same, but the form of the
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624 P. YU

bias changes:

E

[
1√
nh

n∑
l=1

e′
1S

−1
(xl)
i−1(xl)L(�m(xl))

]

≈
√

n
h

∫ [∫ 1

�−x
h

K∗
p (u)

×
((

x − �

h

)i−1

1(x ≥ �) −
(x − �

h
+ u
)i−1

)
f(x + uh)du

+
∫ �−x

h

−1
K∗

p (u)

(
x − �

h

)i−1

1(x ≥ �)f(x + uh)du

]
·

e′
1	

−1

f(x)

(∫

(u)f(x + uh)

{
m(x + uh) − m(x) −

p∑
�=1

m(�)(x)

�! (uh)�

}
du

)
dx

= √
nh
∫ [∫ 1

−1
K∗

p (u) wi−11(w ≥ 0)
f(� + wh + uh)

f(� + wh)
du

−
∫ 1

−w
K∗

p (u) (w + u)i−1 f(� + wh + uh)

f(� + wh)
du
]

e′
1	

−1

(∫

(u)f(� + wh + uh)

×
{

m(� + wh + uh) − m(� + wh) −
p∑

�=1

m(�)(� + wh)

�! (uh)�

}
du
)

dw

≈ √
nhf(�)

∫ 1

0

[
wi−1 −

∫ 1

−w
K∗

p (u) (w + u)i−1du
]

×
(∫ 1

−1
K∗

p (u)
m(p+1)(�)

(p + 1)! (uh)p+1 du
)

dw

− √
nhf(�)

∫ 0

−1

(∫ 1

−w
K∗

p (u) (w + u)i−1du
)

×
(∫ 1

−1
K∗

p (u)
m(p+1)(�)

(p + 1)! (uh)p+1 du
)

dw

= √
nhhp+1 f(�)m(p+1)(�)

(p + 1)!
∫ 1

−1
K∗

p (u) up+1du

×
[∫ 1

0
K∗

p(

+
i−1(w))dw +

∫ 0

−1
K∗

p(

−
i−1(w))dw

]
= √

nhhp+1 f(�)m(p+1)(�)

(p + 1)!
∫ 1

−1
K∗

p (u) up+1duQp(i),

where note that m(p+1)(�) = m(p+1)
0 (�).
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UNDERSTANDING ESTIMATORS OF TREATMENT EFFECTS 625

When p is even, there are some changes in Steps 1 and 3. In Step 1(i),

1√
nh

n∑
l=1

e′
1S

−1
(xl)
i−1(xl) · e′

1S−1 (xl)

× (Sn (xl) − S (xl)) S−1(xl) (Sn (xl) − S (xl)) S−1
n (xl)r(�m(xl))

≈ 1√
nh

n∑
l=1

e′
1	

−1 (Sn (xl) − S (xl)) 	−1 (Sn (xl) − S (xl)) 	−1r(�m(xl))

≈ 1√
nh

n∑
l=1

e′
1	

−1

(
Op

(√
ln n
nh

)
+ O (h)

)
	−1

×
(

Op

(√
ln n
nh

)
+ O (h)

)
	−1

∫

(u)up+1duO(hp+1)

= Op

((
ln n√

nh
+ h

√
ln n + h2

√
nh
)

hp+1

)
�

In Step 3, the bias changes:

E

[
1√
nh

n∑
l=1

e′
1S

−1
(xl)
i−1(xl)L(�m(xl))

]

≈ √
nh
∫ [∫ 1

−1
K∗

p (u) wi−11(w ≥ 0)du −
∫ 1

−w
K∗

p (u) (w + u)i−1du
]

e′
1	

−1

(∫

(u) �f(�) + f ′(�) (w + u) h�

×
{

m(p+1)(�)

(p + 1)! (uh)p+1 + m(p+2)(�)

