Supplementary Materials: Intuitions and Proofs

Appendix A: Some Intuitions

In this appendix, we will provide some intuitions for some key assumptions and results in the main text.
We will first provide a concrete example to illustrate that f(u|x) may have a cusp at & = 7 when there is
imprecise control on z, and then provide some intuitions for the n-consistency of 7, and finally discuss two

equivalence results on the asymptotic distribution of 7 in Theorem 4.

Illustration of the Nonsmoothness of f(u|z) at x =7

Suppose z is related to U by «(U) = Z + e(U), where Z can be precisely controlled by individuals so its
support is on [, 00), while e is a random error independent of Z. Because individuals exert different efforts
to manage x for x greater than 7 and z less than 7, the density of e is not continuous at e = 0. To be more
specific, suppose m = 0, the density of Z, fz(z), is standard exponential, the density of U, fy(u), is uniform
on [0,1], and e|U has a density as follows
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Then «’s density conditional on U is
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which is continuous but not smooth at z = 0. Consequently, f(u|z) = % has a cusp at z = 0.

The densities f(e), f(e|U), fz(z), f(#|U), f(z) and f(U|z) are shown in Figure [}

n-Consistency of 7

First, we discuss how the convergence rate is determined for a general estimator defined by maximizing an

objective function. Suppose the parameter 6 € © is estimated by
0 = arg max Q. (0) = arg max [Qn(0) — Qn(00)],
where @,,(+) is the objective function. Then because 0 is the maximizer of Qn(0) —Qn(0p) on ©, and Oy € O,

0= Qu(@) = Qu(0) = |Q(0) = Q)| + [ (@n(®) = QO)) = (@u(00) — Q)] .

where the first term on the right-hand side is the limit process and less than zero since 6y = arg max Q(6),
and the second term is the modulus of continuity of the empirical process and greater than zero. We must

I51f U is interpreted as ability in the scholarship example of van der Klaauw (2002), then this density means that a student
with higher ability (smaller U) can exert larger power in managing her score.
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Figure 6: f(e), f(e|U), fz(2), f(z|U), f(x) and f(U|x) When Selection is Present

balance Q(0) — Q(6,) and

gzs:L/(ﬁé) = sup [(Qu(6) — Q(6)) — (Qu(b0) — Q(60))]

10—60|<6

such that their sum is greater than zero.

For a regular parameter u, say, the mean of a random variable, Q(p) is smooth, so for |u — pg| < ¢
Q(p) — Q(py) = O (62). And by the empirical process technique, ¢:f =0, < 7 ) Suppose [ — g =
2
O, (r; 1), and let (%) ~ 7\}, we get 7, = v/n, the usual convergence rate for a regular parameter.
The balancing in estimating 7 is different. Consider a simple model with the fixed design:

yi = al (z; > 7) + &, (13)
where ¢;’s are i.i.d. and follow N(0,1), ; =i/n,i=1,--- ,n, and mg = 1/2. WLOG, suppose « > 0. In
the parametric estimation of 7, T maximizes a () — @ (7g). For |7 — mo| < §, and 7 > 7o,
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s0 ¢, (§) = V0 and Q(7) — Q(mg) = O (0). Similar results hold for 7 < m. Suppose & — 9 = O, (r;}),

n

+n<117ro)> > s = 0(r—m0) +0 (1) 0y ( n(w—m>)=o(a>+op<ﬁ>,
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Figure 7: Balancing Q(0) — Q(6p) and (/)”T(Tf) in the Regular Case and Parametric and Nonparametric Esti-

mation of 7

and let = Y \1%", we get r, = n. In the nonparametric estimation of 7, the scale changes to h. For

=Ty —|— ah with a > 0 small enough,
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Figure E] 111ustrates the intuition above. Roughly speaking, in estimating m, Q(m) — Q(mg) is a non-
smooth function of 7 in the neighborhood of 7y such that my can be identified more easily than . In the

nonparametric case, we use a smaller scale h, and focus on the discussion in a h neighborhood of mg.

Two Equivalence Results

Given the n-consistency of 7, we continue to find the weak limit of the localized objective function. Here, we
need the Lipschitz continuity of k(+), and the uniform kernel above does not work. To simplify the discussion,
let mg be the closest ~ to =. Assume further that both v and nh are positive integers. Then for @ (7) based

on a kernel function k( ),
nh (a (m v %) @ (7r0)>
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Figure [8] shows the effect of k(-) on the five terms. When k() is Lipschitz, all terms except III are op(1).

Especially, & (L) in I and V is close to zero. But if k(-) is uniform, I and V will not disappear. The

n
1—v
nh

summands in IIT correspond to the jumps in D(v). Note that and n’—h are close to zero when ¢ and v are
finite, so the summand in IIT is approximately —k(0) (« 4+ 25mo+i)m Similar results hold for v < 0.

Now, we can state two equivalence results for the asymptotic distribution of 7. To simplify our discussion,
we continue using the model with the fixed design. First, the asymptotic distribution of 7 is the same as
the parametric estimator based on . In other words, although RDDs are nonparametrically formulated,
we can estimate mo as if the model is parametric as long as m(-) is smooth on II\ {mp}. Given that 7 is
n-consistent, only the data in a n~! neighborhood of my (that is, finite data points) are informative to
mo; see the derivation above. Because nh — oo, there are infinite data points in the h neighborhood of
kernel smoothing. Also, the kernel estimator treats m(-) as a constant in any h neighborhood. So the kernel
estimator is smooth enough to identify ¢ as if m(-) were constant in big enough left and right neighborhoods
of my. Following such an argument, it is not surprising that 7wy can be estimated as if in a parametric model.

