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a b s t r a c t

The regression discontinuity design has become a common framework among applied economists for
measuring treatment effects. A key restriction of the existing literature is the assumption that the
discontinuity point is known, which does not always hold in practice. This paper extends the applicability
of the regression discontinuity design by allowing for an unknown discontinuity point. First, we construct
a unified test statistic to check whether there are selection or treatment effects. Our tests are shown to be
consistent, and local powers are derived. Also, a bootstrap method is proposed to obtain critical values.
Second, we estimate the treatment effect by first estimating the nuisance discontinuity point. It is shown
that estimating the discontinuity point does not affect the efficiency of the treatment effect estimator.
Simulation studies illustrate the usefulness of our procedures in finite samples.
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1. Introduction

Since its invention by Thistlethwaite and Campbell (1960), the
regression discontinuity design (RDD) has attracted much atten-
tion among econometricians; see Imbens and Lemieux (2008), van
der Klaauw (2008) and Lee and Lemieux (2010) for excellent re-
views on up-to-date theoretical developments and applications
and Yu (2013) for a summary of treatment effects estimators in
RDDs. In RDDs, an observable covariate is used to completely de-
termine the treatment status, and is called the forcing (running or
assignment) variable. When the value of the covariate for an indi-
vidual is above a threshold or discontinuity point, the individual
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will be treated; otherwise, the individual will be put in the control
group. Usually, the discontinuity point is set by the policy maker
and is publicly known. However, such information is not always
available in practice. Sometimes, the discontinuity point is only
known to the policy maker but is unknown to the public (includ-
ing econometricians) due to ethical reasons or privacy. In the clas-
sical application of RDDs in the effect of the scholarship offers on
student enrollment decisions by van der Klaauw (2002), the forc-
ing variable is an underlying index of various individual character-
istics. To avoid manipulation by individuals or competition from
other schools, the discontinuity point may not be disclosed. An-
other example with an unknown discontinuity point is Card et al.
(2008) who analyze the tipping effect in the dynamic of segrega-
tion. Specifically, when the minority share in a neighborhood ex-
ceeds a ‘‘tipping point’’, all the whites leave. Such a tipping point
depends on the strength of white distaste for minority neighbors
and is generally unknown.

To date, all existing literature on RDDs assumes that the discon-
tinuity point is known, especially to econometricians. This paper
studies the testing and estimation problem when the discontinu-
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ity point is unknown. In testing, we try to check whether there are
selection or treatment effects in our experiment. The first test is
to check whether there is selection among individuals. This test
is new in the literature. The second test is to check the presence
of treatment effects. This test is very close to the nonparametric
structural change test, and there have been at least three tests de-
signed for this purpose in the statistical literature. Our test is in-
spired by the nonparametric specification testing literature started
from Bierens (1982), and is novel in our context. We solve both
testing problems by a unified test statistic, but adapt it to different
problems by varying a smoothing parameter. The test statistic is
constructed under the null, so is similar to the score test in spirit. In
estimation, our main interest lies in the treatment effects evalua-
tion, but a primary input, the discontinuity point, is unknown. So
we estimate the discontinuity point first by an estimator called
the difference kernel estimator (DKE). We show its superconsis-
tency and find its asymptotic distribution, and then estimate the
treatment effect as if the discontinuity point were known. It is
surprising that estimation of the discontinuity point does not af-
fect the efficiency of the treatment effect estimator asymptoti-
cally. Themodel we consider has many applications beyond RDDs;
see Müller (1992), Wu and Chu (1993a), Wang (1995), Müller and
Stadtmüller (1999), and the reference therein for applications in
statistics.

This paper is organized as follows. In Section 2, we set up our
framework and specify some regularity assumptions. Especially,
we clarify what selection means and what it implies to observa-
tions. Section 3 presents our specification test statistic and de-
velops its asymptotic distributions in different testing problems.
Furthermore, a bootstrap method is suggested to obtain critical
values which may have better finite sample performances. Alter-
native tests of nonparametric structural change in the statistical
literature are also reviewed and compared with our test. Section 4
considers the estimation problem. We provide estimators of the
discontinuity point and the treatment effect, and develop their
asymptotic distributions. In Section 5, we extend the results in Sec-
tions 3 and 4 to other settings and solve an important practical
issue, the bandwidth selection, in both specification testing and
estimation. Section 6 includes some simulation results and Sec-
tion 7 concludes. To save space, we put some intuitions and all
technical proofs in the online supplementary materials (see Ap-
pendix A).

Throughout this paper, we concentrate on the sharp design and
discuss the fuzzy design only briefly in Sections 5.1 and 5.2. Such
an arrangement allows us to focus on the main idea of this paper.
In the sharp design, we assume that only the response variable
and the forcing variable are observable, while the treatment
status is not. Otherwise, the testing and estimation problem will
degenerate to the case with a known discontinuity point; see
Section 2 of Yu (2012) and Section 2.2 of Yu and Zhao (2013) for
a detailed discussion on this point. We further concentrate on the
sharp design with at most one discontinuity point; generalization
to finite and unknown number of discontinuity points is only
discussed briefly in Section 5.3.

A word on notation: the letter C is used as a generic positive
constant, which need not be the same in each occurrence. WLOG
means ‘‘without loss of generality’’. DGP means ‘‘data generating
process’’. LLS means the ‘‘local linear smoother’’ popularized by
Fan (1992, 1993) and Fan and Gijbels (1996). The symbol ≈

means that the higher-order terms are omitted or a constant
term is omitted (depending on the context). w.p.a.1 means ‘‘with
probability approaching one’’. For a nonnegative real s, [s] is its
integer part. For any two random variables x and y, f (x) means
the density of x and f (y|x) means the conditional density of y
given x. The letter π0 represents the true discontinuity point and
π represents a generic discontinuity point in the parameter space
Π =

π, π


, where π and π are constants and π < π0 < π .

For a function g(x), g(x) has a cusp at x = π means that g(x) is
continuous at π but g ′(π+) ≠ g ′(π−), that is, the left and right
derivatives at π are not the same. ‘‘Discontinuity’’ and ‘‘jump’’ are
used exchangeably.

2. Framework and assumptions

We first put RDDs in the usual treatment framework anddiscuss
a key ‘‘selection’’ assumption. Such a framework can be treated as
the structural form of RDDs. We then impose some smoothness
assumptions on the usual reduced-form formulation of RDDs. Such
assumptions are necessary for the development of the testing and
estimation procedures in this paper. Finally, we sketch the basic
ideas of our specification testing and estimation.

2.1. Selection and treatment effects

Following Lee (2008), suppose the response y = y(x,U), where
x is the one-dimensional forcing variable which is observable,
and U is the unobservable component such as students’ ability in
the scholarship example of van der Klaauw (2002). We assume
that there can be any correlation between U and x.1 Also, y(x,U)
satisfies the following smoothness assumptions.

Assumption Y. (a) If there is no treatment or there is treatment
but are no treatment effects, y(x,U) = y(x,U) is continuous in
(x,U) and is continuously differentiable in x for each U .

(b) If there are treatment effects, y(x,U) = y(x,U) + α(U)1
(x ≥ π) with α(U) being continuous.

Under Assumption Y, when there are no treatment effects, the
response y is a smooth function of x after controlling for all specific
characters (except x) of an individual. In the special case where y
takes the additively separable form, y = g(x) + U , g(·) is assumed
to be continuously differentiable. This is understandable because
it is hard to imagine y changes dramatically when x changes from
x−∆ to x+∆ for a small∆ given that human beings usually behave
smoothly. Even if there are treatment effects, y(x,U) only changes
its size at x = π , and the slopes at the left and right sides of π
remain the same.

Under Assumption Y, using notations of the conventional
average treatment effects literature such as Heckman and Vytlacil
(2007a,b), we can express the responses of the control and treated
group as follows:

Y0 = µ0(x,U0), Y1 = µ1(x,U1) and D = 1(x ≥ π),

whereµ0(x,U0) = y(x,U)withU0 = U andµ1(x,U1) = y(x,U)+

α(U) with U1 = U . The main difference of RDDs from the conven-
tional average treatment effects framework is that the treatment
status is determined by a single observable x, so the treatment
status can be sharply observed (or there is a discontinuity in the
propensity score at π , or the unconfoundedness condition is triv-
ially satisfied). Such an advantage is not free. The usual overlap as-
sumption is violated because given any x, we can observe either
Y0 or Y1 but not both. We must rely on the continuity of µ0(x,U0)
in the left neighborhood of π to predict its behavior in the right
neighborhood of π , and similarly forµ1(x,U1). As a result, we only
use the local information around π to identify the treatment ef-
fects, which makes the treatment effects estimator achieve only a

1 From the Skorohod representation, y can be expressed as Q (U|x), where Q (·|x)
is the conditional quantile function of y given x, and U|x ∼ U(0, 1). Note here that
U and x can have any correlation; see Section 2.1 of Yu (2014b) formore discussions
on this point. Only in quantile regression, we assume U and x are independent.
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nonparametric convergence rate rather than the usual
√
n rate of

average treatment effects estimators. Usually, we express the rela-
tionship between y and x in a reduced form,
y = m(x) + ε = mπ (x) + απdπ + ε

with E [ε|x, dπ ] = 0, dπ = D, (1)
where
y = Y0(1 − D) + Y1D,

m(x) = µ0(x)(1 − D) + µ1(x)D = E [y|x]
with
µ0(x) = E[y(x,U)|x], µ1(x) = E[y(x,U) + α(U)|x],

ε = ε0(1 − D) + ε1D
with
ε0 = y(x,U) − µ0(x), ε1 = y(x,U) + α(U) − µ1(x),

απ = µ1(π+) − µ0(π−) = E [y|x = π+] − E [y|x = π−]
≡ m+(π) − m−(π),

mπ (x) = m(x) − απdπ is continuous.
Note that U is different from ε (or ε0) in our setup since ε =

y− E[y|x], which is not equal to U even if we assume an additively
separable form of y (unless E[U|x] = 0 and α(U) does not depend
on U). Also, ε0 and ε1 generally follow different distributions.
Especially, σ 2(x) = E


ε2

|x

is different in the left and right

neighborhoods of π .
The special structure of RDDs allows us to express E [y|x] =

mπ (x) + απdπ . But when there is treatment, no matter there are
treatment effects or not, individuals can respond to the treatment
actively although they cannot control x precisely; see Lee (2008)
and Lee and Lemieux (2010) for discussions on the role of imprecise
control of x by individuals in RDDs. Such attempts to control x
generate a cusp at π in f (x|U) and consequently in mπ (x); see
the figures in Lee (2008) for some intuitive impressions. Since
f (u|x) =

f (x|U=u)fU (u)
f (x|U=u)fU (u)du , f (u|x) will also have a cusp at x = π .

