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1. Difficulties in Applying the DKE

When there are no other covariates besides ¢, the DKE is a popular procedure for estimating . Porter and
Yu (2015) provide some discussion and references to the related literature. In this simple case, we have the
model y = g(q) + (1,¢) 61 (¢ < ) + e with E[e|g] = 0. The DKE is defined as the extremum estimator

YpKE = arg m3X AQ(V)a (1)

where A(y) = Elylg = 7-] - Blylg = 7+] with Blylg = 7] = n~ ' 37, w;(7)y;d; (v) and Elylg = v+ =
n~1 Z _1wi(v)y; (1 —d; (7)) being estimators of E[y|g = v—| and E[y|¢ = v+], and d; (v) =1(¢; < 7). In
the definition of E[y\q = 4], the weight function w;(y) = kp, (g; — /Z kn (g — ), where ky, (-) =
k(-/h) /h is a rescaled kernel density, and h is the bandwidth. Due to the Welghted average nature of kernel
smoothers, 8(7) would be near zero if there were no jump at . Otherwise, the difference would be near
the magnitude of the jump Ag = (1,7,) do which is assumed to be nonzero. This difference ensures that the
estimator 4 is consistent. Porter and Yu (2015) have recently shown that ¥,y converges at rate n
and the asymptotic distribution is related to a compound Poisson process. This limit theory is explained by
interpreting v as a ‘middle’ boundary point of ¢ (see Yu, 2012). For boundary point estimation, it is well-
known that only data in an O (n_l) neighborhood is informative, so the h neighborhood in the construction
of the DKE is typically large enough to ensure the n-consistency of 7. Given 3k g, the literature has
also considered the estimation of the jump magnitude Ag. But no estimator of §q is presently available.
When there are additional covariates, Delgado and Hidalgo (2000) suggested that the DKE continue to
be used to estimate 7E| In this case, the procedure can be employed by fixing some point (say z,) in the

support of z and redefining A(y) as Ely|z,, ¢ = v—] — E[y|zo, ¢ = v+], where E[y|z,, ¢ = v£] is an estimator
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1One might consider neglecting the data of x, and using only the data of ¢ and y to estimate . This will generate the DKE
of Porter and Yu (2015). Now, the jump size E[x'8|qg = ] is an average of the jumps at all z values, so may be zero or small,
which results in identification failure or weak identification. Even if E[x'd|q = «,] is large, this DKE might be less efficient
than the IDKE because the jump information at v, is not fully explored; see footnote 6 for further analysis.
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Figure 1: E[y|z,q] and Ely|z,q = 7v,£] With Endogeneity: The Blue Lines Represent the Case Without
Endogeneity

of the conditional mean of y given x = x, and ¢ = y%. The objective function converges to zero when
v # 7, and to A2 = (Bly|z,, ¢ = vo—] — Bly|ze, ¢ = vo+])* When v = 7., 50 §p gz is consistent if A, # 0.

There are several difficulties in applying the DKE in this way. First, the selection of z, raises difficulties,
as shown in the following example. Suppose y = (x4 ¢) 1 (g > =) + €, where v, = 0, the supports of
and ¢ are both [—1,1], and endogeneity takes the form E [e|x,q] = 2% + ¢*. Figure [1| shows E[y|z, q] and
Ely|z,q = vo%]. To identify v successfully we need to select z, so that A2 is large, which means that z,
should be on the boundary of x’s support. On the other hand, we also need f,,(7,|v,) to be large so that
there is sufficient data to identify . When the density of f,,(x|y,) takes on a bell shape, as in a typical case,
T, should ideally be in the middle of x’s support. Hence, the selection of x, poses a dilemma and a potential
tradeoff that is presently unresolved from both theory and practical perspectives. Second, consistency of
YpiE requires that A, # 0, but A, can be 0 as shown in the example of Figure [Il Delgado and Hidalgo
(2000) apply the DKE to estimate «y, assuming that (5;0,5(10)/ = 0 and o0 # 0 so that A, = do0 # 0
does not depend on the choice of z,. Moreover, their kernel function uses data in the neighborhood of
g = 7, inefficiently, so that the convergence rate of 7 g is quite slow, as discussed further in Section 2.2.
Furthermore, given 7 g, the induced estimator of 6, uses only data in the neighborhood of (2,7 prx)

so the convergence rate of §o, pr r is also very slow, especially when the dimension of z is large.

2. Difficulties in Applying Two Alternative Estimators

It is known (Appendix A of Porter and Yu, 2015) that the DKE is asymptotically equivalent to the LSE and
the PLE when q is a single covariate. In what follows, we define the LSE and the PLE when other covariates
are present and discuss the difficulties that arise in deriving their asymptotic distributions.

Define the nonparametric LSE of - in the general case as follows,

n
- 2
Trse = afgmyiﬂ - > [yifi —my! (i, qi)1(q <) —mp. (i, q:) g > 7)} ;

i=1



n
where f; = 1 Z Kp,ij with Ky, ;5 = Kj ;- kn(g; — ¢i) is the kernel estimator of f; = f(zi, ¢i),
J=1,j#i

n

1

Tﬁ\]‘l(xMQZ) = n—1 Z yjKIZIL;,ijk;Zi(qj 7qiaQi)a
=1
_ 1 - N
mfl(wh%') i — Z yth,ijk;{+(qj = i, i),
=1
with
K (uf) = (%), if t <~ —h,
P LA (), iy -h<t <y,
k%L( £) %k(%)v ift>~y+h,
u7 = u —_ .
" Fhe (157, iy <t<y+h

In the construction of ﬁgs g, we eliminate the random denominator as in 7. We next define the PLE as

n

~ 1 ~ ~ . 2
Tprp = argmin — > [yifi - x;01(qi <) fi — Qf(ﬂfi,qz';fsﬁ)} ; (2)
=1
where
_ 1 ¢
Gr (@i iz 0,7) = — > (1 = x501(g; <)) Kn i

=1
This density-weighted objective function of the PLE was suggested in Li (1996) without considering the
threshold effects. In both the LSE and the PLE, « is estimated by finding the best fit between y; and an
estimator of Bly;|x;, ¢;]; the difference lies in that different estimators of E[y;|z;, ¢;] are used.

The objective function of the IDKE is superior to that of the LSE and the PLE in two respects. First,
according to Yu (2008, 2012), only the information around the threshold point is informative for -, so
ﬁi (7) in the objective function of the IDKE is constructed using only data in the neighborhood of 4. In
contrast, the objective functions of the LSE and the PLE use information in other areas, and the resulting
biases need to be handled carefully. The objective function of the IDKE therefore takes advantage of its local
construction, whereas the global objective functions of the LSE and the PLE are influenced by the effects

~

of information throughout the distribution. Second, since A; () in the objective function of the IDKE is

linear in k. ('“;7> and k_ (%), it is easy to localize in the neighborhood of «y, which is key to deriving

the convergence rate and the asymptotic distribution of 7. However, the objective functions of the LSE and
PLE are complicated nonlinear functions of -, which makes localization extremely hard. In addition, the
objective function of the IDKE does not rely on the assumption that d(z,q) = x'd, whereas that of the PLE

does.

3. Proofs for the Theorems and Corollaries

In the following proofs, some steps are omitted for brevity whenever they are available in the literature and
references are provided. This simplification makes the proofs cleaner and more readable. Derivations that
differ from the existing literature are given in full detail. Propositions that are used in these derivations are

given in the following Section 4 and additional lemmas that are needed are given in the following Section 5.
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First, we introduce the new notations Kj and K™ through Ky ,. =: Ky (75 — @iy 25) =2 7= K* (T,xi>,
where K7 ;. was introduced in the definition of the IDKE of 7.