Second, the asymptotic distribution of 7 is the same as that of the least squares estimator (LSE) in (1)[7]
Recall that the objective function of the LSE is

2

yi — and; () = > _wh (y; — axd; (7)) | (15)

1 j=1
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where w} = s R and Z?:1 w§ (y; — ard; (m)) can be treated as an estimator of mx(z) at x;. This
is exactly the objective function of the partially linear estimator in Porter (2003). Note that can be
written as

I = W)Y —ax (I = W) Dal?, (16)

where ||| is the Euclidean norm in R™, I is an n x n identity matrix, W = (w;)z PEN is symmetric, and

D, =(d;(m));_y ... ,,- So the estimator of o, given 7 is

_ DL (I-W)’Y
a(m) = DrI=W)' ¥V )2 ,
DI (I —W)" D,
16Since our objective function is &*(w), nh (@%(mo + z) - a%(mo)) = nh(a(mo+ L) —a(mo)) (@ (mo + L) +a(mo)).

a(mo+ 2) 4 @ (mo) converges to 2ar,, so the jumps in D(v) should be —k(0) (2cry) (g + 2€nmg+4), which are different
from the jumps of D(v) in Theorem 4 only by a constant 2k(0). Of course, a constant will not affect the output of the argmax
operator.

17See Section 4.1 of Yu (2008) for the asymptotic distribution of the least squares estimator in the parametric case, but as
argued above, it should be the same as in the nonparametric case.
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Figure 8: Weighting Functions in Localized Objective Function Using Different Kernels

which is the coefficient in the least squares projection of (I — W)Y on (I — W) D,. Now, becomes

DL (I -W)*Y

L = I =W)Y|? = |P(I-W)Y]?,
D (- W) D, II( VY [I" = [P ( )Y

I =W)Y|* = (I -W)D

_ I-W)D, D} (I-W)
where Pr = DI (- W% D,

7, minimizing the objective function with respect to 7 is equivalent to maximizing ||[Py (I — W) Y||*> with
respect to m. Note that | Py (I — W)Y ||* = a* (x) D% (I — W)? D,. From Theorem 2 of Porter (2003),

is a projection matrix. Because the first term [|(I — W) Y||*> does not involve

D! (I —W)*D, L2/01 </ulk:(v)dv>2du

independent of 7, so maximizing || P, (I — W)Y ||” is equivalent to maximizing a” ().

Appendix B: Proofs

Throughout the proofs, Hy indicates both Hél) and HSQ), and H; indicates both Hl(l) and Hl(z).
Proof of Theorem 1 and 2. First, decompose I,, by using :
nh'/? 410 ~ ~ ~
I, = m Z; 1;'1; {(m; —m) (m; — ;) + eigj + &,
3 JF
+2e; (mj — my) — 28 (m; — M) — 268} Kn i

= Iln + I2n + ISn + 214n - 215n - 21671

We shall complete the proof by examining I, - - - , Ign, respectively, and showing that v2 = X+ o0, (1) under
both Hy and H;. Throughout this proof, z; = (2;,¢;)" and E; [-] = E [-|z).

First, Io,, Is, and Ig, are invariant under Hy and H;. Propositions 3 and 6 show that Is,, and Ig, are
both o0,(1). Proposition 2 shows that I, AN 0,%).

Under Hy, Proposition 1 shows that Iy, = op,, (1), and Propositions 4 and 5 show that I, and I, are
both op, (1) uniformly in m(-) € Hp.



Under H;, Propositions 4 and 5 show that I4, and I5, are dominated by I3,, and Proposition 1 shows
that I, = O (nh1/2b3) under H£1) and I, = O, (nhl/zb) under H{z). The local power can be easily
obtained from the proof of Proposition 1.

At last, Proposition 7 shows that v2 = ¥ + 0,(1). So the proof is complete. m
Proof of Theorem 3. This proof is similar but more tedious than that of Theorem 1 and 2. Note
that ® (z) is a continuous function. By Polya’s theorem, it suffices to show for any fixed value of z € R,
[P (T < 2|Fn) — @(2)] = 0p (1)

Denote m} = g; and define m; and €; by

- 1
m;k: . mezy/fm

n—l

1
g = *Lz i
& n—l i# bj/f

Then using €; = y; — yF =m; +¢e; — (M} +¢;), we get

and

% nh/ mt ko
I, = o — Zglnln my) (m} —m;) +efe; +&E;
i j#i
+2¢} (m —mj)—2€?(m;—ﬁ1;-‘)—255 } Knij

Iln + I2n + I;%kn + QIZn - ZIgn - 2I6n

The theorem will be proved if we can show that I7,|F, = o, (1) for i = 1,3,4,5,6 and I3, /v |F, — N (0,1)
in probability. The first part is similar to those of Proposition 1, 3, 4, 5 and 6 under Hy. Only note that
m*(x)|F, defined as above satisfies Hy even if m(x) is from H;; see Gu et al. (2007) for a similar analysis
in testing omitted variables. But there is some difference to show the second part.