(p + 2)! (uh)p+2

}
du
)

dw

= √
nhhp+2

∫ [∫ 1

−1
K∗

p (u) wi−11(w ≥ 0)du −
∫ 1

−w
K∗

p (u) (w + u)i−1du
]

(∫ 1

−1
K∗

p (u)

{
f(�)

m(p+2)(�)

(p + 2)! up+2 + f ′(�)
m(p+1)(�)

(p + 1)! (w + u) up+1

}
du
)

dw

= √
nhhp+2

[∫ 1

0
K∗

p(

+
i−1(w))dw +

∫ 0

−1
K∗

p(

−
i−1(w))dw

]
(∫ 1

−1
K∗

p (u) up+2du
)[

f(�)
m(p+2)(�)

(p + 2)! + f ′(�)
m(p+1)(�)

(p + 1)!
]

,
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626 P. YU

where note that m(p+2)(�) = m(p+2)
0 (�) and m(p+1)(�) = m(p+1)

0 (�). Note also that
e′

1S−1 (x)
(
S (x) − S (x)

)
S−1 (x) r(m(x)) in L(�m(x)) does not contribute to the bias

regardless of whether p is odd or even since it only contributes a higher-order term in
both cases.

Denominator

We get the asymptotic limit of 1
nh Zd′

Zd here. Note that the (i, j) term of 1
nh Zd′

Zd is

1
nh

n∑
l=1

e′
1S−1

n (xl)
n,i−1(xl)e′
1S−1

n (xl)
n,j−1(xl),

which, by a similar argument as in the numerator, is asymptotically equivalent to

1
nh

n∑
l=1

e′
1S

−1
(xl)
i−1(xl) · e′

1S
−1


j−1(xl)� (24)

It is easy, although tedious, to show that its variance converges to zero. By Markov’s
inequality, (24) converges in probability to

1
h

E
[
e′

1S
−1

(xl)
i−1(xl) · e′
1S

−1
(xl)
j−1(xl)

]
≈ f (�)

∫ [
wi−11(w ≥ 0) −

∫ 1

−w
K∗

p (u) (w + u)i−1du
]

×
[

wj−11(w ≥ 0) −
∫ 1

−w
K∗

p (u) (w + u)j−1du
]

dw

= f (�)

[ ∫ 1

0
K∗

p(

+
i−1(w))K∗

p(

+
j−1(w))dw

+
∫ 0

−1
K∗

p(

−
i−1(w))K∗

p(

−
j−1(w))dw

]
= f (�) Np(i, j)�

By continuity of the matrix inversion,

e′
1

(
1

nh
Zd′

Zd

)−1
p−→ f(�)−1e′

1N −1
p �

Based on the analysis on the numerator and denominator, the results in Theorem 1
follow.
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UNDERSTANDING ESTIMATORS OF TREATMENT EFFECTS 627

APPENDIX B: PROOFS OF THEOREMS 2–5

Proof of Theorem 2. First,

�̂2
+(�) = e′

1S+
n (�)−1r̃

(
�̂2

+(�)
)

= e′
1S+

n (�)−1r̃
(
�2

+(�)
)+ e′

1S+
n (�)−1r̃

(
�̂2

+(�) − �2
+(�)

)
,

where S+
n (�) is defined in (23), r̃

(
�̂2

+(�)
)

is defined in (20) but now yi is changed to di · �̂2
i ,

and r̃
(
�2

+(�)
)

and r̃
(
�̂2

+(�) − �2
+(�)

)
are similarly defined with �2

+(�) = d · �2. We can
decompose �̂2

+(�) as the summation of two terms because the LPE is a linear functional
of the dependent variable as mentioned at the end of the introduction. Second,

�̂i = yi − Xd
i

′�̂ − e′
1S−1

n (xi)r̃
((

y − Xd′�̂
)

(xi)
)

= �i − Xd
i

′
(
�̂ − �

)
−
[
e′

1S−1
n (xi)r̃

((
y − Xd′�̂

)
(xi)

