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1. Di¢ culties in Applying the DKE

When there are no other covariates besides q, the DKE is a popular procedure for estimating 
: Porter and

Yu (2015) provide some discussion and references to the related literature. In this simple case, we have the

model y = g(q) + (1; q) �1 (q � 
) + e with E[ejq] = 0. The DKE is de�ned as the extremum estimator

b
DKE = argmax



b�2(
); (1)

where b�(
) = bE[yjq = 
�] � bE[yjq = 
+] with bE[yjq = 
�] = n�1Pn
j=1 wj(
)yjdj (
) and bE[yjq = 
+] =

n�1
Pn

j=1 wj(
)yj (1� dj (
)) being estimators of E[yjq = 
�] and E[yjq = 
+], and dj (
) = 1 (qj � 
). In
the de�nition of bE[yjq = 
�], the weight function wj(
) = kh (qj � 
)

.Xn

l=1
kh (ql � 
) , where kh (�) =

k (�=h) =h is a rescaled kernel density, and h is the bandwidth. Due to the weighted average nature of kernel
smoothers, b�(
) would be near zero if there were no jump at 
. Otherwise, the di¤erence would be near
the magnitude of the jump �0 = (1; 
0) �0 which is assumed to be nonzero. This di¤erence ensures that the

estimator b
DKE is consistent. Porter and Yu (2015) have recently shown that b
DKE converges at rate n

and the asymptotic distribution is related to a compound Poisson process. This limit theory is explained by

interpreting 
 as a �middle�boundary point of q (see Yu, 2012). For boundary point estimation, it is well-

known that only data in an O
�
n�1

�
neighborhood is informative, so the h neighborhood in the construction

of the DKE is typically large enough to ensure the n-consistency of b
DKE . Given b
DKE , the literature has
also considered the estimation of the jump magnitude �0: But no estimator of �0 is presently available.

When there are additional covariates, Delgado and Hidalgo (2000) suggested that the DKE continue to

be used to estimate 
.1 In this case, the procedure can be employed by �xing some point (say xo) in the

support of x and rede�ning b�(
) as bE[yjxo; q = 
�]� bE[yjxo; q = 
+], where bE[yjxo; q = 
�] is an estimator
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1One might consider neglecting the data of x, and using only the data of q and y to estimate 
. This will generate the DKE

of Porter and Yu (2015). Now, the jump size E[x0�jq = 
0] is an average of the jumps at all x values, so may be zero or small,
which results in identi�cation failure or weak identi�cation. Even if E[x0�jq = 
0] is large, this DKE might be less e¢ cient
than the IDKE because the jump information at 
0 is not fully explored; see footnote 6 for further analysis.
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Figure 1: E[yjx; q] and E[yjx; q = 
0�] With Endogeneity: The Blue Lines Represent the Case Without
Endogeneity

of the conditional mean of y given x = xo and q = 
�. The objective function converges to zero when

 6= 
0, and to �2o = (E[yjxo; q = 
0�]� E[yjxo; q = 
0+])

2 when 
 = 
0, so b
DKE is consistent if �o 6= 0.
There are several di¢ culties in applying the DKE in this way. First, the selection of xo raises di¢ culties,

as shown in the following example. Suppose y = (x+ q) 1 (q > 
) + ", where 
0 = 0, the supports of x

and q are both [�1; 1], and endogeneity takes the form E ["jx; q] = x2 + q2. Figure 1 shows E[yjx; q] and
E[yjx; q = 
0�]. To identify 
 successfully we need to select xo so that �2o is large, which means that xo
should be on the boundary of x�s support. On the other hand, we also need fxjq(xoj
0) to be large so that
there is su¢ cient data to identify 
. When the density of fxjq(xj
0) takes on a bell shape, as in a typical case,
xo should ideally be in the middle of x�s support. Hence, the selection of xo poses a dilemma and a potential

tradeo¤ that is presently unresolved from both theory and practical perspectives. Second, consistency ofb
DKE requires that �o 6= 0, but �o can be 0 as shown in the example of Figure 1. Delgado and Hidalgo

(2000) apply the DKE to estimate 
, assuming that
�
�0x0; �q0

�0
= 0 and ��0 6= 0 so that �o = ��0 6= 0

does not depend on the choice of xo. Moreover, their kernel function uses data in the neighborhood of

q = 
0 ine¢ ciently, so that the convergence rate of b
DKE is quite slow, as discussed further in Section 2.2.
Furthermore, given b
DKE , the induced estimator of ��0 uses only data in the neighborhood of (x0o; b
DKE)0,
so the convergence rate of b��;DKE is also very slow, especially when the dimension of x is large.
2. Di¢ culties in Applying Two Alternative Estimators

It is known (Appendix A of Porter and Yu, 2015) that the DKE is asymptotically equivalent to the LSE and

the PLE when q is a single covariate. In what follows, we de�ne the LSE and the PLE when other covariates

are present and discuss the di¢ culties that arise in deriving their asymptotic distributions.

De�ne the nonparametric LSE of 
 in the general case as follows,

b
NLSE = argmin



1

n

nX
i=1

h
yi bfi � cmf



�(xi; qi)1(qi � 
)� cmf



+(xi; qi)1(qi > 
)

i2
;

2



where bfi = 1
n�1

nX
j=1;j 6=i

Kh;ij with Kh;ij = K
x
h;ij � kh(qj � qi) is the kernel estimator of fi � f(xi; qi),

cmf


�(xi; qi) =

1

n� 1

nX
j=1;j 6=i

yjK
x
h;ijk


�
h (qj � qi; qi);

cmf


+(xi; qi) =

1

n� 1

nX
j=1;j 6=i

yjK
x
h;ijk


+
h (qj � qi; qi);

with

k
�h (u; t) =

(
1
hk
�
u
h

�
;

1
hk�

�
u
h ;


�t
h

�
;

if t � 
 � h;
if 
 � h � t � 
;

k
+h (u; t) =

(
1
hk
�
u
h

�
;

1
hk+

�
u
h ;

t�

h

�
;

if t � 
 + h;
if 
 � t � 
 + h:

In the construction of b
NLSE , we eliminate the random denominator as in b
. We next de�ne the PLE as
b
PLE = argmin




1

n

nX
i=1

h
yi bfi � x0i�1(qi � 
) bfi � bgf (xi; qi; �; 
)i2 ; (2)

where bgf (xi; qi; �; 
) = 1

n� 1

nX
j=1;j 6=i

�
yj � x0j�1(qj � 
)

�
Kh;ij :

This density-weighted objective function of the PLE was suggested in Li (1996) without considering the

threshold e¤ects. In both the LSE and the PLE, 
 is estimated by �nding the best �t between yi and an

estimator of E[yijxi; qi]; the di¤erence lies in that di¤erent estimators of E[yijxi; qi] are used.
The objective function of the IDKE is superior to that of the LSE and the PLE in two respects. First,

according to Yu (2008, 2012), only the information around the threshold point is informative for 
0, sob�i (
) in the objective function of the IDKE is constructed using only data in the neighborhood of 
. In
contrast, the objective functions of the LSE and the PLE use information in other areas, and the resulting

biases need to be handled carefully. The objective function of the IDKE therefore takes advantage of its local

construction, whereas the global objective functions of the LSE and the PLE are in�uenced by the e¤ects

of information throughout the distribution. Second, since b�i (
) in the objective function of the IDKE is
linear in k+

�
qj�

h

�
and k�

�
qj�

h

�
, it is easy to localize in the neighborhood of 
, which is key to deriving

the convergence rate and the asymptotic distribution of b
. However, the objective functions of the LSE and
PLE are complicated nonlinear functions of 
, which makes localization extremely hard. In addition, the

objective function of the IDKE does not rely on the assumption that �(x; q) = x0�, whereas that of the PLE

does.

3. Proofs for the Theorems and Corollaries

In the following proofs, some steps are omitted for brevity whenever they are available in the literature and

references are provided. This simpli�cation makes the proofs cleaner and more readable. Derivations that

di¤er from the existing literature are given in full detail. Propositions that are used in these derivations are

given in the following Section 4 and additional lemmas that are needed are given in the following Section 5.
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First, we introduce the new notations Kx
h and K

x through Kx
h;ij =: K

x
h (xj � xi; xi) =: 1

hd�1
Kx

�
xj�xi
h ; xi

�
,

where Kx
h;ij was introduced in the de�nition of the IDKE of 
.

