
Supplementary Materials: Intuitions and Proofs

Appendix A: Some Intuitions

In this appendix, we will provide some intuitions for some key assumptions and results in the main text.

We will �rst provide a concrete example to illustrate that f(ujx) may have a cusp at x = � when there is
imprecise control on x, and then provide some intuitions for the n-consistency of b�, and �nally discuss two
equivalence results on the asymptotic distribution of b� in Theorem 4.

Illustration of the Nonsmoothness of f(ujx) at x = �
Suppose x is related to U by x(U) = Z + e(U), where Z can be precisely controlled by individuals so its

support is on [�;1), while e is a random error independent of Z. Because individuals exert di¤erent e¤orts

to manage x for x greater than � and x less than �, the density of e is not continuous at e = 0. To be more

speci�c, suppose � = 0, the density of Z, fZ(z), is standard exponential, the density of U , fU (u), is uniform

on [0; 1], and ejU has a density as follows:15

f(ejU) =

8<:
1

2(2+U) exp
n

e
2+U

o
;

1
2(1+U) exp

n
� e
1+U

o
;

if e < 0;

if e � 0:

Then x�s density conditional on U is

f(xjU) =

Z
fZ(x� e)f(ejU)de =

Z x

�1
exp fe� xg f(ejU)de

=

8<:
1

2(3+U) exp
n

1
2+U x

o
;

1
2U exp

n
� 1
1+U x

o
� 3

2U(3+U) exp f�xg ;
if x < 0;

if x � 0;

which is continuous but not smooth at x = 0. Consequently, f(ujx) = f(xjU)fU (u)R
f(xjU=u)fU (u)du has a cusp at x = 0.

The densities f(e), f(ejU), fZ(z), f(xjU), f(x) and f(U jx) are shown in Figure 6.

n-Consistency of b�
First, we discuss how the convergence rate is determined for a general estimator de�ned by maximizing an

objective function. Suppose the parameter � 2 � is estimated by

b� = argmax
�2�

Qn(�) = argmax
�2�

[Qn(�)�Qn(�0)] ;

where Qn(�) is the objective function. Then because b� is the maximizer of Qn(�)�Qn(�0) on �, and �0 2 �,
0 � Qn(b�)�Qn(�0) = hQ(b�)�Q(�0)i+ h�Qn(b�)�Q(b�)�� (Qn(�0)�Q(�0))i ;

where the �rst term on the right-hand side is the limit process and less than zero since �0 = argmax Q(�),

and the second term is the modulus of continuity of the empirical process and greater than zero. We must

15 If U is interpreted as ability in the scholarship example of van der Klaauw (2002), then this density means that a student
with higher ability (smaller U) can exert larger power in managing her score.
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Figure 6: f(e), f(ejU), fZ(z), f(xjU), f(x) and f(U jx) When Selection is Present

balance Q(b�)�Q(�0) and
�n (�)p
n

� sup
j���0j��

[(Qn(�)�Q(�))� (Qn(�0)�Q(�0))]

such that their sum is greater than zero.

For a regular parameter �, say, the mean of a random variable, Q(�) is smooth, so for j�� �0j � �,

Q(�) � Q(�0) = O
�
�2
�
. And by the empirical process technique, �n(�)p

n
= Op

�
�p
n

�
. Suppose b� � �0 =

Op
�
r�1n
�
, and let

�
1
rn

�2
� r�1np

n
, we get rn =

p
n, the usual convergence rate for a regular parameter.

The balancing in estimating � is di¤erent. Consider a simple model with the �xed design:

yi = �1 (xi � �) + "i; (13)

where "i�s are i.i.d. and follow N(0; 1), xi = i=n, i = 1; � � � ; n, and �0 = 1=2. WLOG, suppose � > 0. In
the parametric estimation of �, b� maximizes b� (�)� b� (�0). For j� � �0j � �, and � > �0,

b� (�)� b� (�0) (14)

=

"
1

n(1� �)

nX
i=n�+1

yi �
1

n�

n�X
i=1

yi

#
�
"

1

n(1� �0)

nX
i=n�0+1

yi �
1

n�0

n�0X
i=1

yi

#

=

"
�+

1

n(1� �)

nX
i=n�+1

"i �
n (� � �0)

n�
�� 1

n�

n�X
i=1

"i

#
�
"
�+

1

n(1� �0)

nX
i=n�0+1

"i �
1

n�0

n�0X
i=1

"i

#

� ��
�
� � �0
�

�
�
�
1

n�
+

1

n(1� �0)

� n�X
i=n�0+1

"i = O (� � �0) +O
�
n�1

�
Op

�p
n (� � �0)

�
= O (�) +Op

 r
�

n

!
;

so �n (�) =
p
� and Q(�) � Q(�0) = O (�). Similar results hold for � < �0. Suppose b� � �0 = Op

�
r�1n
�
,

2



0 ][ 0 [ ] 0 [ ]

Figure 7: Balancing Q(�) �Q(�0) and �n(�)p
n
in the Regular Case and Parametric and Nonparametric Esti-

mation of �

and let 1
rn
�
p
1=rnp
n
, we get rn = n. In the nonparametric estimation of �, the scale changes to h. For

� = �0 + ah with a > 0 small enough,

b� (�)� b� (�0)
=

24 1
nh

n(�+h)X
i=n�+1

yi �
1

nh

n�X
i=n(��h)

yi

35�
24 1
nh

n(�0+h)X
i=n�0+1

yi �
1

nh

n�0X
i=n(�0�h)

yi

35
=

24�+ 1

nh

n(�+h)X
i=n�+1

"i �
n (� � �0)

nh
�� 1

nh

n�X
i=n(��h)

"i

35�
24�+ 1

nh

n(�0+h)X
i=n�0+1

"i �
1

nh

n�0X
i=n(�0�h)

"i

35
� ��

�
� � �0
h

�
� 2

nh

n�X
i=n�0+1

"i = O

�
� � �0
h

�
�O

�
1

nh

�
Op

�p
n (� � �0)

�
= O

�
�

h

�
+Op

 
1

h

r
�

n

!
:

So by solving r�1n

h � 1
h

p
1=rnp
n
, we get rn = n.

Figure 7 illustrates the intuition above. Roughly speaking, in estimating �, Q(�) � Q(�0) is a non-
smooth function of � in the neighborhood of �0 such that �0 can be identi�ed more easily than �0. In the

nonparametric case, we use a smaller scale h, and focus on the discussion in a h neighborhood of �0.

Two Equivalence Results

Given the n-consistency of b�, we continue to �nd the weak limit of the localized objective function. Here, we
need the Lipschitz continuity of k(�), and the uniform kernel above does not work. To simplify the discussion,
let �0 be the closest i

n to
1
2 . Assume further that both v and nh are positive integers. Then for b� (�) based

on a kernel function k(�),

nh
�b���0 + v

n

�
� b� (�0)�

=

"
nhX
i=1

k

�
i

nh

�
yn�0+v+i �

0X
i=�nh

k

�
i

nh

�
yn�0+v+i

#
�
"
nhX
i=1

k

�
i

nh

�
yn�0+i �

0X
i=�nh

k

�
i

nh

�
yn�0+i

#
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=
�nh+v�1X
i=�nh

k

�
i

nh

�
"n�0+i �

0X
i=�nh+v

�
k

�
i� v
nh

�
� k

�
i

nh

��
"n�0+i

�
vX
i=1

�
k

�
i� v
nh

�
�+

�
k

�
i

nh

�
+ k

�
i� v
nh

��
"n�0+i

�

+
nh�vX
i=1

�
k

�
i

nh

�
� k

�
i+ v

nh

��
"n�0+v+i +

nhX
i=nh�v+1

k

�
i

nh

�
"n�0+v+i

� I + II + III + IV + V:

Figure 8 shows the e¤ect of k(�) on the �ve terms. When k(�) is Lipschitz, all terms except III are op(1).
Especially, k

