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1. Introduction

Threshold regression (TR), as a parsimonious model of nonlinear
relationships between a response and some covariates, is very popular
in current practice of econometrics; see Hansen (2011) for an excellent
review of applications in time series, cross sections and panel data. The
TR model usually assumes

yi = X;ﬁll (qi < 7) +X,{ﬁ21 (‘Ii > 7) tE @
XB+x8,1(q; <7)+e;,

where y; is the dependent variable or the response, ¢; is the threshold
variable which is used to split the sample, x; = (1,x},¢;)" € R* is the set
of covariates and may include ¢; as a component, ¢; is the error term
and satisfies E [¢;|F,_,] = 0 with 7,_, being the sigma field generated
by {x,_;. Gi—js€i)-j lj > 0}, and the parameter o,f interest is 0 = (7, ')’
with § = (8], 5,) , or equivalently, 6 = (y,$},6),)" with 5, = f; —B, being
the threshold effect in conditional mean of y;. Note here that we use
subscript  in §, to emphasize the dependence of , —f, on n. This model
is similar to the linear regression except that the regression coefficients
depend on whether the threshold variable g crosses the threshold point

Because E [¢;|F,_;] = 0, we can estimate 6 based on least squares.
Specifically, 6 is estimated by minimizing the following objective func-
tion,

n

S, 0) = z (i =x[Bi1 (g <v) —x[po1 (g > 7’))2'

i=1

~ ’
Denote the least squares estimator (LSE) of 0 as § = <?, ﬂ ﬁz) . Often, a

two-step procedure is used to obtain 8. First, given y, run least squares

on the data with ¢; <y and ¢; > y separately to obtain ﬁl (y) and //3\2 7).
Second, minimize the concentrated objective function

n
S,n=7 (y,- ~XB 1 (g <7)-xB1 (g > 7))2
i=1

to obtain 7 and set ﬁ:f = Aﬁf (?),Af = 1,2. The threshold effect §, is
estimated by § = p,—f,. 7, B, and 6 are all consistent. One main concern
in the literature is to develop a confidence interval (CI) for y.

Currently, the dominant or benchmark CI for y in the literature
is the likelihood ratio (LR)-CI of Hansen (2000). Such a CI relies on
the shrinking-threshold-effect asymptotics borrowed from the struc-
tural change literature such as Picard (1985) and Bai (1997). In the
simulations and empirical application of Hansen (2000), the LR-CI is
often too conservative, i.e., it is wide and has a coverage larger than
the nominal level. Hansen (2000) attributes this phenomenon to the
insufficiency in using the asymptotic distribution of the LR statistic
when the threshold effect is shrinking to approximate that when the
threshold effect is fixed as assumed in Chan (1993). In this paper,
we offer a new perspective on the conservativeness of the LR-CL. We
demonstrate that the confidence set obtained by inverting the LR statis-
tic is not an interval. Consequently, when restricting the confidence
set to a standard interval — as is conventional — the critical values
proposed in Hansen (2000) tend to be too large. We address this issue
by deriving new critical values that are appropriate for the conventional
LR-CI. Before presenting our results, we first review the original LR-CI
framework introduced in Hansen (2000).
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2. Review of Hansen (2000)

To review the asymptotic distribution of % in the framework of
Hansen (2000), we first replicate his Assumption 1 as Assumption D
below. Let f(q) be the density function of ¢, and y, be the true value
of y,

M(y) = E[xx/1(g; <7)] .M =E [x;x/],
D(y)=E [Xixﬂqt' = 7] ,D=D (7()) >
Vi) =E [x,x;szlq, =y].V=V(n).

i

Assumption D:

(1) (x;,q;,;) is strictly stationary, ergodic and p-mixing, with p-

mixing coefficients satisfying Y™ p,l,,/ 2 < .
(2) E[g|F_,] =0.
@ E{jx|'] < 0 and B[ [xe|'] < oo,

(4) Forallye I, E [|x,-|4 |£,-|4 lg; = y] <CandE [|x,-|4 lg; = y] <cC
for some C < o0, and f (y) < 7 < o0, where I' is the parameter
space of y.

(5) f (), D(y), and V (y) are continuous at y = y,.

(6) 8, =cn?, with ¢ #0 and ¢ € (0,1/2).

