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1. Extra Regularity Conditions

First, de�ne some notations.

�` �
�
�0`; �`

�0
, �`0 �

�
�0`0; �`0

�0
; ` = 1; 2:

N is an open neighborhood of �0, N` is an open neighborhood of �`0, ` = 1; 2, andN
 is an open neighborhood
of 
0.

S (wj�) =

0BBBBB@
�@ ln fejx;q

@e (ejx; q) x0�11 (q � 
)
�@ ln fejx;q

@e (ejx; q) x0�21 (q > 
)
� 1
�1

�
1 +

@ ln fejx;q
@e (ejx; q) e

�
1 (q � 
)

� 1
�2

�
1 +

@ ln fejx;q
@e (ejx; q) e

�
1 (q > 
)

1CCCCCA �

0BBB@
S�1 (�)

S�2 (�)

S�1 (�)

S�2 (�)

1CCCA
is the score function of �, and I (�) � E [S (wj�)S0 (wj�)] is the information matrix of regular parameters.
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Assumption E1: P
�
q < 


�
> 0 and P (q > 
) > 0:

Assumption E2: I (�) is continuous, nonsingular and �nite for � 2 N .
Assumption E3: For every (�1; �1) and (�2; �2) with �1 and �2 in a bounded set, there exists a slope
function m(w) such that E

�
m(w)4

�
<1,��ln fejx;q (�1 + �1ejx; q)� ln fejx;q (�2 + �2ejx; q)�� � m(w) (j�1 � �2j+ j�1 � �2j) :
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Assumption E4: Uniformly for �1 2 N1, �2 2 N2 and 
 2 N
 ,
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Assumption E5: Both z1i and z2i have absolutely continuous distributions.
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�
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�
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] < 0:
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are nonsingular and �nite for �1, �2 and 
 in an open neighborhood of the true value.

2. E¢ cient Estimation of Regular Parameters

For the semiparametric e¢ cient estimation of �, �rst note that the loss function is required to be additively

separable, otherwise the estimation of 
 may a¤ect the estimation of � by a similar argument as in Section

2.2. When the loss function is additively separable, the semiparametric e¢ ciency variance bound of � is

the same as that when 
0 is known. In other words, 
 will not a¤ect the e¢ ciency of �. It follows from

Chamberlain (1987) that the semiparametric e¢ ciency variance bound of � is0B@ E
h
xx01(q�
0)
�2(x;q)

i�1
0

0 E
h
xx01(q>
0)
�2(x;q)

i�1
1CA :

Given this bound, there are basically two methods to �nd the e¢ cient estimation. The �rst is summarized

in Newey (1993). In short words, the GLSE is e¢ cient. The second method is proposed in Kitamura et al.
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(2004) in the empirical likelihood framework. In both methods, the unknown parameter 
 is substituted by

an n-consistent estimator of 
, which will not a¤ect the asymptotic distribution of the e¢ cient estimators

of �.

A natural question is what is the asymptotic distribution of the SEBE of �. The joint SEBE of � and 


is de�ned by

�b�; b
� = argmin
s;t

Z
B��

l1n (s� �) l2n(t� 
)
nY
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�
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1(qi � 
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+
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�
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)

�
�1(�)�2 (
) d
;

where l1n(s��) = l1 (
p
n (s� �)) is the loss function for �, and �1 (�) is the prior of �. The answer depends

on which preliminary estimator e� is used in Step G1. The basic result is that b� has the same asymptotic
distribution as e�. For example, if e� is the LSE, then the asymptotic variance of b� is that of the LSE rather
than the GLSE.2 In other words, there is no e¢ ciency improvement for � in the SEB procedure. The proof

involves an extension of Newey (1994), and will be pursued in a separate paper.

3. Algorithms in the Simulation Study

In the smoothed least squares estimation of Seo and Linton (2007), the objective function is

1

n

nX
i=1

�
yi � �10K

�

 � qi
�n

��2
:

As suggested by Seo and Linton (2007), K(x) = �(x) + x�(x) with � and � being the standard normal cdf

and pdf respectively, and the bandwidth �n =
lognp
n
. The SLSE has a slower convergence rate

q
n
�n
rather

than n.

The subsampling procedure in Gonzalo and Wolf (2005) is designed for time series. Here, we describe this

method for the i.i.d. data with e independent of (x; q). Note that these algorithms are designed for the general

model (1). For the simple setup in our simulations, the algorithms need to be adjusted correspondingly.

Algorithm S1 (Generating the Bootstrap Sample fy�i ; x�i ; q�i g
n
i=1)

1. Get the least squares estimation of �, denoted as (e�0; e�0; e
)0. The corresponding residuals are denoted
as feeigni=1.