�
i
nh

�
in I and V is close to zero. But if k(�) is uniform, I and V will not disappear. The

summands in III correspond to the jumps in D(v). Note that i�vnh and i
nh are close to zero when i and v are

�nite, so the summand in III is approximately �k(0) (�+ 2"n�0+i).16 Similar results hold for v < 0.
Now, we can state two equivalence results for the asymptotic distribution of b�. To simplify our discussion,

we continue using the model with the �xed design. First, the asymptotic distribution of b� is the same as
the parametric estimator based on (14). In other words, although RDDs are nonparametrically formulated,

we can estimate �0 as if the model is parametric as long as m(�) is smooth on �n f�0g. Given that b� is
n-consistent, only the data in a n�1 neighborhood of �0 (that is, �nite data points) are informative to
�0; see the derivation above. Because nh ! 1, there are in�nite data points in the h neighborhood of
kernel smoothing. Also, the kernel estimator treats m(�) as a constant in any h neighborhood. So the kernel
estimator is smooth enough to identify �0 as if m(�) were constant in big enough left and right neighborhoods
of �0. Following such an argument, it is not surprising that �0 can be estimated as if in a parametric model.

Second, the asymptotic distribution of b� is the same as that of the least squares estimator (LSE) in (1).17
Recall that the objective function of the LSE is

nX
i=1

24yi � ��di (�)� nX
j=1

wij (yj � ��dj (�))

352 ; (15)

where wij =
Kh;ijPn
l=1Kh;il

, and
Pn

j=1 w
i
j (yj � ��dj (�)) can be treated as an estimator of m�(x) at xi. This

is exactly the objective function of the partially linear estimator in Porter (2003). Note that (15) can be

written as

k(I �W )Y � �� (I �W )D�k2 ; (16)

where k�k is the Euclidean norm in Rn, I is an n� n identity matrix, W =
�
wij
�
i;j=1;��� ;n is symmetric, and

D� = (di (�))i=1;��� ;n. So the estimator of �� given � is

b� (�) = D0
� (I �W )

2
Y

D0
� (I �W )

2
D�
;

16Since our objective function is b�2(�), nh �b�2(�0 + v
n
)� b�2(�0)� = nh

�b� ��0 + v
n

�
� b� (�0)� �b� ��0 + v

n

�
+ b� (�0)�.b� ��0 + v

n

�
+ b� (�0) converges to 2��0 , so the jumps in D(v) should be �k(0) (2��0 ) (��0 + 2"n�0+i), which are di¤erent

from the jumps of D(v) in Theorem 4 only by a constant 2k(0). Of course, a constant will not a¤ect the output of the argmax
operator.
17See Section 4.1 of Yu (2008) for the asymptotic distribution of the least squares estimator in the parametric case, but as

argued above, it should be the same as in the nonparametric case.
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Figure 8: Weighting Functions in Localized Objective Function Using Di¤erent Kernels

which is the coe¢ cient in the least squares projection of (I �W )Y on (I �W )D�. Now, (16) becomes

k(I �W )Y k2 �
(I �W )D� D0

� (I �W )
2
Y

D0
� (I �W )

2
D�


2

= k(I �W )Y k2 � kP� (I �W )Y k2 ;

where P� =
(I�W )D�D

0
�(I�W )

D0
�(I�W )2D�

is a projection matrix. Because the �rst term k(I �W )Y k2 does not involve
�, minimizing the objective function with respect to � is equivalent to maximizing kP� (I �W )Y k2 with
respect to �. Note that kP� (I �W )Y k2 = b�2 (�)D0

� (I �W )
2
D�. From Theorem 2 of Porter (2003),

D0
� (I �W )

2
D�

p�! 2

Z 1

0

�Z 1

u

k(v)dv

�2
du

independent of �, so maximizing kP� (I �W )Y k2 is equivalent to maximizing b�2 (�).

Appendix B: Proofs

Throughout the proofs, H0 indicates both H
(1)
0 and H(2)

0 , and H1 indicates both H
(1)
1 and H(2)

1 .

Proof of Theorem 1 and 2. First, decompose In by using (8):

In =
nh1=2

n (n� 1)
X
i

X
j 6=i

1�i 1
�
j f(mi � bmi) (mj � bmj) + "i"j + b"ib"j

+2"i (mj � bmj)� 2b"i (mj � bmj)� 2"ib"jgKh;ij

� I1n + I2n + I3n + 2I4n � 2I5n � 2I6n.

We shall complete the proof by examining I1n; � � � ; I6n, respectively, and showing that v2n = �+op (1) under
both H0 and H1. Throughout this proof, zi = (xi; "i)

0 and Ei [�] = E [�jxi].
First, I2n, I3n and I6n are invariant under H0 and H1. Propositions 3 and 6 show that I3n and I6n are

both op(1). Proposition 2 shows that I2n
d�! N (0;�).

Under H0, Proposition 1 shows that I1n = oPm (1), and Propositions 4 and 5 show that I4n and I5n are

both oPm (1) uniformly in m(�) 2 H0.
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Under H1, Propositions 4 and 5 show that I4n and I5n are dominated by I1n, and Proposition 1 shows

that I1n = Op
�
nh1=2b3

�
under H(1)

1 and I1n = Op
�
nh1=2b

�
under H(2)

1 . The local power can be easily

obtained from the proof of Proposition 1.

At last, Proposition 7 shows that v2n = �+ op(1). So the proof is complete.

Proof of Theorem 3. This proof is similar but more tedious than that of Theorem 1 and 2. Note

that � (z) is a continuous function. By Polya�s theorem, it su¢ ces to show for any �xed value of z 2 R,
jP (T �n � zjFn)� �(z)j = op (1).
Denote m�

i = byi and de�ne bm�
i and b"�i by

bm�
i =

1

n� 1
X

j 6=i
m�
jLb;ij

� bfi;
and b"�i = 1

n� 1
X

j 6=i
"�jLb;ij

� bfi:
Then using be�i = y�i � by�i = m�

i + "
�
i � (bm�

i + b"�i ), we get
I�n =

nh1=2

n (n� 1)
X
i

X
j 6=i

1�i 1
�
j

�
(m�

i � bm�
i )
�
m�
j � bm�

j

�
+ "�i "

�
j + b"�ib"�j

+2"�i
�
m�
j � bm�

j

�
� 2b"�i �m�

j � bm�
j

�
� 2"�ib"�j	Kh;ij

� I�1n + I
�
2n + I

�
3n + 2I

�
4n � 2I�5n � 2I�6n.

The theorem will be proved if we can show that I�injFn = op (1) for i = 1; 3; 4; 5; 6 and I�2n=v�njFn ! N (0; 1)

in probability. The �rst part is similar to those of Proposition 1, 3, 4, 5 and 6 under H0. Only note that

m�(x)jFn de�ned as above satis�es H0 even if m(x) is from H1; see Gu et al. (2007) for a similar analysis

in testing omitted variables. But there is some di¤erence to show the second part.