(7) ¢'Dc >0, c’Ve>0,and f = f(yy) > 0.

B8 M>M(y)>0forallyer.

Hansen (2000) provides detailed discussions on these assumption
after his Assumption 1, so we only briefly mention some key points.
First, Assumption D6 assumes that §, shrinks to zero but stays out of the
contiguous neighborhood of 6, = 0 (i.e., 6, = cn~'/2 ) so that y can still
be point identified. Second, Assumption D7 excludes the continuous
threshold model discussed in Chan and Tsay (1998) and Hansen (2017).
Third, Assumption D8 restricts I" to be a proper subset of the support
of ¢;. In practice, we often set I' = |y, 7|, where y and 7 are the lower
and upper ¢% quantiles of {qi}:'=1' This guarantees that each regime
contains at least ¢% of the whole dataset for some ¢ > 0 (typically, 5,
10 or 15). Note that S, (y) is constant on [q(. g4 ), Where {q(i)}:'zl
is the sorted (ascending) version of {q,-}:.“:l. This is why we need only
check y € T, to search for 7 in practice, where T}, = {g,lg; € T'}. In
other words, 7 is taken as the left endpoint of the minimizing interval of
S, (). Yu (2012, 2015) suggests to take the middle point of this interval
as 7 to improve its finite-sample performance, but under Assumption
D6, taking any point in this interval as 7 does not affect its asymptotic
properties. Intuitively, this is because the convergence rate of 7 is
slower than n, while the distance between g, and g, is O (n™!).

Under Assumption D, Theorem 1 of Hansen (2000) implies that

(?— }’0) i» arg max [_|_;| + B(v)] R 2)

(8,D3,)*
O (n'2#), which matches the convergence rate of 7 in Hansen’s The-
orem 1, f, D and V are consistent estimators of f, D, and V, respec-
tively, and B (v) = B;(-v)1(v £ 0) + B,(v)1(v > 0) with B, (v) and B, (v)
being two independent standard Brownian motions on [0, o). The CI of
y can be constructed by inverting the ¢ statistic in testing H, : y =y,
vs. H, : y #y,. Specifically, the (1 — &) t-CI is

where note that the population normalization factor nf

Ct 300 t y
5/\ a2 6'VS A a2 VS

where ¢! is the upper ath quantile of the distribution of argmax
v

[—% +B (v)] which is developed in Bhattacharya and Brockwell (1976).
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In the homoskedastic case where E [¢2|x] = E [¢?] = 62, —>X° can be

' D

—_
£
&)

~

replaced by ;_;g’ where 57 is a consistent estimator of o2.

Because y cannot be identified when 6, = 0, following Dufour
(1997), Hansen (2000) suggests to use the LR-CI to improve perfor-
mances.! The LR statistic is defined as

S, (1) =S, (7)
LR, ()= T

A Vs . . .
where 72 = ;—gg is a consistent estimator of

_ 5,Vé, v

T 8D,  c'Dc’

712

It can be shown that

d
LR, (ry) — &, 3)
where & = max, [- [v| + 2B (v)] =2~ max [—% +B (U)]. When E [¢2[x] =
E [¢?] = 02, #* = 62, and 7 can be replaced by an estimator of 6> such
as 62 := S, () /n. As a result, the (1 — a) LR-Cl is

Fa-w={y: LR, <c,},
where ¢, is the upper ath quantile of the distribution of £ which is
PE<x=(1-¢2) = F.(v). @

Compared with the ¢-CI, the LR-CI does not need to estimate f and D
in the homoskedastic case.

Because LR, (y) behaves like a drifted Brownian motion, and the
Brownian motion fluctuates rapidly (due to nowhere differentiability),
r (1 — @) is often a union of segments rather than an interval. Conse-
quently, a common practice is to take the convex hull of ' (1 — a) as
the CI for y, denoted as conv{f(l — a)}. Because LR, (y) is flat on
[4¢» 9i+1y)> the convex hull of I'(1 - a) takes the form of [4¢)» 4(;)) for
some i < j. We refer to this CI as Hansen’s CI. For comparison, the ¢-CI
is always an interval. The disjointness of LR-CI is also observed in the
structural change literature, e.g., Siegmund (1986, 1988), where the
convex CI is also considered. Note that P (}’0 econv{rl (1 —oz)}) >

P (70 [S f(l — a)) — 1 — a, so the critical value ¢, is too large for
conv{f(l - a)}. We label P (70 € conv {f(l - a)}) as the interval

coverage, and P (70 el 1- a)) as the actual coverage.

