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a b s t r a c t

This paper studies likelihood-based estimation and inference in parametric discontinuous threshold
regressionmodels with i.i.d. data. The setup allows heteroskedasticity and threshold effects in bothmean
and variance. By interpreting the threshold point as a ‘‘middle’’ boundary of the threshold variable, we
find that the Bayes estimator is asymptotically efficient among all estimators in the locally asymptotically
minimax sense. In particular, the Bayes estimator of the threshold point is asymptotically strictly more
efficient than the left-endpoint maximum likelihood estimator and the newly proposed middle-point
maximum likelihood estimator. Algorithms are developed to calculate asymptotic distributions and risk
for the estimators of the threshold point. The posterior interval is proved to be an asymptotically valid
confidence interval and is attractive in both length and coverage in finite samples.
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1. Introduction

Since its invention by Tong Howell in the 1970s, the threshold
regression model is popular in both statistics and econometrics.1
Particularly, it has many applications in economics, e.g., Potter
(1995), Durlauf and Johnson (1995), Savvides and Stengos (2000),
Huang and Yang (2006) and Boetel et al. (2007) among others; see
also Lee and Seo (2008) for other examples. The typical setup of
threshold regression models is

y =


x′β1 + σ1e, q ≤ γ ;

x′β2 + σ2e, q > γ ;
(1)

E [e|x, q] = 0,

where q is the threshold variable used to split the sample, γ is the
threshold point, x ∈ Rk, β ≡ (β ′

1, β
′

2)
′
∈ R2k and σ ≡ (σ1, σ2)

′

are threshold parameters on the mean and variance in the two
regimes. We set E[e2] = 1 as a normalization of the error variance

E-mail addresses: p.yu@auckland.ac.nz, whistle.yu@gmail.com.
1 See Howell (2007) for the birth of the threshold time series model.
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and allow for conditional heteroskedasticity. All the other variables
have the same definitions as in the linear regression framework.

There are two asymptotic frameworks for statistical inference
on γ . The first is introduced by Chan (1993) in a nonlinear time
series context, where


β ′

1, σ1
′

−

β ′

2, σ2
′ is a fixed constant. The

second is introduced by Hansen (2000), where no threshold effect
on variance exists and the threshold effect in mean diminishes
asymptotically. This paper uses the discontinuous framework of
Chan (1993) with i.i.d. data. The results developed in this paper
can serve as a benchmark for more complicated data generating
processes in time series and panel data.

Both Chan (1993) and Hansen (2000) use least squares criteria
to estimate γ , and derive the asymptotic distributions of the
corresponding least squares estimators (LSEs), but the efficiency
theory has never been studied. As Andrews (1993) concludes in
the related structural change context, ‘‘no optimality properties
are known for the ML estimator of π ’’, where π is the structural
change point and plays a similar role as γ in threshold regression.
This paper intends to fill this gap in a parametric setting. In this
environment, the density of e conditional on (x, q) is assumed to
be fe|x,q (e|x, q;α), where α ∈ Rdα is some nuisance parameter
affecting the shape of the error distribution. The joint distribution
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of (x, q) is fx,q (x, q), the marginal distribution of q is fq(q), and the
unknown parameter is θ =


β ′

1, β
′

2, σ1, σ2, α
′, γ

′
≡

θ ′, γ

′.
In regularmodels, it is well known that the Bayes estimator (BE)

and the maximum likelihood estimator (MLE) are asymptotically
equivalent; see, e.g., Theorem 10.8 of Van der Vaart (1998).
In nonregular models, however, Hirano and Porter (2003) and
Chernozhukov and Hong (2004) show that the BE can be more
efficient than the MLE in boundary estimation. By interpreting
γ as a ‘‘middle’’ boundary of q, this paper finds a similar result
about the estimation of γ . It is worth pointing out that the
threshold regression model is more general than the models in
the above-mentioned boundary literature. As illustrated in the
following Section 2, the conventional boundary problems are
special cases of (1) in an extremely simplified setup. Like the usual
boundary literature, the results of this paper are developed using
the framework in the seminal book by Ibragimov and Has’minskii
(1981). Their Chapter 5 also discusses the statistical inference
when densities have jumps, but their arguments seem more
relevant to Hirano and Porter (2003) and Chernozhukov and Hong
(2004).

The models considered in this paper are very general. For
example, we allow heteroskedasticity and threshold effects
in both mean and variance, error distributions with general
parametric forms, and general loss functions. Independent work
by Chan and Kutoyants (2010) considers a problem similar to this
paper in threshold autoregressive models under very restrictive
specifications; e.g., the error term is i.i.d. normal, the slope
parameters are known, and only the mean square error loss is
considered. They use a simulation method to find critical values
for the confidence intervals (CIs) of the threshold point, which is,
as argued in Section 3.4, not practical in reality. Instead, we suggest
to use the posterior interval as the CI for the threshold point. Most
importantly, they give little details on the efficiency problem.

This paper is organized as follows. Section 2 illustrates the
main idea of this paper using a simple threshold regression model.
Section 3 presents the main result of this paper, in which the
asymptotic distributions of the MLE and BE are derived, and the
BE is proved to be most efficient among all estimators. Also,
the posterior interval is proven to be an asymptotically valid
confidence interval. Section 4 shows some simulation results,
and Section 5 concludes. All assumptions, proofs, lemmas and
algorithms are given in Appendices A–D, respectively.

Before closing this introduction, it should be pointed out that
the framework of this paper is essentially frequentist in the
sense that while Bayes procedures are used, the randomness
is confined to the data and does not include parameters.
Correspondingly, we do not intend to propose a new Bayesian
simulation method; such methods can be found in Geweke
and Terui (1993). A word on notation: the letter C is used
as a generic positive constant, which need not be the same
in each occurrence. ℓ is always used for indicating the two
regimes in (1), so is not written out explicitly as ‘‘ℓ = 1, 2’’
throughout the paper. The code for simulations is available at
http://homes.eco.auckland.ac.nz/pyu013/research.html.

2. No error term: an illustration

In this section, a simple threshold regression model is used
to illustrate the main result of this paper: the threshold point is
essentially a ‘‘middle’’ boundary. In the following discussion, q(m)
denotes the mth order statistic of a sequence of random variables
{qi}ni=1.

Suppose the population model is

y = 1(q ≤ γ ), q ∼ U[0, 1], (2)
where U[0, 1] is the uniform distribution on [0, 1], 1(·) is the
indicator function, γ is the parameter of interest, and γ0 = 1/2.2
This is equivalent to x = 1, β10 = 1, β20 = 0, and σ10 = σ20 = 0
in the general setup (1). There is no error term e in (2), so the
observed y value can only be 0 or 1. Such a simple model can be
viewed as a treatment rule in social program evaluation. If q is
interpreted as the percentiles of income, then people below the
median income are enrolled in the program with y taking value
1. Otherwise, people are not enrolled with y taking value 0. Such
a treatment rule is too simple in reality, as the propensity score is
a step function dropping from 1 (q below γ0) to 0 (q above γ0).3
Here, the task is to find the step treatment rule, given the income
of people and whether they are enrolled in the program.

For this simple model, the likelihood function is

p (Wn|γ ) =

n
i=1


1 (qi ≤ γ )1(yi=1)

· 1 (qi > γ )1(yi=0) , (3)

where Wn = (w1, . . . , wn) with wi ≡ (yi, qi) is the dataset, and
00 is defined to be 1. A simple calculation shows that the MLE is
[q(m), q(m+1)), where m is the number of yi’s with value 1. When
there is an interval maximizing this likelihood function, following
the literature, the left endpoint (i.e., q(m)) is taken as the estimator.4
Such an estimator is called the left-endpoint MLE (LMLE), and is
denoted asγLMLE.

First, γLMLE is n consistent. Notice that γLMLE is the qi that
is closest to 1/2 from the left. Since {qi}ni=1 are sampled from
U[0, 1], n data points of q are randomly put into an interval with
length 1, and thus the average distance between contiguous qi’s is
around 1/n. 1/2 is in the interval [q(m), q(m+1)), so n(γLMLE − 1/2)
is expected to be Op(1). Second,

n(γLMLE − 1/2)
d

−→ −Exp(1), (4)

where Exp(1) is a standard exponential distribution. SinceγLMLE is
smaller than 1/2, for any t ≤ 0,

P (n(γLMLE − 1/2) ≤ t) = P

qi ∉


1/2 +

t
n
, 1/2


for all i


=


1 +

t
n

n

→ et .

To further appreciate (4), suppose we want to estimate γ in
the distribution of yq. yq picks out the q’s such that y = 1. Its
distribution is a point mass at 0 plus a uniform distribution on
(0, γ ]. Since γ is the right endpoint of this distribution, it is well
known that the MLE is the maximum of the data and follows the
exponential distribution asymptotically. Similarly,γ canbe treated
as the left boundary of (1 − y) q and estimated by the minimum
of the nonzero (1 − yi) qi. In short, γ can be viewed as a boundary
(of both yq and (1 − y) q) although it is in themiddle of q’s support.

2 I would like to thank Jack Porter for providing this example. I also want to thank
an associate editor and a referee for improving its exposition.
3 Such a treatment rule is called the sharp design, as opposed to the fuzzy design

where the treatment is not deterministic in the two regimes, by Trochim (1984)
in the regression discontinuity design (RDD) literature; see Bajari et al. (2010) for
a similar analysis as below when using RDD to study contracting in health care.
Usually, γ0 is set by the policy-maker, and is publicly known.
4 Most of the literature uses the left endpoint instead of the middle point. A

possible reason is that these two estimators are thought to bear similar properties.
For example, the sample splitting based on either point is the same; themaximizing
interval shrinks at rate 1/n as shown in the following paragraph, so both methods
generate almost the same point estimate in practice. The only exception to use
the middle point, to my knowledge, is Gijbels et al. (1999) in the nonparametric
environment, but they do not provide any theoretical justification.

http://homes.eco.auckland.ac.nz/pyu013/research.html
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For comparison, the asymptotic distribution of the BE is
developed as follows. Suppose the prior π (γ ) = 1 (0 ≤ γ ≤ 1),
then the posterior density is

p (γ |Wn) =
1

q(m+1) − q(m)
1

q(m) ≤ γ < q(m+1)


.

Under the square error loss l(v − γ ) = (v − γ )2 or the
absolute deviation error loss |v − γ |, the BE γBE is uniquely
defined and equal to q(m)+q(m+1)

2 . It is still in the interval
[q(m), q(m+1)), but equals the middle-point MLE (MMLE) γMMLE.
Note that n (γBE − 1/2) =

1
2


n

q(m) − 1/2


+ n


q(m+1) − 1/2


.

Since n

q(m) − 1/2


and n


q(m+1) − 1/2


are asymptotically

independent with asymptotic distributions −Exp(1) and Exp(1),
respectively, n (γBE − 1/2) is asymptotically distributed as the
difference between two independent exponential distributions,
which is double exponential:

n (γBE − 1/2)
d

−→ DExp(0,1/2), (5)

where DExp(0, 1/2) is a double exponential distribution with
location 0 and scale 1/2. As a result,

lim
n→∞

E[(n(γBE − 1/2))2] = 1/2 < 2 = lim
n→∞

E[(n(γLMLE − 1/2))2],

and

lim
n→∞

E[|n(γBE − 1/2)|] = 1/2 < 1 = lim
n→∞

E[|n(γLMLE − 1/2)|],

meaning that the BE is more efficient than the LMLE.
To provide more insight about the general model which will

be discussed in the next section, it is useful to derive the above
asymptotic results through the conventional procedure: derive
the limit likelihood ratio process first, and then apply the argmax
continuous mapping theorem (see, e.g., Theorem 3.2.2 of Van der
Vaart and Wellner (1996)) to find the asymptotic distribution. The
localized likelihood ratio process is defined as

dPn
v

dPn
0

=

n
i=1


1

qi ≤ γ0 +

v
n

1(yi=1)
· 1

qi > γ0 +

v
n

1(yi=0)


n
i=1


1 (qi ≤ γ0)

1(yi=1)
· 1 (qi > γ0)

1(yi=0)
= 1


qi ∉


γ0, γ0 +

v

n


for all i


× 1


qi ∉


γ0 +

v

n
, γ0


for all i


,

which converges weakly to

exp {D(v)} ≡


1, if − T1 ≤ v < T2;
0, otherwise;

where Tℓ are independent standard exponential variables. The
process D(v) takes only two values: 0 and −∞. By the argmax
theorem, n(γLMLE − 1/2) converges to the left endpoint of
argmaxv∈R exp {D(v)} which follows −Exp(1), and n (γBE − 1/2)
converges to the middle point of argmaxv∈R exp {D(v)} which
follows DExp(0, 1/2). The left two panels of Fig. 1 display a typical
sample path of exp {D(v)} and the asymptotic distributions ofγLMLE
andγBE.

To compare γ0 with the conventional boundary, theMLE and BE
of γ0 in the distributions of yq and (1 − y) q are examined again.
From Example 2 on p. 272 of Ibragimov and Has’minskii (1981)
or Section 2.1 of Hirano and Porter (2003), the limit likelihood
ratio process is exp


D−(v)


≡ exp {−v} 1 (v ≥ −T1) for yq and

is exp

D+(v)


≡ exp{v}1 (v ≤ T2) for (1 − y) q. Accordingly, the

asymptotic distribution of the MLE is −Exp(1) for yq and Exp(1)
for (1 − y) q. Note that the MLE of γ0 for both yq and (1 − y)q
is unique, which contrasts threshold regression where the MLE is
always an interval. Also, the posterior mean and posterior median
are different. FromTheorem3.3 of Chernozhukov andHong (2004),
the mean of the asymptotic distribution of the posterior mean is
zero, and themedian of the asymptotic distribution of the posterior
median is zero. From their Remark 3.7, both are location shifts of
the MLE, so it is not surprising that the BE is more efficient than
the MLE whose mean (median) is ∓1 (∓ ln 2) for yq and (1 − y) q,
respectively. A typical sample path of exp


D−(v)


(exp


D+(v)


)

and the asymptotic densities of the MLE and BE of γ0 are shown
in the middle (right) two panels of Fig. 1. Since T1 is sufficient
in exp


D−(v)


, T2 is sufficient in exp


D+(v)


, and {T1, T2} are

sufficient in exp {D(v)}, the threshold point in this simple example
can be treated as two boundaries which coincide.