Proof of Theorem 1. Proposition 1 proves the consistency of b
, and Proposition 2 proves b
 � 
0 =
Op(n

�1), so we can apply the argmax continuous mapping theorem (see, e.g., Theorem 3.2.2 of Van der

Vaart and Wellner (1996)) to establish the asymptotic distribution of n (b
 � 
0). From Proposition 3, for v

in any compact set of R,

nh
� bQn �
0 + v

n

�
� bQn(
0)�. 2k+(0) = � nX

i=1

z1i1
�

0 �

v

n
< qi � 
0

�
�

nX
i=1

z2i1
�

0 < qi � 
0 +

v

n

�
+op(1);

where z1i and z2i are de�ned in the main text. Now, we can obtain the asymptotic distribution of n (b
 � 
0)
by applying the same argument as in the proofs of Theorem 1 and 2 in Yu (2012). The only di¤erence lies

in the de�nitions of z1i and z2i.

Proof of Corollary 1. The proofs of the consistency of e
 and nhd�1 (e
 � 
0) = Op(1) are similar

to Theorem 1, so are omitted here. We concentrate on deriving the weak limit of the localized process

nhd
�b�2o (
)� b�2o (
0)� for 
 in an �nhd�1��1 neighborhood of 
0 .
Let an = nhd�1(= o(h)), then

nhd
�b�2o�
0 + v

an

�
� b�2o (
0)� = �b�o�
0 + v

an

�
+ b�o (
0)�nhd�b�o�
0 + v

an

�
� b�o (
0)� :

It is easy to show that b�o �
0 + v
an

�
� E

hb�o �
0 + v
an

�i
p�! 0 for v in any compact set. Without loss of

generality, let 
 > 
0 or v > 0: Then

E
hb�o (
)i = Z 0

�1

Z
Kx(ux; xo)k�(uq)g(xo + uxh; 
 + uqh)f(xo + uxh; 
 + uqh)duxduq

+

Z 
0�

h

�1

Z
Kx(ux; xo)k�(uq)

�
1; (xo + uxh)

0
; 
 + uqh

�
�0f(xo + uxh; 
 + uqh)duxduq

�
Z 1

0

Z
Kx(ux; xo)k+(uq)g(xo + uxh; 
 + uqh)f(xo + uxh; 
 + uqh)duxduq

= (1; x0o; 
0) �0f(xo; 
0) +O(h):

Now, we need only consider the behavior of nhd
�b�o �
0 + v

an

�
� b�o (
0)�. Proposition 4 shows that

nhd
�b�o�
0 + v

an

�
� b�o (
0)�) Do(v);

where ) signi�es the weak convergence on a compact set of v,

Do (v) =

8>><>>:
N1(jvj)P
i=1

z1i, if v � 0;
N2(v)P
i=1

z2i, if v > 0;

is a cadlag process with Do(0) = 0,

z1i =
�
�2e�i � (1; x0o; 
0) �0

�
K(U�i )k� (0) , z2i =

�
2e+i � (1; x0o; 
0) �0

�
K(U+i )k+ (0) ;
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and the distributions of e�i ; e
+
i ; U

�
i ; U

+
i are de�ned in the corollary. So

nhd
�b�2o�
0 + v

an

�
� b�2o (
0)�) D(v);

where D(v) takes a similar form to Do(v), but now

z1i = 2
�
�2 (1; x0o; 
0) �0e�i � �

0
0 (1; x

0
o; 
0)

0
(1; x0o; 
0) �0

�
K(U�i )f(xo; 
0)k� (0) ;

and

z2i = 2
�
�2 (1; x0o; 
0) �0e+i � �

0
0 (1; x

0
o; 
0)

0
(1; x0o; 
0) �0

�
K(U+i )f(xo; 
0)k+ (0) :

Given the weak limit of nhd
�b�2o �
0 + v

an

�
� b�2o (
0)�, we can apply the argmax continuous mapping

theorem (Theorem 3.2.2 in Van der Vaart and Wellner, 1996) to obtain the asymptotic distribution of e
. We
need to check four conditions, just as in the proof of Theorem 2 of Yu (2012). Since these checks are all similar,

we omit the details here and only note that argmax
v
D(v) = argmin

v
D(v); given that k� (0) = k+ (0) > 0 and

f(xo; 
0) > 0.

Proof of Theorem 2. We �rst derive the formula for b�. Following Appendix A.1 of Heckman et al.
(1998), we have�ba+(xi);bb0+(xi)�0 = (Id+1;0)

�
X 0
iW

+
i Xi

��1
X 0
iW

+
i Y

= (Id+1;0)H
�1 �H�1X 0

iW
+
i XiH

�1��1H�1X 0
iW

+
i Y

= (Id+1;0)H
�1 �Z 0iW+

i Zi
��1

Z 0iW
+
i Y

= (Id+1;0)H
�1

0@ 1
n

nX
j=1;j 6=i

zijz
i0
j w

i+
j

1A�10@ 1
n

nX
j=1;j 6=i

zijw
i+
j yj

1A
� (Id+1;0)H

�1 �M+
i

��1
r+i ;

where

Xi =

0BBBBBBBBBBBB@

(x1 � xi; q1 � b
)Sp
...

(xi�1 � xi; qi�1 � b
)Sp
0

(xi+1 � xi; qi+1 � b
)Sp
...

(xn � xi; qn � b
)Sp

1CCCCCCCCCCCCA
n�

Pp
�=0(�+d�1)!=�!(d�1)!

; Y =

0BBBBBBBBBBBB@

y1
...

yi�1

0

yi+1
...

yn

1CCCCCCCCCCCCA
n�1

;

H = diag
�
1; hId; � � � ; hI(p+d�1)!=p!(d�1)!

	
; Zi = XiH

�1; zi0j = (xj � xi; qj � b
)SpH�1;

W+
i = diag

�
Kx
h (x1 � xi; xi) k+h (q1 � b
) ; � � � ;Kx

h (xn � xi; xi) k+h (qn � b
)	 = diag�wi+1 ; � � � ; wi+n 	n�n ;
and

�ba�(xi);bb0�(xi)�0 are similarly de�ned with
W�
i = diag

�
Kx
h (x1 � xi; xi) k�h (q1 � b
) ; � � � ;Kx

h (xn � xi; xi) k�h (qn � b
)	
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replacing W+
i . Next b�b�xq

!
=

1

nh

nX
i=1

k

�
qi � b

h

� ba�(xi)� ba+(xi)bb�(xi)�bb+(xi)
!,

1

nh

nX
i=1

k

�
qi � b

h

�
;

and  b��b�xq
!
=

0@ b�� 1
nh

nP
i=1

k
�
qi�b

h

�
(x0i; b
)�bb�(xi)�bb+(xi)�� 1

nh

nP
i=1

k
�
qi�b

h

�
b�xq

1A :
The �rst step in deriving the asymptotic distribution of b� is to show that b
 can be replaced by 
0. In

other words,
p
nhh

 b�� � b�0�b�xq � b�0xq
!

p�! 0;

where estimators with superscript 0 denotes the original estimators but with b
 replaced by 
0. Of course, we
need only show that

0@ p
nh
�b�� b�0�

p
nhh

�b�xq � b�0xq�
1A p�! 0 since

p
nhh

 b�� � b�0�b�xq � b�0xq
!
is just a linear combination

of

0@ p
nh
�b�� b�0�

p
nhh

�b�xq � b�0xq�
1A. Proposition 5 gives this result. Now,

0@ p
nh
�b�0 ��0�

p
nhh

�b�0xq � �xq0�
1A

=
1p
nh

nX
i=1

k

�
qi � 
0
h

� ba0�(xi)� ba0+(xi)� �a0�(xi)� a0+(xi)�
h
�bb0�(xi)�bb0+(xi)� �xq0�

!,
1

nh

nX
i=1

k

�
qi � 
0
h

�

=
1p
nh

nX
i=1

k

�
qi � 
0
h

� �ba0�(xi)� a0�(xi)�� �ba0+(xi)� a0+(xi)�
h
h�bb0�(xi)� b0�(xi)�� �bb0+(xi)� b0+(xi)�i

!,
1

nh

nX
i=1

k

�
qi � 
0
h

�
;

where
�
a0+(xi); b

0
+(xi)

0� is de�ned by a0+(xi) = m+(xi) � lim

!
0+

m(xi; 
) and by b0+(xi) = rm+(xi) �

lim

!
0+

(@m(xi; 
)=@x
0
i, @m(xi; 
)=@
)

0, with a similar de�nition for
�
a0�(xi); b

0
�(xi)

0�, and
�
0
=

1

nh

nX
i=1

k

�
qi � 
0
h

��
a0�(xi)� a0+(xi)

�, 1

nh

nX
i=1

k

�
qi � 
0
h

�
:

Note that, under our speci�cation, b0�(xi)�b0+(xi) = �xq0 and a0�(xi)�a0+(xi)�(x0i; 
0)(b0�(xi)�b0+(xi)) = ��0
for any xi. Also,

p
nhh

�b�0� � ��0�
=

p
nhh

�b�0 ��0�� 1p
nh

nX
i=1

k

�
qi � 
0
h

�
(x0i; 
0)

h
h
�bb0�(xi)� b0�(xi)�� h�bb0+(xi)� b0+(xi)�i

,
1

nh

nX
i=1

k

�
qi � 
0
h

�
:

