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Summary The inference of the threshold point in threshold models critically depends
on the assumption that the density of the threshold variable at the true threshold point is
continuous and bounded away from zero and infinity. However, violation of this assumption
may arise in several econometric contexts such as treatment effects evaluation. This paper
presents a thorough characterisation of the asymptotic distributions in the least-squares
estimation of such abnormal cases. First, the asymptotic results on the threshold point are
different from the conventional case. For example, any convergence rate between zero and
infinity is possible; the asymptotic distribution can be discrete, continuous or a mixture of
discrete and continuous; the weak limits of the localised objective functions can be non-
homogeneous instead of homogeneous compound Poisson processes. Second, this paper
distinguishes threshold regression from structural change models by studying a problem
unique in threshold regression. Third, the asymptotic distributions of regular parameters are
not affected by estimation of the threshold point irrespective of the density of the threshold
variable. Numerical calculations and simulation results confirm the theoretical analysis, and
the density of the threshold variable in an application is checked to illustrate the relevance of
the study in this paper.

Keywords: Discrete asymptotic distribution, Extreme value type III distribution, Local
information, Non-homogeneous Poisson process, Rapidly varying, Regularly varying, Slowly
varying, Stochastic equicontinuity failure, Strong identification, Threshold regression,
Treatment effect, Weak identification.

1. INTRODUCTION

Since the pioneering work by Tong (1978, 1983), threshold models get much popularity in current
applied statistical and econometric practice. An encyclopedic survey on this kind of models is
available in Tong (1990) and a selective review of the history of threshold models is given by
Tong (2011); see also Lee and Seo (2008) and Hansen (2011) for a summary of applications
especially in economics. Threshold models are naturally motivated in regression analysis when
we suspect the population can be divided into different groups whose regression coefficients
are different. Sometimes these groups are selected on categorical variables, such as gender or
race, while in other cases they are selected based on continuous variables, such as income or
GDP levels. Such continuous variables are called threshold variables in threshold regression.
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The typical setup of threshold regression is

y =
{

x ′β1 + σ1e,

x ′β2 + σ2e,

q ≤ γ ;
q > γ ;

(1.1)

where q is the threshold variable with pdf f (q) and cdf F (q), γ is the unknown threshold
point, x ∈ Rk includes characteristics of the population, β ≡ (β ′

1, β
′
2)′ ∈ R2k and σ ≡ (σ1, σ2)′

are threshold parameters on the mean and variance in the two groups. We set E[e2] = 1 as a
normalisation of the error variance and allow for conditional heteroscedasticity. All the other
variables have the same definitions as in the linear regression framework. Usually, the parameters
of interest are θ ≡ (β ′, γ )′. Under the assumption that E[e|x, q] = 0, a popular estimator is the
least-squares estimator (LSE). For notational simplicity, we use (β̂ ′

1, β̂
′
2, γ̂ )′ to denote the LSE

of θ .
All existing literature on threshold regression assumes that f (q) is continuous and

0 < f ≤ f (q) ≤ f < ∞ for q in a neighbourhood of γ0. Researchers use this assumption for
a number of reasons (e.g. it is natural), an important technical one among which is that the
asymptotic distribution of the estimator of γ is relatively easy to derive under this assumption.
It is well known that the inference on γ critically depends on the local behaviour of f (·)
around γ0. This point can be easily observed in two popular frameworks of threshold effects.
The first framework is introduced by Chan (1993) in non-linear time series environments,
where (β ′

1, σ1)′ − (β ′
2, σ2)′ is a fixed constant. In this framework, the convergence rate of γ̂

is n, and the asymptotic distribution is continuous and related with a two-sided homogeneous
compound Poisson process with intensity f (γ0). The second framework is introduced by Hansen
(2000), where no threshold effect on variance exists and the threshold effect in mean diminishes
asymptotically. In this framework, the convergence rate of γ̂ is slower than n, while the
asymptotic distribution is still continuous and related with a two-sided Brownian motion with
a scale factor f (γ0)−1. So in both frameworks, the asymptotic distribution of γ̂ is fragile to
the density of q around γ0. To identify γ and make the inference on γ non-degenerate, the
assumption that f (q) is continuous and bounded from zero and infinity seems natural and
necessary although this assumption is likely to be violated in practice. Also, in both frameworks,
the inference on regular parameters β is not affected by the estimation of γ , but it is unknown
whether this still holds when the assumption on f (q) fails.

In this paper, we consider the asymptotic behaviour of the LSE when the density of the
threshold variable is not continuous and/or not between zero and infinity. While these cases may
seem pathological, they are, in fact, far from it. The following example illustrates this point.
Suppose we want to measure the treatment effects based on (1.1). Without loss of generality, we
assume that q > γ is associated with the treated group and q ≤ γ the control group. Usually,
we are interested in two pieces of information. The first piece of information is related with
the treatment assignment, that is, the value of γ . The second piece of information relates to
the treatment effects. For example, the population-average treatment effect PATE ≡ E[Y1 −
Y0] can be estimated by the sample-average treatment effect SAT E ≡ n−1 ∑n

i=1 x ′
i(β̂2 − β̂1),

where Yd is the potential outcome under treatment d for d = 0 and 1; the population-average
treatment effect for the treated PATT ≡ E[Y1 − Y0|D = 1] can be estimated by the sample-
average treatment effect for the treated SATT ≡ n−1 ∑n

i=1 x ′
i(β̂2 − β̂1) 1 (qi > γ̂ ), where D is

the treatment status, and 1(·) is the indicator function. The treatment assignment may depend
on various considerations. For example, if it is a beneficial treatment, such as a job training
programme based on the income level, the policy maker may choose γ such that locally (around
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γ0) most people benefit to popularise the programme; in other words, γ is close to the mode of q’s
distribution. If it is a hurtful treatment, such as a tax increase plan, the policy maker may choose
γ such that locally few people are hurt to avoid objection of the plan. In the former case, we can
approximate the model by assuming f (γ0) = ∞, and in the latter case, by assuming f (γ0) = 0.
Even if we assume f (·) is bounded from zero and infinity in a neighbourhood of γ0, it may still
be discontinuous at γ0 due to, say, the policy leak about the threshold.

We briefly discuss three other reasons for the discontinuity of f (q) at γ0. First, non-response
and attrition. A specific example is Hoekstra (2009) who estimates the effects of college quality
on earnings. In this scenario, q is the admission score and y is the earnings many years later. His
dataset, however, does not permit to trace individuals who moved out of the state either for study
or for work so that the information of those individuals is missing. Differential attrition below γ0

and above γ0 may induce the discontinuity of f (q) at γ0. Second, difference in data collection
schemes. Different data collection schemes may have been used for individuals above γ0 and
below γ0. Suppose individuals with a certain medical condition, for example, heart attack, register
at a hospital and have their medical status q measured. Those with q > γ0 are hospitalised
and remain under intensive surveillance for several days, while those with q ≤ γ0 receive a
certain prescription drug, but are not hospitalised. To estimate the effects of hospitalisation
on health status we need follow-up data on both groups. Whereas extensive data are routinely
collected in the hospital for the in-patient group, data collection for the out-patient group requires
expensive home visits. To reduce data collection costs, one might join in a multi-purpose
survey, which over-samples individuals with high-risk conditions such that limq↓γ0f (q) >

limq↑γ0f (q).1 Third, manipulation or sorting of q. For example, McCrary (2008) studies the
roll call voting in the House of Representatives, where sorting is both expected and found such
that f (q) is discontinuous at γ0. He also provides a test of the continuity of f (q) at γ0 when
0 < f ≤ f (q) ≤ f < ∞ for q in a neighbourhood of γ0. In all cases, one may want to know
how the local behaviour of f (q) around γ0 affects estimation of the treatment assignment, and
how this estimation affects the treatment evaluation.

Similar problems as in the above examples may happen in all applications of threshold
regression. Actually, similar problems may arise as long as the asymptotic distribution is related
with the value of a density at a fixed point. For example, it is well known that in quantile
regression, the asymptotic distribution of the estimator involves the error density at zero. Knight
(1997, 1998, 2008) discusses the L1 asymptotics when the error density takes various shapes,
especially, when it is zero or infinity or discontinuous at the fixed point 0; see also Rogers (2001)
and Cho et al. (2010) for more discussions in the time series context. Han et al. (2011) develop a
test for the presence of an infinite density at the median and apply it to stock returns of leading
companies across major US industry groups. Their results confirm the presence of infinite density
at the median as a new significant empirical evidence for stock return distributions.

The contributions of this paper are threefold. First, it provides a thorough characterisation
of the asymptotic behaviour of γ̂ when the usual assumption on f (q) fails. We use the
discontinuous framework of Chan (1993) with i.i.d. data. The results are very different from
those in the literature. For example, the convergence rate can be different from n; the asymptotic
distribution may not be continuous; and the weak limits of the localised objective functions need
not be homogeneous compound Poisson processes. Second, our paper distinguishes threshold
regression from structural change models. It is commonly believed that threshold regression and

1 See Appendix A of Frölich (2007) for related discussions in regression discontinuity designs (RDDs).
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structural change models are closely related. For example, the asymptotic distributions of γ̂ in
the structural change literature such as Bai (1997) and the threshold regression literature such
as Chan (1993) and Hansen (2000) are similar. This is not surprising since structural change
models can be essentially treated as threshold regression with q following a uniform distribution
on [0, 1] and being independent of (x, e). This work complements this general view by studying
a problem unique in threshold regression. Third, our paper shows that the inference on β is
the same as in the case where γ0 is known even under the non-standard assumptions on f (q).
An immediate corollary of this result is that we can safely conduct inference on functionals of β

without worrying about the effect of non-standard asymptotic behaviours of γ̂ . This is essentially
because only local information around the threshold point is informative to γ , while the inference
on β relies on the global information such as the sample mean which is independent of the local
information in some sense. Yu (2008, 2012) provides a detailed analysis on this point under usual
assumptions on f (q), and this paper extends that result to more general cases.

The rest of this paper is organised as follows. Because the main difference of this paper
from the existing literature lies in the specification of f (q) around γ0, Section 2 discusses the
effects of f (q) on the asymptotic distribution of γ̂ in a simple setup where the only randomness
is from q. Section 3 presents the asymptotic distribution of the LSE of γ and β. The latter is
shown to be independent of and not affected by γ̂ . Section 4 includes some numerical examples,
Monte Carlo simulation results and application in an economic growth model. Finally, Section 5
concludes and discusses some unsolved problems, such as the confidence interval construction
and specification testing. All proofs and lemmas are given in Appendices A and B, respectively,
and Supporting Information is available with the Online version of the article.

A word on notations and terms: Z+ is the set of non-negative integers, and N = Z+\{0}. ‖ · ‖
is the Euclidean norm. The letter C is used to denote a generic positive constant, which need not
be the same in each occurrence. For two real numbers x and y, x ∨ y is the larger of them, and
x ∧ y is the smaller one. [x] is the largest integer no greater than x. � is always used for indicating
the two regimes in (1.1), so is not written out explicitly as ‘� = 1, 2’ throughout the paper. The
case with the specification of f (·) in the existing literature is referred to as ‘the classical case’.

2. THE SETUP AND THE LOCAL BEHAVIOUR OF THE THRESHOLD
VARIABLE

In this section, we first define the LSE in threshold regression, then show the importance of f (q)
around γ0 on the asymptotic distribution of γ̂ by a simple threshold model and conclude with a
general classification theorem of the local behaviour of f (q) around γ0.

2.1. The Least Squares Estimator

For a random sample {wi}ni=1 with wi = (yi, x
′
i , qi)′ , the LSE of γ is usually defined by a profiled

procedure:

γ̂ = arg min
γ

Qn(γ ),

C© 2013 The Author(s). The Econometrics Journal C© 2013 Royal Economic Society.



434 P. Yu and Y. Zhao

where

Qn(γ ) = min
β1,β2

nPn(m(·|θ )) = min
β1,β2

n∑
i=1

m(wi |θ ),

with Pn being the empirical measure of the original data, and

m(w|θ ) = (
y − x ′β11(q ≤ γ ) − x ′β21(q > γ )

)2
.