Although this example is simple, it reveals the essence of the
threshold point: it is a boundary. In boundary estimation, the BE is
more efficient than the MLE. Also, only the local data around the
boundary are informative. For example, only q(m) and q(m+1) are
used in the estimation ofγ in this simple example. This observation
is generally true as shown in the next section.

3. Threshold regression: the general model

This section presents the general results for the parametric
threshold regression model. It begins with the asymptotic
properties of the likelihood ratio process, followed by the analysis
of the MLEs and the BE, and concludes with the construction of
confidence intervals.

3.1. Limit likelihood ratio process

As mentioned in Section 2, a common first step in deriving the
asymptotic distribution of likelihood-based estimators is to find
the finite-dimensional marginal limit of the localized likelihood
ratio process. Such an initial step is also called the convergence of
experiments in the literature such as Van der Vaart (1998).

The calculation in Section 2 shows that the normalization
sequence for γ in the localized likelihood ratio process is 1/n. It
is also well known that the normalization sequence for regular
parameters is 1/

√
n. Define ϕn as the normalization matrix, which

is a diagonal matrix with 1/
√
n in the first 2k + 2 + dα diagonal

entries and 1/n in the remaining one diagonal entry.
Suppose the dataset Wn = (w1, . . . , wn) with wi ≡ (yi, x′

i, qi)
′

is observed, then the localized likelihood ratio function with the
true local parameter sequence θn ≡ θ + ϕnh0 is

Zn,θn(h) =
Ln (θn + ϕnh)

Ln (θn)
= exp


n

i=1

ln
f (wi|θn + ϕnh)

f (wi|θn)



= exp


n

i=1

ln
fy|x,q(wi|θn + ϕnh)

fy|x,q(wi|θn)


,

and Zn(h) ≡ Zn,θ0(h). Here, h =

u′, v


with u =

u′

β1
, u′

β2
, uσ1 , uσ2 , u

′
α

′

being the local parameter for θ =
β ′

1, β
′

2, σ1, σ2, α
′
′, and v being the local parameter for γ , and

fy|x,q (w|θ) =
1
σ1

fe|x,q


y − x′β1

σ1

x, q;α 1 (q ≤ γ )

+
1
σ2

fe|x,q


y − x′β2

σ2

x, q;α 1 (q > γ ) ,

f (w|θ) = fy|x,q (w|θ) · fx,q(x, q),

Ln (θ) =

n
i=1

f (wi|θ) is the likelihood function.

The following assumption is imposed on the range of data
and parameters. All other regularity conditions are collected in
Appendix A.
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Fig. 1. exp {D(v)} , exp

D∓(v)


, and asymptotic densities of the MLE and BE of γ0 .
Assumption D0. wi ∈ W ≡ R × X × Q ⊂ Rk+2, β1 ∈ B1 ⊂

Rk, β2 ∈ B2 ⊂ Rk, 0 < σ1 ∈ Ω1 ⊂ R, 0 < σ2 ∈ Ω2 ⊂

R, α ∈ Λ ⊂ Rdα , γ ∈ Γ = [γ , γ ],Θ = B1 × B2 × Ω1 × Ω2 ×

Λ × Γ ≡ Θ × Γ is compact, θ0 ∈ Θ0, where Θ0 is the interior
of Θ,


β ′

10, σ10
′

≠

β ′

20, σ20
′, where ≠ means all corresponding

coordinates of two vectors are different.

Define the local parameter spaces: Un =
√
n

Θ − θ0


, Vn =

n (Γ − γ0), andHn = Un×Vn. Under Assumption D0,Hn converges
to H = R2k+3+dα . Further define

z1

w|θ2, θ1 = ln

σ1σ2 fe|x,q

σ1e+x′(β1−β2)σ2

x, q;α
fe|x,q (e|x, q;α)

= ln
fe|x,q


e|x, q;θ2, θ1

fe|x,q

e|x, q; θ1, θ1

 ,
z2

w|θ1, θ2 = ln

σ2σ1 fe|x,q

σ2e+x′(β2−β1)σ1

x, q;α
fe|x,q (e|x, q;α)

= ln
fe|x,q


e|x, q;θ1, θ2

fe|x,q

e|x, q; θ2, θ2

 ,
z1i = z1 (wi|θ20, θ10) = ln

fe|x,q

e|x, q; θ20, θ10


fe|x,q (e|x, q; θ10)

,

z2i = z2 (wi|θ10, θ20) = ln
fe|x,q


e|x, q; θ10, θ20


fe|x,q (e|x, q; θ20)

,

where

fe|x,q

e|x, q;θℓ′ , θ ℓ

=
1σℓ′ fe|x,q


σℓe + x′


βℓ −βℓ′σℓ′

x, q;α

,

fe|x,q (e|x, q; θℓ) = fe|x,q

e|x, q; θℓ, θ ℓ0


,

θℓ =

β ′

ℓ, σℓ, α
′
, θ ℓ =


β ′

ℓ, σℓ
′ and w =


e, x′, q

′
.

θℓ and θℓ are two different θℓ’s while θ ℓ is a subset of θℓ.
fe|x,q


e|x, q;θ1, θ1 is the conditional density of y in the left

regime with the true parameter value being θ1 but taken forθ1, fe|x,q e|x, q;θ2, θ1 is the conditional density of y when the
threshold point is displaced on the left of the true value, and
fe|x,q


e|x, q;θ2, θ2 and fe|x,q


e|x, q;θ1, θ2 are similarly defined.

z1i represents the effect on the log likelihood ratio when the
threshold point is displaced on the left of γ0, and z2i represents the
converse case. z1i is defined as the limiting conditional distribution
of z1i given γ0 + ∆ < qi ≤ γ0,∆ < 0 with ∆ ↑ 0, and
z2i is defined as the limiting conditional distribution of z2i given
γ0 < qi ≤ γ0 + ∆,∆ > 0 with ∆ ↓ 0. There is no mystery in the
definition of zℓi. If zℓi and qi have a joint density fzℓ,q(zℓ, q) which
is continuous, then the density of zℓi is fzℓ,q(zℓ, γ0)/fq(γ0); that is,
the conditional density of zℓ given q = γ0.

Theorem 1. Under Assumptions D0–D7, for every finite I ⊂ H,

(Zn(h))h∈I
d

−→


exp


−

1
2
u′Ju + u′JW + D (v)


h∈I

≡ Z∞(h),

where

W ∼ N

0,J−1

;

D(v) =



N1(|v|)
i=1

z1i, if v ≤ 0;

N2(v)
i=1

z2i, if v > 0;

J is the information matrix of regular parameters and defined
in (8) of Appendix A, Nℓ (·) is a Poisson process with intensity
fq(γ0), and all z1i, z2i, i = 1, 2, . . . ,N1 (·) and N2 (·) are mutually
independent of each other. Furthermore, W and {D(v)}h∈I are
independent of each other, and D(v) is cadlag with D(0) = 0 almost
surely.

The limit likelihood ratio process takes a separable form of
regular local parameters and the nonregular local parameter. In
Bayesian language, the posterior distributions of regular param-
eters and the nonregular parameter are asymptotically indepen-
dent. From the frequentist perspective, W , which represents the
randomnesses about regular parameters, and D(v), which rep-
resents the randomness about the nonregular parameter, are
independent. Such a double independence also appears in the
boundary literature such as Chernozhukov and Hong (2004).

The most interesting component in this limit process is D(v)
which is a compound Poisson process. By the strict Jensen’s
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inequality, E[z1i] < 0 and E[z2i] < 0, so D(v) will diverge
to −∞ when |v| goes to infinity. The jumps z1i and z2i depend
on two other factors besides the conditional density fe|x,q: the

ratio of mean difference to variance β1−β2
σ1


β1−β2
σ2


, and variance

ratio σ1
σ2
. The effects of these two factors will be illustrated using

a concrete example in Section 4. Similar to the simple example
in Section 2, D(v) only depends on the local data around γ0.
For example, z1i (z2i) follows a distribution conditional on q in
the neighborhood of γ0, and the intensity of N1 (·) (N2 (·)) is
fq(γ0). More details on such a local information dependence can
be found in Yu (2008a). Note that D(v) cannot be expressed as
the Poisson integral in Theorem 3.1 of Chernozhukov and Hong
(2004) because the jumps zℓi include extra randomness than the
underlying Poisson randommeasure. This is in turn due to the fact
that the observed dependent variable y can contain information
different from the threshold crossing variable q, which makes the
threshold model more general.

The limit likelihood ratio process in Theorem 1 hinges on
the correct specification of fe|x,q (e|x, q;α), while the asymptotic
theory for the misspecified model is not necessary. The reason is
that we can always recover the true distribution of the data as
long as a semiparametric restriction is satisfied as shown by Yu
(2008a). Of course, this is mainly due to the special structure of
threshold regression; in regular parametric models with a general
nonlinear structure in parameters as in White (1982), this is not
the case. As to the local misspecification, it seems that Remark 3.3
of Chernozhukov and Hong (2004) can still be applied here.

The above analysis can also apply to more general models such
as

y =


g1 (x, β1, δ)+ e1, q ≤ γ ;

g2 (x, β2, δ)+ e2, q > γ ;

where δ is the parameters that remain the same in the two regimes,
and g1 and g2 are smooth functions which are not necessarily the
same. e1 and e2 need not take the form σ1e and σ2e; for example,
the conditional distribution of eℓ can be fe|x,q (e|x, q;αℓ), and there
can be some overlap between α1 and α2. For such models,

z1i = ln
fe2|x,q (e1i + g1 (xi, β10, δ0)− g2 (xi, β20, δ0) |xi, qi;α20)

fe1|x,q (e1i|xi, qi;α10)

and

z2i = ln
fe1|x,q (e2i + g2 (xi, β20, δ0)− g1 (xi, β10, δ0) |xi, qi;α10)

fe2|x,q (e2i|xi, qi;α20)
,

in D(v), and all other components of D(v) are the same as in
Theorem 1.

3.2. Maximum likelihood estimation

The MLE is defined as the maximizer of the log likelihood
function:

θMLE = argmax
θ∈Θ

Qn (θ) ≡ argmax
θ∈Θ

1
n

n
i=1

ln fy|x,q (wi|θ) .

As in Section 2, two MLEs of γ are defined: γLMLE and γMMLE,
which are the left endpoint and middle point of the maximizing
interval, respectively. Following the literature (e.g., Hansen, 2000),
concentration is used to findγLMLE andγMMLE, but we need a two-
step concentration under our general setup. First, conditional on
γ and α,θ1 (α, γ ) ≡

β1 (α, γ ) ,σ1 (α, γ ) is the MLE using the
data with qi ≤ γ , andθ2 (α, γ ) ≡

β2 (α, γ ) ,σ2 (α, γ ) is the
MLE using the datawith qi > γ . Denote the concentrated objective
function as Qn (α, γ ). Second, concentrate Qn (α, γ ) further on γ .
For any γ on the interval Ii = [q(i−1), q(i)), i = 2, . . . , n,Qn(α, γ )
as a function of α is the same, so α(γ ) is essentially a function
of Ii and can only take n − 1 values. Denote the corresponding
concentrated objective function as Qn (γ ). At last, the MLEs of γ
are uniquely defined asγLMLE = argmax L

γ∈Γ
Qn (γ ) , γMMLE = argmaxM

γ∈Γ
Qn (γ ) .

Here, argmax L means that the left endpoint of the maximizing
interval is taken as the estimator of γ ; that is, the maximizer of
γ is searched only among Γ ∩


q(1), . . . , q(n)


. argmaxM means

that the middle point of the maximizing interval is taken as the
estimator of γ ; that is, the maximizer of γ is searched only among
Γ ∩


q(1)+q(2)

2 , . . . ,
q(n−1)+q(n)

2


. The above analysis suggests that the

MLE of θ is numerically invariant regardless of which point on Ii is
taken as our MLE of γ . So we define

θMLE =

β ′

1 (α (γ ) ,γ ) ,β ′

2 (α (γ ) ,γ ) ,σ1 (α (γ ) ,γ ) ,
σ2 (α (γ ) ,γ ) ,α (γ ) ,

whereγ can be eitherγLMLE orγMMLE. Now, the localized MLEs

1
ϕn

θLMLE − θ0


= argmax L
h∈Hn

Qn(h),

1
ϕn

θMMLE − θ0


= argmaxM
h∈Hn

Qn(h),

where Qn(h) = ln Zn(h),θLMLE =
θMLE,γLMLE


and θMMLE =θMLE,γMMLE


. By the argmax continuous mapping theorem and

the limit likelihood ratio process in Section 3.1, the following
theorem follows.

Theorem 2 (Asymptotic Distributions of the LMLE and MMLE). Un-
der Assumptions D0–D10,θLMLE − θ0 = Op (ϕn) , θMMLE − θ0 = Op (ϕn) ,

and
√
n
θMLE − θ0

 d
−→ W ≡ Zθ,MLE

n (γLMLE − γ0)
d

−→ M− ≡ Zγ ,LMLE

n (γMMLE − γ0)
d

−→
M− + M+

2
≡ Zγ ,MMLE

whereW is defined in Theorem 1, and [M−,M+) = argmaxv∈R D(v),
and Zθ,MLE is independent of Zγ ,LMLE and Zγ ,MMLE. Furthermore, the
asymptotic distribution of θMLE is the same as that in the case when
γ0 is known, and the asymptotic distribution of γLMLE (γMMLE) is the
same as that in the case when θ0 is known.

Zγ ,LMLE and Zγ ,MMLE are well-defined random variables that
cannot take ±∞. Since there are no ties on the sample path of
D(v), [M−,M+) is uniquely identified. Also, [M−,M+) cannot go
to infinity as D (±∞) = −∞ and D(0) = 0. An interesting
result is that the asymptotic distributions of regular parameters
and the nonregular parameter do not affect each other. Such an
informational independence contrasts the dependence among the
regular parameters; i.e., J−1 may not be diagonal.

Theorem2 actually covers the asymptotic distributions ofmany
popular estimators. In structural change models, q essentially
follows the uniform distribution on [0, 1] which is independent
of (x, e), although its support is only a set of discrete points
0, 1

n , . . . ,
n−1
n , 1


. As a result, zℓi = zℓi, and the jumping

locations of Nℓ (·) are fixed at {1, 2, . . .}. Now, D(v) becomes a
random walk instead of a compound Poisson process. Define Tℓi’s
as the interarrival times of Nℓ(·), and they follow i.i.d. exponential
distributions with mean 1/fq(γ0). When q follows U[0, 1], the
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mean interarrival time E [Tℓi] = 1, which is the same as the
fixed interarrival time of the random walk. If we further assume
σ1 = σ2 = s and e is independent of x, then D(v) can be
further simplified. For example, when e is normally distributed,γLMLE corresponds to the LSE in Theorem 2 of Chan (1993) and
Proposition 2 of Bai (1997). If x includes only a constant 1, then
z1i and z2i follow the same distribution N


−2∆2, 4∆2


with ∆ =

|β1−β2|
2s defined in Section 3 of Hinkley (1970). If e follows the

Laplace distribution, thenγLMLE corresponds to the LAD estimator
in Theorem 3 of Bai (1995).