)
− m(xi)

]
,

where r̃((y − Xd′�̂)(xi)) is similarly defined as r̃(y(x)) in (20) but now yj is replaced by
yj − Xd′

j �̂, and we still use m(·) to represent mq(·). To prove the consistency of �̂2
+(�), we

need to show

e′
1S+

n (�)−1r̃
(
�2

+(�)
) p−→ �2

+(�) and e′
1S+

n (�)−1r̃
(
�̂2

+(�) − �2
+(�)

) p−→ 0�

where

�̂2
i − �2

i = −2
[
Xd′

i

(
�̂ − �

)
+
(

e′
1S−1

n (xi)r̃
((

ỹ − Xd′
(
�̂ − �

))
(xi)

)
− m(xi)

)]
�i

+ 2
[
Xd′

i

(
�̂ − �

)][
e′

1S−1
n (xi)r̃

(((
ỹ − Xd′

(
�̂ − �

)))
(xi)

)
− m(xi)

]
+
[
Xd′

i

(
�̂ − �

)]
2 +
[
e′

1S−1
n (xi)r̃

(((
ỹ − Xd′

(
�̂ − �

)))
(xi)

)
− m(xi)

]
2

= −2
{

Xd′
i

(
�̂ − �

)
− e′

1S−1
n (xi)r̃

((
Xd′
(
�̂ − �

))
(xi)

)
+ [e′

1S−1
n (xi)r̃ (ỹ(xi)) − m(xi)

]}
�i

+ 2Xd′
i

(
�̂ − �

) {[
e′

1S−1
n (xi)r̃ (ỹ(xi)) − m(xi)

]
−e′

1S−1
n (xi)r̃

((
Xd′
(
�̂ − �

))
(xi)

)}
+
[
Xd′

i

(
�̂ − �

)]2 − 2
[
e′

1S−1
n (xi)r̃

((
Xd′
(
�̂ − �

))
(xi)

)]
× [e′

1S−1
n (xi)r̃ (ỹ(xi)) − m(xi)

]
+
[
e′

1S−1
n (xi)r̃

((
Xd′
(
�̂ − �

))
(xi)

)]2 + [e′
1S−1

n (xi)r̃ (ỹ(xi)) − m(xi)
]2

�
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628 P. YU

So the proof is divided into the following two steps.

Step 1. S+
n (�)

p−→ 	+f(�), and r̃
(
�2

+(�)
) p−→ �2(�+)f(�)�+

0,p, where �+
0,p =(

�+
0 , �+

1 , � � � , �+
p

)′
with �+

j = ∫ 1
0 ujk(u)du, j = 0, 1, � � � , p. Both results can be proved by

calculating the mean, showing the variance converging to zero, and applying Markov’s
inequality. Only note that when calculating the variance of the jth term of r̃

(
�2

+(�)
)
, we

need supx∈N E
[
�4|x] < ∞:

1
n

E

[
d
(

x − �

h

)2j

k
(

x − �

h

)2

�4

]

= 1
nh2

∫ ∞

�

(
x − �

h

)2j

k
(

x − �

h

)2

�4f(�|x)d�f(x)dx

= 1
nh

∫ 1

0
u2jk (u)2 E

[
�4|� + uh

]
f(� + uh)dx = O

(
1

nh

)
if supx∈N E

[
�4|x] < ∞. Therefore, e′

1S+
n (�)−1r̃

(
�2

+(�)
) p−→ e′

1(	+f(�))−1�+
0,p f(�)�2

+(�) =
�2

+(�).
Since S+

n (�)−1 = Op(1), we need only to show that each term of r̃
(
�̂2

+(�) − �2
+(�)

)
is

op(1). In other words, 1
n

∑n
l=1

(
xl−�

h

)j
kh(xl − �)di

(
�̂2

i − �2
i

) = op(1), j = 0, 1, � � � , p.