2. Generate a sequence fx�i ; q�i g
n
i=1 by sampling with replacement from fxi; qigni=1.

3. Generate a sequence fe�i g
n
i=1 by sampling with replacement from feeigni=1. This step is independent of

step 2.

2We can consider the linear regression for some intuition. Suppose feeigni=1 is the residual in the OLS esti-

mation, and bf (e; x) is the kernel density estimator of f (e; x) using feei; xigni=1, then bE[xe] �
Z
xe bf (e; x) dedx =

1
nhk+1

nX
i=1

Z
xeK

�
(e;x)�(eei;xi)

h

�
dedx = 1

n

nX
i=1

Z
(exi + uh)(eei + vh)K (v; u) dvdu = 1

n

nX
i=1

exieei + O(h) ! 0. But bE[ejx] �Z
e bf (ejx) de will not converge to zero for every x.
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4. Generate a sequence fy�i g
n
i=1 by

y�i =

(
x�0i
e�1 + e�1e�i ;

x�0i
e�2 + e�2e�i ; if q�i � e
;

if q�i > e
:
Algorithm S2 (Constructing the Subsampling CI for a Fixed Block Size m)

1. Generate fy�i ; x�i ; q�i g
m
i=1 by Algorithm S1. The only di¤erence is to replace "replacement" by "non-

replacement" and the sampling size "n" by "m".

2. Calculate (e��; e
�) based on fy�i ; x�i ; q�i gmi=1 by least squares.
3. Repeat step 1 and 2 B times to get a sequence of estimates

ne��b ; e
�boB
b=1
.

4. Find the �
2 and 1 �

�
2 percentiles of fm (e
�b � e
)gBb=1, denoted as cnm � �2 � and cnm �1� �

2

�
, then the

equal-tailed subsampling CI for 
 is [e
 � n�1cnm �1� �
2

�
; e
 � n�1cnm � �2 �]: Similarly, the symmetric

subsampling CI for 
 is constructed by �nding the 1 � � percentile of fm je
�b � e
jgBb=1 , denoted as
cnm (1� �), and constructing the CI as [e
 � n�1cnm (1� �) ; e
 + n�1cnm (1� �)].

Algorithm S3 (Selecting the Block Size m)

1. Fix a selection of reasonable block size m between mlow and mup.

2. Generate K pseudo sequences fy�ki; x�ki; q�kig
n
i=1, k = 1; � � � ;K, by Algorithm S1. For each k = 1; � � � ;K

and for each m, compute a subsampling con�dence interval CIk;m for 
 by Algorithm S2.

3. Compute bg(m) = # fe
 2 CIk;mg =K.
4. Find the value em that minimizes jbg(m)� (1� �)j.

B = 1000, and m = n=4 in our simulations. It is time-consuming to use Algorithm S3 to select the block

size adaptively. A suggestion for the parameters in Algorithm S3 is: for n = 100, mlow = 15, mup = 40; for

n = 400, mlow = 50, mup = 150. K = 1000.

The smoothed bootstrap procedure in Gijbels et al. (2004) and Seijo and Sen (2011) can only apply to

the simple case in our simulation study where the error term is i.i.d. and there are not other covariates

except q. We adapt their procedure to the following speci�c design:

y =

(
�1 + �1e;

�2 + �2e;

q � 
;
q > 
:

Algorithm B (Smoothed Bootstrap)

1. Get the MLSE of �, denoted as (e�0; e�0; e
)0. The corresponding residuals are denoted as feeigni=1.
2. Generate a sequence fq�i g

n
i=1 from

bfq(q), where bfq(q) is the kernel density estimator of fq(q). Such a
procedure can be found in Section 6.4.1 of Silverman (1986).

3. Generate a sequence fe�i g
n
i=1 by sampling with replacement from feeigni=1 This step is independent of

step 2.
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4. Generate a sequence fy�i g
n
i=1 by

y�i =

( e�1 + e�1e�i ;e�2 + e�2e�i ; if q�i � e
;
if q�i > e
:

5. Calculate (e��; e
�) based on fy�i ; x�i ; q�i gni=1 by the middle-point least squares.
6. Repeat step 1 to 5 B times to get a sequence of estimators

ne��b ; e
�boB
b=1
.

7. Find the �
2 and 1 �

�
2 percentiles of fe
�b � e
gBb=1, denoted as cn � �2 � and cn �1� �

2

�
, then the equal-

tailed bootstrap CI for 
 is [e
 � cn �1� �
2

�
; e
 � cn � �2 �]: Similarly, the symmetric bootstrap CI for 
 is

constructed by �nding the 1 � � percentile of fje
�b � e
jgBb=1 , denoted as cn (1� �), and constructing
the CI as [e
 � cn (1� �) ; e
 + cn (1� �)].

