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a b s t r a c t

This paper studies semiparametric efficient estimation of the threshold point in threshold regression. The
classical literature of semiparametric efficient estimation rests on the fact that the maximum likelihood
estimator is efficient in any parametric submodel for a large class of loss functions. However, in threshold
regression, the maximum likelihood estimator is not efficient, while the Bayes estimators are efficient
and different loss functions induce different efficient estimators. For an additively separable loss function
that separates the efficiency problem of the threshold point from that of other parameters, we show that
the semiparametric and parametric efficiency risk bounds coincide. Then we design a semiparametric
empirical Bayes estimator to achieve this bound. In consequence, the threshold point can be adaptively
estimated even under conditional moment restrictions. We also provide a valid confidence interval
called the nonparametric posterior interval for the threshold point. Simulation studies show that the
semiparametric empirical Bayes approach is substantially better than existing methods. To illustrate our
procedure in practice, we apply it to an economic growth model for detecting different growth patterns.

© 2015 Elsevier B.V. All rights reserved.
1. Introduction

The linear regression model has played a prominent role in
econometric analysis. One important limitation of the linear re-
gression model is that different groups of entities may have differ-
ent behaviors in a specific economic problem. For example, Durlauf
and Johnson (1995) show that rich countries and poor countries
have different growth patterns. The question is how to separate
these two groups of countries and estimate their respective growth
paths. The threshold regression (TR) model introduced by Tong
(1978, 1983) and Tong and Lim (1980) is designed to answer such a
question; see Tong (1990, 2011) for a summary of the TR literature
in statistics and Hansen (2011) in econometrics. The typical setup
of TR models is as follows:

y =


x′β1 + σ1e, q ≤ γ ;

x′β2 + σ2e, q > γ ,
(1)

where q is the threshold variable used to split the sample with
pdf fq(·) and cdf Fq(·), γ is the unknown threshold point, x ∈ Rk
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includes characteristics, β ≡ (β ′

1, β
′

2)
′

∈ R2k and σ ≡ (σ1, σ2)
′

are parameters in the mean and variance of the two groups. We
assume that x does not include the intercept, discrete regressors
or q; these cases can be easily adapted in the following discussion.
We also set E[e2] = 1 as a normalization of the error variance and
allow for conditional heteroskedasticity. The usual conditionalmo-
ment restriction is

E [e|x, q] = 0. (2)

There are two asymptotic frameworks for statistical inferences
on γ . The first is introduced by Chan (1993) in a nonlinear time
series context, where


β ′

1, σ1
′

−

β ′

2, σ2
′ is a fixed constant. The

second is introduced by Hansen (2000), where no threshold effect
on variance exists and the threshold effect in mean diminishes
asymptotically. This paper follows the discontinuous framework
of Chan (1993) with i.i.d. data.

Both Chan (1993) and Hansen (2000) use the least squares es-
timator (LSE) to estimate γ , but the problem of semiparametric
efficient estimation of γ has not been studied. The difficulty lies
in the fact that parameters considered in most existing literature
of semiparametric efficiency are regular, while γ is not a regu-
lar parameter. For a regular parameter, the maximum likelihood
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estimator (MLE) is asymptotically normal and efficient in any para-
metric submodel for a large class of loss functions. As a result,
the efficiency of an estimator is indicated by its asymptotic vari-
ance. This is the starting point of finding semiparametric efficiency
bounds. As the semiparametric problem is not easier than any
parametric subproblem, the semiparametric efficiency bound is
defined as the supremum of asymptotic variances of the MLEs
among all submodels. In threshold regression, Yu (2012), inspired
by the literature on boundary estimation such as Hirano and Porter
(2003) and Chernozhukov and Hong (2004), shows that the MLE is
not efficient forγ , while the Bayes estimators are efficient. Further-
more, different loss functions induce different efficient estimators.
This makes the techniques for finding semiparametric efficient es-
timators in the existing literature not applicable.

In this paper, we solve the semiparametric efficiency problem
of γ in two steps. First, in Section 2, we separate the efficiency
problem of γ from that of other regular parameters by using an
additively separable loss function. Given any such loss function, we
show that the risk of the Bayes estimator of γ in any parametric
submodel is the same as that when the true conditional density
fe|x,q is known. Therefore, the semiparametric efficiency risk bound
of γ for a given loss function is the risk in the parametric model,
and the conditional moment restriction (2) does not lose any
information from the completely known fe|x,q case. Second, in
Section 3,we use a semiparametric empirical Bayes (SEB) approach
to find an estimator of γ that achieves the efficiency risk bound.
The SEB estimator (SEBE) is adaptive in the sense that the risk
in the parametric case can be reached even if fe|x,q is not exactly
known. It should be pointed out that all Bayes procedures in this
paper are evaluated by classical efficiency criteria; in other words,
the randomness is confined to the data and does not include
parameters.

Although the SEBE has the same asymptotic risk as the para-
metric Bayes estimator, it is less susceptible to misspecification
because no parametric specification is needed for the distribution
of e. γ can be identified as in the correctly specified parametric
model as long as (2) is imposed. Also, the SEBE avoids the Diaco-
nis and Freedman (1986a,b)’s inconsistency problemby estimating
the nuisance density fe|x,q rather than imposing a Dirichlet prior on
it. The literature discussing how to avoid the Diaconis and Freed-
man’s problem in the Bayesian framework all concentrates on reg-
ular models.

A corollary of the SEB method is to provide a valid confidence
interval (CI) for γ . The CI construction for γ is unsolved in
Chan (1993) and reconsidered in Hansen (2000). In Section 4,
we discuss the difficulties in the previous papers and propose an
alternative valid CI for γ—the nonparametric posterior interval
(NPI). Section 5 includes some simplification and extension of the
SEB approach to increase its applicability and to improve its finite-
sample performance. The simulation results in Section 6 show that
the SEBE has a lower risk and the NPI has better coverage and
length properties than the existing methods. Section 7 applies the
SEBmethod to an economic growthmodel and Section 8 concludes.
All regularity conditions, proofs and tables in simulations and
the application are given in Appendices A–C, respectively. Certain
technical materials of the paper are collected in supplementary
materials (see Appendix D).1 Notations: the Euclidean norm of a
vector x ∈ Rk is denoted as ∥x∥, and C or C with a subscript is used
as a generic positive constant, which need not be the same in each
occurrence.

1 The code for simulations and application and the supplementary materials are
available at http://homes.eco.auckland.ac.nz/pyu013/research.html.
2. Semiparametric efficiency risk bound

We first recall the parametric results of Yu (2012) in Section 2.1.
We then show that the semiparametric bound is the same as
the parametric bound using a simple example and provide some
intuition for this adaptive result in Section 2.2. At the end of
Section 2.2, we also discuss a technical assumption on the loss
function in the semiparametric efficiency risk bound derivation.

2.1. Parametric efficient estimation

The main results of Yu (2012) are that the Bayes estimator (BE)
is more efficient than the MLE for estimating γ , the threshold
point. Suppose fe|x,q is known as fe|x,q (e|x, q;α), where α ∈

Rdα is some nuisance parameter affecting the shape of the error
distribution. Assume further that the loss function is additively
separable on regular parameters and the nonregular parameter γ ;
that is, l (θ) = l(θ, γ ) = l1


θ

+ l2 (γ ), where θ =


θ ′, γ

′, θ =
β ′, σ ′, α′

′, and l1 is bowl-shaped.2 This assumption is important
for the semiparametric efficient estimation of γ , as it separates the
efficiency problem of γ from that of the regular parameters. Such
an assumption is motivated by the sequential estimation of γ and
θ . Usually, a profiled procedure is used to estimate γ first, and then
estimate θ as if γ were known; see, e.g., Hansen (2000) and Yu
(2012). It is reasonable to impose a loss function on each of these
two steps without interactions.

Under regularity conditions specified in Yu (2012), the BEθ ′

BE,γBE′

based on l is most efficient in the locally asymptotically
minimax (LAM) sense, and the asymptotic distribution is
√
n
θBE − θ0

 d
−→ Zθ ∼ N


0, I−1

θ0


,

n (γBE − γ0)
d

−→ Zγ = argmin
t


R
l2 (t − v) p∗

2(v)dv,
(3)

where Iθ0 is the information matrix of θ , p∗

2(v) =
exp{D(v)}

R exp{D(v)}dv
is the normalized asymptotic posterior of γ , and these two
asymptotic distributions are independent. Note that θBE has the
same asymptotic distribution as the MLE. The D(v) in p∗

2(v) is a
compound Poisson process defined as

D (v) =


N1(|v|)
i=1

z1i, if v ≤ 0;

N2(v)
i=1

z2i, if v > 0;

(4)

which is cadlag with D (0) = 0, where all z1i, z2i, i = 1, 2,
. . . ,N1 (·) and N2 (·) are mutually independent of each other,
Nℓ (·), ℓ = 1, 2, is a Poissonprocesswith intensity fq(γ0), z1i follows
the limiting conditional distribution of

z1i ≡ ln

σ10
σ20

fe|x,q

σ10ei+x′i(β10−β20)

σ20

 xi, qi;α0


fe|x,q (ei|xi, qi;α0)

given γ0 + ∆ < qi ≤ γ0, ∆ < 0 with ∆ ↑ 0 and is denoted as
z1i| (qi = γ0−), and z2i follows the limiting conditional distribution
of

z2i ≡ ln

σ20
σ10

fe|x,q

σ20ei−x′i(β10−β20)

σ10

 xi, qi;α0


fe|x,q (ei|xi, qi;α0)

2 A function is defined to be bowl-shaped if the sublevel sets {x : l(x) ≤ C} are
convex and symmetric about the origin.

http://homes.eco.auckland.ac.nz/pyu013/research.html
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given γ0 < qi ≤ γ0 + ∆, ∆ > 0 with ∆ ↓ 0 and is denoted
as z2i| (qi = γ0+). Because γ is essentially a boundary of q, only
the local information in the neighborhood of γ0 is relevant to
the estimation of γ0. For example, z1i (z2i) follows a distribution
conditional on q in the neighborhood of γ0, and the intensity of
N1 (·) and N2 (·) is fq(γ0).

2.2. Semiparametric efficiency risk bound of γ

Now,we explore the semiparametric efficiency risk bound for γ
using a simple threshold regression model. The arguments can be
easily extended to the general case. Suppose the semiparametric
threshold regression model is

y = β11 (q ≤ γ )+ e, where E [e|q] = 0. (5)

That is, x = 1, β20 = 0 and σ10 = σ20 = 1 are known in (1). In this
simple model, there is a threshold γ in q such that the mean of y is
β1 when q ≤ γ and 0 when q > γ , and there is no threshold effect
in variance.

For any one-dimensional submodel fe|q(e|q;α)with fe|q(e|q;α0)
= fe|q(e|q) and the loss function l(β1, α, γ ) = l1 (β1, α) + l2 (γ )
with l1 (·) bowl-shaped, the asymptotic distribution of the BE for
(β1, α, γ ) is

√
n
β1 − β10α − α0


d

−→N

0, I−1

θ0


n (γBE − γ0)

d
−→ argmin

t


R
l2 (t − v)


exp(D (v))

R exp(D (v))dv


dv

where

Iθ0 = E


Ie|q1(q ≤ γ0) −E [SeSα|q] 1(q ≤ γ0)

−E [SeSα|q] 1(q ≤ γ0) E

S2α|q

 
with Ie|q = E


S2e |q


, Se =

∂ ln fe|q(e|q)
∂e , Sα =

∂ ln fe|q(e|q;α0)
∂α

, and D (v)
is defined in (4). It is clear that the nuisance parameter α affects
the efficiency of the regular parameter β1 due to the correlation
between Se and Sα (see Newey (1990) for more discussions on how
α affects the efficiency of β1), but does not affect the efficiency of
the nonregular parameter γ . This result is true for any nuisance
parameter α, so the risk upper bound for γ is the same as the
risk when the conditional density function fe|q(e|q) is completely
known. In other words, the semiparametric efficiency risk bound
for γ is the same as the parametric bound.