Step 2. supxi∈N0
|Xd

i
′(�̂ − �)| = op(1), supxi∈N0

|e′
1S−1

n (xi)r̃((Xd′(�̂ − �)) (xi))| = op(1),

and supxi∈N0
|e′

1S−1
n (xi)r̃(ỹ(xi)) − m(xi)| = op(1)�

First, supxi∈N0
|Xd

i
′(�̂ − �)| = op(1) since supxi∈N0

|Xd
i | = Op(1), and �̂ − � = op(1).

Second, supxi∈N0
S−1

n (xi) = Op(1), so we need only to show that supxi∈N0∣∣∣ 1
n

∑n
l=1

(
xl−xi

h

)j
kh(xl − xi)Xd′

l

(
�̂ − �

)∣∣∣= op(1), j = 0, 1, � � � , p. Notice that supxi∈N0

∣∣∣ 1
n

∑n
l=1(

xl−xi
h

)j
kh(xl − xi)Xd

l

∣∣∣ = Op(1) and �̂ − � = op(1), so the result follows.

Third, this result is from Lemma 3 of Appendix C. Since we need � ≥ 2 in Step 1, the
bandwidth is required to satisfy

√
nh2

ln n
→ ∞.

Given these three results, we know 1
n

∑n
l=1

(
xl−�

h

)j
kh(xl − �)di

(̂
�2

i − �2
i

) = op(1),

since 1
n

∑n
l=1

(
xl−�

h

)j
kh(xl − �)di = Op(1), and 1

n

∑n
l=1

(
xl−�

h

)j
kh(xl − �)di�i = Op(1), j =

0, 1, � � � , p. Combining these two steps, we have shown �̂2
+(�)

p−→ �2
+(�). Similarly, we can

show �̂2
−(�)

p−→ �2
−(�).

�

Proof of Theorem 3. The proof is a simple application of the delta method; see
Proposition 1 of Porter (2003). It is easy to show that if

√
nh
(̂
� − �

̂ − 

)
d−→ N

((
B�

B

)
,
(

V� C�

C� V

))
,
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UNDERSTANDING ESTIMATORS OF TREATMENT EFFECTS 629

then

√
nh

(
�̂

̂
− �



)
d−→ 1


N
(
B� − �B, V� − 2�C� + �2V

)
�

Substituting the biases B� and B, the variances V� and V, and covariance C� in each
case to the formula above, we can get the results in the theorem. B and V can be derived
in a similar way as in the proof of Theorem 1. As to C�, we can write out the influence
function of ̂, and find that

C� = e′
1N −1

p

[
E[R� | x = �+]�+

p + E[R� | x = �−]�−
p

]
N −1

p e1�

Also note that E[�2|x = �+] = (s(�) + )(1 − s(�) − ) and E[�2|x = �−] = s(�)(1 −
s(�)) since t is a binary variable.

Proof of Theorem 4. By a similar manipulation as in (22), we can rewrite �̂ as

� +
(
Hq 0
0 Hp

)−1
[

1
nh

∑
xi∈N0

(
Zd

i

Zi

) (
Zt′

i Z′
i

)]−1
1

nh

∑
xi∈N0

(
Zd

i

Zi

)
←−y i,

where Zt
i and Zd

i are similarly defined as Zi ≡ H−1
p Xi, Hq =diag�1, h, � � � , hq�, Hp is

similarly defined, and

←−y = [
m(x) − (�0 + �1 (x − �) + · · · + �p (x − �)p

)]
+ t
[
�(x) − (� + �1 (x − �) + · · · + �q (x − �)q

)]+ �t

≡ ←−m (x) + t←−� (x) + �t = ←−m (x) + ←−t (x)←−� (x) + �t + �←−� (x)

with ←−t (x) = s(x) + d. So the asymptotic distribution is determined by

√
nh
(

Hq 0
0 Hp

)(
�̂ − �

)
=
[

1
nh

∑
xi∈N0

(
Zd

i

Zi

) (
Zt′

i Z′
i

)]−1
1√
nh

∑
xi∈N0

(
Zd

i

Zi

)
←−y i�

Numerator

First analyze the bias. Taking the jth term of 1√
nh

∑
xi∈N0

Zd
i
←−y i, 1 ≤ j ≤ q + 1, we have

E

[
1√
nh

n∑
i=1

1 (� ≤ xi ≤ � + h)