First, because "�i jFn are mean zero and mutually independent and have variance be2i ,
nh1=2

n (n� 1)
X
i

X
j 6=i

1�i 1
�
j "

�
i "
�
jKh;ij =

2nh1=2

n (n� 1)
X
i

X
j>i

1�i 1
�
j "

�
i "
�
jKh;ij �

X
i

X
j>i

U�n;ij

is a second order degenerate U -statistic with conditional variance

2h

n (n� 1)
X
i

X
j 6=i

1�i 1
�
j be2i be2jK2

h;ij = v
2
n:

Because U�n;ij depends on i and j, we must use the central limit theorem of de Jong (1987) for generalized

quadratic forms rather than Hall (1984) to �nd the asymptotic distribution of I�2n. From his Proposition

3.2, we know I�2n=vnjFn ! N (0; 1) in probability as long as

G�I =
X
i

X
j>i

E�
�
U�4n;ij

�
= op

�
v4n
�
;

G�II =
X
i

X
j>i

X
l>j>i

E�
�
U�2n;ijU

�2
n;il + U

�2
n;jiU

�2
n;jl + U

�2
n;liU

�2
n;lj

�
= op

�
v4n
�
;

G�IV =
X
i

X
j>i

X
k>j>i

X
l>k>j>i

E�
�
U�n;ijU

�
n;ikU

�
n;ljU

�
n;lk + U

�
n;ijU

�
n;ilU

�
n;kjU

�
n;kl + U

�
n;ikU

�
n;ilU

�
n;jkU

�
n;jl

�
= op

�
v4n
�
:
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It is straightforward to show that

G�I = Op

��
n2h

��1�
; G�II = Op(n

�1); G�IV = Op(h);

so the result follows by v4n = Op(1). Next, it is easy to check that E
� �v�2n � = v2n + op(1), and V ar� �v�2n � =

op(1). Thus I�2n=v
�
njFn ! N (0; 1) in probability.

Proof of Theorem 4. We assume m+(�) and m�(�) are estimated by local constant estimators since by

Fan and Gijbels (1996), the p-th order local polynomial estimator is asymptotically equivalent to the local

constant estimator with a (p+1)-th order boundary kernel. More importantly, the contribution made to the

local polynomial �t by terms of degree j is of order O(hj), so the local constant has the dominating e¤ect.

Proposition 8 proves b� is consistent, and Proposition 9 proves b� � �0 = Op
�
n�1

�
. Now, we show

n (b� � �0) has the asymptotic distribution as stated in the theorem by applying the argmax continuous

mapping theorem. To achieve this goal, we �rst analyze the localized objective function:

nh
�b�2(�0 + v

n
)� b�2(�0)� = �b���0 + v

n

�
+ b�(�0)�nh�b�(�0 + v

n
)� b�(�0)� :

Since
�b�(�0 + v

n ) + b�(�0)� p�! 2��0 , we need only analyze nh
�b�(�0 + v

n )� b�(�0)�. Proposition 10 shows
that for v on any compact set in R,

nh
�b�(�0 + v

n
)� b�(�0)� (17)

= � k (0)
f(�0)

Xn

j=1

n
(��0 � 2"j) 1

�
�0 +

v

n
� xj < �0

�
+ (��0 + 2"j) 1

�
�0 � xj < �0 +

v

n

�o
+ op(1);

so

nh
�b�2(�0 + v

n
)� b�2(�0)�

= �C
Xn

j=1

n�
�2�0 � 2��0"j

�
1
�
�0 +

v

n
� xj < �0

�
+
�
�2�0 + 2��0"j

�
1
�
�0 � xj < �0 +

v

n

�o
+ op(1);

where C = 2k (0) =f(�0). Now, by a straightforward application of the proof idea of Theorem 1 and 2 in Yu

(2012), we can get the asymptotic distribution of b�. The only di¤erence here is that nh�b�2(�0 + v
n )� b�2(�0)�

is a caglad instead of cadlag process. Note also that "�i in Theorem 1 of Yu (2012) is de�ned as the limiting

conditional distribution of "i given �0 +� � xi < �0, � < 0 with � " 0, and "+i is de�ned as the limiting
conditional distribution of "i given �0 � xi < �0 +�, � > 0 with � # 0. Given Assumption E, "�i has the
conditional density f("jx = �0�), and "+i has the conditional density f("jx = �0+):
Proof of Theorem 5. As argued in Theorem 4, we need only prove the result for the local constant

estimator. Since b� � �0 = Op
�
n�1

�
, b� will fall into ��0 � C

n ; �0 +
C
n

�
for some positive C with any large

probability when n is large enough. Combining this fact and (17), we need only show that

sup
v2(�C;C)

Xn

j=1

n
(��0 � 2"j) 1

�
�0 +

v

n
� xj < �0

�
+ (��0 + 2"j) 1

�
�0 � xj < �0 +

v

n

�o
= Op(1);

for any C > 0 because nh!1. Due to the similarity between v < 0 and v > 0, we need only show

sup
v2(0;C)

Xn

j=1
(��0 + 2"j) 1

�
�0 � xj < �0 +

v

n

�
= Op(1):
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First,

sup
v2(0;C)

Xn

j=1
��01

�
�0 � xj < �0 +

v

n

�
= Op(1);

because sup
v2(0;C)

Pn
j=1 1

�
�0 � xj < �0 + v

n

�
is no larger than

Pn
j=1 1

�
�0 � xj < �0 + C

n

�
which is Op(1) by

Assumption F. Second,

sup
v2(0;C)

Xn

j=1
"j1
�
�0 � xj < �0 +

v

n

�
= Op(1):

This is because
�
1
�
�0 � xj < �0 + v

n

�
; v 2 (0; C)

	
is a VC-class with envelope 1

�
�0 � xj < �0 + C

n

�
, and

so

E

"����� supv2(0;C)

Xn

j=1
"j1
�
�0 � xj < �0 +

v

n

������
#
�
p
nC 0

s
E

�
"2j1

�
�0 � xj < �0 +

C

n

��
= O (1) ;

where the inequality is from, e.g., Theorem 2.14.2 of Van der Vaart and Wellner (1996), C 0 is some positive

constant, and the equality is from Assumption E and F. As to the asymptotic independence between b� andb��, see the proof of Theorem 1 and 2 in Yu (2012) where the characteristic function is used to show this

result.

Proof of Corollary 1. Take b�2 as an example. Following the proof of Proposition 8 and 9, it is easy to
see that b�1� �10 = Op �n�1�. Because nh!1, �10 will stay in the h neighborhood of b�1 w.p.a.1. Because
we exclude a 2h neighborhood of b�1, w.p.a.1., the estimation of �2 and ��2 will not use any data in the h
neighborhood of b�1. As a result, b�2 and b��2 are asymptotically independent of b�1 and b��1 . The asymptotic
independence between b�2 and b��2 can be similarly shown as in Theorem 5.

Appendix C: Propositions

When we evaluate the order of some terms, if there is no confusion, we will use n, (n � 1), and (n � 2)
interchangeably. By Lemma 3, we can assume f (�) = 1 on �� throughout the following proof, so f(�) is
depressed unless necessary. WLOG, suppose M = 1, and the constant L inM� (L; s) is 1.

Proposition 1 I1n is oPm (1) uniformly in m under H0, and is Op
�
nh1=2b3

�
under H(1)

1 and Op
�
nh1=2b

�
under H(2)

1 .

Proof. Because k(�) is nonnegative and symmetric,

I1n =
nh1=2

n (n� 1)
X
i

X
j 6=i

1�i 1
�
j (mi � bmi) (mj � bmj)Kh;ij

� nh1=2

2n (n� 1)
X
i

X
j 6=i

n
1�i [(mi � bmi)]

2
+ 1�j [(mj � bmj)]

2
o
Kh;ij

=
nh1=2

n (n� 1)
X
i

X
j 6=i

1�i [(mi � bmi)]
2
Kh;ij = h

1=2
X
i

1�i [(mi � bmi)]
2 efi

� h1=2
�
sup
xi2�

efi�X
i

1�i [(mi � bmi)]
2
;

where efi = 1
n�1

P
j 6=i
Kh;ij , sup

xi2�
efi = Op(1) is a well-known result, andP

i

1�i [(mi � bmi)]
2 isOp

�
n(b2� + (nb)

�1
)
�

underH(1)
0 and isOp

�
n(b2� + b3 + (nb)

�1
)
�
underH(2)

0 as shown in Lemma 1. So I1n � h1=2Op(1)Op
�
n
�
b2� + (nb)

�1
��
=

8



Op
�
nh1=2b2� + h1=2=b

�
= op(1) under Assumption B(a), and I1n � h1=2Op(1)Op

�
n
�
b2� + b3 + (nb)

�1
��
=

Op
�
nh1=2

�
b2� + b3

�
+ h1=2=b

�
= op(1) under Assumption B(b).