In Appendix A of the supplementary materials (see Appendix A),
we provide a concrete example to clarify this point. Therefore, we
impose the following smoothness assumptions on f (U|x), and call
this assumption the selection assumption and explain the reason
for this name at the end of this subsection.

Assumption S. The marginal density of U , fU(u), is continuously
differentiable. For each U , f (U|x) is continuous for all x.
(a) When there is no selection, f (U|x) is continuously differen-

tiable in x for each U .
(b) When there is selection, f (U|x) is continuously differentiable

in x for each U except at x = π .

Assumption S(b) implies that f (U|x) is a nontrivial function of x;
that is, U is not independent of x. Also, under Assumption S(b), it is
possible for f (U|x) to have a cusp at x = π .

Under Assumptions Y(a) and S(a), m(x) = E[y|x] =

y(x,U)

f (U|x)dU is continuously differentiable in x, so there is no cusp in
m(x). But different combinations of Y(b) and S(b) imply different
behaviors of m(x). First, suppose Y(a) and S(b) hold; then m(x) is
obviously continuous, but it is not smooth at x = π . Note that
m′

+
(π) ≡ m′ (π+)

=


∂y(π+,U)

∂x
f (U|x = π+)dU

+


y(π+,U)

∂ f (U|x = π+)

∂x
dU,

m′

−
(π) ≡ m′ (π−)

=


∂y(π−,U)

∂x
f (U|x = π−)dU

+


y(π−,U)

∂ f (U|x = π−)

∂x
dU .
Table 1
The behavior ofm (·) andm′ (·) at π with andwithout selection or treatment effect.

No selection Selection

No treatment effect m+ (π) = m− (π) m+ (π) = m− (π)
m′

+
(π) = m′

−
(π) m′

+
(π) ≠ m′

−
(π)

Treatment effect m+ (π) ≠ m− (π) m+ (π) ≠ m− (π)
m′

+
(π) = m′

−
(π) m′

+
(π) ≠ m′

−
(π)

Given that ∂y(π+,U)

∂x =
∂y(π−,U)

∂x and f (U|x) is continuous at x = π ,

m′

+
(π) − m′

−
(π)

=

 
y(π+,U)

∂ f (U|x = π+)

∂x
− y(π−,U)

∂ f (U|x = π−)

∂x


dU

=


y(π,U)


∂ f (U|x = π+)

∂x
−

∂ f (U|x = π−)

∂x


dU,

which can be but generally is not zero. Of course, if U is
independent of x (that is, there is no selection), then ∂ f (U|x=π+)

∂x =

∂ f (U|x=π−)

∂x = 0, and m′
+

(π) = m′
−

(π). Second, suppose Y(b) and
S(a) hold; then

m+ (π) − m− (π) =


α(U)f (U|x = π)dU,

which can be but generally is not zero. For example, if α(U) has the
same sign for any U , then m+ (π) − m− (π) cannot be zero. But it
is easy to show that m′

+
(π) = m′

−
(π). Finally, suppose Y(b) and

S(b) hold; then neither m+ (π) − m− (π) nor m′
+

(π) − m′
−

(π) is
necessarily zero. The analysis above is summarized in Table 1 and
intuitively shown in Fig. 1.

In a word, m′
+

(π) ≠ m′
−

(π) is sufficient but not necessary for
the existence of selection. Similarly,m+ (π) ≠ m− (π) is sufficient
but not necessary for the existence of treatment effects; when
some extra assumptions (such asα(U) has the same sign for anyU)
hold, it is also necessary. Notice that f (x) =


f (x|U = u)fU(u)du,

so similar arguments show that f ′
+

(π) ≠ f ′
−

(π) is sufficient
but not necessary for the existence of selection, and f+ (π) ≠

f− (π) is sufficient but not necessary for the existence of precise
control, where f± (π) and f ′

±
(π) are similarly defined as m± (π)

and m′
±

(π). If manipulation is monotonic, f+ (π) ≠ f− (π) is also
necessary for the existence of precise control as argued in McCrary
(2008).

Finally, we briefly explain why we call Assumption S the selec-
tion assumption. In the usual treatment effect literature, selection
means Cov(D,U0|x) ≠ 0; that is, control and treatment groups
include individuals with different characteristics under the con-
trol treatment. In RDDs, selection is trivially avoided because given
x, D is fixed at either 1 or 0. However, if x is not observed, then
Cov(D,U0) = Cov(1(x ≥ π),U) ≠ 0 as discussed above. So As-
sumption S essentially corresponds to the selection assumption in
the average treatment effects literature; that is, individuals are try-
ing to benefit frommanaging their treatment status. Such an argu-
ment also reveals the very fact that all specialties of RDDs are from
the observability of the forcing variable xwhich completely deter-
mines the treatment status.

2.2. Regularity assumptions

For either specification testing or estimation, only the struc-
tures ofm(x) onΠϵ ≡


π − ϵ, π + ϵ


for some ϵ > 0 are relevant,

soWLOG,we assume the support of x to beΠϵ . The conditional dis-
tribution of ε given x is assumed to satisfy the following conditions.

Assumption E. (a) f (ε|x) is continuous in (ε, x) for x ∈ Π+
ϵ ≡

[π, π + ϵ) and x ∈ Π−
ϵ ≡


π − ϵ, π


, respectively.
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Fig. 1. m(·),mπ (·) and m(·) in models with and without selection or treatment effect: solid line form(·), dashed line for mπ (·), and dash–dot line form(·).
(b) E

|ε|4

 x is uniformly bounded on Πϵ .
(c) σ 2(x) is Lipschitz for x ∈ Π+

ϵ and x ∈ Π−
ϵ .

(a) implies that there is no point mass in the distribution of ε,
which excludes the binary y case. This assumption will be used
to uniquely detect the location of π . Also, (a) (combined with (b))
implies that both σ 2(x) and E


|ε|4

 x are finite for x ∈ Πϵ and
continuous for x ≠ π . Such finiteness and continuity restrictions
guarantee that the possible discontinuity at π in σ 2(x) and
E

|ε|4

 x is of the first kind. (b) is used in specification testing;
in estimation, we need only E


|ε|2+ζ

 x bounded for some ζ > 0.
(c) is a standard smoothness assumption on σ 2(x).

We must impose some smoothness assumptions on m(x) to
continue our analysis. For s ≥ 1, let the Hölder class C+

π (L, s) be
the set of mapsm(·) from Π+

ϵ to R with

C+

π (L, s) =


m(·) :

m(x + ∆) −

[s]
j=0

m(j)(x)
j!

∆j

 ≤ L |∆|
s

for all x, x + ∆ ∈ Π+

ϵ and sup
j=0,...,[s]

sup
x∈Π

+
ϵ

m(j)(x)
 ≤ L


,

where m(0)(x) = m(x), m(j)(x) is the jth-order derivative when
x ≠ π , and is the jth-order right hand derivative atπ . Similarly, we
can define C−

π (L, s) with Π+
ϵ replaced by Π−

ϵ , and define C (L, s)
with Π+

ϵ replaced by Πϵ . Further define

Cπ (L, s) ≡ C+

π (L, s) ∩ C−

π (L, s) ,

MΠ (L, s) ≡


π∈Π

Cπ (L, s) , CΠ (L, s) ≡ MΠ (L, s) ∩ C0,
(2)

where C0 is the set of continuous functions on Πϵ . Note that
Cπ (L, s) is the Hölder class of functions onΠ+

ϵ andΠ−
ϵ whichmay

not be continuous atπ ,MΠ (L, s) is the collection of all suchHölder
class of functions with a possible discontinuity at π ∈ Π , and
CΠ (L, s) includes the continuous (although may not be smooth
at π ∈ Π ) function among MΠ (L, s). We impose the following
assumptions onm(·).

Assumption M. m(x) ∈ MΠ (L, s),mπ (x) ∈ CΠ (L, s), s ≥ 1.

Note that CΠ (L, s) includes functions with a cusp at π . Such
functions imply the presence of selection.Without selection,mπ (·)
is smooth. Fig. 1 shows these two cases. Assumption M states that
although there can be a cusp in mπ (·), the cusp cannot be too
sharp; see Wang (1995) for the case with a sharp cusp. Such an
assumption is consistent with the analysis in the last subsection:
m′ (π+) − m′ (π−) =


y(π,U)


∂ f (U|x=π+)

∂x −
∂ f (U|x=π−)

∂x


dU

should not be very large if ∂ f (U|x=π+)

∂x −
∂ f (U|x=π−)

∂x is not large for
each U . We next impose some smoothness conditions on f (x):

Assumption F. f (x) ∈ C0. 0 < f ≤ f (x) ≤ f < ∞ for x ∈ Πϵ .

(a) f (x) ∈ C

f , λ


, λ ≥ 1.

(b) f (x) ∈ CΠ


f , λ


, λ ≥ 1.

Assumption F corresponds to Assumption S. F(a) corresponds to
the no selection case S(a), and F(b) corresponds to the selection
case S(b); see Section 5.1 for tests on these two Assumptions F(a)
and F(b). Both C


f , λ


and CΠ


f , λ


include C0, so x cannot be

precisely controlled.

2.3. Sketch of the paper

We start from two kinds of specification tests. First, we test
whether there is selection. Specifically, the hypotheses are

H(1)
0 : m (·) ∈ C (L, s) , s ≥ 1; (3)

H(1)
1 : m (·) ∈ CΠ (L, s) \ C (L, s) , s ≥ 1;

where CΠ (L, s) and C (L, s) are defined around Eq. (2), H(1)
0

corresponds to no effects (the upper-left panel of Fig. 1), and H(1)
1

corresponds to selection only (the upper-right panel of Fig. 1).
Second, we test whether there are treatment effects (regardless of
whether selection is present). Specifically, the hypotheses are

H(2)
0 : m (·) ∈ CΠ (L, s) , s ≥ 1; (4)

H(2)
1 : m (·) ∈ MΠ (L, s) \ CΠ (L, s) , s ≥ 1;

where CΠ (L, s) and MΠ (L, s) are defined in (2), H(2)
0 corresponds

to two cases: no effects and selection only (the upper two panels
of Fig. 1), and H(2)

1 corresponds to the other two cases: treatment
effect only and both selection and treatment effect (the lower two
panels of Fig. 1). Both tests are relevant in practice, and can be
sequentially conducted: first test (4); if H(2)

0 cannot be rejected,
then test (3). Denote the class of probabilitymeasures underH(ℓ)

0 as
H

(ℓ)
0 and underH(ℓ)

1 asH
(ℓ)
1 , ℓ = 1, 2. BothH

(ℓ)
0 andH

(ℓ)
1 , ℓ = 1, 2,

are characterized by m(·). In what follows, we acknowledge the
dependence of the distribution of y given x upon the regression
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function by denoting probabilities and expectations as Pm and Em,
respectively.