3. Genuine critical values in Hansen’s framework

From the discussions in the last section, we know that the critical
value ¢, is too large if we use the convex hull conv{ rda- a)} instead

of f(l —a) as the CI for y. A natural question is what the genuine
critical value should be if conv{ I (1 — a)} is employed. The following
theorem answers this question.

Theorem 1. Under Assumption D,

P(ryeconv{y: LR,() <x}) = P (max [£1,&,] —min [&,, 8] < %)

=1-¢77 = p(x),

where & and &, are independent and both follow Exp(1), and Exp(a)
denotes the exponential distribution with mean a > 0.

1 Another advantage of the LR-CI over the #-CI is that the former is shorter
than the latter both asymptotically and in finite samples as shown in Eo and
Morley (2015) in the structural change context. Technically, this is because
the r-test is less powerful than the LR test.
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Fig. 1. Comparison between ¢ and Exp(2).
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Table 1
Comparison between two types of critical values.
l-a .80 .85 .90 925 .95 .975 .99
F;‘(l —a) 4.497 5.101 5.939 6.528 7.352 8.751 10.592
plcy) 0.894 0.922 0.949 0.962 0.975 0.987 0.995
(1 -a) 3.219 3.794 4.605 5.181 5.991 7.378 9.210

Note that the event {yy €conv{y : LR, (y)<x}} is equivalent
to {LR,(y) < x for some y < y, and LR, (y,) < x for some
7+ = 7}, or equivalently, {inf LR, (y) < x and inf,>, LR, (r) <
converges to

<10
LR, () < x}

x}. It turns out that the event inf, ¢,
{2[max (¢,,&) — &] < x} and the event {infyzy0 LR, (y) < x ; converges
to {2 [max (£,&) — &] < x}. So the event {y, € conv{y : LR, (y) <x}}
converges to

{2[max (£,&) - &] <x} n{2[max (£.&) - &] < x}
= {2[max (&.&) —min (§.&)] <x} = {2]¢ - &] <x}.

while &) — &| ~ Exp (1) by symmetry of ¢ and &, and memorylessness
of exponential distributions. It follows that 2 |& — &,| ~ Exp(2), where
note that 1 — ¢™2 in Theorem 1 is the cdf of Exp(2).

For comparison, in Hansen (2000),

P(LR,, (yo) Sx) - PE<x)= P(max [51,52] < %)
< P<max [él,ézl—min[fl,ﬁz] S%)

where ¢ is defined in (3). Now, p~! (x) = —21log (1 — x) while Fgl (x) =

—2log <1 - \/;), where F; is defined in (4). Fig. 1 shows the difference
between these two distributions. Because Exp(2) has a much thin-
ner right tail than ¢&, its critical values are significantly smaller and
p <F£_1 (1- a)) =p(cy) > 1 -« as shown in Table 1.

One may wonder why we need not consider the difference between
these two types of CIs for regular parameters. To explain the reason,
consider the LR-CI for u, where y is the mean of a normal distribution
with unit variance, i.e., we observe iid X; ~ N (u,1), i = 1,...,n. The
LR statistic is

L, (u)=2log L, (0
where i = X is the MLE of u, and L, () is the likelihood function
for pu. As aresult, {u: L,(u)<c,} = [Y—n_l/zc;/z,f+n_l/zc;/2 ,
exactly the same as the -CI, where c, is the upper ath quantile of 2 (1).
Why do we need only to check whether L, (4y) < ¢, to determine
whether the CI covers y,? This is because L, (1) < ¢, is equivalent

L, (ﬁ) =n(§—/4)2,

to uy € {u: L,(u) <c ) when {y: L,(u) <c,} is an interval. On the
contrary, for the LR-CI of y in TR, the event {LR, (yy) < ¢, } is smaller

than {y, € conv {y : LR, (y) <c,}}. Fig. 2 illustrates this point. From
the two upper graphs, we can see if L, (1) < c,, then the CI covers y,
and vice versa. On the contrary, from the two lower graphs, although
LR, (7)) < ¢, implies the CI covers yy, LR, (ry) > ¢, does not imply
the convex CI excludes y,.