Proof of Theorem 1. Proposition 1 proves the consistency of 7, and Proposition 2 proves ¥ — v, =
O,(n™1), so we can apply the argmax continuous mapping theorem (see, e.g., Theorem 3.2.2 of Van der
Vaart and Wellner (1996)) to establish the asymptotic distribution of n (¥ — 7). From Proposition 3, for v
in any compact set of R,

nh (@n (’Yo + %) - Q\n(’YO))/Qk—k(O) = _anzlil ('Yo - % <g; < ’Yo)‘i:@il (’Yo <gG <7+ %)"’Op(l)v
i=1 i=1

where Z1; and Zs; are defined in the main text. Now, we can obtain the asymptotic distribution of n (¥ — 7,)
by applying the same argument as in the proofs of Theorem 1 and 2 in Yu (2012). The only difference lies
in the definitions of Z1; and Z;. =

Proof of Corollary 1.  The proofs of the consistency of 5 and nh?~! (¥ —v,) = O,(1) are similar
to Theorem 1, so are omitted here. We concentrate on deriving the weak limit of the localized process
nh? (ﬁg (v) — E(Q) ('yo)> for  in an (nhd_l)_l neighborhood of 7, .

Let a, = nh® (= o(h)), then

(82 (v0+ ) = 8200)) = (B (10 =) + B0 )t (B (30 2 ) = Buta).

~

It is easy to show that 30 ('70 + L%) —E {AO (’70 + GL)} 2,0 for v in any compact set. Without loss of
generality, let v > v, or v > 0. Then

0
E [Ao (fy)} = /1 /Ka”(uw7 To)k—(uq)g(zo + uzh, v + ugh) f(zo + ugh, v + ugh)duzdu,
o=
+/ /K$(um, zo)k—(ug) (1, (2o + uzh) v + ugh) Sof (o + ush, v + ugh)duydu,
—1

1
—/ /K“J(ux,xo)kJr(uq)g(mo+uzh,'y—l—uqh)f(xo+uxh,'y+uqh)dumduq
0

= (17 .’17:), 70) 60f($03 70) + O(h>

Now, we need only consider the behavior of nh? (ﬁo (’Yo + %) —A, (’Yo))- Proposition 4 shows that

! (B, (10+ L) = Balo)) = Do)

n

where = signifies the weak convergence on a compact set of v,

Ni(lo])
214, if v <0,
Do (U) = N;Tvl)
Z 224, if v > 0,
i=1

is a cadlag process with D,(0) =0,

21 = (_281'_ — (L, 25,7%) 50) K(U; )k-(0), 22i = (26; = (1,25,70) 50) KUk (0),



and the distributions of e; , e, U;",U;" are defined in the corollary. So

PRI A

i (zz (% + ;’) - A <%>) = D(v),

n

where D(v) takes a similar form to D,(v), but now

21 =2 (=2 (L, v0) doe;” = 86 (L by v0) (1,2, 70) 80 ) K (U7)F (o, 70}k (0),

and
Zo; =2 (_2 (Lm:)erO) 606;_ - 66 (1733:3)70)/ (17-77:)7'70) 60) K(Uz*)f(xov')/o)k+ (0) .

Given the weak limit of nh? (ﬁi (’yo + ﬁ) — A2 (’yo)>, we can apply the argmax continuous mapping
theorem (Theorem 3.2.2 in Van der Vaart and Wellner, 1996) to obtain the asymptotic distribution of 7. We
need to check four conditions, just as in the proof of Theorem 2 of Yu (2012). Since these checks are all similar,

we omit the details here and only note that arg maxD(v) = arg minD(v), given that k_ (0) = k4 (0) > 0 and
v v
f(ffo,’Yo) >0. m

Proof of Theorem 2. We first derive the formula for d. Following Appendix A.1 of Heckman et al.
(1998), we have

~ / —
(a+(xi),b’+(xi)) = (Iay1,0) (X]W;F X)) XY
= (Igp1,0) H N (H' XWX, H Y T HXW;Y
—  (Ig41,0) H ' (ZIW; 2,) ™ ZIW;rY
—1
—1 1 . 14, 1+ 1 S i, .44
= (I441,0)H - Z 2525 Wi - Z Z5w; Y
=1 =1

(Ig1,0) H ' (M)

7

where
(x1 — 24, q1 — W)S” Y1
(%‘—1 — iy Qi—1 — W)SP Yi—1
Xi = 0 aY = 0 9
(Tit1 — i, Qg1 — @)s,, Yit+1
. _2)\S
@n =i an =) ) e rac e Yn /1
H = dlag{lahIda ahl(p+d71)!/p!(dfl)!}azi :XiH_lvzé‘/ = (.’13] — Zi; qj _:Y\)SPH_la
Wi+ = dlag{K]f (:Cl _:Ezaxz)k}t (Q1 _7}/\)7 ,K}f (xn_xwxl) k}t (Qn—a)} :dlag{w7i+a ’w'fj_}nxn’

~ ’
and (ﬁ_(zi), b (wi)) are similarly defined with

W, =diag { K} (x1 — xs,2:) kyy (@1 =), Kf (@0 — x5, 2:) by, (g0 — )}



replacing Wf . Next

and

( . ) : ( B 32 (57) (@) (b0~ Bue) | 5 0 (277) ) |

Ozq

The first step in deriving the asymptotic distribution of 3 is to show that ~ can be replaced by v,. In

~0
00 — 0
\/h( j)—%’o,
q

other words,

rq 51,

where estimators with superscript 0 denotes the original estimators but with 4 replaced by 7,. Of course, we

Vnh (A - A° 5 %5
need only show that (A A0> L. 0since Vohh | ¢ & is just a linear combination
Vnhh (5zq ) Baq — Buy

o ( g EA _3:))

) . Proposition 5 gives this result. Now,

i (30 )
Vnhh (qu _ 51(,0)

(g (8~ @ () - (@ (@) ot (@) " (g,
_jﬁgy(qh7>< f&wanﬁuw@wf )/C;;k(qhv)
1 <& i — Yo a’ a® (z;)) — (a9 (z;) — a(z:)) 1 & =70
- Mgk(q h7>< [( fb°<xz>) (20@1)5( )] )/m_f(q v )

where (af (z;),0% (z;)') is defined by a%(z;) = my(z;) = 1im+m(xi,'y) and by b9 (z;) = Vmy(z;) =
Y0
lim (9m(z;,v)/0x}, Om(z;,7)/0), with a similar definition for (a® (;),b° (z;)’), and

Y=o+
- S (S5 e ) [ S (252),

Note that, under our specification, b% (z;)—b% (z;) = dzq0 and a (x;)—al (z;)— (], 7o) (b (2:) —b%.(2:)) = dao
for any z;. Also,

Vnhh (Sf’faao)
= Vuhh (KO—AO)—&ik(qi;%)(%%) [ (B2 G) = 82 0)) = o (B ) — 08 )}/nhzk(% %)

(-3
Vnhh (32q — 0zq0

We first derive the asymptotic distribution of (

) ) and then consider vnhh (32 — 5@0).