We �rst derive the asymptotic distribution of

0@ p
nh
�b�0 ��0�

p
nhh

�b�0xq � �xq0�
1A and then consider

p
nhh

�b�0� � ��0�.
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Given assumptions E, F, G0, and H0, we can apply the arguments in Theorem 3 of Heckman et al. (1998)

to obtain0@ p
nh
�b�0 ��0�

p
nhh

�b�0xq � �xq0�
1A

= � 1p
nh

nX
i=1

k

�
qi � 
0
h

�
(Id+1;0)

8>><>>:
hp+1

��
M

+

i0

��1
rm+i0 �

�
M

�
i0

��1
rm�i0

�
+

��
M

+

i0

��1
re+i0 �

�
M

�
i0

��1
re�i0

�
+R+i �R

�
i

9>>=>>;
,

1

nh

nX
i=1

k

�
qi � 
0
h

�
;

where M
+

i0 is the square matrix of size
Pp

�=0 (� + d� 1)!=�!(d� 1)! with the l-th row, t-th column �block�
being, for 0 � l; t � p,Z 1

0

Z
(u0x; uq)

S(l)0
(u0x; uq)

S(t)
Kx (ux; xi) k+(uq)f(xi + uxh; 
0 + uqh)duxduq;

rm+i0 is a
Pp

�=0 (� + d� 1)!=�!(d� 1)! by 1 vector with the t-th block being the transpose ofZ
(u0x; uq)

S(t)
h
(u0x; uq)

S(p+1)
m
(p+1)
+ (xi)

i
Kx (ux; xi) k+(uq)f(xi; 
0)duxduq;

and m(p+1)
+ (x) being a (p+ d)!=(p+ 1)!(d� 1)!� 1 vector of the partial derivatives of m(x; q) at q = 
0+,

re+i0 =
1

n

nX
j=1;j 6=i

zij0w
i+
j0 ej ;

with zij0 and w
i+
j0 being z

i
j and w

i+
j but having b
 replaced by 
0,
1p
nh

nX
i=1

k

�
qi � 
0
h

�
(Id+1;0)R

+
i = op(1);

and the objects with superscript � are similarly de�ned. It turns out that the terms associated with rm�i0
will contribute to the bias and the terms associated with re�i0 , which is a U-statistic, will contribute to the

variance. Given that 1
nh

nP
i=1

k
�
qi�
0
h

�
p�! fq(
0), we need only concentrate on the numerator.

First, analyze the bias.

E

"
1

nh

nX
i=1

k

�
qi � 
0
h

�
(Id+1;0)

��
M

+

i0

��1
rm+i0 �

�
M

�
i0

��1
rm�i0

�#

= (Id+1;0)

Z Z ��
M

+

i0

��1
rm+i0 �

�
M

�
i0

��1
rm�i0

�
f(xijqi)dxikh (qi � 
0) f(qi)dqi

! (Id+1;0)
h�
M+
o

��1
B+ �

�
M�
o

��1
B�
i
E[g(p+1)(x; 
0)

��� q = 
0]fq(
0);
where M�

o and B� are de�ned in the main text, and m(p+1)
+ (xi) = m

(p+1)
� (xi) = g(p+1)(xi; 
0) under

Assumption G0. Note here that the kernel Kx is replaced by K because the data in the h neighborhood of

the boundary of X can be neglected asymptotically. Also, we can calculate that the variance of this term is

O
�
1
nh

�
= o(1), so it converges in probability to its expectation. Second, analyze the variance. Taking the

7



lth element of

0@ p
nh
�b�0 ��0�

p
nhh

�b�0xq � �xq0�
1A, we consider

1p
nh

nX
i=1

k

�
qi � 
0
h

�
e0l

��
M

+

i0

��1
re+i0 �

�
M

�
i0

��1
re�i0

�
;

which is a second-order U-statistic. From Lemma 8.4 of Newey and McFadden (1994), this U-statistic is

asymptotically equivalent to 1p
nh

nP
i=1

mn(xi; qi; ei), where

mn(xj ; qj ; ej) = E
�
k

�
qi � 
0
h

�
e0l

��
M

+

i0

��1
zij0w

i+
j0 ej �

�
M

�
i0

��1
zij0w

i�
j0 ej

�����xj ; qj ; ej�
= ej

Z
k

�
qi � 
0
h

�
e0l

��
M

+

i0

��1
zij0w

i+
j0 �

�
M

�
i0

��1
zij0w

i�
j0

�
f(xi; qi)dxidqi;

We apply the Liapunov central limit theorem to derive the asymptotic distribution. It is standard to check

that the Liapunov condition is satis�ed, so we concentrate on calculating the asymptotic variance as follows.

1

h
E

"
e2j

�Z
k

�
qi � 
0
h

�
e0l

��
M

+

i0

��1
zij0w

i+
j0 �

�
M

�
i0

��1
zij0w

i�
j0

�
f(xi; qi)dxidqi

�2#

� 1

h
E

"
e2j

�Z
k

�
qi � 
0
h

�
e0l

�
M

+

i0

��1
zij0w

i+
j0 f(xi; qi)dxidqi

�2#

+
1

h
E

"
e2j

�Z
k

�
qi � 
0
h

�
e0l

�
M

�
i0

��1
zij0w

i�
j0 f(xi; qi)dxidqi

�2#

� 2
h
E

2664 e2j

�R
k
�
qi�
0
h

�
e0l

�
M

+

i0

��1
zij0w

i+
j0 f(xi; qi)dxidqi

�
�R

k
�
qi�
0
h

�
e0l

�
M

�
i0

��1
zij0w

i�
j0 f(xi; qi)dxidqi

�
3775

� T1 + T2 + T3:

We analyze T1, T2 and T3 in turn.

T1 � 1

h
E

24e2j
 
k+

�
qj � 
0
h

�Z
k (uq) e

0
l

�
M+
o

��1 "�
u0x;

qj � 
0
h

�Sp#0
K (ux) duxduq

!235
�

Z Z
�2+(xj)

�
k+ (vq)

Z
k (uq) e

0
l

�
M+
o

��1 h
(u0x; vq)

Sp
i0
K (ux) duxduq

�2
f(xj ; 
0)dxjdvq

= E
�Z

k2+ (vq)�
2
+(xj)C

+
l (vq)

2dvqjqj = 
0
�
fq(
0):

Similarly,

T2 � E
�Z

k2� (vq)�
2
�(xj)C

�
l (vq)

2dvqjqj = 
0
�
fq(
0);

and T3 = 0 since k+
�
qj�
0
h

�
k�

�
qj�
0
h

�
= 0. In summary,

1p
nh

nX
i=1

mn(xi; qi; ei)
d�! N

�
0;E

�Z �
k2+ (vq)�

2
+(x)C

+
l (vq)

2 + k2� (vq)�
2
�(x)C

�
l (vq)

2
�
dvq

���� q = 
0� fq(
0)� ;
8



and the asymptotic distribution of
p
nhh

�b�0xq � �xq0� follows as in the theorem.
We next derive the asymptotic distribution of

p
nhh

�b�0� � ��0�. Given that pnh�b�0 ��0� = Op(1)

under Assumption H0, the term
p
nhh

�b�0 ��0� can be neglected, and pnhh�b�0� � ��0� has the same
asymptotic distribution as

� 1p
nh

nX
i=1

k

�
qi � 
0
h

�
(x0i; 
0)

h
h
�bb0�(xi)� b0�(xi)�� h�bb0+(xi)� b0+(xi)�i

,
1

nh

nX
i=1

k

�
qi � 
0
h

�
:

For the bias, note that

E

"
1

nh

nX
i=1

k

�
qi � 
0
h

�
(x0i; 
0) (0; Id;0)

��
M

+

i0

��1
rm+i0 �

�
M

�
i0

��1
rm�i0

�#

=

Z Z
(x0i; 
0) (0; Id;0)

��
M

+

i0

��1
rm+i0 �

�
M

�
i0

��1
rm�i0

�
f(xijqi)dxikh (qi � 
0) f(qi)dqi

! E
h
(x0; 
0) (0; Id;0)

h�
M+
o

��1
B+ �

�
M�
o

��1
B�

i
g(p+1)(x; 
0)

��� q = 
0i fq(
0):
For the variance, the corresponding U-projection mn(xi; qi; ei) is

ej

Z
kh

�
qi � 
0
h

�
(x0i; 
0) (0; Id;0)

��
M

+

i0

��1
zij0w

i+
j0 �

�
M

�
i0

��1
zij0w

i�
j0

�
f(xi; qi)dxidqi:

We can proceed in a similar fashion to the above in deriving the asymptotic variance. For example, the

corresponding form to T1 is

T1 � 1

h
E

24e2j
 
k+h (qj � 
0)

Z
k (uq) (x

0
j ; 
0) (0; Id;0)

�
M+
o

��1 "�
u0x;

qj � 
0
h

�Sp#0
K (ux) duxduq

!235
�

Z Z
�2+(xj)

�
k+ (vq)

Z
k (uq) (x

0
j ; 
0) (0; Id;0)

�
M+
o

��1 h
(u0x vq)

Sp
i0
K (ux) duxduq

�2
f(xj ; 
0)dxjdvq

= E
�Z

k2+ (vq)�
2
+(xj)C

+(xj ; vq)
2dvqjqj = 
0

�
fq(
0):

Proof of Corollary 2. The asymptotic distribution of
p
nh
�b�0 ��0� is more involved since it includes

variations from two components as in

p
nh
�b�0 ��0� = pnh�b�0 ��0�+pnh��0 ��0� :

First note that

p
nh
�b�0 ��0� =

p
nh

 b�0Nbfq(
0) � �0fq(
0)fq(
0)

!