3.1. Extension

Assumption D5 assumes that D(y), and V (y) are continuous at
vy = y- This essentially assumes that the conditional distributions of
the error ¢; and covariates x; given ¢; = y are continuous at y,. When
this assumption fails, i.e., there are structural changes in the error and
covariate distributions across the two regimes, Bai (1997) develops
the asymptotic distribution of 7 in the structural change model where
g; is the time index. To state the counterpart of Theorem 1 in this
generalized setup of threshold regression, we first modify the notations
and Assumption D as follows. Define

D,(y) =E [Xix”qt' = Vi] Dy =D, (7’0) >

Ve () = E[xixjeflg; = v£] Ve = Ve (1) -

where D, (y) is understood as the right limit of E [x,x/|g; = -] at y, and
D_(y) and V, (y) are similarly understood.

Assumption D’:
Assumptions 1, 2, 3, 6 and 8 are the same as in Assumption D.

4. Forallyerl,E [|xi|4 |t€,-|4 lg; = }’i] <Cand E [|x,—|4 lg; = J’i] <
C for some C < o0, and f(y)57< 0.

5. f(y), D, (y), and V, (y) are continuous at y = y,.

7. ¢'Dye>0,c'Voe>0,and f = f (yy) > 0.

Redefine
Sn (Y) - Sn (/}))

~) ’

LR, (y) :=

r

%)
=
>y

— is a consistent estimator of

where 7% = =

)|
)
)

_ 5:,V—§n C’V,C

2 -
é!D_5, c'D_c

n

If the model is homoskedastic in the left regime, i.e., E [¢?|x,q] = o2
for g < y,, then #? = 62, and 7 can be replaced by

62 = S(7) /ny.

N2
where 7 (7) = X, (y,. —x;ﬁl) 1(g;<7),and n; = Y7 1(q; <7).

The following corollary states the asymptotic distribution of 7, as
well as the asymptotic coverages of the CI by inverting LR, and its
convex hull.
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Fig. 2. Comparison of the CI construction for x and y.

Corollary 1. Under Assumption D,

-3 lvl + By(-v),
—36v+ OB, (),

if v<0,
if v>0.

P(rope{r:LR,(n)<x}) > P <max [61.5 (b 0)] < %)
= (1 _ e—X)(l _ e—xd)/w)’
and
P(yy€conv{y : LR,(y) <x}) - P (max [£1.6 (@) —min [&,., (b.0)] < %)
=px)=1-¢73,

where D_ and V_ are consistent estimators of D_ and V., respectively,

¢ = 92 0 = S g ~ Exp(l) and & () ~ Exp(w/$) are
independent.

It is interesting to notice that although the coverage of the tradi-
tional CI, P (yy € {r : LR, () < x}), depends on the nuisance parame-
ter o/¢, the coverage of the convex CI, P (yy € conv{y : LR, (y) < x}),
does not. In other words, we can use the same critical values p~! (1 — a)
in Table 1 regardless of the value of w/¢ if the convex CI is employed.
In this sense, the convex CI combined with the critical values p~! (1 — a)
are more natural and convenient to use in practice.

4. Simulations

In this section, we re-examine the simulation studies in Hansen
(2000) to illustrate our theoretical results above, where the data are
iid, x; = (1,z,) with z; = g, or z; = x;, x; ~ N0, 1), ¢; ~ N(2,1),
& ~ N@©1), p, = 0,3, = (0,65), and yy = 2. We label the case
with z; = ¢; as DGP1 and z; = x; as DGP2. We will concentrate on the
scenarios where Hansen'’s CIs overcover. Specifically, we set 6, = 0.5, 1
(1,2) in DGP1 (DGP2) and n = 50,100, 500; the replication number is
set as 10,000 to improve the precision of simulation. As for why 6, in
DGP2 is set as double of that in DGP1, the reason is as follows. The
normalization factor in (2) converges to

(5;D6n)2 _ n(S,’lD(S,, _ n5§0D22
AR \/ﬂ \/5 ’

where D = E [( :1 >(154)

E [( )lc >(1,x) = ( (l) (1) > in DGP2, and V = D.? Because D,, in

DGP1 is four times of D,, in DGP2, we set 6,, in DGP1 as half of &,
in DGP2 to ensure 6%0 D,, the same in the two DGPs.