Usually, there is an interval of γ minimising this objective function. Most literature in threshold
regression takes the left endpoint of the interval as the minimiser and calls the estimator as the
left-endpoint LSE (LLSE). Yu (2008) suggests to use the middle point LSE (MLSE) and shows
that in most cases with 0 < f ≤ f (q) ≤ f < ∞, the MLSE is more efficient than the LLSE.
This paper will explore the asymptotic properties of both estimators. To express the model in
matrix notation, define the n × 1 vector Y by stacking the variables yi , and the n × k matrices
X, X≤γ and X>γ by stacking the vectors x ′

i , x ′
i1(qi ≤ γ ) and x ′

i1(qi > γ ), respectively. Let(
β̂1(γ )
β̂2(γ )

)
≡ arg min

β1,β2

n∑
i=1

m(wi |θ ) =
( (

X′
≤γ X≤γ

)−1
X′

≤γ Y(
X′

>γ X>γ

)−1
X′

>γ Y

)
,

then the LSE of β is defined as β̂ = (β̂ ′
1, β̂

′
2)′ ≡ (β̂ ′

1(γ̂ ), β̂ ′
2(γ̂ ))′. In the classical case, β̂ − β0 =

OP (n−1/2), and γ̂ − γ0 = OP (n−1).

2.2. No error term: an illustration

A simple threshold model is considered here to illustrate the effect of f (q) on the inference of
γ0. A similar example is used in Section 2 of Yu (2012). The model is

y = 1(q ≤ γ ), (2.1)

where γ is the only parameter of interest, and q has a cdf F (·) that represents the only randomness
in this simple model. For now, suppose q has a density that is continuous and positive on
B(γ0)\{γ0}, where B(γ0) is an open ball centred at γ0. This model can be viewed as a treatment
rule in RDDs. Usually, γ0 is known in RDDs, but it may also be unknown as analysed in Porter
and Yu (2012). So this simple model is relevant in practice. We will use this simple model to
thoroughly characterise the local behaviour of f (q) around γ0, which is key to the inference of
γ0. In the following discussion, q(m) denotes the mth order statistic of {qi}ni=1.

A simple calculation shows that the LSE of γ is the interval [q(m), q(m+1)) with γ0 ∈
[q(m), q(m+1)), where m yi’s are 1 and the remaining yi’s are 0. Suppose the LLSE, γ̂LLSE, is
used as the estimator of γ , then γ̂LLSE = q(m), which is the qi that is closest to γ0 from the left.
For t ≤ 0 and some sequence of constants an,

P (an(γ̂LLSE − γ0) ≤ t) = P

(
qi /∈

(
γ0 + t

an

, γ0

]
for all i

)
(2.2)

=
(

1 − 1

n
· n

(
F (γ0) − F

(
γ0 + t

an

)))n

→ e−�1(t),

C© 2013 The Author(s). The Econometrics Journal C© 2013 Royal Economic Society.
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where

�1(t) = lim
n→∞ �1n(t) ≡ lim

n→∞ n

(
F (γ0) − F

(
γ0 + t

an

))
∈ [0,∞], t ≤ 0

is the average number of data points falling into (γ0 + t/an, γ0] when n data points are randomly
sampled, and an is selected such that �1(t) does not degenerate to 0 or ∞ on (−∞, 0).2 When
f (·) in the left neighbourhood of γ0 gets larger, an gets larger as a smaller neighbourhood
(γ0 + t/an, γ0] can have enough samples falling in it. From the assumptions on f (·), an

diverges to infinity but is not always infinity, and �1(·) is decreasing with �1(−∞) = ∞ and
�1(0) = 0. As a result, an(γ̂LLSE − γ0) = Op(1). It can be seen that only the information in
the left neighbourhood of γ0 is used in γ̂LLSE. Suppose �2(t) is similarly defined but using the
information in the right neighbourhood of γ0:

�2(t) = lim
n→∞ �2n(t) ≡ lim

n→∞ n

(
F

(
γ0 + t

bn

)
− F (γ0)

)
∈ [0,∞], t > 0,

where bn is selected such that �2(t) does not degenerate to 0 or ∞ on (0,∞). �(t) is defined as
�1(t) when t ≤ 0 and �2(t) when t > 0.

If the MLSE, γ̂MLSE, is used, then

γ̂MLSE − γ0 = q(m) + q(m+1)

2
− γ0 = q(m) − γ0

2
+ q(m+1) − γ0

2
,

and the information in both the left and right neighbourhoods of γ0 is used. It can be shown that
the convergence rate of γ̂MLSE is determined by an ∧ bn by the following arguments. For t > 0,

P
(
bn(q(m+1) − γ0) > t

) = P

(
qi /∈

[
γ0, γ0 + t

bn

]
for all i

)
=
(

1 − 1

n
· n

(
F

(
γ0 + t

bn

)
− F (γ0)

))n

→ e−�2(t),

so bn(q(m+1) − γ0) = Op(1). If an/bn → 0, then an(q(m+1) − γ0) = op(1). By Slutsky’s theorem,
an(γ̂MLSE − γ0) has the same asymptotic distribution as an

q(m)−γ0

2 , which is Op(1). However,
bn(q(m) − γ0) diverges to −∞ almost surely, so bn(γ̂MLSE − γ0) diverges to −∞ and bn(γ̂MLSE −
γ0) cannot be Op(1). Other cases of an and bn can be similarly analysed. When an/bn converges
to a positive number C ∈ (0,∞), it can be made to converge to 1 by rescaling an and bn. In
summary, the asymptotic distribution of γ̂MLSE falls into one of the three cases:

1. If an/bn → 1, then

P (an ∧ bn(γ̂MLSE − γ0) ≤ t) → −
∫ ∞

(2t)∨0
e−�1(2t−s)de−�2(s). (2.3)

2. If an/bn → 0, then

P (an ∧ bn(γ̂MLSE − γ0) ≤ t) → e−�1(2t) for t ≤ 0.

2 Note that if an is the appropriate normalising rate, so is Aan for any 0 < A < ∞. Correspondingly, �1(t) becomes
�1( t

A
). So we call �(1)(·) and �(2)(·) to be of the same type if for some A > 0, �(2)(t) = �(1)(At).
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3. If an/bn → ∞, then

P (an ∧ bn(γ̂MLSE − γ0) > t) → e−�2(2t) for t > 0.

Interestingly, when an/bn → ∞, γ̂LLSE and γ̂MLSE have different convergence rates. The lesson
here is that when both neighbourhoods are involved in the estimation, the convergence rate is
determined by the neighbourhood with ‘less’ data.

For both γ̂LLSE and γ̂MLSE, the distribution of q in the neighbourhood of γ0 determines their
asymptotic distributions by determining �. This insight is still true when an error term is added
in, i.e.

y = 1(q ≤ γ ) + e. (2.4)

It can be shown that for the LSE γ̂ and a convergence rate cn,

cn(γ̂ − γ0) = arg min
v

Dn(v),

where

Dn(v) =
n∑

i=1

(1 + 2ei)1
(

γ0 + v

cn

< qi ≤ γ0

)
+

n∑
i=1

(1 − 2ei)1
(

γ0 < qi ≤ γ0 + v

cn

)
is a step function which simplifies to

∑n
i=1 1(γ0 + v

cn
< qi ≤ γ0) +∑n

i=1 1(γ0 < qi ≤ γ0 + v
cn

)
in (2.1) with cn = an for γ̂LLSE and cn = an ∧ bn for γ̂MLSE. Obviously, when an error term is
added in, only the jump magnitudes in Dn(v) change from 1 to 1 ± 2ei , while the jump locations
are the same. However, the jump locations are completely determined by f (q) around γ0 in finite
samples and by � asymptotically, so the simple model (2.1) embodies the key difference between
this paper and the literature. This implies that we can study the general model by only adding
in random jumps. Of course, there is indeed some speciality in this simple model: in the general
model, the data points in both neighbourhoods of γ0 are used even in γ̂LLSE, so the convergence
rates for both γ̂LLSE and γ̂MLSE are an ∧ bn, which is denoted as cn hereafter.

2.3. Characterisation of the local behaviour of q

This subsection provides a thorough characterisation of � which is determined solely by the local
behaviour of f (q) around γ0 and is a key building block in deriving the asymptotic distribution of
γ̂ in the next section. This characterisation is obtained by abstracting two examples. Readers may
jump to Theorem 2.1 directly and then check these examples to see what specification of f (q)
around γ0 will generate the corresponding �. For simplicity, suppose γ0 = 0. The specifications
of F (x) − F (0) in the first two examples are essentially borrowed from Knight (1998).

EXAMPLE 2.1. Suppose

F (x) − F (0) = λsign(x)|x|αL(|x|) (2.6)

for x in a neighbourhood of 0, where α > 0, λ > 0, and L is a slowly varying function at 0,
denoted as L ∈ RV0 as x → 0. In other words, F (x) − F (0) is a regularly varying function at
zero, denoted as F (x) − F (0) ∈ RVα as x → 0, and α is called the exponent of variation.3 See

3 A positive locally integrable function L : (0, ∞) → (0,∞) is called slowly varying at zero if limx↓0
L(kx)
L(x) = 1, for

any k > 0. If this limit is finite but non-zero for any k > 0, then L is called regularly varying at zero. A function L(x)

C© 2013 The Author(s). The Econometrics Journal C© 2013 Royal Economic Society.
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Figure 1. �(t) and LSE asymptotic distributions.

Section 0.4.2 of Resnick (1987) and Seneta (1976) for more details on this type of functions. In
this case,

an = bn = n1/αL∗(n), and �(t) = λ|t |α,

where L∗ is a slowly varying function at infinity satisfying L∗(n) = L(1/an)1/α .
Two typical examples of L are as follows. (a) If L(x) is a constant function (for x close to

0), then L∗(n) = 1. When α = 1, f (·) reduces to the classical case and λ plays a similar role as
f (γ0), so the convergence rate is n. When α < 1, f (0) = ∞, so the convergence rate is n

1
α which

is faster than n. When α > 1, f (0) = 0, so the convergence rate is n
1
α which is slower than n. (b)

If L(|x|) = ln(|x|−1) (for x close to 0), then L∗(n) = (ln n)1/α . When α = 1, an = n ln n, which
is greater than n since f (·) diverges to infinity at the rate − ln |x| for x close to 0. When α < 1,
an > n, and when α > 1, an ∈ (n

1
α , n).

Figure 1 shows �(t) with L(·) = 1, λ = 1 and different α values. It can be seen that �(t) is
very different from that in the classical case where α = 1 and �(t) = λ|t |.

When f (·) is continuous in the neighbourhood of γ0, ��n(·) is continuous. One may also
expect ��(·) to be continuous, but this is not true as shown in the following example.

is slowly (regularly) varying at infinity iff L(1/x) is slowly (regularly) varying at zero. One typical example of slowly
varying functions is the logarithm; other examples are the powers and the iterations of the logarithm, e.g. lnα , α ∈ R and
ln ln. The function L(x) = x is not slowly varying, neither is L(x) = xα for any real α �= 0. They are regularly varying
functions. Any regularly varying function is of the form xαL(x) where α ≥ 0 and L is a slowly varying function.
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EXAMPLE 2.2. Suppose

f (x) = 1

2x2
exp(−|x|−1)

and its cdf

F (x) = 1

2
(1 + sign(x) exp(−|x|−1)).

It is easy to show that

�(t) = lim
n→∞ n

∣∣∣∣F (
t

ln n

)
− F (0)

∣∣∣∣ =
⎧⎨⎩

0, if |t | < 1;
1/2, if |t | = 1;
∞, if |t | > 1;

which is discontinuous although f (·) is continuous. So an = bn = ln n is very slow.4 In
the extreme case where f (x) = 0 for x in a neighbourhood of 0, γ0 cannot be identified,
corresponding to zero convergence rate. �(t) is shown in Figure 1.