�

p
nh
hb�0N ��0fq(
0)i�pnh�0 h bfq(
0)� fq(
0)i

fq(
0)

=

p
nh
hb�0N ��0Ni+pnh h�0N ��0fq(
0)i�pnh�0 h bfq(
0)� fq(
0)i

fq(
0)

9



where b�0N and �
0

N are the numerators of b�0 and �0, and bfq(
0) = 1
nh

nP
i=1

k
�
qi�
0
h

�
. From the earlier

analysis in the proof of Theorem 2, b�0N ��0N satis�es

p
nh
�b�0N ��0N � hp+1e1 h�M�

o

��1
B� �

�
M+
o

��1
B+
i
E[g(p+1)(x; 
0)

��� q = 
0]fq(
0)�
� 1p

nh

nX
i=1

k

�
qi � 
0
h

�
e01

��
M

�
i0

��1
re�i0 �

�
M

+

i0

��1
re+i0

�

� 1p
nh

nX
j=1

ej

Z
kh

�
qi � 
0
h

�
e01

��
M

�
i0

��1
zij0w

i�
j0 �

�
M

+

i0

��1
zij0w

i+
j0

�
f(xi; qi)dxidqi;

and also

p
nh
�
�
0

N � E
h
�
0

N

i
��0

h bfq(
0)� E h bfq(
0)ii�
=

1p
nh

nX
i=1

�
k

�
qi � 
0
h

��
a0�(xi)� a0+(xi)

�
� E

�
k

�
qi � 
0
h

��
a0�(xi)� a0+(xi)

���

� �0p
nh

nX
i=1

�
k

�
qi � 
0
h

�
� E

�
k

�
qi � 
0
h

���
:

It is not hard to see that these two in�uence functions are uncorrelated, so the variance of
p
nh
�b�0 ��0� is

the sum of the variances of these two parts. The variance of the �rst part is derived in the proof of Theorem

2. As to the second part, note that

1

h
E

"
k

�
qi � 
0
h

�2 �
a0�(xi)� a0+(xi)

�2#

=
1

h

Z
k

�
qi � 
0
h

�2 �
a0�(xi)� a0+(xi)

�2
f(xi; qi)dxidqi

�
Z
k (vq)

2 �
a0�(xi)� a0+(xi)

�2
f(xi; 
0)dxidvq

=

Z
k (vq)

2
dvqE[

�
a0�(xi)� a0+(xi)

�2 jqi = 
0]fq(
0):
Similarly,

1

h
E

"
k

�
qi � 
0
h

�2 �
a0�(xi)� a0+(xi)

�#
�

Z
k (vq)

2
dvq�0fq(
0);

1

h
E

"
k

�
qi � 
0
h

�2#
�

Z
k (vq)

2
dvqfq(
0);

so the variance of the second part is approximatelyZ
k (vq)

2
dvqE[

�
a0�(xi)� a0+(xi)

�2 jqi = 
0]fq(
0) + �20 Z k (vq)
2
dvqfq(
0)� 2�0

Z
k (vq)

2
dvq�0fq(
0)

=

Z
k (vq)

2
dvq

�
E[
�
a0�(xi)� a0+(xi)

�2 jqi = 
0]��20� fq(
0):

10



For the bias of the second part, note that

E
h
�
0

N

i
��0fq(
0)

=

Z
kh (qi � 
0)

�
a0�(xi)� a0+(xi)

�
f(xi; qi)dxidqi ��0fq(
0)

=

Z
k (vq)

�
a0�(xi)� a0+(xi)

�
f(xi; 
0 + vqh)dxidvq ��0fq(
0)

�
Z
k (vq)

�
a0�(xi)� a0+(xi)

�Xp+1

l=1

1

l!
f (l)
 (xi; 
0) (vqh)

l
dxidvq

=
Xp+1

l=1

hl

l!

�Z
k (vq) v

l
qdvq

� Z �
a0�(xi)� a0+(xi)

�
f (l)
 (xi; 
0)dxi

where f (l)
 (xi; 
0) is the lth order partial derivative of f(xi; 
) with respect to 
 evaluated at 
 = 
0, and

E
h bfq(
0)i� fq(
0) =

Z
kh (qi � 
0) f(qi)dqi � fq(
0)

=

Z
k (vq) f(
0 + vqh)dvq � fq(
0)

�
Z
k (vq)

Xp+1

l=1

1

l!
f (l)
 (
0) (vqh)

l
dvq

=
Xp+1

l=1

hl

l!

�Z
k (vq) v

l
qdvq

�
f (l)
 (
0);

where f (l)
 (
0) is the lth order derivative of fq(
) with respect to 
 evaluated at 
 = 
0. Under Assumptions

F0 and K0, all the terms except the (p + 1)th term in E
h
�
0

N

i
� �0fq(
0) and E

h bfq(
0)i � fq(
0) would
disappear. In sum, the asymptotic distribution of

p
nh
�b�0 ��0� is as stated in the theorem.

Proof of Theorem 3. First note the following explicit formula for
�
��;e�0x�0 from the extremum estimation

problem (equation (7) in the main text)

�
��;e�0x�0 =

 
1

n

nX
i=1

(1; x0i)
0
(1; x0i) kh (qi � b
)

!�1 
1

n

nX
i=1

(1; x0i)
0
kh (qi � b
) (ba�(xi)� ba+(xi))! :

By similar analysis to the proof of Theorem 2, b
 in ���;e�0x�0 can be replaced by 
0 without a¤ecting
its asymptotic distribution. Also, ba�(xi) � ba+(xi) can be replaced by its linear approximation with no
asymptotic impact. In summary,

p
nh

��
��;e�0x�0 � ���0 + 
0�q0; �0x0�0�

�
 
1

n

nX
i=1

(1; x0i)
0
(1; x0i) kh (qi � 
0)

!�1
�
 

1p
nh

nX
i=1

(1; x0i)
0
k

�
qi � 
0
h

�
e1

�
hp+1

��
M

�
i0

��1
rm�i0 �

�
M

+

i0

��1
rm+i0

�
+

��
M

�
i0

��1
re�i0 �

�
M

+

i0

��1
re+i0

���
;

where M
�
i0, r

m�
i0 and re�i0 are de�ned in the proof of Theorem 2.

By standard methods, the denominator converges in probability to M � fq(
0), where M is de�ned in the

11



main text, so we concentrate on the numerator. First, consider the bias term. From the proof of Theorem 2,

1

nh

nX
i=1

(1; xi)
0
k

�
qi � 
0
h

�
e1

��
M

�
i0

��1
rm�i0 �

�
M

+

i0

��1
rm+i0

�
p�! E

h
(1; x0)

0
e1

h�
M�
o

��1
B� �

�
M+
o

��1
B+
i
g(p+1)(x; 
0)

��� q = 
0i fq(
0):
Next consider the variance. We need to calculate the covariance between the lth and tth element of the

numerator, l; t = 1; � � � ; d. Taking the (l + 1)th element of the numerator, l = 1; � � � :d� 1, we consider

1p
nh

nX
i=1

xlik

�
qi � 
0
h

�
e01

��
M

+

i0

��1
re+i0 �

�
M

�
i0

��1
re�i0

�
;

which is a second-order U-statistic. From Lemma 8.4 of Newey and McFadden (1994), this U-statistic is

asymptotically equivalent to 1p
nh

nP
i=1

ml
n(xi; qi; ei), where

ml
n(xj ; qj ; ej) = E

�
xlik

�
qi � 
0
h

�
e01

��
M

+

i0

��1
zij0w

i+
j0 ej �

�
M

�
i0

��1
zij0w

i�
j0 ej

�����xj ; qj ; ej�
= ej

Z
xlik

�
qi � 
0
h

�
e01

��
M

+

i0

��1
zij0w

i+
j0 �

�
M

�
i0

��1
zij0w

i�
j0

�
f(xi; qi)dxidqi:

It is not hard to show that

1

nh

nX
i=1

ml
n(xi; qi; ei)m

t
n(xi; qi; ei)

p�! E
�
xlxt

Z �
k2+ (vq)�

2
+(x)C

+
1 (vq)

2 + k2� (vq)�
2
�(x)C

�
1 (vq)

2
�
dvq

���� q = 
0� fq(
0):
Then, applying the Liapunov central limit theorem, the asymptotic distribution of

p
nh
�
�� � ��0 � 
0�q0

�
and

p
nh
�e�xl � �xl0�, l = 1; � � � ; d� 1, follows as in the theorem.