(
xi − �

h

)j−1 ←−y i

]

=
√

n
h

E

[
1 (� ≤ x ≤ � + h)

(
x − �

h

)j−1 (←−m (x) + ←−t (x)←−� (x)
)]
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630 P. YU

=
√

n
h

∫ �+h

�

(
x − �

h

)j−1 (←−m (x) + ←−t (x)←−� (x)
)

f(x)dx

= √
nh
∫ 1

0
uj−1

(←−m (� + uh) + ←−t (� + uh)←−� (� + uh)
)

f(� + uh)du

≈√
nh
∫ 1

0
uj−1

[
m(p+1)(�)

(p + 1)! up+1hp+1 + (s(�) + )
�(q+1)(�)

(q + 1)! uq+1hq+1

]
f(�)du

= f(�)

[√
nhhp+1�+

j+p

m(p+1)(�)

(p + 1)! + √
nhhq+1�+

j+q (s(�) + )
�(q+1)(�)

(q + 1)!
]

,

where the first equality is from

E

[√
n
h

1(� ≤ x ≤ � + h)
(

x − �

h

)j−1[(
�0 + (←−t + �) (�1 − �0)

)+ �←−� (x)
]] = 0�

Similarly, taking the jth term of 1√
nh

∑
xi∈N0

Zi
←−y i, 1 ≤ j ≤ p + 1, we have

E

[
1√
nh

n∑
i=1

1 (� − h ≤ xi ≤ � + h)

(
xi − �

h

)j−1

i

←−y i

]

= f(�)

[√
nhhp+1�j+p

m(p+1)(�)

(p + 1)! + √
nhhq+1

(
�j+qs(�) + �+

j+q
) �(q+1)(�)

(q + 1)!
]

,

where �j = ∫ 1
−1 ujdu is the �j defined at the end of the introduction with the uniform

kernel. So the mean of the numerator converges to

√
nhhp+1f(�)

m(p+1)(�)

(p + 1)!

(
�+

p+1,p+q+1

�p+1,2p+1

)

+ √
nhhq+1f(�)

�(q+1)(�)

(q + 1)!

(
(s(�) + ) �+

q+1,2q+1

s(�)�q+1,p+q+1 + �+
q+1,p+q+1

)
�

Under Assumption A(b), the second term of the bias is of lower order relative to the first
term, so can be neglected.

Second analyze the variance of 1√
nh

∑
xi∈N0

( Zd
i

Zi
) ��ti + �i

←−� (xi)�. The covariance
between the jth term associated with Zd

i and lth term associated with Zi is

1
nh

E

[
n∑

i=1

1 (� ≤ xi ≤ � + h)

(
xi − �

h

)j−1 (xi − �

h

)l−1

��ti + �i
←−� (xi)�

2

]
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UNDERSTANDING ESTIMATORS OF TREATMENT EFFECTS 631

= 1
h

∫ �+h

�

(
x − �

h

)j+l−2

E
[
��t + �←−� (x)�

2
∣∣∣ x] f(x)dx

≈
∫ 1

0
uj+l−2E

[
�2

t

∣∣ x = � + uh
]

f(� + uh)du → E
[
�2

t

∣∣ x = �+] f(�)�+
j+l−2,

where the second equality is from ←−� (x) = O(h) for x ∈ N0. Similarly, the covariance
between the jth term associated with Zd

i and lth term associated with Zd
i converges

to E
[
�2

t

∣∣ x = �+] f(�)�+
j+l−2, and the covariance between the jth term associated

with Zi and lth term associated with Zi converges to E
[
�2

t

∣∣ x = �+] f(�)�+
j+l−2 +

E
[
�2

t

∣∣ x = �−] f(�)�−
j+l−2. In summary, the asymptotic variance of the numerator is

f(�)