The form of F (x) is well known in calculus for the fact that any of its finite-order
derivatives at γ0 is zero. de Haan (1970) calls F (γ0 + x) − F (γ0) as rapidly varying at x = 0,
and Resnick (1987) gives a name as regularly varying with index ∞. Two intuitive notations used
in the literature are F (γ0 + x) − F (γ0) ∼ |x|∞L(|x|) or F (γ0 + x) − F (γ0) ∈ RV∞ as x → 0.
Rigorously, if for x > 0,

lim
t↓0

F (γ0 + tx) − F (γ0)

F (γ0 + t) − F (γ0)
= x∞ ≡

⎧⎨⎩
0, if x < 1;
1, if x = 1;
∞, if x > 1;

then F (γ0 + x) − F (γ0) ∈ RV∞ as x ↓ 0. A similar definition applies to F (γ0) − F (γ0 − x) as
x ↓ 0. Compared with Example 2.1, such kind of functions can be treated as the limit case when
α → ∞.

The above discussion assumes that there is no point mass at γ0 in F (·). The following example
shows what will happen when this assumption is violated.

EXAMPLE 2.3. Suppose there is a point mass 2−1 at 0 in F (·), and f (·) = 1 in the right
neighbourhood of 0. In the simple Example 2.1, P (γ̂LLSE = 0) = 1 − (1 − f (0))n → 1. For
t < 0, �1(t) = ∞ as long as an �= ∞, and for t > 0, an = n and �2(t) = t . Consequently, for
any an �= ∞,

an(γ̂LLSE − γ0)
d−→0, and n(γ̂MLSE − γ0)

d−→Exp(1/2),

where Exp(
) is an exponential distribution with scale 
. In other words, the convergence rate
of γ̂LLSE is ∞, while the convergence rate of γ̂MLSE is n. Here, an is defined as ∞ when there is
a point mass at γ0 in F (·). If an = ∞, �1(t) = 0 for t < 0, as shown in Figure 1. When an error
term is added in, the convergence rates of both γ̂LLSE and γ̂MLSE will be an ∧ bn = bn which is
determined by f (·) in the right neighbourhood of γ0. So the insight from the last subsection still
applies as long as we treat the point mass as the limit case of Example 2.1 with α → 0.

4 The convergence rate can be arbitrarily slow. For example, F (x) = 1
2 (1 + sign(x) exp(− exp(|x|−1))), then an =

ln ln n.
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The above examples suggest that any rate between 0 and infinity is possible. In Examples 2.1
and 2.2, we derived ��(·) for special f (·)’s. Actually, these ��(·)’s are the only possible forms.
Theorem 2.1 states this result for �1(·), and a similar result applies to �2(·).
THEOREM 2.1. Suppose there is no point mass at γ0, and f (·) is continuous and positive on
(γ0 − ε, γ0) for some ε > 0. If an and �1(·) exist, then �1(·) falls into one of the following two
classes:

(a) �1(t) = |t |α1 , for t < 0 and some 0 < α1 < ∞;

(b) �1(t) =
⎧⎨⎩

0, if t > −1;
κ1, if t = −1;
∞, if t < −1;

for some 0 ≤ κ1 ≤ ∞.

Moreover, �1(·) is of the type (a) iff F (γ0) − F (γ0 − x) ∈ RVα1 as x ↓ 0, and �1(·) is of the type
(b) iff F (γ0) − F (γ0 − x) ∈ RV∞ as x ↓ 0. In both cases,

an = 1

γ0 − γn

,

where γn = (1/(F (γ0) − F (·)))←(n) with H←(y) = inf{s : H (s) ≥ y} being the inverse
function.

Theorem 2.1 says that when f (·) is very thin in the neighbourhood of γ0, ��(·) is
discontinuous; otherwise, ��(·) is continuous. In the former case, the possibilities that κ� = 0
or ∞ cannot be excluded. In the latter case, more descriptions on F (·) can be found in Corollary
1.14 and Proposition 1.16 of Resnick (1987). For calculating the normalising constant an,
Proposition 1.19 of Resnick (1987) suggests that we need only calculate this constant for the tail
equivalent distribution. The proof of Theorem 2.1 is borrowed from the extreme value theory;
see, e.g. Proposition 0.3 of Resnick (1987). One may think that Theorem 2.1 is just a trivial
corollary of Proposition 0.3 of Resnick (1987) since γ0 can be treated as the right endpoint of
the distribution F (·) in the extreme value theory, but this is not true. The key point here is that
the location (or drift) normalising parameter in Proposition 0.3 of Resnick (1987) can be chosen
freely, so �1(t) can also take the form of e−t ; while in our case, this parameter is fixed, so the
non-degenerate �1(t) can only take the form |t |α1 . Example 2 on page 445 of Gnedenko (1943)
illustrates this point. Note that Example 2 there is essentially the same as Example 2.2.

In all the above examples, an (bn) and ��(·) exist, but this does not always hold. Such an
example is given below which is inspired by Remark 3 of Zhu (2009), and can be treated as the
continuous version of the example on page 451 of Gnedenko (1943).

EXAMPLE 2.4. Take the cut-off function

χ (x) =
⎧⎨⎩

0,

κ(x),
1,

x ≤ 1;
1 < x < 2;
x ≥ 2;

such that χ (x) ∈ C(∞)(R) and κ(x) ∈ (0, 1). For example, we can take κ(x) =∫ x

1 exp{− 1
0.52−(t−1.5)2

}dt∫ 2
1 exp{− 1

0.52−(t−1.5)2
}dt

. Now, let F1(x) = 1
2A

∑∞
k=−1 pk χ (ekx), where A = ∑∞

k=−1 pk ∈ (0,∞).
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Note that for x ∈ [ 2
ei ,

1
ei−1 ], i ∈ Z+, χ (ekx) = 0 when k < i, and χ (ekx) = 1 when k ≥ i. So

F1(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1

2A
piκ(eix) + 1

2A

∞∑
k=i+1

pk, if x ∈
[

1

ei
,

2

ei

]
for some i ∈ Z+;

1

2A

∞∑
k=i

pk, if x ∈
[

2

ei
,

1

ei−1

]
for some i ∈ Z+;

1

2A

∞∑
k=0

pk + 1

2A
p−1κ(e−1x), if x > e.

Let F2(x) = 1
4 (1 + sign(x) exp(− e

|x| )) be a variant of the F (x) in Example 2.2. Define F (x) =
F1(x) + F2(x), then F (x) is in C(∞)(R) and has a positive density in the neighbourhood of zero.

Suppose pk = e−ek

, and thus limi→∞
∑∞

k=i+1 pk

pi
= 0; that is, pi dominates the remaining terms

when i is large enough. Now,

n · 2A · F1

(
t

bn

)
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

n · piκ

(
ei

bn

t

)
+ n

∞∑
k=i+1

pk, if t ∈
[
bn

ei
,

2bn

ei

]
for some i ∈ Z+;

n

∞∑
k=i

pk, if t ∈
[

2bn

ei
,

bn

ei−1

]
for some i ∈ Z+;

n

∞∑
k=0

pk + p−1κ

(
1

bne
t

)
, if t > bne;

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

n · p[ln bn]+iκ

(
e[ln bn]+i

bn

t

)
+ n

∞∑
k=[ln bn]+i+1

pk

= n · e−e[ln bn ]+i

κ

(
e[ln bn]+i

bn

t

)
+ n

∞∑
k=[ln bn]+i+1

e−ek

,

if t ∈
[

bn

e[ln bn]+i
,

2bn

e[ln bn]+i

]
for some i ∈ Z such that [ln bn] + i ∈ Z+;

n

∞∑
k=[ln bn]+i

pk = n

∞∑
k=[ln bn]+i

e−ek

,

if t ∈
[

2bn

e[ln bn]+i
,

bn

e[ln bn]+i−1

]
for some i ∈ Z such that [ln bn] + i ∈ Z+;

n

∞∑
k=0

pk + p−1κ

(
1

bne
t

)
= n

∑∞
k=0

e−ek + c−1κ

(
1

bne
t

)
, if t > bne;

where the last equality is just a shift of the index i. It seems that to make the limit non-degenerate,
bn should be O(ln n), and i takes −1 or 0. Actually, n · 2A · F1( t

bn
) does not even converge at

all given that limn→∞ne−e[ln ln n]
does not exist. Nevertheless, we can select a subsequence of n to
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make it converge; e.g. when nk = [eek

], and bnk
= ek ,

nk · 2A · F1

(
t

bnk

)
→ 2A · �21(t) =

⎧⎪⎪⎨⎪⎪⎩
0,

κ(t),
1,

∞,

if t ∈ (0, 1] ;
if t ∈ (1, 2] ;
if t ∈ (2, e] ;
if t ∈ (e,∞).

From Example 2.2,

�1(t) = lim
n→∞ n

(
F2(0) − F2

(
t

ln n

)) =
⎧⎨⎩

0, if t > −e;
1/4, if t = −e;
∞, if t < −e;

�22(t) = lim
n→∞ n

(
F2
(

t
ln n

)− F2(0)
) =

⎧⎨⎩
0, if t < e;
1/4, if t = e;
∞, if t > e.

Consequently,

�2(t) = �21(t) + �22(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0,
κ(t)

2A
,

1

2A
,

1

2A
+ 1

4
,

∞,

if t ∈ (0, 1] ;

if t ∈ (1, 2] ;

if t ∈ (2, e) ;

if t = e;

if t ∈ (e,∞);

which does not take the form in Theorem 2.1, so n · 2A · F1( t
bn

) does not converge. Figure 2
shows the density of F (·) and �(t) under the subsequence nk . Gnedenko (1943) used the Poisson
distribution as the example that is not attracted to any of the three limit laws of the maxima.
From Figure 2, we can see that f2(x) is like swelling a point mass to a smooth density on
each interval [ 1

ei ,
2
ei ], i = −1, 0, 1, . . .. In this sense, it is not surprising that n · 2A · F1( t

bn
)

does not converge. Another observation is that the non-parametric technique such as kernel
smoothing cannot identify the local behaviour of f (·) around zero, and thus in practice, it is
hard to determine if cn exists for a given dataset.

3. ASYMPTOTIC THEORY

After studying the local behaviour of the threshold variable, we are ready to explore the
asymptotic theory for the LSEs in the general model (1.1). We begin with some regularity
assumptions.

3.1. Regularity assumptions

For convenience, we divide the assumptions into Assumptions 3.1–3.4, which are about the local
behaviour of f (·) around γ0, and Assumption 3.5, which contains all the remaining assumptions.
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Figure 2. F2(x), f2(x), f (x) and �(t).

ASSUMPTION 3.1. If there is no point mass at γ0 in F (·), then f (·) is continuous and positive
on (γ0 − ε, γ0) and (γ0, γ0 + ε) for some ε > 0. If there is a point mass at γ0 in F (·), then f (·)
needs to be continuous and positive only on (γ0, γ0 + ε) for some ε > 0.

Assumption 3.1 is used to identify γ0, so it excludes the partial identification case where
f (x) = 0 in a neighbourhood of γ0. Since f (·) ∈ L1 on (γ0 − ε, γ0) and (γ0, γ0 + ε), and
continuous functions are dense in L1 space, Assumption 3.1 is not very restricted.

ASSUMPTION 3.2. an (bn) and ��(·) exist.

This assumption excludes the case such as Example 2.4.

ASSUMPTION 3.3. If there is no point mass at γ0 in F (·), then F (γ0) − F (γ0 − x) ∈ RVα1 as
x ↓ 0, and F (γ0 + x) − F (γ0) ∈ RVα2 as x ↓ 0, where α� ∈ (0,∞). If there is a point mass at
γ0 in F (·), then only F (γ0 + x) − F (γ0) ∈ RVα2 as x ↓ 0.

Based on Theorem 2.1, Assumption 3.3 implies that ��(t) = |t |α� .5 From Section 2, cn is
determined by the larger α�. If F (·) satisfies Assumption 3.3, we can normalise an and bn such
that an/bn converges to one of the three values: 0, 1 and ∞.

ASSUMPTION 3.4. Either F (γ0) − F (γ0 − x) ∈ RV∞ as x ↓ 0, or F (γ0 + x) − F (γ0) ∈ RV∞
as x ↓ 0, or both are satisfied.

