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• We show the inconsistency of three 2SLS estimators in threshold models with endogeneity.
• The CH estimator is inconsistent when q is endogenous.
• The estimator based on the projector of q on z is inconsistent when q is endogenous.
• The estimator based on a misspecified reduced form is inconsistent even if q is exogenous.
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a b s t r a c t

This paper shows the inconsistency of three forms of 2SLS estimators to illustrate the specialty of the
endogeneity problem in threshold regression.
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1. Introduction

Threshold models have received much popularity in current
statistical and econometric practice; see Hansen (2011) for a sum-
mary of applications, especially in economics. The usual threshold
model splits the sample based on an observed threshold variable q:

y = x′β11 (q ≤ γ ) + x′β21 (q > γ ) + ε, (1)

where 1(·) is the indicator function, β1 and β2 are threshold
parameters in the two regimes defined by whether q exceeds the
threshold point γ or not, and all the other variables have the
same definitions as in the linear regression framework. To identify
γ , usually the conditional moment restriction E[ε|x, q] = 0 is
imposed; see Section 3.3 of Yu (2008) for a discussion of this
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assumption. However, as in the linear regression case, this model
may suffer from the endogeneity problem, i.e., E[ε|x, q] = 0 may
not hold; see Kourtellos et al. (2009) for some empirical examples
where endogeneity is present.

To cure the endogeneity problem, all the existing literature sug-
gests using instruments. Caner and Hansen (2004) use the two-
stage least-squares (2SLS) estimator to identify γ in a model in
which only x is endogenous while q is exogenous. As shown later,
to obtain consistency of the 2SLS estimator, a stronger (than usual)
assumption on the reduced-form equation between x and the in-
struments z must be imposed. In the same framework, except that
qmay also be endogenous, Kourtellos et al. (2009) consider a struc-
tural model with parametric assumptions on the data distribution.
They then apply the technique in sample selection such as Heck-
man (1979) to estimate γ consistently. In the related structural
change literature, Boldea et al. (2012), Hall et al. (2012), and Per-
ron and Yamamoto (forthcoming-a) all use the 2SLS estimator to
estimate the structural break points.
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In a semiparametric framework, this paper presents simple
examples to show that three forms of the 2SLS estimator are
not consistent in estimating γ . First, when q is endogenous,
the 2SLS estimator of Caner and Hansen (2004) is inconsistent.
Second, when q is endogenous, the naive 2SLS estimator based
on the reduced-form equation between q and instruments z
is inconsistent. Third, when q is exogenous, and x may be
endogenous, the 2SLS estimator of Caner and Hansen (2004) is
inconsistent unless a stronger assumption on the reduced-form
equation is satisfied. In the structural change framework, the time
index t plays the role of q and it is always exogenous, so our
arguments in the third case are also relevant to the structural
change literature mentioned above.

These negative results clarify the difference between the en-
dogeneity problem in threshold regression and in the usual linear
regression. These results also motivate us to search for a general
consistent estimator of γ . Yu (2012) provides such an estimator,
called the integrated difference kernel estimator (IDKE), which can
estimate γ consistently even without instruments.

A word on notation: the letter C is used as a generic positive
constant, which need not be the same in each occurrence. f and F
with subscripts denote the probability distribution function (pdf)
and the cumulative distribution function (cdf) of the corresponding
random variables, respectively. φ(·) and Φ (·) are the standard
normal pdf and cdf, respectively.

2. Inconsistency of 2SLS estimators

In this section, we use two simple setups of (1) to show
that three conventional forms of the 2SLS estimator of γ is not
consistent. Our discussion on the first two forms of the 2SLS
estimator is based on

y = δ01 (q ≤ γ0) + ε, (2)
E [ε|q] = g(q) ≠ 0, E[ε] = 0.

This model can be interpreted as returns to schooling in the
classical literature but with threshold effects. Here, q is a measure
of schooling, and y is a measure of earnings. For different schooling
levels, the earnings are different, so there is a threshold effect. As
usual, q is not exogenous, since ε includes such factors as inborn
ability, which is correlated with q. So the threshold variable is
endogenous, and the only regressor 1 is exogenous. In Section 2.1,
we show that the least-squares estimator (LSE) of γ is inconsistent,
which implies that the 2SLS procedure of Caner and Hansen (2004)
is not valid when q is endogenous. Section 2.2 shows that the usual
2SLS procedure by projecting q on instruments cannot generate a
consistent estimator of γ either. Finally, in Section 2.3, we show
that the 2SLS procedure of Caner and Hansen (2004) is invalid even
if q is exogenous. To illustrate this point, we assume that

y = x1 (q ≤ γ0) + ε, (3)
E[ε|x] ≠ 0, E[ε|q] = 0.