The algorithms to calculate the distribution and risk of Zγ ,LMLE
and Zγ ,MMLE are given in Appendix D. When z1i and z2i follow the
same distribution, the distribution of Zγ ,MMLE is symmetric, but
this is not true for Zγ ,LMLE.5 In this case, γMMLE is more efficient
than γLMLE under polynomial losses. In general, however, there is
no ordering between the risks of γLMLE and γMMLE even under the
square error loss or the absolute deviation error loss.

3.3. Bayes estimation

Define the posterior and the localized posterior as

pn(θ) =
Ln (θ) π(θ)

Θ
Ln
θπ(θ)dθ ,

p∗

n(h) = |ϕn| pn(θ0 + ϕnh)

=

Zn (u, v) π

θ0 +

u
√
n , γ0 +

v
n



Un×Vn

Zn (u,v) π θ0 +
u
√
n , γ0 +

v
n


dudv ,

where |ϕn| is the determinant of the matrix ϕn. Accordingly, the
localized BE
1
ϕn

θBE − θ0


= argmin
s,t
ψn(s, t),

where

ψn(s, t) ≡


Un×Vn

l (s − u, t − v) p∗

n(h)dudv,

and l (·, ·) is the loss function. By Theorem 1, p∗
n(h) will converge

weakly to p∗(h) = p∗

1(u) · p∗

2(v) since the prior will be dominated
by the data, where

p∗

1(u) =
exp


−

1
2u

′Ju + u′JW


R2k+2+dα exp

−

1
2u′Ju +u′JW


du

=


|J|

(2π)2k+2+dα
exp


−

1
2


u − Zθ,MLE

′
J

u − Zθ,MLE


p∗

2(v) =
exp {D(v)}

R exp {D(v)} dv
are normalized asymptotic posteriors. By the argmax continuous
mapping theorem, the asymptotic distribution of the BE can
be obtained, which is given in the next theorem. Furthermore,
the BE is proved to be asymptotically efficient in the locally
asymptotically minimax (LAM) sense.

5 When e, x and q are independent of each other, and there is no threshold
effect in variance, z1i and z2i having the same distribution implies P (z1i ≤ C) =

P (z2i ≤ C); that is, P


fe

ei+x′i

β1−β2
s |α


fe(ei |α)

≤ C


= P


fe

ei−x′i

β1−β2
s |α


fe(ei |α)

≤ C


for any

C ≥ 0. If the distribution of e or any one to one transformation of e is symmetric,
this condition is satisfied. For example, e can follow a normal, log normal, Laplace,
logistic or t distribution. See Bai (1995) and Hinkley (1970) for more discussions.
Theorem 3. Under Assumptions D0–D12, P and L,

(i) θBE − θ0 = Op (ϕn).
(ii) If

ψ(s, t) ≡


R2k+3+dα

l (s − u, t − v) · p∗

1(u)p
∗

2(v)dudv

reaches its minimum at a unique point Zθ,BE =

Zθ,BE, Zγ ,BE


,

then

ϕ−1
n

θBE − θ0
 d

−→ Zθ,BE.

(iii) Assume l(h) = l1(u)+l2(v); that is, the loss function is separable
in regular parameters and the nonregular parameter. Further
assume

ψθ (s) ≡


R2k+2+dα

l1 (s − u) p∗

1(u)du,

and

ψγ (t) ≡


R
l2 (t − v) p∗

2(v)dv,

reach theirminima at a unique point Zθ,BE and Zγ ,BE, respectively,
then
√
n
θBE − θ0

 d
−→ Zθ,BE,

n (γBE − γ0)
d

−→ Zγ ,BE,

and Zθ,BE and Zγ ,BE are independent.
(iv) θBE is asymptotically efficient at θ0 with respect to the loss

function l in the LAM sense:

lim
δ→0

lim
n→∞


inf
Tn

sup
|θ−θ0|<δ

Eθ


l


1
ϕn
(Tn − θ)



− sup
|θ−θ0|<δ

Eθ


l


1
ϕn

θBE − θ


= 0, (6)

where Eθ [·] is the expectation under θ , and Tn can be any
estimator of θ . If l(h) = l1(u) + l2(v), thenθBE and γBE are
asymptotically efficient at θ0 and γ0 with respect to the loss
function l1 and l2 in the LAM sense, respectively:

lim
δ→0

lim
n→∞


inf
Tn,θ

sup
|γ−γ0|<δ

sup
|θ−θ0|<δ

Eθ

l1
√

n

Tn,θ − θ


− sup

|γ−γ0|<δ
sup

|θ−θ0|<δ

Eθ

l1
√

n
θBE − θ


= 0,

lim
δ→0

lim
n→∞


inf
Tn,γ

sup
|θ−θ0|<δ

sup
|γ−γ0|<δ

Eθ

l2

n

Tn,γ − γ


− sup

|θ−θ0|<δ

sup
|γ−γ0|<δ

Eθ [l2 (n (γBE − γ ))]


= 0,

where Tn,θ can be any estimator of θ , and Tn,γ can be any
estimator of γ .

In Theorem 3, Zθ,BE and Zγ ,BE can be correlated when the loss
function is not separable. When the loss function is separable and
l1(·) is bowl-shaped, Zθ,BE = Zθ,MLE ∼ N


0,J−1


. Therefore,

the MLE and the BE are asymptotically equivalent for regular
parameters. But for different loss functions l2(·), unlike the regular
parameter case, the most efficient estimator of γ0 is different even
if these loss functions are bowl-shaped. For a given l2(·), the BE
of γ is strictly more efficient than the MLEs under the same loss
function except in some extreme cases, since the MLEs can be
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viewed as a BE under any loss function that approximates the delta
function, e.g., 0–1 loss 1 (|v| > ϵ) /ϵ.

To further appreciate why the BE of γ is more efficient than the
MLEs, note that the regular component of Z∞(h) is determined by
W which has the same dimension as θ , but the nonregular com-
ponent D(v) is determined by


{T1i, T2i}∞i=0 , {z1i, z2i}

∞

i=1


which

is infinite-dimensional. From the well-known Rao–Blackwell ar-
gument, the limit optimal (Bayes) estimators of θ are all some
shift transformations of W since the information about θ in the
data is completely controlled by W asymptotically. When l1 is
bowl-shaped, they are just W . For γ , however, a one-dimensional
estimator cannot cover the information in infinite-dimensional
statistics. How to use the information efficiently and which part
of the information to use depend on the loss function. For exam-
ple, suppose Zγ ,LMLE is obtained at the Mth jump on v ≤ 0, then
Zγ ,LMLE = −

M
i=0 T1i, indicating that Zγ ,LMLE only uses the infor-

mation in {T1i}Mi=0 and {z1i, z2i}∞i=1. In contrast, the posterior mean
is a function of all


{T1i, T2i}∞i=0 , {z1i, z2i}

∞

i=1


, which uses the infor-

mation more efficiently than Zγ ,LMLE under the square error loss.
The most popular specifications of loss function l2(·) include:

(a) l2(v) = v2, then Zγ ,BE is the mean of p∗

2(v); (b) l2(v) = |v|, then
Zγ ,BE is the median of p∗

2(v); and (c) l2(−v) = (τ − 1 (v ≤ 0)) v
for τ ∈ (0, 1), then Zγ ,BE is the τ ’th percentile of p∗

2(v), denoted
as Zτ ,BE. The algorithms to calculate the distribution and risk of
Zγ ,BE for the above loss functions are given in Appendix D. In
applications, the MCMC method is used to compute the BE. For
example, if the goal is to find the BE of γ , first draw aMarkov chain
S =


θ (1), . . . , θ (B)


, whose marginal density is approximately

pn(θ). Then choose the sequence for γ , denoted as Sγ :

Sγ =

γ (1), . . . , γ (B)


. (7)γBE is some function of Sγ depending on the loss function l2. In cases

of (a)–(c),γBE is approximated by the mean, median, and the τ ’th
percentile of Sγ , respectively.

3.4. Confidence interval construction of γ

Although Appendix D provides the algorithms for simulating
the asymptotic distributions of the estimators, Wald-type CIs are
hard to construct for twomain reasons. First, while the conditional
distribution fe|x,q (e|x, q;α) is usually specified in a parametric
model, fx,q(x, q) is rarely known in practice, and as a result, the
intensity of Nℓ(·) must be estimated by some nonparametric
method, e.g.,fq (γ ), wherefq is a nonparametric density estimator
such as the kernel smoother, andγ canbe any consistent estimator.
But such a nonparametric estimator will make the algorithms
imprecise due to the low convergence rate of nonparametric
methods. Second, infinite independent copies of z1i and z2i are
also needed to simulate sample paths of D(v), but they involve
an unknown generator of conditional random variables unless q is
assumed to be independent of (x, e). See Section 4.1 of Yu (2008a)
for more discussions about the difficulties in constructing Wald-
type CIs in threshold regression.

Three valid methods for CI construction in the parametric
case are as follows. (i) Hansen’s method (2000), which inverts
the acceptance region of the likelihood ratio test. Hansen (2000)
derives an elegant asymptotic distribution in the framework of
asymptotically vanishing threshold effect, but his framework does
not allow the threshold effect in variance. His Theorem 3 shows
that in our framework with i.i.d. normal errors, his CI is valid but
conservative. (ii) The parametric bootstrap method. The validity
of this method for the LMLE can be shown using Proposition
1.1 in Beran (1997). The critical step is to check the condition
(a) there, which requires that n (γLMLE − γn)

d
−→ Zγ ,LMLE for

any sequence of θn converging to θ0. In the proof of Theorem 1,
we show that the weak convergence of the log likelihood ratio
process is uniform for θ in a neighborhood of θ0, so this condition
is automatically satisfied. Similar arguments can apply to the
MMLE and BE.6 Since fx,q(x, q) is unknown in practice, the
parametric wild bootstrap would be suggested. In the parametric
wild bootstrap, we condition on {xi, qi}ni=1, and only utilize the
randomness from fe|x,q (e|x, q;α). But as argued in Section 4.3 of
Yu (2008b), the parametric wild bootstrap is not valid. (iii) The
subsampling method, which is proposed by Politis and Romano
(1994) and summarized in Politis et al. (1999). The only assumption
for the validity of this method is that there is a continuous
asymptotic distribution, which is proved in Appendix D.7 A similar
question as in the parametric bootstrap is that whether the
parametric wild subsampling is valid. Given the validity of both
the parametric subsampling and the nonparametric subsampling,
the parametric wild subsampling, which can be treated as an in-
between procedure, should be valid.8 But a formal development of
this result is beyond the scope of this paper.

The Bayes method can lead to a straightforward construction of
the CI for γ . The Bayesian credible set (corresponding to confidence
interval in the frequentist language) for γ can be constructed as
follows. Define

Fn(x) =


θ∈Θ:γ≤x

pn(θ)dθ and cn(τ ) = inf {x : Fn(x) ≥ τ } ,

then the (1 − τ) credible set for γ is given by [cn(τ/2), cn(1 −

τ/2)]. Note that the Bayesian credible set does not rely on the
specific form of fx,q(x, q). fx,q(x, q) is absorbed in the constant term
of the posterior since it does not include any parameter of interest.
In applications, choose the τ/2 and 1 − τ/2 percentile of the
marginalMCMC sequence Sγ in (7). For regular parameters, similar
steps can be followed. The following theoremmakes sure that this
credible set is an asymptotically valid confidence set for γ .

Theorem 4. Under Assumptions D0–D12 and P, if Zτ/2,BE and
Z1−τ/2,BE, the τ/2’th and (1 − τ/2)’th percentile of p∗

2(v), have
positive densities over an open neighborhood of 0, then

lim
n→∞

P (cn(τ/2) ≤ γ0 ≤ cn(1 − τ/2)) = 1 − τ .

Proof. This result is from the optimality of the Bayes estimator;
see the proof of Theorem 3.3 in Chernozhukov and Hong (2004)
for more details. �

Wecan use the algorithms in Appendix D to check the condition
that Zτ/2,BE and Z1−τ/2,BE have positive densities over an open
neighborhood of 0. In fact, for a confidence interval, asymptotic
validity is only the basic requirement. Given the efficiency of
the Bayes procedure, we also expect that the credible set has
advantages in length, and this is confirmed by simulations in
Section 4.2.

6 In the conventional boundary case, Remark 3.6 of Chernozhukov and Hong
(2004) provides a similar result.
7 In proving the validity of the nonparametric subsampling, Gonzalo and Wolf

(2005) assume the asymptotic distribution of the test statistic to be continuous
without proof.
8 To seewhy the parametricwild subsampling is valid, let us go back to the simple

example in Section 2. Now, the parametric wild subsampling is equivalent to the
nonparametric subsampling because the only randomness is from q. Given that the
asymptotic distribution, which is exponential or double exponential, is continuous,
the parametric wild subsampling is valid. Note that given fx,q is unknown in
reality, the only practical parametric resampling method is the parametric wild
subsampling.
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Fig. 2. Sample paths of exp{D(v)} for four values of β1 .
4. Simulations

Two simulations are presented in this section. For convenience,
the following simple setup is used:

y =


β1 + σ1e, q ≤ γ ;

σ2e, q > γ ;

q ∼ U[0, 1], e ∼ N(0, 1), and q is independent of e,

where σ1, σ2 and β1 are known, and γ is the only parameter of
interest. γ0 = 1/2. σ10 = 0.2, σ20 = 0.4, and four values of β1 are
used: 0.2, 0.4, 0.7 and 1, corresponding to tiny, small, medium and
large threshold effects, respectively.

The first simulation is to compare the risks of the BE and
the MLEs, while the second is to compare coverage and length
properties ofmethods for CI construction, including the asymptotic
method, parametric bootstrap, parametric wild subsampling and
posterior interval. The results for parametric subsampling are
omitted since their performance is between parametric bootstrap
and parametric wild subsampling.9 The performance of Hansen’s
method (2000) will be reported in Yu (2008a), since it uses a
different asymptotic framework and is a semiparametric method.