When only one neighbourhood of F (·) falls in RV∞, cn is determined by that neighbourhood;
when both neighbourhoods fall in RV∞, cn is determined by the neighbourhood with a thinner

5 Actually, the theorems in Section 3.2 only need the continuity of ��(·), which is required in proving the uniform
convergence of ��n(·) to ��(·). From 0.1 of Resnick (1987), ��n(·) converges uniformly to ��(·) on any compact set
when ��n(·) is non-decreasing and ��(·) is continuous.

C© 2013 The Author(s). The Econometrics Journal C© 2013 Royal Economic Society.



General TR 443

density. For convenience in stating the theorems in the next subsection, we regularise an, bn

and F (·) as follows. When an/bn converges to 0, an is selected such that �1(t) jumps at −1
with �1(−1) = κ1; when an/bn diverges to ∞, bn is selected such that �2(t) jumps at 1 with
�2(1) = κ2; when an/bn converges to a positive number C ∈ (0,∞), we assume the limit �1(t)
of �1n(t) ≡ n(F (γ0) − F (γ0 + t

an∧bn
)) jumps at −1 and the limit �2(t) of �2n(t) ≡ n(F (γ0 +

t
an∧bn

) − F (γ0)) jumps at 1. In an RV∞ neighbourhood, ��n(·) will not uniformly converge to
��(·) on some compact set. In consequence, the stochastic equicontinuity fails in this case, but a
direct calculation can be used to find the asymptotic distribution.

ASSUMPTION 3.5. (a) wi ∈ W ≡ R × X × Q ⊂ Rk+2, β1 ∈ B1 ⊂ Rk , β2 ∈ B2 ⊂ Rk , 0 < σ1 ∈
�1 ⊂ R, 0 < σ2 ∈ �2 ⊂ R, �1 × �2 is compact, γ ∈ � = [γ , γ ] ⊂ R, β10 �= β20, and σ10 �=
σ20, where �= is an element by element operation; (b) E[‖xe‖2] < ∞, and E[‖x‖4] < ∞; (c)
E[xx ′] > E[xx ′1(q ≤ γ )] > 0 for all γ ∈ �; (d) E[‖xe‖2|q = γ ] < ∞, E[‖x‖4|q = γ ] < ∞
and E[.xx ′|q = γ ] > 0 for γ in a neighbourhood of γ0; (e) Both z1i and z2i have absolutely
continuous distributions, where the distribution of z1i is the limiting conditional distribution of
z1i given γ0 + 
 < qi ≤ γ0, 
 < 0 as 
 ↑ 0 with

z1i = {2x ′
i(β10 − β20)σ10ei + (β10 − β20)xix

′
i(β10 − β20)},

and the distribution of z2i is the limiting conditional distribution of z2i given γ0 < qi ≤ γ0 + 
,

 > 0 as 
 ↓ 0 with

z2i = {−2x ′
i(β10 − β20)σ20ei + (β10 − β20)xix

′
i(β10 − β20)

}
.

By Assumption 3.5(a), y ∈ R, which guarantees that the LLSE and MLSE have the same
convergence rate. Assumptions 3.5(b)–3.5(d) are standard and roughly a subset of Assumption
1 in Hansen (2000); see Section 3.1 of Hansen (2000) for more discussions. Assumption 3.5(e)
guarantees that the minimiser of the localised objective function is unique. This form of z�i is
also used in Chan (1993). When z�i and qi have a joint continuous distribution, z�i follows the
conditional distribution of z�i given qi = γ0.

3.2. Large sample theory for the LSEs

This subsection discusses the large sample properties of the LSEs. First, Theorem 3.1 states
the weak limit of the localised objective function when Assumption 3.3 is satisfied, which is
critical in deriving the asymptotic distributions of the LSEs given in Theorem 3.2. Define h =
(u′

1, u
′
2, v)′ ≡ (u′, v)′ as the local parameter for θ .

THEOREM 3.1. Suppose Assumptions 3.1–3.3 and 3.5 hold, then

nPn

(
m

(
·|β0 + u√

n
, γ0 + v

cn

)
− m(·|β0, γ0)

)
converges weakly to

u′
1E[xix

′
i1(qi ≤ γ0)]u1 + u′

2E[xix
′
i1(qi > γ0)]u2 − 2σ10u

′
1W1 − 2σ20u

′
2W2 + D(v)

for h on any compact set in R2k × �, where W1 ∼ N (0, E[xx ′e21(q ≤ γ0)]), W2 ∼
N (0, E[xx ′e21(q > γ0)]) and D(v) and � depend on the local behaviour of F (·) around γ0:
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(a) If
an

bn

→ 1, then � = (−∞,∞), and D (v) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

N1(|v|)∑
i=1

z1i if v ≤ 0;

N2(v)∑
i=1

z2i if v > 0;

(b) If
an

bn

→ 0, then � = (−∞, 0], and D (v) =
N1(|v|)∑
i=1

z1i for v ≤ 0;

(c) If
an

bn

→ ∞, then � = [0,∞), and D (v) =
N2(v)∑
i=1

z2i for v ≥ 0.

Here, D (v) in all the cases is the cadlag version of a compound Poisson process with
D(0) = 0, N1(| · |) is a reverse-time Poisson process with the integrated rate function
�1(·), and N2(·) is a Poisson process with the integrated rate function �2(·). Furthermore,
W1,W2, {z1i}i≥1, {z2i}i≥1, N1(| · |), N2(·) are independent of each other.

In the classical case, N�(| · |) is a homogeneous Poisson process with intensity f (γ0). But in
general, N�(| · |) can be a non-homogeneous Poisson process with the rate parameter λ� (v) ≡
| d��(v)

dv
| = α�|v|α�−1. The case with a point mass at γ0 falls into (c) of Theorem 3.1 since we

define an = ∞.
The independence between W1 (W2) and D(·) happens in the classical case discussed in Yu

(2012). It also happens in the non-standard cases in this paper since γ is essentially a ‘middle’
boundary of q as shown in Yu (2012), and only the local information around γ0 is informative to
the threshold point. From Lemma 21.19 of Van der Vaart (1998), estimators of a boundary and a
regular parameter are asymptotically independent no matter the distribution around the boundary
is, so the independence between W1 (W2) and D(·) is much expected.

Now, we give the asymptotic distributions of the LSEs of γ0 when F (·) satisfies Assumption
3.3.

THEOREM 3.2. Suppose Assumptions 3.1–3.3 and 3.5 hold, then γ̂LLSE − γ0 = Op(c−1
n ), and

γ̂MLSE − γ0 = Op(c−1
n ). Furthermore,

cn (γ̂LLSE − γ0)
d−→M− ≡ ZL, cn (γ̂MLSE − γ0)

d−→M− + M+
2

≡ ZM,

where [M−,M+) is the minimising interval of D(v) with D(v) defined in Theorem 3.1.

The explicit forms of the density of ZL and ZM are given in the Supplementary Information.
According to the algorithms there, ZM is always continuously distributed, while ZL is a mixture
of continuous and discrete in Theorem 3.1(c). Theorem 3.2 critically relies on the fact that
N�(| · |) is a genuine Poisson process. When there is a jump in ��(·), N�(| · |) is not really a
Poisson process. This is because the orderliness condition of the Poisson process is violated.
The orderliness condition requires that jumps do not occur simultaneously; mathematically,
that is, lim
v→0P (N�(v + 
v) − N�(v) > 1|N�(v + 
v) − N�(v) ≥ 1) = 0. This condition is
not satisfied when there is a jump in ��(·).6 In this case, the following theorem can be applied
to find the asymptotic distributions of the LSEs.

6 Conceptually, N�(| · |) is a Poisson process or Poisson random measure (PRM) with mean intensity measure μ�,
where μ� is defined by μ1([v, 0)) = �1(v), μ2((0, v]) = �2(v). When ��(·) falls into type (b) of Theorem 2.1, N�(·) is
not Radon or simple. So N�(·) is not the PRM defined on page 130 of Resnick (1987). As a result, the criteria for weak
convergence in Section 3.5 of Resnick (1987) cannot be applied.
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THEOREM 3.3. Suppose Assumptions 3.1, 3.2, 3.4 and 3.5 hold, then the asymptotic distributions
of γ̂LLSE and γ̂MLSE are discrete, and the support and point masses in their asymptotic
distributions depend on the behaviour of F (·) in the neighbourhood of γ0:

(a) If an

bn
→ 1, then

P (cn (γ̂LLSE − γ0) = −1) → P (D(1) ≥ min {D(−1), 0}) ,

P (cn (γ̂LLSE − γ0) = 1) → P (D(1) < min {D(−1), 0}) ,

P (cn (γ̂MLSE − γ0) = −1) → P (D(−1) < min {D(1), 0}) ,

P (cn (γ̂MLSE − γ0) = 0) → P (D(1) ≥ 0,D(−1) ≥ 0) ,

P (cn (γ̂MLSE − γ0) = 1) → P (D(1) < min {D(−1), 0}) .

(b) If an

bn
→ 0, then

P (cn (γ̂LLSE − γ0) = −1) → 1,

P (cn (γ̂MLSE − γ0) = −1) → P (D(−1) < 0) ,

P (cn (γ̂MLSE − γ0) = −1/2) → P (D(−1) ≥ 0) .

(c) If an

bn
→ ∞, then

P (cn (γ̂LLSE − γ0) = 0) → P (D(1) ≥ 0) ,

P (cn (γ̂LLSE − γ0) = 1) → P (D(1) < 0) ,

P (cn (γ̂MLSE − γ0) = 1/2) → P (D(1) ≥ 0) ,

P (cn (γ̂MLSE − γ0) = 1) → P (D(1) < 0) .

Here, D(1) = ∑P2(κ2)
i=1 z2i , D(−1) = ∑P1(κ1)

i=1 z1i , P�(κ�) is a Poisson random variable with mean
κ�, and {z1i}i≥1, {z2i}i≥1, P1(κ1), P2(κ2) are independent of each other. When κ1 = 0, D(−1) ≡
0; when κ1 = ∞, D(−1) ≡ ∞. Similar conventions apply to κ2 and D(1). an and bn are
regularised as mentioned after Assumption 3.4.

The asymptotic distributions in Theorem 3.1(b), (c) and Theorem 3.3(a)–(c) can be treated
as degenerate forms of Theorem 3.1(a) if we define D (v) = 0 when ��(·) = 0, and D (v) = ∞
when ��(·) = ∞. But it should be noted that the proof in Theorem 3.1(a) cannot be extended to
other cases since the stochastic equicontinuity fails when �(·) is not continuous. Next, we state
the asymptotic distributions of β̂ and its functionals.

THEOREM 3.4. Suppose Assumptions 3.1–3.3 (or 3.4) and 3.5 hold, then β̂� − β�0 = Op(n−1/2),
and

√
n
(
β̂1 − β10

) d−→Zβ1 ∼ E
[
xx ′1 (q ≤ γ0)

]−1 · N
(
0, E

[
xx ′σ 2

10e
21 (q ≤ γ0)

])
,

√
n
(
β̂2 − β20

) d−→Zβ2 ∼ E
[
xx ′1 (q > γ0)

]−1 · N
(
0, E

[
xx ′σ 2

20e
21 (q > γ0)

])
,

which are the same as in the case where γ0 is known. Also, β̂1 and β̂2 are asymptotically
independent of each other and γ̂LLSE (γ̂MLSE). Furthermore, the SATE and SATT have the
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following asymptotic distributions:

√
n

(
1

n

n∑
i=1

x ′
i

(
β̂2 − β̂1

)− E [x]′ (β20 − β10)

)
d−→E [x]′

(
Zβ2 − Zβ1

)+ (β20 − β10)′ Zx,

and

√
n

(
1

n

n∑
i=1

x ′
i

(
β̂2 − β̂1

)
1 (qi > γ̂ ) − E [x1 (q > γ0)]′ (β20 − β10)

)
d−→E [x1 (q > γ0)]′

(
Zβ2 − Zβ1

)+ (β20 − β10)′ Z+
x ,

where Zx ∼ N (0, V ar(x)), Z+
x ∼ N (0, V ar(x1(q > γ0))), and both Zx and Z+

x are independent
of Zβ1 and Zβ2 .

