Supplementary Materials

1. Asymptotics in the Simple Example

Figure [5| compares the asymptotic distribution of the LSEs in and . First concentrate on the simple
model . In Example 1, we consider only case (i) with L(-) = 1, A = 1 and different « valuesﬂ In the

classical case a = 1,

. d . d
n(Yrrse — Vo) — —Exp (1) and n (Yy 55 — 7o) — DExp(0,1/2),

where Exp(A) is an exponential distribution with scale A, and DExp(0,A) is a double exponential distri-
bution with location 0 and scale A. These are exactly the asymptotic distributions of ¥;;¢p and Y195
in Section 2 of Yu (2012). When « = 0.5, the asymptotic densities of 7, ;g5 and 7, at 0 are infinity,
while when o = 2, the asymptotic density of 7 ;¢ at 0 is zero. This is very different from the classical case
where the asymptotic densities of the LSEs are finite and the mode of the asymptotic density of 7, ;g5 is

zero. In Example 2,

~ d ~ d
Inn(Yyrse — %) — —land Inn (Y5 —v9) — 0.

The asymptotic distributions of the LLSE and MLSE are discrete, and the convergence speed to the corre-
sponding asymptotic distributions is very slow. Here, the asymptotic distribution of 74,,; ¢ degenerates. A
natural question is whether it has a nondegenerate distribution by increasing the convergence ratem From
Gnedenko (1943), it can be shown that
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Now, the asymptotic distributions of 5 gz and J,,, 45 are both continuous. Figure [6] shows the asymp-
totic distributions of 7, ;¢ and J,,.¢r with and without the drift normalizing term. Note that although
Inn (Ypsrsm — Vo) is degenerate, In*n (33,155 — 7o) is not. When an error term is added in, the convergence
rates of both 7,7 g5 and 7 ;g5 are Inn, so adding an error term decreases the convergence rate of ¥,,7.95
but not 4 ;¢g- The arguments in the case without error term cannot be easily extended to the general case
to get a continuous asymptotic distribution in Theorem 4. This is because 7, is a "middle" boundary of g.
If 7y, is the conventional one-sided boundary, Theorem 2 of Knight (2001) shows that the estimator can be
recentered to get a continuous asymptotic distribution.

When an error term is added in, three common features are shared by all the examples. First, the

9n case (ii), the convergence rate changes to nlnn, but the asymptotic distributions remain the same.

10Since when the error term is added in, the convergence rates of 7, gp and 7y gp are the same and the asymptotic
distribution of 4,7 gg will not degenerate as long as that of 7, ;g does not; our discussion here is only for completeness
purpose.
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Figure 5: Comparison of the Asymptotic Distribution of the LSEs With and Without the Error Term: The
Upper Row for the No-Error-Term Case, the Lower Row for the With-Error-Term Case

asymptotic distributions are more spreading than the case without the error term. Second, the LLSE and
the MLSE have the same convergence rate. Third, the support of the asymptotic distribution of the LLSE

can include part of the positive axis.

2. Algorithms

This part of supplementary materials develops algorithms to derive the asymptotic distributions of the LSEs
of the threshold point. These algorithms extend those in Appendix D of Yu (2012) where Ay () = A2 (t) =
fv) € (O,oo)E] When simulation methods are used to get the asymptotic distributions, we need to
simulate a nonhomogeneous Poisson process. A thinning method is suggested by Lewis and Shedler (1979)

for this purpose.

