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 A B S T R A C T

This paper shows that the critical values for likelihood ratio inference of the threshold point in Hansen 
(2000) are too large if we restrict the confidence set as an interval, which can partially explain why Hansen’s 
confidence interval is conservative when the threshold effect is not too small. We provide appropriate critical 
values and show that different from conventional critical values, these new critical values are invariant to the 
structural change in the error and covariate distributions.
1. Introduction

Threshold regression (TR), as a parsimonious model of nonlinear 
relationships between a response and some covariates, is very popular 
in current practice of econometrics; see Hansen (2011) for an excellent 
review of applications in time series, cross sections and panel data. The 
TR model usually assumes
𝑦𝑖 = 𝐱′𝑖𝛽11

(

𝑞𝑖 ≤ 𝛾
)

+ 𝐱′𝑖𝛽21
(

𝑞𝑖 > 𝛾
)

+ 𝜀𝑖 (1)
= 𝐱′𝑖𝛽2 + 𝐱′𝑖𝛿𝑛1

(

𝑞𝑖 ≤ 𝛾
)

+ 𝜀𝑖,

where 𝑦𝑖 is the dependent variable or the response, 𝑞𝑖 is the threshold 
variable which is used to split the sample, 𝐱𝑖 =

(

1, 𝑥′𝑖 , 𝑞𝑖
)′ ∈ R𝑘 is the set 

of covariates and may include 𝑞𝑖 as a component, 𝜀𝑖 is the error term 
and satisfies E [

𝜀𝑖|𝑖−1
]

= 0 with 𝑖−1 being the sigma field generated 
by {𝑥𝑖−𝑗 , 𝑞𝑖−𝑗 , 𝜀𝑖−1−𝑗 |𝑗 ≥ 0

}

, and the parameter of interest is 𝜃 =
(

𝛾, 𝛽′
)′

with 𝛽 =
(

𝛽′1, 𝛽
′
2
)′, or equivalently, 𝜃 =

(

𝛾, 𝛽′2, 𝛿
′
𝑛
)′ with 𝛿𝑛 = 𝛽1−𝛽2 being 

the threshold effect in conditional mean of 𝑦𝑖. Note here that we use 
subscript 𝑛 in 𝛿𝑛 to emphasize the dependence of 𝛽1−𝛽2 on 𝑛. This model 
is similar to the linear regression except that the regression coefficients 
depend on whether the threshold variable 𝑞 crosses the threshold point 
𝛾.

Because E [

𝜀𝑖|𝑖−1
]

= 0, we can estimate 𝜃 based on least squares. 
Specifically, 𝜃 is estimated by minimizing the following objective func-
tion,

𝑆𝑛 (𝜃) =
𝑛
∑

𝑖=1

(

𝑦𝑖 − 𝐱′𝑖𝛽11
(

𝑞𝑖 ≤ 𝛾
)

− 𝐱′𝑖𝛽21
(

𝑞𝑖 > 𝛾
))2 .

Denote the least squares estimator (LSE) of 𝜃 as ̂𝜃 =
(

𝛾̂ , 𝛽′1, 𝛽
′
2

)′
. Often, a 

two-step procedure is used to obtain ̂𝜃. First, given 𝛾, run least squares 
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on the data with 𝑞𝑖 ≤ 𝛾 and 𝑞𝑖 > 𝛾 separately to obtain 𝛽1 (𝛾) and 𝛽2 (𝛾). 
Second, minimize the concentrated objective function

𝑆𝑛 (𝛾) =
𝑛
∑

𝑖=1

(

𝑦𝑖 − 𝐱′𝑖𝛽1 (𝛾) 1
(

𝑞𝑖 ≤ 𝛾
)

− 𝐱′𝑖𝛽2 (𝛾) 1
(

𝑞𝑖 > 𝛾
)

)2

to obtain 𝛾̂ and set 𝛽𝓁 = 𝛽𝓁
(

𝛾̂
)

, 𝓁 = 1, 2. The threshold effect 𝛿𝑛 is 
estimated by ̂𝛿 = 𝛽1−𝛽2. ̂𝛾, 𝛽𝓁 and ̂𝛿 are all consistent. One main concern 
in the literature is to develop a confidence interval (CI) for 𝛾.