From Theorem 3.4, the asymptotic distribution of β̂� is not affected by the estimation of γ0

no matter what f (q) around γ0 is. The asymptotic distribution of the SATE and SATT includes
two parts. The first part is from the random variation in β̂2 − β̂1, and the second part is from the
variation in n−1 ∑n

i=1 xi and n−1 ∑n
i=1 xi1(qi > γ̂ ). For whatever SATE and SATT, γ̂ does not

affect their asymptotic distributions.

4. NUMERICAL EXAMPLES, SIMULATION RESULTS AND APPLICATION

In this section, we first check the asymptotic distributions of the LSEs of γ in a threshold model
with error term. This checking is based on the algorithms in the Supplementary Information
where we also compare these asymptotic distributions with those in the simple model (2.1).
We then conduct some Monte Carlo simulations to confirm the convergence rate of γ̂ stated in
Theorems 3.2 and 3.3, and that the estimation of γ does not affect the efficiency of β̂ and the
SATE and SATT. Finally, we apply the LSE to a real dataset and check whether the threshold
variable has a continuous density at the threshold point.

4.1. Numerical examples

Suppose the population model is

y = β1(q ≤ γ ) + 0.5e, (4.1)

where β0 = 1 and γ0 = 0 are unknown, q follows the distributions as in the examples of Section
2.3 and e ∼ N (0, 1) is independent of q. By Theorem 3.2 and 3.3, the asymptotic distributions
of the LSEs of γ are

cn (γ̂ − γ0)
d−→ arg minvD (v) ,
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where

D (v) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

N1(|v|)∑
i=1

z1i =
N1(|v|)∑
i=1

(
1 + e−

i

)
, if v ≤ 0;

N2(v)∑
i=1

z2i =
N2(v)∑
i=1

(
1 − e+

i

)
, if v > 0;

{e−
i , e+

i , i = 1, 2, . . . , N1(·), N2(·)} are independent of each other, e−
i and e+

i are i.i.d. copies of
e, and N1(·) and N2(·) are Poisson processes with integrated intensities determined by F (·).

The asymptotic distributions of the LSEs of γ with f (q) specified in Example 2.1, 2.2 and 2.3
are shown in Figure 1. Our first impression is that the asymptotic distribution can be continuous
(Example 2.1 and the MLSE in Example 2.3), discrete (Example 2.2) or a mixture of discrete
and continuous (the LLSE in Example 2.3). In Example 2.1, we only analyse Example 2.1(a)
with λ = 1, L(·) = 1 and different α values. An interesting phenomenon about the asymptotic
distribution of γ̂LLSE when α = 2 is that its density at zero is 0. This contrasts the usual
asymptotic density whose mode is at zero. In Example 2.2, the asymptotic distribution of the
MLSE is symmetric since D(1) and D(−1) have the same distribution in this example. Note also
that the asymptotic distributions in Example 2.3 are not specific to the point mass at γ0. As argued
in Section 2.3 the asymptotic distributions are determined by f (q) in the right neighbourhood of
γ0. So as long as limq↑0f (q) = ∞, the asymptotic distributions in Example 2.3 are as shown in
Figure 1.

4.2. Simulation results

Our first simulation is based on (4.1). In Example 2.1, to make sure the form of F (x) in (2.6) is
a genuine cdf, the support of q is constrained on [−2−1/α, 2−1/α]. In Examples 2.1 and 2.3, the
sample size is set as 100 and 400, and in Example 2.2, the sample size is set as 100 and 1000.
The number of repetition is 1000 in all examples. The simulation results are summarised in Table
1. β̂o in Table 1 is the LSE of β0 when γ0 is known. Since the RMSE is sensitive to outliers, we
also report the median absolute error (MAE) of all estimators.

Table 1 confirms the theoretical analysis in Theorems 3.2, 3.3 and 3.4. First, by comparing
the risk of γ̂ when n = 100 and n = 400, we can see that the convergence rate matches
the theoretical prediction. Specifically, the convergence rate for Example 2.1 with α = 1 and
Example 2.3 is n, for Example 2.1 with α = 0.5 is n2, for Example 2.1 with α = 2 is

√
n, and

for Example 2.2 is ln n. In Example 2.2, the convergence rate of γ̂MLSE seems faster than ln n.
This may be due to the fact that when n = 100, the threshold effect is not large enough to apply
Theorem 3.3. In other words, the convergence rate when n = 100 is supposed to be slower than
ln n, while when n = 1000, ln n is a good approximation of the convergence rate. To confirm
this result, we also check two other setups β0 = 0.5 and 2 in the Supplementary Information.
The simulation results there show that the convergence rate when β0 = 2 is roughly ln n while
it is not the case when β0 = 0.5. Second, the risk of γ̂MLSE is smaller than that of γ̂LLSE except
in Example 2.3. From the asymptotic distributions of γ̂LLSE and γ̂MLSE in Figure 1, this result is
obvious. Third, for β̂, the convergence rate is obviously

√
n except in Example 2.2. This means

that the imprecision of γ̂ in Example 2.2 indeed affects the estimation of β in finite samples.
Fourth, the risks of β̂ and β̂o in all cases are almost the same, which confirms that β̂ is adaptive
to the estimation of γ0. Also, the risks of β̂ in all examples (except Example 2.2) are quite
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Table 1. Performances of γ̂ and β̂: β0 = 1.

RMSE MAE
Risk (×10−2) →
Examples↓ Estimators→ γ̂LLSE γ̂MLSE β̂ β̂o γ̂LLSE γ̂MLSE β̂ β̂o

n = 100

Example 2.2: α = 0.5 0.113 0.106 7.716 7.612 0.009 0.009 5.286 5.169

Example 2.2: α = 1 1.973 1.756 7.370 7.203 0.919 0.562 5.200 5.013

Example 2.2: α = 2 11.835 8.945 7.137 7.036 9.699 3.738 4.742 4.627

Example 2.2 27.513 20.687 7.326 7.291 24.919 6.728 5.046 5.018

Example 2.3 1.035 1.351 7.315 7.252 0 0.455 4.807 4.711

n = 400

Example 2.2: α = 0.5 0.0054 0.0044 3.737 3.726 0.0005 0.0006 2.542 2.537

Example 2.2: α = 1 0.510 0.464 3.416 3.427 0.224 0.156 2.286 2.292

Example 2.2: α = 2 6.017 4.722 3.552 3.548 4.751 2.148 2.356 2.339

Example 2.2 (n = 1000) 16.253 10.549 2.254 2.248 15.951 2.126 1.477 1.472

Example 2.3 0.229 0.315 3.688 3.675 0 0.120 2.459 2.468
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Figure 3. Scatterplot of ln n(γ̂ − γ0) in Example 2.2.

similar, which confirms that the asymptotic distributions of β̂ in all examples are the same. Fifth,
as expected, the risks of β̂ and β̂o are closer to each other when n and/or β0 are larger.

Given the speciality of Example 2.2 in the above simulation, we give more discussion on
the slow convergence of γ̂ here. Figure 3 shows plots of ln n(γ̂LLSE − γ0) and ln n(γ̂MLSE − γ0)
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Table 2. RMSE of γ̂ and the SATE and SATT in 10−2.

Examples↓ Estimators→ γ̂LLSE γ̂MLSE SATE SATEo SATT SATTEo

n = 100

Example 2.2: α = 0.5 0.076 0.059 22.637 22.640 17.866 17.856

Example 2.2: α = 1 1.580 1.137 21.392 21.418 17.622 17.621

Example 2.2: α = 2 10.699 6.135 22.577 22.581 18.117 18.114

Example 2.2 25.875 13.951 22.110 22.109 18.426 18.398

Example 2.3 1.570 1.998 22.770 22.479 15.140 14.946

n = 400

Example 2.2: α = 0.5 0.003 0.004 10.743 10.730 8.716 8.715

Example 2.2: α = 1 0.392 0.288 11.001 10.996 9.007 9.006

Example 2.2: α = 2 5.218 3.231 11.277 11.275 9.025 9.025

Example 2.2 (n = 1000) 15.841 7.750 7.055 7.052 5.595 5.597

Example 2.3 0.405 0.519 11.194 11.129 7.504 7.499

for n = 100 and 1000 in our simulations. Even for a sample size as large as 1000, there is little
evidence that the limiting distribution is a good approximation to the true distribution which
is discrete. This is understandable since ln 1000 = 1.5 ln 100 in this example, while

√
1000 =

3.16
√

100 in regular cases.
We next check the effect of γ̂ on the SATE and SATT when a regressor x is added in the

regression, i.e.

y = (1 x) β11(q ≤ γ ) + (1 x) β21(q > γ ) + 0.5e, (4.2)

where β10 = (−1 −1)′, β20 = (1 1)′, x ∼ N (0, 1) and is independent of q and e. It can be shown
that PATE = 2 and PATT = 1 in this model. The simulation results are summarised in Table 2.
To save space, we only report the RMSE of all estimators, leaving the results about the MAE in
the Supplementary Information. From Table 2, the convergence rates of γ̂ match the theoretical
analysis. Also, there is no significant evidence that the estimation of γ will affect the efficiency
of the SATE and SATT.

4.3. Application

We now apply the LSE to the growth data used in Durlauf and Johnson (1995) and reanalysed
in Hansen (2000) and Yu (2008). Only the MLSE is considered here to save space. The growth
theory with multiple equilibria motivates the following threshold regression model:

ln

(
Y

L

)
i,1985

− ln

(
Y

L

)
i,1960

=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
β10 + β11 ln

(
Y

L

)
i,1960

+ β12 ln

(
I

Y

)
i

+ β13 ln (ni + g + δ) + β14 ln Si + σ1ei, if qi ≤ γ ;

β20 + β21 ln

(
Y

L

)
i,1960

+ β22 ln

(
I

Y

)
i

+ β23 ln (ni + g + δ) + β24 ln Si + σ2ei, if qi > γ.
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Figure 4. Under-smoothing densities of (Y/L)i,1960 and the literacy rate.

For each country i, (Y/L)i,t is the real GDP per member of the population aged 15–64 in year
t , (I/Y )i is the investment to GDP ratio, ni is the growth rate of the working-age population,
and Si is the fraction of working-age population enrolled in secondary schools. The variables
not indexed by t are annual averages over the period 1960–1985. Following Durlauf and Johnson
(1995), we set g + δ = 0.05. The sample size is 96, and the data are assumed to be i.i.d. sampled.
This assumption is approximately true, since there are not many interactions, such as trade,
international capital flows, etc., between any two countries during this period.

Hansen (2000) considers two choices of the threshold variable q. The first choice is the
starting GDP (Y/L)i,1960, and the corresponding γ̂MLSE = 871. The right regime ((Y/L)i,1960 >

871) includes 78 countries, and the specification testing suggests that the literacy rate is a
suitable threshold variable for this regime. The corresponding γ̂MLSE = 47%. We now check
whether (Y/L)i,1960 has a continuous density at 871 and the literacy rate has a continuous
density at 47%. The kernel smoother is used to estimate these two densities. To avoid the bias
problem in the density estimation at the edge, we use small-than-optimal bandwidths. This under-
smoothing can also save the effort to estimate the biases in the testing procedure; see page 703
of McCrary (2008) for further discussions on this point. In our application, we use half of the
optimal bandwidths as suggested by Hall (1992). As to the kernel function, we use the rescaled
Epanechnikov kernel to adjust the density estimation at the boundary area. The under-smoothing
densities in the neighbourhoods of the threshold points are shown in Figure 4. Suppose these
densities are between 0 and ∞, then the t-test statistics in testing f (γ0+) = f (γ0−) are −1.45
and −1.41, respectively. The one-side p-values are around 7.5%, so we marginally reject the null
at the significance level 5%. This suggests that we at least should take caution in the inference of
these threshold regressions.