It is useful to study asymptotic properties of the estimators be-
fore examining their finite-sample performance. From Section 3.1,

z1i = ln

σ1

σ2


+

1
2


e2i −

(σ1ei + β1)
2

σ 2
2


,

z2i = ln

σ2

σ1


+

1
2


e2i −

(σ2ei − β1)
2

σ 2
1


,

9 In the conventional boundary estimation, Chernozhukov and Hong (2004)
mention twomotivations for parametric subsampling in their Remarks 3.5 and 3.6:
first, subsampling is less demanding in terms of computation; second, it is more
robust to local misspecifications of the parametric model. In our simulation, the
model is correctly specified, so there is no theoretical reason to report the results
for parametric subsampling.
and Nℓ (·) is a standard Poisson process. Note that E[z1i] =

ln

σ1
σ2


+

1
2


1 −


σ1
σ2

2
−

1
2


β1
σ2

2
≤ −

1
2


β1
σ2

2
< 0. Since E[z1i]

reaches its maximum at σ1
σ2

= 1, σ1
σ2

indeed provides information
for γ . This point is not clear in the least squares estimation. When
β1 = 0, γ cannot be identified by the least squares criterion
regardless of the value of σ1

σ2
; that is, the least squares criterion

can only identify the threshold effect in mean, not in variance.
In contrast, using the likelihood principle, even when β1 = 0, γ
can still be identified as long as σ1

σ2
≠ 1. β1

σ2
affects E[z1i] in an

obvious way. Similar arguments apply to z2i. Typical sample paths
of exp{D(v)} for the four β1 values are shown in Fig. 2. Comparing
Fig. 2 to Fig. 1 in Section 2, we can see that exp{D(v)} decreases to
0 gradually rather than jumps from 1 to 0 in only one step. When
β1 gets larger, the sample path of exp{D(v)} gets more similar to
that in Fig. 1.

Note that z1i and z2i have different distributions, so the
asymptotic distribution of the MMLE is not symmetric. Fig. 3
shows the asymptotic densities of the LMLE and MMLE based on
the algorithms in Appendix D. Interestingly, while the asymptotic
distribution of the LMLE is continuous, its density is not. The
asymptotic densities of the posterior mean and median are visibly
indistinguishable from that of the MMLE, so they are omitted here.
When β1 gets larger, the densities in Fig. 3 get more concentrated
and more similar to those in Fig. 1. For example, the asymptotic
density of the MMLE gets more symmetric, and the asymptotic
density of the LMLE on v > 0 gets vanishing.

4.1. Simulation 1: risk comparison

In this simulation, the key task is to simulate from the posterior
pn(θ). The function slicesample in Matlab is used to carry out this
task. The MMLE is used as the starting value, and 10000 samples
are drawn from the posterior after discarding the first 200 ‘‘burn-
in’’ draws. The prior of γ is assumed to be uniform on (qmin, qmax).
For details of the slice sampler, see Neal (2003).
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Fig. 3. Asymptotic densities of the LMLE and MMLE for four values of β1 .
The simulation results are summarized in Table 1. This table also
reports the asymptotic risk of the left-endpoint LSE (LLSE) and the
middle-point LSE (MLSE) which are similarly defined as the LMLE
and MMLE. For the finite-sample performance of the LSEs, see Yu
(2008a). The following conclusions can be drawn from Table 1.
(i) The BE is more efficient than the MLEs even in finite samples.
The difference between the BE and the MLEs gets larger when
β1 gets smaller. (ii) The asymptotic and finite-sample risk of the
MMLE is between the LMLE and the BE when β1 is not too small.
When β1 = 0.2, the LMLE can be more efficient than the MMLE.
(iii) The asymptotic risk of the LSEs is larger than the MLEs. This
is because the MLEs incorporate the information in the threshold
effect of variance.10 Such a result is particularly true when β1 is
small, since the threshold effect in variance provides significant
information when γ is hard to identify by the threshold effect in
mean. (iv) Under the mean square error loss, the posterior mean
is most efficient both asymptotically and in finite samples. Under
the absolute deviation error loss, the posterior median is most
efficient both asymptotically and in finite samples. (v) When β1
is not too small, the risk when n = 400 is roughly a quarter of
the risk when n = 100, and the risk of n = 100 is roughly
1

100 of the asymptotic risk. This justifies the n consistency of all
estimators and suggests that the finite-sample distributions of
these estimators are close to their asymptotic distributions even
when n is as small as 100. (vi) When β1 is small, the risk when n =

400 is less than a quarter of the risk when n = 100, and is about
1

400 of the asymptotic risk. This suggests that a larger sample size
is needed to approximate the asymptotic distribution when β1 is
small. The finite-sample distributionwhenβ1 is small and n = 100
may be better approximated in the framework of Hansen (2000).
(vii) The speed of efficiency gain from a larger β1 becomes slower
when β1 gets larger. The limit risk when β1 = ∞ corresponds to
the risk in the extreme case in Section 2. So the suggestions based
on this simulation are (a) use the Bayes method to estimate γ ;

10 When there is no threshold effect in variance, the MLEs and the LSEs are
equivalent in this setup.
(b) if the maximum likelihood method is used, the MMLE is
preferable to the LMLE.

4.2. Simulation 2: comparison of confidence intervals

First we will briefly describe the parametric wild subsampling
method for constructing CIs of γ in the general model (1).
Supposing the MMLE is used in the subsampling procedure, the
algorithms are as follows:

Algorithm 1 (Generating the Parametric Wild Subsampling Sample
y∗

i , x
∗

i , q
∗

i

m
i=1).

1. Get the MMLE of θ , denoted asθ .
2. Generate a sequence


x∗

i , q
∗

i

m
i=1 by sampling without replace-

ment from {xi, qi}ni=1.
3. Generate e∗

i from the conditional distribution fe|x,q

e|x∗

i , q
∗

i ;α,
i = 1, . . . ,m.

4. Generate a sequence

y∗

i

m
i=1 by

y∗

i =


x∗′

i
β1 +σ1e∗

i , if q∗

i ≤ γ ,
x∗′

i
β2 +σ2e∗

i , if q∗

i > γ .
Algorithm 2 (Constructing the ParametricWild Subsampling CI for a
Fixed Block Size m).
1. Generate


y∗

i , x
∗

i , q
∗

i

m
i=1 by Algorithm 1.

2. Calculate the MMLEθ∗ based on

y∗

i , x
∗

i , q
∗

i

m
i=1.

3. Repeat step 1 and 2 B times to get a sequence of estimatorsθ∗

b

B
b=1.

4. Find the τ
2 and


1 −

τ
2


percentiles of


m
γ ∗

b −γ Bb=1,
denoted as cnm


τ
2


and cnm


1 −

τ
2


, then the equal-tailed

subsampling CI for γ is
γ − n−1cnm


1 −

τ
2


,γ − n−1cnm


τ
2


.

Similarly, the symmetric subsampling CI for γ is constructed
by finding the 1 − τ percentile of


m
γ ∗

b −γ Bb=1, denoted as
cnm (1 − τ), and then constructing the CI as [γ − n−1cnm(1 −

τ),γ + n−1cnm(1 − τ)].
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Table 1
Estimator performance for γ (based on 1000 repetitions).
Estimators β1 Values

β1 = 0.2 β1 = 0.4 β1 = 0.7 β1 = 1
RMSE MAD RMSE MAD RMSE MAD RMSE MAD

n = 100 Risk (×10−2)

LMLE 5.032 3.107 2.899 1.810 1.470 1.042 1.548 1.062
MMLE 5.149 3.107 2.817 1.632 1.192 0.755 0.960 0.616
Posterior mean 4.033 2.702 2.310 1.519 1.066 0.747 0.859 0.594
Posterior median 4.284 2.672 2.468 1.475 1.085 0.718 0.861 0.588
n = 400
LMLE 1.137 0.694 0.726 0.477 0.420 0.284 0.384 0.267
MMLE 1.140 0.686 0.724 0.440 0.345 0.210 0.233 0.160
Posterior mean 0.974 0.642 0.578 0.383 0.302 0.199 0.218 0.156
Posterior median 1.008 0.598 0.600 0.373 0.313 0.198 0.219 0.154
n = ∞ Risk
LMLE 4.486 2.808 2.599 1.701 1.673 1.163 1.475 1.041
MMLE 4.562 2.815 2.561 1.577 1.346 0.840 0.923 0.607
LLSE 14.627 8.300 4.288 2.491 1.892 1.258 1.499 1.051
MLSE 14.828 8.430 4.395 2.444 1.733 1.005 1.076 0.674
Posterior mean 3.721 2.535 2.082 1.434 1.149 0.793 0.846 0.591
Posterior median 3.806 2.413 2.182 1.388 1.175 0.775 0.854 0.584
If the parametric subsampling is used, then step 2 of
Algorithm 1 changes to ‘‘Generate a sequence


x∗

i , q
∗

i

m
i=1 by

sampling from fx,q(x, q)’’. If the parametric bootstrap is used, the
only difference from the parametric subsampling is that n instead
of m is used in Algorithm 2. Also, the following Algorithm 3 is not
needed.

Algorithm 3 (Selecting the Block Size m).

1. Fix a selection of reasonable block sizem betweenmlow andmup.
2. Generate K pseudo sequences


y∗

ki, x
∗

ki, q
∗

ki

n
i=1 , k = 1, . . . , K

by Algorithm 1. For each k and m, compute a subsampling
confidence interval CIk,m for γ by Algorithm 2.

3. Computeg(m) = #
γ ∈ CIk,m


/K .

4. Find the valuem that minimizes |g(m)− (1 − τ)|.

The asymptotic confidence interval is constructed by the
following algorithm:

Algorithm 4 (Constructing the Asymptotic CI).

1. Get the MMLE of θ , denoted asθ .
2. Find the τ

2 and 1 −
τ
2 quantiles of the asymptotic distribution

of γ using algorithms in Appendix D, denoted as c(τ/2) and
c(1− τ/2). Similarly, find the 1− τ quantile for the asymptotic
distribution of |γ |, denoted as c(1 − τ).

3. The asymptotic equal-tailed CI is constructed as [γ − n−1c(1−
τ
2 ),γ − n−1c( τ2 )], and the symmetric CI is constructed as [γ −

n−1c(1 − τ),γ + n−1c(1 − τ)].

The simulation results are summarized in Table 2. As discussed
in Section 3.4, the asymptotic method and parametric bootstrap
are not practical because fx,q(x, q) is unknown, they are reported
here only for comparison. Among all methods for CI construction
except the posterior interval, only the results associated with the
MMLE are reported, since the MMLE works better than the LMLE
in most cases. n/4 is used as the block size in the subsampling
method. It is time-consuming to use Algorithm 3 to select the
block size adaptively. The following selection of the parameters in
Algorithm 3 is suggested: for n = 100,mlow = 15,mup = 40; for
n = 400,mlow = 50,mup = 150. K = 1000. The number of both
the bootstrap and subsampling replication is 1000.

A few results of interest from Table 2 are summarized as
follows. (i) The posterior interval works the best in terms of
both coverage and length, as it has a high coverage with a short
length. (ii) The asymptotic method has a good coverage property,
which reproduces the result in Simulation 1 that the finite-sample
distribution is close to the asymptotic distribution due to the
superconsistency of the MMLE. Its length property is comparable
to the bootstrap method, but worse than the posterior interval.
When β1 = 0.2 and n = 100, there seems to be an undercover
problem, which indicates that the framework of Hansen (2000)
may be suitable in this case. (iii) In the asymptotic or bootstrap
inference, the equal-tailed interval works generally better than the
symmetric interval especially when β1 is small, which indicates
that the asymptotic distribution of the MMLE is not symmetric
as shown in Fig. 3. (iv) The performance of the wild subsampling
is worse than the bootstrap. This is essentially because only a
‘‘subsample’’ is used for inference. For regular parameters, the
subsampling method has a worse coverage refinement than the
bootstrap as shown in Politis and Romano (1994). There is no
result about finite-sample refinement for nonregular parameters.
From this simulation, it seems that such a result can also apply
to nonregular parameters. (v) The length when n = 400 is
roughly a quarter of the length when n = 100, which justifies
the n consistency of γ estimators. So the suggestion based on this
simulation is to use the posterior interval as the set estimator
of γ .

5. Conclusion

This paper discusses likelihood-based estimation and inference
in general parametric threshold regression models. By connecting
threshold regression with the boundary literature, we find that
the Bayes estimator is most efficient, and especially, strictly more
efficient than the MLEs. Also, the posterior interval is proved to be
an asymptotically valid confidence interval and is attractive in both
length and coverage in finite samples. Algorithms are developed to
calculate asymptotic distributions and risk for the estimators of the
threshold point.
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Table 2
Comparison of inference methods: coverage and average length of nominal 95% confidence intervals for γ (based on 1000 repetitions).
CIs β1 Values

β1 = 0.2 β1 = 0.4 β1 = 0.7 β1 = 1
Cov and leng (×10−2)

Cov Length Cov Length Cov Length Cov Length
n = 100
Asymptotic MMLE (ET) 0.939 18.655 0.942 10.558 0.968 5.587 0.938 3.802
Asymptotic MMLE (S) 0.926 19.814 0.938 11.248 0.969 5.758 0.945 3.806
Bootstrap MMLE (ET) 0.933 18.281 0.938 10.395 0.966 5.519 0.940 3.745
Bootstrap MMLE (S) 0.923 19.321 0.937 11.056 0.965 5.671 0.945 3.731
Wild subsampling MMLE (ET) 0.883 15.453 0.920 9.719 0.945 5.036 0.913 3.334
Wild subsampling MMLE (S) 0.899 16.601 0.932 10.401 0.959 5.293 0.936 3.444
Posterior interval 0.939 12.244 0.947 7.000 0.950 3.468 0.947 2.446
n = 400
Asymptotic MMLE (ET) 0.941 4.664 0.934 2.640 0.957 1.397 0.938 0.951
Asymptotic MMLE (S) 0.943 4.954 0.933 2.812 0.948 1.440 0.942 0.952
Bootstrap MMLE (ET) 0.939 4.615 0.936 2.623 0.951 1.389 0.936 0.943
Bootstrap MMLE (S) 0.941 4.882 0.932 2.787 0.945 1.424 0.938 0.941
Wild subsampling MMLE (ET) 0.935 4.493 0.924 2.537 0.939 1.327 0.910 0.877
Wild subsampling MMLE (S) 0.941 4.775 0.935 2.734 0.947 1.389 0.925 0.904
Posterior interval 0.940 3.134 0.944 1.715 0.942 0.871 0.950 0.615

Note: ‘‘ET’’ for equal-tailed CI and ‘‘S’’ for symmetric CI.
UW-Madison for which I want to express my gratitude. Special
thanks go to the co-editor John Geweke, four referees, and
especially, one associate editor for constructive comments.