Currently, the dominant or benchmark CI for 𝛾 in the literature 
is the likelihood ratio (LR)-CI of Hansen (2000). Such a CI relies on 
the shrinking-threshold-effect asymptotics borrowed from the struc-
tural change literature such as Picard (1985) and Bai (1997). In the 
simulations and empirical application of Hansen (2000), the LR-CI is 
often too conservative, i.e., it is wide and has a coverage larger than 
the nominal level. Hansen (2000) attributes this phenomenon to the 
insufficiency in using the asymptotic distribution of the LR statistic 
when the threshold effect is shrinking to approximate that when the 
threshold effect is fixed as assumed in Chan (1993). In this paper, 
we offer a new perspective on the conservativeness of the LR-CI. We 
demonstrate that the confidence set obtained by inverting the LR statis-
tic is not an interval. Consequently, when restricting the confidence 
set to a standard interval — as is conventional — the critical values 
proposed in Hansen (2000) tend to be too large. We address this issue 
by deriving new critical values that are appropriate for the conventional 
LR-CI. Before presenting our results, we first review the original LR-CI 
framework introduced in Hansen (2000).
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2. Review of Hansen (2000)

To review the asymptotic distribution of 𝛾̂ in the framework of
Hansen (2000), we first replicate his Assumption 1 as Assumption D 
below. Let 𝑓 (𝑞) be the density function of 𝑞, and 𝛾0 be the true value 
of 𝛾,

𝑀 (𝛾) = E
[

𝐱𝑖𝐱′𝑖1(𝑞𝑖 ≤ 𝛾)
]

,𝑀 = E
[

𝐱𝑖𝐱′𝑖
]

,

𝐷 (𝛾) = E
[

𝐱𝑖𝐱′𝑖 |𝑞𝑖 = 𝛾
]

, 𝐷 = 𝐷
(

𝛾0
)

,

𝑉 (𝛾) = E
[

𝐱𝑖𝐱′𝑖𝜀
2
𝑖 |𝑞𝑖 = 𝛾

]

, 𝑉 = 𝑉
(

𝛾0
)

.

Assumption D:

(1)
(

𝑥𝑖, 𝑞𝑖, 𝜀𝑖
) is strictly stationary, ergodic and 𝜌-mixing, with 𝜌-

mixing coefficients satisfying ∑∞
𝑚=1 𝜌

1∕2
𝑚 < ∞.

(2) E
[

𝜀𝑖|𝑖−1
]

= 0.
(3) E

[

|

|

𝐱𝑖||
4
]

< ∞ and E
[

|

|

𝐱𝑖𝜀𝑖||
4
]

< ∞.

(4) For all 𝛾 ∈ 𝛤 , E
[

|

|

𝐱𝑖||
4
|

|

𝜀𝑖||
4
|𝑞𝑖 = 𝛾

]

≤ 𝐶 and E
[

|

|

𝐱𝑖||
4
|𝑞𝑖 = 𝛾

]

≤ 𝐶

for some 𝐶 < ∞, and 𝑓 (𝛾) ≤ 𝑓 < ∞, where 𝛤  is the parameter 
space of 𝛾.

(5) 𝑓 (𝛾), 𝐷 (𝛾), and 𝑉 (𝛾) are continuous at 𝛾 = 𝛾0.
(6) 𝛿𝑛 = 𝑐𝑛−𝜑, with 𝑐 ≠ 0 and 𝜑 ∈ (0, 1∕2).
(7) 𝑐′𝐷𝑐 > 0, 𝑐′𝑉 𝑐 > 0, and 𝑓 = 𝑓

(

𝛾0
)

> 0.
(8) 𝑀 > 𝑀 (𝛾) > 0 for all 𝛾 ∈ 𝛤 .

Hansen (2000) provides detailed discussions on these assumption 
after his Assumption 1, so we only briefly mention some key points. 
First, Assumption D6 assumes that 𝛿𝑛 shrinks to zero but stays out of the 
contiguous neighborhood of 𝛿𝑛 = 0 (i.e., 𝛿𝑛 = 𝑐𝑛−1∕2 ) so that 𝛾 can still 
be point identified. Second, Assumption D7 excludes the continuous 
threshold model discussed in Chan and Tsay (1998) and Hansen (2017). 
Third, Assumption D8 restricts 𝛤  to be a proper subset of the support 
of 𝑞𝑖. In practice, we often set 𝛤 =

[

𝛾, 𝛾
]