(
E
[
�2

t

∣∣ x = �+] 	qq
+ E

[
�2

t

∣∣ x = �+] 	qp
+

E
[
�2

t

∣∣ x = �+] 	pq
+ E

[
�2

t

∣∣ x = �+] 	pp
+ + E

[
�2

t

∣∣ x = �−] 	pp
−

)
�

Denominator

First calculate the probability limit of 1
nh

∑
xi∈N0

Zd
i Zt′

i . Its (j, l) term converges to

E

[
1

nh

n∑
i=1

1 (� ≤ xi ≤ � + h)

(
xi − �

h

)j−1

ti

(
xi − �

h

)l−1
]

= 1
h

∫ �+h

�

(
x − �

h

)j+l−2 ←−t (x)f(x)dx

=
∫ 1

0
uj+l−2←−t (� + uh)f(� + uh)du

≈ (s(�) + ) f(�)�+
j+l−2,

so

1
nh

∑
xi∈N0

Zd
i Zt′

i

p−→ (s(�) + ) f(�)	
qq
+ �

Similarly,

1
nh

∑
xi∈N0

Zd
i Z′

i

p−→ f(�)	
qp
+ ,

1
nh

∑
xi∈N0

ZiZt′
i

p−→ f(�)
[
s(�)	pq + 	

pq
+
]

,

1
nh

∑
xi∈N0

ZiZ′
i

p−→ f(�)	pp�
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632 P. YU

So the denominator converges to

f(�)

(
(s(�) + ) 	

qq
+ 	

qp
+

s(�)	pq + 	
pq
+ 	pp

)
�

Combing the analysis above, the theorem is proved. �

Proof of Theorem 5. Note that

nhe′
1�̂e1 = e′

1

[
1

nh

∑
xi∈N0

(
Zd

i

Zi

) (
Zt′

i Z′
i

)]−1 [
1

nh

∑
xi∈N0

(
Zd

i

Zi

) (
Zd′

i Z′
i

)
�̂2

ti

]

×
[

1
nh

∑
xi∈N0

(
Zt

i

Zi

) (
Zd′

i Z′
i

)]−1

e1�

From the proof of Theorem 4, the first and third terms converge to the targets we want,
so we need only to show that

1
nh

∑
xi∈N0

(
Zd

i

Zi

) (
Zd′

i Z′
i

)
�̂2

ti

p−→ f(�)

(
E
[
�2

t

∣∣ x = �+] 	qq
+ E

[
�2

t

∣∣ x = �+] 	qp
+

E
[
�2

t

∣∣ x = �+] 	pq
+ E

[
�2

t

∣∣ x = �+] 	pp
+ + E

[
�2

t

∣∣ x = �−] 	pp
−

)
�

(25)