Case (i)
The LLSE
For t <0,
P(Z, <t)=Y P(Z, <t|MinL =k)P(MinL =k) =Y pu- P (N (t]) < k) (13)
k=0 k=0

! Note that even when 0 < f < f(q) < f < oo for q in a neighborhood of g, the algorithm for case (i) extends that in
Appendix D of Yu (2012) since A1 () = f( o—) may not equal A2 (t) = f (yo+).
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Figure 6: Asymptotic Distributions of 7, ; gp and 7,5 With and Without the Drift Normalizing Term

where MinL is the number of jumps before attaining the minimum of D(v) on v < 0, and p1, = P (MinL = k)

k=0,1,---. Fort > 0,
SN P(0<Zy <t|MinR=k)P(MinR=k) =Y pay - P(Na(t) > k)

P(O < Zp < t) =
k=1
— P(MinR = k),

where MinR is the number of jumps before attaining the minimum of D(v) on v > 0, and pog, =

k=1,2,---.
From Appendix D of Yu (2012), {p1;p2} = {p10,p11, " ; P21, P22, - } does not depend on Ni(-) and

(-) but only on ¢, (-) and ¢, (-), where ¢, (-) is the density function of zp, £ = 1,2. So the formulas
The difference lies in the formulas for

No(-
for {p1;p2} are similar as those in Yu (2012) and omitted here

P(Ny (|t]) < k) and P (Na(t) > k):

ko= MOAL (1) 0 —As(t) J
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P(N(—t) < k)= 7'1(> and P (No(t) > k) = > 7|2()
— J — 7!
J J
In summary, the cdf of Zp, is
e~ M)A
Zp““zojil()’ if t < 0;
F = -7
A (t) o0 A2(t)A2(t) lf t> 0,

Zpuﬁ- EP%Z



and the pdf of Z is

Ap (1) i M Pk =M\ (t) - (Poisson (A4 (t)) Opl)a

fz,(t) = k=0 if t <0;
' P S0k _ - if > 0.
Ao (t) > =7 D2kt1 = A2 (1) - (Poisson(As (t)) o pa),
k=0
fz.,(0)

where o means the inner product of two vectors in R*°. Z is continuously distributed and X =P €
(0,1). When pyo = 1, Fz, () reduces to (3]) in Section 2.

The MLSE

The analysis in is still applicable, but P (Zy < t|MinL = k) is different from the LLSE since the
middle point of the minimizing interval is taken as the estimator.

First, we derive the distribution of the time length T, before the kth jump for Ny () and Tgy, for Na (+),
k=1,2,---. Fort >0,
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4!

FLk(t)EP(TLkSt):P(Nl(t)Zk):Z
j=k

)

and the density of T is frx (t) = eiAl(it)A(ﬂc(:f;fil)‘l(_t). Similarly, Try, has the cdf Fry (t) = > 67/\2(;%
=k

o= A2 () o— -
and the density fgry (t) = t2 E\;Etl))k’ 1A2(t). Note that Trgx+1 = Trk+1 — Tk is independent of Tpy,

k=1,2,--, so
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where the last equality uses Fubini’s theorem. Its density

_ e MR Ny (<t — Trp)* Ay (=t — Trp) e M CTE A (< Trp) " Ay (= Tr)
fre g (8) = o 1) dT .
0 . - .

The cdf Fri k+1 () and pdf frr ks (1) of Trik+1 = Trk+1 — Tre can be similarly derived with A; (-) and
A1 () replaced by As (+) and A (+).
Fort € R and k =0,

_T T
P(Zu < t|MinL = 0) :p<m2+R1 St)
= / e—A1(2t—TR1)dFR1 (TRl) = / e_Al(Qt—TRl)e—AQ(TRl))\Q (TRl) dTRl.
(2t)vo (2t)VvO0



Fort <0 and k£ > 0,

P(Zu < t|MinL = k) = P (- Tetlerss < )
=P (TLk  Toakst—Toe > —t)

=[P (TLk > —t— % TLk,k+1> AFrk k41 (Tokkt1) (14)
= fO_Qt (1 — Fry (—t - %)) AF k41 Tk k+1) + 1 — Frg g1 (—2t)

=1- f072t FLk (—t — %) dFLk,k-i—l (TLk,k—H) .