This adaptiveness of the semiparametric efficiency risk bound
for γ is due to the fact that γ uses different information in the data
from that used in the regular parameter β1. First, note that the reg-
ular parameter β1 uses global information or information related
to moments of the data. The optimal asymptotic variance for β1

under E [e|q] = 0 is E

1(q ≤ γ0)/σ

2(q)
−1 (see, e.g., Chamberlain

(1987)), which is achieved by the feasible generalized least squares
estimator (GLSE) of Robinson (1987), where σ 2(q) = E[e2|q] is the
conditional variance. Only moments of e and q (e.g., σ 2(q), q ≤ γ0)
are relevant to this efficiency bound, which implies that each data
point has the same importance to the estimation of β1. In contrast,
the data points in the neighborhood of γ0 are more important to
the estimation of γ : a data point (yi, qi)with qi close to γ0 provides
more information than a data point with qi far from γ0. This can be
seen from the form ofD(v); see also Section 2 of Yu (2012) for an il-
lustration of this point. From Yu (2012), γ is essentially a ‘‘middle’’
boundary of q. Lemma21.19 of Van der Vaart (1998) shows that the
asymptotic distribution of a boundary estimator is independent of
that of a regular parameter; that is, the information used to esti-
mate a boundary and the information used to estimate a regular
parameter are independent. Based on this lemma, the above argu-
ment is not surprising. Actually, Yu (2013a) shows that even under
the nonparametric setup of E[y|x, q] in the two regimes, γ can still
be adaptively estimated.

The above discussion assumes that l is additively separable.
When l is not additively separable, the efficiency problem for γ
is intractable. Consider a standard non-separable loss function
l(θ, γ ) =

θ + |γ |
2 with dim(θ) = 1, then from Yu (2012),√

n
θBE − θ0


n (γBE − γ0)


d

−→ argmin
s,t


R2

l (s − u, t − v) p∗

1(u)p
∗

2(v)dudv,

where

p∗

1(u) =

Iθ0 
2π

exp

−

Iθ0
2


u − Zθ

2
is the normalized asymptotic posterior of θ , and Zθ is defined in (3).
The first-order conditions for this minimization problem are

R
(s − u) p∗

1(u)du +


R
sign (s − u) p∗

1(u)du


R
|t − v| p∗

2(v)dv

= 0,
R
(t − v) p∗

2(v)du +


R
sign (t − v) p∗

2(v)dv


R
|s − u| p∗

1(u)du

= 0,

and the solutions are denoted as
s,t. Obviously,s =


R up∗

1(u)du,
which is the posterior mean. This is because the posterior mean
and posterior median are the same for a normal posterior so

R sign (s − u) p∗

1(u)du = 0. Butt ≠


R vp
∗

2(v)du, as the posterior
mean and posterior median are not the same for p∗

2(v) which is
not normal and contains infinite-dimensional sufficient statistics,
so


R sign
t − v


p∗

2(v)dv ≠ 0.3 In consequence,s affectst in a
complicated way and that is intractable in our analysis. If p∗

2(v) is
also normal, thent is the posterior mean of p∗

2(v) for any bowl-
shaped loss; see Lemma 8.5 (Anderson’s Lemma) in Van der Vaart
(1998) for a rigorous statement. This is essentially why we allow
for interaction between elements of θ in the loss function, but not
between θ and γ .

In summary, the semiparametric efficiency problem for the
nonregular parameter γ is very different from that for regular
parameters as discussed in Newey (1990) and Bickel et al. (1998).
For any separable loss function, the conditionalmoment conditions
do not lose any information from the parametricmodel for γ . After
the semiparametric efficiency risk bound is found, we develop the
semiparametric empirical Bayes estimator that can achieve this
bound in the next section.

3. Feasible efficient estimation

In this section, we propose an estimator of γ that is adaptive to
the unknown fe|x,q. It begins with the construction of the estimator,
followed by its asymptotic distribution, and concludes with a
discussion about why orthogonality moment conditions are not
enough to identify γ . The key result in this section is Theorem 1,
that the nonparametric posterior converges to the true posterior
in the total variation of moments norm. Based on this result, we
prove that our estimator of γ is adaptive and is semiparametric
efficient in a suitable sense. As to the efficient estimation of β , we
relegate the discussion to supplementary materials as such results
are standard in the literature (see Appendix D).

3 There is some loss function with cross terms such that the first-order condition
with respect to t is separable in s and t; for example l(θ, γ ) = θ2 + γ 2

+
θ  γ .

But usually, the loss function should be a function of |γ | rather than γ , so we do not
pursue such general losses further.
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3.1. Feasible efficient estimation of γ

Suppose there is an n-consistent estimator of γ in (1); for
example, the LSE of Chan (1993) can serve this purpose. We
then refine this estimator in its 1/n neighborhood to obtain an
efficient estimator. Such a two-step estimator is also popular in
regular models, such as the GLSE of Robinson (1987). Since fe|x,q
is unknown, we will use a nonparametric method to estimate it,
and then plug this nonparametric estimator in the Bayes formula
to estimate γ . Such an estimator is called the semiparametric
empirical Bayes estimator (SEBE).4 Note that we only need to
estimate the joint density f (e, x, q) instead of fe|x,q since there is
no parameter of interest in f (x, q). To simplify notations, define
w =


e, x′, q

′.
In this section, we consider the general case of unrestricted

f (w). In Section 5.1, we will consider a simpler setting where e is
independent of (x′, q)′. In the general case, the following algorithm
is used to estimate γ .

Algorithm G. Step G1: Get an n-consistent estimator of γ and
a

√
n-consistent estimator of


β ′, σ ′

′, denoted asβ ′,σ ′,γ ′. The corresponding residuals are denoted as
{ei}ni=1.

Step G2: Estimate the joint density of w by kernel smoothing,

f (w) =
1
n

n
i=1

Kh (wi − w)

withwi =
ei, x′

i, qi
′ and Kh (·) =

1
hk+2 K


·

h


, where h is

the bandwidth, and K (·) : Rk+2
→ R is a kernel density

function.
Step G3: Define the SEBE as

γ = argmin
t


Γ

l2n(t − γ )Ln(γ )π2 (γ ) dγ (6)

where l2n(t − γ ) = l2 (n (t − γ )) is the loss function of
γ , π2 (γ ) is the prior of γ , and

Ln(γ ) =

n
i=1


1σ1f


yi − x′

i
β1σ1 , xi, qi


1(qi ≤ γ )

+
1σ2f


yi − x′

i
β2σ2 , xi, qi


1(qi > γ )


= exp


n

i=1

1(qi ≤ γ ) ln


1σ1f

yi − x′

i
β1σ1 , xi, qi



+

n
i=1

1(qi > γ ) ln


1σ2f

yi − x′

i
β2σ2 , xi, qi


,

denoted as exp
Ln(γ ), is the estimated likelihood

function.

Based on Algorithm G, γ is a Bayes estimator with the posterior
distribution

pn(γ ) =
exp

Ln(γ )π2 (γ )
Γ
exp

Ln(γ )π2 (γ ) dγ
;

4 Empirical Bayes methods obtain a prior from the data. See Section 4.5 of Berger
(1985) for an introduction. Our method is labeled empirical Bayes due to replacing
an unknown density by its estimate. Despite the similarity in terminology, note that
the SEBE proposed here is distinct from nonparametric Bayes and semiparametric
Bayesmethods in the literature. SeeHirano (2002) andGhosal (2010) for a summary
of the literature on this topic in statistics and econometrics, respectively.
that is,

γ = argmin
t


Γ

l2n(t − γ )pn(γ )dγ .
As will be shown in the next subsection, the nonparametric
estimation of the density function does not affect the efficiency ofγ ; in other words,γ is adaptive to the estimation of f (w).

To implement Step G3, π2 (γ ) must be specified. Following Yu
(2012), we use the uniformdistribution on (qmin, qmax) as the prior,
where qmin (qmax) is the minimum (maximum) of {qi}ni=1. For a
sampling scheme, the Metropolis–Hastings sampler, slice sampler
or other MCMC methods can be used. Specifically, we first draw a
Markov chain

S =

γ (1), . . . , γ (B)


(7)

whose marginal density is approximatelypn(γ ). Then the estima-
torγ is approximated by a function of S depending on the loss func-
tion l2. Popular loss functions and the corresponding γ include:
(a) l2(v) = v2, then γ can be approximated by the mean of S;
(b) l2(v) = |v|, then γ can be approximated by the median of S;
and (c) l2(−v) = (τ − 1 (v ≤ 0)) v for τ ∈ (0, 1), thenγ can be
approximated by the τ th percentile of S.

The estimation procedure above can also be applied to more
general setups of the model. For example, the model with known
but nonlinear regression functions can be estimated using this
procedure. It can also be applied when there are some parameters
common to the two regimes. The setup considering both cases is

y =


g1 (x, β1, δ)+ e1, q ≤ γ ;

g2 (x, β2, δ)+ e2, q > γ ;

where δ is the vector of parameters that remain the same in the two
regimes, g1 and g2 are smooth functions which are not necessarily
the same, and e1 and e2 need not take the form σ1e and σ2e.

3.2. Asymptotic theory ofγ
To obtain the asymptotic distribution ofγ , we need regularity

conditions on the loss function, prior, kernel, bandwidth and f (w).
These conditions are summarized in Appendix A. Here, we only
specify the data and parameters, and collect notations. Throughout
this paper, we maintain the assumptions that the data are i.i.d.
and that the mean independence assumption E[e|x, q] = 0 holds.
Definew =


y, x′, q

′,wi =

yi, x′

i, qi
′.

Assumption 0. wi ∈ W ≡ R × X × Q ⊂ Rk+2, β1 ∈ B1 ⊂ Rk,
β2 ∈ B2 ⊂ Rk, 0 < σ1 ∈ Ω1 ⊂ R, 0 < σ2 ∈ Ω2 ⊂ R,
γ ∈ Γ = [γ , γ ] ⊂ R, Θ = B1 × B2 × Ω1 × Ω2 × Γ is compact,

θ0 ∈ Θ0, whereΘ0 is in the interior ofΘ ,

β ′

10, σ10
′

≠

β ′

20, σ20
′,

where ≠ means all corresponding coordinates of two vectors are
not the same.

We introduce the following notations:

β =

β ′

1, β
′

2

′
, σ = (σ1, σ2)

′ , θ =

β ′, σ ′


,

θ =

θ ′, γ

′
,

β0 =

β ′

10, β
′

20

′
, σ0 = (σ10, σ20)

′ , θ0 =

β ′

0, σ
′

0


,

θ0 =

θ ′

0, γ0


B = B1 × B2, Ω = Ω1 ×Ω2, Θ = B ×Ω

u =
√
n

θ − θ0


, v = n (γ − γ0)

Un =
√
n

Θ − θ0


, Vn = n (Γ − γ0) , Hn = Un × Vn,

where

u′, v


is the local parameter for θ , and Hn is the local

parameter space which converges to R2k+3 by Assumption 0.
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Before studying the asymptotic distribution ofγ , we first have a
close look at the nonparametric posterior distribution which is the
basic building block ofγ . Our conclusion is thatpn(γ ) concentrates
around γ0 at rate 1/n as measured by the total variation of
moments normused in Chernozhukov andHong (2003). Define the
localized posterior as

p∗

n(v) =
1
n
pn γ0 +

v

n


,

and the total variation of moments norm forp∗
n(v) asp∗

n


TVM(κ) =


Vn
(1 + |v|κ)

p∗

n(v)
 dv.

Theorem 1 (Adaptiveness ofp∗
n).Under Assumptions 0, B, D, E, K and

P in Appendix A, for any 0 ≤ κ < ∞,p∗

n − p∗

n


TVM(κ) ≡


Vn
(1 + |v|κ)

p∗

n(v)− p∗

n(v)
 dv p

−→ 0, (8)

where

p∗

n (v) =
1
n
pn

γ0 +

v

n


, pn(γ ) =

exp {Ln(γ )}π2 (γ )
Γ
exp {L(γ )}π2 (γ ) dγ

,

with

Ln(γ ) =

n
i=1

1(qi ≤ γ ) ln


1
σ10

f

yi − xiβ10

σ10
, xi, qi


+

n
i=1

1(qi > γ ) ln


1
σ20

f

yi − xiβ20

σ20
, xi, qi


being the log likelihood function with f (w) and θ0 known.