, where 𝛾 and 𝛾 are the lower 
and upper 𝜖% quantiles of {𝑞𝑖

}𝑛
𝑖=1. This guarantees that each regime 

contains at least 𝜖% of the whole dataset for some 𝜖 > 0 (typically, 5, 
10 or 15). Note that 𝑆𝑛 (𝛾) is constant on [𝑞(𝑖), 𝑞(𝑖+1)), where 

{

𝑞(𝑖)
}𝑛
𝑖=1

is the sorted (ascending) version of {𝑞𝑖
}𝑛
𝑖=1. This is why we need only 

check 𝛾 ∈ 𝛤𝑛 to search for 𝛾̂ in practice, where 𝛤𝑛 =
{

𝑞𝑖|𝑞𝑖 ∈ 𝛤
}

. In 
other words, ̂𝛾 is taken as the left endpoint of the minimizing interval of 
𝑆𝑛 (𝛾). Yu (2012, 2015) suggests to take the middle point of this interval 
as 𝛾̂ to improve its finite-sample performance, but under Assumption 
D6, taking any point in this interval as ̂𝛾 does not affect its asymptotic 
properties. Intuitively, this is because the convergence rate of 𝛾̂ is 
slower than 𝑛, while the distance between 𝑞(𝑖) and 𝑞(𝑖+1) is 𝑂

(

𝑛−1
)

.
Under Assumption D, Theorem 1 of Hansen (2000) implies that 

𝑛𝑓

(

𝛿′𝐷̂𝛿
)2

𝛿′𝑉 𝛿

(

𝛾̂ − 𝛾0
) 𝑑
⟶ argmax

𝑣

[

−
|𝑣|
2

+ 𝐵 (𝑣)
]

, (2)

where note that the population normalization factor 𝑛𝑓
(

𝛿′𝑛𝐷𝛿𝑛
)2

𝛿′𝑛𝑉 𝛿𝑛
=

𝑂
(

𝑛1−2𝜑
)

, which matches the convergence rate of 𝛾̂ in Hansen’s The-
orem 1, 𝑓 , 𝐷̂ and 𝑉  are consistent estimators of 𝑓 , 𝐷, and 𝑉 , respec-
tively, and 𝐵 (𝑣) = 𝐵1(−𝑣)1(𝑣 ≤ 0) + 𝐵2(𝑣)1(𝑣 > 0) with 𝐵1 (𝑣) and 𝐵2 (𝑣)
being two independent standard Brownian motions on [0,∞). The CI of 
𝛾 can be constructed by inverting the 𝑡 statistic in testing 𝐻0 ∶ 𝛾 = 𝛾0
vs. 𝐻1 ∶ 𝛾 ≠ 𝛾0. Specifically, the (1 − 𝛼) 𝑡-CI is
⎡

⎢

⎢

⎢

⎣

𝛾̂ −
𝑐𝑡𝛼∕2
𝑛𝑓

𝛿′𝑉 𝛿
(

𝛿′𝐷̂𝛿
)2

, 𝛾̂ +
𝑐𝑡𝛼∕2
𝑛𝑓

𝛿′𝑉 𝛿
(

𝛿′𝐷̂𝛿
)2

⎤

⎥

⎥

⎥

⎦

,

where 𝑐𝑡𝛼 is the upper 𝛼th quantile of the distribution of argmax
𝑣

[

− |𝑣| + 𝐵 (𝑣)
]

 which is developed in Bhattacharya and Brockwell (1976)
2

2 
In the homoskedastic case where E [

𝜀2|𝐱
]

= E
[

𝜀2
]

= 𝜎2, 𝛿′𝑉 𝛿
(

𝛿′𝐷̂𝛿
)2  can be 

replaced by 𝜎2

𝛿′𝐷̂𝛿
, where ̂𝜎2 is a consistent estimator of 𝜎2.