Given assumptions E, F, G’; and H', we can apply the arguments in Theorem 3 of Heckman et al. (1998)

to obtain
i (3
Vnhh (52,1 - 6$q0)

I pp1 {(Mjo)lr;’(ﬁ_ Mio)lr;g—} L3 L
= m;k(q h’Yo)(Id+1,0) +{(M+>_1re+(M;))_lrfo_]+R:’Ri— /nh;k (q h70>,

i0 i0

where M;B is the square matrix of size >.©_ (v +d — 1)!/v!(d — 1)! with the I-th row, ¢-th column “block”
being, for 0 < [,t < p,

| )™ )™ B ) e ) 4 0+ )

tisa Y r_,(v+d—1)!/v!(d—1)! by 1 vector with the ¢-th block being the transpose of
S S(p+1 I

]f<u;,uq> O ug) T M @) K (s 0) R (1) (5, v0) ity

and meH)(x) being a (p+d)!/(p+ 1)1(d — 1)! x 1 vector of the partial derivatives of m(z,q) at ¢ = v,+,
er_ L~ e
Tio = n Z Zj0Wj0 €55

j=1,j#i

with Z}o and w;-g being z; and w§+ but having 7 replaced by 7,

1 o a4 — 7
ﬁzk (h°> (Ta11,0) B = 0,(1),
=1

and the objects with superscript — are similarly defined. It turns out that the terms associated with F%i

will contribute to the bias and the terms associated with ?eoi, which is a U-statistic, will contribute to the

n
variance. Given that # 2:1143 (%) 2, f4(70), we need only concentrate on the numerator.
iz

First, analyze the bias.
qi — 7 7\ T am ——\ ! =m—
lnhzk< : h 0) (a+1,0) |:(Mi0> 7"10+ (Mio) Tio H

- o [ )

- @Hh>k B — (M) ™ BT] Blg% D (,90) | a = ol fa0),

_} f(xilgi)dzikn (a — o) f(qi)da

where MF and BT are defined in the main text, and mEerl)(a:i) = m(_lj+1)(xi) = ¢t (z;,7,) under
Assumption G’. Note here that the kernel K* is replaced by K because the data in the h neighborhood of
the boundary of X can be neglected asymptotically. Also, we can calculate that the variance of this term is

O (ﬁ) = o(1), so it converges in probability to its expectation. Second, analyze the variance. Taking the



[th element of , we consider

S (e [ (1) e - (37) o]
=1

which is a second-order U-statistic. From Lemma 8.4 of Newey and McFadden (1994), this U-statistic is

n
asymptotically equivalent to \/%7 > mp (x4, qi, €;), where
i1

4 — 7 —\"t i ==\ i
ma (25,45, €5) = E[kﬁ( — 0>e§ [(MiO) Zgwise; — (M) Z}'ow;'o@j] xj,qj,ej}

% — T i 7\ i i
= ej/k( - O)e; |:(Mi0) zjowjg— (Mio) zjowjo]f(wi7qi)dxidqi7

We apply the Liapunov central limit theorem to derive the asymptotic distribution. It is standard to check

that the Liapunov condition is satisfied, so we concentrate on calculating the asymptotic variance as follows.
; G =%\ o | (7 i it () e 2
€ (/k (h) € {(Mm) ZjoWjo — (Mi0> ZjOw]‘[):l f(ﬂfi,qi)dmidqi>
4 —7 — N\ 2
e? (/k (lho> € (Mio) Zé‘ow;z)rf(xmqi)dxidqi)
_ qi — 7 N1 ) 2
E 6? (/k ( i h O) e; (Mio) Z;’sz'of(xiy%)dmidqi)

- e (fki (%) €] (M;(r))*l Zhowls f (@i, qi)dxidq,-)

. N
(f K (%) e (Mio) Zjow;o f (i, Qi)dxid%‘)
= T14+T2+7T3.

1
—E
h

1
—E
h

Q

S| =

_|_

2
-ZE
h

We analyze T'1, T2 and T'3 in turn.

T~ B | <k+ (2572) [ htwer ()™ [(u’zv%zv‘))SP],K(uz)duIdqu
~ [ [t (b ) [ R 00)” [(u;,vqu}'f((um)du$duq)2f<xj,%>dxjdvq
= B[ [ 1 ) @)Cr el =] S0
Similarly,

T2~ E [/ k2 (vg) 02 (2)C; (vg)*dvy|g; = 70} fa(70);

and T3 = 0 since k. (qj ;%) k_ (%) = 0. In summary,

\/%ZMn(IEiquei) A, N <O,E {/ [kf_ (vg) ai(x)C’f'(vq)Q + k2 (vgq) o (x)Cl_(vq)Q] dvg|q = 70} fq(”Yo)) )



~0
and the asymptotic distribution of vnhh (5zq - (5$q0) follows as in the theorem.
~0 ~
We next derive the asymptotic distribution of vnhh <5a - 6a0>. Given that vnh (AO - A0> = 0,(1)

~ ~0
under Assumption H’, the term vnhh (AO — AO) can be neglected, and Vnhh (§a — 6a0) has the same
asymptotic distribution as

- ok (152 o) [1 (2 2 0) = (o)~ 0)] / k()
For the bias, note that
5| L3 (%5722 aliro) 0.100) [ (313) 757 - (M;))_lr?aﬂ
L7 i=1

= [ [ .00) | (305) " 7 - (W) | Saladdsid - 20) Sl
E

(@ 70) (0.12,0) [ (M) ™ B = (M7) ™ B | 9% @ 50) | a = %0 fal0):

—

For the variance, the corresponding U-projection m,,(x;, i, €;) is

% —" EvaR B R A
ej/k;h <h0> (2}, 7,) (0, 14,0) {(Mm) z;owjg - (Mio) z;-Oij] f(zi, q;)dx;dg;.

We can proceed in a similar fashion to the above in deriving the asymptotic variance. For example, the

corresponding form to 7T'1 is
/ 2

Sp
1~ JE|e (k;t(qj—%) / b (ug) (,70) (0,14, 0) (M) ! [(uq;”) ]mux)duwduq)

2

J [t (et [ 1) @20 0,220 (015) ™ [ 0)™] B () s ) fis.0)d

Q

%

E U k2 (vg) 0% ()0 (25, v4)2dvg|q; = ’Yo} fa(v0)-

]
Proof of Corollary 2. The asymptotic distribution of v/nh (30 - A0> is more involved since it includes

variations from two components as in
Vah (B% = Ag) = Vil (A0 = &) + vk (B° = A ).

First note that

fq(’yo) fa(70)

Vir (3~ a) = m( Ay Aofmo))
Vi [A = Aofy(v0)] = VAR [For0) = far0)]

Q

fa(70)
Vi [A% = By + Vak [BY = Aofy(v0)] = Vhao [Fi(v0) = falr0)

fa(v0)



where AY and Z(])V are the numerators of A® and ZO, and fq(fyo) = LYk (%) From the earlier

analysis in the proof of Theorem 2, A, — AY, satisfies

Vnh (30 ~ By - wtle [(M;) T BT - ()T B E[g(p“)(wmo)‘ 0 =0fa(10))
-1 -1

FZ ( 70) e} [(Mio) rio — (MI)) Tie(;r}

qi—7 =\t i ()t i
nhzej/kh< - 0> e |:(Mi0> ZjoWio — (Mio) zJOwjﬂ f(zs, qi)dxidg;,
Vi

Q

Q

and also
Vih (B ~E[BY] - 80 [futr0) ~ B [7a00)]
_ Fz;{ ( 70) (a® (xz)—ai(xi))—E[k: (q‘h%) (ao(:c»—ai(:vi))]}

(e s e ()]

It is not hard to see that these two influence functions are uncorrelated, so the variance of vVnh A0 — Ag

the sum of the variances of these two parts. The variance of the first part is derived in the proof of Theorem
2. As to the second part, note that

S =

I (Qi 270)2 (ag (z;) — ai(wi))Q]

/k (qi ;70> (a® (z;) — ai(zi))Q f(zi, qi)dxidg;

B (v0)° (a2 (2:) = a$ () f (1,70 daid,

X
\ S| =

::/k%d% (a% (@) = % (@) lai = Y0l fa(70)-

Similarly,

1
—-E
h

o 2
k (qzhfyo) (a(l (z5) — ai(xi))] ~ /k (Uq)2 dvgAofa(70):

{(45)]

so the variance of the second part is approximately

fE
h

Q

/Mm%%m%x

[0 B0 (@0) — o @) a5 = 0lfaCr0) + AF [ b (00)? dousyr0) = 280 [ k(0 doyldafi30)
= [ (e oy (B0 (1) — . (0))° s = 20) = AF) £y (o).