By Theorem 1, the sampling error introduced by the nonpara-
metric estimation of f (w) inpn(γ ) can be neglected asymptoti-
cally. This is the basis for all remaining inferences about γ . Because
n (γ − γ0) = argmint


Vn

l2(t − v)p∗
n(v)dv, the argmax continu-

ousmapping theorem implies the following theoremwhich can be
viewed as a corollary of Theorem 1.

Theorem 2 (Large Sample Inference ofγ ). Under Assumptions 0, B,
D, E, K, L and P in Appendix A,

n (γ − γ0)− Zn
p

−→ 0,

where

Zn = argmin
t


R
l2(t − v)p∗

n(v)dv.

This implies that

n (γ − γ0)
d

−→ argmin
t


R
l2 (t − v) p∗

2(v)dv ≡ Z,

where p∗

2(v) is the same as that in (3) except that fe|x,q (·|xi, qi, α0) in
D (v) is replaced by fe|x,q (·|xi, qi), the true conditional density.

By Theorem 2, the asymptotic distribution of γ is the same as
that in the parametric case where f (w) is known, so γ0 can be
adaptively estimated. The following theorem gives a precise sense
in whichγ is semiparametric efficient.

Theorem 3 (Semiparametric Efficiency ofγ ). Under Assumptions 0,
B, D, E, K, L and P in Appendix A, if γ is uniformly n-consistent,
that is, sup|γ−γ0|<δ

n |γ − γ | = Op(1) for some δ > 0, then γ
is semiparametric efficient in the pointwisely locally asymptotically
minimax (PLAM) sense:

lim
δ→0

lim
n→∞


sup

|γ−γ0|<δ
Eγ [l2 (n (γ − γ ))]



≤ lim
δ→0

lim
n→∞


sup

|γ−γ0|<δ
Eγ [l2 (n (Tn − γ ))]


, (9)

where Tn is any estimator of γ , and Eγ [·] is the expectation under
β ′

0, σ
′

0, γ , f0(w)
′ with f0(w) being the true density of w.

The LSE of γ satisfies the uniform n-consistency condition in The-
orem 3 when more stringent regularity conditions are imposed.5
The ‘‘pointwise’’ in the PLAM criterion refers to ‘‘pointwise in
global parameters


β ′

0, σ
′

0

′ and the true density f0(w)’’. Actually,
the supremum in (9) can be strengthened to be taken over θ
rather than only over γ when a uniformly

√
n-consistent estima-

tor (e.g., the LSE) of

β ′, σ ′

′ is available. Nevertheless, the PLAM
criterion is weaker than the genuine LAM criterion which requires
that

lim
δ→0

lim
n→∞


sup

∥ϑ−ϑ0∥<δ
Eϑ [l2 (n (γ − γ ))]



≤ lim
δ→0

lim
n→∞


sup

∥ϑ−ϑ0∥<δ
Eϑ [l2 (n (Tn − γ ))]


,

where the supremum is taken over ϑ =

θ ′, f (w)

′ in some neigh-
borhood of ϑ0 =


θ ′

0, f0(w)
′. Note that a norm is required to de-

fine a neighborhood of f0(w), while the usual norms such as that
in Chamberlain (1987) are not suitable in this nonregular environ-
ment. This is because the neighborhoods defined by this kind of
norm include discrete distributions, while the distributions of q
and e are required to be continuous in threshold regression. Even
if such a norm (such as the Hölder norm) is well defined, the proof
under the LAM criterion is difficult since it requires a serious ex-
tension of the parametric arguments in Ibragimov and Has’minskii
(1981) to the nonparametric scenario. Even in the regular case,
such an extension needs caution; see, e.g., Ritov and Bickel (1990).
In spite of its restrictiveness, the PLAM criterion is not rare in the
literature; e.g., Fan (1993) uses it in nonparametric regression and
Chen and Reiss (2011) use it in nonparametric instrumental re-
gression. In supplementarymaterials (see Appendix D), we discuss
two other efficiency criteria and argue that they are not suitable in
semiparametric threshold regression.

Note further that the assumptions on the prior in Appendix A
are very weak since the only unknown parameter is γ in Al-
gorithm G. An alternative estimation method in semiparamet-
ric threshold regression is to use the semiparametric Bayesian
approach where the specification of priors is critical. In such a
method, the parameter space is infinite-dimensional, as it also in-
cludes the function space where f (w) stays. Some priors can in-
duce inconsistent Bayes estimates in this case; see, e.g., Diaconis
and Freedman (1986a,b). Fortunately, this problem is avoided by
a frequentist estimation of f (w) in Algorithm G. The semipara-
metric Bayesian method is still an open question even in regular
models.

5 Basically, we just strengthen the regularity conditions from the pointwise
version to the uniform version; see, e.g., Ibragimov and Has’minskii (1981) for such
uniform convergence results in the maximum likelihood method.
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3.3. Orthogonality conditions vs. conditional moment restrictions

As is well known, the conditional moment restriction (2) adds
information above the orthogonality conditions in estimating
regular parameters such as β by exploring the information in
conditional variance. As will be shown below, (2) provides very
different information for γ from that for β . First, note that (2) is
indeed required in our SEB procedure. For example, if the LSE is
used as the n-consistent estimator in Step G1 of Algorithm G, then
(2) is needed in identifying γ0 and proving the n-consistency of the
LSE.

To see the role of (2) in estimating γ , we will return to the sim-
ple case (5) in the following discussion. Since γ is of main interest,
we assume thatβ10 = 1 is known. Note that the orthogonality con-
ditions E [e1 (q ≤ γ )] = 0 and E [e1 (q > γ )] = 0 are not enough
to identify γ , but E[e|q] = 0 is sufficient. To see why, let us con-
sider a parametric submodel. Suppose the joint distribution of q
and e is as follows:

fq,e (q, e) =



φ(e − 1/2), if 0 ≤ q <
1
4
,

φ(e + 1/2), if
1
4

≤ q ≤
1
2
,

φ(e − 1/2), if
1
2
< q ≤

3
4
,

φ(e + 1/2), if
3
4
< q ≤ 1,

0, otherwise,

(10)

where φ(·) is the density of the standard normal distribution. Sup-
pose γ0 =

1
2 , then it is easy to check that E [e1 (q ≤ γ0)] = 0 and

E [e1 (q > γ0)] = 0, but γ0 cannot be identified. This is because the
joint distribution of y and q is

fy,q (y, q) =



φ(y − 3/2), if 0 ≤ q <
1
4
,

φ(y − 1/2), if
1
4

≤ q ≤
3
4
,

φ(y + 1/2), if
3
4
< q ≤ 1,

0, otherwise,

(11)

so γ0 is identified by the least squares criterion as
 1
4 ,

3
4


, not 1

2 ;
that is, this is a partially identified model.6 To point-identify γ0 as
1
2 , the mean of y in the left and right neighborhoods of γ0 must
be different. E[e|q] = 0 guarantees this condition, while the joint
distribution of (q′, e)′ in (10) does not satisfy this condition. When
γ0 is identified as a boundary of q, the n-consistency is straightfor-
ward according to the discussion in Section 2 of Yu (2012).7

Similarly, in quantile threshold regression, any moment
condition E[τ − 1 (e ≤ 0) |x, q] = 0 indexed by a fixed τ ∈

6 The objective function of the least squares estimator is E

(y − 1 (q ≤ γ ))2


=

E

y2 − 2y1 (q ≤ γ )+ 1 (q ≤ γ )


=

7
4 − 2

·



3
2
γ , if 0 ≤ γ <

1
4
,

3
8

+
1
2


γ −

1
4


, if

1
4

≤ γ ≤
3
4
,

5
8

−
1
2


γ −

3
4


, if

3
4
< γ ≤ 1,

+ γ =
7
4 −


2γ , if 0 ≤ γ <

1
4
,

1
2
, if

1
4

≤ γ ≤
3
4
,

2 − 2γ , if
3
4
< γ ≤ 1,

which is minimized on
 1
4 ,

3
4


. Hall et al. (2012) independently find a similar

unidentification result in the GMM framework of structural change.
7 By checking the proof of n-consistency of the LSE, we can see that the

superconsistency is from the unsmoothness of the limit objective function at γ0 .
In this simple example, the left derivative of the limit objective function is −fq(γ0),
while the right derivative is fq(γ0).
(0, 1) essentially provides sufficient identification information
for γ in the SEB procedure as (2). After γ is confined in an
n−1 neighborhood of its true value, e.g., using the procedures in
Bai (1995), Caner (2002), Oka and Qu (2011) and Yu (2013b),
Algorithm G can be employed to get an adaptive estimator of γ .

4. Confidence interval construction of γ

A common method to form CIs is through inverting Wald or
t-statistics. We call such CIs Wald-type CIs. Due to the nonregu-
larity of γ , Wald-type CIs of γ are difficult to construct as shown
in Section 4.1. A natural antidote to inference when an estimator’s
distribution is nonstandard is to turn to the resampling methods.
In Section 4.2, we review the existing resampling methods used in
threshold regression. Finally, we provide in Section 4.3 an alterna-
tive CI for γ , called the nonparametric posterior interval (NPI), and
prove its validity. A thorough finite-sample comparison of compet-
ing CIs is conducted in Section 6.2.

4.1. The difficulty of constructing Wald-type confidence intervals

Suppose the LSE is used as in Chan (1993). The LSE of γ is usually
defined by a profiled procedure:γ = argmin

γ
Mn (γ ) ,

where

Mn (γ ) ≡ min
β1,β2

1
n

n
i=1


y − x′β11(q ≤ γ )− x′β21(q > γ )

2
.

Its asymptotic distribution is

n (γl − γ0)
d

−→M−,

n (γm − γ0)
d

−→
M− + M+

2
,

(12)

whereγl, called the left-endpoint LSE (LLSE), uses the left endpoint
of the minimizing interval in least squares estimation, and γm,
called the middle-point LSE (MLSE), uses the middle point of the
minimizing interval. In addition, [M−,M+) = argminv DLS (v) is
the minimizing interval of DLS (v). DLS (v) is similarly defined as
D(v) in (4) except that

z1i =

2x′

i (β10 − β20) σ10ei
+ (β10 − β20)

′ xix′

i (β10 − β20)

| (qi = γ0−) ;

z2i =

−2x′

i (β10 − β20) σ20ei
+ (β10 − β20)

′ xix′

i (β10 − β20)

| (qi = γ0+) .

The MLSE is motivated similarly as the MMLE in Yu (2012).
It is hard to construct a Wald-type CI for γ by searching for

percentiles of M− and M−+M+

2 . First, fq (γ0) is required to find
the distribution of M− and M−+M+

2 . If fq (·) is known, then fq (γ0)
can be estimated by fq (γ ), where γ can be γl or γm. In reality,
however, even in parametric models, the density of q is seldom
specified. A nonparametric estimator of fq(·) might be suggested,
but such an estimator will suffer from the low convergence rate
of nonparametric estimation. Second, infinite independent copies
of z1i and z2i are also needed to simulate the sample path of
DLS (·), but they involve an unknown generator of conditional
random variables.8 Third, such a generator is not needed if q

8 Kosorok and Song (2007) indeed put forward such a generator in a class of
parametric thresholdmodels arising in survival analysis, but the generator depends
on some tuning parameters which are hard to select and also only on a subsample
so that the generator cannot be precise. See also Li and Ling (2012) for an alternative
generator in threshold autoregressive models.
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is assumed to be independent of (x′, e)′, but the distribution of
x′

i, ei
′ and β ′

0, σ
′

0

′ are still needed to simulate z1i and z2i. The
empirical distribution of


x′

i,ei′ can potentially substitute for the
distribution of


x′

i, ei
′, and the least squares estimate substitutes

for

β ′

0, σ
′

0

′, but this is very burdensome when the dimension of x
is large. If all these above are specified, the algorithms in Appendix
D of Yu (2012) can be used to construct a confidence interval for γ .