First, because £}|F,, are mean zero and mutually independent and have variance €3,

h1/2

2h1/2

A i g>i i g>i
is a second order degenerate U-statistic with conditional variance
5252 02
= 1 E E 1;'1; K hyij = Un-
i jFi

Because Uy, ;; depends on i and j, we must use the central limit theorem of de Jong (1987) for generalized

quadratic forms rather than Hall (1984) to find the asymptotic distribution of I3,. From his Proposition
3.2, we know I3, /v,|F, — N (0,1) in probability as long as

G = ZZE* U;ij = 0p (vn) ,

i J>0
G?I = ZZ Z E* U;%]U:{ il + U’;:QJ’LU* gl + U Un lj] =0p (U:lz) ’
i j>il>i>1
?V = ZZ Z Z E* nzj n kU* ljUn lk:+U': ZjU’;: Urt,ij':;,kl +Un kun lenijn]l] = P(Ufz) .

i §>ik>>il>k> >0



It is straightforward to show that
* 2 -1 * —1 *
G1 =0, ((n h) ) yarr = Op(n ), Gy = Op(h),

so the result follows by v = Op(1). Next, it is easy to check that E* [v:%] = v2 4 0,(1), and Var* (v3?) =
op(1). Thus I3, /v}|F, — N (0,1) in probability. m
Proof of Theorem 4. We assume m(7) and m_ () are estimated by local constant estimators since by
Fan and Gijbels (1996), the p-th order local polynomial estimator is asymptotically equivalent to the local
constant estimator with a (p+ 1)-th order boundary kernel. More importantly, the contribution made to the
local polynomial fit by terms of degree j is of order O(h’), so the local constant has the dominating effect.
Proposition 8 proves 7 is consistent, and Proposition 9 proves 7 — mp = O, (nil). Now, we show
n (T — mo) has the asymptotic distribution as stated in the theorem by applying the argmax continuous

mapping theorem. To achieve this goal, we first analyze the localized objective function:
~2 v ~2 ~ v ~ ~ v ~
nh (a (mo + ﬁ) —a (71'0)) = (a (7T0 + ﬁ) + oz(7ro)> nh (Ot(ﬂ'o + 5) - a(7r0)> .

Since (@(mo + 2) + a(mo)) 2, 2a,,, we need only analyze nh (a(mo + £) —@(mo)). Proposition 10 shows
that for v on any compact set in R,

nh (a(m + %) - a(wo)) (17)
k (0)

n v v
= ~Fro) ijl {(ozﬂ0 —25)1 (770 + - <z; < 71'0) + (ary +2¢5) 1 (770 <z <mo+ ﬁ)} + 0,(1),

0
~2 v ~2
nh(a”(mo + ﬁ) —a“(mp)
n v v
= —C ijl {(afm — 20m,¢5) 1 (7r0 + - <z < 7T0) + (02, + 2ar,5) 1 (770 <z; <mo+ E)} + 0,(1),

where C = 2k (0) / f(7p). Now, by a straightforward application of the proof idea of Theorem 1 and 2 in Yu
(2012), we can get the asymptotic distribution of 7. The only difference here is that nh (&2 (mo+2) — aQ(wo))
is a caglad instead of cadlag process. Note also that ¢; in Theorem 1 of Yu (2012) is defined as the limiting
conditional distribution of ¢; given mg + A < z; < mp, A < 0 with A T 0, and E;F is defined as the limiting
conditional distribution of €; given mg < x; < o + A, A > 0 with A | 0. Given Assumption E, €; has the
conditional density f(¢|z = mo—), and ;" has the conditional density f(¢|z = mo+). m

Proof of Theorem 5. As argued in Theorem 4, we need only prove the result for the local constant
c

estimator. Since T — mp = O, (n‘l), 7 will fall into (7r0 — 7T+ %) for some positive C' with any large

probability when n is large enough. Combining this fact and , we need only show that
n v v
sup Z {(oz,rO —2¢;)1 (71'0 +-—<z;< 710) + (amy +2¢5)1 (7r0 <xj; <mo+ —)} = 0,(1),
= n n
for any C' > 0 because nh — oco. Due to the similarity between v < 0 and v > 0, we need only show

n v
sup D (am, +2¢5) 1 (m <y <mo+ g) = 0,(1).



First,
v
gl (770 <z; <mo+ ﬁ) = 0,(1),

because sup Zj 11 (mo < zj <o+ 2) is no larger than 2?21 1(mo < zj < mo+ <€) which is O,(1) by
ve(0,C)
Assumption F. Second,

v
sup (Wogx-<7r0+f>20 (1).
ve( OC)Z ! n b
This is because {1 (770 <zj <m+ Z) v e ( } is a VC-class with envelope 1 (7r0 <z <m+ ), and
S0
v y 5 C
sup Z (wogmj<7ro+—) <+/nC Eleil|mo <z <mo+ — =0(1),
v€e(0,C) n n

where the inequality is from, e.g., Theorem 2.14.2 of Van der Vaart and Wellner (1996), C’ is some positive
constant, and the equality is from Assumption E and F. As to the asymptotic independence between 7 and
O, see the proof of Theorem 1 and 2 in Yu (2012) where the characteristic function is used to show this
result. m

Proof of Corollary 1. Take 75 as an example. Following the proof of Proposition 8 and 9, it is easy to
see that T1— w19 = O, (nil). Because nh — oo, w19 will stay in the h neighborhood of 7; w.p.a.1. Because
we exclude a 2h neighborhood of 71, w.p.a.l., the estimation of 79 and «,, will not use any data in the h
neighborhood of 71. As a result, 72 and @, are asymptotically independent of 71 and a,,. The asymptotic
independence between 7o and @,, can be similarly shown as in Theorem 5. m

Appendix C: Propositions

When we evaluate the order of some terms, if there is no confusion, we will use n, (n — 1), and (n — 2)
interchangeably. By Lemma 3, we can assume f (-) = 1 on Il throughout the following proof, so f(-) is
depressed unless necessary. WLOG, suppose M = 1, and the constant L in My (L, s) is 1.