Since q is a valid instrument, the number of instruments is the same
as the number of endogenous variables, and no extra instruments
are required. When the reduced-form relationship between x and
q is misspecified, the 2SLS estimator of γ is not consistent.

2.1. Inconsistency of the LSE

In model (2), E[y|q] = δ01 (q ≤ γ0) + g(q), which is different
from δ01 (q ≤ γ0), so the LSE based on the objective function

1
n

n
i=1

(yi − δ1 (q ≤ γ ))2

cannot be consistent. To be specific, assume that the joint distribu-
tion of (q, ε) is N


0,


1 ρ0
ρ0 1


with ρ0 ≠ 0; then E[e|q] = ρ0q.
Fig. 1. Joint distribution of (y, q) in threshold regression with endogeneity:
the black line is the true E[y|q], and the magenta line is E[y|q] in the original
specification. (For interpretation of the references to colour in this figure legend,
the reader is referred to the web version of this article.)

Now, E[y|q] = δ01 (q ≤ γ0) + ρ0q, and

y =

δ0 + ρ0q +


1 − ρ2

0u, if q ≤ γ0,

ρ0q +


1 − ρ2

0u, if q > γ0,

where u is independent of q and follows a standard normal distri-
bution. Compared to the exogenous case, where ρ0 = 0, an extra
function ρ0q is added to themean function. Also, the error variance
is reduced. The joint distribution of q and y is shown in Fig. 1, where
ρ0 = 0.9, γ0 = 0, and δ0 = 1.

The inconsistency ofδLSE is a standard result in the literature. To
separate out the effect ofγLSE, suppose that γ0 is known. Then

1
n

n
i=1

(yi − δ1 (q ≤ γ0))
2

=
1
n

n
i=1


δ01 (q ≤ γ0) + ρ0q +


1 − ρ2

0u − δ1 (q ≤ γ0)

2

→ C + (δ0 − δ)2 P (q ≤ γ0) + 2 (δ0 − δ) ρ0E [q1 (q ≤ γ0)] .

The first-order condition for δ is 2 (δ − δ0) P (q ≤ γ0) = 2ρ0E
[q1 (q ≤ γ0)], i.e., 2 (δ − δ0) Φ(γ0) = −2ρ0φ(γ0), so δLSE con-
verges to δ0 − 2ρ0λ (γ0) ≠ δ0, where λ (γ0) = φ(γ0)/Φ (γ0) is
the inverse Mill’s ratio. This limit is equal to δ0 only if ρ0 = 0; the
larger |ρ0| is, the larger the bias is.

g(q) affects the estimation of γ only indirectly. For simplicity,
suppose that δ0 = 1 is known. It is easy to show that

1
n

n
i=1

(yi − δ01 (q ≤ γ ))2

=
1
n

n
i=1


δ01 (q ≤ γ0) + ρ0q +


1 − ρ2

0u − δ01 (q ≤ γ )

2

→ C + E

(δ01 (q ≤ γ0) + ρ0q − δ01 (q ≤ γ ))2


= C + E


(E[y|q] − δ01 (q ≤ γ ))2


.

SoγLSE converges to the γ value such that the L2 distance between
the true E[y|q] and its original specification δ01 (q ≤ γ ) reaches
its minimum. In Fig. 1, we choose a location of the jump in the
magenta line to minimize its L2 distance to the black line. In the
specification above,

E

(E[y|q] − δ01 (q ≤ γ ))2


=


ρ2
0 + 2ρ0 (φ (γ0) − φ (γ )) + (Φ (γ0) − Φ (γ ))
if γ < γ0;

ρ2
0 + 2ρ0 (φ (γ ) − φ (γ0)) + (Φ (γ ) − Φ (γ0))
if γ ≥ γ0.