Due to the above difficulties, three alternative methods are
put forward to avoid using DLS (·). First, Seo and Linton (2007)
propose aWald-type CI for γ based on the smoothed least squares
estimation (SLSE) in our framework. Because the asymptotic
distribution of the SLSE is normal, standard CI construction
methods such as inverting the t-statistic or the bootstrap can be
used. But the convergence rate is less than n, which implies that
the CI would be relatively wide. Also, a key smoothing parameter
needs to be specified in practice. Second, Hansen (2000) employs
a different framework as mentioned in the introduction and
constructs a CI for γ by inverting the likelihood ratio statistic. But
such a CI may be a union of disjoint intervals and is conservative in
the present framework.9 Third, Bai (1997) constructs a Wald-type
CI for γ in structural change models using a similar framework
as Hansen (2000) except allowing for threshold effects also in
variance. The asymptotic distribution of γl and γm are the same
in his framework and related to a two-sided Wiener process.
However, the convergence rate is less than n, and as argued in
Section 4.1 of Hansen (2000), this Wald-type CI performs poorly
because the parameter has a region where identification fails.

4.2. Resampling methods

A few resamplingmethods were proposed in the semiparamet-
ric threshold regression literature. In a simple threshold regres-
sion where no covariates exist, only threshold effects in mean are
present, and e is independent of q, Seijo and Sen (2011) show that
Efron’s nonparametric bootstrap is invalid. In the general frame-
work (1), Yu (2014) further shows that the asymptotic bootstrap
distribution does not even exist. He also shows that other boot-
strap schemes such as the wild bootstrap or bootstrapping residu-
als when e is independent of (x′, q)′ are not valid either.

Although the usual multiplier bootstrap mentioned above fails,
there are two other resampling schemes that are valid in threshold
regression. The first scheme is the smoothed bootstrap of Gijbels
et al. (2004) and Seijo and Sen (2011). As argued in Yu (2014),
this scheme is not practical since we need to estimate the joint
density of (x′, q)′ even if e is assumed to be independent of
(x′, q)′. Such an estimation obviously suffers from the curse of
dimensionality when the dimension of (x′, q)′ is large. The second
scheme is the subsampling method of Gonzalo and Wolf (2005)
(see also the related m out of n bootstrap in Seijo and Sen (2011)).
This scheme is valid under very weak assumptions. Let

γ ∗

b

B
b=1

denote the subsampling estimators, and m denote the subsample
size. Politis and Romano (1994) state that the validity of the
subsampling inference is based on two conditions: (a) The cdf
of

m
γ ∗

b − γ0
B

b=1 is a good approximation of the asymptotic

distribution of n(γ − γ0), which is guaranteed by the assumption
that m → ∞; (b) m (γ − γ0) converges to zero in probability,
which is insured by the assumption that m/n → 0. Because we
need both m → ∞ and m/n → 0 to guarantee the validity of

9 Theorem 3 of Hansen (2000) only proves the conservativeness of his CI in
a special case of the framework used in this paper. The simulation studies and
application there indicate that his CI is indeed conservative in our framework; see
Sections 6.2 and 7 for more evidences on this point.
subsampling, the sample size n is expected to be huge to make the
subsampling work satisfactorily. In threshold regression, since the
convergence rate of γ is n (rather than the usual

√
n), we find in

the simulation of Section 6.2 that condition (a) is approximately
satisfied even when n is as small as 400. Satisfaction of condition
(b) is more subtle. When n is not so big, m might be treated as cn
for some c ∈ (0, 1) instead of o(n). For example, in Seijo and Sen
(2011), m = n4/5, then when n = 400, m ≈ 0.3n. If m/n is not
approximately zero, the satisfaction of condition (b) relies on the
small bias of γ in finite samples. In the simulation of Section 6.1,
we find that γl has a larger bias than γm, so we expect that the
performance of the subsampling CIs based onγl isworse than those
based onγm.
4.3. Nonparametric posterior interval

Define

Fn(x) =


γ∈Γ :γ≤x

pn(γ )dγ and cn(τ ) = inf

x :Fn(x) ≥ τ


,

then the 100(1 − τ)% NPI for γ is given by [cn(τ/2), cn(1 − τ/2)],
where τ ∈ (0, 1). In practice, such a confidence interval can be
constructed by picking out the τ/2 and 1 − τ/2 quantile of the
MCMC sequence S in (7). To make sure such a confidence interval
is asymptotically valid, we need the following theorem.

Theorem 4 (Asymptotic Validity of NPI). Under Assumptions 0, B, D,
E, K and P in Appendix A, for any τ ∈ (0, 1), as long as H−1

∞
(τ/2)

and H−1
∞
(1 − τ/2) have positive density in an open neighborhood of

0, where H−1
∞
(τ ) ≡ inf


t :

v∈R:v≤t p

∗

2(v)dv ≥ τ

, then

lim
n→∞

P (cn(τ/2) ≤ γ0 ≤ cn(1 − τ/2)) = 1 − τ .

Theorem 4 states that the quantile of the posterior is asymptoti-
cally consistent. Note that H−1

∞
(τ ) = argmin

t


(τ − 1(v − t ≤

0))(v− t) ·p∗

2(v)dv is the asymptotic distribution of n(cn (τ )−γ0),
so the theorem requires that the posterior quantiles have positive
density in an open neighborhood of 0. This assumption is needed
in constructing the parametric posterior interval; see Theorem 3.3
of Chernozhukov and Hong (2004) and Theorem 4 of Yu (2012).
For a CI, asymptotic validity is only the basic requirement. From
the adaptiveness of our SEB procedure, we expect that the NPI also
has advantages in length, and this is confirmed by simulations in
Section 6.2.

5. Simplification and extension

This section provides some simplification and extension of our
SEB approach. Some terminology will be used hereinafter: ‘‘the
LSE’’ means the LLSE and the MLSE, while ‘‘the LSEs’’ also includes
the SLSE.

5.1. Circumvention of the curse of dimensionality

Although the proposed method is theoretically appealing, it
suffers from the curse of dimensionality when the dimension of
(x′, q)′ is high. One simplification is to assume that e is independent
of (x′, q)′. Such an assumption is standard in the literature;
e.g., Chan (1993). In this case, only the marginal distribution of
e, instead of the joint distribution of w, needs to be estimated, so
the dimensionality of estimation is greatly reduced. Accordingly,
Algorithm G can be simplified; especially, Step G2 is simplified to
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StepG2′: Estimate the density of e by kernel smoothing,

f (e) =
1
n

n
i=1

Kh (ei − e)

with Kh (·) =
1
hK


·

h


, where h is the bandwidth, and

K (·) : R → R is a kernel density.

Also, the f (w) in Step G3 will be substituted by f (e). The
asymptotic distribution in Section 3.2 is also simplified, as the
conditional density fe|x,q in D(v) of Theorem 2 is changed to fe, the
marginal density of e. The procedures in Section 4 should also be
adjusted correspondingly to construct CIs for γ . Note that if e is not
independent of (x′, q)′, that is, the model is misspecified, then the
asymptotic distribution of this pseudo-SEBE is the same as that in
Theorem 2 except that fe|x,q is replaced by fe. Since ei and (x′

i, qi)
′

are dependent in the definition of zℓi, ℓ = 1, 2, this estimator
is not efficient and is similar to the quasi-MLE in Qu and Perron
(2007). Also note that the NPI is not valid in this misspecified
model as the validity of the posterior interval critically relies on the
assumption that the model is correctly specified, see Theorem 4 of
Yu (2012).

Under the assumption that e is independent of (x′, q)′, even
the regular parameters β can be adaptively estimated; see Bickel
(1982) and Bickel et al. (1998) for the details. It is noteworthy that
the reasons for adaptive estimation of γ and β are different: β can
be adaptively estimated because the independence provides full
information about the distribution of e, while for γ , it is because
no local information around γ is lost from the assumption of
independence as discussed in Section 2.2.

5.2. Recursive semiparametric empirical Bayes method

In Algorithm G, the performance ofγ critically depends on the
estimation of f (w). There are two types of finite-sample errors
in this estimation. The first is from the slow convergence rate of
the kernel smoother. The second is from the impreciseness of the
initial estimator γ in Step G1. When the sample splitting of γ is
far from the splitting of the true value γ0, {ei}ni=1 will contain some
bias.

The first error cannot be controlled for a fixed dataset, but
the second error can. Specifically, in Algorithm G, we can use the
SEBE γ as the new preliminary estimate of γ in Step G1, and
generate new

β ′,σ ′
′

and {ei}ni=1 using γ as the splitting point.
Step G2 and G3 then follow to find a new estimate of γ . Repeat the
above procedure until convergence. Note that if two consecutive
SEBEs split the sample in the same way, i.e., both fall into the
same interval [q(i), q(i+1)) with q(i) being the ith order statistic of
{qi}ni=1, then the algorithm converges. The estimate of γ in the last
iteration will be taken as our ultimate point estimate of γ , and
the corresponding NPI as our ultimate set estimate of γ . Such a
procedure is called the recursive semiparametric empirical Bayes
(RSEB) method. It should be emphasized that the convergence
properties of the RSEB method have not been theoretically proved
yet. Nevertheless, from the simulation studies in Section 6.2 and
the application in Section 7, for most data sets, the efficiency gain
is achieved in the first SEBE and the algorithmwill converge in the
second iteration.

The RSEBmethodwill improve the performance of γ estimation
especially when β2 −β1 is small, since the identification power for
γ is weak and the LSE of γ is not precise in this case. Note that
the RSEB estimator has the same asymptotic distribution as the
SEB estimator because in AlgorithmG, we only require the starting
estimator of γ to be n-consistent.
6. Simulations

In this section, we will report two simulations. For comparison
with the parametric case, the same setup as in Section 4 of Yu
(2012) is used:

y =


β1 + σ1e, q ≤ γ ;

σ2e, q > γ .
,

q ∼ U[0, 1], e ∼ N(0, 1), and q is independent of e,

where σ1, σ2 and β1 are known, and γ is the only parameter
of interest. This simple setting is done to focus attention on
the threshold estimation and to save simulation time. In the
simulations, γ0 = 1/2, σ10 = 0.2, σ20 = 0.4, and four β1 values
are used: 0.2, 0.4, 0.7 and 1, corresponding to tiny, small, medium
and large threshold effects, respectively. Because e is independent
of (x′, q)′, the simplified procedures in Section 5.1 can be used.

The first simulation compares the risk of the SEBE and the RSEB
estimatorwith the LSEs, and the second compares the coverage and
length properties of the valid CIs discussed in Sections 4.1 and 4.2
with our NPI. To save space, all other procedures except the SEB
approach are described in supplementary materials (see Appendix
D).

6.1. Simulation 1: Risk comparison with the LSEs

Two key procedures of the SEB method are the estimation of
fe and the simulation from the nonparametric posteriorpn(γ ). In
this simulation, we use two functions in Matlab, ksdensity and
slicesample, to carry out these two procedures. ksdensity uses by
default the optimal bandwidth when the true density is normal
to get a smoothing density; see Section 3.4.2 of Silverman (1986)
for details of this bandwidth selection. In the function slicesample,
the arguments are some initial value and a posterior function
form that is not necessarily normalized as a density; unlike in
the Metropolis–Hastings sampler, the proposal distribution (or
transition distribution) density is not required. We use the MLSE
as the starting value, and draw 2000 samples from the posterior
after discarding the first 200 ‘‘burn-in’’ draws. The prior inpn(γ )
is specified in Section 3.1, but other specifications should not
introduce any significant change in the performance. Refer to Neal
(2003) for a concrete description of the slice sampling.

The performance of the estimators is summarized in Tables 1
and 3 of Appendix C. To explore the finite-sample information
loss in the nonparametric density estimation of the SEB procedure,
we also report the parametric results where the density of e is
known. The asymptotic risk of all estimators is reported as well
for comparison. Note that the asymptotic risk of the SLSE is not
comparable with others since the SLSE has a slower convergence
rate than n.