5. CONCLUSION

This paper examines the sensitivity of the asymptotic distributions of the LSEs of the threshold
point to the density of the threshold variable. Specifically, we show that depending on the density
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of the threshold variable around the threshold point, the convergence rate can be faster or slower
than n; the asymptotic distribution can be discrete, continuous or a mixture of discrete and
continuous; the weak limits of the localised objective functions can be non-homogeneous instead
of homogeneous compound Poisson processes. These features suggest cautions in the use of
inference methods in the classical model. A positive result is that if only the regular parameters
or their functionals are of the main interest, then any inference method in the classical model
can be applied. Potential applications of the present methodology include the treatment effects
models with abnormalities in the treatment assignment variable.

In spite of many theoretical results in this paper, there remain two unsolved problems. The
first problem is how to check whether f (γ0) ∈ (0,∞) or not. Although Han et al (2011) provide
a test statistic in the median regression context by splitting the sample, their method cannot be
extended to threshold regression. Nevertheless, since it is easy to estimate f (q) in the left and
right neighbourhoods of γ0 using kernel smoothing or series approximation, it should become
a routine to check the shape of f (q) around γ0 as in the application of Section 4.3 The second
problem is the confidence interval construction of γ . In the classical model, Section 4.1 of Yu
(2013) summarises five confidence interval construction methods. But all these methods rely on
the assumption that 0 < f ≤ f (q) ≤ f < ∞ and cannot be extended to the cases considered in
this paper.
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APPENDIX A: PROOFS

First, some notations are collected for reference in all lemmas and proofs.

θ� = (
β ′

�, σ�

)′
,

m (w|θ ) = (y − x ′β11(q ≤ γ ) − x ′β21(q > γ ))2
,

Mn (θ ) = Pn (m (·|θ )) ,

M (θ ) = P (m (·|θ )) ,

Gnm = √
n (Mn − M) .

z1

(
w|θ2, θ̃1

) = (
β̃1 − β2

)′
xx ′ (β̃1 − β2

)+ 2σ̃1

(
β̃1 − β2

)
xe,

z2

(
w|θ1, θ̃2

) = (
β̃2 − β1

)′
xx ′ (β̃2 − β1

)+ 2σ̃2

(
β̃2 − β1

)
xe.

Thus z1i = z1 (wi |θ20, θ10) and z2i = z2 (wi |θ10, θ20) .
The following formulae are used repetitively:

m (w|θ ) = (x ′ (β10 − β1) + σ10e)2 1(qi ≤ γ ∧ γ0) + (x ′ (β20 − β2) + σ20e)2 1(qi > γ ∨ γ0)

+ (x ′ (β10 − β2) + σ10e)2 1(γ ∧ γ0 < qi ≤ γ0) + (x ′ (β20 − β1) + σ20e)2 1(γ0 < q ≤ γ ∨ γ0).
So

m (w|θ ) − m (w|θ0) = [
(β10 − β1)′ xx ′ (β10 − β1) + 2σ10 (β10 − β1) xe

]
1(q ≤ γ ∧ γ0)

+ [
(β20 − β2)′ xx ′ (β20 − β2) + 2σ20 (β20 − β2) xe

]
1(q > γ ∨ γ0)

+z1 (w|θ2, θ10) 1(γ ∧ γ0 < q ≤ γ0) + z2 (w|θ1, θ20) 1(γ0 < q ≤ γ ∨ γ0)

≡ T (w|θ1, θ10) 1(q ≤ γ ∧ γ0) + T (w|θ2, θ20) 1(q > γ ∨ γ0)

+z1 (w|θ2, θ10) 1(γ ∧ γ0 < q ≤ γ0) + z2 (w|θ1, θ20) 1(γ0 < q ≤ γ ∨ γ0)

≡ A (w|θ ) + B (w|θ ) + C (w|θ ) + D (w|θ ) .

Dn (v) =
n∑

i=1

z1i1
(

γ0 + v

cn

< qi ≤ γ0

)
+

n∑
i=1

z2i1
(

γ0 < qi ≤ γ0 + v

cn

)

N1n (v) =
n∑

i=1

1
(

γ0 + v

cn

< qi ≤ γ0

)
, N2n (v) =

n∑
i=1

1
(

γ0 < qi ≤ γ0 + v

cn

)

W1n = 1√
n

n∑
i=1

xiei1(qi ≤ γ0) =
n∑

i=1

S1i√
n

,

W2n = 1√
n

n∑
i=1

xiei1 (qi > γ0) =
n∑

i=1

S2i√
n

,

Wi =
(

S ′
1i√
n

S ′
2i√
n

)′
≡ Si/

√
n, Si = (

S ′
1i S ′

2i

)′
.
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Proof of Theorem 2.1: The proof idea follows from Proposition 0.3 of Resnick (1987), which is borrowed
from Gnedenko (1943). Since only the local behaviour of F (·) around γ0 is relevant, assume γ0 = 0, F (0) =
1. If we can find all possible limits of F n( x

an
) (which is the cdf of an max {qi}), then the possible �1(·) can

be recovered from (2.2). For any t > 0, we have

F [nt]

(
x

a[nt]

)
→ G(x) with G(0) = 1

and also

F [nt]

(
x

an

)
=
(

F n

(
x

an

))[nt]/n

→ Gt (x).

By the convergence to type theorem (Proposition 0.2) of Resnick (1987),

Gt (x) = G(θ (t)x), (A.1)

where θ (t) = limn→∞
a[nt]
an

> 0 is measurable.7

For t > 0, s > 0 we have on one hand

Gts(x) = G (θ (ts)x)

and on the other

Gts(x) = (Gs(x))t = G (θ (s)x)t = G (θ (t)θ (s)x) .

If G is non-degenerate,

θ (ts) = θ (t)θ (s). (A.2)

If G is degenerate, we can always scale an such that G is a point mass at −1. In the former case, (A.2) is
the famous Hamel functional equation. The only finite measurable non-negative solution is of the following
form

θ (t) = tα , α ∈ R.

We now consider three cases:

CASE 1. α = 0. In this case, θ (t) = 1, so (A.1) becomes Gt (x) = G(x). This is impossible for a non-
degenerate G.

CASE 2. α < 0. In this case, Gt (x) = G(tαx). Since G is non-degenerate, there exists x0 < 0 such that
G(x0) ∈ (0, 1). Since Gt (x0) is a decreasing function of t , while G(tαx0) is increasing with t ,
this case cannot happen.

CASE 3. α > 0. In this case, Gt (t−αx) = G(x). It is well known that the only solution for this
functional equation with boundary condition G(0) = 1 is exp {−(−Ax)α}, where A > 0. This
distribution is called reversed Weibull or extreme value type III distribution, and is denoted as
�α(x) in Gnedenko (1943).

The domain of attraction of �α(x) is stated in Theorem 5 of Gnedenko (1943); see also Proposition
1.13 of Resnick (1987). Actually, we can give a simpler proof by taking advantage of the speciality of
the present case. If 1 − F (−x) ∈ RVα as x ↓ 0, set an = − 1

(1/(1−F ))←(n) . Then because 1 − F (− 1
an

) ∼ n−1,

7 Note that the drift term bn in Resnick (1987) is fixed in our case, so β(t) = 0. θ (t) plays the role of α(t) in his proof.
We avoid using α(t) here since α is used for the exponent of variation in the definition of regularly varying functions.

C© 2013 The Author(s). The Econometrics Journal C© 2013 Royal Economic Society.



General TR 455

we have that for x > 0, n(1 − F (− x

an
)) ∼ (1 − F (− x

an
))/(1 − F (− 1

an
)) → xα as n → ∞ since an → ∞.

Conversely, if there exists an → ∞ such that n(1 − F (− x

an
)) → xα , then for any x > 0,

limt↓0
1 − F (−tx)

1 − F (−t)
= limn→∞

n
(

1 − F (− tx

an
)
)

n
(

1 − F (− t

an
)
) = (tx)α

tα
= xα.

The proof for the domain of attraction of type (b) follows in spirit from Theorem 2 of Gnedenko (1943).
The sufficiency part is similar to case (a), so we switch to the necessity part. From the form of �1, for any
ε > 0,

n

(
1 − F

(
−1 − ε

an

))
→ 0 and n

(
1 − F

(
−1 + ε

an

))
→ ∞. (A.3)

Because an is non-decreasing, we can find an x such that 1
an

≤ x ≤ 1
an−1

. Then for all ε > 0 and η > 0, we
have

1 − F

(
−1 − η

an−1

)
≤ 1 − F (−x(1 − η)) ≤ 1 − F

(
− 1−η

an

)
,

1 − F

(
−1 + ε

an−1

)
≤ 1 − F (−x(1 + ε)) ≤ 1 − F

(
− 1+ε

an

)
,

from which it is seen that

1 − F
(
− 1−η

an−1

)
1 − F

(
− 1+ε

an

) ≤ 1 − F (−x(1 − η))

1 − F (−x(1 + ε))
≤

1 − F
(
− 1−η

an

)
1 − F

(
− 1+ε

an−1

) .

From (A.3), for all ε > 0 and η > 0, we have

limx↓0
1 − F (−x(1 − η))

1 − F (−x(1 + ε))
→ 0,

which is essentially the result we want. Similarly, we can prove limx↓0
1−F (−x(1+ε))
1−F (−x(1−η)) → ∞. So 1 − F (−x) ∈

RV∞ as x ↓ 0 �.

Proof of Theorem 3.1: Only Case (a) is proved, since the proof for the other two cases is similar. From
Lemma B.1,

nPn

(
m

(
·
∣∣∣∣β0 + u√

n
, γ0 + v

cn

)
− m (· |β0, γ0 )

)
= u′

1E
[
xix

′
i1(qi ≤ γ0)

]
u1 + u′

2E
[
xix

′
i1 (qi > γ0)

]
u2 − 2σ10u

′
1W1n − 2σ20u

′
2W2n + Dn (v) + op(1).

The characteristic function is used to find the asymptotic distribution of Dn (v) and prove the asymptotic
independence between W1n, W2n and Dn (v). First, define two terms as follows:

T1i = z1i1
(

γ0 + v1

cn

< qi ≤ γ0

)
,

T2i = z2i1
(

γ0 < qi ≤ γ0 + v2

cn

)
,

where v1 < 0, v2 > 0. Note that

exp
{√−1t1T1i

}
= 1 + 1

(
γ0 + v1

cn

< qi ≤ γ0

) [
exp

{√−1t1z1i

}− 1
]
,
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exp
{√−1t2T2i

}
= 1 + 1

(
γ0 < qi ≤ γ0 + v2

cn

) [
exp

{√−1t2z2i

}− 1
]
.

So

E[exp{√−1(t1 · T1i + t2 · T2i + s ′Wi)}]
= E[exp{√−1t1T1i} exp{√−1t2T2,i} exp{√−1s ′Wi}]

= E[exp{√−1s ′Wi}] + �1(v1)

n
E[exp{√−1s ′Wi}{exp{√−1t1z1i} − 1}|qi = γ0−]

+�2(v2)

n
E[exp{√−1s ′Wi}{exp{√−1t2z2i} − 1}|qi = γ0+] + o(

1

n
)

= 1 + 1

n

[
−1

2
s ′J s + �1 (v1)

(
E
[{

exp
{√−1t1z1i

}}
|qi = γ0−

]
− 1

)
+�2 (v2)

(
E
[{

exp
{√−1t2z2i

}}
|qi = γ0+

]
− 1

) ]
+ o

(
1

n

)
,

where the last equality is from the Taylor expansion of exp
{√−1s ′Wi

}
, and J = E

[
SiS

′
i

]
. From the

definition of �1(·) and �2(·), o(1) in the second equality is a quantity going to zero uniformly over
i = 1, . . . , n. It follows that

E

[
exp

{√−1

(
t1 ·

n∑
i=1

T1i + t2 ·
n∑

i=1

T2i + s ′
n∑

i=1

Wi

)}]

=
n∏

i=1

E
[
exp

{√−1
(
t1 · T1i + t2 · T2i + s ′Wi

)}]

→ exp

{
−1

2
s ′J s + �1 (v1)

(
E
[{

exp
{√−1t1z1i

}}
|qi = γ0−

]
− 1

)
+ �2 (v2)

(
E
[{

exp
{√−1t2z2i

}}
|qi = γ0+

]
− 1

)}
.