When 
0 = 0,
p
nh
�e�� � ��0� = pnh��� � b
b�q � ��0� = pnh ��� � ��0��pnhOp(n�1)Op(�pnhh��1+

hp) =
p
nh
�
�� � ��0

�
+op(1), so

p
nh
�e�� � ��0� have the same asymptotic distribution as pnh ��� � ��0�.

When 
0 6= 0, the convergence rate of e�� � ��0 is pnhh. It is obvious that pnhh��� � b
b�q � ��0� �
p
nhh

�
�� � 
0b�q � ��0� = pnhhOp(n�1)Op(�pnhh��1 + hp) = op(1). Also,

p
nhh

�
�� � 
0b�q � ��0� =

p
nhh

�
�� � ��0 � 
0�q0

�
� 
0

p
nhh

�b�q � �q0�
= op(1)� 
0

p
nhh

�b�q � �q0� :
So
p
nhh

�e�� � ��0� has the same asymptotic distribution as �
0pnhh�b�q � �q0�.
Proof of Theorem 4. Assume the densities of (x0; q)0 and e are known. Since the minimax risk for a

larger class of probability models must not be smaller than that for a smaller class of probability models,

the lower bound for a particular distributional assumption also holds for a wider class of distributions. To

simplify the calculation, assume ei is iid N(0; 1) and (x0i; qi)
0 is iid uniform on X �N , where N is speci�ed as

[��; �]. Such a speci�cation also appears in Fan (1993) where it is called the assumption of richness of joint
densities. We will use the technique in Sun (2005) to develop our results. This technique is also implicitly

used in Stone (1980) and the essential part of the technique can be cast in the language of Neyman-Pearson

12



testing.

Let P;Q be probability measures de�ned on the same measurable space (
;A) with the a¢ nity between
the two measures de�ned as usual to be

�(P;Q) = inf (EP [�] + EQ [1� �]) ;

where the in�mum is taken over the measurable function � such that 0 � � � 1. In other words, �(P;Q) is
the smallest sum of type I and type II errors of any test between P and Q. It is a natural measure of the

di¢ culty of distinguishing P and Q. Suppose � is a measure dominating both P and Q with corresponding

densities p and q. It follows from the Neyman-Pearson lemma that the in�mum is achieved by setting

� = 1(p � q) and then

�(P;Q) =

Z
1(p � q)pd�+

Z
1(p > q)qd�

= 1� 1
2

Z
jp� qj d� � 1� 1

2
kP �Qk1 ;

where k�k1 is the L1 distance between two probability measures. Now consider a pair of probability models
P;Q 2 P(s;B) such that j��(P )� ��(Q)j � �. For any estimator b�, we have

1
�


b�� � ��(P )


 > �=2�+ 1�


b�� � ��(Q)


 > �=2� � 1:

Let

� =
1
����b�� � ��(P )��� > �=2�

1
����b�� � ��(P )��� > �=2�+ 1����b�� � ��(Q)��� > �=2� :

Then 0 � � � 1 and

sup
P2P(s;B)

P
����b�� � ��(P)��� > �=2� � 1

2

n
P
����b�� � ��(P )��� > �=2�+Q����b�� � ��(Q)��� > �=2�o

� 1

2
EP [�] +

1

2
EQ [1� �] :

Therefore

infb�� sup
P2P(s;B)

P
����b�� � ��(P)��� > �=2� � 1

2
�(P;Q)

for any P and Q such that j��(P )� ��(Q)j � �. So we need only search for the pair (P;Q) which minimize
�(P;Q) subject to the constraint j��(P )� ��(Q)j � �. To obtain a lower bound with a sequence of inde-

pendent observations, let (
;A) be the product space and P(s;B) be the family of product probabilities on
such a space. Then for any pair of �nite-product measures P =

Qn
i=1 Pi and Q =

Qn
i=1Qi, the minimax

risk satis�es

infb�� sup
P2P(s;B)

P
����b�� � ��(P )��� > �=2� � 1

2

�
1� 1

2




Yn

i=1
Pi �

Yn

i=1
Qi





1

�
provided that j��(P )� ��(Q)j � �. From Pollard (1993), if dQi=dPi = 1 +�i(�), then




Yn

i=1
Pi �

Yn

i=1
Qi





1
� exp

 
nX
i=1

�2i

!
� 1;
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where �2i = EPi [�2i (�)] is �nite. So

infb�� sup
P2P(s;B)

P
����b�� � ��(P )��� > �=2� � 1

2

 
3

2
� exp

 
nX
i=1

�2i

!!
(3)

provided that j��(P )� ��(Q)j � �.
It remains to �nd probabilities P and Q that are di¢ cult to distinguish by the data set f(x0i; qi; yi)g

n
i=1.

First assume 
0 6= 0. Without loss of generality, let 
0 > 0. Under P , the data is generated according to

yi = gP (xi; qi) + (��P + x
0
i�xP + qi�qP ) 1(qi � 
0) + ei;

and under Q, gP and �P are changed to gQ and �Q, respectively. We now specify g and � for each model.

For P , let gP = 0 and �P = 0; for Q, let

gQ(x; q) = ���s'q
�
q � 
0
�

�
, ��Q = ��
0�s�1, �xQ = 0, and �qQ = ��s�1;

where � is a positive constant, � = n�1=(2s+1), 'q is an in�nitely di¤erentiable function in q satisfying (i)

'q(v) = 0 for v � 0, (ii) 'q (v) = v, for v � ��, and (iii) v � 'q (v) 2 (0; 1) for v 2 (��; 0). It is not hard
to check that gQ(x; q) 2 C (s;B) for some B > 0, so it remains to compute the L1 distance between the two
measures. Let the density of Qi with respect to Pi be 1 + �i(�), then

�i(xi; qi; yi) =

(
�(yi � gQ(xi; qi)� ��Q � qi�qQ)=�(yi)� 1;

0;

if qi 2 [
0 � ��; 
0];
otherwise

where �(�) is the standard normal pdf. Therefore,

EPi [�2i ] =

Z 
0


0���

Z 1

0

� � �
Z 1

0

Z 1

�1
[�(y � gQ(x; q)� ��Q � q�qQ)=�(y)� 1]2 �(y)f(x; q)dydxdq

=
1

2�

Z 
0


0���

Z 1

0

� � �
Z 1

0

Z 1

�1
�(y � gQ(x; q)� ��Q � q�qQ)2=�(y)dydxdq

�1
�

Z 
0


0���

Z 1

0

� � �
Z 1

0

Z 1

�1
�(y � gQ(x; q)� ��Q � q�qQ)dydxdq +

�

2

=
1

2�

Z 
0


0���

Z 1

0

� � �
Z 1

0

Z 1

�1
�(y � gQ(x; q)� ��Q � q�qQ)2=�(y)dydxdq �

�

2
:

Plugging in the standard normal pdf yields

EPi [�2i ] =
1

2�

Z 
0


0���

Z 1

0

� � �
Z 1

0

Z 1

�1

1p
2�
exp

�
�2(y � gQ(x; q)� ��Q � q�qQ)

2

2
+
y2

2

�
dydxdq � �

2

=
1

2�

Z 
0


0���

Z 1

0

� � �
Z 1

0

exp
n
[gQ(x; q) + ��Q + q�qQ]

2
o
dxdq � �

2

=
1

2�

Z 
0


0���
exp

(
�2�2s

�
q � 
0
�

� 'q
�
q � 
0
�

��2)
dq � �

2

� �

2
exp

�
�2�2s

�
� �
2
=
�

2

�
exp

�
�2�2s

�
� 1
�
=
�2

2
�2s+1(1 + o(1)) � �2

2n
;

when n is large enough.

14



When � is small enough, say �2=2 � log(5=4), we have

exp

 
nX
i=1

�2i

!
� exp

�
�2

2

�
<
5

4
:

It follows from (3) that

infb�� sup
P2P(s;B)

P
����b�� � ��(P )��� > �

2
n�

s�1
2s+1

�
� 1

2

�
3

2
� 5
4

�
=
1

8
� C;

on choosing C � 1=8, where �
2n

� s�1
2s+1 appears because j��(P )� ��(Q)j = 
0�n�

s�1
2s+1 � �n�

s�1
2s+1 for a small

�.