10



For the bias of the second part, note that

B [Z?V] — Dofy(7)

(l‘z) - a(i(a:i)) [z, qi)dzidg; — Ao fq(vo)

I
—
5

[ (00 (@ 20— a2 (00) @170 + vh)dside, — Bofy (o)
/ () (a2 () — a2 (@) S0 370 i) (vgh) daidog

=1 ]!

- X E U k (va) védvq} [ (@ @) = ot @) £ i)

Q

where f»sl)(aci,vo) is the Ith order partial derivative of f(x;,7) with respect to v evaluated at v = ~,, and

B{Fow)] ~ ) = [ b (a0 Fladas ~ £,000)
[ ) 560+ vahyiog — i)
[ S 50 ) o,
- }lif [ / k (vq)vgdvq] £D(30),

%

where fq(,l) (7o) is the Ith order derivative of f,(7) with respect to « evaluated at v = v,. Under Assumptions
F’ and K', all the terms except the (p + 1)th term in E [Z(J)\,] — Agfe(yo) and E [J/“;('yo)} — f4(vo) would

disappear. In sum, the asymptotic distribution of v/nh (30 — Ao) is as stated in the theorem. m

a ~ !/
Proof of Theorem 3. First note the following explicit formula for (5a, 5;) from the extremum estimation

problem (equation (7) in the main text)

(aa,ﬁ;)’z(;Zkl,x;)’(l,z;)kh(%—@) (iZ” ) k(i —7) @ (o >—a+<xi>>>.

=1

can be replaced by v, without affecting

x

By similar analysis to the proof of Theorem 2, 7 in (Sa,é )
its asymptotic distribution. Also, a_(x;) — a4 (z;) can be replaced by its linear approximation with no

asymptotic impact. In summary,

Vinh ((5(1,'5;)/ — (ba0 + 705,10,5;0)’)

~ (i > (L) (Lo b (o - w)_l . (V%h i(l,x;yk (q;%)
oo [0y - ) ] o () - () )

+ and rfg[ are defined in the proof of Theorem 2.

—+ _mn
where Mg, T

By standard methods, the denominator converges in probability to M - f,(v,), where M is defined in the
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main text, so we concentrate on the numerator. First, consider the bias term. From the proof of Theorem 2,
1 < - N1 SN U
Sk (152 o (7)) ]
i=1
N1 —1
LB [(10) e [(M;) T BT = (M) BY] 97 (w,50) [0 = 0] falro)-

Next consider the variance. We need to calculate the covariance between the [th and ¢th element of the

numerator, [,t = 1,--- ,d. Taking the (I 4+ 1)th element of the numerator, | =1,--- .d — 1, we consider

Mi?himlik (qi ;7[)) e} [(M:B)_lrfgr — (Mi_o)_lrfo_} ,
i=1

which is a second-order U-statistic. From Lemma 8.4 of Newey and McFadden (1994), this U-statistic is

n
asymptotically equivalent to \/% Soml (24, s, €;), where
i=1

4= T i 7\ i, e
m(zj,q5,e;) = B [wﬁ:( - 0) e} [(Mzo) zjowjgej - (Mio) ZioWjo ej] xj,Qj7ej:|
q; — —H\7t i —\" i
= ej/mh-k' <h 0) e} |:(Mi0) zjowjg — (Mio) Zjowjo] s, qi)dxidg;.

It is not hard to show that

% Zmil(muq“ei)m%(%a%ez‘) R |:$lxt/ [ki (vq)ai(x)Cf(vq)Q + k2 (vq) o%(m)Cl’(vq)Q] dvg|q = 70] fa(70)-
i=1

Then, applying the Liapunov central limit theorem, the asymptotic distribution of v/'nh (Sa — 000 — 705q0)
and vnh (gml — 5zlo), l=1,---,d—1, follows as in the theorem.

- _ N _ -1

When g = 0, Vth (80 = da0) = Vith (80 =38, — a0 ) = Vth (30 — 6a0) —V/nhOy(n~)Oy((Vithh)  +
hP) = V'nh (80 — 8a0) +0,(1), s0 Vnh (ga — 5&0) have the same asymptotic distribution as v'nh (64 — dao).
When 7, # 0, the convergence rate of 00 — dao is Vnhh. It is obvious that vnhh (Ea — ﬁgq — 5(10) —

Vahh (Sw O - 5a0> - wﬁhop(n—l)op((\/ﬁh)f1 + hP) = 0,(1). Also,

Vihh (80 = 40dq = Sa0) = Vrhh (8a = 8a0 = Yo000) — YoVnh (34 — 3o )
0p(1) = voVnhh (Sq - (5,10) .

So vVnhh (ga — (5&0) has the same asymptotic distribution as —vy,vnhh (gq — 6q0). [

Proof of Theorem 4. Assume the densities of (z’,¢)" and e are known. Since the minimax risk for a
larger class of probability models must not be smaller than that for a smaller class of probability models,
the lower bound for a particular distributional assumption also holds for a wider class of distributions. To
simplify the calculation, assume e; is iid N(0,1) and (z},¢;)" is iid uniform on X x A/, where N is specified as
[—¢,¢]. Such a specification also appears in Fan (1993) where it is called the assumption of richness of joint
densities. We will use the technique in Sun (2005) to develop our results. This technique is also implicitly

used in Stone (1980) and the essential part of the technique can be cast in the language of Neyman-Pearson

12



testing.
Let P, @ be probability measures defined on the same measurable space (€2, .A) with the affinity between
the two measures defined as usual to be

m(P,Q) = inf (Bp [¢] + Eq [1 - ¢]),

where the infimum is taken over the measurable function ¢ such that 0 < ¢ < 1. In other words, 7(P, Q) is
the smallest sum of type I and type II errors of any test between P and @. It is a natural measure of the
difficulty of distinguishing P and @. Suppose p is a measure dominating both P and @ with corresponding
densities p and ¢g. It follows from the Neyman-Pearson lemma that the infimum is achieved by setting
¢ = 1(p < q) and then

m(P,Q) = /1(péq)pdu+/1(p>q)qdu
1 1
— 15 [Ip-ddu=1-31P-Ql,.

where ||-||; is the L; distance between two probability measures. Now consider a pair of probability models
P,Q € P(s, B) such that |§,(P) — 0,(Q)| > €. For any estimator 3, we have

il

b0 — 6a(P)H >e/2) +1 (‘

il

5o — 5a(P)‘ > 6/2) +1 (

1(A

o — 6a(Q)H > e/2> > 1.

