
Supplementary Materials

1. Asymptotics in the Simple Example

Figure 5 compares the asymptotic distribution of the LSEs in (2) and (7). First concentrate on the simple

model (2). In Example 1, we consider only case (i) with L (�) = 1, � = 1 and di¤erent � values.9 In the

classical case � = 1,

n (b
LLSE � 
0) d�! �Exp (1) and n (b
MLSE � 
0)
d�! DExp(0; 1=2);

where Exp(�) is an exponential distribution with scale �, and DExp(0,�) is a double exponential distri-

bution with location 0 and scale �. These are exactly the asymptotic distributions of b
LLSE and b
MLSE

in Section 2 of Yu (2012). When � = 0:5, the asymptotic densities of b
LLSE and b
MLSE at 0 are in�nity,

while when � = 2, the asymptotic density of b
LLSE at 0 is zero. This is very di¤erent from the classical case

where the asymptotic densities of the LSEs are �nite and the mode of the asymptotic density of b
LLSE is
zero. In Example 2,

lnn (b
LLSE � 
0) d�! �1 and lnn (b
MLSE � 
0)
d�! 0:

The asymptotic distributions of the LLSE and MLSE are discrete, and the convergence speed to the corre-

sponding asymptotic distributions is very slow. Here, the asymptotic distribution of b
MLSE degenerates. A

natural question is whether it has a nondegenerate distribution by increasing the convergence rate.10 From

Gnedenko (1943), it can be shown that

n

�
F (0)� F

�
t

ln2 n
� 1

1 + lnn

��
! e�(1+t)

2

and

n

�
F

�
t

ln2 n
+

1

1 + lnn

�
� F (0)

�
! et�1

2
;

so

P

�
ln2 n

�b
LLSE � 
0 + 1

1 + lnn

�
� t
�
! e�e

�(1+t)=2;

and

P
�
ln2 n (b
MLSE � 
0) � t

�
! �

Z 1
�1

e�e
�(1+2t�s)=2de�e

s�1=2:

Now, the asymptotic distributions of b
LLSE and b
MLSE are both continuous. Figure 6 shows the asymp-

totic distributions of b
LLSE and b
MLSE with and without the drift normalizing term. Note that although

lnn (b
MLSE � 
0) is degenerate, ln2 n (b
MLSE � 
0) is not. When an error term is added in, the convergence
rates of both b
MLSE and b
LLSE are lnn, so adding an error term decreases the convergence rate of b
MLSE

but not b
LLSE . The arguments in the case without error term cannot be easily extended to the general case

to get a continuous asymptotic distribution in Theorem 4. This is because 
0 is a "middle" boundary of q.

If 
0 is the conventional one-sided boundary, Theorem 2 of Knight (2001) shows that the estimator can be

recentered to get a continuous asymptotic distribution.

When an error term is added in, three common features are shared by all the examples. First, the

9 In case (ii), the convergence rate changes to n lnn, but the asymptotic distributions remain the same.
10Since when the error term is added in, the convergence rates of b
LLSE and b
MLSE are the same and the asymptotic

distribution of b
MLSE will not degenerate as long as that of b
LLSE does not; our discussion here is only for completeness
purpose.
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Figure 5: Comparison of the Asymptotic Distribution of the LSEs With and Without the Error Term: The
Upper Row for the No-Error-Term Case, the Lower Row for the With-Error-Term Case

asymptotic distributions are more spreading than the case without the error term. Second, the LLSE and

the MLSE have the same convergence rate. Third, the support of the asymptotic distribution of the LLSE

can include part of the positive axis.

2. Algorithms

This part of supplementary materials develops algorithms to derive the asymptotic distributions of the LSEs

of the threshold point. These algorithms extend those in Appendix D of Yu (2012) where �1 (t) = �2 (t) =

f (
0) 2 (0;1).11 When simulation methods are used to get the asymptotic distributions, we need to

simulate a nonhomogeneous Poisson process. A thinning method is suggested by Lewis and Shedler (1979)

for this purpose.