Appendix A. Regularity conditions

First, notations are collected for reference in all assumptions,
lemmas and proofs. In all statements about a general θn, only the
case for θn = θ0 is proved. The general case only complicates
notations without changing the essential idea.

N is an open neighborhood of θ0,Nℓ is an open neighborhood
of θℓ0, and Nγ is an open neighborhood of γ0. N0 is the closure of
an η-ball around θ0 such that B(θ0, 2η) ⊂ N , where B(θ0, 2η) is a
ball with center θ0 and radius 2η.

Zd
n (v) = exp


n

i=1

z1i1

γ0 +

v

n
< qi ≤ γ0



+ exp


n

i=1

z2i1

γ0 < qi ≤ γ0 +

v

n



S (w|θ) =



−
∂ ln fe|x,q
∂e

(e|x, q;α)
x′

σ1
1 (q ≤ γ )

−
∂ ln fe|x,q
∂e

(e|x, q;α)
x′

σ2
1 (q > γ )

−
1
σ1


1 +

∂ ln fe|x,q
∂e

(e|x, q;α) e

1 (q ≤ γ )

−
1
σ2


1 +

∂ ln fe|x,q
∂e

(e|x, q;α) e

1 (q > γ )

∂ ln fe|x,q
∂α

(e|x, q;α)



≡


Sβ1 (θ)
Sβ2 (θ)
Sσ1 (θ)
Sσ2 (θ)
Sα (θ)


is the score function of θ , and Si = S (wi|θ0).

J (θ) ≡ E

S (w|θ) S ′ (w|θ)


and

J = J (θ0) = E

SiS ′

i


(8)
are the information matrices of regular parameters, and z =

J−1
√
n

n
i=1 Si.

LRn

z, Zd

n , h


= −
1
2
u′Ju + u′Jz + ln Zd

n (v)

is an approximation of the log likelihood ratio statistic. z is
the asymptotically sufficient statistic for regular parameters, and
Zd
n is the asymptotically sufficient statistic for the nonregular

parameter.

Qn (θ) =
1
n

n
i=1

ln fy|x,q (wi|θ) , Q (θ) = E

ln fy|x,q (w|θ)


,

Gn ln fy|x,q (w|θ) =
√
n (Qn (θ)− Q (θ)) .

The following formula is used repetitively in Appendices B and C:

ln fy|x,q (w|θ)− ln fy|x,q (w|θ0)

= ln
fe|x,q (e|x, q; θ1)
fe|x,q (e|x, q; θ10)

1 (q ≤ γ ∧ γ0)

+ ln
fe|x,q (e|x, q; θ2)
fe|x,q (e|x, q; θ20)

1 (q > γ ∨ γ0)

+ z1 (w|θ2, θ10) 1 (γ ∧ γ0 < q ≤ γ0)

+ z2 (w|θ1, θ20) 1 (γ0 < q ≤ γ ∨ γ0)

≡ A (w|θ)+ B (w|θ)+ C (w|θ)+ D (w|θ) , (9)

where e|x, q ∼ fe|x,q (e|x, q;α0), and fe|x,q (e|x, q; θℓ0) =
1
σℓ0

fe|x,q (e|x, q;α0).

Assumptions on the data generating process

Assumption D1. (x, q) has a marginal density fx,q, and e has a
conditional density fe|x,q (e|x, q;α)which is continuously differen-
tiable in both e and α for almost every w.

Assumption D2. fq(·) is continuous, 0 < f
q
≤ fq(q) ≤ f q < ∞ for

q ∈ Γ , P(q < γ ) > 0 and P (q > γ ) > 0.

Assumption D3. J (θ) is continuous, nonsingular and finite for
θ ∈ N .
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Assumption D4. For every (µ1, σ1, α1) and (µ2, σ2, α2) with σ1
and σ2 in a bounded set and α1 and α2 in Λ, there exists a slope
functionm(w) such that E


m(w)4


< ∞,ln fe|x,q (µ1 + σ1e|x, q;α1)− ln fe|x,q (µ2 + σ2e|x, q;α2)


≤ m(w) (|µ1 − µ2| + |σ1 − σ2| + ∥α1 − α2∥) .

Assumption D5. E[∥x∥4
] < ∞.

Assumption D6. Uniformly for θ1 ∈ N1, θ2 ∈ N2 and γ ∈ Nγ ,

E


supθ2∈N2

|z1

w|θ2, θ1|q = γ


< ∞, and

E


supθ1∈N1

|z2

w|θ1, θ2|q = γ


< ∞.

Assumption D7. Both z1i and z2i have absolutely continuous
distributions.

Assumption D8. Uniformly for θ1 ∈ N1, θ2 ∈ N2 and γ ∈ Nγ ,

E [z1 (w|θ2, θ1) |q = γ ] < 0, and E [z2 (w|θ1, θ2) |q = γ ] < 0.

Assumption D9. P

fe|x,q (e|x, q; θℓ) ≠ fe|x,q


e|x, q;θℓ |q > 0 for

any θℓ,θℓ ∈ Bℓ ×Ωℓ ×Λ, θℓ ≠θℓ, and q ∈ Q.

Assumption D10. E

| ln fe|x,q


e|x, q;α0


|

< ∞.

Assumption D11.

E


∂

∂θ1 ln fe|x,q

e|x, q;θ1, θ1 ∂

∂θ ′

1

ln fe|x,q

×

e|x, q;θ1, θ1 1 (q ≤ γ )


and

E


∂

∂θ2 ln fe|x,q

e|x, q;θ2, θ2 ∂

∂θ ′

2

ln fe|x,q

×

e|x, q;θ2, θ2 1 (q > γ )


are nonsingular and finite forθℓ, θ ℓ, and γ in an open neighbor-
hood of the true value.

Assumption D12. For ω ∈ [0, 1],

E


∂

∂θ1 ln fe|x,q

e|x, q;ωθ1 + (1 − ω) θ2, θ1

 ∂

∂θ ′

1

ln fe|x,q

×

e|x, q;ωθ1 + (1 − ω) θ2, θ1

 q = γ


and

E


∂

∂θ2 ln fe|x,q

e|x, q;ωθ2 + (1 − ω) θ1, θ2

 ∂

∂θ ′

2

ln fe|x,q

×

e|x, q;ωθ2 + (1 − ω) θ1, θ2

 q = γ


are nonsingular and finite for θ1, θ2 and γ in an open neighborhood
of the true value.
Remark 1. All assumptions are standard in nonlinear parametric
estimation. To appreciate the validity of these assumptions, we
can assume that e is independent of (x, q) and follows a standard
normal distribution, then all assumptions can be easily checked.
For example, E


m (w)4


< ∞ in D4 corresponds to E[e4] <

∞. Assumption D8 corresponds to Condition 4 in Chan (1993)
in least squares case. It is an essential assumption needed for
the discontinuous threshold regression model; that is, we do
not require every component of θ1 to be different from the
corresponding component of θ2 as long as this assumption holds.
Assumptions D9 and D10 are used in Theorem 2 for identification
and proving consistency of the MLEs, while in Bayes estimation,
Assumption L is used for identification. D11 and D12 limit the
information matrix for fe|x,q


e|x, q;θℓ, θ ℓ locally. They are used

for bounding the tail behavior and small variations of the likelihood
ratio process.

Assumptions on the prior and the loss function

Assumption P. The prior π (θ) : R2k+3+dα → [0,∞) is
continuous and positive at θ0 with a polynomial majorant.

Assumption L. l : R2k+3+dα → [0,∞) satisfies the following four
conditions:

(i) l is continuous and not identically 0;
(ii) The sets {x : l(x) < C} are convex for all C > 0, and bounded

for all C > 0 sufficiently small;
(iii) l has a polynomial majorant;
(iv) There exist numbers ζ > 0 and H0 ≥ 0 such that for H ≥ H0,

sup

l(x) : |x| ≤ Hζ


− inf {l(x) : |x| ≥ H} ≤ 0.11

Remark 2. Assumption P is standard, e.g., the noninformative
prior satisfies this assumption. Assumption L is fairlyweak, and the
most popular loss functions satisfy this assumption. For example,
l can be a convex function with a unique minimum at 0 such as
l(x) = ∥x∥r , r ≥ 1. Under such a loss function, the uniqueness of
Zθ,BE is guaranteed. l is not necessarily symmetric, so it can be the
check function of quantile regression as in Section 3.3. Condition
(iv) in Assumption L limits the amount that the loss function can
decrease in the tails.

Appendix B. Proofs

Proof of Theorem 1. From Lemma 2,

ln Zn(h) = LRn

z, Zd

n , h

+ op(1),

where the op(1) is uniform for h on any compact set in
R2k+3+dα . So the regular component in the weak limit of Zn(h) is
straightforward, and the following proof focuses on the nonregular
component Zd

n (·). Suppose v1J1 < · · · < v11 < v10 =

0 and 0 = v20 < v21 < · · · < v2J2 , where J1 and
J2 are positive integers. It is sufficient to show that the weak
limit of


ln Zd

n (vℓjℓ)− ln Zd
n (vℓ,jℓ−1)

Jℓ
jℓ=1 matches the distribution

of

D(vℓjℓ)− D


vℓ,jℓ−1

Jℓ
jℓ=1 because


ln Zd

n (vℓjℓ)
Jℓ
jℓ=1 is a linear

transformation of

ln Zd

n (vℓjℓ)− ln Zd
n (vℓ,jℓ−1)

Jℓ
jℓ=1.

11 This implies Hζ ≤ H .
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The characteristic function is used to find the weak limit
of

ln Zd

n (vℓjℓ)− ln Zd
n (vℓ,jℓ−1)

Jℓ
jℓ=1 and prove their asymptotic

independence with z. First, define terms as follows:

T1j1 i = z1i1

γ0 +

v1j1

n
< qi ≤ γ0 +
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n


,
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
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n
< qi ≤ γ0 +

v2,j2

n


,

T3i =
Si

√
n
,

for jℓ = 1, . . . , Jℓ. Since
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
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v1,j1−1

n


×


exp

√
−1t1j1z1i


− 1


,

exp
√

−1t2j2T2j2i


= 1 + 1

γ0 +

v2,j2−1

n
< qi ≤ γ0 +

v2,j2

n


×


exp

√
−1t2j2z2i


− 1


,

it follows

E


exp


√

−1


J1

j1=1

t1j1T1j1 i +
J2

j2=1

t2j2T2j2 i + t ′3T3i



= E


J1

j1=1

exp
√

−1t1j1T1j1 i
 J2

j2=1

exp
√

−1t2j2T2j2 i


× exp
√

−1t ′3T3i


= E

exp

√
−1t ′3T3i


+

J1
j1=1

|v1j1 − v1,j1−1|

n
fq (γ0) E


exp

√
−1t ′3T3i


×


exp

√
−1t1j1z1i


− 1


|qi = γ0−


+

J2
j2=1

v2j2 − v2,j2−1

n
fq (γ0) E


exp

√
−1t ′3T3i


×


exp

√
−1t2j2z2i


− 1

 qi = γ0+


+ o


1
n


= 1 +

1
n


−

1
2
t ′3Jt3 + fq (γ0)

J1
j1=1

|v1j1 − v1,j1−1|
E


exp
√

−1t1j1z1i
 qi = γ0−


− 1


+ fq (γ0)

J2
j2=1


v2j2 − v2,j2−1


×


E


exp
√

−1t2j2z2i
 qi = γ0+


− 1


+ o


1
n


where the last equality is from the Taylor expansion of exp{

√
−1t ′3

T3i}. From Assumption D2, o(1) in the second equality is a quantity
going to zero uniformly over i = 1, . . . , n. So

E


exp


√

−1


J1

j1=1

t1j1

ln Zd

n (v1j1)− ln Zd
n (v1,j1−1)


+

J2
j2=1

t2j2

ln Zd

n (v2j2)− ln Zd
n (v2,j2−1)


+ t ′3Jz


= E


exp


√

−1
n

i=1


J1

j1=1

t1j1T1j1 i +
J2

j2=1

t2j2T2j2 i + t ′3T3i



=

n
i=1

E


exp


√

−1
J1

j1=1

t1j1T1j1i +
J2

j2=1

t2j2T2j2i + t ′3T3i



→ exp


−

1
2
t ′3Jt3 + fq (γ0)

J1
j1=1

|v1j1 − v1,j1−1|

×


E


exp
√

−1t1j1z1i


|qi = γ0−


− 1


+ fq (γ0)
J2

j2=1


v2j2 − v2,j2−1


×


E


exp
√

−1t2j2z2i
 qi = γ0+


− 1


.

It is well known that the characteristic function of JW
is exp


−

1
2 t

′

3Jt3

. By the definition of D(v), the characteristic

function of

D(v1j1)− D


v1,j1−1

J1
j1=1 is

E


exp


√

−1
J1

j1=1

t1j1

D(v1j1)− D


v1,j1−1



(1)
= E

 J1
j1=1

N1

v1j1 −N1

v1,j1−1


i=1

exp
√

−1t1j1z1i


(2)
= E

 J1
j1=1

N1

v1j1 −N1

v1,j1−1


i=1

E

exp

√
−1t1j1z1i


(3)
= E

 J1
j1=1

N1

v1j1 −N1

v1,j1−1


i=1

E

exp

√
−1t1j1z1i

 qi
= γ0 −


(4)
= E


exp


J1

j1=1


N1
v1j1 − N1

v1,j1−1
 ln

×


E

exp

√
−1t1j1z1i

 qi = γ0−


(5)
= exp


fq (γ0)

J1
j1=1

v1j1 − v1,j1−1
 [exp

×


ln

E

exp

√
−1t1j1z1i

 qi = γ0−


− 1


(6)
= exp


fq (γ0)

J1
j1=1

v1j1 − v1,j1−1


×


E

exp

√
−1t1j1z1i

 qi = γ0−


− 1


,

where (1), (4), (6) are obvious, (2) is from the law of iterated
expectation and the fact that N1

v1j1  − N1
v1,j1−1

 is
independent of z1i, (3) is from the definition of z1i, and (5) is from
the moment generating function of Poisson random variables. A
similar calculation can be applied to


D(v2j2)− D


v2,j2−1

J2
j2=1.
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So by the independence among JW ,

D(v1j1)− D


v1,j1−1

J1
j1=1

and

D(v2j2)− D


v2,j2−1

J2
j2=1, the characteristic function of

Z∞(h) matches the limit of that of Zn (h), and thus the result of
interest follows. AssumptionD6 guarantees the existence of z1i and
z2i in the theorem.12 By Theorem 7 in Appendix I of Ibragimov
and Has’minskii (1981) and Assumptions D3 and D6, the weak
convergence can be shown to be uniformly valid for θ ∈ N instead
of a fixed point θ0. �

Proof of Theorem 2. Only the asymptotic results for the LMLE
is proved here, since the proof for the MMLE is similar. The
consistency is proved in Lemma 4, and the convergence rate is
proved in Lemma 5. As to the asymptotic distribution, a modified
version of the argmax continuous mapping theorem (Theorem
3.2.2 in Van der Vaart and Wellner (1996)) is used.