Let

o — 5Q(P)’ > e/z)

5 — MQ)‘ > 6/2) '

¢ =

Then 0 < ¢ <1 and

Peilg),B)P ( o — 541@)] > 6/2) > % {P ( o — 5a(p)\ > 6/2) +Q (Sa - MQ)] > 6/2)}
> Eplg]+ 3Eqll— .
Therefore
inf sup P ( b0 — 5,1(1[»)‘ > 6/2) > %W(P, Q)
5o PEP(s,B)

for any P and @ such that [0, (P) — d4(Q)| > €. So we need only search for the pair (P, Q) which minimize
(P, Q) subject to the constraint |§,(P) — do(Q)| > €. To obtain a lower bound with a sequence of inde-
pendent observations, let (€2,.4) be the product space and P(s, B) be the family of product probabilities on

such a space. Then for any pair of finite-product measures P = [[" | P, and Q =[]}, Q;, the minimax

G R G R LT

provided that |6, (P) — do(Q)| > €. From Pollard (1993), if dQ;/dP; = 1 + A,(+), then

HH:—; Pi— H:.L:l Qi L Sep (Z; Vf) -1,

risk satisfies

inf sup P(
0o PEP(s,B)

13



where v? = Ep,[AZ(-)] is finite. So

inf sup P(
Bo PcP(s,B)

0o — O (P)’>e/2) 2;<2exp <ZVZ2>> (3)

provided that |6, (P) — d4(Q)] > €.
It remains to find probabilities P and @ that are difficult to distinguish by the data set {(z},q:,vi)}—,
First assume v, # 0. Without loss of generality, let v, > 0. Under P, the data is generated according to

yi = gp(zi, @) + (Sap + Ti02p + ¢i0gp) 1(q; < 7o) + €5,

and under @, gp and dp are changed to g and d¢, respectively. We now specify g and ¢ for each model.
For P, let gp = 0 and dp = 0; for @, let

s q—" s— s—
90(z,q) = —En°p, ( ; 0) 00 = =701, b2 = 0, and 4 = En° 7,
where ¢ is a positive constant, 7 = n~1/(25+1) ¢, is an infinitely differentiable function in ¢ satisfying (i)
¢ (v) =0 for v >0, (ii) ¢, (v) = v, for v < —(, and (iii) v — ¢, (v) € (0,1) for v € (=¢,0). It is not hard

to check that gg(x,q) € C (s, B) for some B > 0, so it remains to compute the L, distance between the two
measures. Let the density of @Q); with respect to P; be 1+ A;(-), then

Ai(xi,qi,yi) = { A(Yi — 9Q(%i, i) — daq — 4i04Q)/P(yi) — 1, if i € [7vo — (70,

0, otherwise

where ¢(-) is the standard normal pdf. Therefore,
melall = [ [ [ 0 s0e) ~ haa — avi0) 600) ~ 1 600 e )i
Yo—EN

= 24/%07/ / / Oy — 90(2,9) — daq — 4640)* /¢(y)dydadq

/ / / d(y — 9q(%,q) — dag — q5qQ)dydwdq+f
Yo—¢n

- - . PR _ _ . 2 _Q
X %m/o /o[m¢(y 90(2,4) ~ aq — 1940)*/$(y)dydrdq — .

Plugging in the standard normal pdf yields
(y — gq(z,9) Q —194Q)° ?J2 } dydzdg

JNETY wrexp{ ;
1

= exp gQ(ac q) +0aq + @40 ¢ dzdq — =
2< 'YO_C’// / K } 2

1 [T 2 25|19 — Yo q— "o ? Ui
= exp éns[—tp <)} dg— 5
2C Jyy—cn n ! 1 2

2
< Lo (@)~ = L (7) —1) = S (1 ol1) <

S S

when n is large enough.
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When ¢ is small enough, say £2/2 < log(5/4), we have
n 2
)
2] < i 2
exp (;ul) < exp ( 2) < 1
It follows from that

inf sup P(
0o PEP(s,B)

~ € s—1 3 5 1

5a—5ap‘ f—ﬁ)> S e
()>2”+—<2 4) 8=

on choosing C' < 1/8, where gn_ﬁ appears because [0,(P) — 0,(Q)| = %gn—% > en~ 3% for a small

€.

When v, = 0, we choose

9Q(7,q) = —En°p, <g> 00 =&0°, 02 =0, and J,0 =0,

where ¢, is an infinitely differentiable function in ¢ satisfying (i) ¢,(v) = 0 for v > 0, (ii) ¢, (v) = 1, for
v < —(, and (iii) ¢, (v) € (0,1) for v € (=(,0), then

10 2
Ep [A7] = % /C exp {527725 {1 — ¥y (g)} }dq - g < gexp (&%) — %
—Cn

and following similar steps to those above we have inf sup P ( Sa — 6a(P)‘ > gn_m> > C for some €

da PEP(s,B)

and C.

The above argument also shows that the optimal rate of convergence for ¢, is n=%F1. As for 6z, we need
only choose another pair of probabilities P and (). To simplify notation, let d — 1 = 1 so that x is only
one-dimensional. Let P be the same as above, and

s q— S
9oz, q) = —En°p, ( n%) T, 00 =0, 0z = &n°, and d4q =0,

where ¢, is an infinitely differentiable function in ¢ satisfying (i) ¢,(v) = 0 for v > 0, (ii) ¢, (v) = 1, for
v < —(, and (iii) ¢, (v) € (0,1) for v € (=, 0). Then

L[ ! a\1? n_n n
2 _ 2 2s. 2 o ki _ 1t 2 2s\y _ '
Ep, [Af] 5 /%_CU/O exp{f N {1 %(n)] drdq — 5 < 5 exp (&) 5

and it follows that inf sup P (
0. PEP(s,B)

Sw — 6,;(P)‘ > %n_ﬁ) > C for some e and C. m

Proof of Theorem 5. Note that

3 — ,\,\7/\—1/\/\7 1 " Zz]- iSA / ~
\/ﬁ< Benn = Fo ) - (G’Q IG) o 1\/ﬁz< z'l(q Z) ) (i + X001 (7 < @ < 70)) -
=1

~—

damam — 0o (g >~

By the consistency of ¥ and Glivenko-Cantelli, G- G. Following the proof of Theorem 3 of Caner and
Hansen (2004), we can show that Q -2 Q under the moment restrictions on z,q, € and z. We still need to

15



show that

L~ 2@ <) \ ey n
— E - x;001 (Y < ¢ <

i=1

0 P
= n —)0,
1nZ:1 xidol (7 < @i <)
1=
and
1 L(yo <@ <7) e 0
vn = zl A<a<v) )

For these two results, consistency of ﬁ is not enough; we need n'/? =) -2, 0. But in this case,
Z ZixL001 (V< qi < vg) = 0p (n > z’x'60> = 0,(1), and the second result holds similarly. Given these

two results standard arguments yield the asymptotic distribution of the GMM estimator. m

4. Proofs for the Propositions

The following four propositions are needed in the proof of Theorem 1 and Corollary 1 and hold under the

conditions of that theorem.
Proposition 1 7 —v4 = O,(h).

Proof. We apply Lemma 4 of Porter and Yu (2015) to prove this result. Define @, () as the probability
limit of Qy, (7). Lemma 1 shows that

sup @n(’Y) = Qn(v) e 0,

yel’

where

f(z)dz.