When 
0 = 0, we choose

gQ(x; q) = ���s'q
�
q

�

�
, ��Q = ��s, �xQ = 0, and �qQ = 0;

where 'q is an in�nitely di¤erentiable function in q satisfying (i) 'q(v) = 0 for v � 0, (ii) 'q (v) = 1, for

v � ��, and (iii) 'q (v) 2 (0; 1) for v 2 (��; 0), then

EPi [�2i ] =
1

2�

Z 0

���
exp

(
�2�2s

�
1� 'q

�
q

�

��2)
dq � �

2
� �

2
exp

�
�2�2s

�
� �
2
;

and following similar steps to those above we have infb�� sup
P2P(s;B)

P
����b�� � ��(P )��� > �

2n
� s
2s+1

�
� C for some �

and C.

The above argument also shows that the optimal rate of convergence for �q is n
� s�1
2s+1 . As for �x, we need

only choose another pair of probabilities P and Q. To simplify notation, let d � 1 = 1 so that x is only

one-dimensional. Let P be the same as above, and

gQ(x; q) = ���s'q
�
q � 
0
�

�
x, ��Q = 0, �xQ = ��s, and �qQ = 0;

where 'q is an in�nitely di¤erentiable function in q satisfying (i) 'q(v) = 0 for v � 0, (ii) 'q (v) = 1, for

v � ��, and (iii) 'q (v) 2 (0; 1) for v 2 (��; 0): Then

EPi [�2i ] =
1

2�

Z 
0


0���

Z 1

0

exp

(
�2�2sx2

�
1� 'q

�
q

�

��2)
dxdq � �

2
� �

2
exp

�
�2�2s

�
� �
2
;

and it follows that infb�x sup
P2P(s;B)

P
����b�x � �x(P )��� > �

2n
� s
2s+1

�
� C for some � and C.

Proof of Theorem 5. Note that

p
n

 b�GMM � �0b�GMM � �0

!
=
� bG0b
�1 bG��1 bG0b
�1 1p

n

nX
i=1

 
zi1 (qi � b
)
z0i1 (qi > b
)

!
("i + x

0
i�01 (b
 < qi � 
0)) :

By the consistency of b
 and Glivenko-Cantelli, bG p�! G. Following the proof of Theorem 3 of Caner and

Hansen (2004), we can show that b
 p�! 
 under the moment restrictions on x; q, " and z. We still need to
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show that

1p
n

nX
i=1

 
zi1 (qi � b
)
z0i1 (qi > b
)

!
x0i�01 (b
 < qi � 
0)

=

0@ 0

1p
n

nP
i=1

z0ix
0
i�01 (b
 < qi � 
0)

1A p�! 0;

and
1p
n

nX
i=1

 
zi1 (
0 < qi � b
)
z0i1 (b
 < qi � 
0)

!
"i

p�! 0:

For these two results, consistency of b
 is not enough; we need n1=2 (b
 � 
0) p�! 0. But in this case,
1p
n

nP
i=1

z0ix
0
i�01 (b
 < qi � 
0) = op� 1

n

nP
i=1

z0ix
0
i�0

�
= op(1), and the second result holds similarly. Given these

two results, standard arguments yield the asymptotic distribution of the GMM estimator.

4. Proofs for the Propositions

The following four propositions are needed in the proof of Theorem 1 and Corollary 1 and hold under the

conditions of that theorem.

Proposition 1 b
 � 
0 = Op(h).
Proof. We apply Lemma 4 of Porter and Yu (2015) to prove this result. De�ne Qn(
) as the probability
limit of bQn(
). Lemma 1 shows that

sup

2�

��� bQn(
)�Qn(
)��� p�! 0;

where

Qn(
) =

Z " R 0
�1
R
Kx(ux; x)k�(uq)m(x+ uxh; 
 + uqh)f(x+ uxh; 
 + uqh)duxduq

�
R 1
0

R
Kx(ux; x)k+(uq)m(x+ uxh; 
 + uqh)f(x+ uxh; 
 + uqh)duxduq

#2
f(x)dx:

Let Nn = [
0�h; 
0+h] and 
n = argmax

2�

Qn(
), then it remains to show that sup

2�nNn

Qn(
) < Qn(
n)�C

for some positive constant C. It is easy to show that sup

2�nNn

Qn(
) = O(h
2). On the contrary, for 
 2 Nn,

Qn(
) behaves quite di¤erently. Speci�cally, let 
 = 
0 + ah, a 2 (0; 1), then

Qn(
) =

Z 264
R 0
�1
R
Kx(ux; x)k�(uq)g(x+ uxh; 
 + uqh)f(x+ uxh; 
 + uqh)duxduq

+
R �a
�1
R
Kx(ux; x)k�(uq) (1; x

0 + hu0x; 
 + uqh) �0f(x+ uxh; 
 + uqh)duxduq

�
R 1
0

R
Kx(ux; x)k+(uq)g(x+ uxh; 
 + uqh)f(x+ uxh; 
 + uqh)duxduq

375
2

f(x)dx:

The di¤erence of the �rst and the third terms in brackets is O(h2), so the second term will dominate. From

Assumption I, (1; x0; 
0) �0 6= 0 for some x 2 X , so
R �R

Kx(ux; x) (1; x
0; 
0) �0f(x; 
0)dux

�2
f(x)dx > C

for some positive constant C. Because k�(0) > 0 and k�(�) � 0,
R �a
�1 k�(uq)duq < 1 and is a decreasing

function of a. As a result, Qn(
) is a decreasing function of a for a 2 (0; 1) up to O(h2). Similarly,

it is an increasing function of a for a 2 (�1; 0). So Qn(
) is maximized at some 
n 2 Nn such that
Qn(
n) > sup


2�nNn

jQn(
)j+ C=2 for n large enough. The required result follows.
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Proposition 2 b
 � 
0 = Op(n�1).
Proof. We use the standard shelling method (see, e.g., Theorem 3.2.5 of Van der Vaart and Wellner (1996))

to prove this result.

For each n, the parameter space can be partitioned into the �shells�Sl;n =
�
� : 2l�1 < n j
 � 
0j � 2l

	
with l ranging over the integers. If n jb
 � 
0j is larger than 2L for a given integer L, then b
 is in one of
the shells Sl;n with l � L. In that case the supremum of the map 
 7! bQn(
) � bQn(
0) over this shell is
nonnegative by the property of b
. Note that

P
�
n jb
 � 
0j > 2L�

� P

 
sup

2L<nj
�
0j�nh

 
1

n

nX
i=1

b�2i (
)� 1

n

nX
i=1

b�2i (
0)
!
� 0
!
+ P (jb
 � 
0j � h)

�
log2(nh)X
l=L

P

 
sup
Sl;n

1

n

nX
i=1

b�2i (
) � 1

n

nX
i=1

b�2i (
0)
!
+ P (jb� � �0j � h)

�
log2(nh)X
l=L

P

 
sup
Sl;n

1

n

nX
i=1

b�2i (
)1(�(xi) > 0) � 1

n

nX
i=1

b�2i (
0)1(�(xi) > 0)
!

+

log2(nh)X
l=L

P

 
sup
Sl;n

1

n

nX
i=1

b�2i (
)1(�(xi) < 0) � 1

n

nX
i=1

b�2i (
0)1(�(xi) < 0)
!

+P (jb� � �0j � h)
� T1 + T2 + T3;

where �(xi) � (1; x0i; 
0) �0. T3 converges to zero by the last proposition, so we concentrate on the �rst two
terms. T2 can be analyzed similar to T1, so we only consider T1 in the following discussion.

T1 �
log2(nh)X
l=L

P

 
sup
Sl;n

1

n

nX
i=1

�b�i(
)� b�i(
0)� 1(�(xi) > 0) > 0
!

+

log2(nh)X
l=L

P

 
sup
Sl;n

1

n

nX
i=1

�b�i(
) + b�i(
0)� 1(�(xi) > 0) < 0
!
:

We concentrate on the �rst term since the second term is easier to analyze given that �(xi) > 0. To simplify

notations, we neglect 1(�(xi) > 0) in the following discussion.