We develop a unified test statistic for both cases. We first find
the best approximation ofm(x), m(·), in C (L, s) in both cases,

m(·) = arg infm∈C(L,s)
E

(m(x) − m(x))2 1Π

x


= arg infm∈C(L,s)

E

(y − m(x))2 1Π

x


,

where 1Π
x = 1 (x ∈ Π), and the second equality is from the fact

that

E

(y − m(x))2 1Π

x


= E


(ε + m(x) − m(x))2 1Π

x


= E


σ 2(x)1Π

x


+ E


(m(x) − m(x))2 1Π

x


,

and E

σ 2(x)1Π

x


does not depend on m(·). In short words, m(·) is

the closest m ∈ C (L, s) to m(·) (or the observable y) under the
L2-metric. It can be estimated by some standard nonparametric
techniques.We thendefine ameasure of the distance betweenm(·)
and m(·) to detect the deviation from the null. Our test is inspired
by Fan and Li (1996) and Zheng (1996) who consider different
testing problems. The test statistic is constructed under the null,
so is similar to the score test in spirit. The difference of our test
statistic in testing (3) and (4) is to choose different smoothing
parameters. This is intuitively illustrated in Fig. 1. In testing (3),
we oversmooth m(x), and then the bias in such smoothing will
generate power. In contrast, in testing (4), we undersmooth m(x).
Now, the bias from the cusp will disappear asymptotically, while
the jump in m(·) at π still generates power.

Of course, our tests need satisfy some basic properties. Abuse
the notations a little bit here: H0 represents either H

(1)
0 or H(2)

0 , and
H1 represents either H(1)

1 or H(2)
1 . For a randomized test tn, its size

(or level) is defined as

α (tn) = sup
m(·)∈H0

Pm (tn = 1) .

tn is consistent if its type II error, Pm (tn = 0), converges to zero for
any m(·) ∈ H1 under the Neyman–Pearson restriction α (tn) ≤

α + o(1) for some α ∈ (0, 1). We show that our tests are consis-
tent in both cases and we also derive their local powers.

If the specification test rejectsH(2)
0 , wewould believe that there

is a discontinuity in m(x). The ensued question is how to estimate
the discontinuity location π and size απ . In the RDD literature, the
main interest lies in απ instead of π although an estimator of π is
a primary input to estimate απ . Suppose we have an estimator π
in hand; thenwe can use the local polynomial estimator (LPE) as in
Porter (2003) to estimate απ . Denote the estimator asα (π) withα(π) = m+(π) − m−(π),

where m+(π) is the LPE determined by the minimizera in the
following minimization problem:

min
a,b1,...,bp

1
n

n
j=1

kh

xj − π


dj (π)


yj − a

− b1

xj − π


− · · · − bp


xj − π

p2
, (5)

where p is the suitable order of local polynomials defined in Porter
(2003) and is usually set to be 1 as in Hahn et al. (2001), dj (π) =

1

xj ≥ π


, kh (·) =

1
hk


·

h


, k (·) is a kernel function, and h is

the bandwidth. Similarly, we define m−(π) but using the data in
the left neighborhood of π . Actually, α (π) is a corollary of our
estimation of π because π is estimated by maximizingα2(π). We
show that π is n-consistent, so it will not affect the asymptotic
distribution ofα (π). As a result, our estimator of απ achieves the
optimal rate of convergence developed in Porter (2003).
3. Consistent specification testing

This section presents consistent specification testing of (3) and
(4). It begins with consistent tests and the corresponding asymp-
totic distributions, followed by a bootstrap method to obtain criti-
cal values, and concludes with a discussion about three alternative
tests.

3.1. Tests construction and asymptotics

First rewrite (1) as

y = m(x) + e, (6)

where E [e|x] = 0 under H(1)
0 for almost all x ∈ Π and

E [e|x] ≠ 0 under H(1)
1 for a set of x ∈ Π with positive Lebesgue

measure. Observing that E

eE [e|x] 1Π

x


= E


E [e|x]2 1Π

x


=

E

(m(x) − m(x))2 1Π

x


≥ 0 and the equality holds if and only if

H(1)
0 is true, we can construct a consistent test for (3) based on

E

eE [e|x] 1Π

x


. E [e|x] can be estimated by a kernel estimator. To

avoid the random denominator problem in kernel estimation, we
choose to estimate a density weighted version of E


eE [e|x] 1Π

x


given by E


eE [e|x] f (x)1Π

x


. If ei and E [ei|xi] f (xi) were available,

we could estimate E

eE [e|x] f (x)1Π

x


by its sample analogue

n−1n
i=1 eiE [ei|xi] fi1Π

i , where 1Π
i = 1 (xi ∈ Π), and fi = f (xi).

To get a feasible test statistic, we need to estimate ei by the
corresponding residual from (6) and E [ei|xi] fi by an appropriate
kernel estimator. Specifically, we estimate ei byei = yi −yi, whereyi is a kernel estimator ofm(xi) defined as

yi =
1

n − 1


j≠i

yjLb,ij

fi (7)

withfi being the corresponding kernel estimator of fi given by

fi =
1

n − 1


j≠i

Lb,ij,

Lb,ij = lb

xi − xj


=

1
b l


xi−xj
b


, b is the bandwidth, and l (·)

is some kernel function. Excluding (xi, yi) in estimating m(xi) is
to convert a V -statistic to a U-statistic. We estimate E [ei|xi] fi by
1

n−1


j≠iejKh,ij1Π

j , where Kh,ij = kh

xi − xj


=

1
hk


xi−xj
b


is

similarly defined as Lb,ij. Eventually, our test statistic is based on

In =
nh1/2

n (n − 1)


i


j≠i

1Π
i 1Π

j Kh,ijeiej,
whereei = yi −yi = (mi − mi) + (εi −εi) , (8)

mi = m(xi), and mi andεi are defined in the same way asyi in
(7) with yj replaced by m(xj) and εj, respectively. Under H(1)

0 ,ei
is a good estimate of εi, while under H(1)

1 ,ei includes a bias term
in the neighborhood of π , which generates power. The indicator
function 1Π

i in In can improve the power properties by shrinking
the asymptotic variance of In.

Fan and Li (1996) further eliminate the random denominators
inei andej in In by replacingei andej witheifi andejfj, but the form
of In we use is more convenient for practitioners since it allowsei’s to be estimated by other nonparametric methods. For example,
although the LPE is asymptotically equivalent to a higher-order
kernel smoother in (7), its various forms, especially the LLS because
of its minimax efficiency shown in Fan (1993), can improve the
finite-sample performance of In and are more popular than (7).
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However, it is not easy to define the random denominator for the
LLS if Fan and Li’s formulation is used. Of course, our form of In is
not new; Gu et al. (2007) consider a similar test statistic in testing
whether there are omitted variables.

To use In testing (4), we must guarantee that the estimator
of E


eE [e|x] f (x)1Π

x


is approximately zero under H(2)

0 . Note that
under H(2)

0 , E

eE [e|x] f (x)1Π

x


= E


(mπ (x) − m(x))2 f (x)1Π

x


, so

we must use a smaller b to make the bias in approximating mπ (x)
by m(x) disappear; see the upper-right panel of Fig. 1 for some
intuition. Assumption B imposes such kind of restrictions on b (and
h) which are suitable in different cases.

Assumption B. b → 0, nh → ∞, h1/2/b → 0. For λ and s defined
in Assumptions M and F,

(a) nh1/2b2η → 0,nh1/2b3 → ∞, whereη = min (λ + 1, s) > 1.5.
(b) nh1/2


b2η + b3


→ 0, nh1/2b → ∞, where η = min (λ + 1, s)

≥ 1.

Assumption B implies that max {h, b} → 0 and nmin {h, b} → ∞,
which ensure that the kernel estimators involved are consistent.
In B(a), nh1/2b2η is the bias under H(1)

0 , and the bias under H(1)
1 is

nh1/2

b2η + b3


. The first term b2η is the bias from the area out of

a b neighborhood of π , and the second term b3 is the bias from the
b neighborhood of π . Because η > 1.5, the second term dominates
the first term. The assumption nh1/2b2η → 0 ensures that In is
centered correctly at zero under H(1)

0 . Corresponding arguments
can be applied to B(b) for testing (4). We indeed require m(·) to
be a little smoother under H(1)

0 than H(2)
0 to control the bias, but it

seems irrelevant in practice. The assumption h1/2/b → 0 implies
that h is smaller than b.2 This condition not only ensures the bias
disappear underH(1)

0 andH(2)
0 , but generates power underH(1)

1 and
H(2)

1 . Becauseej is estimated using the data in a b neighborhood
of xj, and the distance between xj and xi is restricted to be no
greater than O(h) by Kh,ij, we can treat xi and xj as the same point
without changing the asymptotic results. In consequence,eiej is
like a squared termwhich generates power. Take b ∼ n−c and h =

n−(2c+δ) for an arbitrarily small positive δ; then in B(a), c < 1/4 and
in B(b), 1

4 ≤ c < 1
2 when s ≥ 1.5. This matches the intuition above

that a larger bandwidth is required in testing (3) than in testing (4).
Next, we impose some standard constraints on the kernel

functions l (·) and k(·).

Assumption K. Both l (·) and k(·) are bounded, symmetric, Lips-
chitz function, zero outside a bounded set [−M,M],


uil(u)du =

δi0, i = 0, . . . , [s] + [λ], where δi0 is Kronecker’s delta, and k (·) is
non-negative with k(0) > 0.

From Assumption K, l (·) can be a higher-order kernel to reduce
the bias in estimatingm(·), but k (·) is a usual second-order kernel.
Such an assumption can simplify our proof. To further simplify our
discussion, we assume M = 1 throughout this paper. Now, we
state the asymptotic distribution of In under the null and the local
power of the test based on In in different cases.