From Tables 1 and 3, the following conclusions can be drawn.
(i) The performance of the posterior mean and median is ro-
bust to all β1 values, and dominates the LSEs in all cases. Even
in this semiparametric case, the posterior mean has the smallest
MSE and the posterior median has the smallest MAD among all
semiparametric estimators in most cases. (ii) Compared with the
parametric results, the SEBE does not lose much efficiency in the
nonparametric estimation of the error density when β1 is not too
small. When β1 is small, the SEBE indeed loses a lot from the para-
metric case, although it is still better than the LSEs. This is partially
due to the poor performance of the MLSE in the SEBE construc-
tion when β1 is small. (iii) The asymptotic and finite-sample risk of
the MLSE is between that of the LLSE and the SEBE in most cases.
However, when β1 is small, the ordering might reverse. This is not
surprising from the risk calculation in Appendix D of Yu (2012).
(iv) The SLSE performs worst in almost all cases, which validates
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Fig. 1. Asymptotic density of the LSE compared with the approximation in Bai (1997).
its low convergence rate. Comparing the asymptotic and finite-
sample risk of the SLSE, its convergence rate is faster than

√
n but

much slower than n. (v) The risk refinement in the RSEB method is
secondary relative to that in the SEBE. The refinement gets smaller
when n is larger, the recursion number is larger, or β1 is larger
(just as expected in Section 5.2). (vi) Table 3 shows the convergence
property in the recursion. Inmost cases, the estimationwill stop in
two iterations. The recursion stops earlier when n or β1 gets larger.
Also, since it is more likely for the LSE, the SEBE and the RSEBE to
match the sample splitting of the true threshold point when β1 or
n is larger, there is a smaller bias in {ei}ni=1 such that the refine-
ment of the risk gets smaller in these cases. (vii) The finite-sample
risk of all estimators except the SLSEmatches their asymptotic risk
when β1 is not too small. This indicates that the finite-sample dis-
tribution is close to the asymptotic distribution, which is partially
due to the superconsistency of the estimators. The n-consistency
is also hinted at the risk comparison between the case n = 100
and n = 400: the risk of n = 400 is about a quarter of n = 100.
When β1 is small, such a result does not hold. In such a case, the
small-threshold-effect asymptotic structure of Hansen (2000)may
be suitable, and the convergence rate is slower than n.

6.2. Simulation 2: Comparison of confidence intervals

In this simulation, Hansen’s method (2000) is applied to a
misspecified model, since his method does not allow for threshold
effects in error variance. Bai’s method (1997) is therefore used to
compare with Hansen’s method. From Bai (1997), we can roughly
state that n (γ − γ0)

d
−→ωT (ψ), where ω = σ 2

10/β
2
10, and T (ψ)

is the minimizer of a two-sided Brownian motion indexed byψ =

σ 2
20/σ

2
10. Fig. 1 plots the distribution of M− and M−+M+

2 in (12) and
ωT (ψ) for the four β1 values. From Fig. 1, this approximation is
accurate for the MLSE when β1 is small, but not for the LLSE or
when β1 is large. For Seo and Linton’s method (2007), we only
report the CIs based on the bootstrap-t method to gain the finite-
sample refinement, where the number of bootstrap repetitions is
set to be 1000. In subsampling,m = n/4.
The simulation results are summarized in Table 2 of Appendix C.
A few results of interest from Table 2 are as follows. (i) When β1
is not too small, the NPI is the best in both coverage and length.
Such a result is consistent with the efficiency results in Simulation
1. When β1 is small, the NPI has an undercoverage problem as
in almost all other methods.10 (ii) When β1 is not too small, the
NPI does not lose much in coverage and length compared with the
parametric confidence interval. The difference in the performance
of the NPI and the parametric posterior interval gets larger when
β1 gets smaller. (iii) The coverage of Hansen’s method (2000)
depends on the value of β1, which is also observed in Hansen
(2000). When β1 is large, this method is very conservative. Bai’s
method (1997) has a good coverage when β1 is small, but has an
undercoverage problem when β1 is large. The CIs centered at the
MLSE perform better than those centered at the LLSE. These results
are consistent with the intuition in Fig. 1 that Bai’s approximation
is closer to the MLSE than the LLSE and is better when β1 is
smaller. In general, we can say that Hansen’s method performs
better than Bai’s method.11(iv) The smoothed bootstrap CIs are
verywide although the coverage property is acceptable. Among the
four smoothed bootstrap CIs, it seems that the symmetric intervals
based on the MLSE perform the best considering both coverage
and length; see Section 4.2 of Yu (2014) for similar simulation
results in more general setups. Nevertheless, it is fair to claim that
this method is dominated by Hansen’s method. (v) The CIs based
on the SLSE performs worst in both coverage and length, which
matches the efficiency results in Simulation 1. The symmetric CIs
have a very different coverage from the equal-tailed CIs, which
indicates that the finite-sample distribution of the SLSE, unlike the
asymptotic distribution, is not symmetric.

10 In practice, when β1 is small, the data will not pass the specification test such
as in Hansen (1996), so it is appropriate to only consider the data that pass the test.
11 In another simulation unreported here, we specify σ10 = σ20 = 0.3, so both
Hansen’s method and Bai’s method can be applied without misspecification. The
main results do not change except that Hansen’smethod is conservative evenwhen
β10 = 0.2 and n = 100.
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Fig. 2. Typical subsampling densities when β1 = 1 and n = 400.
(vi) The subsampling method suffers from the undercoverage
problem. This is especially true for the equal-tailed interval and the
interval based on the LLSE or when β1 is small. Furthermore, the
subsampling CIs are much longer than the NPI. The undercoverage
problem also happens in the setup of Gonzalo and Wolf (2005). It
may come from the fixed block size. As a solution, the adaptive
selection of block size can match the coverage, although it cannot
solve the length problem. The worse length property of the
subsampling method is related to the worse efficiency property
of the LSE. Comparing the subsampling CIs based on the MLSE
and those based on the LLSE, the former works better than the
latter in both coverage and length when β1 is not too small.
First, the subsampling intervals based on the MLSE is shorter than
those based on the LLSE. This is not surprising from Simulation 1
since the MLSE has a smaller variance than the LLSE. Second, the
subsampling intervals based on the MLSE have a better coverage
than those based on the LLSE. As explained in Section 4.2, this is
from the fact thatγl has a larger bias thanγm in finite samples. Fig. 2
shows typical subsampling densities based on the LLSE and MLSE
when β1 = 1 and n = 400. Comparing Fig. 2 to Fig. 1, condition
(a) in Section 4.2 is roughly satisfied for bothγl andγm. However,
m/n = 0.25 in this simulation, so condition (b) in Section 4.2 is
hardly satisfied. As a result, the bias ofγl will affect m (γl − γ0) in
an unneglectable way. Gonzalo and Wolf (2005) only report the
performance of the symmetric subsampling interval based on the
LLSE, so it is unclear whether such a phenomenon also happens in
their setups.

(vii) There is a trade-off between coverage and length in sym-
metric intervals and equal-tailed intervals. Although symmetric in-
tervals have a better coverage, they are longer than equal-tailed
intervals. (viii) When β1 is not too small, the length of n = 400
is roughly a quarter of the length of n = 100 except the inter-
vals based on the SLSE, which validates the n-consistency of γ es-
timators. (ix) The coverage property of the recursive NPIs is not
improved by recursion, while the length property is improved al-
though not as much as the improvement in the original NPI (rela-
tive to other CIs).

Based on these simulations, our suggestions are (a) use the SEB
or RSEBmethod for inference onγ in bothpoint and set estimation;
(b) if the LSEs are used, the MLSE is preferable to the LLSE and the
SLSE.

7. Application

In this section, we apply the SEB method to the growth data
used in Durlauf and Johnson (1995) and reanalyzed in Hansen
(2000). Here, the concern is whether there is a threshold effect
in the GDP growth. The growth theory with multiple equilibria
motivates the following threshold regression model:

ln

Y
L


i,1985

− ln

Y
L


i,1960

=



β10 + β11 ln

Y
L


i,1960

+ β12 ln


I
Y


i

+β13 ln (ni + g + δ)+ β14 ln Si

+σ1ei, if

Y
L


i,1960

≤ γ ;

β20 + β21 ln

Y
L


i,1960

+ β22 ln


I
Y


i

+β23 ln (ni + g + δ)+ β24 ln Si

+σ2ei, if

Y
L


i,1960

> γ .

For each country i,
 Y
L


i,t is the real GDP per member of the pop-

ulation aged 15–64 in year t ,
 I
Y


i is the investment to GDP ratio,

ni is the growth rate of the working-age population, and Si is the
fraction of working-age population enrolled in secondary schools.
The variables not indexed by t are annual averages over the period
1960–1985. Following Durlauf and Johnson (1995), we set g + δ =

0.05. The data are assumed to be i.i.d. sampled. This assumption is
approximately true, since there are not many interactions, such as
trade, international capital flows, etc., between any two countries
during this period. Furthermore, ei is assumed to be independent of
the regressors and the threshold variable. The objective is to check
whether the growth rate depends on the starting point.

The LSE of βℓ and σ 2
ℓ , ℓ = 1, 2, suggested in Chan (1993) are

β1 = (4.312,−0.657, 0.228,−0.295, 0.018) , σ 2
1 = 0.0375,β2 = (3.663,−0.323, 0.496,−0.488, 0.356) , σ 2
2 = 0.0942.

Clearly, the difference betweenβ1 andβ2 is significant relative toσ 2
ℓ , so the SEB method is suitable. When the RSEB method is used,

the estimates of βℓ and σ 2
ℓ , ℓ = 1, 2 are

β1 = (4.778,−0.792, 0.314,−0.429,−0.029) ,σ 2
1 = 0.0261,β2 = (3.509,−0.313, 0.436,−0.506, 0.386) , σ 2

2 = 0.0939.

Notice that the effect of schooling is negative for the poor countries,
and a simple test shows that this negative effect is not significantly
different from zero. The effect of investment is significantly greater
than zero. For rich countries, both effects are statistically positive.
This result shows that the direct investment has a more significant
effect on the economic growth of poor countries than schooling.
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Fig. 3. Error density compared with standard normal.

The estimates of σ 2
1 and σ 2

2 are not statistically equal,12 so there is a
threshold effect in variancewhich Hansen (2000) does not assume.
The SLSE of β isβs
1 = (4.337,−0.660, 0.227,−0.288, 0.017) ,βs
2 = (3.661,−0.322, 0.496,−0.485, 0.357) ,

which is not significantly different from the LSE.
The results on statistical inference of γ are summarized in

Table 4 of Appendix C. The items under Hansen (2000) assume
σ1 = σ2. The block size of the subsampling interval is 25. The
smoothed bootstrap cannot be applied here since dim(x) = 4
and n is only 96. The prior for the SEB estimation is uniform on Y

L


i,1960


min
,
 Y

L


i,1960


max


. Table 4 shows that the results

in this practical example match the intuitions provided by the
simulations in Section 6, especially the cases when the threshold
effects are large. First, the CI suggested in Hansen (2000) is
very conservative. Because there is a misspecification problem in
Hansen’s method (2000), we also report the CI of Bai (1997) which
allows for the threshold effect in variance. This CI is short, but
it suffers from the undercoverage problem when the threshold
effects are large as suggested in the simulations. Second, the CIs
based on the SLSE are extremely conservative due to the low
convergence rate. They are not reasonable in this application since
they even cover some negative values that

 Y
L


i,1960 cannot take.

These features are also shared by the subsampling method. Third,
our recursive NPI is the shortest among all CIs, and has a good
coverage as suggested by the simulations. The first-step and the
convergent error densities in our RSEB method are shown in
Fig. 3. They are far from the standard normal distribution. Another
observation is that the LSEs are out of the convergent NPI, which
indicates a large bias in the LSEs. The five countries covered by
the convergent NPI are Central African Republic, Mauritania, Togo,
Burundi and Nepal. The countries with

 Y
L


i,1960 below this interval

are mostly poor African countries. So the estimation shows that
there are different growth patterns between poor countries and
rich countries, and only a few countries are uncertain about the
growth pattern.