The coverages and lengths of three kinds of 90% LR-CIs for y are
summarized in Table 2. From Table 2, we can draw the following
conclusions. First, as expected, the actual coverages using Hansen’s
critical values (upper row) and the interval coverages using our new
critical values (lower row) are lower than the coverages of Hansen’s
CIs (middle row). Second, when §,, gets larger, the gap between the
actual coverage and the interval coverage using Hansen’s critical values
gets smaller. Actually, when 6,, is large, I'(1 —a) tends to be an
interval such that the two coverages are close. Third, as expected, when
Hansen’s CIs overcover, our new convex CIs tend to overcover less and
match the nominal level better in most cases. Fourth, when 1/ndy, is
small, our new convex CIs may undercover a little bit. This is because
our asymptotics require \/nd,; — oo, and a small y/n,, value may
invalidate the asymptotic arguments. Fifth, all CIs are shorter as &,
gets larger and/or n gets larger; our new convex CIs (lower row) are
shorter than Hansen’s CIs (upper row) because smaller critical values
are used.

1 2 .
qg=2 —<2 4>11'1DGP1andD—

5. Empirical application

In this section, we re-analyze the dataset of Hansen (2000) using
our new critical values. This dataset was used in Durlauf and Johnson
(1995) to check whether the growth pattern depends on the initial
conditions. The growth theory with multiple equilibria motivates the
following threshold regression model (see Box I).

For each country i, (%) is the real GDP per member of the
it

population aged 15-64 in year ¢, (é ) is the investment to GDP ratio, n;
is the growth rate of the working-age’population, and S is the fraction
of working-age population enrolled in secondary schools. The variables

2 The calculation here also confirms the result of Dufour (1997) in our
setup, i.e., when 6, is close to zero, the length of the ¢-CI diverges to infinity
because the normalization factor shrinks to zero.
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LR,(v)
LR, ()

73511~ ey o ]
5.99 A=k
ol . 0 . . .
0 594 1842 8902 0 19 29 47 61 92
(Y/L)i 1960 LR; 1960
Fig. 3. Confidence interval construction for y in two stages.
Table 2
Coverage and length of 90% LR-CIL.
n\ Oy — z=q z=x
0.5 1 1 2
50 0.851 0.940 0.903 0.957
0.909 0.949 0.931 0.962
0.840 0.913 0.879 0.938
Coverage 100 0.887 0.956 0.929 0.970
0.925 0.960 0.945 0.974
0.868 0.930 0.905 0.949
500 0.938 0.967 0.946 0.975
0.955 0.970 0.958 0.979
0.899 0.942 0.928 0.957
50 1.597 0.530 1.097 0.350
1.301 0.409 0.881 0.304
Length 100 1.287 0.168 0.578 0.169
0.989 0.140 0.465 0.146
500 0.098 0.024 0.091 0.033
0.074 0.020 0.075 0.029

Note: For coverage, the upper and middle rows are actual and interval coverages using Hansen’s critical values, and the lower row is interval
coverage using new critical values. For length, the upper and lower rows are the average lengths corresponding to the CIs in the middle and
lower rows of coverage, respectively.

Y
L
I
)i,1960 +f,In <7)i + f13In (n[ +g+ 5) +f14InS; + ¢, if g < y;

0+ﬂ22111<§>.+ﬂ231n(n,- +8+46)+puInS; +¢, if g; > 7.
1

Box I.

not indexed by ¢ are annual averages over the period 1960-1985. first one is In % 1960 and the second one is the adult literacy rate in
Iy
Following Durlauf and Johnson (1995), we set g+& = 0.05. As suggested 1960, LR, j969- Also following Hansen (2000), we will consider only the

in Hansen (2000), we will check two possible threshold variables; the heteroskedastic-consistent procedures.
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In the first stage, we use In (%) 1060 as ¢;. The middle-point LSE of y is $871, which generates the same sample splitting as the left-endpoint
1

LSE $863. We employ the critical value in Table 1 to construct the CI for y. The 95% critical value is 5.991, much smaller than 7.352 as suggested
in Hansen (2000). If we use the kernel method to estimate #?, then both Hansen’s critical value and ours generate the same CI for y, [$594, $1842).
The left graph of Fig. 3 illustrates these two ClIs. Obviously, this CI is quite wide since it covers 40 out of the 96 countries in the sample.