Theorem 1. Under Assumptions B(a), E, K and M,

(i) if F(a) holds, then

In
d

−→N (0, Σ)

2 In the classical specification tests such as Zheng (1996),ei is obtained under the
null parametric specification, which corresponds to b = C , a fixed number. Since
h → 0, h/b = h/C → 0 and h is smaller than b.
uniformly over H
(1)
0 , where

Σ = 2E

1Π
x f (x) σ 4 (x)

 
k2(u)du

can be consistently estimated by

v2
n =

2h
n(n − 1)


i


j≠i

1Π
i 1Π

j K 2
h,ije2i e2j .

As a result, the test based on the studentized test statistic Tn =

In/vn

tn = 1 (Tn > zα) ,

has the significance level α, where zα is the 1 − α quantile of the
standard normal distribution.

(ii) if F(b) holds and m′
+(π)−m′

−(π)

n−1/2h−1/4b−3/2 → δ, then

In
d

−→N

κ f 2(π)δ2, Σ


and

Tn
d

−→N

κ f 2(π)δ2/

√
Σ, 1


where κ = 2

 1
0


v
 1
v
l (u) du −

 1
v
ul (u) du

2
dv. This implies

that the test tn is consistent; that is, Pm (Tn > zα) → 1 for any
fixed m (·) ∈ CΠ (L, s)\C (L, s). Furthermore, zα can be replaced
by any nonstochastic constant Cn = o


nh1/2b3


, and the result

still holds.

Theorem 2. Under Assumptions B(b), F(b), E, K and M,

(i) In
d

−→N (0, Σ)

uniformly over H
(2)
0 , where Σ is the same as in Theorem 1, and

can be consistently estimated by v2
n . As a result, the test tn =

1 (Tn > zα) has the significance level α, where Tn and zα are
defined in Theorem 1(i).

(ii) if απ

n−1/2h−1/4b−1/2 → δ, then

In
d

−→N

κ f 2(π)δ2, Σ


and

Tn
d

−→N

κ f 2(π)δ2/

√
Σ, 1


where κ = 2

 1
0

 1
v
l(u)du

2
dv. This implies that the test tn is

consistent; that is, Pm (Tn > zα) → 1 for any fixedm (·) such that
απ ≠ 0. Furthermore, zα can be replaced by any nonstochastic
constant Cn = o


nh1/2b


, and the result still holds.

The asymptotic distributions of In under the null in Theorems 1
and 2 are the same, but under different assumptions. To provide
a nondegenerate asymptotic distribution of In, we use the central
limit theorem for the second order degenerate U-statistics.
The appearance of degenerate U-statistics is standard in model
specification tests when a nonparametric component is present;
see, e.g., Fan and Li (1996) and Zheng (1996).3 Note that the local
power in Theorems 1 and 2 depends on m(·) only through m′

±
(π)

or m±(π) rather than the whole m(x) on Π , which is the key
difference between the tests here and those in the nonparametric
specification testing literature (see, e.g., Theorem3of Zheng (1996)
and Theorem 3.1 of Fan and Li (2000)). Intuitively, the power of
In is only from the local deviation (from H0) of m(x) around π ,
while the power of the usual specification tests can be from global
deviations ofm(x). Also, although In is designed for the case where
the number of cusps (or jumps) is at most one, it is easy to see that
when the number of cusps (or jumps) is greater than one but finite,
the specification tests based on In remain valid.

3 Because Fan and Li (1996) also eliminate the denominator ofei , they need the
fourth order U-statistics theory to derive their asymptotic distribution.
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3.2. Bootstrapping critical values

From the proofs of Theorems 1 and 2, the convergence rate of
Tn to standard normal is very slow.4 As argued in the literature of
specification testing (see, e.g., Härdle and Mammen (1993), Li and
Wang (1998), Stute et al. (1998), Delgado andManteiga (2001), and
Gu et al. (2007)), a better way to approximate the finite-sample
distribution is to use the wild bootstrap of Wu (1986) and Liu
(1988).5 Specifically, the following procedure is used in testing
both (3) and (4).

AlgorithmWB. Step 1: For i = 1, . . . , n, generate the two-point
wild bootstrap residual ε∗

i =ei 1 −
√
5


/2 with prob-

ability

1 +

√
5


/

2
√
5

, and ε∗

i = ei 1 +
√
5


/2

with probability
√

5 − 1


/

2
√
5

; then E∗


ε∗

i


= 0,

E∗

ε∗2
i


=e2i and E∗


ε∗3
i


=e3i , where E∗ [·] = E [·|Fn]

and Fn = {(xi, yi)}ni=1.
Step 2: Generate the bootstrap resample


y∗

i , xi
n
i=1 by

y∗

i =yi + ε∗

i .

Then obtain the bootstrap residualse∗

i = y∗

i −y∗

i , wherey∗

i is similarly defined asyi with the only difference being
that yj in (7) is replaced by y∗

j .
Step 3: Use

e∗

i , xi
n
i=1 to compute the test statistic

I∗n =
nh1/2

n (n − 1)


i


j≠i

1Π
i 1Π

j Kh,ije∗

i e∗

j

and the estimated asymptotic variance

v∗2
n =

2h
n(n − 1)


i


j≠i

1Π
i 1Π

j K 2
h,ije∗2

i e∗2
j .

Then the studentized bootstrap statistic is T ∗
n = I∗n/v

∗
n .

Here, the same b and h are used as in In and v2
n in

Theorems 1 and 2.
Step 4: Repeat Step 1 through 3 B times, and use the empiri-

cal distribution of

T ∗

nk

B
k=1 to approximate the null dis-

tribution of Tn. We reject H0 if Tn > T ∗

n(αB) or p ≡

B−1B
k=1 1(T

∗

nk ≥ Tn) ≤ α at the significance level α,
where T ∗

n(αB) is the upper α-percentile of

T ∗

nk

n
k=1.

In Algorithm WB, the only difference in testing (3) and (4) is
to use different b and h as defined in Assumptions B(a) and B(b),
respectively. In Step 1, a more popular way to simulate ε∗

i is based
onei’s centralized counterpartei =ei −e instead ofei itself, wheree =

n
i=1ei1Πb

i /
n

i=1 1
Πb
i , Πb =


π − b, π + b


; see, e.g., Gijbels

and Goderniaux (2004) and Su and Xiao (2008). Such a formulation
can ensure

n
i=1ei1Πb

i /
n

i=1 1
Πb
i = 0, which will not affect the

asymptotic results, but may affect the finite-sample performance
of AlgorithmWB especially under the alternative.

4 In the classical specification tests, the bias in the test statistic of Zheng (1996)
is O(h1/2), which is O(n−1/10) when h = n−1/5 , as shown in Li and Wang (1998).
From the discussion after Assumption B, the bias is nh1/2b2η under H(1)

0 and nh1/2b3

under H(2)
0 .

5 The naive bootstrap is not valid as argued in Härdle and Mammen (1993).
This is because the regression function under the bootstrap distribution is not the
conditional expectation of the observation: E∗


y∗

i |x
∗

i


= y∗

i which is typically
different from the fitted value of (7) at x∗

i .
The bootstrap sample is generated by imposing the null
hypothesis. Therefore, the bootstrap statistic T ∗

n willmimic the null
distribution of Tn even when the null hypothesis is false. When the
null is false,ei is not a consistent estimate of εi in the neighborhood
of π . Nevertheless, the following theorem shows that the above
bootstrap procedure is valid. This is because our studentized test
statistic Tn is invariant to the variance of ε. In other words, the
wild bootstrap procedure may not work well if the test statistic In
instead of Tn is used.

Theorem 3. Suppose Assumptions E, F(b), K and M hold. In test-
ing (3), under Assumption B(a), and in testing (4), under Assump-
tion B(b),

sup
z∈R

P T ∗

n ≤ z|Fn

− Φ(z)

 = op (1) ,

where Φ(·) is the cumulative distribution function of a standard
normal random variable.

The above theorem only proves the first-order validity of the
wild bootstrap procedure. The higher-order theory can follow
the line of Li and Wang (1998) and Fan and Linton (2003). Also,
the validity of the wild bootstrap using the bandwidth based on
cross-validation (CV) can be justified by extending the technique
developed in Hsiao et al. (2007). A formal development of these
results is beyond the scope of this paper.

3.3. Alternative specification tests

There are no tests designed for testing (3) in the statistical
literature, while at least three alternative tests exist for testing
(4). All of them assume a fixed, equally spaced design on [0, 1]
and εi being i.i.d. sampled.6 Nevertheless, these tests provide some
insights for testing (4).

A straightforward test is based on
 π

π
(m+(π) − m−(π))2 dπ ,

wherem±(π) are the local constant estimators ofm±(π). To avoid
the random denominator problem as in In, we can use

In = nh1/2
 π

π

m+(π)f+(π) − m−(π)f−(π)
2

dπ,

where f+(π) = n−1n
j=1 kh


xj − π


dj (π), f−(π) = n−1n

j=1 kh

xj − π

 
1 − dj (π)


. Wu and Lai (1998) show that

In −
σ 2

√
h
K1

d
−→ 2σ 2N (0, K2) ,

where σ 2
= E


ε2
i


, and K1 and K2 are constants only related to

k (·). From the form ofIn and In, we can see their key difference:
In is based on m(·) under the null (e.g., m(·) is close to m(·)
under the null, and π does not appear at all), whileIn is based
on m(·) under the alternative (e.g., it integrates jumping sizes at
different possible jumping locations).7 The key problem ofIn is that
it does not have a zero mean because it takes a quadratic form.
Also, numerical integration is required, which is not attractive in
practice. In our setup, σ 2 will change to a functional of f (·) and
σ 2(·); see, e.g., Härdle and Mammen (1993). Estimation of such
nuisance parameters introduces extra troubles to practitioners;
nevertheless, see Gao et al. (2008) for such a development.