First define some basic topological structures for this problem.
LetDK be the space of functions g = g1(u)+g2(v) : K ⊂ H −→ R,
where g1(·) is continuous, g2(·) is right-continuous and piecewise
constant, and K is a compact subset of H . For each g ∈ DK , let
v −→ Jg(v) be the cadlag counting process with Jg (0−) = 0 and
jumps of size −1 at each jump point in g2(v) for v ≥ 0, and let
v −→ Jg (−v) be the similar (but caglad) process also on v ≥ 0
(the left-continuity comes from the reversed time scale).13 In other
words, Jg(v) is increasing for v < 0 and decreasing for v ≥ 0. For
g1, g2 ∈ DK , define the distance dK (g1, g2) to be the sum of the
uniform distance ∥g1 − g2∥K and the Skorohod distance between
Jg1 and Jg2 . Now, the smallest argmax function is continuous on DK
with respect to dK . If we can prove

(1) ln Zn(h)
d

−→ ln Z∞(h) in (DK , dK );

then by the continuous mapping theorem, the smallest argmax of
the restriction of ln Zn(h) to K will converge weakly to the smallest
argmax of the restriction of ln Z∞(h) to K . If we can further prove
that

(2) 1
ϕn

θLMLE − θ0


= Op(1);
(3) argmax Lh ln Z∞(h) = Op(1);
(4) argmax Lh ln Z∞(h) is unique;

then by checking the proof of Theorem 3.2.2 of Van der Vaart and
Wellner (1996), the proof is complete. (1) is proved in Lemma 6,
(2) is proved in Lemma 5, (3) can be seen from the algorithms in
Appendix D, and Assumption D7 guarantees (4), so the proof is
complete. �

Proof of Theorem 3. The proof of (ii) and (iii) follows from
Theorem I.10.2 of Ibragimov and Has’minskii (1981), and the
convergence rate ofθBE is an intermediate result of the proof. Since
(iii) is a special case of (ii), we will focus on (ii) here. The following
three conditions verify the corresponding conditions of Theorem
I.10.2 in Ibragimov and Has’minskii (1981). Note that only the case
that K = N0 is of interest.

(1) Both Hölder continuity of Z1/2
n,θ (h) in the mean square and the

exponential bound on the expected likelihood tail are proved
in Lemma 8.

(2) The finite-dimensional convergence of Zn,θ (h) is established in
Theorem 1.

(3) The uniqueness of theminimizer ofψ(s, t) is an assumption of
this theorem.

12 Such a result is from IV.3.2 on Page 124 of Neveu (1965).
13 The class of functions of g such that g2(v) is the same is treated as the same
element in the mapping g −→ Jg (v).
The assumptions on the prior and the loss function are
summarized in Assumptions P and L of Appendix A.

Now, applying Theorem I.10.2 in Ibragimov and Has’minskii
(1981), we have uniformly for θ ∈ K ,

ϕ−1
n

θBE − θ
 d

−→ Zθ,BE,

and

lim
n→∞

Eθ

l

ϕ−1
n

θBE − θ


= Eθ

l

Zθ,BE


< ∞. (10)

Part (iv) follows from Theorem I.9.1 of Ibragimov and Has’minskii
(1981). The only condition we need to check is that Eθ


l

Zθ,BE


as a function of θ is continuous and bounded on K . The
boundedness is established above. To show the continuity, note
that limn→∞,θ→θ Eθ l ϕ−1

n

θBE −θ → Eθ

l

Zθ,BE


by

repeating the proof for (10). So Eθ

l

Zθ,BE


is continuous on K .

The optimality of the BE when the loss function is separable can be
proved by a simple contradiction. �

Appendix C. Lemmas

Lemma 1 (Lipschitz Continuity). Under Assumptions D0–D1 and
D4–D5,

ln fe|x,q (e|x, q; θ1) , ln fe|x,q (e|x, q; θ2) ,

ln fe|x,q

e|x, q; θ1, θ20


, ln fe|x,q


e|x, q; θ2, θ10


are all Lipschitz continuous in θ with the slope function in L2 space.

Proof. Only the results for ln fe|x,q

e|x, q; θ1


and ln fe|x,q


e|x, q;

θ1, θ20

are proved, since the others are similar.

By Assumptions D0 and D4, we have the expressions in Box I.
By the Cauchy–Schwarz inequality, 1 + m (w)+ m (w) ∥x∥ is in L2
based on Assumptions D4 and D5. �

Lemma 2. Suppose Assumptions D0–D5 hold, then

ln Zn(h) = LRn

z, Zd

n , h

+ op(1),

where the op(1) is uniform for h on any compact set in R2k+3+dα .

Proof.

ln Zn(h)
(1)
=

n
i=1

A (wi|θ0 + ϕnh)+

n
i=1

B (wi|θ0 + ϕnh)

+

n
i=1

C (wi|θ0 + ϕnh)+

n
i=1

D (wi|θ0 + ϕnh) ,

(2)
=

n
i=1

ln

×

1
σ10+

uσ1√
n

fe|x,q


σ10ei−x′i

uβ1√
n

σ10+
uσ1√

n

xi, qi;α0 +
uα√
n


1
σ10

fe|x,q (ei|xi, qi;α0)

× 1 (qi ≤ γ0)+

n
i=1

ln

×

1
σ20+

uσ2√
n

fe|x,q


σ20ei−x′i

uβ2√
n

σ20+
uσ2√

n

xi, qi;α0 +
uα√
n


1
σ20

fe|x,q (ei|xi, qi;α0)

× 1 (qi > γ0)+ ln Zd
n (v)+ op (1)

(3)
= −

1
2
u′Ju + u′Jz + ln Zd

n (v)+ op(1),
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ln 1σ1 fe|x,q

σ10e + x′


β10 −β1


σ1

x, q;α


− ln
1
σ1

fe|x,q


σ10e + x′ (β10 − β1)

σ1

x, q;α


≤
|σ1 − σ1|

min {σ1,σ1} + m (w)


|σ1 − σ1| (∥x∥ ∥β10∥ + σ10)+ ∥x∥


σ1
β1 − β1

+ ∥β1∥ |σ1 − σ1|


σ1σ1 + ∥α − α∥


≤ C (1 + m (w)+ m (w) ∥x∥)


|σ1 − σ1| +

β1 − β1
+ ∥α − α∥


,

and

ln
1σ2 fe|x,q


σ10e + x′


β10 −β2


σ2

x, q;α


− ln
1
σ2

fe|x,q


σ10e + x′ (β10 − β2)

σ2

x, q;α
≤ m (w)


σ10

σ2σ2 |σ2 − σ2| +
∥x∥σ2 β2 − β2


+

|σ2 − σ2|

σ2σ2 ∥x∥ (∥β10∥ + ∥β2∥)+ ∥α − α∥


+

|σ2 − σ2|

min {σ2,σ2}
≤ C (1 + m (w)+ m (w) ∥x∥)
×

|σ2 − σ2| +

β2 − β2
+ ∥α − α∥


.

Box I.
where (1) is from (9), (2) is from Lemma 1 (Lipschitz Continuity)
andAssumptionD2, and op(1)here is uniform for h on any compact
set in R2k+3+dα . Some explanation of (3) is given as follows. From
Assumptions D1 and D3, the model is differentiable in quadratic
mean at θ0 when γ0 is known by Lemma 7.6 of Van der Vaart
(1998). Theorem 7.2 of Van der Vaart (1998) shows that

n
i=1

ln

1
σ10+

uσ1√
n

fe|x,q


yi−x′i


β10+

uβ1√
n


σ10+

uσ1√
n

xi, qi;α0 +
uα√
n


1
σ10

fe|x,q (ei|xi, qi;α0)

× 1 (qi ≤ γ0)+

n
i=1

ln

×

1
σ20+

uσ2√
n

fe|x,q


yi−x′i


β20+

uβ2√
n


σ20+

uσ2√
n

xi, qi;α0 +
uα√
n


1
σ20

fe|x,q (ei|xi, qi;α0)

× 1 (qi > γ0)

= −
1
2
u′Ju + u′Jz + op(1),

where the residual is op(1) under θ0. But from Lemma 19.31 of
Van der Vaart (1998) and Lemma 1, this op(1) can be strengthened
to be uniform for u on any compact set. �

Lemma 3 (Identification). Under AssumptionsD0–D2, θ is identified
in the sense that

P

fy|x,q (w|θ) ≠ fy|x,q


w|θ > 0

for any θ andθ ∈ Θ and θ ≠θ .
Proof. This is equivalent to the statement that P(fy|x,q(w|θ) =

fy|x,q(w|θ)) = 1 implies θ = θ . If not, then there are two cases:γ ≠ γ andγ = γ . Forγ ≠ γ , there are three subcases:

Case(i): γ ≠ γ , θ = θ . By D2, fq(γ ) > 0. So D0 and D9 imply
P

fy|x,q (wi|θ) = fy|x,q


wi|θ < 1, and thusγ = γ ;
Case (ii): γ > γ , θ ≠ θ,θ1 = θ2; or γ < γ , θ ≠ θ,θ2 =

θ1. From Assumption D2, P (q < γ ) > 0. Then by
Assumptions D0 and D9, P


fy|x,q (wi|θ) = fy|x,q


wi|θ

< 1, soγ = γ ;
Case (iii): γ > γ ,θ1 ≠ θ2; or γ < γ ,θ2 ≠ θ1. Similar arguments

as in Case (i) lead toγ = γ .

So γ = γ . With γ = γ , by Assumption D9, θℓ = θℓ. In
summary, P


fy|x,q (wi|θ) = fy|x,q


wi|θ = 1 implies θ =θ . �

Lemma 4 (Consistency). Under Assumptions D0–D2, D4–D5 and
D9–D10,θLMLE

p
−→ θ0, andθMMLE

p
−→ θ0.

Proof. Theorem 2.1 of Newey and McFadden (1994) is used in
this proof. First, since the density of q is bounded on Γ ,Q (θ)
is continuous. Second, the uniqueness of the maximizer of Q (θ)
follows from Lemma 3 by the Kullback–Leibler information
inequality. It remains to show that Qn (θ) converges uniformly in
probability to Q (θ), which will be proved by applying Lemma
2.8 of Pakes and Pollard (1989). So we need to check the class of
functions


ln fy|x,q (w|θ) : θ ∈ Θ


is Euclidean with an envelope

that has a finite first moment.

ln fy|x,q (w|θ) = ln fe|x,q (e|x, q; θ1) 1 (q ≤ γ ∧ γ0)

+ ln fe|x,q (e|x, q; θ2) 1 (q > γ ∨ γ0)

+ ln fe|x,q

e|x, q; θ2, θ10


1 (γ ∧ γ0 < q ≤ γ0)

+ ln fe|x,q

e|x, q; θ1, θ20


1 (γ0 < q ≤ γ ∨ γ0) .

From Lemma 1, the class of functions

ln fe|x,q (e|x, q; θ1) : θ ∈ Θ


is Lipschitz continuous. By Lemma 2.13 of Pakes and Pollard
(1989), it is Euclidean with envelope | ln fe|x,q


e|x, q; θ10


| +

C (1 + m (w)+ m (w) ∥x∥). {1 (q ≤ γ ∧ γ0) : γ ∈ Γ } is Euclidean
with envelope 1 by Lemma 2.4 of Pakes and Pollard (1989).
So

ln fe|x,q (e|x, q; θ1) 1 (q ≤ γ ∧ γ0) : θ ∈ Θ


is Euclidean with

envelope
ln fe|x,q (e|x, q; θ10)

 + C(1 + m (w) + m (w) ∥x∥)
by Lemma 2.14(ii) of Pakes and Pollard (1989). Similarly,
{ln fe|x,q(e|x, q; θ2)1(q > γ ∨ γ0) : θ ∈ Θ} is Eu-
clidean with envelope | ln fe|x,q(e|x, q; θ20)| + C(1 + m(w) +

m(w)∥x∥), {ln fe|x,q(e|x, q; θ2, θ10)1(γ ∧ γ0 < q ≤ γ0) :

θ ∈ Θ} is Euclidean with envelope
ln fe|x,q


e|x, q; θ20, θ10


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+ C (1 + m (w)+ m (w) ∥x∥), and {ln fe|x,q

e|x, q; θ1, θ20


1(γ0 <

q ≤ γ ∨ γ0) : θ ∈ Θ} is Euclidean with envelopeln fe|x,q

e|x, q; θ10, θ20

 + C (1 + m (w)+ m (w) ∥x∥). By
Assumption D4,ln fe|x,q


e|x, q; θ20, θ10


− ln fe|x,q (e|x, q;α0)


≤ |ln σ20| + m(w)

σ10σ20 − 1
+ ∥x∥ ∥β10 − β20∥

σ20


.

A similar result applies to
ln fe|x,q


e|x, q; θ10, θ20

. So by Lemma
2.4(i) of Pakes and Pollard (1989),


ln fy|x,q (w|θ) : θ ∈ Θ


is

Euclidean with envelope

C

1 + m (w)+ m (w) ∥x∥ +

ln fe|x,q (e|x, q, α0)
 ,

which has a finite first moment by Assumption D10 and
Lemma 1. �

Lemma 5 (Rate of Convergence). Under Assumptions D0–D5,
D8–D10, 1

ϕn

θLMLE − θ0


= Op(1), and 1
ϕn

θMMLE − θ0


= Op(1).

Proof. This proof uses Corollary 3.2.6 of Van der Vaart andWellner
(1996).