Case (i)

The LLSE

For t � 0,

P (ZL � t) =
1X
k=0

P (ZL � t jMinL = k )P (MinL = k) =
1X
k=0

p1k � P (N1 (jtj) � k) (13)

11Note that even when 0 < f � f(q) � f < 1 for q in a neighborhood of 
0, the algorithm for case (i) extends that in
Appendix D of Yu (2012) since �1 (t) = f (
0�) may not equal �2 (t) = f (
0+).
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Figure 6: Asymptotic Distributions of b
LLSE and b
MLSE With and Without the Drift Normalizing Term

whereMinL is the number of jumps before attaining the minimum ofD(v) on v � 0, and p1k = P (MinL = k),
k = 0; 1; � � � . For t > 0,

P (0 < ZL � t) =
1X
k=1

P (0 < ZL � t jMinR = k )P (MinR = k) =
1X
k=1

p2k � P (N2(t) � k)

whereMinR is the number of jumps before attaining the minimum ofD(v) on v > 0, and p2k = P (MinR = k),

k = 1; 2; � � � :
From Appendix D of Yu (2012), fp1; p2g � fp10; p11; � � � ; p21; p22; � � � g does not depend on N1(�) and

N2(�) but only on �1 (�) and �2 (�), where �` (�) is the density function of z`i, ` = 1; 2. So the formulas

for fp1; p2g are similar as those in Yu (2012) and omitted here. The di¤erence lies in the formulas for
P (N1 (jtj) � k) and P (N2(t) � k):

P (N1(�t) � k) =
kX
j=0

e��1(t)�1 (t)
j

j!
; and P (N2(t) � k) =

1X
j=k

e��2(t)�2 (t)
j

j!
:

In summary, the cdf of ZL is

FZL(t) =

8>><>>:
1P
k=0

p1k
kP
j=0

e��1(t)�1(t)
j

j! ,

1P
k=0

p1k +
1P
k=1

p2k
1P
j=k

e��2(t)�2(t)
j

j! ,

if t � 0;
if t > 0;
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and the pdf of ZL is

fZL(t) =

8>><>>:
�1 (t)

1P
k=0

e��1(t)�1(t)
k

k! p1;k = �1 (t) � (Poisson(�1 (t)) � p1) ,

�2 (t)
1P
k=0

e��2(t)�2(t)
k

k! p2;k+1 = �2 (t) � (Poisson(�2 (t)) � p2) ,

if t � 0;
if t > 0.

where � means the inner product of two vectors in R1. ZL is continuously distributed and
fZL (0)

�1(0)
= p10 2

(0; 1). When p10 = 1, FZL(�) reduces to (3) in Section 2.

The MLSE

The analysis in (13) is still applicable, but P (ZM � t jMinL = k ) is di¤erent from the LLSE since the

middle point of the minimizing interval is taken as the estimator.

First, we derive the distribution of the time length TLk before the kth jump for N1 (�) and TRk for N2 (�),
k = 1; 2; � � � . For t > 0,

FLk (t) � P (TLk � t) = P (N1 (t) � k) =
1X
j=k

e��1(�t)�1 (�t)j

j!
;

and the density of TLk is fLk (t) =
e��1(�t)�1(�t)k�1�1(�t)

(k�1)! . Similarly, TRk has the cdf FRk (t) =
1P
j=k

e��2(t)�2(t)
j

j!

and the density fRk (t) =
e��2(t)�2(t)

k�1�2(t)
(k�1)! . Note that TLk;k+1 � TL;k+1 � TLk is independent of TLk,

k = 1; 2; � � � , so

FLk;k+1 (t) � P (TL;k+1 � TLk � t)
=
R1
0
P (TL;k+1 � TLk � tjTLk) dFLk (TLk)

=
R1
0
FL;k+1 (t+ TLk) dFLk (TLk)

=
1P

j=k+1

R1
0

e��1(�t�TLk)�1(�t�TLk)j
j!

e��1(�TLk)�1(�TLk)k�1�1(�TLk)
(k�1)! dTLk;

where the last equality uses Fubini�s theorem. Its density

fLk;k+1 (t) =

Z 1
0

e��1(�t�TLk)�1 (�t� TLk)k �1 (�t� TLk)
k!