Given that

�̂ti = yi − (Xt
i
′ X′

i

)
�̂ = yi − (Xt′

i X′
i

)
� − (Xt′

i X′
i

) (
�̂ − �

)
= ←−m (xi) + ti

←−� (xi) + �ti − (Xt′
i X′

i

) (
�̂ − �

)
,

so

�̂2
ti − �2

ti = �←−m (xi) + ti
←−� (xi)�

2 +
[(

Xt′
i X′

i

)(
�̂ − �

)]2 + 2�←−m (xi) + ti
←−� (xi)� �ti

− 2�←−m (xi) + ti
←−� (xi)�

[(
Xt′

i X′
i

) (
�̂ − �

)]
− 2

[(
Xt′

i X′
i

) (
�̂ − �

)]
�ti�

Because supxi∈N0
|←−m (xi) + ti

←−� (xi)| = op(1), supxi∈N0
|(Xt′

i X′
i)| = Op(1), 1

nh

∑
xi∈N0

(
Zd

i
Zi

)
(
Zd′

i Z′
i

)
�ti = Op(1), and �̂ − � = op(1),

1
nh

∑
xi∈N0

(
Zd

i

Zi

) (
Zd′

i Z′
i

) (
�̂2

ti − �2
ti

) p−→ 0�
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UNDERSTANDING ESTIMATORS OF TREATMENT EFFECTS 633

As long as we show that 1
nh

∑
xi∈N0

( Zd
i

Zi
)
(
Zd′

i Z′
i

)
�2

ti converges in probability to the right
hand side of (25), the proof is completed. From the proof of Theorem 4, its mean matches
the target. Also by a similar proof as in Step 1 of the proof of Theorem 2, we can show
its variance shrinks to zero. So by Markov’s inequality, the result follows.

APPENDIX C: LEMMAS

Lemma 1. Xd
l (�) = 0 for

∣∣xl − �
∣∣ > h, l = 1, � � � , n.

Proof. From (2.4) of Fan et al. (1997),

n∑
j=1

(xj − x)�W n
j (x) = 
0,�, 0 ≤ � ≤ p,

where W n
j (x) is defined at the beginning of the proof of Theorem 1, and 
0,� equals 1 if

� = 0, and equals 0 otherwise. Based on this result, for any xl such that
∣∣xl − �

∣∣ > h,

(xl − x)i−1 1 (xl > �) − �n
xl

(
Xi−1,d (�)

) = 0, 1 ≤ i ≤ q + 1 ≤ p + 1�

For example, if x − � > h, for i = 1,

(x − �)i−1 1 (x > �) − �n
x

(
Xi−1,d (�)

) = 1 −
n∑

j=1

W n
j (x) = 0�

Note that the indicator function 1
(
xj > �

)
in Xi−1,d (�) does not play any role here. For

i = 2,

(x − �) −
n∑

j=1

W n
j (x)

(
xj − �

) = (x − �) −
n∑

j=1

W n
j (x)

(
xj − x + x − �

)
= (x − �) − (x − �)

n∑
j=1

W n
j (x) = 0�

By induction, we can show all other terms are zero as long as q ≤ p.

Lemma 2. Suppose m(x) = E �yi|xi = x� is q times continuously differentiable with
q ≤ p for x ∈ N . Then

�n
x (y) − m(x) = e′

1S−1 (x) r(x) + �L
x (y) + �Q

x (y) ,
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634 P. YU

where

r(x) =
∫


(u)f(x + uh)

(
m(x + uh) − m(x) −

q∑
�=1

m(�)(x)

�! (uh)�

)
du,

and �L
x (y) and �Q

x (y) are defined in (26). If q > p, then the q in r(x) is changed to p,
and �L

x (y) and �Q
x (y) are adjusted correspondingly.

Proof. Define yi = m(xi) + �i. Then

�n
x (y) − m(x) = e′

1

(
Z (x)′ Kh (x) Z(x)

)−1
Z (x)′ Kh (x) (y − m(x)) ,

= e′
1

⎛⎝1
n

n∑
j=1

Zj (x) Z′
j (x) kh

(
xj − x

)⎞⎠−1

× 1
nh

n∑
j=1

Zj (x) kh

(
xj − x

) (
m(xj) − m(x) + �j

)

= e′
1

⎛⎝1
n

n∑
j=1

Zj (x) Z′
j (x) kh

(
xj − x

)⎞⎠−1

1
n

n∑
j=1

Zj (x) kh

(
xj − x

)

×
{

m(xj) − m(x) −
q∑

�=1

m(�)(x)