6 Throughout this paper, we mean this setup when we discuss the statistical
literature if no further specification. Note that Π is a subinterval of [0, 1] now.
7 Note that In is like the score test,In is like the Wald test, and the test of Härdle

and Mammen (1993) is like the likelihood ratio test in comparison with the three
classical asymptotically equivalent tests.
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Both In andIn measure the L2 distance between m(·) and m(·),
so they are closely related; see Fan and Li (2000) for a clear
argument for this point in the classical specification testing. Such
test statistics correspond to the average-statistic of Andrews and
Ploberger (1994) in the parametric structural change environment.
Another popular metric used in the structural change literature is
the sup-norm; e.g., the sup-statistic in Andrews (1993) uses this
metric. In our case, a natural test statistic under the sup-norm is
sup
π∈Π

|α (π)|. To avoid the randomdenominator problemas in In andIn, we use the following test statistic

Sn = sup
π∈Π

√
nh
m+(π)f+(π) − m−(π)f−(π)


= sup

π∈Π


√
nh
n

n
j=1

kh

xj − π


yjdj (π)

−

√
nh
n

n
j=1

kh

xj − π


yj

1 − dj (π)


≡ sup

π∈Π

|Snπ | .

Wu and Chu (1993a) show that the asymptotic distribution of Sn is
related to the type-I extreme value distribution. Specifically,
P (Sn < an + bnx) → exp (−2 exp (−x)) ,

where

an = σK3

CΠ +

log

3
√
4π


CΠ

 , bn =
σK3

CΠ

,

K3 is a constant only related to k (·), and CΠ =
√
C1 + C2 log nwith

C1 related to the length of Π and C2 related to the width of h.
We provide some intuition for this result here. First, by the

central limit theory, the average form Snπ in Sn will follow a normal
distribution asymptotically. Second, because Snπ only uses the
data in a h neighborhood of π , Snπ1 and Snπ2 are asymptotically
independent when the distance between π1 and π2 is greater than
2h. Third, since xi is evenly sampled, and εi is homoskedastic,
the normal distributions that Snπ will follow are the same. In
summary, Sn is asymptotically equivalent to the supremum of
infinite i.i.d. normal randomvariables. By the extreme value theory
(see, e.g., Example 21.16 of van der Vaart (1998)), for n i.i.d.
standard normal random variables Xi, i = 1, . . . , n,

P

max

i
Xi <


2 log n −

1
2
log log n + log 4π

√
2 log n

+
1

√
2 log n

x


→ exp (− exp(−x)) .

It is easy to see the similarity of the asymptotic distributions of
Sn and max

i
Xi. The ‘‘2’’ in exp (−2 exp(−x)) is because Sn is the

supremum of the absolute value of Snπ instead of Snπ itself. On
the contrary,In takes an average form of Snπ , so its asymptotic
distribution is normal. The simulation studies in Wu and Chu
(1993a) show that the type I error using Sn to test H0 is much
higher than the nominal level, which is partially due to the low
convergence rate of Sn to its asymptotic distribution. It is unknown
whether the wild bootstrap is valid for Sn.

It is noteworthy that we need normalize Sn by a location
constant an to get a nondegenerate asymptotic distribution. When
there is no normalizing constant an, the asymptotic distribution of
Sn will degenerate. To appreciate this result, consider max

i
Xi again.

It is shown in Gnedenko (1943) that for any ε > 0,

P

 max
i

Xi
√
2 log n

− 1

 < ε


→ 1.

In this case, max
i

Xi is called relatively stable by Gnedenko (1943).
Although the arguments above are elegant, they cannot be
applied in our case. The key point here is that xi is not evenly
sampled and εi may be heteroskedastic, but we need Snπ to be
homoskedastic to apply the extreme value theory. Let us check the
effect of either of the two conditions on Sn. If εi is homoskedastic
and xi is not evenly sampled, because h is the same for all
Snπ , the asymptotic variance of Snπ will be smaller when f (π)
is larger since more data are used in Snπ , and vice versa. To
make the asymptotic variance invariant to π , we must normalize
Snπ by an estimator of

√
f (π) or use variable bandwidths as

in Fan and Gijbels (1992). Second, if εi is heteroskedastic and
xi is evenly sampled, similarly, the asymptotic variance of Snπ
will depend on π . We need divide Snπ by an estimator of σ (π)
to make it homoskedastic; see Eubank and Speckman (1993)
for discussions on this issue in confidence band construction of
nonparametric regression. In summary, we need estimators of
f (·) and σ 2 (·) to make the extreme value theory apply. When
εi = σ (xi) ϵi with ϵi i.i.d. sampled, Hamrouni (1999) normalizes
Snπ by K4


f (π)/σ 2 (π) to get the asymptotic distribution

exp (−2 exp(−x)), where K4 is a constant only related to k (·).
To our knowledge, there is no literature to consider normalizing
Snπ by an estimator of K4


f (π)/σ 2 (π). Even there were, such

complicated procedures are not attractive to practitioners.
The third test is proposed by Müller and Stadtmüller (1999).

This test is based on sums of squared differences of the data,
formed with various span sizes:

Zk =

n−L
j=1


yj+k − yj

2
n − L

, 1 ≤ k ≤ L,

where L = L(n) ≥ 1 is a sequence of integers depending on
n. Müller and Stadtmüller (1999) show that the statistics Zk can
be interpreted as dependent variables within the following two-
parameter asymptotic linear model8

Zk = 2σ 2
+

k
n − L

α2
π + ηk, 1 ≤ k ≤ L. (9)

Now, α2
π can be estimated by least squares and the asymptotic

distribution of the estimator is as follows:
√
L
α2

π − α2
π

 d
−→N


0,

12
5


E

ε4
i


− σ 4 .

A usual t test can be conducted to test whether απ = 0. Müller and
Stadtmüller (1999) derive this test under the fixed designwith i.i.d.
errors, and it is unknown how to adjust this procedure to the case
with random design and heterogeneous εi’s.

4. Efficient estimation of the treatment effect

If the specification tests reject H(2)
0 that απ = 0, we need to

estimate απ with an unknown π . Usually, we can use a two-step
procedure: first estimate π , and then estimate απ as if π were
known.

4.1. Estimation of the discontinuity point

Because of the weighted average nature of kernel smoothers,α(π) would be near to zero when there was no jump at a

8 This approximation is straightforward when k = 1. Müller and Stadtmüller
(1999) allow an unknown number of jump points, and in this case, α2

π in (9) should
change to the sum of squared jumping sizes.
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given point. Otherwise, the difference would be near the jump
magnitude. So a natural estimator of π is as follows:

π = argmax
π∈Π

α2(π). (10)

Such an estimator is called the Difference Kernel Estimator (DKE) in
Qiu et al. (1991). In practice, we can specify Π = [x(0.15n), x(0.85n)]

with x(i) being the ith order statistic of {xi}ni=1; also, we need only
check whether π = xi, xi ∈ Π , maximizes α2(π) as in the
parametric threshold regression scenario. Yu (2012) suggests to
check themiddle points of contiguous xi’s to improve the efficiency
of π . We expect either way will generate similar estimates of απ

which is of main interest in RDDs. Before stating the asymptotic
distribution of π , we impose the following standard restrictions
on the bandwidth h.

Assumption H. h → 0, nh → ∞, and
√
nh

ln n → ∞.

Note that the this bandwidth h may be different from the h in
Assumption B of specification testing.

The following theorem provides the asymptotic distribution ofπ .

Theorem 4. Suppose Assumptions E, F(b), H and M hold, and k(·)
satisfies the same conditions as specified in Assumption K; then π −

π0 = Op

n−1


, and

n (π − π0)
d

−→ argmax
v∈R

D(v),

where

D (v) =


N−(|v|)
i=1


−α2

π0
+ 2απ0ε

−

i


, if v < 0;

N+(v)
i=1


−α2

π0
− 2απ0ε

+

i


, if v ≥ 0;

N−(·) and N+(·) are Poisson processes with intensity f (π0), ε−

i has
the density f (ε|x = π0−), ε+

i has the density f (ε|x = π0+), and
ε+

i


i≥1 ,


ε−

i


i≥1 ,N−(·),N+(·)


are independent of each other.

Furthermore, D (v) is caglad with D (0) = 0 almost surely, and the
asymptotic distribution of π is the same as that in the case when απ0
is known.

Note that there is an interval (M−,M+]maximizingD (v), sowe
must determine which point on the maximizing interval is taken
as argmax

v∈R
D(v). If we check xi ∈ Π when maximizing α2(π) in

(10), then argmax
v∈R

D(v) = M+; if we check middle points, then

argmax
v∈R

D(v) =
M++M−

2 . Also, when ε is independent of x, ε−

i

and ε+

i have the same distribution as εi. The explicit form of the
asymptotic distribution of π can be found in Appendix D of Yu
(2012).

It is surprising that π is n-consistent although m(·) takes
a nonparametric form. In Appendix A of the supplementary
materials, we provide some intuitions on this result. We also
illustrate why the asymptotic distribution of π is the same as in
a parametric model and is the same as the least squares estimator.
The result in Theorem 4 hinges on the assumption that k(0) > 0;
that is, we indeed use some information in the neighborhood of
π to estimate m±(π). When k(0) = 0 (and k′(0) > 0), the
convergence rate is

√
nh/h = n/

√
nh slower than n; see Müller

(1992), Wu and Chu (1993a), and Delgado and Hidalgo (2000) for
the details. Loader (1996) puts forward a similar estimator as ours
but he only considers the case with the fixed design and the error
term following the standard normal. Gréoire and Hamrouni (2002)
essentially use the objective function |α(π)|, but their asymptotic
distribution ofπ is questionable. This is because argmax

π∈Π
α2(π) =

argmax
π∈Π

|α(π)|β for any β ≥ 1, and their asymptotic distribution

should be the same as that in Theorem 4. As to the inferences of π ,
see Section 6 of Yu (2014a) for a summary in the parametricmodel.
Since we are interested in απ rather than π in RDDs, inference on
π is not very important, and we only need a precise estimator of π
such that its impact on the estimation of απ is small.

When there is only one discontinuity point, Korostelev (1987)
shows that n−1 is the optimal minimax rate to estimate π in the
ideal Gaussianwhite noisemodel. Actually, we can adapt the proof
idea of Yu (2008) to show that π can even be adaptively estimated.
When the number of discontinuities is greater than 1, Spokoiny
(1998) shows that the optimal minimax rate changes to n−1 log n.

4.2. Estimation of the treatment effect

Givenπ , απ is estimated byαπ =α(π),

soαπ is a natural by-product of the estimation ofπ . The asymptotic
distribution ofαπ is as follows.

Theorem 5. Under the assumptions in Theorem 4,
√
nh (α(π) −α(π0)) = op(1).

Furthermore,α(π) is asymptotically independent of π .