e��1(�TLk)�1 (�TLk)k�1 �1 (�TLk)
(k � 1)! dTLk:

The cdf FRk;k+1 (�) and pdf fRk;k+1 (�) of TRk;k+1 � TR;k+1 � TRk can be similarly derived with �1 (�) and
�1 (�) replaced by �2 (�) and �2 (�).
For t 2 R and k = 0,

P (ZM � t jMinL = 0) = P
�
�TL1 + TR1

2
� t
�

=

Z 1
(2t)_0

e��1(2t�TR1)dFR1 (TR1) =

Z 1
(2t)_0

e��1(2t�TR1)e��2(TR1)�2 (TR1) dTR1:
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For t � 0 and k > 0,

P (ZM � t jMinL = k ) = P
�
�TLk+TL;k+1

2 � t
�

= P
�
TLk +

TL;k+1�TLk
2 � �t

�
=
R1
0
P
�
TLk � �t� TLk;k+1

2

���TLk;k+1� dFLk;k+1 (TLk;k+1)
=
R �2t
0

�
1� FLk

�
�t� TLk;k+1

2

��
dFLk;k+1 (TLk;k+1) + 1� FLk;k+1 (�2t)

= 1�
R �2t
0

FLk

�
�t� TLk;k+1

2

�
dFLk;k+1 (TLk;k+1) :

(14)

For t > 0 and k > 0,

P (0 < ZM � t jMinR = k ) = P
�
TRk+TR;k+1

2 � t
�

= P
�
TRk +

TRk;k+1
2 � t

�
=
R 2t
0
FRk

�
t� TRk;k+1

2

�
dFRk;k+1 (TRk;k+1) :

(15)

In summary, the cdf of ZM is

FZM (t) =

8>><>>:
p10P (ZM � t jMinL = 0) +

1P
k=1

p1kP (ZM � t jMinL = k ) ,
1P
k=1

p1k + p10P (ZM � t jMinL = 0) +
1P
k=1

p2kP (0 < ZM � t jMinR = k ) ,

if t � 0;
if t > 0;

and the pdf of ZM is

fZM (t) =

8>>>>>><>>>>>>:

2p10
R1
0
e��1(2t�TR1)�1 (2t� TR1) e��2(TR1)�2 (TR1) dTR1

+
1P
k=1

p1k
R �2t
0

fLk

�
�t� TLk;k+1

2

�
dFLk;k+1 (TLk;k+1) , if t � 0;

2p10
R1
0
e��1(2t�TR1)�1 (2t� TR1) e��2(TR1)�2 (TR1) dTR1

+
1P
k=1

p2k
R 2t
0
fRk

�
t� TRk;k+1

2

�
dFRk;k+1 (TRk;k+1) , if t > 0.

When p10 = 1, FZM (�) reduces to (4) in Section 2.

Case (ii)

The support of ZL and ZM is (�1; 0].

The LLSE

For t � 0,

P (ZL � t) =
1X
k=0

P (ZL � t jMinL = k )P (MinL = k) =
1X
k=0

p01k � P (N1 (jtj) � k) :
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Note that p01k is di¤erent from p1k since
1P
k=0

p01k = 1 >
1P
k=0

p1k. The event E(k) � fMinL = kg is equivalent

to
�

kP
i=1

z1i �
jP
i=1

z1i for j 2 Z+
�
, where

0P
i=1

� � 0. It is the intersection of two events:

E
(k)
1 =

8<:
kX
i=j

z1i � 0; j = 1; � � � ; k

9=; ; and E(k)2 =

(
jX

i=k+1

z1i � 0; j = k + 1; � � �
)
;

and these two are independent, so p01k = P
�
E
(k)
1

�
P
�
E
(k)
2

�
.