Proposition 1 Iy, is op,, (1) uniformly in m under Hy, and is O, (nh1/2b3) under Hl(l) and Oy (nhl/Qb)
(2)
under H,™’.

Proof. Because k(-) is nonnegative and symmetric,

h1/2

Iln = n_l zz:;lnln _ml)( m; —’I’/fLJ)Khﬁm
h1/2 1‘[ o . ~ ,
= 2n (n—1) ;;{1 ;)] Jrlj [(mj *mj)] }Kh,,ij
_ LUQ II . ~ 12 o p1/2 i ‘ ~ 2 F
- DO s — )| Ky = B2 1 [(my — )] i
n(n—1) ey i
< B2 (Slé%ﬁ) Zln P,

where f; = L3 Khijs su%ﬁ = 0,(1) is a well-known result, and > 11 [(m; — mg))? is Oy (n(an + (nb)fl))
j#i @€ i

under H(()l) and is O, (n(bQ" + b+ (nb)71)> under H(()2) as shown in Lemma 1. So Iy, < h'/20,(1)0, (n (b2" + (nb)ﬂ))



O, (nh/2b?" + h1/2/b) = 0,(1) under Assumption B(a), and I, < h'/20,(1)0, (n (an +b% + (nb)ﬂ)) =
O, (nh/2 (b7 + b3) 4+ h/2/b) = 0,(1) under Assumption B(b).
Under H, f 1 f[l + 0, (1) uniformly over x; € II, so

1/2 - PO
B = M SS U g — ) oy — ) By (£

n(n—1)
i jFEi
322221“ m; —my) Ly 15 (my — mu) Lo ju Knig i f7
n(n— i i i kA

It can be shown that the case where 4, j, [, k are all different from each other dominates, so
L, =~ O,(nh'/?E (11" (m1 — ma) Ly 1215 (ms — ma) Ly 34K a3 f1 ' f5 1)

Because h/b — 0, we can treat x; = x3. Specifically,

E [1{' (m1 — ma) Ly 1215 (m3 — ma) Ly saKn s fr ' f3 ']
= E |1 (m1 —ma) Lyiaf " / 1(x1 +uh € II) (m(x1 + uh) — my) %l (W) k(u)du]
~ E 1 (m1 —m2) Ly12 (m1 — my) Lb,14f1_i]
= E{U B - ma) L]} = /: [/ (m(x1) — m(z2)) %z <x2 b“) f(:zrg)dzg} dzy
~ 0@ + /::b Ull (m(z1) — m(z1 + ub)) I (u) f1 + ub)du}  do,

T—x]

7+b 1 2
B [/ﬂ_ﬁ (m(z1) —m(z1 +ub))l (u) du + [1 (m(z1) — m(z1 + ub))l (u) du] dx,
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Under Hl(l),

T+b 1 W;ml 2
/ﬂ_b [/”b” (m(z1) — m(z1 4 ub)) I (u) du + /_1 (m(z1) — m(zy + ub)) (u) du] da
m+b 1 it 9
= / [ e (m(z1) —m(z1 +ub))l (u) du + /71 (m(x1) — m(zy +ub)) (u) du‘| day
! /_b /1 (m(z1) =m(z1 +ub)) I (u) du + / " (mlwr) = m + ub) L) du} dary
' 2

m(m + vb) — m(m + (v+ u)b)]l (u) du] dv

2

= b/O [/_%U[m(w—i-vb)—m(w+(v+u)b)]l(u)du+/_1v[
b)| L ( )du+/vl[m(7rvb)m(7r+(uv)b)]l(u)du} dv

+b/01 {/1[m(7rvb)m(7r+(uv)
2

_ /0 1 {_ [ 1 !, (myud (w) du + [ 1v [, ()0 — m’_ () (v + u)] () du} dv
1 v 2

+b° /01 [/ [—m’_(m)v —m/, () (u — v)] I (v) du — m/ () /_1 ul (u) du} dv
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Under H; 2)

T—x]

T+b 1 . 2
/ V (m(z1) — (a:l—l—ub))l(u)du—l—/ (m(xl)—m(xl—i-ub))l(u)du] day

-1

T—x]

w)ubl( )du+/ '
—1

(—ors + Cub) l(u )du—/

-1

[ ( du) dv—i—/ol (/:l(u)du>

The result follows. =

2
(ar + Cub) l(u)du] dzy

Q
\
\

T—x]

m’_ (W)ubl(u)dul dxq

2

dv} = 2ba? /01 (/Ull(u)du> dv.

2

Q

Proposition 2 I, —& N (0,%).

Proof.
h1/2
127’7, = n_l zl:;lnl EZEthZj
h1/2
= n—l ZgH Ziy %) _nhl/zUn,
i jFu

where U, is a second order degenerate U-statistic with kernel function H,. We can apply theorem 1 of Hall
(1984) to find its asymptotic distribution. Two conditions should be checked: (i) E[HZ2(z1,22)] < oo; (ii)

E[G2(21,22)] + n ' E[Hp (21, 22)]

— 0 as n — o0,
E2[HZ (21, 22)]

where G, (21, 22) = E[Hp(z3,21)Hp(23, 22)|21, 22]. This checking is very similar to that in lemma 3.3a of
Zheng (1996), so omitted here. The conclusion is that

Uy //2E[H2 (21, 22)] - N(0,1).