First, Q (θ) − Q (θ0) ≤ −Cd2 (θ, θ0) with d (θ, θ0) =θ − θ0

+
√

|γ − γ0| for θ ∈ N .

Q (θ)− Q (θ0)
(1)
= E [A (w|θ)+ B (w|θ)+ C (w|θ)+ D (w|θ)]

(2)
= E


ln

fe|x,q (e|x, q; θ1)
fe|x,q (e|x, q; θ10)

(1 (q ≤ γ ∧ γ0)

+ 1 (γ ∧ γ0 < q ≤ γ0))


+ E


ln

fe|x,q (e|x, q; θ2)
fe|x,q (e|x, q; θ20)

(1 (q > γ ∨ γ0)

+ 1 (γ0 < q ≤ γ ∨ γ0))] + E


ln

fe|x,q

e|x, q; θ2, θ10


fe|x,q (e|x, q; θ10)

− ln
fe|x,q (e|x, q; θ1)
fe|x,q (e|x, q; θ10)


1 (γ ∧ γ0 < q ≤ γ0)


+ E


ln

fe|x,q

e|x, q; θ1, θ20


fe|x,q (e|x, q; θ20)

− ln
fe|x,q (e|x, q; θ2)
fe|x,q (e|x, q; θ20)


× 1 (γ0 < q ≤ γ ∨ γ0)]

(3)
= E


ln

fe|x,q (e|x, q; θ1)
fe|x,q (e|x, q; θ10)

1 (q ≤ γ0)


+ E


ln

fe|x,q (e|x, q; θ2)
fe|x,q (e|x, q; θ20)

1 (q > γ0)


+ E


ln

fe|x,q

e|x, q; θ2, θ10


fe|x,q (e|x, q; θ1)

1 (γ ∧ γ0 < q ≤ γ0)



+ E


ln

fe|x,q

e|x, q; θ1, θ20


fe|x,q (e|x, q; θ2)

1 (γ0 < q ≤ γ ∨ γ0)


(4)
≤ −C


θ − θ0

′
J

θ − θ0


+ f

q
|γ − γ0|

×


sup
γ∈N γ

E


ln

fe|x,q

e|x, q; θ2, θ10


fe|x,q


e|x, q; θ1, θ10

 q = γ



+ sup
γ∈N γ

E


ln

fe|x,q

e|x, q; θ1, θ20


fe|x,q


e|x, q; θ2, θ20

 q = γ


(5)
≤ −C

θ − θ0

2 + |γ − γ0|

,

where (1)–(3) are straightforward. The first part of (4) is from
a similar analysis in the proof of Theorem 5.39 in Van der
Vaart (1998) since the model is regular when γ0 is known,
and the second part is from Assumption D2. (5) relies on

E

ln fe|x,q(e|x,q;θ2,θ10)

fe|x,q(e|x,q;θ1,θ10)

q = γ


< 0 and E


ln fe|x,q(e|x,q;θ1,θ20)

fe|x,q(e|x,q;θ2,θ20)

q
= γ


< 0 for θ ∈ N , which in turn follows from the following

two facts: First, from Assumption D8,

E

ln

σ10
σ2

fe|x,q


σ10e+x′(β10−β2)

σ2

x, q;α0


fe|x,q (e|x, q;α0)


q = γ

 < 0,

E

ln

σ20
σ1

fe|x,q


σ20e+x′(β20−β1)

σ1

x, q;α0


fe|x,q (e|x, q;α0)

 q = γ

 < 0.

Second,

E


ln

fe|x,q

e|x, q; θ2, θ10


fe|x,q


e|x, q; θ1, θ10

 q = γ



= E

ln

σ1
σ2
fe|x,q


σ10e+x′(β10−β2)

σ2

x, q;α
fe|x,q


σ10e+x′(β10−β1)

σ1

x, q;α
 q = γ


is continuous in θ1, and

E


ln

fe|x,q

e|x, q; θ1, θ20


fe|x,q


e|x, q; θ2, θ20

 q = γ



= E

ln

σ2
σ1
fe|x,q


σ20e+x′(β20−β1)

σ1

x, q;α
fe|x,q


σ20e+x′(β20−β2)

σ2

x, q;α
 q = γ


is continuous in θ2.

Second, E∗

supd(θ,θ0)<δ

Gn

ln fy|x,q (w|θ)− ln fy|x,q (w|θ0)


≤ Cδ. To obtain this result, we need to analyze the four terms in (9).
From the proof of Lemma 4, {A (w|θ) : d (θ, θ0) < δ} is a VC sub-
graph class of functions with envelope C (1 + m (w)+ m (w) ∥x∥)θ − θ0

, and {C (w|θ) : d (θ, θ0) < δ} is VC subgraph with enve-
lope C (1 + m (w)+ m (w) ∥x∥) 1 (γ ∧ γ0 < q ≤ γ0). Similar re-
sults apply to B (w|θ) andD (w|θ). So by the preservation theorem,
ln fy|x,q (w|θ)−ln fy|x,q (w|θ0) : d (θ, θ0) < δ


is VC subgraphwith

envelope

F ≡ C (1 + m (w)+ m (w) ∥x∥)
θ − θ0


+ 1 (γ ∧ γ0 < q ≤ γ0)+ 1 (γ0 < q ≤ γ ∨ γ0)) .

From Theorem 2.14.2 of Van der Vaart and Wellner (1996),

E∗


sup

d(θ,θ0)<δ

Gn

ln fy|x,q (w|θ)− ln fy|x,q (w|θ0)

 ≤ C ∥F∥2 .

By Assumption D2 and Lemma 1,

∥F∥2 ≤ C

E

(1 + m (w)+ m (w) ∥x∥)2


δ = Cδ.

So φ (δ) = δ in Corollary 3.2.6 of Van der Vaart and Wellner
(1996), and δ

δα
is decreasing for all 1 < α < 2. Since r2nφ


1
rn


=
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rn,
√
nd
θLMLE − θ0


= Op(1) and

√
nd
θMMLE − θ0


= Op(1). By

the definition of d, the result follows. �

Lemma 6 (Weak Convergence on a Compact Set). Under Assump-
tions D0–D7, ln Zn(h)

d
−→ ln Z∞(h) in (DK , dK ), where (DK , dK )

is defined in the proof of Theorem 2.

Proof. From Theorem 1, any finite-dimensionalmarginal distribu-
tion of ln Zn(h) on K converges weakly to that of ln Z∞(h). It re-
mains to show that ln Zn(h) is asymptotically tight on K . The proof
for the regular part is straightforward by the analysis in Lemma 2.
For the nonregular part ln Zd

n (v), a condition called Aldous’s (1978)
condition is sufficient; see Theorem 16 on Page 134 of Pollard
(1984). Here, we only prove such a result for

ln Zd
2n(v) ≡

n
i=1

z2i1

γ0 < qi ≤ γ0 +

v

n


,

since the proof for the other part is similar. Suppose v1 and v2, 0 <
v1 < v2, are stopping times in Kv which is the projection of K on v
coordinate, then for any ϵ > 0,

P


sup

|v2−v1|<δ

ln Zd
2n(v2)− ln Zd

2n(v1)
 > ϵ


(1)
≤ P


n

i=1

|z2i| · sup
|v2−v1|<δ

1

γ0 +

v1

n
< qi ≤ γ0 +

v2

n


> ϵ


(2)
≤

n
i=1

E


|z2i| sup

|v2−v1|<δ
1

γ0 +

v1

n
< qi ≤ γ0 +

v2

n


ϵ

(3)
≤

Cδ
ϵ
,

where (1) is obvious, (2) is from Markov’s inequality, and C
in (3) can take f q supγ∈N γ E [|z2i| |qi = γ ] < ∞ according to
Assumptions D2 and D6. �

The following two lemmas are used to check the conditions of
Theorem I.10.2 in Ibragimov and Has’minskii (1981). Lemma 8 is
based on Lemma 7. The first property in Lemma 8 bounds small
variations of the likelihood ratio process, and the second property
bounds the tail behavior of the likelihood ratio process. The second
property is used in approximating the expected posterior loss by
integrals over a large bounded region. The first property is used
for proving the weak convergence of the expected posterior loss
on a compact set, which is the critical step when applying the
argmax theorem. Note that in Bayes estimation, we do not need to
check the stochastic equicontinuity of the likelihood ratio process.
Instead, we need only check the stochastic equicontinuity of the
expected posterior losswhich is the objective function of the Bayes
estimation. The expected posterior loss smoothes the jumps of
the likelihood ratio process out, so its stochastic equicontinuity is
easier to check. In this sense, the BE is less stringent than the MLEs
on the data generating process. The first property in Lemma 8 is
essentially playing the role of stochastic equicontinuity in Bayes
estimation.

Define the Hellinger distance as

r2 (θ, θ + h)2 =

 f 1/2(w|θ + h)− f 1/2(w|θ)
2 dw.

Lemma 7 (Hellinger Distance Properties). Under Assumptions
D0–D2 and D9–D12,

(i) r2 (θ, θ + h)2 ≤ C

∥u∥2

+ |v|

for all θ ∈ N0, θ + h ∈ N ;

(ii) r2 (θ, θ + h)2 ≥ C ∥u∥2+|v|

1+(∥u∥2+|v|)
for all θ ∈ N0, θ + h ∈ Θ .
Proof. Without loss of generality, suppose v > 0.

(i)

r2 (θ, θ + h)2

=

 f 1/2(w|θ + h)− f 1/2(w|θ)
2 dw

=


q≤γ

 
f 1/2e|x,q


y−x′


β1+uβ1


σ1+uσ1

x, q;α + uα


√
σ1 + uσ1

−

f 1/2e|x,q


y−x′β1
σ1

x, q;α
√
σ1


2

dy · fx|qdx · fqdq

+


q>γ+v

 
f 1/2e|x,q


y−x′


β2+uβ2


σ2+uσ2

x, q;α + uα


√
σ2 + uσ2

−

f 1/2e|x,q


y−x′β2
σ2

x, q;α
√
σ2


2

dy · fx|qdx · fqdq

+

 γ+v

γ

 
f 1/2e|x,q


y−x′


β1+uβ1


σ1+uσ1

x, q;α + uα


√
σ1 + uσ1

−

f 1/2e|x,q


y−x′β2
σ2

x, q;α
√
σ2


2

dy · fx|qdx · fqdq

= Term 1 + Term 2 + Term 3.

We will analyze these three terms one by one. First define

uℓ =


u′

βℓ
, uσℓ , u

′
α

′

.
Term 1:


q≤γ

 
f 1/2e|x,q


y−x′


β1+uβ1


σ1+uσ1

x, q;α + uα


√
σ1 + uσ1

−

f 1/2e|x,q


y−x′β1
σ1

x, q;α
√
σ1


2

dy · fx|qdx · fqdq

(1)
=


q≤γ

 
f 1/2e|x,q


σ1e+x′β1−x′


β1+uβ1


σ1+uσ1

x, q;α + uα


√
σ1 + uσ1

−
f 1/2e|x,q (e|x, q;α)

√
σ1


2

σ1de · fx|qdx · fqdq

(2)
=

1
4

 1

0


q≤γ


u′

1
∂

∂θ1 ln fe|x,q

e|x, q;θ1, θ1

×
∂

∂θ ′

1

ln fe|x,q

e|x, q;θ1, θ1 |θ1=θ1+ωu1u1
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× fe|x,q

e|x, q;θ1, θ1 |θ1=θ1+ωu1σ1de · fx|qdx · fqdq · dω

(3)
= O


∥u1∥

2 ,
where (1) is obtained by changing variable y = x′β1 + σ1e, (2)
is from the mean value theorem and Fubini’s theorem, and (3)
is from Assumption D11.
Similarly, it can be shown that Term 2 = O


∥u2∥

2.
Term 3: Similar analysis as in Term 1 shows that

 γ+v

γ

 
f 1/2e|x,q


y−x′


β1+uβ1


σ1+uσ1

|x, q;α + uα


√
σ1 + uσ1

−

f 1/2e|x,q


y−x′β2
σ2

|x, q;α


√
σ2



2

dy · fx|qdx · fqdq

=
1
4

 1

0

 γ+v

γ


(θ1 + u1 − θ2)

′
∂

∂θ1 ln fe|x,q

×

e|x, q; θ12 (ω) , θ1

 ∂

∂θ ′

1

ln fe|x,q

e|x, q; θ12 (ω) , θ1


× (θ1 + u1 − θ2) fe|x,q


e|x, q; θ12 (ω) , θ1


σ1de

× fx|qdx · fqdq · dω,

which is O (|v|) by Assumptions D12 and D2, where θ12 (ω) =

θ2 + ω (θ1 + u1 − θ2).
(ii) This lower bound can be established separately for ∥h∥ > δ

and ∥h∥ ≤ δ. For ∥h∥ > δ, by Lemma 3,

r2 (θ, θ + h)2 ≥ ϵδ > 0.

If it can be shown that for ∥h∥ ≤ δ,

r2 (θ, θ + h)2 ≥ C

∥u∥2

+ |v|

,

then there will always exist some constant such that this
lower bound is satisfied. For ∥h∥ ≤ δ, there are still three
terms as in (i). Similar analysis as in (i) shows this result by
Assumptions D2, D11 and D12. �

Lemma 8 (Hölder Continuity and Exponential Tails). Under
Assumptions D0–D2 and D9–D12, uniformly for θ ∈ N0,

(i) for any given R > 0, Eθ

Z1/2
n,θ (h2)− Z1/2

n,θ (h1)

2 ≤ C∥h2

− h1∥ (1 + 2R) for all h1, h2 ∈ Hn, and ∥h1∥ ≤ R, ∥h2∥ ≤ R.

(ii) Eθ

Z1/2
n,θ (h)


≤ exp [−C (∥h∥ − 1)] for all h ∈ Hn.

Proof. This lemma is a corollary of Lemma 7. The proof is similar to
that of Lemma B.2 in Chernozhukov and Hong (2004), so omitted
here. �

Appendix D. Algorithms

This appendix presents the algorithms for calculating asymp-
totic distributions and risk of the γ estimators in the main text. To
simplify the notation, Z is used to denote the respective weak lim-
its of γ estimators in each subsection. For example, Z in the LMLE
subsection represents Zγ ,LMLE, etc. The loss function is assumed to
be separable in all calculations, and only loss functions l2(v) = |v|r

with r = 1, 2, . . . are considered. To meet space constraints, we
will only detail the algorithms for the LMLE since they provide the
basic insight of our analysis. For other estimators, we only pro-
vide the results, while the derivations are available upon request.
A corollary of these algorithms is that asymptotic distributions of
all γ estimators are continuous.