De�ne E(k)1 (x) =

(
kP
i=j

z1i � x; j = 1; � � � ; k
)
. For x � 0; P

�
E
(0)
1 (x)

�
= 1. When k � 1,

P
�
E
(k)
1 (x)

�
� P

0@ kX
i=j

z1i � x; j = 1; � � � ; k

1A
=

Z x

�1

Z x�z1k

�1
� � �
Z x�

kP
j=3

z1j

�1

24Z x�
kP

j=2

z1j

�1
�1 (z11) dz11

35�1 (z12) � � ��1 (z1;k�1)�1 (z1;k) dz12 � � � dz1k�1dz1k
=

Z x

�1
P
�
E
(k�1)
1 (x� z1;k)

�
�1 (z1;k) dz1k =

Z 1
0

P
�
E
(k�1)
1 (t)

�
�1 (x� t) dt;

which is a recursive solution.

De�ne P
�
E
(k)
2

�
= 1� F1(0), then

1� F1(x) � P
 

jP
i=k+1

z1i � x; j = k + 1; � � �
!

=
R1
x
�1 (z1;k+1)P

 
jP

i=k+2

z1i � x� z1;k+1; j = k + 2; � � �
!
dz1;k+1

=
R1
x
�1 (z1;k+1) (1� F1(x� z1;k+1)) dz1;k+1

=
R 0
�1 �1 (x� t) (1� F1(t)) dt:

(16)

This is an integral equation called the homogeneous Wiener-Hopf equation of the second kind with boundary

condition 1� F1(�1) = 1, 1� F1(1) = 0 since F1(�) is the cdf of min
(

jP
i=k+1

z1i; j = k + 1; � � �
)
and does

not depend on k.

In summary, the cdf of ZL is

FZL(t) =

8><>:
1P
k=0

p01k
kP
j=0

e��1(t)�1(t)
j

j! ,

1,

if t � 0;
if t > 0;

and the pdf of ZL is

fZL(t) =

8<: �1 (t)
1P
k=0

e��1(t)�1(t)
k

k! p01;k = �1 (t) � (Poisson(�1 (t)) � p01) ,

0,

if t � 0;
if t > 0;
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where p01 = fp010; p011; � � � g. ZL is continuously distributed and
fZL (0)

�1(0)
= p010 = 1� F1(0).

The MLSE

The derivation is similar to Case (i). For t � 0 and k = 0,

P (ZM � t jMinL = 0) = P
�
�TL1
2

� t
�
= P (TL1 � �2t) = e��1(�2t):

For k > 0, P (ZM � t jMinL = k ) is the same as (14). In summary, the cdf of ZM is

FZM (t) =

8<: p010e
��1(�2t) +

1P
k=1

p01kP (ZM � t jMinL = k ) ,

1,

if t � 0;
if t > 0;

and the pdf of ZM is

fZM (t) =

8<: �2p010e��1(�2t)�1 (�2t) +
1P
k=1

p01k
R �2t
0

fLk

�
�t� TLk;k+1

2

�
dFLk;k+1 (TLk;k+1) , if t � 0;

0; if t > 0.

Case (iii)

The support of ZL and ZM is [0;1).

The LLSE

First, there is a point mass at zero in the distribution of ZL:

P (ZL = 0) = P (MinR = 0) = 1� F2(0) � p020;

where F2(�) is the cdf of min
�

jP
i=1

z2i; j = 1; 2; � � �
�
. For t > 0,

P (0 < ZL � t) =
1X
k=1

P (0 < ZL � t jMinR = k )P (MinR = k) =
1X
k=1

p02k � P (N2(t) � k) ;

where p02k is di¤erent from p2k and can be calculated in a similar way as in Case (ii). So the cdf of ZL is a

mixture of continuous and discrete:

FZL(t) =

8>>><>>>:
0;

p020;

p020 +
1P
k=1

p02k
1P
j=k

e��2(t)�2(t)
j

j! ,

if t < 0;

if t = 0;

if t > 0;

and the Randon-Nikodym derivative of FZL with respect to the Lebesgue measure plus a counting measure

at zero is

fZL(t) =

8>><>>:
0,

p020;

�2 (t)
1P
k=0

e��2(t)�2(t)
k

k! p02;k+1 = �2 (t) � (Poisson(�2 (t)) � p02) ,

if t < 0;

if t = 0;

if t > 0;
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where p02 = fp021; p022; � � � g.