10



It is easy to check that
B[H(21,22)] = E[1'13Kj Bleleh|ar, o]

= /W/:thk:Q <x1 ;962) o?(x1)0? (w2) f (1) f (w2)dar dacy

= /W [Hi %]{:2 (U) 0’2(:,[;)0'2(.%‘ — hu)f(x)f(x _ hu)dudm

1 4 1 1
= E/kz (u) du/7r 04(x)f2(:r)dx+o<h> N
so the result follows. m
Proposition 3 Is, = 0,(1).
Proof.
nh'/? nh'/? 22 | T=2
B = oy L WS KLy < g B {1 S} K
[VE [E
_ nhl/2 ZZIHEQK’” _hl/QZlﬂ f <h1/2 supf ZIH/Q
n—l [ ’ et

hl/zOp(l)Op (bil) = 0p(1),
where Y 1{[:2 =0, (b_l) is shown in Lemma 2. m

Proposition 4 14, is op,, (1) uniformly in m under Hy, and is o, (I1,) under Hy.

Proof.
nh1/2
Ly, = n—l ZZlHlHEz mj)ijhZ]f !
e
nhl/? o1
wn=1) Zzzl Lie; (mj —my) Lo jk K ij,
i AL k#E)

because sup f = 0,(1). Note that E[I4,] = 0 and we need only calculate the second moment of Iy,. By
;€11

a similar tedious analysis as in Proposition A.4 of Fan and Li (1996), we can show

2] = O(nhv"), under H(g;)7
" O(nh (b*" +b%)), under HS”,

which is o(1) under Assumption B(a) and B(b), respectively.
Under Hy, we can show

E [12 ] ] O(nh (bz” + b3))7 under Hl(l)7
1 O(nh (B2 4b)),  under a2,

SO

I = O,(n'/2h'/2b%/%) = 0, (I},)), under Hl(l)7
n O, (n1/2h1/2b1/2) =op (I1), under Hfz).

11



Proposition 5 I, is op,, (1) uniformly in m under Hy, and is o, (I1,) under Hy.

Proof. Under Hy,

h1/2
Is, = T SO>S ME (my — i) K
i jFi
nh'/? ~ N2
2n(n—1) 22{1112_,_111 )" Knis
)
= OP(]')’

by Propositions 1 and 3. Under Hj, a similar analysis as in Proposition 4 can show I5, = o, (I1,). ®
Proposition 6 Is, = 0,(1).

Proof.

nh'/? OIl. ~ nh'/? n .
Iﬁn = mzzll 1] gingh,ij = WZZ]_ 1 &E; €jijh ”f
i gl i gl
h1/2
= LZZ]_H]_ Elflsjijh’Ljf 1f_

n(n—1) e

nhl/Z
— ZZ 1 1 5zfz<5]ijh ijs

n(n—1)
i jFEL

Q

because sup f sup f;l = O,(1). By Proposition A.6 of Fan and Li (1996), Is, = 0, (1); note only that b
x;€ll x; €Il

(h) plays the same role as a? (h%) there. m
Proposition 7 v2 = % + 0,(1).

Proof. It takes some algebra but is straightforward to show that

h
Sy kg e
nin —1) ey
h
= a1 Z Z 1?1?K,§7ij (i +m; —m;)? (gj +mj — mj)2 +0p(1)
i g

- B [11; (e1 +my — )2 f1 B4 [(gl - ml)QH /k2(u)du +0,(1)
— E[1V2fE [ai}]/kQ(u)du+E[1{[ (my — 1) fLBy | ( [ my — /k2 w)du + 0,(1)

= E[11f(z)o* (x)}/kQ(u)du+E[1¥( m)* fl]/ 2(u)du + 0p(1)

where m; = E; [m;], and the second equality is because h/b — 0 so that we can treat z; = x; for z; in a h
neighborhood of z;. By a similar proof as in Lemma 1, F [111T (my — )" fl} is at most O(b) under Hy and
Hy, so the results follow. m

Proposition 8 7 — 7y = O, (h) .

12



Proof. We will apply Lemma 4 to prove this result. WLOG, assume a,, > 0. In this case, § = 7,0y =
70,0n = Tn, Ny = [10 — h, mo + b, Qn (0) = @2 (7), Qn (0 ) = a@*(w), where

Tn(m) = g (m) —m(m), ™, = argmax @, (),
o (r) = Jo k(uym(r + uh) f (7 + uh)du () = 10, k(wym(m + uh) f (x + uh)du
. SR (x4 ubyda P R+ abydn

We first check condition (iii). If we use the local constant estimator,

_ o ka(xy — ) yd; ()
S A k(- m)dy(n)
v i k(g — ) y; (1 —dj ()
w2y (= m) (L—dj (7))

We can multiply the numerator and denominator by 2 and redefine k (-) such that fo w)du = f E(u
1. By a similar argument as in Lemma B.1 of Newey (1994), we can show

: X Inn
sup DDA, /k m(m + uh) (7 + ub)du| = O, <\/;>
Ly Inn

B | 2y B (25 = )3 / E(wm(m + uh)f (x + uh)du| = ( m)
EZ" kn (z; — ) d; ( )—/1k( Vf(m+uh)du| = O Inn

izgn e TG T T A5 AT ; uw)f(r +uh)du| = O, — .