8. Conclusion

In this paper, we propose a semiparametric empirical Bayes
estimator of the threshold point under standard conditional
moment restrictions in threshold regression. A critical result is

12 σ 2
2 > σ 2

1 means that the rich countries are more easily impacted by the
disturbance than the poor countries. This is understandable if we examine how the
financial crisis starting from 2008 affected the US and the North Korea.
that the threshold point can be adaptively estimated even when
the error term is not independent of the regressors and the
threshold variable. We also propose a valid confidence interval,
the nonparametric posterior interval, for the threshold point.
Simulation studies show that the semiparametric empirical Bayes
estimator has a smaller risk than the least squares estimators,
and the nonparametric posterior interval has better coverage and
length properties than the existing methods. The extension of our
method to the time series case considered in the existing literature
such as Chan (1993) and Hansen (2000), however, requires
nontrivial efforts. Furthermore, the case with small threshold
effects deserves further explorations.
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Appendix A. Regularity conditions

Assumptions on the prior, loss function, kernel and bandwidth

Assumption P. The prior π2 : Γ → R+ ≡ {x ∈ R|x ≥ 0} is a
continuous density function with π2(γ0) > 0.

Assumption L. The loss function ln : R2k+3
→ R+ satisfies:

(i) ln(u, v) = l1n(u)+ l2n(v); that is, ln is separable.
(ii) l1n(u) = l1(

√
nu), and l2n(v) = l2(nv), where li(x) ≥ 0 and

li(x) = 0 iff x = 0 for i = 1, 2.
(iii) li(x) is convex, and li(x) ≤ 1 + ∥x∥p for some p ≥ 1, i = 1, 2.

Furthermore, l1(x) is bowl-shaped.

Remark 1. The assumptions on the loss function are standard. The
separability of ln is discussed in the main text. The convexity of li is
not only for computational purpose, but for the proof convenience,
since the convexity lemma can be applied under this assumption.
The bowl-shapedness of l1 is to assure that the MLE and the BE of
θ are asymptotically equivalent.

Assumption K. K (x) is a known symmetric C (1) density with a
compact support, and


xiK (x) dx = 0, i = 1, . . . , k + 2.

Remark 2. We only assume K (x) to be a second order kernel to
avoid a negative density estimator. Higher order kernels can be
used to reduce bias. Compactness of the support is a standard
assumption in the literature to simplify the proof. Many kernels,
e.g., the product quartic kernel, satisfy Assumption K.

Assumption B. h → 0, n(1−η)/2h(k+2)/2 → ∞, n(1−η)/2hk/2+3
→

0, and nη/2−1/4hk/2+2
→ ∞, for some 1/2 < η < 1.

Remark 3. The set of feasible h in Assumption B is not empty,
e.g., η can take 3

4 , and h = Cn−
1

4(k+5) . There is a trade-off between
the order of the kernel and the freedom of h. h can get more
freedom when a higher order kernel is used, and this is standard
in the discussion about the bias of kernel density estimation.
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Assumptions on the data generating process

Assumption D. (D1) f (w) is a C (2) bounded function onRk+2 with
the second order derivatives uniformly bounded for all w.

Remark 4. The continuity of f (w) on Rk+2 implies that it is
zero on its boundary of support, which guarantees the uniform
consistency of the nonparametric density estimator in Lemma 1
of supplementary materials (see Appendix D). This assumption is
standard in the literature; see, e.g., Assumption 3 of Stoker (1986)
or Assumption 2 of Powell et al. (1989).
(D2) There exists compact Wn such that n · P (wi ∉ Wn) → 0,

Wn → W, and the diameter of Wn is less than nν for some
ν ∈


0, 1

2


. Moreover, f (w) > Cn−(1−η)/2h−(k+2)/2

+ Cnν−1/2

on Wn.

Remark 5. The first part of this assumption puts some constraints
on the tail of f (w). The second part bounds f (w) frombelowonWn
to avoid trimming the density estimator. This assumption can be
relaxedwith amessier proof as in Ai (1997). When x has a compact
support, we only need ν > 0 and f (w) > Cn−(1−η)/2h−(k+2)/2

on Wn. Depending on the relative magnitude of n−(1−η)/2h−(k+2)/2

and nν−1/2, the lower bound of f (w) on Wn can be absorbed into
one term. From the proof below, Cn−(1−η)/2h−(k+2)/2 and Cnν−1/2

represent two kinds of errors in Step G3 of Algorithm G: the
former is from the kernel density estimation, and the latter is from
substituting

β ′,σ ′
′
for

β ′

0, σ
′

0

′.
(D3) There exists a positive number C such that we have the

equation given in Box I.

Remark 6. This assumption puts some restrictions on the tail of
f (w). It is standard, see, e.g., Assumption D6 of Yu (2012), to
assume that

E

ln
σ20
σ10

f

σ20ei−xi(β10−β20)

σ10
, xi, qi


f (wi)


 < ∞,

E

ln
σ10
σ20

f

σ10ei+xi(β10−β20)

σ20
, xi, qi


f (wi)


 < ∞.

Since n−(1−η)/2h−(k+2)/2 and nν−1/2 converge to 0 based on
Assumptions B and D2, the expectation in D3 is assumed to exist
when the arguments of the ln function are increased a little bit. The
indicator function 1(wi ∈ Wn) assures the denominator greater
than zero. When x has a compact support, the term Cnν−1/2 can be
omitted from the numerator and denominator.
(D4) 0 < f

q
≤ fq(q) ≤ f q < ∞ for q ∈ Γ .

(D5) E

∥x∥4 < ∞, and E


e4

< ∞.

Remark 7. Assumption D includes only regularity conditions
about the data generating process, and does not include any in-
formation related to the conditional moment restriction (2). Since
Assumption D is the main assumption in proving the adaptiveness
ofp∗

n , the SEB procedure does not use any information related to
(2) which provides information only through identification of γ as
discussed in Section 3.3.

Assumption E. All other assumptions in Assumption D of Yu
(2012) that are not covered by Assumption D are satisfied. The only
difference is that the nuisance parameter α there is assumed to
be known. To save space, they are summarized in supplementary
materials (see Appendix D).

Remark 8. The division of Assumptions D and E is to separate the
conditions needed in the SEB procedure from those required in the
parametric estimation.
Appendix B. Proofs

Proof of Theorem 1. This proof is inspired by Theorem 1 of Cher-
nozhukov and Hong (2003). From Lemma 1 in supplementary ma-
terials (see Appendix D), n(1−η)/2h(k+2)/2 supw∈Wn

f (w)− f (w)


p
−→ 0 withf (w) =

1
n

n
i=1 Kh (wi − w). Note that

f (w) =
1
n

n
i=1

Kh (wi − w)

=
1
n

n
i=1

Kh (wi − w)+
1
n

n
i=1

{Kh (wi − w)− Kh (wi − w)}

=
1
n

n
i=1

Kh (wi − w)+
1
n

n
i=1

K ′

1h (ξi, xi − x, qi − q) (ei − ei),

where the last equality is from the mean value theorem, ξi is some
point betweenei − e and ei − e, and K ′

1h is the partial derivative of
Kh with respect to the first argument. Notice that

ei − ei
(1)
=

yi − x′

i
β1σ1 1 (qi ≤ γ )+

yi − x′

i
β2σ2 1 (qi > γ )− ei

(2)
=

x′

iβ10 + σ10ei − x′

i
β1σ1 1 (qi ≤ γ0 ∧γ )

+
x′

iβ10 + σ10ei − x′

i
β2σ2 1 (γ < qi ≤ γ0)

+
x′

iβ20 + σ20ei − x′

i
β1σ1 1 (γ0 < qi ≤ γ )

+
x′

iβ20 + σ20ei − x′

i
β2σ2 1 (qi > γ0 ∨γ )− ei

(3)
= x′

i
β10 −β1σ1 1 (qi ≤ γ0 ∧γ )

+ x′

i
β20 −β2σ2 1 (qi > γ0 ∨γ )

+


σ10σ1 1 (qi ≤ γ0 ∧γ )+

σ20σ2 1 (qi > γ0 ∨γ )− 1

ei

+Op

n−3/4

(4)
= Op


n−1/4 uniformly for i, (13)

where (1) is from the definition ofei, (2) is decomposing the sup-
port of qi into four pieces, and substituting yi on each piece, (3)
is from γ − γ0 = Op(n−1) and Assumptions D4 and D5,13and
(4) is from the assumptions on

β ′,σ ′,γ ′ in Step G1. So 1
n

n
i=1

K ′

1h (ξi, xi − x, qi − q) (ei − ei) = Op


1

n1/4hk+3


. From Assump-

tion B, n1/4−η/2h−k/2−2
→ 0, so n−1/4h−(k+3)

= o

n−(1−η)/2

h−(k+2)/2

, and

n(1−η)/2h(k+2)/2 sup
w∈Wn

f (w)− f (w)
 p
−→ 0. (14)

13 Assumption D5 implies max1≤i≤n ∥xi∥ < n1/4 , and max1≤i≤n |ei| < n1/4

with probability one when n is large enough by the Borel–Cantelli lemma. So

max1≤i≤n

 x′iβ10+σ10ei−x′i
β2σ2
 = Op(n1/4) given Assumption 0 and the consistency

of β2 and σ2 . From Assumption D4, for any i, 1 (γ < qi ≤ γ0) = Op(n−1), so
x′iβ10+σ10ei−x′i

β2σ2 1 (γ < qi ≤ γ0) = Op(n−3/4) for any i.
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E

sup
n

1(wi ∈ Wn) ln

σ20
σ10

f

σ20ei−x′i(β10−β20)

σ10
, xi, qi


+ Cn−(1−η)/2h−(k+2)/2

+ Cnν−1/2

f (wi)− Cn−(1−η)/2h−(k+2)/2 − Cnν−1/2


 < ∞,

E

sup
n

1(wi ∈ Wn) ln

σ10
σ20

f

σ10ei+x′i(β10−β20)

σ20
, xi, qi


+ Cn−(1−η)/2h−(k+2)/2

+ Cnν−1/2

f (wi)− Cn−(1−η)/2h−(k+2)/2 − Cnν−1/2


 < ∞

Box I.
From the definition ofp∗
n(v),

p∗

n(v) =
π2

γ0 +

v
n


exp {ω(v)}

Cn

where ω(v) = Ln γ0 +
v
n


−Ln (γ0), and Cn =


Vn
π2

γ0 +

v
n


exp {ω(v)} dv. If it can be proved that for each κ ≥ 0,

A1n =


Vn

|v|κ π2


γ0 +

v

n


|exp {ω(v)} − exp {ω(v)}| dv

p
−→ 0, (15)

where ω(v) = Ln

γ0 +

v
n


− Ln (γ0), then taking κ = 0,Cn −


Vn
π2


γ0 +

v

n


exp {ω(v)} dv

 p
−→ 0, (16)

which implies that Cn is bounded from 0 and is equal to Op(1)
by Yu (2012). Note that it suffices to show the following to prove
(8):

Vn
|v|κ

p∗

n(v)− p∗

n(v)
 dv p

−→ 0, (17)

where the left hand side is equal to An/Cn with

An =


Vn

|v|κ π2


γ0 +

v

n


×

exp {ω(v)} −
exp(ω(v))

Vn
π2

γ0 +

v
n


exp(ω(v))dv

Cn

 dv.
Since Cn is positive and bounded from 0, it suffices to show that
An

p
−→ 0. But An ≤ A1n + A2n with

A2n =


Vn

|v|κ π2


γ0 +

v

n


×

 exp(ω(v))
Vn
π2

γ0 +

v
n


exp(ω(v))dv

Cn − exp {ω(v)}

 dv.
Note that

A2n =

 Cn
Vn
π2

γ0 +

v
n


exp(ω(v))dv

− 1


×


Vn

|v|κ π2


γ0 +

v

n


exp(ω(v))dv

p
−→ 0

by (16) and Yu (2012), so it remains only to show (15).
Note that

ω(v) =

n
i=1

ln

σ2σ1f  yi−x′i
β1σ1 , xi, qi


f  yi−x′i

β2σ2 , xi, qi
 1


γ0 < qi ≤ γ0 +

v

n



+

n
i=1

ln

σ1σ2f  yi−x′i
β2σ2 , xi, qi


f  yi−x′i

β1σ1 , xi, qi
 1


γ0 +

v

n
< qi ≤ γ0


,

ω(v) =

n
i=1

ln

σ20
σ10

f


yi−x′iβ10
σ10

, xi, qi


f


yi−x′iβ20
σ20

, xi, qi
 1


γ0 < qi ≤ γ0 +

v

n



+

n
i=1

ln

σ10
σ20

f


yi−x′iβ20
σ20

, xi, qi


f


yi−x′iβ10
σ10

, xi, qi
 1


γ0 +

v

n
< qi ≤ γ0


.