Under H1, bf�1i = f�1i + op(1) uniformly over xi 2 �, so

I1n =
nh1=2

n (n� 1)
X
i

X
j 6=i

1�i 1
�
j (mi � bmi) bfi (mj � bmj) bfjKh;ij

� bf�1i bf�1j �
� nh1=2

n (n� 1)3
X
i

X
j 6=i

X
l 6=i

X
k 6=j

1�i (mi �ml)Lb;il1
�
j (mj �mk)Lb;jkKh;ijf

�1
i f�1j :

It can be shown that the case where i; j; l; k are all di¤erent from each other dominates, so

I1n � Op(nh1=2E
�
1�1 (m1 �m2)Lb;121

�
3 (m3 �m4)Lb;34Kh;13f

�1
1 f�13

�
):

Because h=b! 0, we can treat x1 = x3. Speci�cally,

E
�
1�1 (m1 �m2)Lb;121

�
3 (m3 �m4)Lb;34Kh;13f

�1
1 f�13

�
= E

�
1�1 (m1 �m2)Lb;12f

�1
1

Z
1 (x1 + uh 2 �) (m(x1 + uh)�m4)

1

b
l

�
x1 + uh� x4

b

�
k(u)du

�
� E

�
1�1 (m1 �m2)Lb;12 (m1 �m4)Lb;14f

�1
1

�
= E

n
1�1 f

�1
1 fE1 [(m1 �m2)Lb;12]g2

o
=

Z �

�

�Z
(m(x1)�m(x2))

1

b
l

�
x2 � x1
b

�
f(x2)dx2

�2
dx1

� O
�
b2�
�
+

Z �+b

��b

�Z 1

�1
(m(x1)�m(x1 + ub)) l (u) f(x1 + ub)du

�2
dx1

� O
�
b2�
�
+ f2(�)

Z �+b

��b

"Z 1

��x1
b

(m(x1)�m(x1 + ub)) l (u) du+
Z ��x1

b

�1
(m(x1)�m(x1 + ub)) l (u) du

#2
dx1

Under H(1)
1 ,

Z �+b

��b

"Z 1

��x1
b

(m(x1)�m(x1 + ub)) l (u) du+
Z ��x1

b

�1
(m(x1)�m(x1 + ub)) l (u) du

#2
dx1

=

Z �+b

�

"Z 1

��x1
b

(m(x1)�m(x1 + ub)) l (u) du+
Z ��x1

b

�1
(m(x1)�m(x1 + ub)) l (u) du

#2
dx1

+

Z �

��b

"Z 1

��x1
b

(m(x1)�m(x1 + ub)) l (u) du+
Z ��x1

b

�1
(m(x1)�m(x1 + ub)) l (u) du

#2
dx1

= b

Z 1

0

�Z 1

�v
[m(� + vb)�m(� + (v + u) b)] l (u) du+

Z �v

�1
[m(� + vb)�m(� + (v + u) b)] l (u) du

�2
dv

+b

Z 1

0

�Z 1

v

[m(� � vb)�m(� + (u� v) b)] l (u) du+
Z v

�1
[m(� � vb)�m(� + (u� v) b)] l (u) du

�2
dv

= b3
Z 1

0

�
�
Z 1

�v
m0
+(�)ul (u) du+

Z �v

�1

�
m0
+(�)v �m0

�(�)(v + u)
�
l (u) du

�2
dv

+b3
Z 1

0

�Z 1

v

�
�m0

�(�)v �m0
+(�) (u� v)

�
l (u) du�m0

�(�)

Z v

�1
ul (u) du

�2
dv

9



= b3
Z 1

0

�
�
�
m0
+(�)�m0

�(�)
� Z 1

v

ul (u) du+
�
m0
+(�)�m0

�(�)
�
v

Z 1

v

l (u) du

�2
dv

+b3
Z 1

0

��
m0
+(�)�m0

�(�)
�
v

Z 1

v

l (u) du�
�
m0
+(�)�m0

�(�)
� Z 1

v

ul (u) du

�2
dv

= 2
�
m0
+(�)�m0

�(�)
�2
b3
Z 1

0

�
v

Z 1

v

l (u) du�
Z 1

v

ul (u) du

�2
dv:

Under H(2)
1 ,

Z �+b

��b

"Z 1

��x1
b

(m(x1)�m(x1 + ub)) l (u) du+
Z ��x1

b

�1
(m(x1)�m(x1 + ub)) l (u) du

#2
dx1

�
Z �+b

�

"
�
Z 1

��x1
b

m0
+(�)ubl(u)du+

Z ��x1
b

�1
(�� + Cub) l(u)du

#2
dx1

+

Z �

��b

"Z 1

��x1
b

(��� + Cub) l(u)du�
Z ��x1

b

�1
m0
�(�)ubl(u)du

#2
dx1

� b�2�

"Z 1

0

�Z �v

�1
l(u)du

�2
dv +

Z 1

0

�Z 1

v

l(u)du

�2
dv

#
= 2b�2�

Z 1

0

�Z 1

v

l(u)du

�2
dv:

The result follows.

Proposition 2 I2n
d�! N (0;�).

Proof.

I2n =
nh1=2

n (n� 1)
X
i

X
j 6=i

1�i 1
�
j "i"jKh;ij

� nh1=2

n (n� 1)
X
i

X
j 6=i

Hn(zi; zj) � nh1=2Un;

where Un is a second order degenerate U-statistic with kernel function Hn. We can apply theorem 1 of Hall

(1984) to �nd its asymptotic distribution. Two conditions should be checked: (i) E[H2
n(z1; z2)] <1; (ii)

E
�
G2n(z1; z2)

�
+ n�1E[H4

n(z1; z2)]

E2[H2
n(z1; z2)]

! 0 as n!1;

where Gn(z1; z2) = E[Hn(z3; z1)Hn(z3; z2)jz1; z2]. This checking is very similar to that in lemma 3.3a of
Zheng (1996), so omitted here. The conclusion is that

nUn=
p
2E[H2

n(z1; z2)]
d�! N(0; 1):

10



It is easy to check that

E[H2
n(z1; z2)] = E

�
1�1 1

�
2K

2
h;12E["

2
1"
2
2jx1; x2]

�
=

Z �

�

Z �

�

1

h2
k2
�
x1 � x2
h

�
�2(x1)�

2(x2)f(x1)f(x2)dx1dx2

=

Z �

�

Z x��
h

x��
h

1

h
k2 (u)�2(x)�2(x� hu)f(x)f(x� hu)dudx

=
1

h

Z
k2 (u) du

Z �

�

�4(x)f2(x)dx+ o

�
1

h

�
� 1

h

�

2
;

so the result follows.

Proposition 3 I3n = op(1).

Proof.

I3n =
nh1=2

n (n� 1)
X
i

X
j 6=i

1�i 1
�
j b"ib"jKh;ij �

nh1=2

2n (n� 1)
X
i

X
j 6=i

n
1�i b"2i + 1�j b"2joKh;ij

=
nh1=2

n (n� 1)
X
i

X
j 6=i

1�i b"2iKh;ij = h
1=2
X
i

1�i b"2i efi � h1=2� sup
xi2�

efi�X
i

1�i b"2i
= h1=2Op(1)Op

�
b�1
�
= op(1);

where
P
i

1�i b"2i = Op �b�1� is shown in Lemma 2.
Proposition 4 I4n is oPm (1) uniformly in m under H0, and is op (I1n) under H1.

Proof.