1 n 3 - 1—d. Ok iy 0 o
i =~ (g =) (U= dy (7)) RS+ uh)dul = 0y (4T

So

sup @2(7r) — &i(ﬁ)‘ < sup |@(m) — @y (7)| sup |@(7) + @ (7)| = 0,(1)O0,(1
well well well

—
I
)
i)
—~
—
~—

We then check condition (ii). By Assumptions M and F, sup |my(7w) —m(n)| =0 (h),and sup |[m_(7)—m(m)| =
TeI\N, meII\N,
O (h),so sup |m4(w)—m_(m)] = O (k). On the contrary, for 7 € N,,, WLOG, let 7 = mg—ah, a € (0,1),
rell\N,,

n(r) = fol k(w)maq, (7 + uh) f(m + uh)du + o, fal k(u) f(m 4+ uh)du fol k(u)m(m + uh) f (7 + uh)du

fol E(u) f(m + uh)du folkr f(m+uh)du
k(u) f(m + uh)du " ke(u)du
NN AL} G LT P WL LTIy
fo u) f(m + uh)du Jo F(u)du
2
Because k(0) > 0, fl Z duam < Qg,. As a result, 7, converges to mp, and there is a d, say agﬂ, such

that sup @2(rw) < @2(m,) — d. The proof is complete. m
Tell\N,

Remark 1 In this proof, the limit objective function &y, (n) depends on h and so on n. If its limit a(rn) as h

converges to zero is taken as the limit objective function, then it is zero when w # mo, and ar, when ™ = m.

13



Because a(m) is a continuous function, the convergence from a(w) to a(m) cannot be uniform. In this proof,

we swell a(r) to a continuous function @y (w) on N, to make the convergence uniform.
Proposition 9 7 — 19 =0, (n7).

Proof. WLOG, we use the same setup and notations as in the last proposition. For each n, the parameter
space can be partitioned into the "shells" S}, = {7r 1207 < njm — m| < 2j} with j ranging over the integers.
If n |7 — 7| is larger than 27 for a given integer .J, then 7 is in one of the shells S;,, with j > J. In that

case the supremum of the map m — &°(7) — a°(mg) over this shell is nonnegative by the property of 7.

P (n|7 — mo| > 2)

Sjn Sj.n

<P ( sup (a%r) - aQ(WO)) > 0) + P (|7 —mo| = h)
27 <n|r—mo|<nh
logy (nh)
< Y P (sup a%(m) > a%m) + P (|7 —mo| > h)
i=J Sgun
log, (nh) logy(nh)
< Z P (supa ™) — a(mg) > ) Z P (supa ™) + a(mo) <o> + P (|7 — mo| > h)

We show the first sum converges to zero, the second is easier because we assume «,, > 0, and the third
converges to zero by the consistency of 7. First, suppose w9 — h < w < 7p; then by the analysis in the last

proposition,

an (7T) an (7(0)

Jo B, (7 +uh) [ (7 + uh)du + ax, [zo-x k(u)f (7 +ub)du  [° k(u 7r+uh)f(7r+uh)du

Jo B() f(m + uh)du f k(u)f (7 + uh)du
B fol k(u)ma, (7o + uh) f (7o + uh)du + ar, fol k(u) f(mo + uh)d f k(u)ym(mo + uh) f (7o + uh)du
fol k(u)f(mo + uh)du f k(u) f(mo + uh)du
el fOT E(uw) f(m + uh)du + 0 (n — o)

fol k(u) f(m + uh)du
< —Clr—mol/h,

where the last inequality is because k(0) > 0. This result holds when 7y < © < g+ h by a similar argument.
For § < h,

|m—mo|<é

P ( sup a(m) — a(mg) > O>

< P ( sup [(@(m) — @p (7)) — (@(mo) — @n(mo))] > C | — 7o /h> )

|m—mo|<é

14



so we need to analyze the process (a(r) — @, (7)) — (@(mg) — @, (7)), where @, (1) — @, (7o) is the centering
process of a(r) — a(mg). Second, for |r — m| < h, WLOG, suppose mp < m < o + h,

a(m )*a(ﬂo) (@n(7) = @n(m0))
(T ) M () — (M4 (m0) — M (m0)) — (@n(7) — @n(mo))
_ aXjaka (333 —mydi (m) 5 Yk (z =)y (1 d; (7))
& 2 kn (xj —m) dj () & 2 kn (= m) (1= dj (7))
B (1 > iy b (x5 — mo) y;d; (o) B =20y k(5 — mo) y; (1 — dj (%))) (@ () — (o)
v i kn (x; —mo) dj (o) & 2 kn (x5 — m0) (1 — dj (o)) ! "
& gt b (25— ) (Mg (37) + amg) dj (1) 5 300 b (5 — m)m(a;) (1 — dj (7))
LYk (= ) dj (m) LYk (25— m) (1= dj (7))
k(@ —m) L(mo Swj <m) (,11 > i kn (x5 — m0) (g (25) + i) dj (70)
& 21 b (zj = m) (1= dj (7)) & 2 kn (xj —mo) dj (o)
0k (w5 — mo) m(x;) (1 — dj (o)) _ _
TS k(g — 7o) (1~ d; (o) ) = () = Tnlo))
LS k(e m)edi (1) Y k(- e (1 dy ()

& 2 kn (xj —m) d; () & 2k (zj =) (1= dj ()
- (; Sy k(g —mo)ejdy (o) 30y kn(xj —mo)e; (1—dj (WO))>