Split the integral in A1n into two separate areas: Area (i): |v| ≤ M
and Area (ii): |v| > M , where these two areas are understood as
the intersection with Vn.

Area (i) The objective is to show that for each 0 < M < ∞, and
each ϵ > 0,

lim
n→∞

P∗


|v|≤M

|v|κ π2


γ0 +

v

n


|exp {ω(v)}

− exp {ω(v)}| dv < ϵ


> 1 − ϵ, (18)

but this follows from

sup
|v|≤M

|ω(v)− ω(v)|
p

−→ 0,

where P∗ is the inner probability which avoids the technicality of
measurability. From Assumption D4, this is equivalent to show
1
n

n
i=1

ln

σ2σ1f  σ20ei−x′i(β1−β20)σ1 , xi, qi


f  σ20ei−x′i(β2−β20)σ2 , xi, qi


−
1
n

n
i=1

ln

σ20
σ10

f

σ20ei−x′i(β10−β20)

σ10
, xi, qi


f (wi)

 p
−→ 0,


1
n

n
i=1

ln

σ1σ2f  σ10ei+x′i(β10−β2)σ2 , xi, qi


f  σ10ei+x′i(β10−β1)σ1 , xi, qi


−
1
n

n
i=1

ln

σ10
σ20

f

σ10ei+x′i(β10−β20)

σ20
, xi, qi


f (wi)

 p
−→ 0.
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These convergence results follow from

1
n

n
i=1


lnf σ20ei − x′

i

β1 − β20


σ1 , xi, qi



− ln f

σ20ei − x′

i (β10 − β20)

σ10
, xi, qi


p

−→ 0,

1
n

n
i=1


lnf σ20ei − x′

i

β2 − β20


σ2 , xi, qi


− ln f (wi)


p

−→ 0,

1
n

n
i=1


lnf σ10ei + x′

i


β10 −β2


σ2 , xi, qi



− ln f

σ10ei + x′

i (β10 − β20)

σ20
, xi, qi


p

−→ 0,

1
n

n
i=1


lnf σ10ei + x′

i


β10 −β1


σ1 , xi, qi


− ln f (wi)


p

−→ 0.

We only prove the first convergence result, and all the others can
be proved similarly. From the assumptions on

β ′,σ ′
′

in Step G1
of Algorithm G, Lemma 1 and the discussion at the beginning of
this proof can be modified to show that

sup
wi∈Wn

f

σ20ei − x′

i

β1 − β20


σ1 , xi, qi



− f


σ20ei − x′

i

β1 − β20


σ1 , xi, qi

 p
−→ 0.

Moreover, since the first partial derivative of f (w) is bounded,

sup
wi∈Wn

f

σ20ei − x′

i

β1 − β20


σ1 , xi, qi



− f

σ20ei − x′

i (β10 − β20)

σ10
, xi, qi

 = Op

nν−1/2 p

−→ 0. (19)

Combining these two convergence results with the assumption
that n · P (wi ∉ Wn) → 0, the result follows.
Area (ii) The goal is to show that for each ϵ > 0, there exists a large
M such that

lim
n→∞

P∗


|v|>M

|v|κ π2


γ0 +

v

n


|exp {ω(v)}

− exp {ω(v)}| dv < ϵ


> 1 − ϵ. (20)

Since the second term can be made arbitrarily small by setting M
large according to Yu (2012), it suffices to show that for each ϵ > 0,
there exists a largeM such that

lim
n→∞

P∗


|v|>M

|v|κ π2


γ0 +

v

n


exp {ω(v)} dv < ϵ


> 1 − ϵ.

In order to do so, it suffices to show that exp {ω(v)} ≤ exp {Cω(v)}
for some 0 < C < 1 for all |v| > M . From (14) and the analysis for
area (i), there exists a C > 0 such that with probability approach-
ing 1, we have the equation in Box II. From Assumptions B, D2, D3
and the WLLN,

1
n

n
i=1

ln

σ20
σ10

f

σ20ei−x′i(β10−β20)

σ10
, xi, qi


+ Cnν−1/2

+ Cn−(1−η)/2h−(k+2)/2

f (wi)− Cnν−1/2 − Cn−(1−η)/2h−(k+2)/2

× 1(wi ∈ Wn)
p

−→ E

ln

σ20
σ10

f

σ20ei−x′i(β10−β20)

σ10
, xi, qi


f (wi)

 ,
and

1
n

n
i=1

ln

σ10
σ20

f

σ10ei+x′i(β10−β20)

σ20
, xi, qi


+ Cnν−1/2

+ Cn−(1−η)/2h−(k+2)/2

f (wi)− Cnν−1/2 − Cn−(1−η)/2h−(k+2)/2

× 1(wi ∈ Wn)
p

−→ E

ln

σ10
σ20

f

σ10ei+x′i(β10−β20)

σ20
, xi, qi


f (wi)

 .

From the strict Jensen’s inequality, E

ln
σ20
σ10

f

σ20ei−x′i(β10−β20)

σ10
,xi,qi


f (wi)


< 0, and E

ln
σ10
σ20

f

σ10ei+x′i(β10−β20)

σ20
,xi,qi


f (wi)

 < 0, so there exists

0 < C < 1 such that we have the Equation in Box III. In summary,
exp {ω(v)} ≤ exp {Cω(v)} for some 0 < C < 1 for all |v| > M
with probability approaching 1. Combining (18) and (20), the proof
is complete. �

Remark 9. Checking the proof of Theorem 1, the n-consistency ofγ is only used in (13). Ifγ has a slower convergence rate such as
the SLSE in Seo and Linton (2007), the SEB procedure will improve
the convergence rate of γ to n. Of course, Assumption B should
be adjusted correspondingly. Also, the

√
n-consistency ofβ is only

used to show max1≤i≤n x′

i

βℓ − βℓ0


= Op

n−1/4


, ℓ = 1, 2. If

the conditional mean of y in each regime takes a nonparametric
form gℓ(x), and we can find an estimator of gℓ(x), saygℓ(x), such
that supx∈Wx

n
|gℓ(x)− gℓ(x)| = Op


n−ζ


for some ζ > 0, where

Wx
n = {x|w ∈ Wn}, then by adjusting Assumption B, our proof can

still go through.

Proof of Theorem 2. This proof is inspired by Theorem 2 of
Chernozhukov and Hong (2003). Consider the objective function

Qn(t) =


Vn

l2(t − v)p∗

n(v)dv,

which is minimized at n (γ − γ0). Define

Qn(t) =


R
l2(t − v)p∗

n(v)dv

which is uniquelyminimized at Zn by Assumption L.We first prove
for each fixed t ,Qn(t)− Qn(t)

p
−→ 0.

From Assumption L, l2(v) ≤ 1+ |v|p and by |a + b|p ≤ 2p−1 |a|p +

2p−1 |b|p for p ≥ 1:Qn(t)− Qn(t)
 ≤


Vn


1 + |t − v|p

 p∗

n(v)− p∗

n(v)
 dv

≤


Vn


1 + 2p−1

|t|p + 2p−1
|v|p

 p∗

n(v)− p∗

n(v)
 dv = op(1)

where the last equality is from Theorem 1.
Now, note thatQn(t) and Qn(t) are convex and finite, and Zn =

argmint∈R


R l2(t − v)p∗
n(v)dv = Op(1) from Yu (2012). By the

convexity lemma of Pollard (1991), pointwise convergence entails
the uniform convergence over compact sets K :

sup
t∈K

Qn(t)− Qn(t)
 p
−→ 0.

By a similar argument on page 331 of Chernozhukov and Hong
(2003), we can conclude that

n (γ − γ0)− Zn = op(1) ,
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
1(wi ∈ Wn). (2

Here, (1) is from the uniform convergence in (14) and the assumption that n · P (wi ∉ Wn) → 0, and (2) is from a similar analysis as
in (19).

Box II.
P


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by Assumption D4.
Box III.
which in turn implies that n (γ − γ0)
d

−→ Z since Zn
d

−→ Z fromYu
(2012) when Assumption E holds. �

Proof of Theorem 3. Under the assumption that sup|γ−γ0|<δ
n |γ

−γ | = Op(1) for some δ > 0, we can show that

sup
|γ−γ0|<δ

p∗

n − p∗

n


TVM(κ)

p
−→ 0

by following the lines of Theorem 1, wherep∗
n(v) is redefined as

1
npn γ +

v
n


, and p∗

n(v) is redefined as 1
npn


γ +

v
n


. Similarly, from

the proof of Theorem 2, we can show that

sup
|γ−γ0|<δ

|n (γ − γ )− Zn|
p

−→ 0. (22)

From the proof of Theorem 1, the tail of p∗
n(v) is exponentially

decaying. Using the usual ‘‘shelling’’ approach (see, e.g., Lemma9of
Hirano and Porter (2003)), we can show that for any N , uniformly
in γ such that |γ − γ0| < δ,

lim
n,H→∞

HNPγ (|n (γ − γ )| > H) = 0,

where Pγ (·) is similarly defined as Eγ [·]. Since l2 has a polynomial
majorant, limn→∞


sup|γ−γ0|<δ

Eγ [l2 (n (γ − γ ))]

< ∞. By the
dominating arguments, (22) implies that

lim
n→∞


sup

|γ−γ0|<δ
Eγ [l2 (n (γ − γ ))]



= lim
n→∞


sup

|γ−γ0|<δ
Eγ [l2 (Zn)]


. (23)

Now, from Theorem 3(iv) of Yu (2012),

lim
n→∞


sup

|γ−γ0|<δ
Eγ [l2 (Zn)]



≤ lim
n→∞


sup

|γ−γ0|<δ
Eγ [l2 (n (Tn − γ ))]


(24)

with Tn being any estimator of γ . Combining (23) and (24) and
letting δ shrink to zero, the proof is complete. �

Proof of Theorem 4. This proof is inspired by Theorem 3 of
Chernozhukov and Hong (2003). EvaluateFn(x) at x = γ0 + t/n
and change the variable of integration to get:

Hn(t) ≡Fn(γ0 + t/n) =


v∈Vn:v≤t

p∗

n(v)dv.
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Table 1
Estimator performance for γ with four β1 values (based on 1000 repetitions).