I4n =
nh1=2

n (n� 1)
X
i

X
j 6=i

1�i 1
�
j "i (mj � bmj) bfjKh;ij

bf�1j
� nh1=2

n (n� 1)
X
i

X
j 6=i

X
k 6=j

1�i 1
�
j "i (mj �mk)Lb;jkKh;ij ;

because sup
xj2�

bf�1j = Op(1). Note that E [I4n] = 0 and we need only calculate the second moment of I4n. By

a similar tedious analysis as in Proposition A.4 of Fan and Li (1996), we can show

E
�
I24n
�
=

(
O(nhb2�);

O(nh
�
b2� + b3

�
);

under H(1)
0 ;

under H(2)
0 ;

which is o(1) under Assumption B(a) and B(b), respectively.

Under H1, we can show

E
�
I24n
�
=

(
O(nh

�
b2� + b3

�
);

O(nh
�
b2� + b

�
);

under H(1)
1 ;

under H(2)
1 ;

so

I4n =

(
Op(n

1=2h1=2b3=2) = op (I1n) ;

Op
�
n1=2h1=2b1=2

�
= op (I1n) ;

under H(1)
1 ;

under H(2)
1 :
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Proposition 5 I5n is oPm (1) uniformly in m under H0, and is op (I1n) under H1.

Proof. Under H0,

I5n =
nh1=2

n (n� 1)
X
i

X
j 6=i

1�i 1
�
j b"i (mj � bmj)Kh;ij

� nh1=2

2n (n� 1)
X
i

X
j 6=i

h
1�i b"2i + 1�j (mj � bmj)

2
i
Kh;ij

= op(1);

by Propositions 1 and 3. Under H1, a similar analysis as in Proposition 4 can show I5n = op (I1n).

Proposition 6 I6n = op(1).

Proof.

I6n =
nh1=2

n (n� 1)
X
i

X
j 6=i

1�i 1
�
j "ib"jKh;ij =

nh1=2

n (n� 1)
X
i

X
j 6=i

1�i 1
�
j "ib"j bfjKh;ij

bf�1j
=

nh1=2

n (n� 1)
X
i

X
j 6=i

1�i 1
�
j "i

bfib"j bfjKh;ij
bf�1j bf�1i

� nh1=2

n (n� 1)
X
i

X
j 6=i

1�i 1
�
j "i

bfib"j bfjKh;ij ;

because sup
xj2�

bf�1j sup
xi2�

bf�1i = Op(1). By Proposition A.6 of Fan and Li (1996), I6n = op (1); note only that b

(h) plays the same role as aq1 (hd) there.

Proposition 7 v2n = �+ op(1).

Proof. It takes some algebra but is straightforward to show that

h

n(n� 1)
X
i

X
j 6=i

1�i 1
�
j K

2
h;ijbe2i be2j

=
h

n(n� 1)
X
i

X
j 6=i

1�i 1
�
j K

2
h;ij ("i +mi �mi)

2
("j +mj �mj)

2
+ op(1)

= E
h
1�1 ("1 +m1 �m1)

2
f1E1

h
("1 +m1 �m1)

2
ii Z

k2(u)du+ op(1)

= E
�
1�1 "

2
1f1E1

�
"21
�� Z

k2(u)du+ E
h
1�1 (m1 �m1)

2
f1E1

h
(m1 �m1)

2
ii Z

k2(u)du+ op(1)

= E
�
1�x f (x)�

4 (x)
� Z

k2(u)du+ E
h
1�1 (m1 �m1)

4
f1

i Z
k2(u)du+ op(1)

where mi = Ei [bmi], and the second equality is because h=b ! 0 so that we can treat xi = xj for xj in a h

neighborhood of xi. By a similar proof as in Lemma 1, E
h
1�1 (m1 �m1)

4
f1

i
is at most O(b) under H0 and

H1, so the results follow.

Proposition 8 b� � �0 = Op (h) :
12



Proof. We will apply Lemma 4 to prove this result. WLOG, assume ��0 > 0. In this case, � = �; �0 =

�0; �n = �n;Nn = [�0 � h; �0 + h], Qn (�) = �2n(�); bQn (�) = b�2(�), where
�n(�) = m+(�)�m�(�); �n = argmax

�2�
�2n(�);

m+(�) =

R 1
0
k(u)m(� + uh)f(� + uh)duR 1

0
k(u)f(� + uh)du

;m�(�) =

R 0
�1 k(u)m(� + uh)f(� + uh)duR 0

�1 k(u)f(� + uh)du
:

We �rst check condition (iii). If we use the local constant estimator,

bm+(�) =
1
n

Pn
j=1 kh (xj � �) yjdj (�)

1
n

Pn
j=1 kh (xj � �) dj (�)

;

bm�(�) =
1
n

Pn
j=1 kh (xj � �) yj (1� dj (�))

1
n

Pn
j=1 kh (xj � �) (1� dj (�))

:

We can multiply the numerator and denominator by 2 and rede�ne k (�) such that
R 1
0
k(u)du =

R 0
�1 k(u)du =

1. By a similar argument as in Lemma B.1 of Newey (1994), we can show

sup
�2�

���� 1nXn

j=1
kh (xj � �) yjdj (�)�

Z 1

0

k(u)m(� + uh)f(� + uh)du

���� = Op

 r
lnn

nh

!
;

sup
�2�

���� 1nXn

j=1
kh (xj � �) yj (1� dj (�))�

Z 0

�1
k(u)m(� + uh)f(� + uh)du

���� = Op

 r
lnn

nh

!
;

sup
�2�

���� 1nXn

j=1
kh (xj � �) dj (�)�

Z 1

0

k(u)f(� + uh)du

���� = Op

 r
lnn

nh

!
;

sup
�2�

���� 1nXn

j=1
kh (xj � �) (1� dj (�))�

Z 0

�1
k(u)f(� + uh)du

���� = Op

 r
lnn

nh

!
:

So

sup
�2�

���b�2(�)� �2n(�)��� � sup
�2�

jb�(�)� �n(�)j sup
�2�

jb�(�) + �n(�)j = op(1)Op(1) = op(1):
We then check condition (ii). By Assumptions M and F, sup

�2�nNn

jm+(�)�m(�)j = O (h), and sup
�2�nNn

jm�(�)�m(�)j =

O (h), so sup
�2�nNn

jm+(�)�m�(�)j = O (h). On the contrary, for � 2 Nn, WLOG, let � = �0�ah, a 2 (0; 1),

�n(�) =

R 1
0
k(u)m�0(� + uh)f(� + uh)du+ ��0

R 1
a
k(u)f(� + uh)duR 1

0
k(u)f(� + uh)du

�
R 0
�1 k(u)m(� + uh)f(� + uh)duR 0

�1 k(u)f(� + uh)du

= ��0

R 1
a
k(u)f(� + uh)duR 1

0
k(u)f(� + uh)du

+O (h) =

R 1
a
k(u)duR 1

0
k(u)du

��0 +O (h) :

Because k(0) > 0,
R 1
a
k(u)duR 1

0
k(u)du

��0 < ��0 . As a result, �n converges to �0, and there is a �, say
�2�0
2 , such

that sup
�2�nNn

�2n(�) < �
2
n(�n)� �. The proof is complete.

Remark 1 In this proof, the limit objective function �n(�) depends on h and so on n. If its limit �(�) as h
converges to zero is taken as the limit objective function, then it is zero when � 6= �0, and ��0 when � = �0.
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Because b�(�) is a continuous function, the convergence from b�(�) to �(�) cannot be uniform. In this proof,
we swell �(�) to a continuous function �n(�) on Nn to make the convergence uniform.

Proposition 9 b� � �0 = Op �n�1� :
Proof. WLOG, we use the same setup and notations as in the last proposition. For each n, the parameter
space can be partitioned into the "shells" Sj;n =

�
� : 2j�1 < n j� � �0j � 2j

	
with j ranging over the integers.

If n jb� � �0j is larger than 2J for a given integer J , then b� is in one of the shells Sj;n with j � J . In that
case the supremum of the map � 7! b�2(�)� b�2(�0) over this shell is nonnegative by the property of b�.