It is easy to find that the characteristic function of D(v) matches the limit of that of Dn (v), so the finite-
dimensional convergence of the objective empirical process is proved.

Now, let’s consider the stochastic equicontinuity of Wn (u) and Dn (v). The stochastic equicontinuity of
Wn (u) can be trivially proved since they are linear functions of u, so here we concentrate on Dn (v). For this
purpose, a condition called Aldous’s (1978) condition is sufficient; see Theorem 16 on Page 134 of Pollard
(1984). Without loss of generality, we only prove the result for v > 0. Suppose 0 < v1 < v2 are stopping
times in [0, K] with K < ∞, then for any ε > 0,

P
(
sup|v2−v1|<δ |Dn(v2) − Dn(v1)| > ε

)
≤ P

(
n∑

i=1

|z2i | · sup|v2−v1|<δ1
(

γ0 + v1

an

< qi ≤ γ0 + v2

an

)
> ε

)

≤
n∑

i=1

E

[
|z2i | sup|v2−v1|<δ1

(
γ0 + v1

an

< qi ≤ γ0 + v2

an

)]/
ε

≤ supγ0<γ≤γ0+εE [ |z2i || qi = γ ] · E

[
nsup|v2−v1|<δ1

(
γ0 + v1

an

< qi ≤ γ0 + v2

an

)]/
ε,
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where the first and third inequalities are obvious, and the second inequality is from Markov’s
inequality. Since supγ0<γ≤γ0+εE[|z2i ||qi = γ ] is finite from Assumption 3.5(d), we need only prove that
E[nsup|v2−v1|<δ1(γ0 + v1

an
< qi ≤ γ0 + v2

an
)] can be made arbitrarily small by choosing n large enough and δ

small enough.

E
[
nsup|v2−v1|<δ1

(
γ0 + v1

an
< qi ≤ γ0 + v2

an

)]
≤ sup|v2−v1|<δ

∣∣∣n (F (
γ0 + v2

an

)
− F

(
γ0 + v1

an

))
− (�2 (v2) − �2 (v1))

∣∣∣+ sup|v2−v1|<δ |(�2 (v2) − �2 (v1))|

≤ sup|v2−v1|<δ

∣∣∣n (F (
γ0 + v2

an

)
− F (γ0)

)
− �2 (v2)

∣∣∣+ sup|v2−v1|<δ

∣∣∣n (F (
γ0 + v1

an

)
− F (γ0)

)
− �2 (v1)

∣∣∣
+sup|v2−v1|<δ |�2 (v2) − �2 (v1)| ,

and all three terms in the last inequality can be made arbitrarily small when Assumption 3.3 holds.

Proof of Theorem 3.2: The consistency is proved in Lemma B.2, and the convergence rate is proved
in Lemma B.3. As to the asymptotic distribution, we follow the proof idea of Theorem 2 in Yu (2012).
Basically, a modified version of the argmax continuous mapping theorem (Theorem 3.2.2 in Van der
Vaart and Wellner (1996)) is used. The proof of Case (a) is exactly the same as that in Yu (2012). For
Case (b), we need to prove P (an (γ̂ − γ0) > 0) → 0, where γ̂ can be γ̂LLSE or γ̂MLSE. If we could prove
P (Dn(v) > 0) → 1 for any v > 0, then the proof is complete since Dn(0) = 0. For any v > 0, Dn(v) =∑N2n(v)

i=1 z2i . Since E [N2n (v)] → ∞ for any v > 0 by the definition of an and bn, and E [z2i |qi = γ ] > 0
for γ in the right neighbourhood of γ0 by Assumption 3.5(d), the strong law of large numbers implies
Dn(v) → ∞ for any v > 0 almost surely. Case (c) can be similarly proved. �

Proof of Theorem 3.3: We only prove case (a) in detail, and the other two cases can be proved by
combining the proof of Theorem 3.2 and the proof below.

First, we prove P (cn (γ̂LLSE − γ0) ∈ (−1, 1)) → 0, which is implied by P (Dn(v) = 0,
v ∈ (−1, 1)) → 1. From Assumption 3.4 and Theorem 2.1, E [N1n (v)] → 0 for any v ∈ (−1, 1), so there
is no jump in Dn (v) for v on (−1, 1) almost surely. Second, a similar analysis as in Theorem 3.2 shows that
P (cn (γ̂LLSE − γ0) < −1) → 0, and P (cn (γ̂LLSE − γ0) > 1) → 0. In summary, the asymptotic distribution
of cn (γ̂LLSE − γ0) must concentrate on two points: −1 and 1. From the definition of weak convergence and
the analysis above, we need only prove that P (cn (γ̂LLSE − γ0) ≤ v) → P (D(1) ≥ min {D(−1), 0}) for
any v ∈ (−1, 1). Note that for any v ∈ (−1, 1),

P (cn (γ̂LLSE − γ0) ≤ v) − P (Dn(1) ≥ min {Dn (−1) , 0}) → 0,

and

P (Dn(1) ≥ min {Dn (−1) , 0})
= P (Dn (−1) < 0 and Dn (−1) ≤ Dn(1) < 0) + P (Dn (−1) < 0 < Dn(1))

+P (Dn (−1) < 0 = Dn(1)) + P (Dn (−1) = 0 = Dn(1)) + P (Dn (−1) = 0 < Dn(1))
+P (Dn (−1) > 0 and Dn(1) > 0) + P (Dn (−1) > 0 = Dn(1)) .

(A.4)

From Theorem 3.1, (Dn (−1) , Dn(1)) converge weakly to (D(−1), D(1)) with D(−1) and D(1)
independent of each other. Because Dn (−1) and Dn(1) are random variables with a point mass only at zero,
P (Dn (±1) = 0) → P (D(±1) = 0). As a result, each component in (A.4) converges to the counterpart
with Dn (±1) substituted by D (±1), and the result follows.

The proof for the asymptotic distribution of γ̂MLSE is similar. Note first that the asymptotic distribution
of cn (γ̂MLSE − γ0) must concentrate on three points: −1, 0 and 1. So we need only prove that

P (cn (γ̂MLSE − γ0) ≤ v) → P (D(1) > D(−1), D(−1) < 0) for v ∈ (−1, 0),

P (cn (γ̂MLSE − γ0) ≤ v) → P (D(1) ≥ min {D(−1), 0}) for v ∈ (0, 1).
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Since

P (cn (γ̂MLSE − γ0) ≤ v) − P (Dn (−1) < 0 and Dn (−1) ≤ Dn(1)) → 0 for v ∈ (−1, 0),

P (cn (γ̂MLSE − γ0) ≤ v) − P (Dn(1) ≥ min {Dn (−1) , 0}) → 0 for v ∈ (0, 1),

the result follows from a similar analysis as in γ̂LLSE.
The independence between the asymptotic distributions of β̂ and γ̂ can be proved in a similar way

as in Theorem 3.1. For instance, we can show that W1n, W2n, Dn(1) and Dn (−1) are asymptotically
independent. �

Proof of Theorem 3.4: The asymptotic distribution of
√

n
(
β̂� − β�0

)
can be easily derived by applying the

argmax continuous mapping theorem. As to the asymptotic distributions of the SATE and SATT, observe
that

√
n

(
1

n

n∑
i=1

x ′
i

(
β̂2 − β̂1

)− E [x]′ (β20 − β10)

)

=
(

1

n

n∑
i=1

x ′
i

)
√

n
(
β̂2 − β̂1 − (β20 − β10)

)+ (β20 − β10)′ 1√
n

n∑
i=1

(xi − E[x]) ,

(A.5)

and

√
n

(
1

n

n∑
i=1

x ′
i

(
β̂2 − β̂1

)
1 (qi > γ̂ ) − E [x1 (q > γ0)]′ (β20 − β10)

)

=
(

1

n

n∑
i=1

x ′
i1 (qi > γ̂ )

)
√

n
(
β̂2 − β̂1 − (β20 − β10)

)+ (β20 − β10)′

× 1√
n

n∑
i=1

(xi1 (qi > γ0) − E [x1 (q > γ0)])

+ (β20 − β10)′
1√
n

n∑
i=1

xi1 (γ̂ < qi ≤ γ0) .

So we need only find the asymptotic distributions of⎛⎜⎜⎝
√

n
(
β̂1 − β10

)
√

n
(
β̂2 − β20

)
1√
n

n∑
i=1

(xi − E[x])

⎞⎟⎟⎠ and

⎛⎜⎜⎝
√

n
(
β̂1 − β10

)
√

n
(
β̂2 − β20

)
1√
n

n∑
i=1

(xi1 (qi > γ0) − E [x1 (q > γ0)])

⎞⎟⎟⎠ ,

and show that 1√
n

∑n

i=1 xi1 (γ̂ < qi ≤ γ0) = op(1).
The influence function of ⎛⎜⎜⎝

√
n
(
β̂1 − β10

)
√

n
(
β̂2 − β20

)
1√
n

n∑
i=1

(xi − E[x])

⎞⎟⎟⎠
is ⎛⎜⎝E

[
xx ′1 (q ≤ γ0)

]−1
σ10xe1 (q ≤ γ0)

E
[
xx ′1 (q > γ0)

]−1
σ20xe1 (q > γ0)

x − E[x]

⎞⎟⎠ ,
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so the three components are asymptotically independent. By Slutsky’s theorem and the continuous mapping
theorem, it is easy to see that the asymptotic distribution of the SATE is as stated in the theorem. Similarly,
the three components of the SATT are asymptotically independent. We now show that 1√

n

∑n

i=1 xi1(γ̂ <

qi ≤ γ0) = op(1). For any ε > 0, we can choose C large enough such that P (|γ̂ | ≤ C

cn
) < ε, so we need

only consider 1√
n

∑n

i=1 xi1( C

cn
< qi ≤ γ0). The second moment of 1√

n

∑n

i=1 xi1( C

cn
< qi ≤ γ0) is less than

E[‖x‖21( C

cn
< qiγ0)] which is O( 1

n
) by the definition of cn. So the asymptotic distribution of the SATT is

as stated in the theorem. �

APPENDIX B: LEMMAS

LEMMA B.1. Suppose Assumptions 3.1–3.3 and 3.5 hold, an

bn
→ 1, then

nPn

(
m
(
·
∣∣∣β0 + u√

n
, γ0 + v

cn

)
− m (· |β0, γ0 )

)
= u′

1E
[
xix

′
i1(qi ≤ γ0)

]
u1 + u′

2E
[
xix

′
i1 (qi > γ0)

]
u2 − 2σ10u

′
1W1n − 2σ20u

′
2W2n + Dn (v) + op(1)

where the op(1) is uniform for h on any compact set in R2k+1.