In the second stage, we use LR; g4 as ¢; and apply threshold regression to the right regime in the first stage defined by In ( % ) > 871. The
middle-point LSE of y is 47%. We will still use the critical value in Table 1 to construct the CI for y. It turns out that Hansen’s CI is [f@%, 61%), while
ours is [29%, 61%), which is much shorter. Hansen’s CI covers 19 while ours covers 14 out of the 78 countries in this subsample, so our shorter CI
indicates less uncertainty in the sample splitting using LR; j950. The right graph of Fig. 3 illustrates these two CIs.

As commented in Hansen (2000), his CI is sufficiently wide that there is considerable uncertainty regarding the threshold value. This paper
shows that his CI can be much shortened by using an appropriate critical value.

Appendix. Proofs

. _ . L . !’
We here collect some notations for future reference. a, = n!=2¢. «~ signifies weak convergence over a metric space. u = (u/,u})" and v are local

u
R
d A . .
parameters for # and y. = denotes equality in distribution.

Proof of Theorem 1. Note that when y =y, + a;lu, the true y value is still y,. Re-write LR, (y) as

[Sn (%E(Y)) =S, (7/0,/30)] - [Sn (?, ﬁ) =S, (}’Oaﬂo)]

;’\2

LRn (7) =

Because

S, (yo + a;lv, Po + n_l/zu) -S, (yo,ﬂo)

- \E [xx/l(qsw] u +uyE [XX’1(4>VO)] uy — 2\ Wy = 2, Wy + v + 2B ).
where y =c¢'Dcf and A =c'Vcf, we have
> ’ ’ -1 ’ ’ -1
S, (1B 1) = Sy (10:B0) = —W/E [ 1| Wi = WIE [xx' | Wa+ lol +2V2B ),
by taking minimum with respect to u, and
R -1 -1 )
s, (?,ﬁ) =S, (r0 Bp) = -W/E [X"'lmsm] W, - WJE [xx’l((Pm)] Wy + min {,4 [l + 2B (u)}
by taking minimum with respect to both u and v. As result,
LR, (v +a;'0) » LR, (v) := ”iz [,4 |0l +2V/2B () - min {,4 o] + 2\/ZB(u)}]
d
= iz [/4 |o] + 2\/}3 (v) + sup {—;4 lv| + ZﬁB(v)}] .
n v
The interval coverage converges to
i < i <
P <:}21(°)LR°0 (v) < ¢, and }}rzlf(;LRoo (v) < ca> s

where ¢, is the upper ath quantile of sup, {—|v| + 2B (v)}. Making the change-of-variables v = (”iz) r and noting the distributional equality

B (azr) = aB(r), we have
. 1. A A . A A
e = 3 g (o 2vie () - {2 ()}

i inf {Ir| +2B ()} - inf{|r|+23(r)}]
nu ;
= ”lg |v|+23(u)}—1rgf {lv] + 2B (v)},

where the last equality is from the fact that % = A/y; similarly,
inf LR, (v) = inf {|v] + 2B ()} —inf {|v| + 2B (v)} .
v>0 v>0 v

As a result,

p(cq) <1nf{|v|+2B(U)}+§<c and 1nt{|v|+23(v)}+§<c>
(=2, +2max [£,&] <c¢, and —2&) +2max [£,&] <¢,)
<m [¢.&] —min [¢),&] < —)