[
E

+ 20y kn (25 — mo) dj (mo) + 20y kn (5 — mo) (1= dj (mo))

= o (T2 4 s { L by = sty (0= 230 ey =) (1 )

j=1 n

_ le Z;l k(2 — o) ey, (o) — S k(- mo)e; (1—d; (WO))} } :

n Jj=1

where the last equality is from a tedious but straightforward analysis. Note that

7ZJ 1 )ejd; (W)*%Zéi kp (z; — mo) €;d; (mo)

j=1
_ (i ijl b =)y (1= dy (1)) — = S (a5 = mo) e (1~ & (m)))
%Zn ]{,‘h( —7T0)) dj (7'(')— (i 22:1 (k’h (ZL'j —7T)—k‘h (LL’j—ﬂ'o))Ej (1—dj (71'())))
—%Zjl (kn (x5 — ) + kn (x5 — m0)) €51 (m0 < 5 < 7).
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Since the three terms in the last equality are independent, the variance is bounded by

1 n Ti— T Ti — o 2
szﬁm RICESS) E
2
_ T; — o )
nh2z]1 —k:(Jh >) sjl(wo—hng<7ro)1

nhzZJl l( +’“( hﬁo>)26§1(7ro<xj<w)]

S 7T0)2
(nh)2

uniformly for |7 — 7g| < h. In consequence,

P ( sup a(m) — a(my) > 0)

|m—mo| <8

2 2
< CEFE ( sup [(a(m) — a@n(m)) — (Q(mo) — O‘n(ﬂo))o /(W_hzﬂ-O)
|m—mo|<d
_ nlr—mol (7 —mo)? C
> (nh)2 h2 ~ nlr— 7ol

by Markov’s inequality. So

log, (nh)
Z P <sup a(m) —a(m) > 0)
C .
2 am =022 0
j=J i>J

as J — oo. The proof is complete. m

Remark 2 This proof extends Theorem 3.2.5 of Van der Vaart and Wellner (1996) by concentrating on a
h neighborhood of mo. The key point here is that the centering process G (m) — Qn(mo) is not differentiable

at mo such that mg is easier to identify than in the regular case as shown intuitively in Section 4.2.
Proposition 10 For v in any compact set of R,

nh (@ (w0 + %) ~d(m))

f(gg))) Z:Zl {(ozm —2¢5)1 (wo + % <z < 7T0) + (ary +2¢5) 1 (770 <z <mo+ %)} +0,(1).
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Proof. Let m = 7o + 7, v > 0; then

nh (a(r) — a(mg))
Spok (S5 wids @) Sk (255) s (1= d; ()
S ik (B ) dy (m) e Sk (55 (1 - dy ()

h
B (Z?ﬂ (57 wds (r0) S5k (57 s (1= <7ro>>)

n xTj—T n Tj—T
F(EEE) @ Xk (B tmna3) + sy + 25)ds (g

+1/{n1h Z: 1k (mjf:ﬂ') (1—d, (1)) - % :=1k <xj ;WO) (1—d; (Wo))}
Y =y ) S k() )+ 2) (- d ()

e ok (S50 ) (1= dj (70)) =y b (257 ) (g (25) + @y + ) 1 (mo S 5 < )
LSk (B ) (U= dy () - S b (B ) (1= dj (o)) ’

17



By the Lipschitz continuity of my, () and & (-), T11 = 0p(1). It is easy to show the first three terms of Tio
are o,(1), but the last term of T15 is Op(1). Second,

n-my=1 f | k(B 0 Y k(P 1 o))
[ () 0 S (2572 ) (1= )

i (xj EWO) (1=d;ma) 3k (mj A ”) My (2;) (1 = d; (w))]
|5 (BT am g S () (0 dy (o)
k() e k() - o

D (”““;”) (A—d; (o) Y.k (mh‘”) (1 d; m))gj}

LYk (B5) (1= dj (7o) Sy b (957 ) (amy +25) 1 (mo S 35 < )

nh £j=1

Lk () (1= dy () Sk (52) (1 dj (7o)

By a similar analysis as 77, we can show the first two terms of T — T5 are 0,(1), but the last term is O,(1).

v

In summary, when 7 = g + =, v > 0,

nh (B(r) ~ (o))
Sk () Lo <oy < ey Sy b (257 ) (amy 4 6) L(mo < 25 < )

- == - +op(1)
S ik (55T ds () Lk (B5) (1= dj ()
k(0) —n
— _f(ﬂ'o) ijl (Qmy +2¢5) 1 (mo < zj <)+ 0p(1).
Similarly, when v < 0,
b @() ~ 8lm0)) = =18 3 (4~ 22)) Lm0 < 25 < )
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Appendix D: Lemmas

Lemma 1 1 > 1 [(m; — )] is O, <b2’7 + (nb)_l) under H(()l) and is Oy (b2’7 + b3+ (nb)_1> under HO(Z)

Proof. Because H(gz) covers Hél), we need only prove the result under H(()Q).