Note that

1

n

nX
i=1

�b�i(
)� b�i(
0)�
=

1

n(n� 1)

nX
i=1

nX
j=1;j 6=i

�
yjK


�
h;ij � yjK


+
h;ij

�
� 1

n(n� 1)

nX
i=1

nX
j=1;j 6=i

�
yjK


�0
h;ij � yjK


+0
h;ij

�
=

1

n(n� 1)

nX
i=1

nX
j=1;j 6=i

h�
mjK


�
h;ij �mjK


+
h;ij

�
�
�
mjK


�0
h;ij �mjK


+0
h;ij

�i
+

1

n(n� 1)

nX
i=1

nX
j=1;j 6=i

�
ejK


�
h;ij � ejK


+
h;ij

�
� 1

n(n� 1)

nX
i=1

nX
j=1;j 6=i

�
ejK


�0
h;ij � ejK


+0
h;ij

�
� D1 +D2;
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where mj = gj + (1; x
0
j ; qj)�01(qj � 
0) with gj = g(xj ; qj). Suppose 
0 < 
 < 
0 + h: Then

D1 =
1

n(n� 1)

nX
i=1

nX
j=1;j 6=i

gj

�
K

+0
h;ij �K


+
h;ij

�
+

1

n(n� 1)

nX
i=1

nX
j=1;j 6=i

gj

�
K
�
h;ij �K


�0
h;ij

�
+

1

n (n� 1)

nX
i=1

nX
j=1;j 6=i

(1; x0j ; qj)�0

�
K
�
h;ij �K


�0
h;ij

�
1(qj � 
0)

� �C j
 � 
0j
h

;

for some C > 0 with probability approaching 1 by calculating the mean and variance ofD1 in its U-projection,

where the �rst two terms contribute only Op(j
 � 
0j), and the third term contributes to �C j
�
0j
h because

for each i, K
�
h;ij covers less j terms than K


�0
h;ij given that 
 > 
0 and k�(0) > 0. In consequence, for � � h,

P

 
sup

j
�
0j<�

1

n

nX
i=1

�b�i(
)� b�i(
0)� > 0
!
� P

 
sup

j
�
0j<�
D2 > C

j
0 � 
j
h

!
:

Notice that

D2 =
1

n (n� 1)

nX
i=1

nX
j=1;j 6=i

ej

�
K
�
h;ij �K


�0
h;ij

�
1(qj � 
0) +

1

n (n� 1)

nX
i=1

nX
j=1;j 6=i

ej

�
K

+0
h;ij �K


+
h;ij

�
1(qj > 
)

+
1

n (n� 1)

nX
i=1

nX
j=1;j 6=i

ej

�
K
�
h;ij +K


+0
h;ij

�
1 (
0 < qj � 
) � D21 +D22 +D23:

By Lemma 8.4 of Newey and McFadden (1994), we can show

D21 �
1

n

nX
j=1

ej
h

�
k�

�
qj � 

h

�
� k�

�
qj � 
0
h

��
1(qj � 
0);

so V ar (D21) = O
�

1
nh

�

�
0
h

�2�
. Similarly, V ar(D22) = O

�
1
nh

�

�
0
h

�2�
. As to D23, we can show

D23 �
1

n

nX
j=1

ej
h

�
k�

�
qj � 

h

�
+ k+

�
qj � 
0
h

��
1 (
0 < qj � 
) ;

so V ar (D23) = O
�
1
nh

j
�
0j
h

�
. By the independence of U-projections of D21; D22 and D23, we have

V ar (D2) = O

 
1

nh

�

 � 
0
h

�2
+
1

nh

j
 � 
0j
h

!
= O

�
1

nh

j
 � 
0j
h

�
:

In consequence,

P

 
sup

j
�
0j<�

1

n

nX
i=1

�b�i(
)� b�i(
0)� > 0
!
� C E

24 sup
j
�
0j<�

D2

!235,�
j
 � 
0j
h

�2

� C j
 � 
0j
nh2

�
(
 � 
0)

2

h2
� C

n j
 � 
0j
;
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by Markov�s inequality. So

log2(nh)X
l=L

P

 
sup
Sl;n

1

n

nX
i=1

�b�i(
)� b�i(
0)� > 0
!

�
X
l�L

C

n � 2l=n = C
X
l�L

1

2l
! 0

as L!1, and the proof is complete.

Proposition 3 For v in any compact set of R,

nh
� bQn �
0 + v

n

�
� bQn(
0)�. 2k+(0)

= �
nX
i=1

z1i1
�

0 �

v

n
< qi � 
0

�
�

nX
i=1

z2i1
�

0 < qi � 
0 +

v

n

�
+ op(1):

Proof. We use the same notation as the last proposition and denote 
0 +
v
n as 


v
0: Then

nh
� bQn (
v0)� bQn(
0)� =

nX
i=1

hb�i(
v0)2 � nX
i=1

hb�i(
0)2
=

nX
i=1

�b�i(
v0) + b�i(
0)�h�b�i(
v0)� b�i(
0)� :
Following Lemma B.1 of Newey (1994), we can show that b�i(
v0) p�! (1; x0i; 
0) �0f(xi; 
0) � �f (xi) =

Op(1) uniformly in i and v, so b�i(
v0) + b�i(
0) p�! 2�f (xi) uniformly in i and v. We concentrate on

h
�b�i(
v0)� b�i(
0)�. For simplicity, let v > 0. Now,

h
�b�i(
v0)� b�i(
0)�

=

0@ h

n� 1

nX
j=1;j 6=i

yjK

v0�
h;ij �

h

n� 1

nX
j=1;j 6=i

yjK

v0+
h;ij

1A�
0@ h

n� 1

nX
j=1;j 6=i

yjK

0�
h;ij �

h

n� 1

nX
j=1;j 6=i

yjK

0+
h;ij

1A

=

266664
h
n�1

nX
j=1;j 6=i

�
g(xj ; qj) +

�
1; x0j ; qj

�
�0 + ej

�
1(qj � 
0)K


v0�
h;ij � h

n�1

nX
j=1;j 6=i

(g(xj ; qj) + ej)K

v0+
h;ij

+ h
n�1

nX
j=1;j 6=i

(g(xj ; qj) + ej) 1(
0 < qj � 
v0)K

v0�
h;ij

377775
�

24 h

n� 1

nX
j=1;j 6=i

�
g(xj ; qj) +

�
1; x0j ; qj

�
�0 + ej

�
K

0�
h;ij �

h

n� 1

nX
j=1;j 6=i

(g(xj ; qj) + ej)K

0+
h;ij

35
= T1i + T2i + T3i + T4i + T5i + T6i;
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where

T1i = � h

n� 1

nX
j=1;j 6=i

g(xj ; qj)
�
K

v0+
h;ij �K


0+
h;ij

�
;

T2i =
h

n� 1

nX
j=1;j 6=i

�
g(xj ; qj) +

�
1; x0j ; qj

�
�0
� �
K

v0�
h;ij �K


0�
h;ij

�
;

T3i = � h

n� 1

nX
j=1;j 6=i

ej1(qj > 

v
0)
�
K

v0+
h;ij �K


0+
h;ij

�
;

T4i =
h

n� 1

nX
j=1;j 6=i

ej1(qj � 
0)
�
K

v0�
h;ij �K


0�
h;ij

�
;

T5i =
h

n� 1

nX
j=1;j 6=i

ej1(
0 < qj � 
v0)K

0+
h;ij ; (�)

T6i = � h

n� 1

nX
j=1;j 6=i

��
1; x0j ; qj

�
�0 � ej

�
1(
0 < qj � 
v0)K


v0�
h;ij :(�)

Our target is to show that
nX
i=1

(T1i + T2i + T3i + T4i) = op(1);

and

nX
i=1

(T5i + T6i)�f (xi) = k+(0)
nX
i=1

[� (1; x0i; 
0) �0 + 2ei] f(xi)�f (xi)1 (
0 < qi � 
v0) + op(1)

= �k+(0)
nX
i=1

z2i1 (
0 < qi � 
v0) + op(1):

The �rst result is shown in Lemma 2, and the second is shown in Lemma 3.

Proposition 4 On any compact set of v, nhd
�b�o �
0 + v

an

�
� b�o (
0)�) Do(v).

Proof. The proof proceeds by establishing convergence of the �nite dimensional distributions of R(v) �
nhd

�b�o (
v0)� b�o (
0)� to those of Do(v) and then showing that R(v) is tight, where 
v0 = 
0 + v
an
.

From the last proposition, R(v) can be written as the sum of six terms:

R(v) =
6X
l=1

T+l 1(v > 0) +
6X
l=1

T�l 1(v < 0);
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where T+l is the same as Tli except that h
n�1 in Tli is changed to h

d, xi is changed to xo,
nX

j=1;j 6=i
changes to

nX
j=1

, and K
�
h;ij changes to K


�
h;j , and

T�1 = hd
nX
j=1

g(xj ; qj)
�
K

0+
h;j �K
v0+

h;j

�
;

T�2 = hd
nX
j=1

�
g(xj ; qj) +

�
1; x0j ; qj

�
�0
� �
K

v0�
h;j �K
0�

h;j

�
;

T�3 = �hd
nX
j=1

ej1(qj > 
0)
�
K

v0+
h;j �K
0+

h;j

�
;

T�4 = hd
nX
j=1

ej1(qj � 
v0)
�
K

v0�
h;j �K
0�

h;j

�
;

T�5 = �hd
nX
j=1

ej1(

v
0 < qj � 
0)K


0�
h;j ; (�)

T�6 = �hd
nX
j=1

��
1; x0j ; qj

�
�0 + ej

�
1(
v0 < qj � 
0)K


v0+
h;j :(�)

Lemma 4 shows that
P4

l=1 T
+
l +

P4
l=1 T

�
l = op(1) uniformly in v, and Lemma 5 shows that for a �xed v,

T+5 + T
+
6 + T

�
5 + T

�
6

d�! Do(v):

We next show the tightness of T+5 + T
+
6 + T

�
5 + T

�
6 . Take T

+
5 to illustrate the argument. Suppose v1 and

v2, 0 < v1 < v2 <1, are stopping times. Then for any � > 0,

P
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jv2�v1j<�

��T+5 (v2)� T+5 (v1)�� > �
!