Theorem 5 claims that the estimation of π will not affect the
efficiency of απ . In other words, π can be treated as known in
evaluating the treatment effects in RDDs even if it is not. Combining
this result with that in Theorem 4, we can treat απ as if were
known when estimating π , and treat π as if were known when
estimating απ . From Yu (2008), π is a ‘‘middle’’ boundary of x, and
the information used in estimating the regular parameter απ and
the nonregular parameter π does not affect each other. Given this
result, the asymptotic distribution ofα(π) is the same as that given
in Theorem 3 of Porter (2003). Because themodel withπ unknown
is more difficult than that with π known, while our estimator has
the same efficiency as in the latter case, it achieves the optimal
rate of convergence in the minimax sense as derived in Section 4
of Porter (2003).

When there aremultiple, say q, discontinuity points,π1, . . . , πq
in ascending order (WLOG, suppose απ1 > απ2 > · · · >
απq−1 > απq ), a sequential procedure can be used to detect
them. Specifically, we first estimate π1 by maximizing α2(π) on
Π1 = Π , and then sequentially estimate πj by maximizingα2(π)

on Πj = Πj−1 \
j−1

k=1 [πk − 2h,πk + 2h], for j = 2, . . . , q.
Given πj’s, απj can be estimated straightforward; see Bertanha
(2014) and references therein for estimating all kinds of treatment
effects when π1, . . . , πq are known. Before stating the asymptotic
distributions of πj and απj , we must assume πj’s are separated
apart. Rigorously,

Assumption A. min
j=2,...,q


πj − πj−1


> ϵ > 0.

The following corollary provides the joint asymptotic distribution
of
πj,απj

q
j=1

.

Corollary 1. Suppose Assumptions A, E, F(b), H andM hold, and k(·)
satisfies the same conditions as specified in Assumption K,

(i) πj − πj0 = Op

n−1


, j = 1, . . . , q, and n

πj − πj0

has the

same asymptotic distribution as n (π − π0) in Theorem 3 except
that π0 is replaced by πj0 in D(v).
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(ii)
√
nh
απj −απj0


= op(1) for all 1 ≤ j ≤ q.

(iii) Allπj’s andαπj ’s are asymptotically independent of each other.

This corollary claims that each

πj, απj


can be estimated

independent of the others and as if the others were known. This
is because each πj is n-consistent, and w.p.a.1. πj0 will stay in the
h neighborhood of πj. Given that we exclude a 2h neighborhood
of πj, we essentially use an independent data set to estimate
πj+1, απj+1


, and consequently,

πj+1,απj+1


is asymptotically

independent of
πj,απj


and is not affected by

πj,απj


.

There is also some literature discussing the Lp-consistency of
the whole m (·) function, where p ≥ 1. Müller (1992) uses
the boundary kernel developed in Gasser and Müller (1979) to
deal with the estimation of m (·) in the neighborhood of the
discontinuity point, and derives the Lp convergence rate of his
estimator. Oudshoorn (1998) uses the L2 norm, and allowsmultiple
discontinuity points (with unknown numbers and locations) in the
ideal white noise model. He concentrates on the asymptotically
minimax estimation of m(·) based on series, and shows that the
minimax rate is the same as that in Stone (1982) where no jumps
exist.

5. Extensions and a practical issue

In this section, we discuss three extensions of the results in Sec-
tions 3 and 4. Also, we deal with an important practical issue, the
bandwidth selection, in both specification testing and estimation.

5.1. Two auxiliary tests

In this subsection, we will provide two auxiliary tests. The first
one is to check Assumption F. There are two parallel tests as in
Section 2.3. The first test is to check whether f (·) is smooth at
π ; that is, we want to know whether there is imprecise control
of x. The second test is to check whether there is a jump in f (·)
at π . McCrary (2008) interprets the second test as an indicator of
whether there is precisemanipulation of x. He assumesπ is known
and uses the local linear density estimator of Cheng (1994) and
Cheng et al. (1997) to test this hypothesis in the spirit of the first
or second alternative test (which are equivalent when π is known)
in Section 3.3. Our test statistic Tn can be extended to apply in both
tests even if π is unknown. The only adjustment is to redefine xi
and yi. For this purpose,we first divideΠϵ intoN =


π+ϵ−(π−ϵ)h


+

1 subintervals, and denote the middle-points of these intervals as
{πl}

N
l=1. Then define yl =


nh−1n

i=1 1

πl −

h
2 ≤ xi < πl +

h
2


.

Now, substitute (xi, yi) in In by (πl, yl), andmake sure thath = o(h)
and h = o(b); then the results in Theorems 1 and 2 apply. As
argued in Section 3.2 of McCrary (2008), his procedure is robust to
the choice ofh, and a similar argument can be applied in our case.
As to the choice of h and b, see Section 5.4. As noted in McCrary
(2008), ‘‘a running variable with a continuous density is neither
necessary nor sufficient for identification except under auxiliary
assumptions’’. Actually, Lee (2008) claims that the treatment effect
can be identified even if there were manipulation as long as the
treatment status cannot be precisely controlled by individuals. A
testable corollary of his framework is that the conditional mean of
any pre-determined variable given x is continuous at π . Of course,
our testing procedure can also be used to test such a hypothesis.

The second test is to check whether there are enough compliers
in the fuzzy design. To describe this test, first recall the identifica-
tion structure in the fuzzy design. From Hahn et al. (2001), under
the local unconfoundedness condition, the treatment effect∆π can
be identified, and

∆π ≡ E [Y1 − Y0|x = π ] =
απ

βπ

, (11)
where βπ = p+(π) − p−(π), and p±(π) = E [D|x = π±] are
propensity scores in the right and left neighborhoods of π with
D being the treatment status. Under the monotonicity assumption
as used in Imbens and Angrist (1994), the denominator of ∆π , βπ ,
can be interpreted as the probability to be a complier. To check
whether ∆π = 0 by testing whether απ = 0, we must make sure
βπ ≠ 0; that is, there are enough compliers. Our test statistic Tn
can be applied directly except that D now plays the role of y. Note
also that because |βπ | < 1, the test of ∆π = 0 based on testing
απ = 0 as in Theorem 2 is conservative.

5.2. Estimation in the fuzzy design

We first discuss estimation of π . In the fuzzy design, the
available data are {yi, xi,Di}

n
i=1. The extra data Di can provide extra

information about π . To be specific, our estimator of π isπ = argmax
π∈Π

α2(π) +β2(π)

,

where β(π) = p+(π) − p−(π) is the estimated jump of the
propensity score at π , andp±(π) are nonparametric estimators of
p±(π). The asymptotic distribution ofπ is the same as that ofπ in
Theorem 3 except that the D(v) process is redefined as

D (v) =


N−(|v|)
i=1


−α2

π0
+ 2απ0ε

−

i − β2
π0

+ 2βπ0η
−

i


, if v < 0;

N+(v)
i=1


−α2

π0
− 2απ0ε

+

i − β2
π0

− 2βπ0η
+

i


, if v ≥ 0;

where ηi = Di − E [Di|x = xi], and η±

i are similarly defined as ε±

i .9

Because E

−α2

π0
± 2απ0ε

∓

i − β2
π0

± 2βπ0η
∓

i


= −α2

π0
− β2

π0
<

−α2
π0

= E

−α2

π0
± 2απ0ε

∓

i


, we expect that π is more efficient

thanπ .
Given an estimator ofπ , the treatment effect∆π defined in (11)

can be estimated as in Section 3.6 of Porter (2003) or in Section 3
of Yu (2013). Of course, due to the superconsistency of π , the
asymptotic distribution of the ∆π estimator is the same as that in
the case when π0 is known. For this asymptotic distribution, we
refer to Proposition 1 of Porter (2003) and Theorems 3 and 4 of Yu
(2013).

5.3. The number of discontinuity points is unknown

Usually, the number of discontinuity points q is known in RDDs.
When q is unknown, there are three classes of procedures to get
information about q. To describe these procedures, we maintain
Assumption A.

First, we can conduct tests about q sequentially; Wu and Chu
(1993a) belongs to this class. For thismethod, we use the notations
in Section 4.2. Specifically, we first test H0 : q = 0 versus H1 : q >
0 using some test statistic Tn on Π1. If H0 is rejected, then estimate
π1 using the procedure in Section 4.2. Generally, test H0 : q = j
versus H1 : q > j using Tn on Πj+1. Keep on this procedure until
H0 cannot be rejected. Remark 4 of Wu and Chu (1993a) uses the
sup-statistic Sn as Tn. Of course, our test statistic Tn can also be
used. Because of the type-I error in testing, this method tends to
overestimate q. Of course, we can let the significance level in each
test shrink to zero to make the tests pick q consistently.

9 Note that η±

i are discretely distributed. Nevertheless, the jumps in D(v) are
still continuously distributed as ε±

i are continuously distributed, so argmaxv D(v)

is uniquely defined. Of course, if π is estimated based on argmaxπ∈Π
β2(π), the

maximizer of D(v) may not be uniquely defined; see Yu (2010) for conditions that
guarantee the uniqueness of argmaxv D(v).
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Second, we can estimate q; Yin (1988) and Qiu (1994) belong to
this class. We briefly describe the procedure of Qiu (1994) here.10
Because the kernel estimator uses the data in a 2h range, we divide
Π into N =


π−π

2h


+ 1 (closed) subintervals. Denote the right

endpoints of these intervals as πl, where πl = π +

π − π


l/N ,

l = 1, . . . ,N . Calculate α(π) at all πl’s, and find the πl’s such

that |α(πl)| > Bn, where Bn = O


βn


log n
nh


with lim

n→∞
βn = ∞

such as βn = log log n. Such a Bn is understandable because when

there is no jump, sup
π∈Π

|α(π)| = Op


log n
nh


from Section 3.3.

Denote such πl’s as

πl1 , . . . , πlr , . . . , πlR


. In the neighborhood

of a discontinuity point, there may be more than one πlr ’s such
that

α(πlr )
 > Bn, so the contiguous πlr ’s are indicating the same

discontinuity point. Combining the contiguous subintervals whose
left endpoint is πlr , we get intervals I1, . . . , Ik, . . . Iq. q is the
estimator of q, and the middle point of each Ik or the maximizer of
|α(π)| on each Ik, k = 1, . . . ,q, is the estimator of the location of
jumps. Qiu (1994) shows the a.s. consistency and convergence rate
ofq.