Fort>0and k > 0,

P(0< Zy < t|MinR = k) = P (Tetjes <)

(15)
=P (TRk 4 Tordrr < t) = 02t Fry, (t - %) dFRrk k1 (TR k+1) -

In summary, the cdf of Zj; is

FZM(t): =t N

S pik + p1oP (Zy < t[MinL =0)+ 3 poP (0 < Zyy < t|MinR=1k), £t>0
k=1 k=1

and the pdf of Z), is
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fZM (t) =

When p1p = 1, Fz,, (-) reduces to (4) in Section 2.
Case (ii)

The support of Z;, and Zys is (—o0,0].

The LLSE

For ¢t <0,

P(Zy<t)=Y P(Zy <t|MinL =k)P(MinL=Fk) = pl,- P(N1(|t]) < k).
k=0 k=0



oo oo
Note that p}, is different from py since > p}, =1 > > pix. The event E®) = {MinL = k} is equivalent
k=0 k=0
k J 0
to { 215 < z1; for j € Zy }, where > - =0. It is the intersection of two events:
i=1 i=1 i=1
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and these two are independent, so p}, = P (EYC)) P (Eék)).

(k) k , 0)
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which is a recursive solution.

Define P (Eg’“)) = 1— F1(0), then

J
1-Fiz)=P| Y zu>z,j=k+1, -
i=k+1

o0 J .
= [ ¢ (z1611) P ( Y. i 2T —zikt1,j =k + 2, ) dz1 k+1 (16)
i=k+2

- f;o o1 (#1,541) (1 — Fi(z — 21,841)) d21 k41
— [0 ¢y (x—t) (1= Fi(t))dt.

This is an integral equation called the homogeneous Wiener-Hopf equation of the second kind with boundary

J
condition 1 — Fy(—o0) =1, 1 — Fy(c0) = 0 since Fi(-) is the cdf of minq > 21;,7=k+1,--- } and does
i=k+1
not depend on k.

In summary, the cdf of Z is

S L MO AL (1) X
>l Y e <o;
= =0 .
B0 ift > 0:

FZL (t)

L,

and the pdf of Z, is

)\ o0 e’Al(t)Al(t)k ’ _ . , .
1(t) X0 =D = A1 (t) - (Poisson(Aq () opy), ift <0
fz. () = k=0

0 if ¢t > 0;



where p} = {plo,Pl1, - }- Zr is continuously distributed and fffi((()(;) = pio =1— F1(0).
The MLSE
The derivation is similar to Case (i). For t <0 and k =0,

—Tr

P(Zu §t|Mz‘nL())P< gt) = P (Tp, > —2t) = e M (=20,

For k >0, P(Zy < t|MinL = k) is the same as ([4). In summary, the cdf of Zy is

Phoe M2 4 S ph P (Zy < t|MinL = k), if t < 0;
) = if ¢ > 0;

)

Fzy, (t) -

and the pdf of Z,, is

—2phoe M (20N (=2t) + 3 phy f(;% frk (-t - %) AFpigs1 (Tokps1), if t <0;
k=1

0, if t > 0.

fZM (t) =
Case (iii)
The support of Zy, and Z is [0, 00).

The LLSE

First, there is a point mass at zero in the distribution of Zj:

P(Z,=0)=P(MinR=0)=1— F(0) = ph,

J
where F5(-) is the cdf of min{z 22i,J = 1,2,~~~}. For ¢t > 0,

=1
P(0<Z,<t)=)Y P(0<Z, <t|MinR=k)P(MinR=k)= Zp% £ >k,
k=1

where p), is different from poy, and can be calculated in a similar way as in Case (ii). So the cdf of Zy, is a

mixture of continuous and discrete:

0, if t <0
Fz, (t) = Phos ift=0:
ZL( B / N o eh2Mp, ) 1 s
Pho+ Do Phy D T if t > 0;

=1 j=k

and the Randon-Nikodym derivative of Fz, with respect to the Lebesgue measure plus a counting measure

at zero is

0,

! if t <0;

fa(t)=9q P20 if ¢t = 0
2(t .