The corresponding minimizer γ of E

(E[y|q] − δ01 (q ≤ γ ))2


as

a function of γ0 and ρ0 is shown in Fig. 2. Note that the minimizer
is not a smooth function of γ0, since E


(E[y|q] − δ01 (q ≤ γ ))2


is

not smooth in γ and γ0. From Fig. 2,γLSE is obviously inconsistent
as long as ρ0 ≠ 0. The larger ρ0 is, the more significant the
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Fig. 2. Limit ofγLSE as a function of γ0 and ρ0 .
inconsistency is: the case with ρ0 = 1 is the limit case illustrating
the most possible inconsistency; when ρ0 = 0, the inconsistency
disappears.

An immediate corollary of the discussion above is that the 2SLS
estimator of Caner andHansen (2004) is inconsistent. Suppose that
we have an instrument z in hand; then Caner and Hansen (2004)
project the only regressor x = 1 on the instruments (1, z) and
the resulting projector is 1, so the 2SLS estimator is the same as
the LSE and is inconsistent. In the general case (1) with E[e|q] ≠

0, we regress x on the instruments z to obtain the predictor x,
and then minimize

n
i=1


yi −x′

iβ11 (qi ≤ γ ) −x′

iβ21 (qi > γ )
2

to estimate γ . The insight in the simple example above can be
applied here: this 2SLS estimator is not consistent, since the
endogeneity of q is not considered in the estimating procedure.

2.2. Inconsistency of the 2SLS estimator when q is endogenous

Suppose that there exists a valid instrument z such that
E[ε|z] = 0 and Cov(z, q) ≠ 0. To simplify our discussion, let
δ0 = 1 be known, and normalize E[ε] = E[q] = E[z] = 0 and
E[ε2

] = E[q2] = E[z2] = 1. We can estimate γ by minimizing
1
n

n
i=1 (yi − 1 (ziπ ≤ γ ))2, where π is from the first-step regres-

sion qi = ziπ + vi. Note that π0 = Cov(z, q) ≠ 0. By some prelim-
inary calculations,1 we can show that

1
n

n
i=1

(yi − 1 (ziπ ≤ γ ))2 → E

(y − 1 (zπ0 ≤ γ ))2


= E


(1 (q ≤ γ0) + ε − 1 (zπ0 ≤ γ ))2


= C + E[(1 (q ≤ γ0) − 1 (zπ0 ≤ γ ))2]

= C + P (z ≤ γ /π0) − 2
 γ /π0

−∞

Fq|z (γ0|z) f (z)dz. (4)

If we estimate γ using least-squares, then we can show that

1
n

n
i=1

(yi − 1 (qi ≤ γ ))2

→ C + E[(1(q ≤ γ0) − 1(q ≤ γ ))2] − 2E [ε1 (q ≤ γ )]

= C + P (q ≤ γ ) − 2Fq (γ0 ∧ γ ) − 2E [g(q)1 (q ≤ γ )] . (5)

1 The estimation of π0 may affect the asymptotic distribution ofγ2SLS but will not
affect its probability limit. This is similar to the case in the usual 2SLS estimation.
If there is no endogeneity, then E [g(q)1 (q ≤ γ )] = 0, and the
minimizer of P (q ≤ γ ) − 2Fq (γ0 ∧ γ ) is γ0. Comparing (4) and
(5), we can see that the instrument z indeed controls the bias in-
duced by the correlation between q and ε (the corresponding term
of E [1 (q ≤ γ ) ε] in (4) is E [1 (zπ0 ≤ γ ) ε] = 0), but meanwhile
it introduces extra bias by changing 1 (q ≤ γ ) to 1 (zπ0 ≤ γ ). As
a result, the minimizer of P (z ≤ γ /π0)−2

 γ /π0
−∞

Fq|z (γ0|z) f (z)dz
may not be γ0. Actually, from (4), the probability limit of the 2SLS
estimator is the same as replacing q by zπ0 in the least-squares es-
timation of the simplest threshold model y = 1 (q ≤ γ ). From the
first-order condition of (4), fz (γ /π0)

π0
− 2Fq|z (γ0|γ /π0)

fz (γ /π0)
π0

= 0,
so the 2SLS estimator converges to γ such that Fq|z (γ0|γ /π0) =

1/2, which is the γ value of zπ0 such that γ0 is the median of the
conditional distribution Fq|z .2 Of course, such a γ value need not
be γ0.