Proof. Note that

nPn

(
m

(
·
∣∣∣∣β0 + u√

n
, γ0 + v

cn

)
− m (· |β0, γ0 )

)

=
n∑

i=1

(
u′

1

xix
′
i

n
u1 − u′

1

2σ10√
n

xiei

)
1
(

qi ≤ γ0 ∧ γ0 + v

cn

)
+

n∑
i=1

(
u′

2

xix
′
i

n
u2 − u′

2

σ20√
n

xiei

)

× 1
(

qi > γ0 ∨ γ0 + v

cn

)
+

n∑
i=1

[(
β10 − β20 − u2√

n

)′
xix

′
i

(
β10 − β20 − u2√

n

)

+2x ′
i

(
β10 − β20 − u2√

n

)
σ10ei

]
× 1

(
γ0 + v

cn

< qi ≤ γ0

)
+

n∑
i=1

[(
β10 + u1√

n
− β20

)′

xix
′
i

(
β10 + u1√

n
− β20

)
− 2x ′

i

(
β10 + u1√

n
− β20

)
σ20ei

]
1
(

γ0 < qi ≤ γ0 + v

cn

)
,

so op(1) includes three parts. The first part is u′
1( 1

n

∑n

i=1 xix
′
i1(qi ≤ γ0 ∧ γ0 + v

cn
) − E[xix

′
i1(qi ≤ γ0)])u1

and u′
2( 1

n

∑n

i=1 xix
′
i1(qi > γ0 ∨ γ0 + v

cn
) − E[xix

′
i1(qi > γ0)])u2, which is op(1) from Assumption 3.5(b)

and a dominance argument. The second part is 2σ10u
′
1W1n − u′

1( 2σ10√
n

∑n

i=1 xiei1(qi ≤ γ0 ∧ γ0 + v

cn
)) +

2σ20u
′
2W2n − u′

2
σ20√

n

∑n

i=1 xiei1(qi > γ0 ∨ γ0 + v

cn
). This part is op(1) since

V ar

(
u′

1W1n − u′
1

(
1√
n

n∑
i=1

xiei1
(

qi ≤ γ0 ∧ γ0 + v

cn

)))

= V ar

(
u′

1

(
1√
n

n∑
i=1

xiei1
(

γ0 ∧ γ0 + v

cn

< qi ≤ γ0

)))

= u′
1E

[
xx ′e21

(
γ0 ∧ γ0 + v

cn

< q ≤ γ0

)]
u1
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≤ u′
1supγ0−ε<γ≤γ0

E
[
xx ′e2|q = γ

] (
F (γ0) − F

(
γ0 ∧ γ0 + v

cn

))
u1

→ 0

as n → ∞ by the definition of an and bn and Assumption 3.5(d), and

V ar

(
u′

2W2n − u′
2

(
1√
n

n∑
i=1

xiei1
(

qi > γ0 ∨ γ0 + v

cn

)))
→ 0

as n → ∞ by a similar argument. The third part is

u′
2

n∑
i=1

(−2√
n

xix
′
i(β10 − β20) + xix

′
i

n
u2 − 2σ10√

n
xiei

)
1
(

γ0 + v

cn

< qi ≤ γ0

)

+u′
1

n∑
i=1

(
2√
n

xix
′
i(β10 − β20) + xix

′
i

n
u1 − 2σ20√

n
xiei

)
1
(

γ0 < qi ≤ γ0 + v

cn

)
,

which is op(1) by a similar argument as in the second part from Assumption 3.5(d). �

LEMMA B.2. Under Assumptions 3.1–3.5, γ̂LLSE−→pγ0, γ̂MLSE−→pγ0, and β̂−→pβ0.

Proof. The proof idea follows from Lemma B.1 of Hansen (2000).
First suppose γ > γ0. Note that Y = Xβ20 + σ20e + X≤γ0δβ0 + δσ0e≤γ0 , and X lies in the space spanned

by Pγ = Xγ (X
′
γ Xγ )−1X

′
γ , where e≤γ0 is similarly defined as X≤γ0 , e = (e1, . . . , en)′, δβ = β1 − β2, δσ =

σ1 − σ2, and Xγ = [X X≤γ ]. So

1

n
Qn(γ ) = 1

n
Y ′ (I − Pγ

)
Y

= 1

n

[
2σ20δ

′
β0X

′
≤γ0

(
I − Pγ

)
e + 2δσ0δ

′
β0X

′
≤γ0

(
I − Pγ

)
e≤γ0 + 2σ20δσ0e

(
I − Pγ

)
e≤γ0

+ δ′
β0X

′
≤γ0

(
I − Pγ

)
X≤γ0δβ0 + σ 2

20e′ (I − Pγ

)
e + δ2

σ0e′
≤γ0

(
I − Pγ

)
e≤γ0

]
p−→δ′

β0

(
M(γ0) − M(γ0)M(γ )−1M(γ0)

)
δβ0 + E

[
(σ20e + δσ0e1 (q ≤ γ0))2

] ≡ Q(γ )

uniformly for γ ∈ (γ0, γ ] by a Glivenko–Cantelli theorem, where M(γ ) = E[xx ′1(q ≤ γ )]. The second
term of this limit does not depend on γ , so we concentrate on the first term. We need only prove
that M(γ0) − M(γ0)M(γ )−1M(γ0) > M(γ0) − M(γ0)M(γ0)−1M(γ0) = 0 for any γ > γ0, which reduces to
M(γ ) > M(γ0). Since M (γ2) ≥ M (γ1) if γ2 > γ1, we need only prove that for any ε > 0, M (γ0 + ε) −
M(γ0) > 0. From Assumptions 3.1 and 3.5(d), M (γ0 + ε) − M(γ0) = E

[
xx ′1(γ0 < q ≤ γ0 + ε)

] ≥(
infγ0<γ≤γ0+εE

[
xx ′|q = γ

])
(F (γ0 + ε) − F (γ0)) > 0.

Second, suppose γ ≤ γ0. In this case,

1

n
Qn(γ )

p−→δ′
β0(M(γ, γ0) − M(γ, γ0)M(γ )−1M(γ, γ0))δβ0

+ E[(σ20e + δσ0e1(q ≤ γ0))2] ≡ Q(γ )

uniformly for γ ∈ [γ , γ0] by a Glivenko–Cantelli theorem, where M(γ, γ0) = E[xx ′1(γ < q ≤ γ0)]

and M(γ ) = E[xx ′1(q > γ )]. As in the case γ > γ0, we need only prove that M (γ, γ0) −
M (γ, γ0) M(γ )−1M (γ, γ0) > 0 for γ < γ0, which reduces to M(γ ) > M (γ, γ0) since M (γ, γ0) > 0. By
the analysis in the case γ > γ0, M(γ ) − M (γ, γ0) > E

[
xx ′1(γ0 < q ≤ γ0 + ε)

]
> 0.

If there is no point mass in F (·), Q(γ ) is continuous, and Theorem 2.1 of Newey and McFadden (1994)
can be applied to prove that there is a ε > 0 such that P (γ0 − ε < γ̂ < γ0 + ε) → 0 as n → ∞. When
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there is a point mass at γ0, Q(γ ) jumps from a positive number to Q(γ0) = 0 when γ approaches γ0 from
the left. So Theorem 2.1 of Newey and McFadden (1994) cannot be used to prove the consistency of γ̂ . But
a modified version of Theorem 2.1 (e.g. Theorem 5.7 of Van der Vaart, 1998) can be used to show that there
is a ε > 0 such that P (γ0 ≤ γ̂ < γ0 + ε) → 0 as n → ∞.

Next, we show the consistency of β̂1 and β̂2.

β̂1 = (
X′

≤γ̂ X≤γ̂

)−1
X′

≤γ̂ Y

=
(

1

n
X′

≤γ̂ X≤γ̂

)−1( 1

n
X′

≤γ̂ X≤γ0

)
β10+

(
1

n
X′

≤γ̂ X≤γ̂

)−1( 1

n
X′

≤γ̂ X>γ0

)
β20+

(
1

n
X′

≤γ̂ X≤γ̂

)−1 ( 1

n
X′

≤γ̂ e
)

First, with probability approaching 1,∥∥∥∥ 1

n
X′

≤γ̂ X≤γ̂ − E [xx1(q ≤ γ0)]

∥∥∥∥
≤ supγ∈(γ0−ε,γ0+ε)

∥∥∥∥ 1

n
X′

≤γ X≤γ − E [xx1(q ≤ γ )]

∥∥∥∥+ ∥∥E [xx1(q ≤ γ )]|γ=γ̂ − E [xx1(q ≤ γ0)]
∥∥ .

The first term converges to zero in probability by a Glivenko–Cantelli theorem. If there is no point mass at
γ0 in F (·), the second term converges to zero in probability since E[xx1(q ≤ γ )] is continuous at γ0. When
there is a point mass at γ0, E[xx1(q ≤ γ )] is not left continuous at γ0, but P (γ̂ < γ0) → 0, so the second

term still converges to zero in probability. Similarly, we could prove 1
n
X′

≤γ̂ X>γ0

p−→0 and 1
n
X′

≤γ̂ e
p−→0, so

β̂1 is consistent. The consistency of β̂2 can be similarly proved. �

LEMMA B.3. Under Assumptions 3.1–3.5, cn(γ̂LLSE − θ0) = Op(1), cn(θ̂MLSE − θ0) = Op(1) and
√

n(β̂ −
β0) = Op(1).

Proof. Corollary 3.2.6 of Van der Vaart and Wellner (1996) is used in this proof. By checking the proof of
Theorem 3.2.5 in Van der Vaart and Wellner (1996), we need only check the two conditions in Corollary
3.2.6 for γ in the right neighbourhood of γ0 when there is a point mass at γ0.

First, M(θ ) − M(θ0) ≥ Cd2(θ, θ0) with d(θ, θ0) = ‖β − β0‖ + √|F (γ ) − F (γ0)| for θ in a
neighbourhood of θ0.8 When there is a point mass at γ0, γ is restricted in the right neighbourhood of
γ0 as mentioned above.

M (θ ) − M (θ0)

= E [T (w|θ1, θ10) 1(q ≤ γ ∧ γ0)] + E [T (w|θ2, θ20) 1(q > γ ∨ γ0)]

+ E [z1 (w|θ2, θ10) 1(γ ∧ γ0 < q ≤ γ0)] + E [z2 (w|θ1, θ20) 1(γ0 < q ≤ γ ∨ γ0)]

= (β10 − β1)′ E
[
xx ′1(q ≤ γ ∧ γ0)

]
(β10 − β1) + (β20 − β2)′ E

[
xx ′1(q > γ ∨ γ0)

]
(β20 − β2)

+ (β10−β2)′ E
[
xx ′1(γ ∧ γ0 < q ≤ γ0)

]
(β10−β2) + (β20 − β1)′ E

× [
xx ′1(γ0 < q ≤ γ ∨ γ0)

]
(β20 − β1)

≥ C
(‖β10 − β1‖2 + ‖β20 − β2‖2 + |F (γ ) − F (γ0)|) ,

where the last inequality is from Assumptions 3.5(a), 3.5(c) and 3.5(d).
Second, E[supd(θ,θ0)<δ|Gn(m(w|θ ) − m(w|θ0))|] ≤ Cδ. Since {T (w|θ1, θ10) : d(θ, θ0) < δ} is a finite-

dimensional vector space of functions, and {1(q ≤ γ ∧ γ0) : d(θ, θ0) < δ} is a VC subgraph class of
functions by Lemma 2.4 of Pakes and Pollard (1989), {A(w|θ ) : d(θ, θ0) < δ} is VC subgraph by Lemma

8 When there is a point mass at γ0,
√|F (γ ) − F (γ0)| >

√
f (0) > 0 for any γ < 0, so this metric is similar to the

discrete metric. Fortunately, we do not need to consider γ < 0 in this case.
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2.14 (ii) of Pakes and Pollard (1989). Similarly, {B(w|θ ) : d(θ, θ0) < δ}, {C(w|θ ) : d(θ, θ0) < δ}, and
{D(w|θ ) : d(θ, θ0) < δ} are VC subgraph. From Theorem 2.14.2 of Van der Vaart and Wellner (1996),

E
[
supd(θ,θ0)<δ |Gn (m (w|θ ) − m (w|θ0))|] ≤ C

√
PF 2,

where F is the envelope of {m(w|θ ) − m(w|θ0) : d(θ, θ0) < δ}. But from the function form of m(w|θ ) −
m(w|θ0),

√
PF 2 ≤ Cδ by Assumption 3.2.2. So φ(δ) = δ in Corollary 3.2.6 of Van der Vaart and Wellner

(1996) and δ

δα is decreasing for all 1 < α < 2. Since r2
nφ( 1

rn
) = rn,

√
nd(θ̂ − θ0) = Op(1). By the definition

of d , β̂ is
√

n-consistent, and n(F (γ̂ ) − F (γ0)) is Op(1). Therefore, for any ε > 0, we can find Mε such that
P (n|F (γ̂ ) − F (γ0)| > Mε) < ε, which is equivalent to P (n|F (γ0 + cn(γ̂−γ0)

cn
) − F (γ0)| > Mε) < ε. From

the definition of an and bn, there is M ′
ε such that P (cn|γ̂ − γ0| > M ′

ε) < ε. �
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