721“ mi —mg)? = fZﬂT[ m; — ;) E]Zf[?
<supﬁ_1> ﬁzl:lln [(mi—A ] Zln[ —m,; fz

x; €Il

2

IN

because sup J/“;_l = 0p(1), which is a standard result. By identity of distribution,
z, €Il

J#i

E{izl’n[( m; = iy f’}} ZE 1H< ! Z(mi_mj)Lb,ij> —(nll)zE[lgTz],

where T = Z ti, tz’ = (m1 — ml) Lb,1i~ Note that F [111_1T2] S 2F {].11_[ [Z (tz - t)
i#1 i#£1

2
} + 2n2E [1122],

2
where ¢t = E [t;]. Conditional on z;, the t; — ¢ are independent with mean 0, so E ¢ 11 [Z (t; — t)] =
7

(n—1)E {1{1E1 [(tl - t)Q} } It remains to bound F [1{'¢?] and E {I?El [(tl - t)Q} }
First, analyze ¢. For z1 ¢ [r — b, 7w + b],

1 = 1B ()~ m(e) Lol
[ mtaa) =) sty (25 ) o

‘/ (Qm (w2, 71) + Ry (22, 21)) (f(21) + Qf (72, 71) + Ry (22,71)) %l <x2 — xl) dxo

where Q. (z2,21) is [s]th-order Taylor expansion of m(xz2) at m(xy1), Ry (22,21) is the remainder term,
Qy (x2,x1) is [A|th-order Taylor expansion of f(z2) at f(z1), and Ry (x2,x1) is the remainder term. From
Assumption K, f Qm (x2,21) (f(z1) + Qf (T2, 21)) %l (%) dze = 0, so |E[(m(z2) — m(z1)) Lp21]z1]| is

bounded by
1 (a9 —2x
> d.’EQ ‘/ .’£2 ))Rj (1’2,1’1) El ( 2 b 1) dl’Q

‘/ $2,$1 $1)bl<

< OV +COvtt<ow,
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where 7 = min (A + 1, s). When z; € [r — b, 7 + b], WLOG, assume z; < ; then

|E [(m(x2) — m(x1)) Ly,21|21]]
[ nten) = o)) a1 (225 ) o

1—b

+[f%mma—mm+mm—muMﬂuﬁ(“b“)wz

< Cb.

So E [t?] < C (b7 +b?). Second, it is easy to show

E {1?}51 [(ti - tﬂ} =00
by the boundedness of m (-) and [ (). Combining the analysis above, the result follows. m

Lemma 2 1 Zln/Q =0, ( 1)

Proof. Z 11187 = iy 12272/ 72 < sup J’;ﬂi S22 L E 19222 Note that
'3 x; €11 7

2
1 . 1 1 1
E {n > 1?5-:3?3} == ZE 1 (n_l Zstb,ij) e 1)2E (172,

% Jj#i

where T' = ) ¢;, t; = ¢;Lp1;. Because E [eq|z1,- -+ ,2,) =0,
i#l

E[11T?) = (n—1) E[1V'L} ,E [€]|2i]] = (n— 1) E[1]'L} 1,0%(2:)] = O ((n — 1) /b) ,
and the result is proved. m

Lemma 3 Suppose f(x) satisfies Assumption F; then

. g - 9 ) _ -
%(_)le%f@,s)/ (m(x) —m(z)) dr < ﬁ@(~)1€an(L,s)E [(m(m)—m(x)) 1,_]

™

< 7 i / (m(z) — #(2))? da

m(-)EC(L,s) J
for any m(x) € M (L, s).

Proof. Suppose
m(-) = inf E —(x))* 11!
m()=ars  inf B |(m(x) —i(2)* 1]

and

m(-) =arg  inf /Tr (m(z) — m(x))” de;

m(-)eC(L,s) P
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then

inf E [(m(x) —i(x))? 15}

EC(Lys) E [(m(m> —m())* 15] <E [(m(x) — () 11?]

A

—~

m(-)
= " — () f(z)de 7me—ﬁx2x—i in m(z) — m(z))* dr
— [ o) - dts < T [ (i) ) s =T int [ (a) = o)) d

Similarly,

3|
I
\:“
—
3
~~
&
|
3
8
S~—
SN—
[\v]
&
S
INA
—
—
3
~~
&
|
3
8
=
[V}
&
S

ot / (m(z) — 7(2))? da

inf E —mz)? 18] .
ot B (m(x) — () }

>I\:‘
—
3
&
N—
|
3
—
K
N—
S~—
no
\
—
&
QU
5
I
[~=| — |

The following lemma is an extension of Theorem 2.1 of Newey and McFadden (1994).

Lemma 4 If there is a deterministic function Q,, (0) which depends on n such that (i) Q, (0) is minimized
at 6,, which converges to a fized point 0y; (ii) for an open subset N, containing 6,,, there exists a fized positive

number 0 such that sup Q@ (0) < Qn, (0,,) — & for n large enough; (iii) sup @n (0) — Qn(9) 2,0, then
0€O\N,, e

P (@ € J\fn> — 1.
Proof. For any € > 0 we have w.p.a.l (a) @n (5) > CA),L (6,) — ¢/3 by the fact that 9 is the maximizer of
0. (0); (b) Qn (5) > Qo (5) — /3 by (iii); (c) On () > Qu (6) — £/3 by (iii). Therefor, w.p.a.1,

Qu (8) 20 (8) <13 Qu 0.~ 2535 Qu 0. <.

Thus, for any € > 0, Q,, (@) > Qp (0,)—e w.p.a.l. From (i), sup @, (0) < @, (6,)—9 for n large enough.
0EO\N,,

Choosing € = & < Q, (6,) — sup Qn (6), it follows that w.p.a.1 Qn (5) > Qn(0,)—8> sup Qn(0)
0€O\N,, 0€O\N,,

hence 0 € \,,. m
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