Third, we can select q to obtain an optimal fitting. This approach
is proposed in Braun and Müller (1998) and used in Müller and
Stadtmüller (1999) and Gijbels and Goderniaux (2004), but no
theoretical justification is provided yet. Specifically, we can choose
q and h together when minimizing the objective function (12) of
cross-validation below, wherem−i(xi) is a function of both q and h.

5.4. Bandwidth selection in specification testing and estimation

Most statistical and econometric literature concentrates on the
bandwidth selection in estimation instead of specification testing
(in classical specification tests, Hsiao et al. (2007) is the only
exception). We will first provide an algorithm for the bandwidth
selection in estimation, and then adjust the algorithm to select
bandwidth in specification testing. Throughout our discussion, we
assume there is at most one cusp or jump under the null and
alternative.

For statistical literature on bandwidth selection when m(·) is
discontinuous, see, e.g., Remark 2 of Wu and Chu (1993a,b), and
Section 5 of Müller (1992).11 It seems that only Wu and Chu
(1993b) give a rigorous analysis. There is also some econometric
literature on bandwidth selection in the estimation of απ when
π is known. Ludwig and Miller (2005) use the conventional CV
approach to select the bandwidth. To avoid the boundary problem,
they use the one-side kernel in estimating m(·) on both sides
of π . Such a scheme induces some efficiency loss in data usage;
see Ludwig and Miller (2005) for other disadvantages of this
boundary CV method. DesJardins and McCall (2008) and Imbens
and Kalyanaraman (2012) use the plug-in method, but as argued
in Loader (1999), ‘‘plug-in approaches are tuned by arbitrary
specification of pilot estimators and prone to oversmoothing
when presented with difficult smoothing problems’’. See Imbens

10 Oudshoorn (1998) uses a similar procedure based on wavelet in the ideal white
noise model. Yin (1988) first uses a sequential procedure as in Section 4.2 to
estimate the location and size of jumps, and then estimates the number of jumps
based on the truncated cumulative magnitude of jumps plus a penalty term, just as
in the AIC and BIC selection of OLS regressors. Yin (1988)’s procedure checks every
design point to find the jump location, while Qiu (1994) only checks multiples of
the bandwidth.
11 See also Gijbels and Goderniaux (2004) for the bandwidth selection in a two-
step estimation scheme proposed in Gijbels et al. (1999). They suggest to use
different bandwidths in estimating π and απ , which is now a common sense in the
literature, but their bandwidth selection in estimating π critically depends on the
assumption that ε is independent of x.
and Kalyanaraman (2012) for detailed descriptions on these
econometric methods.

Cross-validation remains the dominating approach in band-
width selection for practitioners. Our approach is based on and ex-
tends the CVmethod inWu and Chu (1993b). Different from the CV
method of Ludwig and Miller (2005), Wu and Chu (1993b) elimi-
nate the boundary effect by projecting the data near the disconti-
nuity point. Hall and Wehrly (1991) propose a similar procedure
but reflect the data near the boundary; their idea is recently used
in testing for smooth structural changes by Chen and Hong (2012).
Both Hall andWehrly (1991) andWu and Chu (1993b) use the ker-
nel smoother (i.e., the local constant smoother). Given that the LLS
is dominating in practice, we adapt their procedures to our case by
using the LLS. Because the procedure based on projection or reflec-
tion is not popular in the literature of RDDs, we provide a detailed
description here.

Algorithm CV. Step 1: Fix h ∈ Hn ≡

An−1+ρ, Bn−ρ


for

arbitrary small ρ and constants A and B.
Step 2: Estimate π using (10) with the bandwidth ch, where c is

determined by

c =
C

k∗
+


C (k)

,

where C (K) =

 
K2(u)du

(

u2K(u)du)

2

1/5

for a kernel function

K (u),

k∗

+
(u) =

 1
0 t2k(t)dt


k(u) −

 1
0 tk(t)dt


uk(u) 1

0 k(t)dt
 1
0 t2k(t)dt −

 1
0 tk(t)dt

2
is the equivalent kernel of k+(u) ≡ k(u)1 (0 ≤ u ≤ 1)
in the local linear regression.12 To avoid the difficulty in
deciding that xi should be used in estimating m+ (xi) or
m− (xi) and improve efficiency of π , check the middle
points of contiguous xi’s in Π in maximizingα2(π).13

Step 3: Givenπ ,m+ (π) andm− (π) in step 2, generate pseudo-
data (xi+,yi+) ≡ (2π − xi−, 2m− (π) − yi−), i =

1, . . . , Lh, in the right h neighborhood and (xi−,yi−) ≡

(2π − xi+, 2m+ (π) − yi+), i = 1, . . . , Rh, in the left
h neighborhood of π , where {xi−, yi−}

Lh
i=1 are the data

points such that π − xi− ≤ h, and {xi+, yi+}
Rh
i=1 are the

data points such that xi+ −π ≤ h.
Step 4: For xi ∈


π,π, use {xi−, yi−}

L
i=1


{(xi+,yi+)}
Lh
i=1

with xi− ∈

π − h,π and for xi ∈ [π, π ], use

{xi+, yi+}
R
i=1


{(xi−,yi−)}
Rh
i=1 with xi+ ∈ [π, π + h]

to get the ‘‘leave-one-out’’ version of m(xi). Here, the
bandwidth of the LLS is h, and the resulting estimates are
denoted asm−i(xi).

Step 5: Get the objective function of CV:

CV (h) =

n
i=1

(m−i(xi) − yi)2 1Π
i (12)

for each h, and minimize CV (h) for h ∈ Hn to find the CV
bandwidthhCV .

12 The constant c is determined as follows. It is well known that the optimal
bandwidthminimizing theMSE is n−1/5C(K)C


m, f , σ 2


for both the interior point

and the boundary point, where C

m, f , σ 2


is a constant related to m (·), f (·) and

σ 2 (·) but not to K(·), so the optimal bandwidths for these two kinds of points
are different only by a constant ratio c if m (·), f (·) and σ 2 (·) are stable on the
interested area.
13 Also, in Step 3 below, we do not need to consider the reflection of (xi, yi) itself.
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Fig. 2. Comparison of reflection in Hall andWehrly (1991) and projection inWu and Chu (1993b): HW for Hall andWehrly (1991) andWC for Wu and Chu (1993b), red dot
for real data, and blue circle for reflected or projected data. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this
article.)
This algorithm is designed for the case where π is unknown.
Whenπ is known, it can be simplified in an obvious way. Note thatπ andαπ are by-products of Algorithm CV; also note that c ·hCV
rather thanhCV is used in estimatingαπ . In Step 2, we use a delicate
bandwidth in estimatingπ to achieve an optimal fitting in (12). But
chmay not be a good choice in estimating π . For example, suppose
k(u) = 3


1 − u2


1 (|u| ≤ 1) /4, the Epanechnikov kernel, it can

be shown that c = 1.554 which is greater than one. This is
reasonable because we need more data in estimating m (·) at the
boundary to improve the efficiency. But our purpose is to precisely
estimate π rather than precisely estimatem (·) around π . Because
π is identified by the jump of m(·), a small bias in estimating m(·)
is more important than a small variance. So we suggest to use a
smaller bandwidth than h in estimating π . This is also a common
sense in simulation studies in the literature.

Now, we describe how to determine Hn and minimize CV (h).
Suppose a vector


x(1), . . . , x(n)


includes the sorted xi’s in Πϵ ,

where Πϵ can be specified as [x(0.1n), x(0.9n)] in practice. Define the
lower bound of Hn as h ≡ max


x(i+1) − x(i) : i = 1, . . . , n − 1


.

This h guarantees that there are at least two data points in a h
neighborhood of any x ∈ Π , so the multicollinearity problem
in the LLS can be avoided. The upper bound h of Hn can be
set as 1

2


π − π


, which roughly corresponds to the parametric

estimation ofm(·)whenπ is in themiddle ofΠ . Whenminimizing
CV (h), we need only search over a discretized subset Dh of Hn;
e.g., Dh =


h + i · step : i = 0, 1, . . . ,


h−h
step


, where step =

1
2 min


x(i+1) − x(i) : i = 1, . . . , n − 1


. The step size in Dh ensures

that atmost onemore data point is covered by the h+(i + 1) · step
ball than the h+ i·step ball centered at any x ∈ Π , so essentially all
possible LLS estimates are considered for a fixed data set. If such a
step size is too small, we may set step =

1
2

π−π

n . In this case, CV (h)
is evaluated at roughly n points. Such a specification of Hn and Dh
is not rigid. In practice, we must make sure that the minimizer is
not obtained at the boundary points, h and h, of Hn, and hope that
CV (h) is relatively flat near its minimizer so that the estimation of
απ is relatively robust to the bandwidth selection.14

Wu and Chu (1993b) use a little different approach in Step
2 because their estimation procedure assumes k(0) = 0

14 See the figures in Lee and Lemieux (2010) for some intuitions on this fact. This
is also why the CV bandwidth converges to the optimal value in a very slow rate
n−1/10 as shown in Wu and Chu (1993b).
as mentioned in Section 4.1. This results in a smaller band-
width in estimating π . A smaller bandwidth can make the
uncertainty of π in evaluating CV (h) disappear. Also, they
generate a different pseudo-data set in Step 3. In their case,
(xi+,yi+) =


2π − xi−, yi− + 2m′

−
(π) (π − xi−)


, i = 1, . . . , Lh,

and (xi−,yi−) ≡

2π − xi+, yi− + 2m′

+
(π) (xi+ −π)


, i =

1, . . . , Rh. Our procedure in Step 3 is based on Hall and Wehrly
(1991). Comparison of these two procedures is illustrated in Fig. 2.
From Fig. 2, when reflecting the data to the right (left) neigh-
borhood of π , Hall and Wehrly (1991) reflect the ray of light
through the fixed point (π,m− (π)) ((π,m+ (π))), while Wu and
Chu (1993b) project the ray of light parallelly with the slopem′

−
(π) (m′

+
(π)). Intuitively, both methods maintain the linear

component ofm(·) in the neighborhood ofπ , so the bias term in es-
timatingm(·)would be O


h2

which is of the same order at the in-

terior point. Becausewe only reflect the data in a hneighborhood ofπ , the resulting contribution to theMISE in CV (h) isO


h2
2 h =

O

h5

. This contribution is negligible because the bias component

of the MISE from other area in CV (h) is O

h4

. Without reflection

or projection, this contribution would be O

h2h


= O

h3

and is

not negligible. We rate Hall and Wehrly (1991)’s method over Wu
and Chu (1993b)’s because levels m± (π) can be estimated more
precisely than slopesm′

±
(π).