The MLSE

The derivation is similar to Case (ii). For t > 0 and k = 0,

P (0 < ZM � t jMinR = 0) = P
�
TR1
2
� t
�
=
1X
j=1

e��2(2t)�2 (2t)
j

j!
:

For k > 0, P (ZM � t jMinR = k ) is the same as (15). In summary, the cdf of ZM is

FZM (t) =

8<: 0,

p020
1P
j=1

e��2(2t)�2(2t)
j

j! +
1P
k=1

p02kP (ZM � t jMinR = k ) ,
if t � 0;
if t > 0;

and the pdf of ZM is

fZM (t) =

8<: 0, if t � 0;

2p020e
��2(2t)�2 (2t) +

1P
k=1

p02k
R 2t
0
fRk

�
t� TRk;k+1

2

�
dFRk;k+1 (TRk;k+1) ; if t > 0.

Case (iv)

First, the distributions of D(�1) and D(1) are derived. For t < 0,

P

�XN`(�`)

i=1
z`i � t

�
=

1X
k=0

P

�Xk

i=1
z`i � tjN` (�`) = k

�
P (N` (�`) = k)

=
1X
k=1

e��`�k`
k!

P

�Xk

i=1
z`i � t

�
=
1X
k=1

e��`�k`
k!

�k` (t) ;

and for t � 0,

P

�XN`(�`)

i=1
z`i � t

�
= e��` +

1X
k=1

e��`�k`
k!

�k` (t)

where �k` (�) is the kth-order convolution of the cdf of z`. So there is a point mass e��` at zero in the
distribution of

PN`(�`)
i=1 z`i. Cases (v) and (vi) are omitted since they can be derived easily from the cdf ofPN`(�`)

i=1 z`i.

The LLSE

P (cn (b
LLSE � 
0) = �1)! P (D(1) � min fD(�1); 0g)
= P (D(1) � D(�1); D(�1) < 0) + P (D(1) � 0; D(�1) � 0)

=

Z 0

�1
P (D(1) � s)js=D(�1) dP (D(�1) � t) + P (D(1) � 0)P (D(�1) � 0)

=

Z 0

�1

"
e��2 +

1X
k=1

e��2�k2
k!

�
1� �k2 (t)

�#24 1X
j=1

e��1�j1
j!

�j1 (t)

35 dt
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+

"
e��2 +

1X
k=1

e��2�k2
k!

�
1� �k2 (0)

�#24e��1 + 1X
j=1

e��1�j1
j!

�
1� �j1 (0)

�35 ;
and

P (cn (b
LLSE � 
0) = 1)! P (D(1) < min fD(�1); 0g)
= P (D(1) < D(�1); D(�1) < 0) + P (D(1) < 0; D(�1) � 0)

=

Z 0

�1

" 1X
k=1

e��2�k2
k!

�k2 (t)

#24 1X
j=1

e��1�j1
j!

�j1 (t)

35 dt
+

 1X
k=1

e��2�k2
k!

�k2 (0)

!24e��1 + 1X
j=1

e��1�j1
j!

�
1� �j1 (0)

�35 ;
where �k` (�) is the kth-order convolution of the pdf of z`.

The MLSE

P (cn (b
MLSE � 
0) = �1)! P (D(1) > D(�1); D(�1) < 0)

=

Z 0

�1

"
e��2 +

1X
k=1

e��2�k2
k!

�
1� �k2 (t)

�#24 1X
j=1

e��1�j1
j!

�j1 (t)

35 dt;
and

P (cn (b
MLSE � 
0) = 0)! P (D(1) � 0; D(�1) � 0) ;

=

"
e��2 +

1X
k=1

e��2�k2
k!

�
1� �k2 (0)

�#24e��1 + 1X
j=1

e��1�j1
j!

�
1� �j1 (0)

�35 :
The limit of P (cn (b
MLSE � 
0) = 1) is the same as that of P (cn (b
LLSE � 
0) = 1).
3. Extra Simulation Results

We report extra simulation results beyond those in Section 4.2 in this section. Table 3 and 4 report the

simulation result for �0 = 0:5 and 2 in model (7), respectively. Table 5 includes the MAE of all estimators

in model (8).