P
�
n jb� � �0j > 2J�

� P

 
sup

2J<nj���0j�nh

�b�2(�)� b�2(�0)� � 0!+ P (jb� � �0j � h)
�

log2(nh)X
j=J

P

 
sup
Sj;n

b�2(�) � b�2(�0)!+ P (jb� � �0j � h)
�

log2(nh)X
j=J

P

 
sup
Sj;n

b�(�)� b�(�0) > 0!+ log2(nh)X
j=J

P

 
sup
Sj;n

b�(�) + b�(�0) < 0!+ P (jb� � �0j � h)
We show the �rst sum converges to zero, the second is easier because we assume ��0 > 0, and the third

converges to zero by the consistency of b�. First, suppose �0 � h � � < �0; then by the analysis in the last
proposition,

�n(�)� �n(�0)

=

R 1
0
k(u)m�0(� + uh)f(� + uh)du+ ��0

R 1
�0��
h
k(u)f(� + uh)duR 1

0
k(u)f(� + uh)du

�
R 0
�1 k(u)m(� + uh)f(� + uh)duR 0

�1 k(u)f(� + uh)du

�
R 1
0
k(u)m�0(�0 + uh)f(�0 + uh)du+ ��0

R 1
0
k(u)f(�0 + uh)duR 1

0
k(u)f(�0 + uh)du

+

R 0
�1 k(u)m(�0 + uh)f(�0 + uh)duR 0

�1 k(u)f(�0 + uh)du

= ���0

R �0��
h

0
k(u)f(� + uh)duR 1

0
k(u)f(� + uh)du

+O (� � �0)

� �C j� � �0j =h;

where the last inequality is because k(0) > 0. This result holds when �0 < � � �0+h by a similar argument.
For � � h,

P

 
sup

j���0j<�
b�(�)� b�(�0) > 0!

� P

 
sup

j���0j<�
[(b�(�)� �n(�))� (b�(�0)� �n(�0))] > C j� � �0j =h! ;
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so we need to analyze the process (b�(�)� �n(�))� (b�(�0)� �n(�0)), where �n(�)��n(�0) is the centering
process of b�(�)� b�(�0). Second, for j� � �0j � h, WLOG, suppose �0 < � � �0 + h,

b�(�)� b�(�0)� (�n(�)� �n(�0))
= bm+(�)� bm�(�)� (bm+(�0)� bm�(�0))� (�n(�)� �n(�0))

=
1
n

Pn
j=1 kh (xj � �) yjdj (�)

1
n

Pn
j=1 kh (xj � �) dj (�)

�
1
n

Pn
j=1 kh (xj � �) yj (1� dj (�))

1
n

Pn
j=1 kh (xj � �) (1� dj (�))

�
 

1
n

Pn
j=1 kh (xj � �0) yjdj (�0)

1
n

Pn
j=1 kh (xj � �0) dj (�0)

�
1
n

Pn
j=1 kh (xj � �0) yj (1� dj (�0))

1
n

Pn
j=1 kh (xj � �0) (1� dj (�0))

!
� (�n(�)� �n(�0))

=
1
n

Pn
j=1 kh (xj � �) (m�0(xj) + ��0) dj (�)

1
n

Pn
j=1 kh (xj � �) dj (�)

�
1
n

Pn
j=1 kh (xj � �)m(xj) (1� dj (�))
1
n

Pn
j=1 kh (xj � �) (1� dj (�))

�
��0
n

Pn
j=1 kh (xj � �) 1 (�0 � xj < �)

1
n

Pn
j=1 kh (xj � �) (1� dj (�))

�
 

1
n

Pn
j=1 kh (xj � �0) (m�0(xj) + ��0) dj (�0)

1
n

Pn
j=1 kh (xj � �0) dj (�0)

�
1
n

Pn
j=1 kh (xj � �0)m(xj) (1� dj (�0))
1
n

Pn
j=1 kh (xj � �0) (1� dj (�0))

!
� (�n(�)� �n(�0))

+
1
n

Pn
j=1 kh (xj � �) "jdj (�)

1
n

Pn
j=1 kh (xj � �) dj (�)

�
1
n

Pn
j=1 kh (xj � �) "j (1� dj (�))

1
n

Pn
j=1 kh (xj � �) (1� dj (�))

�
 

1
n

Pn
j=1 kh (xj � �0) "jdj (�0)

1
n

Pn
j=1 kh (xj � �0) dj (�0)

�
1
n

Pn
j=1 kh (xj � �0) "j (1� dj (�0))

1
n

Pn
j=1 kh (xj � �0) (1� dj (�0))

!

= op

�
j� � �0j
h

�
+ f(�0)

�1
��
1

n

Xn

j=1
kh (xj � �) "jdj (�)�

1

n

Xn

j=1
kh (xj � �) "j (1� dj (�))

�
�
�
1

n

Xn

j=1
kh (xj � �0) "jdj (�0)�

1

n

Xn

j=1
kh (xj � �0) "j (1� dj (�0))

��
;

where the last equality is from a tedious but straightforward analysis. Note that

1

n

Xn

j=1
kh (xj � �) "jdj (�)�

1

n

Xn

j=1
kh (xj � �0) "jdj (�0)

�
�
1

n

Xn

j=1
kh (xj � �) "j (1� dj (�))�

1

n

Xn

j=1
kh (xj � �0) "j (1� dj (�0))

�
=

1

n

Xn

j=1
(kh (xj � �)� kh (xj � �0)) "jdj (�)�

�
1

n

Xn

j=1
(kh (xj � �)� kh (xj � �0)) "j (1� dj (�0))

�
� 1
n

Xn

j=1
(kh (xj � �) + kh (xj � �0)) "j1 (�0 � xj < �) :
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Since the three terms in the last equality are independent, the variance is bounded by

1

(nh)
2

Xn

j=1
E

"�
k

�
xj � �
h

�
� k

�
xj � �0
h

��2
"2j1 (� � xj � � + h)

#

+
1

(nh)
2

Xn

j=1
E

"�
k

�
xj � �
h

�
� k

�
xj � �0
h

��2
"2j1 (�0 � h � xj < �0)

#

+
1

(nh)
2

Xn

j=1
E

"�
k

�
xj � �
h

�
+ k

�
xj � �0
h

��2
"2j1 (�0 � xj < �)

#

� C

(nh)
2

"
nh
(� � �0)2

h2
+ nh

(� � �0)2

h2
+ n j� � �0j

#
� Cn j� � �0j

(nh)
2

uniformly for j� � �0j � h. In consequence,

P

 
sup

j���0j<�
b�(�)� b�(�0) > 0!

� C E

24 sup
j���0j<�

[(b�(�)� �n(�))� (b�(�0)� �n(�0))]!2
35, (� � �0)2

h2

� C
n j� � �0j
(nh)

2

,
(� � �0)2

h2
� C

n j� � �0j

by Markov�s inequality. So

log2(nh)X
j=J

P

 
sup
Sj;n

b�(�)� b�(�0) > 0!

�
X
j�J

C

n � 2j=n = C
X
j�J

2�j ! 0

as J !1. The proof is complete.

Remark 2 This proof extends Theorem 3.2.5 of Van der Vaart and Wellner (1996) by concentrating on a

h neighborhood of �0. The key point here is that the centering process �n(�) � �n(�0) is not di¤erentiable
at �0 such that �0 is easier to identify than in the regular case as shown intuitively in Section 4.2.