�!
(
xj − x

)� + �j

}
≡ e′

1S−1
n (x) r̃(x)�

Linearize the denominator at its limit S (x) and the numerator at its mean r(x). Note
that r(x) converges to 0 when h goes to zero, so we cannot linearize at the limit of the
numerator:

e′
1S−1

n (x) r̃(x) − e′
1S−1 (x) r(x)

= −e′
1S−1 (x) (Sn (x) − S (x)) S−1 (x) r(x)

+ e′
1S−1 (x) (r̃(x) − r(x)) (linear terms) (26)

+ e′
1S−1 (x) (Sn (x) − S (x)) S−1(x) (Sn (x) − S (x)) S−1

n (x)r(x)

− e′
1S−1 (x) (Sn (x) − S (x)) S−1

n (x) (r̃(x) − r(x)) (quadratic terms)

≡ �L
x (y) + �Q

x (y) �

Lemma 3. If supx∈N E
[∣

�
∣2+� |x] < ∞ for some � > 0, n�/(2+�)h/ ln n → ∞, lm ≥ q + 1,

and lf ≥ 0, then for N0 = �� − h, � + h�, the following statement holds:
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(i) supx∈N0

∣∣ỹ(x) − m(x)
∣∣ = Op

(√
ln n
nh + hq+1

)
, and supx∈N0

∣∣r̃(�(x))
∣∣ = Op

(√
ln n
nh

)
.

If nh

ln n
→ ∞, lm ≥ q + 1, and lf ≥ 1, then the following statements hold:

(ii) supx∈N0

∣∣Sn(x) − S(x)
∣∣ = Op

(√
ln n
nh

)
, supx∈N0

∣∣∣S−1
n (x) − S

−1
(x)
∣∣∣= Op

(√
ln n
nh

)
, supx∈N0∣∣S(x) − S(x)

∣∣ = O(h);

(iii) supx∈N0

∣∣r̃(�m(x)) − r(�m(x))
∣∣ = Op

(√
ln n
nh

)
;

(iv) supx∈N0

∣∣∣
n,i−1(x) − 
i−1(x)
∣∣∣ = Op

(√
ln n
nh

)
.

Here, the norm ∣·∣ for a vector or matrix is the maximum absolute value among all
elements.

Proof. The proof follows from Lemma B.1 and B.2 of Newey (1994). The basic proof
techniques are truncation and Bernstein’s inequality. For (ii), (iii), and (iv), we do not
need truncation, which is like p = ∞th moment of the dependent variable in Lemma B.1
is finite, so the bandwidth is only required to satisfy nh

ln n
→ ∞. Since the proof is very

standard, omitted here for simplicity. See also Masry (1996) for more details. We only
discuss a little about supx∈N0

∣∣∣S−1
n (x) − S

−1
(x)
∣∣∣ and supx∈N0

∣∣S (x) − S (x)
∣∣. First, note that

sup
x∈N0

∣∣∣S−1
n (x) − S

−1
(x)
∣∣∣ ≤ sup

x∈N0

∣∣∣S−1
(x)
∣∣∣ sup

x∈N0

∣∣Sn (x) − S (x)
∣∣ sup

x∈N0

∣∣S−1
n (x)

∣∣
= O(1)Op

(√
ln n
nh

)
Op(1) = Op

(√
ln n
nh

)
�

Second, we know Sn (x) plays the role of a density estimator in the NWE, but there is
indeed some difference between Sn and the usual density estimator f̂(x); the bias of f̂(x)

can be made to be higher order of h by using a higher order kernel, while the bias of Sn

is only O(h) since usually only a second order kernel is used in the LPE.

Lemma 4. If supx∈N E[�|�|2|x] < ∞, then 1
nh

∑n
l=1|�l|1(� − h ≤ xl ≤ � + h) = Op(1) and

1
nh

∑n
l=11(� − h ≤ xl ≤ � + h) = Op(1).

Proof. These are intermediate results in Porter (2003), and can be proved by Markov’s
inequality.
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