Additional References
Knight, K., 2001, Limiting Distributions of Linear Programming Estimators, Extremes, 4, 87-103.

Lewis, P.A.W. and G.S. Shedler, 1979, Simulation of Nonhomogeneous Poisson Processes by Thinning, Naval

Research Logistics Quarterly, 26, 403-413.

9



Risk (�10�2) ! RMSE MAE

Examples# Estimators! b
LLSE b
MLSE
b� b�o b
LLSE b
MLSE

b� b�o
n = 100

Example 1: � = 0:5 1.583 1.609 7.818 7.229 0.058 0.053 5.198 4.659

Example 1: � = 1 5.991 5.968 7.657 7.119 2.002 1.739 5.033 4.871

Example 1: � = 2 20.030 19.413 7.682 7.205 15.052 14.124 4.827 4.683

Example 2 54.325 56.517 7.662 6.975 31.378 30.014 4.916 4.749

Example 3 5.887 6.120 7.168 6.936 0 0.817 4.763 4.619

n = 400

Example 1: � = 0:5 0.057 0.058 3.711 3.650 0.003 0.002 2.568 2.464

Example 1: � = 1 1.480 1.454 3.576 3.546 0.539 0.475 2.427 2.415

Example 1: � = 2 9.463 9.014 3.620 3.527 6.803 5.984 2.443 2.367

Example 2 (n = 1000) 19.303 17.564 2.311 2.293 18.147 17.393 1.492 1.508

Example 3 1.069 1.139 3.615 3.590 0 0.214 2.481 2.455

Table 3: Performances of b
 and b�: �0 = 0:5 (Based on 1000 Repetitions)
Risk (�10�2) ! RMSE MAE

Examples# Estimators! b
LLSE b
MLSE
b� b�o b
LLSE b
MLSE

b� b�o
n = 100

Example 1: � = 0:5 0.056 0.039 7.018 6.989 0.005 0.006 4.816 4.806

Example 1: � = 1 1.307 0.769 7.251 7.231 0.677 0.380 4.602 4.662

Example 1: � = 2 10.245 4.309 7.208 7.176 8.498 2.315 4.945 4.945

Example 2 24.550 7.676 7.112 7.113 23.081 3.106 4.648 4.698

Example 3 0.182 0.715 7.151 7.157 0 0.358 4.847 4.847

n = 400

Example 1: � = 0:5 0.003 0.003 3.518 3.518 0.0003 0.0004 2.351 2.374

Example 1: � = 1 0.359 0.201 3.480 3.479 0.183 0.092 2.347 2.344

Example 1: � = 2 5.152 1.993 3.602 3.596 4.213 1.090 2.390 2.390

Example 2 (n = 1000) 15.540 4.092 2.207 2.207 15.379 1.323 1.482 1.481

Example 3 0.056 0.195 3.531 3.530 0 0.096 2.286 2.293

Table 4: Performances of b
 and b�: �0 = 2 (Based on 1000 Repetitions)
Examples# Estimators! b
LLSE b
MLSE SATE SATEo SATT SATTEo

n = 100

Example 1: � = 0:5 0.006 0.007 15.383 15.353 11.856 11.856

Example 1: � = 1 0.758 0.449 13.901 13.962 12.216 12.155

Example 1: � = 2 8.848 2.801 15.522 15.318 12.022 12.020

Example 2 24.188 4.080 15.543 15.666 12.736 12.710

Example 3 0.750 1.304 15.580 15.512 10.167 10.264

n = 400

Example 1: � = 0:5 0.0004 0.0005 7.691 7.688 6.121 6.160

Example 1: � = 1 0.190 0.116 7.768 7.737 6.196 6.227

Example 1: � = 2 4.326 1.391 7.659 7.590 6.361 6.405

Example 2 (n = 1000) 15.492 1.610 4.731 4.724 3.666 3.672

Example 3 0.189 0.324 7.336 7.344 4.823 4.752
Table 5: MAE of b
 and the SATE and SATT in 10�2 (Based on 1000 Repetitions)
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