� P

0@ nX
j=1

K

�
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�
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�
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0
h

�
jej j sup

jv2�v1j<�
1(
v10 < qj � 
v20 ) > �

1A
�

nX
j=1

E

"
K

�
xj � xo
h

�
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�
qj � 
0
h

�
jej j sup

jv2�v1j<�
1(
v10 < qj � 
v20 )

#,
�

� C�=�;

where the second inequality is from Markov�s inequality, and C in the last inequality can take

sup
(x;q)2N

E [jej jx; q] f(x; q) sup
ux;uq

K(ux)k+(uq)

with N being a neighborhood of (x0o; 
0)
0. The required result now follows.

The following Proposition 5 is used in the proof of Theorem 2 and holds under the conditions of that

theorem.

21



Proposition 5

0@ p
nh
�b�� b�0�

p
nhh

�b�xq � b�0xq�
1A p�! 0:

Proof. We need only to show

1

n

nX
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kh

�
qi � b

h
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nh (ba�(xi)� ba+(xi))p
nhh
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!
� 1
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�
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0
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� p
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�ba0�(xi)� ba0+(xi)�p

nhh
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!
p�! 0;

and
p
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1
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i=1
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�
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h

�
� 1

n
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i=1
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�
qi � 
0
h

�!
p�! 0: (4)

It is easy to see that the �rst result is implied by

p
nh
�
(ba�(xi)� ba+(xi))� �ba0�(xi)� ba0+(xi)�� p�! 0 uniformly in xi,

p
nhh

h�bb�(xi)�bb+(xi)�� �bb0�(xi)�bb0+(xi)�i p�! 0 uniformly in xi.

Since b
 � 
0 = Op(n�1), b
 falls into �
0 � C
n ; 
0 +

C
n

�
for some positive C with any large probability when

n is large enough. So we can just prove these results by replacing b
 by 
0 + C
n � 
C0 . The correspondingba�(xi) and bb�(xi) are denoted as baC�(xi) and bbC�(xi). Since the results for ba�(xi) and bb�(xi) are similarly

proved, we need only prove that

p
nh
�baC+(xi)� ba0+(xi)� p�! 0 uniformly in xi, (5)

p
nhh

hbbC+(xi)�bb0+(xi)i p�! 0 uniformly in xi.

Without loss of generality, suppose C > 0. Lemma 6 shows (4), and Lemma 7 shows (5).

5. Proofs for the Lemmas

Lemma 1 sup

2�

��� bQn(
)�Qn(
)��� p�! 0:

Proof. Noting that ��X is compact we have from Lemma B.1 of Newey (1994) that

sup

2�;xi2X

��� b�i(
)� Ei[b�i(
)]��� = Op�qlnn=nhd� :
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h
Ei
hb�i(
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)� Ei[b�i(
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E2i
hb�i(
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uniformly in 
. By a Glivenko-Cantelli theorem,

sup

2�

����� 1n
nX
i=1

E2i
hb�i(
)i� E hE2i hb�i(
)ii

����� p�! 0:
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Note that E
h
E2i
hb�i(
)ii = Qn (
), the result of interest follows.

Lemma 2
nP
i=1

4P
l=1

Tli = op(1) uniformly in v:

Proof. We take T4i to illustrate and have

nX
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�
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�
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0
h
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= O

0@ 1

n (n� 1)

nX
i=1

nX
j=1;j 6=i

ej
1(
0 � h � qj � 
0)

h
Kx
h;ij

1A � O

0@ 1

n (n� 1)

nX
i=1

nX
j=1;j 6=i

Pn (Xi; Xj)

1A
uniformly in v, where the second to last equality is from the Lipschitz continuity of k�(�). By the U-statistic
projection, see, e.g., Lemma 8.4 of Newey and McFadden (1994),

1

n (n� 1)

nX
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nX
j=1;j 6=i

Pn (Xi; Xj)

=
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n
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E [Pn (Xi; Xj) jXj ] +Op
�
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E
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Pn (Xi; Xj)

2
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In our case, E [Pn (Xi; Xj) jXj ] = ej
1(
0�h�qj�
0)

h

R
Kx
h;ijf(xi)dxi = O(ej1(
0 � h � qj � 
0)=h), and

E
h
Pn (Xi; Xj)

2
i
� 1

hd

R
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�
1
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�
, so

1

n

nX
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E [Pn (Xi; Xj) jXj ] = Op

0@ 1

nh

X
j=1

ej1(
0 � h � qj � 
0)

1A = op(1);

1

n
E
h
Pn (Xi; Xj)

2
i1=2

= O

�
1

nhd=2

�
= o(1):

Lemma 3
nP
i=1

(T5i + T6i)�f (xi) = �k+(0)
nP
i=1

[(1; x0i; 
0) �0 � 2ei] 1(
0 < qi � 
v0)f(xi)�f (xi) + op(1):

Proof.
nP
i=1

T5i�f (xi) is a U-statistic and we write

nX
i=1

T5i�f (xi) =
h

n� 1
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1
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�
1

n
E
h
Pn (Xi; Xj)

2
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;
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where Pn (Xi; Xj) = nhej1(
0 < qj � 
v0)K

0+
h;ij �f (xi) with Xi = (x

0
i; qi; ei)

0, and the last equality is from

Lemma 8.4 of Newey and McFadden (1994). Then

E [Pn (Xi; Xj) jXj ] � nej1(
0 < qj � 
v0)k+(0)
1

hd�1

Z
Kx
h (xi � xj ; xi) f(xi)�f (xi)dxi
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0 < qj � 
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Z
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and

E
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2
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n2h2

1

n

1

h2d
hd�1

�
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� n
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�
;

so that

1

n
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j=1

E [Pn (Xi; Xj) jXj ] =
nX
i=1

ei1(
0 < qi � 
v0)k+(0)f(xi)�f (xi);

1

n
E
h
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2
i1=2

=
1

n

r
n

hd�1
=

r
1
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= o(1):

Similarly,

nX
i=1

T6i�f (xi) = � h

n� 1

nX
i=1

nX
j=1;j 6=i

�
x0j�0 � ej
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h;ij �f (xi)

= �
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0 < qi � 
v0)k�(0)f(xi)�f (xi) + op(1):

The result follows by noting that k�(0) = k+(0).

Lemma 4
4P
l=1

T+l +
4P
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T�l = op(1) uniformly in v:

Proof. Take T+4 as an example.
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uniformly in v, where the last equality is from the Lipschitz continuity of k�(�). Since

E[T+24 ] = O

�
1

nhd�2

�
= o(1);

T+4 = op(1).

Lemma 5 T+5 + T
+
6 + T

�
5 + T

�
6

d�! Do(v):

24



Proof. Take T+5 + T�5 as an example. We use the characteristic function to �nd its weak limit. De�ne

T�5 =
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�
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where Vol(K(ux) > 0) = 2d�1 is the volume of the area of ux such that K(ux) > 0, and U�j and U+j are

independent of (ej ; x0j ; qj)
0 and follow a uniform distribution on the support of K(�). It follows that

E
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This is the characteristic function of a compound Poisson process D5(�) evaluated at v� and v+, where

D5 (v) =

8>><>>:
N1(jvj)P
i=1

ez1i, if v � 0;
N2(v)P
i=1

ez2i, if v > 0;
is a cadlag process withD5(0) = 0, ez1i = �e�i K(U�i )k� (0), ez2i = e+i K(U+i )k� (0), and �e�i ; e+i ; U�i ; U+i 	i�1,
N1(�) and N2(�) are de�ned in Corollary 1. Generalizing this argument, we get the result of interest.

Lemma 6
p
nh

�
1
n

nP
i=1

kh

�
qi�
C0
h

�
� 1

n

nP
i=1

kh

�
qi�
0
h

��
p�! 0:

25



Proof.
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where the inequality is from the Lipschitz continuity of k(�).

Lemma 7 Uniformly in xi,
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Take the following term of
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From Lemma B.1 of Newey (1994), both terms on the right side converge to their expectations uniformly in

i, but it is easy to see that these expectations are O
�
h=
p
nh
�
= o(1). The results of interest follow.
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