Ao () Y ey g1 = A2 (2) - (Poisson(Az (¢)) o p5),  if t > 0;

k=0



where Plz = {pl217]9/227 cee }

The MLSE

The derivation is similar to Case (ii). For t > 0 and k = 0,
T o e 222 A 2t
P(O<ZM§t|Mz‘nRO)P<Rl<t> Z 2( )

For k>0, P(Zy < t|MinR = k) is the same as (I5). In summary, the cdf of Z; is

0,

if ¢t <0;
Fy (t) = O o—h2(2t) i X ) -7
SRS 3 P (Zu SHMInR=F). it >0
j= =1
and the pdf of Z), is
0, if t < 0;
t) = e ,
fZM( ) 2p/2067/\2(2t)>\2 (Qt) + Z p/2k; f02t ka (t o %) dFRk,k-l—l (TRk,k+1)a ift> 0.
k=1
Case (iv)

First, the distributions of D(—1) and D(1) are derived. For ¢ < 0,
P ZNM” <t —f:P Zk < Ny (1) = k | P (Ny (r0) = k)
iy S —k_o g 2 SUNe(ke) = ¢ (Ke) =
-~ 67HEI€§P k AN N e ek ok
- Z k! Zizlz&_t *Z k! 0 (),

k=1 k=1

and for ¢t > 0,

Ne(re) — o e ek
(S s ) m e S k)
k=1

where ®} (-) is the kth-order convolution of the cdf of z,. So there is a point mass e~ "¢ at zero in the

distribution of Zfﬁ{"“ ze;. Cases (v) and (vi) are omitted since they can be derived easily from the cdf of
S

The LLSE

(en BrLse —Y0) = —1) — P(D(1) > min {D(-1),0})
D(1) = D(-1),D(-1) < 0) + P(D(1) = 0, D(-1) > 0)

P
P
0

- / 1) > 8)|,_p_y) 4P (D(~1) < £) + P (D(1) > 0) P (D(1) > 0)

o0

0

*“2+Z mﬁz (1-®5 () Zeiﬁ_:'ﬁjlqs{(t) dt

=1




and

cn (Yorse — o) = 1) = P(D(1) < min{D(-1),0})
D(1) < D(—1), D(—1) < 0) + P (D(1) < 0,D(~1) > 0)

0 e 6_H2l€k
/ [Z 2k (1)

—° k=1

e 1/€j ;
> i Lot (t)| dt

j=1

etk e = e"“l/ﬁ{
+<Z o @2(0)> ey i

k=1 j=1

(1-2{)].

where ¢} (-) is the kth-order convolution of the pdf of z.

The MLSE
P(en Wmrse — %) = —1) — P(D(1) > D(-1),D(-1) <0)
0 . 0 e—K/zl‘{k e e F I{j .
= [ e St a-se)| | X e 0] e
—o0 k=1 =1
and

P(en Wprse —7) =0) — P(D(1) > 0,D(-1) > 0),

oo — K2 k oo — K1 .7 .
e r2 4 Z € k'KvQ (1 _ (I>’§ (0))‘| er 4 Z ejilml (1 — @Jl (0))
k=1 ’ j=1 :

The limit of P (¢, Vprnse — Vo) = 1) is the same as that of P (¢, (Yrsg — Vo) = 1)-

3. Extra Simulation Results

We report extra simulation results beyond those in Section 4.2 in this section. Table 3 and 4 report the
simulation result for 8, = 0.5 and 2 in model , respectively. Table 5 includes the MAE of all estimators

in model .
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Risk (x10-2) — RMSE MAE