Wenext describe our bandwidth selection of b (and h) in specifi-
cation testing. The key difference between specification testing and
estimation is that there may or may not be a cusp or discontinuity
in the data, sowe do not need Steps 2 and 3 in AlgorithmCV. In Step
4, we use the original data to estimate m−i(xi). Such an algorithm
is to choose the best smooth fit of the original data, so matches the
idea in the construction of In. If the DGP is from H(1)

0 , then balanc-
ing the integrated bias squared (O(b4)) and variance (O

 1
nb


), we

getbCV = O

n−1/5


, the most popular rate of optimal bandwidth.

If the DGP is from H(1)
1 , then balancing the integrated bias squared

(O(b3)) and variance (O
 1
nb


), we getbCV = O


n−1/4


. At last, if the

DGP is fromH(2)
1 , then balancing the integrated bias squared (O(b))

and variance (O
 1
nb


), we getbCV = O


n−1/2


. So the CV procedure

is adaptive to both thenull DGP and the alternativeDGP:whenm(·)
gets rougher, our bandwidth gets smaller,which is exactlywhatwe
want in Assumption B. GivenbCV ,h can be set asb2.1CV to guarantee
that h1/2/b → 0.

As mentioned above, we recommend to use a small bandwidth
in estimating π when απ ≠ 0. The bandwidth selection method
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in specification testing can serve this purpose. In this case, the
bandwidth is O


n−1/2


, much smaller than the optimal bandwidth

(which is O(n−1/5)) in estimating απ . Actually, this choice is also
suggested in Wu and Chu (1993b).

Wedo not suggest to use the bandwidths above blindly. Instead,
our procedure of bandwidth selection better serves as a method of
strengthening and rigorizing the intuition in a practical problem.
Before conducting any analysis in this paper, we suggest to plot
local moving averages for a range of bandwidths (centering at
the CV bandwidth or the rule of thumb bandwidth of Silverman
(1986)) or globally polynomial fitting for different orders to get
some senses about where π is and whether there are selection or
treatment effects. Even in a rigorous analysis, we suggest to check
a range of bandwidths to explore the sensitivity of our estimators
and testing procedures to the bandwidth selection. For example,
in specification testing, we can draw a graph of decision (0 for
acceptance and 1 for rejection) against bandwidth and check how
the decision changes when the bandwidth is smaller or larger thanbCV .
6. Monte Carlo results

The goal of this Monte Carlo study is to check how our tests
and estimators depend on the bandwidth selection. We will use
the four setups of Fig. 1 in our simulations.

DGP1 : y = x21 (−2 ≤ x ≤ 3) + ε,

DGP2 : y = x21 (−2 ≤ x < 1) +

(x − 3)2 − 3


1 (1 ≤ x ≤ 3)

+ ε,

DGP3 : y = x21 (−2 ≤ x < 1) +

x2 + 1


1 (1 ≤ x ≤ 3) + ε,

DGP4 : y = x21 (−2 ≤ x < 1) +

(x − 3)2 − 2


1 (1 ≤ x ≤ 3)

+ ε.

In all setups, ε’s are i.i.d. sampled and follow N(0, 0.22), and x
is uniformly distributed on [−2, 3]. The parameter space Π =

[0.5, 1.5], and the number of discontinuity points is known as 1.
In specification testing, we will study size under the null and also
power under the alternative. The rejection probability under DGP1
is the size for testing both (3) and (4). The rejection probability
under DGP2 is the power for testing (3) and the size for testing (4).
The rejection probabilities under DGP3 and DGP4 are the power
for testing (4). The significance level is set at 5%. In estimation, we
will consider only DGP3 and DGP4 and study the bias and variance
properties of the estimators of π and απ .

Because we will check the performance of our procedures for
each bandwidth in a reasonable range, the computation burden
is tremendous. To save simulation time, we let n = 500 which
guarantees that about 100 data points fall in Π . The number of
replications is set as 100. In the bootstrap method of Section 3.2,
B is set as 199. Even in this small simulation study, many of our
theoretical results are confirmed. Throughout the simulations, all
estimators are based on the LLS with the kernel function k(u) =

3

1 − u2


1 (|u| ≤ 1) /4.

6.1. Specification testing

In this simulation study, h is set as b2.1. The construction of the
test statistic and the bootstrap method of obtaining critical values
can be found in Sections 3.1 and 3.2, respectively. The simulation
results are summarized in Fig. 3. A few conclusions from Fig. 3 are
as follows. (i) For the same bandwidth, whenm(·) gets rougher, the
probability of rejection gets higher. This matches the construction
of Tn because the bias will increase when m(·) gets rougher.
Similarly, given a DGP, the larger the bandwidth, the higher the
probability of rejection. (ii) In both tests, the bootstrap distribution
has a better finite-sample approximation to the distribution of
Tn than the asymptotic distribution under the null. In testing (3),
the bootstrap method has an almost correct size for a wide range
of bandwidths, while the asymptotic method is either over-sized
or under-sized so that it is hard to pick the right bandwidth. In
consideration of the power properties, it seems that [0.25, 0.35]
(the bandwidths between the two magenta vertical lines) is a
suitable range for b. In testing (4), similarly, the size property of
the asymptotic method is not satisfying. For the bootstrapmethod,
[0.1, 0.15] (the bandwidth below the cyan vertical line) seems
to be a suitable range of b because under the null which covers
both DGP1 and DGP2, the sizes match the target 5% for b in this
range. These ranges of bandwidths also justify Assumption B: a
smaller bandwidth should be used in testing (4) than in testing
(3). At last, the bootstrap method has a better power in testing
(4) than the asymptotic method for b ∈ [0.1, 0.15]. The powers
under DGP3 and DGP4 are similar. This is because the power is
mostly generated by the jump instead of the cusp in testing (4). The
lesson here is that the bootstrap method is indeed preferable than
the asymptotic method in both the robustness to the bandwidth
selection and size and power properties of the specification tests.

6.2. Estimation

In this simulation study, besides checking how our estimators
of π and απ depend on the bandwidth selection, we also illustrate
the efficiency loss in estimating απ with an unknown π . Our
simulation results are summarized in Fig. 4 and Fig. 5 for DGP3
and DGP4, respectively. The optimal h’s in estimating π in the two
figures are based on the RMSE risk ofπ .

Some common structures in these two figures are as follows.
(i) The risk of π is much smaller than απ , which confirms the
superconsistency ofπ . (ii) When the bias ofπ is small, the risk ofαπ is close to the casewithπ known,which confirms the result thatπ will not affect the efficiency ofαπ . Especially, when the optimal
bandwidth in estimating π is used, the risk of απ is almost not
affected by the estimation of π . But when the bias of π is large,
there are indeed considerable efficiency losses in απ compared
with the case where π is known. (iii) The bandwidth suitable forπ should bemuch smaller than that forαπ . Due to the smoothness
ofm(·) in our specification, the RMSE risk ofαπ is decreasing even
at h = 1.

There are indeed some differences between Figs. 4 and 5.
Under DGP3, the slope and curvature of m(·) in the left and right
neighborhoods of π are the same, so even if we use the same
bandwidth to estimate π and απ , there is not much efficiency loss
in estimating απ . While under DGP4, where the structures of m(·)
are very different in the left and right neighborhoods ofπ , choosing
a different bandwidth in estimating απ is very important to get
satisfactory performance of απ . The lesson here is that when we
suspect there is selection in the data, bandwidth selection should
be very careful in estimating π and απ .

7. Conclusion and future research

This paper studies the specification testing and estimation in re-
gression discontinuity designs with unknown discontinuity point.
In the specification testing, we construct a unified test statistic in
testing the presence of both the selection effect and the treatment
effect; the only difference is to use different bandwidths. Also, a
bootstrap procedure is suggested to obtain critical values in finite
samples. In estimation, we first estimate the unknown discontinu-
ity point, and then estimate the treatment effect as if the discon-
tinuity point were known. It is shown that the estimation of the
discontinuity point will not affect the efficiency of the treatment
effect estimator.
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Fig. 3. Probability of rejection based on Tn under different DGPs.
Fig. 4. Comparison of estimators of π and απ in bias and RMSE in DGP3.
Fig. 5. Comparison of estimators of π and απ in bias and RMSE in DGP4.
There are some interesting problems unsolved in this pa-
per, some of which have already been mentioned in the main
text. First, the Edgeworth expansion of the wild bootstrap test
statistic is attractable for a theoretical justification of our test-
ing procedure. Second, a key assumption of this paper is that the
smoothness index s is known beforehand. If s is unknown, we can
extend Horowitz and Spokoiny (2001) in specification testing and
Sun (2005) in estimation to adapt to the unknown s. Third, con-
sistency is only a basic requirement for a test; a more challenging
problem is to find the minimax optimal test in our testing envi-
ronment. Relevant literature in the classical specification testing
includes Ingster (1993) and Guerre and Lavergne (2002). Fourth,
as mentioned in the introduction of Oudshoorn (1998), the limit
experiment of the model we considered should be the ideal Gaus-
sian white noise model with discontinuities. A rigorous develop-
ment of this result is theoretically intriguing. The counterpart in
the nonparametric regressionwithout discontinuities can be found
in Brown and Low (1996). Fifth, we test whether there is selection
after excluding the possibility of nonzero treatment effects. If we
want to test the presence of selection regardless of the presence of
treatment effects, we must exclude the influence of treatment ef-
fects (if they are present) on the test statistic. Construction of such a
test is challenging. Sixth, our asymptotic arguments in both testing
and estimation are based on a fixed sequence of bandwidths; a rig-
orous analysis on the asymptotic behaviors based on a data-driven
bandwidth such as the CV bandwidth in Section 5.4 is preferable.
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Seventh, more simulation studies should be conducted to provide
more practical suggestions on the bandwidth selection in both
specification testing and estimation. Finally, our tests and estima-
tion concentrate on the case where no covariates exist. When y is
affected by other covariates and the covariate space is partitioned
by a discontinuity frontier, the procedures in this paper can be ap-
pliedwith some technical complication; related discussions on this
topic can be found in Yu (2014c) and Yu and Phillips (2014).

Appendix A. Supplementary material

Supplementary material related to this article can be found
online at http://dx.doi.org/10.1016/j.jeconom.2015.06.002.
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