In our simulations, the standard normal kernel and the rule-of-thumb bandwidth of Silverman (1986) is

used in Step 2.

4. Uniform Convergence of the Kernel Density Estimator

Lemma 1 De�ne an infeasible estimator of the density function to be:

ef (w) = 1

n

nX
j=1

Kh (wj � w) ;

where Kh (�) = 1

hk+2
K
� �
h

�
. Then under Assumptions B, D, and K,

n(1��)=2h(k+2)=2 sup
w2Wn

��� ef (w)� f(w)��� p�! 0:

Proof. SinceWn is compact, it can be covered by bn open set Win, i = 1; � � � ; bn, such that the diameter of
each set is less than some �n which will be determined later. bn = O

�
n�(k+2)

�k+2n

�
. By the triangle inequality,

sup
w2Wn

��� ef (w)� E h ef (w)i���
� max

1�i�bn

�
sup

w2Win

��� ef (w)� ef(wi)���+ sup
w2Win

���E h ef (w)� ef(wi)i���+ ��� ef(wi)� E h ef(wi)i���� ;
where wi 2Win. We will analyze each part of the right hand side in turn. For each i,

sup
w2Win

��� ef (w)� ef(wi)��� (1)� 1

n

nX
j=1

��K 0
h

�
�j
��� sup
w2Win

jw � wij
(2)

� C

hk+3
�n:

Here, (1) is from the mean value theorem, �j is some point between wj � w and wj � wi, K 0
h is the total

derivative with respect to the arguments of Kh, and (2) is from the boundedness of K 0(�). Let �n = hk+3

3C �n

with �n determined later, then

sup
w2Win

��� ef (w)� ef(wi)��� � �n
3
:
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Similarly, sup
w2Win

���E h ef (w)� ef(wi)i��� � �n
3 . As for the third part,

P

�
max
1�i�bn

��� ef(wi)� E h ef(wi)i��� > �n
3

�
(1)

� bnP

����hk+2 ef(wi)� E hhk+2 ef(wi)i��� > �nh
k+2

3

�
(2)

� 2bn exp

(
�3n

�
�nh

k+2

3

�2
=

�
6�2i + 2C

�
�nh

k+2

3

��)
(3)

� 2bn exp

(
�3n

�
�nh

k+2

3

�2
=

�
6Chk+2 + 2C

�nh
k+2

3

�)
= O

�
bn exp

�
�Cnhk+2�2n

��
:

(1) is from the basic probability property. (2) is from the Bernstein�s inequality, where

�2i = var

�
K

�
wi � w
h

��
:

(3) is because �2i � Chk+2. Let �n = O
��
n(1��)=2h(k+2)=2

��1�
, then

P

�
max
1�i�bn

��� ef(wi)� E h ef(wi)i��� > �n
3

�
p�! 0:

Combining the arguments above,

P

�
sup
w2Wn

��� ef (w)� E h ef (w)i��� > �n� p�! 0:

Note that

E
h ef (w)i = Z K(x)f(w + xh)dx =

Z
K(x)dxf(w) +O

�
h2
�
= f(w) +O

�
h2
�

by the Taylor expansion and Assumption D1 and K. From Assumption B, h2 = o
�
n�(1��)=2h�(k+2)=2

�
, so

n(1��)=2h(k+2)=2 sup
w2Wn

��� ef (w)� f(w)��� p�! 0:

5. Three Criteria of E¢ ciency

In this section, we will review three criteria of e¢ ciency in parametric models, and discuss how to extend

these e¢ ciency concepts to semiparametric cases. The point here is that the usual concepts of semipara-

metric e¢ ciency bound cannot be applied in threshold regression. Our discussion is based on asymptotic

approximation; see Chamberlain (2007) for an excellent summary on decision theory in �nite samples.

The classical e¢ ciency theory is based on the average risk (AR). Suppose the loss function is L (�; d),

where � 2 � � Rk is the parameter of interest, d : Z ! A is the decision rule, Z is the sample space, and

A is the action space. For our estimation problem, A is the same as the parameter space �. Suppose the

observation z is drawn from the distribution P� which has a density p� with respect to some dominating
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measure, then the risk

R(�; d) = E� [L (�; d)] �
Z
Z
L (�; d(z)) dP�(z) =

Z
Z
L (�; d(z)) p�(z)dz;

and the average risk with respect to the prior � is

R�(�; d) =

Z
�

R(�; d)d�(�):

The optimal (or e¢ cient) estimator is the decision rule that minimizes R�(�; d) for a given �. Because

R�(�; d) =

Z
�

�Z
Z
L (�; d(z)) p�(z)dz

�
d�(�) =

Z
Z

�Z
�

L (�; d(z)) p�(z)d�(�)