Examples| Estimators— | Y155 | Ymrse | B Bo | Arrse | Ymise | B B,
n = 100

Example 1: o =0.5 1.583 1.609 7.818 | 7.229 | 0.058 0.053 5.198 | 4.659

Example 1: aa =1 5.991 5.968 7.657 | 7.119 | 2.002 1.739 5.033 | 4.871

Example 1: a =2 20.030 | 19.413 | 7.682 | 7.205 | 15.052 | 14.124 | 4.827 | 4.683

Example 2 54.325 | 56.517 | 7.662 | 6.975 | 31.378 | 30.014 | 4.916 | 4.749

Example 3 5.887 6.120 7.168 | 6.936 0 0.817 | 4.763 | 4.619
n =400

Example 1: a = 0.5 0.057 0.058 | 3.711 | 3.650 | 0.003 0.002 | 2.568 | 2.464

Example 1: aa =1 1.480 1.454 3.576 | 3.546 | 0.539 0.475 2.427 | 2.415

Example 1: =2 9.463 9.014 | 3.620 | 3.527 | 6.803 5.984 | 2.443 | 2.367

Example 2 (n = 1000) 19.303 | 17.564 | 2.311 | 2.293 | 18.147 | 17.393 | 1.492 | 1.508

Example 3 1.069 1.139 3.615 | 3.590 0 0.214 2.481 | 2.455

Table 3: Performances of 4 and B: By = 0.5 (Based on 1000 Repetitions)

Risk (x10°2) RMSE MAE

Examples| Estimators— | 7,55 | Jurse | B By | Avise | Ymwse | B B,
n = 100

Example 1: a=0.5 0.056 0.039 7.018 | 6.989 | 0.005 0.006 | 4.816 | 4.806

Example 1: =1 1.307 0.769 7.251 | 7.231 | 0.677 0.380 | 4.602 | 4.662

Example 1: a =2 10.245 4.309 7.208 | 7.176 | 8.498 2.315 4.945 | 4.945

Example 2 24.550 7.676 7.112 | 7.113 | 23.081 3.106 4.648 | 4.698

Example 3 0.182 0.715 7.151 | 7.157 0 0.358 4.847 | 4.847
n = 400

Example 1: o= 0.5 0.003 0.003 3.518 | 3.518 | 0.0003 | 0.0004 | 2.351 | 2.374

Example 1: a=1 0.359 0.201 3.480 | 3.479 | 0.183 0.092 2.347 | 2.344

Example 1: a =2 5.152 1.993 | 3.602 | 3.596 | 4.213 1.090 | 2.390 | 2.390

Example 2 (n = 1000) 15.540 4.092 2.207 | 2.207 | 15.379 1.323 1.482 | 1.481

Example 3 0.056 0.195 | 3.531 | 3.530 0 0.096 | 2.286 | 2.293

Table 4: Performances of 7 and 3: By = 2 (Based on 1000 Repetitions)

Examples| Estimators— | Y1795 | Ymrnse | SATE | SATE, | SATT | SATTE,
n = 100
Example 1: a =0.5 0.006 0.007 | 15.383 | 15.353 | 11.856 11.856
Example 1: o =1 0.758 0.449 13.901 | 13.962 | 12.216 12.155
Example 1: a =2 8.848 2.801 15.522 | 15.318 | 12.022 12.020
Example 2 24.188 | 4.080 15.543 | 15.666 | 12.736 12.710
Example 3 0.750 1.304 15.580 | 15.512 | 10.167 10.264
n = 400
Example 1: a« =0.5 0.0004 | 0.0005 7.691 7.688 6.121 6.160
Example 1: aa =1 0.190 0.116 7.768 7.737 6.196 6.227
Example 1: a =2 4.326 1.391 7.659 7.590 6.361 6.405
Example 2 (n = 1000) 15.492 1.610 4.731 4.724 3.666 3.672
Example 3 0.189 0.324 7.336 7.344 4.823 4.752

Table 5: MAE of 4 and the SATE and SATT in 102 (Based on 1000 Repetitions)
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