Proposition 10 For v in any compact set of R,

nh
�b���0 + v

n

�
� b�(�0)�

= � k (0)
f(�0)

Xn

j=1

n
(��0 � 2"j) 1

�
�0 +

v

n
� xj < �0

�
+ (��0 + 2"j) 1

�
�0 � xj < �0 +

v

n

�o
+ op(1):
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Proof. Let � = �0 + v
n , v > 0; then

nh (b�(�)� b�(�0))
=

Pn
j=1 k

�
xj��
h

�
yjdj (�)

1
nh

Pn
j=1 k

�
xj��
h

�
dj (�)

�

Pn
j=1 k

�
xj��
h

�
yj (1� dj (�))

1
nh

Pn
j=1 k

�
xj��
h

�
(1� dj (�))

�

0@ Pn
j=1 k

�
xj��0
h

�
yjdj (�0)

1
nh

Pn
j=1 k

�
xj��0
h

�
dj (�0)

�

Pn
j=1 k

�
xj��0
h

�
yj (1� dj (�0))

1
nh

Pn
j=1 k

�
xj��0
h

�
(1� dj (�0))

1A
= 1

��
1

nh

Xn

j=1
k

�
xj � �
h

�
dj (�) �

1

nh

Xn

j=1
k

�
xj � �0
h

�
dj (�0)

�
�
�
1

nh

Xn

j=1
k

�
xj � �0
h

�
dj (�0)

Xn

j=1
k

�
xj � �
h

�
(m�0(xj) + ��0 + "j) dj (�)

� 1

nh

Xn

j=1
k

�
xj � �
h

�
dj (�)

Xn

j=1
k

�
xj � �0
h

�
(m�0(xj) + ��0 + "j) dj (�0)

�
+1

��
1

nh

Xn

j=1
k

�
xj � �
h

�
(1� dj (�)) �

1

nh

Xn

j=1
k

�
xj � �0
h

�
(1� dj (�0))

�
�
�
1

nh

Xn

j=1
k

�
xj � �
h

�
(1� dj (�))

Xn

j=1
k

�
xj � �0
h

�
(m(xj) + "j) (1� dj (�0))

� 1

nh

Xn

j=1
k

�
xj � �0
h

�
(1� dj (�0))

Xn

j=1
k

�
xj � �
h

�
(m(xj) + "j) (1� dj (�0))

�

�
1
nh

Pn
j=1 k

�
xj��0
h

�
(1� dj (�0))

Pn
j=1 k

�
xj��
h

�
(m�0(xj) + ��0 + "j) 1 (�0 � xj < �)

1
nh

Pn
j=1 k

�
xj��
h

�
(1� dj (�)) � 1

nh

Pn
j=1 k

�
xj��0
h

�
(1� dj (�0))

;

� T1 + T2 � T3:

Let�s analyze each term in turn. First,

T1 =

1
nh

nP
j=1

k
�
xj��0
h

�
dj (�0)

nP
j=1

k
�
xj��
h

�
m�0(xj)dj (�)� 1

nh

nP
j=1

k
�
xj��
h

�
dj (�)

nP
j=1

k
�
xj��0
h

�
m�0(xj)dj (�0)

1
nh

Pn
j=1 k

�
xj��
h

�
dj (�) � 1

nh

Pn
j=1 k

�
xj��0
h

�
dj (�0)

+

1
nh

nP
j=1

k
�
xj��0
h

�
dj (�0)

nP
j=1

k
�
xj��
h

�
dj (�) "j � 1

nh

nP
j=1

k
�
xj��
h

�
dj (�)

nP
j=1

k
�
xj��0
h

�
dj (�0) "j

1
nh

Pn
j=1 k

�
xj��
h

�
dj (�) � 1

nh

Pn
j=1 k

�
xj��0
h

�
dj (�0)

= 1

��
1

nh

Xn

j=1
k

�
xj � �
h

�
dj (�) �

1

nh

Xn

j=1
k

�
xj � �0
h

�
dj (�0)

�
�
�
1

nh

Xn

j=1
k

�
xj � �0
h

�
dj (�0)

Xn

j=1

�
k

�
xj � �
h

�
� k

�
xj � �0
h

��
(m�0(xj)�m�0(�0)) dj (�)

�
Xn

j=1

�
k

�
xj � �
h

�
� k

�
xj � �0
h

��
dj (�0)

1

nh

Xn

j=1
k

�
xj � �0
h

�
(m�0(xj)�m�0(�0)) dj (�0)

+
Xn

j=1
k

�
xj � �
h

�
1 (�0 � xj < �)

1

nh

Xn

j=1
k

�
xj � �0
h

�
(m�0(xj)�m�0(�0)) dj (�0)
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� 1

nh

Xn

j=1
k

�
xj � �0
h

�
dj (�0)

Xn

j=1
k

�
xj � �0
h

�
(m�0(xj)�m�0(�0)) 1 (�0 � xj < �)

�
+1

��
1

nh

Xn

j=1
k

�
xj � �
h

�
dj (�) �

1

nh

Xn

j=1
k

�
xj � �0
h

�
dj (�0)

�
�
�
1

nh

Xn

j=1
k

�
xj � �0
h

�
dj (�0)

Xn

j=1

�
k

�
xj � �
h

�
� k

�
xj � �0
h

��
dj (�0) "j

�
Xn

j=1

�
k

�
xj � �
h

�
� k

�
xj � �0
h

��
dj (�0)

1

nh

Xn

j=1
k

�
xj � �0
h

�
dj (�0) "j

+
Xn

j=1
k

�
xj � �
h

�
1 (�0 � xj < �)

1

nh

Xn

j=1
k

�
xj � �0
h

�
dj (�0) "j

� 1

nh

Xn

j=1
k

�
xj � �0
h

�
dj (�0)

Xn

j=1
k

�
xj � �
h

�
1 (�0 � xj < �) "j

�
� T11 + T12:

By the Lipschitz continuity of m�0 (�) and k (�), T11 = op(1). It is easy to show the �rst three terms of T12
are op(1), but the last term of T12 is Op(1). Second,

T2 � T3 = 1
��

1

nh

Xn

j=1
k

�
xj � �
h

�
(1� dj (�)) �

1

nh

Xn

j=1
k

�
xj � �0
h

�
(1� dj (�0))

�
�
�
1

nh

Xn

j=1
k

�
xj � �
h

�
(1� dj (�))

Xn

j=1
k

�
xj � �0
h

�
m�0(xj) (1� dj (�0))

� 1

nh

Xn

j=1
k

�
xj � �0
h

�
(1� dj (�0))

Xn

j=1
k

�
xj � �
h

�
m�0(xj) (1� dj (�))

�
+1

��
1

nh

Xn

j=1
k

�
xj � �
h

�
(1� dj (�)) �

1

nh

Xn

j=1
k

�
xj � �0
h

�
(1� dj (�0))

�
�
1

nh

Xn

j=1
k

�
xj � �
h

�
(1� dj (�))

Xn

j=1
k

�
xj � �0
h

�
(1� dj (�0)) "j

� 1

nh

Xn

j=1
k

�
xj � �0
h

�
(1� dj (�0))

Xn

j=1
k

�
xj � �
h

�
(1� dj (�0)) "j

�

�
1
nh

Pn
j=1 k

�
xj��0
h

�
(1� dj (�0))

Pn
j=1 k

�
xj��
h

�
(��0 + "j) 1 (�0 � xj < �)

1
nh

Pn
j=1 k

�
xj��
h

�
(1� dj (�)) � 1

nh

Pn
j=1 k

�
xj��0
h

�
(1� dj (�0))

:

By a similar analysis as T1, we can show the �rst two terms of T2 � T3 are op(1), but the last term is Op(1).