To be more specific, consider the following two examples of
fqz . First, suppose that z and q are jointly normal; then the con-
ditional distribution of q given z is N(π0z, 1 − π2

0 ). Now, setting

Fq|z (γ0|γ /π0) = Φ


γ0−γ
1−π2

0


=

1
2 , we have γ = γ0 for any

|π0| ∈ (0, 1). Second, suppose that fqz(q, z) =
1
12


1 +

zq
3


, z, q ∈

[−
√
3,

√
3]; then both q and z havemarginal uniformdistributions

on [−
√
3,

√
3], π0 =

1
3 and Fq|z(q|z) =

zq2

12
√
3

−
z

4
√
3

+
q

2
√
3

+
1
2 .

Solving Fq|z (γ0|γ /π0) =
γ 2
0 γ /π0

12
√
3

−
γ /π0
4
√
3

+
γ0
2
√
3

+
1
2 =

1
2 , we have

γ =
2γ0

3−γ 2
0
.3 γ = γ0 if and only if γ0 = 0 and ±1. Fig. 3 illustrates

the calculation above intuitively. Although the asymptotic bias of
the 2SLS estimator seems smaller than that in Section 2.1 (given
that part of the endogeneity in q is controlled by z), it is not com-
pletely eliminated.

When δ0 is unknown, there is no explicit-form solution for the
limit ofγ2SLS. In this case,γ2SLS is not consistent even when q and z
are jointly normal. Also, the inconsistency ofγ2SLS will contaminate
the consistency of regular parameters; that is, δ2SLS will not be

2 In the more general case y = x′δ01(q ≤ γ0) + ε, this solution is more
complicated. For example, suppose that δ0 is known and only q is endogenous; thenγ2SLS converges to the solution of δ′

0E[xx′1(q≤γ0)|z′π0=γ ]δ0
δ′
0E[xx′ |z′π0=γ ]δ0

=
1
2 , where z includes x and

some extra instruments, and π0 is the true value in the regression q = z ′π + v.
3 γ0 cannot be

√
3, which is the usual assumption that the threshold point cannot

stay on the boundary of the threshold variable.
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Fig. 3. Limits ofγ2SLS associated with different fz,q: π0 = 0.5 in the joint normal case; the red solid lines in the left two graphs are the locations of the conditional median
of fq|z . (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
consistent either. In the general case (1) with E[e|q] ≠ 0, we
regress


x′, q

′ on the instruments z to obtain the predictor
x′,q′,

and then minimize
n

i=1


yi −x′

iβ11 (qi ≤ γ ) −x′

iβ21 (qi > γ )
2

to estimate γ . The insights in the simple examples above can
be applied here: this 2SLS estimator is not consistent, since
asymptotically the threshold variable is changed from q to the
probability limit ofq, say, z ′π0.

2.3. Inconsistency of the 2SLS estimator when q is exogenous

Consider (3). Denoting the linear projector of x on q as qπ , thenγCH = argmin
γ

(yi − qiπ1 (qi ≤ γ ))2 .

If E[x|q] is a linear function of q, say qπ0, then the objective function
ofγCH converges to

C + E

(qπ01 (q ≤ γ ) − qπ01 (q ≤ γ0))

2 ,

which is minimized at γ = γ0. If E[x|q] is a nonlinear function of q,
but wemistakenly project x on the linear space spanned by q, then
the 2SLS estimator may be inconsistent. To be concrete, suppose
that E[x|q] = q3 and q ∼ N(0, 1); then the linear projection of x
on q is 3q. NowγCH converges to the minimizer of

E


q31 (q ≤ γ0) − 3q1 (q ≤ γ )
2

=

15Φ(γ0) −


γ 5
0 + 5γ 3

0 + 15γ0

φ(γ0)


− 6


3Φ(γ ∧ γ0) −


(γ ∧ γ0)

3
+ 3 (γ ∧ γ0)


φ(γ ∧ γ0)


+ 9 [Φ(γ ) − γφ(γ )] .