�
dz

by Fubini�s theorem, the Bayes estimator (BE) which minimizes the posterior expected loss
R
�
L (�; d(z)) p�(z)d�(�)

is optimal. If an asymptotic argument is taken into account, then we should use the asymptotic average risk

(AAR)

lim
K"Rk

lim
n!1

1

�(K)

Z
K

R(h; d)dh;

where R(h; d) =
R
Z L (�0 + 'nh; d(z)) p�0+'nh(z)dz, h = '�1n (� � �0) is the local parameter, 'n is the

appropriate normalization rate for �, z = (z1; � � � ; zn) is the data observed, � is the Lebesgue measure,
and K is an increasing sequence of cubes centered at the origin and converging to Rk. Lemma 3.1 of

Chernozhukov and Hong (2004) show that the BE is optimal based on the AAR. In the semiparametric

case, the parameter space � also includes an in�nite-dimensional component. The literature concentrates

on simulating the prior using Dirichlet processes, and few e¢ ciency results are available. As mentioned in

Section 3.2, the semiparametric Bayes method is under development even in regular models.

Minimaxity is another e¢ ciency criterion. In �nite samples, we try to choose d to minimize the sup-risk

sup
�2�

R(�; d):

The corresponding asymptotic version is the local asymptotic minimaxity (LAM): the estimator d� is optimal

if it satis�es

lim
�!0

lim
n!1

"
inf
d

sup
k���0k<�

E�
�
L
�
'�1n (d� �)

��#
= lim

�!0
lim
n!1

"
sup

k���0k<�
E�
�
L
�
'�1n (d� � �)

��#
; (1)

where L (�; d) depends on � and d only through their di¤erence d� �, or it satis�es a little weaker criterion

inf
d
sup
J
lim
n!1

sup
h2J

R(�0 + 'nh; d) = sup
J
lim
n!1

sup
h2J

R(�0 + 'nh; d
�); (2)

where the outer supremum is over all �nite subsets J of Rk. From Ibragimov and Has�minskii (1981),

the BE is also e¢ cient under this criterion, which is used as a base in Hirano and Porter (2003) and

Yu (2012). In asymptotic shift experiments, the arguments can be somewhat simpli�ed. We can �rst

search among equivariant estimators in the limit experiments and prove that the minimum risk equivariant

(MRE) estimator is optimal among all estimators by the Hunt-Stein theorem, then apply the asymptotic

representation theorem to �nd the �nite-sample analog. Actually, Hirano and Porter (2003) show that the

bias-corrected MLE is also e¢ cient in such experiments. Extending this criterion to the semiparametric case
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is hard unless the model is locally asymptotically normal (LAN). Chamberlain (1987, 1992) essentially uses

the semiparametric version of (1); see also Hirano and Porter (2009) for searching optimal treatment rules

using the semiparametric version of (2). In threshold regression, it is hard to �nd an estimator satisfying

the semiparametric version of (1) or (2). In fact, from Ritov and Bickel (1990), the usual semiparametric

variance bound can be misleading even in regular models, let alone the present nonregular model. If we want

to show our SEBE is optimal in the sense of (1), we must show our estimator is adaptive to the estimation of

f(w) uniformly in a neighborhood of the true density under some metric. But such a proof seems di¢ cult.

Our estimator is actually semiparametric e¢ cient in a weaker sense: it is "pointwise" (instead of "uniform")

e¢ cient; that is, for any �xed (unknown) f(w), we can estimate 
 as if f(w) were known. This e¢ ciency

criterion seems enough for practical purposes.

The last e¢ ciency criterion is optimality among regular estimators. b� is a regular estimator of � if
'�1n

�b� � (� + 'nh)� �+'nh D�;

where
�+'nh denotes convergence in distribution under P�+'nh, and the limit distribution D� may depend on

� but not on h. This kind of estimators correspond to the equivariant estimator in the limit experiment. In

asymptotic shift experiments, we still search for the MRE estimator, but show it is optimal in this sense by

the convolution theorem, which states that any equivariant estimator can be expressed as the MRE estimator

plus an independent error term; see Hirano and Porter (2003) for more discussions. In the semiparametric

case, most literature using this criterion concentrates on LAN models; Newey (1990) and Bickel et al. (1998)

are the most-cited references. In threshold regression, it is not hard to check that the BE is regular, but it

is hard to show that it is optimal among all regular estimators. This is because we do not know what the

limit experiment is given that the su¢ cient statistic of 
 is in�nite-dimensional; see Section 3.3 of Yu (2012)

on this point. Thus, we cannot use this criterion in the semiparametric environment.

In summary, LAM is the only possible criterion for semiparametric e¢ ciency in threshold regression, and

our estimator is e¢ cient in a weaker form of this criterion.
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