In summary, when � = �0 + v
n , v > 0,

nh (b�(�)� b�(�0))
= �

Pn
j=1 k

�
xj��
h

�
1 (�0 � xj < �) "j

1
nh

Pn
j=1 k

�
xj��
h

�
dj (�)

�

Pn
j=1 k

�
xj��
h

�
(��0 + "j) 1 (�0 � xj < �)

1
nh

Pn
j=1 k

�
xj��
h

�
(1� dj (�))

+ op(1)

= � k (0)
f(�0)

Xn

j=1
(��0 + 2"j) 1 (�0 � xj < �) + op(1):

Similarly, when v < 0,

nh (b�(�)� b�(�0)) = � k (0)
f(�0)

Xn

j=1
(��0 � 2"j) 1 (�0 � xj < �)
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Appendix D: Lemmas

Lemma 1 1
n

P
i

1�i [(mi � bmi)]
2 is Op

�
b2� + (nb)

�1
�
under H(1)

0 and is Op
�
b2� + b3 + (nb)

�1
�
under H(2)

0

.

Proof. Because H(2)
0 covers H(1)

0 , we need only prove the result under H(2)
0 .

1

n

X
i

1�i [(mi � bmi)]
2
=

1

n

X
i

1�i

h
(mi � bmi) bfii2 bf�2i

�
�
sup
xi2�

bf�1i �2
1

n

X
i

1�i

h
(mi � bmi) bfii2 � 1

n

X
i

1�i

h
(mi � bmi) bfii2

because sup
xi2�

bf�1i = Op(1), which is a standard result. By identity of distribution,

E

(
1

n

X
i

1�i

h
(mi � bmi) bfii2) = 1

n

X
i

E

2641�i
0@ 1

n� 1
X
j 6=i

(mi �mj)Lb;ij

1A2
375 = 1

(n� 1)2
E
�
1�1 T

2
�
;

where T =
P
i 6=1
ti, ti = (m1 �mi)Lb;1i. Note that E

�
1�1 T

2
�
� 2E

8<:1�1
"P
i 6=1
(ti � t)

#29=; + 2n2E
�
1�1 t

2
�
,

where t = E1 [ti]. Conditional on x1, the ti � t are independent with mean 0, so E

8<:1�1
"P
i 6=1
(ti � t)

#29=; =

(n� 1)E
n
1�1 E1

h
(ti � t)2

io
. It remains to bound E

�
1�1 t

2
�
and E

n
1�1 E1

h
(ti � t)2

io
.

First, analyze t. For x1 =2 [� � b; � + b],

jtj = jE [(m(x2)�m(x1))Lb;21jx1]j

=

����Z (m(x2)�m(x1)) f(x2)
1

b
l

�
x2 � x1
b

�
dx2

����
=

����Z (Qm (x2; x1) +Rm (x2; x1)) (f(x1) +Qf (x2; x1) +Rf (x2; x1))
1

b
l

�
x2 � x1
b

�
dx2

���� ;
where Qm (x2; x1) is [s]th-order Taylor expansion of m(x2) at m(x1), Rm (x2; x1) is the remainder term,

Qf (x2; x1) is [�]th-order Taylor expansion of f(x2) at f(x1), and Rf (x2; x1) is the remainder term. From

Assumption K,
R
Qm (x2; x1) (f(x1) +Qf (x2; x1))

1
b l
�
x2�x1
b

�
dx2 = 0, so jE [(m(x2)�m(x1))Lb;21jx1]j is

bounded by����Z Rm (x2; x1) f(x1)
1

b
l

�
x2 � x1
b

�
dx2

����+ ����Z (m(x2)�m(x1))Rf (x2; x1)
1

b
l

�
x2 � x1
b

�
dx2

����
� Cbs + Cb�+1 � Cb�;
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where � = min (�+ 1; s). When x1 2 [� � b; � + b], WLOG, assume x1 � �; then

jE [(m(x2)�m(x1))Lb;21jx1]j

=

����Z �

x1�b
(m(x2)�m(x1)) f(x2)

1

b
l

�
x2 � x1
b

�
dx2

����
+

�����
Z x1+b

�

(m(x2)�m(�) +m(�)�m(x1)) f(x2)
1

b
l

�
x2 � x1
b

�
dx2

�����
� Cb:

So E
�
t2
�
� C

�
b2� + b3

�
. Second, it is easy to show

E
n
1�1 E1

h
(ti � t)2

io
= O

�
b�1
�

by the boundedness of m (�) and l (�). Combining the analysis above, the result follows.

Lemma 2 1
n

P
i

1�i b"2i = Op �(nb)�1� :
Proof. 1

n

P
i

1�i b"2i = 1
n

P
i

1�i b"2i bf2i = bf2i � sup
xi2�

bf�2i 1
n

P
i

1�i b"2i bf2i � 1
n

P
i

1�i b"2i bf2i . Note that

E

(
1

n

X
i

1�i b"2i bf2i
)
=
1

n

X
i

E

2641�i
0@ 1

n� 1
X
j 6=i

"jLb;ij

1A2
375 = 1

(n� 1)2
E
�
1�1 T

2
�
;

where T =
P
i 6=1
ti, ti = "iLb;1i. Because E ["1jx1; � � � ; xn] = 0,

E
�
1�1 T

2
�
= (n� 1)E

�
1�1 L

2
b;1iE

�
"2i jxi

��
= (n� 1)E

�
1�1 L

2
b;1i�

2(xi)
�
= O ((n� 1) =b) ;

and the result is proved.

Lemma 3 Suppose f(x) satis�es Assumption F; then

f infem(�)2C(L;s)
Z �

�

(m(x)� em(x))2 dx � infem(�)2C(L;s)E
h
(m(x)� em(x))2 1�x i

� f infem(�)2C(L;s)
Z �

�

(m(x)� em(x))2 dx
for any m(x) 2M� (L; s).

Proof. Suppose
m(�) = arg infem(�)2C(L;s)E

h
(m(x)� em(x))2 1�x i ;

and

m(�) = arg infem(�)2C(L;s)
Z �

�

(m(x)� em(x))2 dx;
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then

infem(�)2C(L;s)E
h
(m(x)� em(x))2 1�x i = E h(m(x)�m(x))2 1�x i � E h�m(x)�m(x)�2 1�x i

=

Z �

�

�
m(x)�m(x)

�2
f(x)dx � f

Z �

�

�
m(x)�m(x)

�2
dx = f infem(�)2C(L;s)

Z �

�

(m(x)� em(x))2 dx:
Similarly,

infem(�)2C(L;s)
Z �

�

(m(x)� em(x))2 dx = Z �

�

�
m(x)�m(x)

�2
dx �

Z �

�

(m(x)�m(x))2 dx

�
Z �

�

(m(x)�m(x))2 f(x)
f
dx =

1

f

Z �

�

(m(x)�m(x))2 f(x)dx = 1

f
infem(�)2C(L;s)E

h
(m(x)� em(x))2 1�x i :

The following lemma is an extension of Theorem 2.1 of Newey and McFadden (1994).

Lemma 4 If there is a deterministic function Qn (�) which depends on n such that (i) Qn (�) is minimized
at �n which converges to a �xed point �0; (ii) for an open subset Nn containing �n, there exists a �xed positive
number � such that sup

�2�nNn

Qn (�) < Qn (�n) � � for n large enough; (iii) sup
�2�

��� bQn (�)�Qn (�)��� p�! 0, then

P
�b� 2 Nn�! 1.

Proof. For any " > 0 we have w.p.a.1 (a) bQn �b�� > bQn (�n) � "=3 by the fact that b� is the maximizer ofbQn (�); (b) Qn �b�� > bQn �b��� "=3 by (iii); (c) bQn (�n) > Qn (�n)� "=3 by (iii). Therefor, w.p.a.1,
Qn

�b�� (b)
> bQn �b��� "=3 (a)> bQn (�n)� 2"=3 (c)> Qn (�n)� ":

Thus, for any " > 0, Qn
�b�� > Qn (�n)�" w.p.a.1. From (ii), sup

�2�nNn

Qn (�) < Qn (�n)�� for n large enough.

Choosing " = � < Qn (�n) � sup
�2�nNn

Qn (�), it follows that w.p.a.1 Qn
�b�� > Qn (�n) � � > sup

�2�nNn

Qn (�),

hence b� 2 Nn.
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