Q) :/ fglfo(ux,x)k_(uq)m(x—|—uxh,7—|—uqh)f(x—kuxh,’y—{—uqh)dux.duq
" —fol J K% (ug, ®)ky (ug)m(z 4+ ugh, v + ugh) f(x + ugh, v + ugh)duydu,

Let Ny, = [vo—h, 7o +h] and v, = arg malchn('y), then it remains to show that sup Qn(y) < Qn(v,)—C
vE YET\N,,
for some positive constant C. It is easy to show that sup @Q,(y) = O(h?). On the contrary, for v € N,,,
YET\N,,
Qn(7) behaves quite differently. Specifically, let v = 7, + ah, a € (0,1), then

ffl J K*(ug, 2)k—(ug)g(x + ugh, v + ugh) f(z + ugh, v + ugh)duydug
Qn(y) = / +f7afK“’ (g, )k (ug) (1,2 + hul,y + ugh) So f (x + ugh, v + ugh)dugdu, | f(z)dx.
R )b () sy gh) b sy gt

The difference of the first and the third terms in brackets is O(h?), so the second term will dominate. From
Assumption I, (1,27,7)do # 0 for some z € X, so [ [wa(uz,x)(1,x’,70)60f(x,70)du$]2f(a:)da: > C
for some positive constant C. Because k_(0) > 0 and k_(-) > 0, [~"k_(uq)dus < 1 and is a decreasing
function of a. As a result, Q,(y) is a decreasing function of a for a € (0,1) up to O(h?). Similarly,
it is an increasing function of a for a € (—1,0). So @Q,(v) is maximized at some ~, € N, such that

Qn(v,) > sup |Qn(7)] + C/2 for n large enough. The required result follows. m
YEM\N,,
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Proposition 2 5 — v, = O0,(n™1).

Proof. We use the standard shelling method (see, e.g., Theorem 3.2.5 of Van der Vaart and Wellner (1996))
to prove this result.

For each n, the parameter space can be partitioned into the “shells” S, = {7r 2l <o v — 7ol < 25}
with | ranging over the integers. If n [y — | is larger than 2% for a given integer L, then 7 is in one of
the shells Sy, with [ > L. In that case the supremum of the map v — @n('y) - @n(%) over this shell is
nonnegative by the property of 4. Note that

P (nly =l > 2%)

1 n =R 1 n R N
< P( sup (Zﬁf(v) - ZM(%)) > 0) + P (7=l =h)
2L <nly—vol<nh \ ™ ;5 "
log, (nh) 1 n
2 N2
< Z P(%?E”ZA n;Az(%)>+P(W—WO|>h)
logg(nh) 1 noo
< sup — A2 >0) > — A? 1(A(z;) >0
< 3 <sl%3nz )>002 1 3 BH01A ) >0
082

log, (nh) n n
> P<sup Zﬁfwﬂmmxmz;Zﬁfw())m(xwm)

Sin T

+P(|7r — 7| > h)
T1+4T2+T3,

where A(x;) = (1,2},7,) do- T'3 converges to zero by the last proposition, so we concentrate on the first two

terms. T2 can be analyzed similar to 71, so we only consider 7'1 in the following discussion.

log, (nh) n
o< Y P<supiz(Mv)—&m))l@(zi)>0)>0>
=L b=
=L

We concentrate on the first term since the second term is easier to analyze given that A(z;) > 0. To simplify
notations, we neglect 1(A(z;) > 0) in the following discussion.
Note that

% i (Az(’Y) - 3i(’)/o))
= D Z Z (wik7, yJKZZ)— w0 Z Z (w570, - KZ%J)

i=1 j=1 j;éz i=1 j=1,j#i
+ Y
= Z Z [( hzg K’ZU) - ( Khozj Khozg>:|
i= 1] 1];61
1 n n N +
+ Y Y
nn—1) Z Z (e K7 —esitly) - n(n — 1) > X (wEw - ekl)
i=1 j=1,j#1 i=1 j=1,5#1

D1+ D2,
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where m; = g; + (1,2%,q;)d01(q; < o) with g; = g(x;, ;). Suppose 7y <y < 7y + h. Then

1 n n 1 n n -
bt = TL(TL — 1) Z Z 9i (K}ZOU K;{tj) (TL _ 1) Z Z 9j (K]"LY'LJ KZOW)

i=1j=1,j#i i=1j=1,j#i
n n
o
Tl*]. Z Z 1’$j’qj>60( h2] Kh()zg) (JS’YO)
i=1j=1,j#1i
< C |7 B ,70| ,

= 7 h
for some C' > 0 with probability approaching 1 by calculating the mean and variance of D1 in its U-projection,
where the first two terms contribute only O (|'y — 7ol), and the third term contributes to —C w because

for each 1, K . covers less j terms than K ; given that v > v, and k4 (0) > 0. In consequence, for n < h,

P( sup 12(&(7)&(70)>>0>§P< sup D2>C’| h7|>

[v=7ol<n™ 5= [v=70l<n
=1

Notice that

1 n n - , n n ., N
D2 = m Z Z €j (K;zj Khoz]) (qj < ’YO Tl — 1 Z Z €j (KhO’LJ K;zj) (qJ > 7)
i=1 j=1,j#i i=1 j=1,j#i

1 - -
+ Z Z €j (K;Z it K}ZO”) (Yo < g5 <7) = Da1 + Daa + Da3.
By Lemma 8.4 of Newey and McFadden (1994), we can show
lg~e 4G = 4 —7
Doy ~ — e —k_ (L2 1(g; <
21 n Z h |: ( h ) < h (qJ = 70)7

2 2
so Var (Da) = O (nlh (7_,?0) > Similarly, Var(Das) = O <n1h (%) ) As to Dj3, we can show

1~ %= % — Yo
~ — — _ - <
" ”;h[k‘< po) TR T )t a =)

so Var (Da3) = O 1 =7l By the independence of U-projections of Dyq, Do and Ds3, we have
nh h

_ i 7~ 7 ? i|’¥*70| _ i|’7*70|
Var(DQ)_O(m( h >+nh o) =% )

In consequence,

n ? 2
p (Iv bhlopql Z (31(7) A, (’Yo)) ) <CE (IWSE(F<WD2> / (hh%>

< Ch- vo/v ) c
o nly =l
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by Markov’s inequality. So

as L — oo, and the proof is complete. m

Proposition 3 For v in any compact set of R,

(@ o+ 2) - 82) 300

n
_ v B v
= —z;zlil (’Yo T <gq < ’Yo) - g 1 Z2il ('70 <q <79+ E) +Op(1)-
1= 1=

Proof. We use the same notation as the last proposition and denote v, + 2 as 7g. Then
~ -~ n —~ ~
h (Qn (6) — Qn(%)) = D A1) =D hAi()?
i=1

= 3 (B + Av)) b (B - Butr)

i=1

Following Lemma B.1 of Newey (1994), we can show that 31(78) L (1,2, 70) S0 f (@i, 70) = Ap(ws) =
O,(1) uniformly in ¢ and v, so Ai(78) + Ai(ry) 2 2A¢(z;) uniformly in ¢ and v. We concentrate on
h (35(78) - ﬁi(’yo)) For simplicity, let v > 0. Now,

h(Bi8) = Bit))

h - 76— h 76 h - Yot
= il — n_1 Z Khom - Z vy, - " Z Yi K
j=1,j#i j=1,j#i ey j=1.j#i

n

n
h E E

n—1 (g(xj’qj)+ (1,1’;—,(]]') 50+ej) l(q] SF}/O)KZOU T n— ‘TJ’qJ +6])K}’Zoz]

— J=1,j#i Jj= J#

—_— n
i > (gl q) ) v < a4 <K
L Jj=1,j#i

n

h " h n
— =7 X (9lwa)+ (Lajay) fot+e) Ko — —— 3 (9(@s,05) + €) K
Jj=1,j#i j=1,j#i