The left panel of Fig. 4 shows the limit of γCH as a function of γ0.
Obviously, the 2SLS estimator is inconsistent. To understand why
the limit ofγCH is not always γ0, we provide further intuition in the
right panel of Fig. 4. Let γ0 = 0; then obviously the area between
q31 (q ≤ 0) and 3q1 (q ≤ −1.22) is smaller than that between
q31 (q ≤ 0) and 3q1 (q ≤ 0). Here, note that −1.22 is the point
where

q3 − 3q
 =

q3, and, when −1.22 < q < 0,
q3 − 3q

 >q3.
The consistency of the 2SLS estimator in Caner and Hansen

(2004) critically relies on the assumption that E[x|q] is known
up to finite parameters. However, such an assumption does not
necessarily hold in the usual 2SLS procedure to get a consistent
estimator. Recall that, for y = x′β0 + ε with E[xε] ≠ 0, the
2SLS procedure just linearly projects x on instruments z without
assuming E[x|z] to be linear in z. To achieve consistency of the 2SLS
estimator in threshold regression,weneed to consistently estimate
E[x|q] even in this special case that q is exogenous. Of course,
consistent estimation of E[x|q] must involve some nonparametric
techniques, whichwill complicate the 2SLS procedure of Caner and
Hansen (2004).

To examine why we must estimate E[x|q] to achieve consis-
tency of the 2SLS estimator, consider the general model (1). Note
that γ0 is the location where the conditional mean of y given x,
rather than the projection of y on x, changes. This point is clearly il-
lustrated in the counter-example of Section 3.3 of Yu (2008).When
there is endogeneity, the conditionalmean of y given x still changes
at γ0 as long as E[ε|x] is continuous, which is the key insight in the
IDKE. In other words,
γ0 = argmin

γ
E[(y − E[y|x, q]1(q ≤ γ ) − E[y|x, q]1(q > γ ))2].

However, γ0 need not equal argminγ E[(y − x′β11(q ≤ γ ) −

x′β21(q > γ ))2], i.e., the LSE of γ is not consistent.4 In the 2SLS
estimation, γ0 is the location where the conditional mean of y given
z, rather than the projection of y on z, changes. To understand this
point, taking the conditional mean given z (which includes q as a
component) on both sides of (1), we have
E[y|z] = E[x|z]′β11(q ≤ γ ) + E[x|z]′β21 (q > γ ) ,

where E[ε|z] = 0 is required. In other words,
γ0 = argmin

γ
E[(y − E[x|z]′β11(q ≤ γ ) + E[x|z]′β21(q > γ ))2],

so minimizing n−1 n
i=1(yi −E[xi|zi]′β11(q ≤ γ ) −E[xi|zi]′β21(qi

> γ ))2 will generate a consistent estimator of γ0, whereE[xi|zi]
is a nonparametric estimator of E[xi|zi].5 However, γ0 need not
equal argminγ E[(y − P(x|z)′β11(q ≤ γ ) − P(x|z)′β21(q > γ ))2]
if E[x|z] ≠ P(x|z), where P(x|z) is the linear projection of x on
z, i.e., γCH is not consistent. Assume that P(x|z) = Πz. Then
theremay even be an identification problem in the 2SLS estimation
if Π ′β1 = Π ′β2, i.e., there is no structural change at all in the
projection problem.

4 The LSE of Perron andYamamoto (forthcoming-b) is generally inconsistent. This
result is also observed by Hall et al. (2012).
5 This estimator is based on the global fitting of the conditional mean of y.

However, as argued in Yu (2012), the asymptotic distribution ofγCH based on such
an objective function is hard to derive. As an alternative, the IDKE proposed in
Yu (2012) is based only on the local information around γ , and its asymptotic
distribution is much easier to obtain.
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Fig. 4. Limit ofγCH as a function of γ0 and intuition for the limit ofγCH when γ0 = 0.
In linear regressionwith endogeneity, y = x′β0+εwith E[xε] ≠

0, the 2SLS procedure utilizes the linear structure of the model. To
understand this point, projecting both sides of y = x′β0 + ε on
z, we have P (y|z) = P (x|z)′ β0, so the 2SLS estimator is consis-
tent, and only P (ε|z) = 0 is required. However, in threshold re-
gression, if we project both sides of (1) on z, we have P (y|z) =

P (x1 (q ≤ γ ) |z)′ β1 +P (x1 (q > γ ) |z)′ β2, which is generally not
equal toP (x|z)′ β11 (q ≤ γ )+P (x|z)′ β21 (q > γ ). In otherwords,
the nonlinear structure (in γ ) of threshold regression invalidates
the usual 2SLS procedure.
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