& - 52<—and§1>¢’2)+P(§2 5

[o]
= 2/ e‘fz—e_%_gz)e_@d.fz:Z(l—e_
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where
£= —i12f{|v| +2B ()} < sup {— lo] + 2B (v)} = 2max (£,&),

with
& = sup{—%+B(u)} ~ Exp(1) and &, := sup{—%+B(u)} ~ Exp(1)

v=<0 020

being independent. [ |

Proof of Corollary 1. In the proof of Theorem 1, we have

-1 -1 i

~ u_ vl +24/A_B)(-v), ifv<0,

Su (1 B0) =5, (0 ) = WIE [ Ly | W1 = WHE [ 1o | W2+ { W+ 2V B(0),  if >0, )
and

1
W, + inf

R -1
S (?’sﬂ) =S, (v, ) ~ -W/E [x"/l(qsn))] Wi - W,E [Xxll<q>ro>] L

Ho vl +24/A_Bi(-v),  ifv <0,
v +24/7, By (v), if v>0,
where y, =¢'D,cf and A, = 'V, cf. From (5),
u_ vl +24/2_B(-v),  if v <0,

a, (7 —yy) ~ argmin .
"( 0) v { i v+ 2475 By (0), if v>0.

_{M_Ivl+2\//1_Bl(—v), if v <0,

arg mi .
U U+ 24/2, By (), if v>0,

v
A A
P ifr<o,

A .
= Zargmrln ’1_—/‘_+r+2j_— ,%Bz(")y if r>0,

Making the change-of-variables v = (i—;) r and noting the distributional equality B, (a*r) = aB, (r), we have

Ho H

i}‘

_ 3 ll+Bi(-0),  ifp<o,
— argmax

—%qﬁu + /@B, (v), if v>0.

It follows that

2 (8,0_5,)"

1
a,— (¥ - )—nf_ (A_ )v»ar max _E|U|+Bl(_U)’ if <0,
"y Y —Y)= V.3, Y= g ma

_%¢U+ VaB,(v), if v>0.

Because a, (7 — 79) = 0, (1), and

(95,3)2

2 A aA a2
N 8'D_§, 8'D_5 \ 8V.$
nef—— "zwf(ﬂ, ) =L — :A1=1+0,,(1),
V.5 orv_é, f\ é,D_s, 5V 6
(70.5)° 5,0_5,)°

we conclude that n f —
Next,

(7 - %) and nf ((S’T (7 — 7o) have the same asymptotic distribution.
n"—=>n

LR, (yo+a;'v) » LR, (v)
U_ vl +24/A_By(-v), ifv<0, i u_ vl +24/A_Bi(-v), ifv <0,
v +2+/2, By (v), if v>0, : 10 +2+/75 By(v), if v>0,

. |v] + 2B, (-v), ifv<o, ; |v] + 2B, (-v), ifv<o0,
—= —in ) ,
He dv+2y/@By(v), ifv>0, “\ ¢v+2y@Byw), ifv>0

1
7

d

-

SO

—|v| +2B(-v), ifv<o,
sup .
v —¢v +24/0B,(v), ifv>0,

A
o As a result,

LR, (75) = LR (0)

where recall that 52

P(roe{r: LR, () <x})

P (LR, (7)) £x) > P(E($. @) <x/2) = P (& < x/2,& (¢, w) < x/2)
=P (51 < x/z) P (52 (p,w) < x/2) = (1 — e ¥/2)(1 = e~¥b/2),

where

—|v] + 2By (-v), ifv<0,

5(¢,w)=SLUlp{ —pv +2y/wBy(v), ifv>0,

=max (£, (¢, w)) ,
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& = sup{—% + B, (u)} ~ Exp(1l) and &, (¢, w) := sug{—% + \/c_oB2 (v)} ~ Exp (g)

v<0

being independent.
Finally, for x > 0,

P(ypeconv{y : LR (y) < x})

~p (li)rg) {Iol +2B, )} +¢ (¢.0) <x and inf {¢u+ 2@32(11)} YE(bw) < x>

= P (=2¢ +2max [£,& (¢, w)]) < x and —2¢, (¢, ®) + 2max [£], & (¢, w)] < x

max [£),&, (¢, w)| — min [£],&, (¢, w)] < x/2)

x ¢ [ _¢ X
=[5 (e—iz - e_‘fZ_E) ge_z?)é?déz + o (6_55' —e “’(52+2)> esidg

P
=P
=P

Lo <G <HG+3)+P(6<b@0<E+3)

_e _@ . x ¢ _¢ (42
oo(e $* e #° 2)e‘zdz+/0oo <e_z>z—e "’(Z+z)>e_zdz

)+ (1=e5)/(1+2)

which is the cdf of Exp(2). ]
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Data availability

Data will be made available on request.
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