= Ty + T + T3 + Ty + T + T,
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where

h n

’U+ +
Ti = —o—5 > 9@a) (KZ,OU _Kz?ii)’
J=1,j#i
L n v_ _
Dy = ——= 3 [glwsq) + (Laja;) o] (K75 — 5757
J=1j#i
h o v o+ +
Ty = S— Z e;1(q; > ) (K;:OZJ - KZOU) ’
=15
_ k5 < L
J=lg#i
h i v Yot
Li = —— > ellvo < g SVENT, (%)
=1,
o "
To = =7 > [(Laha)d0—e] 100 < 0 KL, ()
j=1,j#i
Our target is to show that
Z (Tvi + Tai + T + Tii) = 0p(1),
i=1
and
(Tsi + Ti) Ay(xy) = k+(0)z [ (L5, 70) o + 2ei] f(wi) Ay (i) L (70 < 4 < 75) + 0p(1)
i=1 =1
— 7k+(0)222,-1 (Vo < @ < 76) + op(1).

i=1
The first result is shown in Lemma 2, and the second is shown in Lemma 3. =

Proposition 4 On any compact set of v, nh? (30 (’yo + a%) ~ A, (’yo)) = D,(v).
Proof. The proof proceeds by establishing convergence of the finite dimensional distributions of R(v) =
nh? (30 8 — A, (70)) to those of D,(v) and then showing that R(v) is tight, where 7§ = vy + -

From the last proposition, R(v) can be written as the sum of six terms:
6 6

R(v) = ZTﬁ'l(v > 0) + ZTl_l(v < 0),

=1 =1
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n
is changed to h%, z; is changed to z,, Z changes to
J=1,j#i

where T+ is the same as Tj; except tha

n
Z, and K,'ﬁ:? changes to K,Zﬁ;, and

Jj=1
o= 0y e (K- K.
n v
Ty = "> [glxj,q5) + (1,25, 45) 6o (KZ,UJ_KZ’UJ‘_)’
Jj=1
n
— v+ +
Ty = —h") el(g; > ) (KZ,OJ‘ - K5 )’
Jj=1
= et <3 (195 K.
T, = —hdZej 78<q]‘§70)KZf;7(*)
Jj=1
— v U+
Iy = Z 1 %5:45) 00 + €3] 17 < 45 < 70) K- ()

Lemma 4 shows that Z?:l T+ E?:l T, = o0p(1) uniformly in v, and Lemma 5 shows that for a fixed v,
_ _d
TS +T5 +T5 + Ty — Do(v).

We next show the tightness of T5+ + Ty +T5 + Ty . Take TS to illustrate the argument. Suppose v; and
v9, 0 < v1 < vg < 00, are stopping times. Then for any € > 0,

P ( sup |T5+(1)2) — T5+(v1)| > e)

[v2—v1|<n

< ZK Tj— To k+ 45 — 7o ‘€]| sup 1(781 < qj < 782) > €
. h h T ue—u|< ‘
j=1 2—v1|<7N
. Tj— T, a4 — 7 v v
< Y E|K(Z ki (=) lejl  sup 109" < g5 <6%)| /e
h h
i [v2a—vi|<n
Jj=1
< Cnle,

where the second inequality is from Markov’s inequality, and C in the last inequality can take

sup Elle||z,q] f(x,q) sup K (uz)k4 (uq)
(z,a)EN Ua i

with N being a neighborhood of (2],v,)". The required result now follows. m
The following Proposition 5 is used in the proof of Theorem 2 and holds under the conditions of that
theorem.
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Vi (A - 30)
Fh(w—a)

Proof. We need only to show
TN (-3 [ VR(ao (@) —as(e 1 Vih (@ (a) - @)\
n 2t (*) ( i (5. (o) By () ) Z’“h<q ) ( i (12 1) — B 20 ) -

" ( Zkh <q’ ) - kah ( >> 2 0. (4)

It is easy to see that the first result is implied by

Proposition 5 250.

Vnh [(Zi, () —aq(x;)) — (69 (z;) — ag(xi))] - 0 uniformly in z;,
Vnhh [(3, (x;) _/b\+(xi)) - (/b\o, (x;) —31(361))} 2, 0 uniformly in ;.

Since ¥ — v = Op(n~1), 7 falls into ['yo - oy + ] for some positive C' with any large probability when

n is large enough. So we can just prove these results by replacing 7 by v, + % = 4§. The corresponding

ay(z;) and Zi(xl) are denoted as a¥ (z;) and gg(ml) Since the results for a_(z;) and b (z;) are similarly

proved, we need only prove that
Vnh [aS(z;) — a5 (z;)] 2, 0 uniformly in x;, (5)
vVnhh [Eﬁ(mz) —31 (xz)} 2, 0 uniformly in z;.

Without loss of generality, suppose C' > 0. Lemma 6 shows , and Lemma 7 shows (5). =

5. Proofs for the Lemmas

Lemma 1 sup @n(’y) - Qn(’Y)’ 5 0.
~el

Proof. Noting that I' x X' is compact we have from Lemma B.1 of Newey (1994) that

. [8.6) - B8] =0, ().

vyel,z,€X

Given that sup E; [ﬁz(ﬁy)} = 0,(1),

vel z; €X

G = SR =3 B[R] + (Bitn - BlBi)]
i=1 =1
= %Xn:Ef {ﬁz(v)} +0, (\/lnn/nhd> ,

uniformly in 7. By a Glivenko-Cantelli theorem,

L3 [a] <[ (3] 20

sup
yer
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Note that E {Eg [31(7)“ = @, (), the result of interest follows. m

(2

n 4
Lemma 2 ) Y T = op(1) uniformly in v.
i=1i=1

Proof. We take Ty; to illustrate and have

ZTM =
=1

v
<’VO (Khozj _KZ()zj)

’L 1j= 1,_7751

= n,lz Z ejl(g; < vo)n (K’ZOZJ_K}’ZOU)

=1 j=1,j#i
_ |- 2 — 0 4 — o
- ﬁz S estlay < nupnn i (2570) i (B2

=1 j=1,j#i

h<qJ<’YO) x _
S S ot iin) =0 (-3 3 A
Z 1j=1,j#i =1 j=1,j7#i

uniformly in v, where the second to last equality is from the Lipschitz continuity of k_ (). By the U-statistic
projection, see, e.g., Lemma 8.4 of Newey and McFadden (1994),

. Z ZP (Xi, X;)

z 1 j=1,5#1i
IR 1 1/2
= —Y B[P (X0, X)) X))+ 0, (nE [P0 (X, X5)°] )
j=1
In our case, B[P, (X;,X;)|X;] = M[Kﬁ Sf(zi)dz; = O(ejl(vg — h < qj < 74)/h), and

B[P (Xi, X;)°| & i [ 02 (@i, 70) f(@:)da = O (k). so0

1
fZE (X0, X)) 1X,] = Op [ =D eil(no —h <45 <) | = 0p(1),
j=1

ﬁE {Pn (Xi,Xj)QT/Q ) (nhld/2> = o(1).