The LMLE.
For t ≤ 0,

P (Z ≤ t) =

∞
k=0

P (Z ≤ t|Max = k) P (Max = k) (11)

where Max is the number of jumps before reaching the maximum
of D(v) on v ≤ 0. Since P (Z ≤ t|Max = k) = P (N1(−t) ≤ k)

=
k

j=0
efq(γ0)t(−fq(γ0)t)

j

j! , it remains to calculate P (Max = k) ≡

p1k. The event E(k) ≡ {Max = k} is equivalent to
k

i=1 z1i ≥j
i=1 z1i for j ∈ Z+,

k
i=1 z1i ≥

j
i=1 z2i for j ∈ N


, where0

i=1 · ≡ 0,Z+ is the set of nonnegative integers, andN = Z+\{0}.
The question is how to calculate the probability of this event.

Note that the event E(k) is the intersection of three events:

E(k)1 =


k
i=j

z1i ≥ 0, j = 1, . . . , k


,

E(k)2 =


j

i=k+1

z1i ≤ 0, j = k + 1, . . .


,

E(k)3 =


k

i=1

z1i ≥

j
i=1

z2i for j ∈ N


,

and the event E(k)2 is independent of E(k)1 ∩ E(k)3 , so calculate the
probability of E(k)2 first. Define this probability as F1(0), then

F1(x) ≡ P


j

i=k+1

z1i ≤ x, j = k + 1, . . .



=

 x

−∞

φ1

z1,k+1


× P


j

i=k+2

z1i ≤ x − z1,k+1, j = k + 2, . . .


dz1,k+1

=

 x

−∞

φ1

z1,k+1


F1(x − z1,k+1)dz1,k+1

=


∞

0
φ1 (x − t) F1(t)dt (12)

where φ1 (·) is the density function of z1i. This is an integral
equation called the homogeneous Wiener–Hopf equation of the
second kind with boundary condition F1(−∞) = 0, F1(∞) = 1,
where F1(·) is the cdf of max

j
i=k+1 z1i, j = k + 1, . . .


and does

not depend on k. For E(k)1 ∩ E(k)3 , notice that

E(k)1 ∩ E(k)3 =


k
i=j

z1i ≥ 0, j = 2, . . . , k,

k
i=1

z1i ≥ max


0,

j
i=1

z2i for all j ∈ N


,
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where
k

i=j · = 0 if k < j. Suppose the random variable

max
j

i=1 z2i for all j ∈ N

has the cdf F2(·), then

P

E(k)1 (x) ∩ E(k)3 (x)


≡ P


k
i=j

z1i ≥ x, j = 2, . . . , k,
k

i=1

z1i ≥ x

+ max


0,

j
i=1

z2i for all j ∈ N



=


∞

x


∞

x−z1k
· · ·


∞

x−
k

j=3
z1j

×

F2(0)


∞

x−
k

j=2
z1j
φ1 (z11) dz11

+


∞

0


∞

x−
k

j=2
z1j+t

φ1 (z11) dz11dF2(t)


×φ1 (z12) · · ·φ1


z1,k−1


φ1

z1,k

dz12 · · · dz1k−1dz1k.

While this formula is complicated, there is a recursive solution: for
x ≤ 0,

P

E(0)1 (x) ∩ E(0)3 (x)


= F2(−x) (13)

and for k ≥ 0 and x ≤ 0,

P

E(k+1)
1 (x) ∩ E(k+1)

3 (x)


=


∞

x
P

E(k)1 (x − z1,k+1) ∩ E(k)3 (x − z1,k+1)


×φ1


z1,k+1


dz1,k+1

=

 0

−∞

P

E(k)1 (t) ∩ E(k)3 (t)


φ1 (x − t) dt.

(14)

This is the left-side convolution of P

E(k)1 (t) ∩ E(k)3 (t)


and φ1(x).

In summary, for t ≤ 0,

P (Z ≤ t) =

∞
k=0

P (Z ≤ t|Max = k) P (Max = k)

=

∞
k=0

p1k
k

j=0

efq(γ0)t

−fq(γ0)t

j
j!

=

∞
k=0

F1(0)P

E(k)1 ∩ E(k)3

 k
j=0

efq(γ0)t

−fq(γ0)t

j
j!

,

where F1(0) is the solution of (12) evaluated at 0, and P

E(k)1 ∩ E(k)3


is recursively solved by (13) and (14).14 p1k is a decreasing func-
tion of k and converges to zero when k goes to infinity since z1i has
a negative mean. Note that t only appears in P (Z ≤ t|Max = k),
while P (Max = k) is determined by the distribution of z1i and z2i,
and independent of t . F1(0) is only determined by the distribution

14 To appreciate the correctness of the formula for p1k, p10 is checked. Note that
p10 = P (Z1 < 0, Z2 ≤ 0) = F1(0)F2(0), where Z1 ≡ max

k
i=1 z1i, k = 1, 2, . . .


and Z2 = max

k
i=1 z2i, k = 1, 2, . . .


.

of z1i, while P

E(k)1 ∩ E(k)3


depends on the distributions of both z1i

and z2i.
For t > 0, the derivation is similar:

P (0 < Z ≤ t) =

∞
k=1

P (0 < Z ≤ t|Max = k) P (Max = k)

=

∞
k=1

P (N2(t) ≥ k) P (Max = k)

=

∞
k=1

p2k
∞
j=k

e−fq(γ0)t

fq(γ0)t

j
j!

,

where Max is the number of jumps before reaching the maximum
of D(v) on v > 0. p2k is the same as p1k except that the subscript 1
is replaced by 2 in all expressions above, and the recursion of (13)
and (14) starts from 1 instead of 0. It should be emphasized that
p1k and p2k are determined by the whole distributions of z1i and z2i
instead of their means. When E[z1i] > E[z2i], p1k is not necessarily
greater than p2k.

Note that {p1; p2} ≡ {p10, p11, . . . ; p21, p22, . . .} are the point
masses of a discrete distribution which represents the probability
that a jump reaches the maximum of D(v). Furthermore,

P (Z ≤ 0) =


∞

k=0 p1k because limt→0
k

j=0
efq(γ0)t(−fq(γ0)t)

j

j! =

1 for any k ∈ Z+, and P (0 < Z < ∞) =


∞

k=1 p2k because

limt→∞


∞

j=k
e−fq(γ0)t(fq(γ0)t)

j

j! = 1 − limt→∞

k−1
j=1

e−fq(γ0)t(fq(γ0)t)
j

j!
= 1 for any k ∈ N. This is not difficult to understand,
since P (Z ≤ 0) = P(D(v) achieves maximum at v ≤ 0), and
P (0 < Z < ∞) = P(D(v) achieves maximum at v > 0). So
P (Z ≤ 0) + P (0 < Z < ∞) = 1, and the derivation above was
indeed calculating the cdf of Z . In summary, the cdf of Z is

FZ (t)

=



∞
k=0

p1k
k

j=0

efq(γ0)t

−fq(γ0)t

j
j!

, if t ≤ 0;

∞
k=0

p1k +

∞
k=1

p2k
∞
j=k

e−fq(γ0)t

fq(γ0)t

j
j!

, if t > 0.

So the pdf of Z is

fZ (t) =



fq(γ0)
∞
k=0

efq(γ0)t

−fq(γ0)t

k
k!

p1,k = fq(γ0)

·

Poisson(−fq(γ0)t) ◦ p1


, if t ≤ 0;

fq(γ0)
∞
k=0

e−fq(γ0)t

fq(γ0)t

k
k!

p2,k+1 = fq(γ0)

·

Poisson(fq(γ0)t) ◦ p2


, if t > 0

where ◦ means the inner product of two vectors in R∞. fZ (t) is
more concentrated when fq(γ0) gets larger since more data are
sampled in the neighborhood of γ0, and the threshold point is
easier to identify. Z has an exponential decay tail, and fZ (0)

fq(γ0)
=

p10 = F1(0)F2(0) ∈ (0, 1). When p10 = 1, fZ (·) reduces to
the negative exponential density in Section 2. For any t > 0, if
{p1i}∞i=1 = {p2i}∞i=1, then

fZ (−t)− fZ (t) = fq(γ0)
∞
k=0

e−fq(γ0)t

fq(γ0)t

k
k!


p1,k − p2,k+1


= fq(γ0) ·


Poisson(fq(γ0)t) ◦ (p1 − p2)


> 0,

so the density of Z on v < 0 is thicker than that on v > 0. This
is because the left end point of the minimizing interval is taken as
the estimate.
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Although an elegant form of the density function of Z is
developed, {p1; p2} still must be calculated numerically, which
involves solving an integral equation. Hinkley (1970) develops an
algorithm to calculate this discrete probability distribution, but it
seems only reliable in some special cases.15 A different expression
of {p1; p2} is provided here, which can have theoretical value in the
future research. In practice, when the distributions of z1i and z2i are
known, the simulation method is suggested to find {p1; p2}.

It can be shown that

R(r)LMLE ≡ E

|Z |

r
=

1
fq(γ0)r

∞
k=0

(k + r)!
k!


p2,k+1 + p1,k


.

This risk inversely depends on fq(γ0), which matches the density
function form above.
The MMLE.

The cdf of Z is

FZ (t) =



p10
e2fq(γ0)t

2
+

∞
k=1

p1k


2

k−1
i=0

(−1)i

×


k−i−1
j=0


−fq(γ0)t

j
j!


efq(γ0)t

+ (−1)ke2fq(γ0)t

, if t ≤ 0;

∞
k=1

p1k + p10


1 −

e−2fq(γ0)t

2


+

∞
k=1

p2k


2

k−1
i=0

(−1)i

×


∞

j=k−i


fq(γ0)t

j
j!


e−fq(γ0)t

+ (−1)k

1 − e−2fq(γ0)t


, if t > 0;

and the pdf is

fZ (t) =



p10fq(γ0)e2fq(γ0)t + 2fq(γ0)
∞
k=1

p1,k

×


k−1
i=0

(−1)i
efq(γ0)t


−fq(γ0)t

k−1−i

(k − 1 − i)!

+ (−1)ke2fq(γ0)t

, if t ≤ 0;

p10fq(γ0)e−2fq(γ0)t + 2fq(γ0)
∞
k=1

p2k

×


k−1
i=0

(−1)i
e−fq(γ0)t


fq(γ0)t

k−1−i

(k − 1 − i)!

+ (−1)ke−2fq(γ0)t


, if t > 0.

When p10 = 1, fZ (·) reduces to the double exponential density in
Section 2. If p1k = p2k for k = 1, 2, . . . , then fZ (t) is symmetric.

It can be shown that

R(r)MMLE ≡ E

|Z |

r

15 See also Atkinson (1974) for a closed-form solution.
=
1

fq(γ0)r


2

∞
k=1

(p1k + p2k)
k−1
i=0

(−1)i
(k + r − i − 1)!
(k − i − 1)!

+
r!
2r


∞
k=1

(−1)k (p1k + p2k)+ p10


.

It is hard to get a general ordering between the risks of the
LMLE and MMLE. The ordering depends on r and the allocation of
{p1; p2}, but not on fq(γ0). Note that

fq(γ0)r

R(r)LMLE − R(r)MMLE


=

∞
k=0

(k + r)!
k!


p2,k+1 + p1,k


− 2

∞
k=1

(p1k + p2k)
k−1
i=0

(−1)i
(k + r − i − 1)!
(k − i − 1)!

−
r!
2r


∞
k=1

(−1)k (p1k + p2k)+ p10



=


1 −

1
2r


r! · p10 +

∞
k=1


(k + r)!

k!
−

r!
2r
(−1)k

− 2
k−1
i=0

(−1)i
(k + r − i − 1)!
(k − i − 1)!


p1,k

+

∞
k=1


(k − 1 + r)!
(k − 1)!

−
r!
2r
(−1)k

− 2
k−1
i=0

(−1)i
(k + r − i − 1)!
(k − i − 1)!


p2,k

≡


1 −

1
2r


r! · p10 +

∞
k=1

A(k; r)p1,k +

∞
k=1

B(k; r)p2,k,

where A(k; r) > 0 and B(k; r) < 0 from the definition of the LMLE
and MMLE. If p1k = p2k for k = 1, 2, . . . , then

A(k; r)+ B(k; r) =
(k + r)!

k!
+
(k − 1 + r)!
(k − 1)!

−
r!

2r−1
(−1)k

− 4
k−1
i=0

(−1)i
(k + r − i − 1)!
(k − i − 1)!

≥ 0

with equality being achieved when r = 1, so R(r)LMLE > R(r)MMLE
in this case. Otherwise, if p10 dominates {p1k, p2k}∞k=1, or p2k is
not much larger than p1,k, R

(r)
LMLE is still greater than R(r)MMLE. The

above conclusions can also apply to a convex and symmetric loss
function, but not to bowl-shaped loss functions in general.
The posterior mean and quantile

The key insight in this section is that D(v) can be approximated
by its truncated version D(k)(v):

D(k)(v) =



exp


k

i=1

z1i


, if −

k
j=0

T1j ≤ v ≤ −

k−1
j=0

T1j;

...
1, if − T10 ≤ v ≤ 0;
1, if 0 < v ≤ T20;
...

exp


k

i=1

z2i


, if

k−1
j=0

T2j ≤ v ≤

k
j=0

T2j;

0, otherwise,
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where {Tℓi}∞i=0 are interarrival times of Nℓ(·). When the posterior
mean is considered,

P (Z ≤ t) = P


v
exp (D(v))
exp (D(v)) dv dv ≤ t


= P


(v − t) exp (D(v)) dv ≤ 0


,

where the D(v) in

v exp (D(v)) dv and


exp (D(v)) dv can be

approximated by D(k)(v). In the case of the τ ’th posterior quantile,

P (Z ≤ t) = P

 t

−∞

exp (D(v))
∞

−∞
exp (D(v)) dv dv ≥ τ



= P

 t
−∞

exp (D(v)) dv
∞

t exp (D(v)) dv
≥

τ

1 − τ


where the D(v) in

 t
−∞

exp (D(v)) dv and


∞

t exp (D(v)) dv
can be approximated by D(k)(v). In practice, a large number
of sums are used for approximation until the algorithm is
stable. Note that the algorithm will stabilize eventually, since
exp (D(v)) is exponentially decaying. As to the asymptotic risk, the
Riemann–Stieltjes integral


|t|r dP (Z ≤ t) is suggested, where

P (Z ≤ t) is calculated numerically as above.16
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