β1 Values → β1 = 0.2 β1 = 0.4 β1 = 0.7 β1 = 1
Estimators ↓ Risk(×10−2) → RMSE MAD RMSE MAD RMSE MAD RMSE MAD

n = 100
LLSE 12.502 7.757 4.083 2.401 1.960 1.205 1.536 1.050
MLSE 12.565 7.825 4.177 2.348 1.890 0.995 1.059 0.676
SLSE 12.184 9.343 5.865 4.634 3.874 3.086 2.930 2.373
SEB Post Mean 10.945 6.095 3.361 1.884 1.330 0.825 0.897 0.617
Recursive SPMean_1 10.705 5.838 3.338 1.874 1.222 0.803 0.894 0.620
Recursive SPMean_2 10.555 5.689 3.333 1.869 1.195 0.798 0.892 0.619
SEB Post Median 11.352 6.242 3.489 1.865 1.420 0.798 0.913 0.612
Recursive SPMedian_1 11.258 6.083 3.432 1.848 1.387 0.786 0.907 0.609
Recursive SPMedian_2 11.228 6.015 3.426 1.844 1.289 0.773 0.907 0.609
Par Post Mean 4.033 2.702 2.310 1.519 1.066 0.747 0.859 0.594
Par Post Median 4.284 2.672 2.468 1.475 1.085 0.718 0.861 0.588

n = 400
LLSE 3.936 2.156 1.080 0.628 0.476 0.310 0.385 0.267
MLSE 3.982 2.186 1.110 0.606 0.439 0.253 0.261 0.172
SLSE 5.160 4.075 2.526 2.012 1.636 1.301 1.302 1.042
SEB Post Mean 1.765 0.891 0.631 0.415 0.313 0.207 0.219 0.157
Recursive SPMean_1 1.414 0.772 0.613 0.408 0.312 0.206 0.220 0.157
Recursive SPMean_2 1.367 0.752 0.608 0.406 0.311 0.206 0.220 0.157
SEB Post Median 1.803 0.850 0.661 0.406 0.324 0.203 0.219 0.155
Recursive SPMedian_1 1.617 0.770 0.646 0.399 0.323 0.201 0.219 0.155
Recursive SPMedian_2 1.558 0.754 0.646 0.398 0.323 0.201 0.219 0.155
Par Post Mean 0.974 0.642 0.578 0.383 0.302 0.199 0.218 0.156
Par Post Median 1.008 0.598 0.600 0.373 0.313 0.198 0.219 0.154

n = ∞ Risk → RMSE MAD RMSE MAD RMSE MAD RMSE MAD
LLSE 14.627 8.300 4.288 2.491 1.892 1.258 1.499 1.051
MLSE 14.828 8.430 4.395 2.444 1.733 1.005 1.076 0.674
SLSE 1.774 1.416 0.929 0.741 0.591 0.472 0.472 0.376
Posterior Mean 3.721 2.535 2.082 1.434 1.149 0.793 0.846 0.591
Posterior Median 3.806 2.413 2.182 1.388 1.175 0.775 0.854 0.584
Table 2
Comparison of inference methods: coverage and average length of the nominal 95% confidence intervals for γ with four β1 values (based on 1000 repetitions).

β1 Values → β1 = 0.2 β1 = 0.4 β1 = 0.7 β1 = 1
CIs ↓ Cov and Leng(×10−2) → Cov Length Cov Length Cov Length Cov Length

n = 100
Hansen (2000) 0.923 36.422 0.940 11.473 0.957 4.355 0.972 2.792
Bai (1997) LLSE 0.959 55.266 0.759 13.020 0.581 4.512 0.356 2.211Bai (1997) MLSE 0.961 0.876 0.854 0.717
Bootstrap SLSE (ET) 0.477 36.061 0.705 26.579 0.595 13.073 0.661 13.357
Bootstrap SLSE (S) 0.892 47.547 1.000 33.486 0.999 18.870 1.000 17.845
Smoothed Bootstrap LLSE (ET) 0.911 54.073 0.903 17.652 0.886 7.959 0.851 5.683
Smoothed Bootstrap LLSE (S) 0.969 66.975 0.955 20.428 0.971 8.478 0.953 6.029
Smoothed Bootstrap MLSE (ET) 0.908 53.044 0.936 17.089 0.957 6.661 0.934 4.317
Smoothed Bootstrap MLSE (S) 0.958 65.877 0.950 20.042 0.959 7.388 0.943 4.395
Subsampling LLSE (ET) 0.716 19.735 0.882 12.440 0.911 6.864 0.879 4.965
Subsampling LLSE (S) 0.762 22.539 0.920 14.233 0.944 7.065 0.913 5.406
Subsampling MLSE (ET) 0.693 18.605 0.888 11.676 0.935 5.827 0.907 3.814
Subsampling MLSE (S) 0.745 21.407 0.908 14.181 0.943 6.654 0.929 4.034
Nonpar Post Interval 0.808 13.136 0.926 7.104 0.950 3.701 0.944 2.577
Recursive NPI _1_Mean 0.803 12.197 0.926 6.991 0.949 3.658 0.944 2.573
Recursive NPI _2_Mean 0.805 11.841 0.926 6.948 0.949 3.630 0.944 2.573
Recursive NPI _1_Med 0.800 11.983 0.922 6.916 0.950 3.618 0.943 2.568
Recursive NPI _2_Med 0.804 11.766 0.922 6.879 0.950 3.604 0.943 2.568
Par Post Interval 0.939 12.244 0.947 7.000 0.950 3.468 0.947 2.446
n = 400
Hansen (2000) 0.931 10.510 0.939 2.868 0.963 1.116 0.984 0.699
Bai (1997) LLSE 0.933 13.817 0.832 3.454 0.585 1.128 0.346 0.553Bai (1997) MLSE 0.936 0.903 0.844 0.694
Bootstrap SLSE (ET) 0.514 16.067 0.599 9.097 0.414 6.061 0.636 5.815
Bootstrap SLSE (S) 0.954 24.389 0.996 11.785 0.987 12.062 1.000 8.541
Smoothed Bootstrap LLSE (ET) 0.926 15.761 0.902 4.264 0.877 1.989 0.856 1.443
Smoothed Bootstrap LLSE (S) 0.942 19.074 0.956 4.916 0.967 2.112 0.948 1.527
Smoothed Bootstrap MLSE (ET) 0.935 15.731 0.946 4.115 0.959 1.662 0.938 1.088
Smoothed Bootstrap MLSE (S) 0.941 19.044 0.952 4.800 0.942 1.835 0.953 1.099
Subsampling LLSE (ET) 0.893 11.244 0.910 3.980 0.914 1.843 0.905 1.331
Subsampling LLSE (S) 0.914 13.958 0.950 4.448 0.948 1.860 0.920 1.425
Subsampling MLSE (ET) 0.895 11.150 0.930 3.871 0.936 1.568 0.911 1.015

(continued on next page)
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Table 2 (continued)

β1 Values → β1 = 0.2 β1 = 0.4 β1 = 0.7 β1 = 1
CIs ↓ Cov and Leng(×10−2) → Cov Length Cov Length Cov Length Cov Length

Subsampling MLSE (S) 0.913 14.003 0.946 4.567 0.939 1.768 0.941 1.065
Nonpar Post Interval 0.919 3.535 0.940 1.789 0.950 0.918 0.952 0.641
Recursive NPI _1_Mean 0.914 3.141 0.940 1.745 0.950 0.908 0.954 0.639
Recursive NPI _2_Mean 0.911 3.056 0.940 1.731 0.950 0.904 0.954 0.639
Recursive NPI _1_Med 0.912 3.110 0.942 1.732 0.950 0.900 0.952 0.638
Recursive NPI _2_Med 0.905 3.057 0.942 1.725 0.950 0.898 0.952 0.638
Par Post Interval 0.940 3.134 0.944 1.715 0.942 0.871 0.950 0.615
Table 3
Frequency of sample splitting coincidence of recursive SEB method with previous recursion and the true value (based on 1000 repetitions).

β1 Values → β1 = 0.2 β1 = 0.4
n → 100 400 100 400
Frequency (%) ↓ Mean Med Mean Med Mean Med Mean Med
LSE 16.6 15.9 43.9 46.0

SEB 17.3
25.1

25.7
28.8

14.6
28.1

21.5
37.7

39.9
45.9

55.0
52.9

40.6
47.7

56.3
56.2

Recursive SEB_1 70.7
26.0

77.3
31.2

71.8
29.3

78.3
39.3

91.3
46.9

93.5
54.3

92.8
49.1

95.2
56.4

Recursive SEB_2 89.1
27.3

93.6
32.4

89.8
30.0

92.0
40.1

97.2
47.3

97.9
54.5

97.0
49.1

98.4
56.8

β1 Values → β1 = 0.7 β1 = 1
n → 100 400 100 400
Frequency (%) ↓ Mean Med Mean Med Mean Med Mean Med
LSE 73.0 71.2 87.3 86.3

SEB 70.8
73.2

83.1
78.4

70.3
75.4

79.8
80.0

86.1
88.0

91.5
91.3

85.5
89.8

89.5
92.1

Recursive SEB_1 97.6
73.7

98.3
79.4

98.1
76.3

99.4
80.1

99.7
88.1

99.8
91.3

99.8
90.0

99.9
92.0

Recursive SEB_2 99.4
74.1

99.7
79.2

99.4
75.8

99.8
80.3

100
88.1

100
91.3

99.9
89.9

100
92.0
Table 4
Comparison of estimators and confidence intervals in the economic growth model.

Estimators γ 95% CIs Length of CIs Ratio of countries covered by CIs

Hansen (2000) 863 [594, 1794] 1200 40/96
Bai (1997) MLSE 871 [759, 890] 131 8/96

Bootstrap SLSE (ET) 878 [−36 801, 8 251] 45052 88/96
Bootstrap SLSE (S) [−23 095, 24 851] 47947 96/96
Subsampling LLSE (ET) 863 [−459, 885] 1344 19/96
Subsampling LLSE (S) [−245, 1971] 2216 51/96
Subsampling MLSE (ET) 871 [−780, 879] 1659 19/96
Subsampling MLSE (S) [−517, 2259] 2776 56/96
SEB Post Mean 831

[757, 878] 121 6/96SEB Post Med 836
Recursive SPMean_1 801 [747, 843] 96 5/96
Recursive SPMedian_1 812 [718, 875] 157 8/96
Recursive SPMedian_2 805 [747, 843] 96 5/96
Define

Hn(t) =


v∈Vn:v≤t

p∗

n(v)dv, H∞(t) =


v∈R:v≤t

p∗

2(v)dv,

then by Yu (2012), sup
t

|Hn(t)− H∞(t)|
p

−→ 0. By the defini-

tion of total variation of moments norm and Theorem 1,
supt

Hn(t)− Hn(t)
 p
−→ 0, so supt

Hn(t)− H∞(t)
 p
−→ 0, where

the sup is taken over the support of Hn(t). By some elemen-
tary analysis, we can show that for any sequence of cdfs Fn, if
sup
t

|Fn(t)− F(t)| → 0 as n → ∞, and F ′(t) > 0 in a neigh-

borhood of F−1(τ ), then
F−1

n (τ )− F−1(τ )
 → 0 as n → ∞. From

Yu (2012), H ′
∞
(t) > 0 for any t ∈ R almost surely, so combining

with supt

Hn(t)− H∞(t)
 p
−→ 0, we haveH−1

n (τ )− H−1
∞
(τ )
 p
−→ 0.

By the equivariance of quantile with respect to monotone
transformations, H−1

n (τ ) = n (cn(τ )− γ0). By Theorem 1 and the
definition of weak convergence,

lim
n→∞

P (cn(τ ) ≤ γ0) = lim
n→∞

P
H−1

n (τ ) ≤ 0


= P

H−1

∞
(τ ) ≤ 0


= τ .

Here, the second equality is because 0 is assumed to be a continuity
point of the distribution ofH−1

∞
(τ ), and the last equality is from the

optimality of the Bayes estimator (see the proof of Theorem 3.3 in
Chernozhukov and Hong (2004)). �

Appendix C. Tables in simulations and application

First, the notations used in the following tables are collected
below for reference.

LLSE/MLSE: Least squares estimator using the left end-
point/middle point of the minimizing interval for γ .

SLSE: Smoothed least squares estimator
SEB Post Mean/Median: Posterior mean/median in the SEB

estimation of γ .
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Par PostMean/Median: Posteriormean/median in the paramet-
ric estimation of γ .

(ET)/(S): Equal-tailed/Symmetric confidence interval.
Nonpar Post Interval: Nonparametric posterior interval.
Par Post Interval: Parametric posterior interval.
Frequency: The numerator is the frequency of the sample

splitting coincidence with the last recursion, compared with the
LSE in the first recursion, and the denominator is the frequency of
the sample splitting coincidence with the true value.

Recursive SPMean_k: Recursive SEB posterior mean in the kth
recursion, k = 1, 2.

Recursive SPMedian_k: Recursive SEB posterior median in the
kth recursion, k = 1, 2.

Recursive NPI_k: Recursive nonparametric posterior interval in
the kth recursion, k = 1, 2.

Appendix D. Supplementary material

Supplementary material related to this article can be found
online at http://dx.doi.org/10.1016/j.jeconom.2013.09.002.
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