M:

Lemma 3 3" (Ty: + Tos) Af (1) = k. (0)

=1 7

) (1,2}, 70) 00 — 2€i] L(vo < @i < ¥§) f(@i)Ap(mi) + 0p(1).

n
Proof. > T5;A¢(z;) is a U-statistic and we write
i=1

n

+ _
(v < g5 S’YO)K}VLOU Ag(zi) = n(n—1) Z n (Xi, X;)
i=1 j=1,j%#i i=17=1

) 1/2)

ZTm’Af(mi) =
i=1

1
- fZE (X, X)) 1X,]+0, (1B [P (4. X))

—
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where P, (X;, X;) = nhejl(yy < ¢; < ’yO)K,ZOJAf( ;) with X; = (2}, ¢, e;)’, and the last equality is from

Lemma 8.4 of Newey and McFadden (1994). Then

v 1 T
E [P, (Xi, X;)[X;] ~ nejl(yy <gq; < 70)k+(O)W/Kh (zi —zj, i) f(@i)Ap(wi)d;

Q

nejl(vo < ¢j < 7p)k+(0) /K“’ (ua, Tj + ugh) f(x; + ueh)Af(2; + uzh)du,

ne; (v < q; < 70)k+(0)f(2)Af(w;),

Q

and -
2| _ 272 d—1Y\ _ n
B |P, (X;, X,)’] _0< Wi ih ) =0 (15
so that
1 n n .
EZE [P (X3, X)) 1X5] = D eil(vo < @i < )k (0)f (i) Ag(s),
i=1 '
1 qv2 1 w1
- [P" (X, X5) } = AV it T Vppdt T o(1)
Similarly,
n h n n ’YO
D Teildp(z) = (X500 — €] L(vo < a5 < 0) K5, Ag(i)
= i=1 j=1,j#1
= =Y [(L,a},79)00 — €] L(vg < @i < )k (0) (i) Ag(xs) + 0p(1).
=1

The result follows by noting that k_(0) = k4 (0). m
4 4

Lemma 4 Y. 7,7 + Y1, = 0,(1) uniformly in v.
=1 =1

Proof. Take T, as an example.

T = hdzej i <90 (K3 - K3)

= 2o o Yt [ (L2 4~ %
. hdl}Z% R e e e R ]

1 n e
= 0O erﬂ(%—hgqjg%)[( (]ho’xo>
j=1

uniformly in v, where the last equality is from the Lipschitz continuity of k_(-). Since

BT = O (s ) = ot

T, =o0,(1). m

Lemma 5 Ty + T + Ty + T, -4 D,(v).
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Proof. Take 75" + T, as an example. We use the characteristic function to find its weak limit. Define
= X Ty = Xioatsle” < g5 < v0) and Ty = 300 T55 = 3001 t3;1(v0 < ¢j < "), where

tgj —hle; K)o th = hdeJK,;YOJ ,v_ <0 and vy > 0. Note that
exp {\/—15_T5;} = 14+ 1(’)/8’ <gq; < o) [exp {\/— s_tgj} — 1]
exp {\/flerT;; = 1+4+1(yy<g; < 70 [exp {\/ s+t+ }
Hence

B oxp (VT (s~ Ty + 57T55)}] = B [exp {775} B [exp {y/T5 5]
~1+E [1(78_ <qj <7)E [eXp {\/jlsitgj} - 1\ qi]]
+E [1(yo < g5 < 70")E [exp {v=TsTt5;} — 1] ¢;]]
R LRt {ff [eXp {—\/—;ls‘ejK(um)kf (q” h%)} - 1} f(eijolqg‘)dejdux} f(g;)dg;
Rt 70 [ ) [exo {5 ek (ks (2520) } = 1] (e, molas)desdus | £la;)da;
R 1+ 5 fo(v0) [ [ [exp {—V=Ts7€; K (ua)k- (0)} = 1] f(ej, wolg; = vo—)de;jdus
+ 2= fo(vo) [ [ [exp {V=TsTe; K (us)ks (0)} — 1] flej, zo|q; = vo+)dejdu,
= )2 ] e V=T e Kk 0)) 1] G0 eyl = 20 e
L (1) 29 [ f exp {v/=Tste K (ug )y (0)} — 1] %ﬂey,mom = vo+)de;du,
=1+ 22297 f,(70) fatg(@o|10)B [exp { —V/=Ts™e; K (U} k- (0)} — 1] 2 = o, qj = 7o)
T - 1fq(%)fauq(ﬂcolvo [exp {V=Tst e K(U )k (0)} — 1| @) = 20,4 = Y0+]
4 E=207 1 f (20, 70)B [exp { —v/—1s7¢; K(U; )k— 0)} — 1|25 = 20,95 = 7o~
+ %Qdflf(xo,’yo)E [exp {\/jl8+ejK(U;r)k+ 0)} — 1’ Tj=To,q; =Yo+]

where Vol(K (u;) > 0) = 277! is the volume of the area of u, such that K(u,) > 0, and U; and U;" are
independent of (e;, 2%, ;)" and follow a uniform distribution on the support of K(-). It follows that

E |expq V-1 S*ZTQ—FSJFZT%
j=1 j=1

H E [exp {\/j (S_TE)_]‘ + 3+T5-;) }]
—exp {v_2"" f(20,7)E [exp { —vV—=Ts eK (U )k_ (0)} — 1|z = 20,q = 70—
+'U+2d71f(1'0370)E [eXp {\/j18+€K(U+)k+ (0)} - 1| T =209 = PYO+:|} ’

This is the characteristic function of a compound Poisson process Ds(-) evaluated at v_ and v, where

Ni(vl)
Sz, i v <0;
D5 (v) = =1
5 Na(v)
Z 221‘, if v > 0,
i=1

is a cadlag process with D5(0) = 0, 21; = —e; K(U; )k_ (0), Zo; = ef K(U;" )k— (0), and {e; ,e;, U; ,U;" }
Ni(-) and Ny(-) are defined in Corollary 1. Generalizing this argument, we get the result of interest. m

Lemma6F< zk( £) - %EZ: (e ))Lo

zvza i>1’
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Proof.

n . ~C _
Z [k (% 70 ) _k (QZ ’70)}
; h h
1
1(70_h§%‘§"/oc+h):0p<
where the inequality is from the Lipschitz continuity of k(). m

Lemma 7 Uniformly in x;,

Vnh [a4 (2;) — @4 (2;)] =0,
Vnhh [Bﬁ(xi) —Ei(xi)} 0.

Proof. Take the first result as an example. We have

—1 -1
= Va[e () () — ¢ () (0 -
+Vnhel (M) (Mg — M;p) (M;h) ™
—Vnhey (M5) " (M — M) (M)~ (rfy =1

1 4% =6 1¢ 4 — 7o
(ni lkh< h n;kh h

)=o),

M) () vt

—1
(Mie = M) (M) rig

),

where MZ% and ch are similarly defined as Mf and r;r but with 4 replaced by 'yg, and the decomposition
in the last equality is from Lemma 2 of Yu (2010). Since (M%)fl, (M;BV1 and 7 are Op(1), we need only

to show that

Vnh (M5 — M) 2, 0 uniformly in i,
Vnh (7’3_(; — 7‘;5) 250 uniformly in q.

Take the second result as an example.

J=Lj#i
n

j=1j#i
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(xj T 45 — 0 ) (T — i, m5) kg Yj

h

T q; —°
Ney > (@) —ahq =) K (xj_xi,mi)k+< — O>yj~



Take the following term of vnh (’"jc — T;B) as an example since it is the hardest to analyze.

n

1 ) . _AC
—F— Z ((Jj - 7€)p Ky (xj — i, x;) by (th%> Yj

nh

1 < a4 =
——— > (4 =) K} (@ —mw) ke (2 )y
nh h
j=1,j#i
1 " C =AY
< |—= K} (x; — @i, @) —kg <M> Y;
nh  —,. n h
J=1,j#i

1 , c
—_ K (x5 —z5,%3) (¢ —70) Lo — R < q; <75 — il
= ) W(xj—zi,7i) (g5 —70) 1o —h < g <75 +h) Y

From Lemma B.1 of Newey (1994), both terms on the right side converge to their expectations uniformly in
i, but it is easy to see that these expectations are O (h/\/ nh) = 0(1). The results of interest follow. m
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