Because 𝛾 cannot be identified when 𝛿𝑛 = 0, following Dufour 
(1997), Hansen (2000) suggests to use the LR-CI to improve perfor-
mances.1 The LR statistic is defined as

𝐿𝑅𝑛 (𝛾) =
𝑆𝑛 (𝛾) − 𝑆𝑛

(

𝛾̂
)

𝜂2
,

where ̂𝜂2 = 𝛿′𝑉 𝛿
𝛿′𝐷̂𝛿

 is a consistent estimator of

𝜂2 =
𝛿′𝑛𝑉 𝛿𝑛
𝛿′𝑛𝐷𝛿𝑛

= 𝑐′𝑉 𝑐
𝑐′𝐷𝑐

,

It can be shown that 

𝐿𝑅𝑛
(

𝛾0
) 𝑑
⟶ 𝜉, (3)

where 𝜉 = max𝑣 [− |𝑣| + 2𝐵 (𝑣)] = 2 ⋅max
𝑣

[

− |𝑣|
2 + 𝐵 (𝑣)

]

. When E [

𝜀2|𝐱
]

=
E
[

𝜀2
]

= 𝜎2, 𝜂2 = 𝜎2, and ̂𝜂2 can be replaced by an estimator of 𝜎2 such 
as ̂𝜎2 ∶= 𝑆𝑛

(

𝛾̂
)

∕𝑛. As a result, the (1 − 𝛼) LR-CI is

𝛤 (1 − 𝛼) =
{

𝛾 ∶ 𝐿𝑅𝑛 (𝛾) ≤ 𝑐𝛼
}

,

where 𝑐𝛼 is the upper 𝛼th quantile of the distribution of 𝜉 which is 

𝑃 (𝜉 ≤ 𝑥) =
(

1 − 𝑒−𝑥∕2
)2 =∶ 𝐹𝜉 (𝑥) . (4)

Compared with the 𝑡-CI, the LR-CI does not need to estimate 𝑓 and 𝐷
in the homoskedastic case.

Because 𝐿𝑅𝑛 (𝛾) behaves like a drifted Brownian motion, and the 
Brownian motion fluctuates rapidly (due to nowhere differentiability), 
𝛤 (1 − 𝛼) is often a union of segments rather than an interval. Conse-
quently, a common practice is to take the convex hull of 𝛤 (1 − 𝛼) as 
the CI for 𝛾, denoted as conv

{

𝛤 (1 − 𝛼)
}

. Because 𝐿𝑅𝑛 (𝛾) is flat on 
[𝑞(𝑖), 𝑞(𝑖+1)), the convex hull of 𝛤 (1 − 𝛼) takes the form of [𝑞(𝑖), 𝑞(𝑗)) for 
some 𝑖 < 𝑗. We refer to this CI as Hansen’s CI. For comparison, the 𝑡-CI 
is always an interval. The disjointness of LR-CI is also observed in the 
structural change literature, e.g., Siegmund (1986, 1988), where the 
convex CI is also considered. Note that 𝑃

(

𝛾0 ∈ conv
{

𝛤 (1 − 𝛼)
})

≥

𝑃
(

𝛾0 ∈ 𝛤 (1 − 𝛼)
)

→ 1 − 𝛼, so the critical value 𝑐𝛼 is too large for 
conv

{

𝛤 (1 − 𝛼)
}

. We label 𝑃
(

𝛾0 ∈ conv
{

𝛤 (1 − 𝛼)
})

 as the interval 
coverage, and 𝑃

(

𝛾0 ∈ 𝛤 (1 − 𝛼)
)

 as the actual coverage.

3. Genuine critical values in Hansen’s framework

From the discussions in the last section, we know that the critical 
value 𝑐𝛼 is too large if we use the convex hull conv

{

𝛤 (1 − 𝛼)
}

 instead 
of 𝛤 (1 − 𝛼) as the CI for 𝛾. A natural question is what the genuine 
critical value should be if conv

{

𝛤 (1 − 𝛼)
}

 is employed. The following 
theorem answers this question.

Theorem 1.  Under Assumption D,

𝑃
(

𝛾0 ∈ conv
{

𝛾 ∶ 𝐿𝑅𝑛 (𝛾) ≤ 𝑥
})

→ 𝑃
(

max
[

𝜉1, 𝜉2
]

− min
[

𝜉1, 𝜉2
]

≤ 𝑥
2

)

= 1 − 𝑒−
𝑥
2 =∶ 𝑝 (𝑥) ,

where 𝜉1 and 𝜉2 are independent and both follow 𝐸𝑥𝑝 (1), and 𝐸𝑥𝑝 (𝑎)
denotes the exponential distribution with mean 𝑎 > 0.

1 Another advantage of the LR-CI over the 𝑡-CI is that the former is shorter 
than the latter both asymptotically and in finite samples as shown in Eo and 
Morley (2015) in the structural change context. Technically, this is because 
the 𝑡-test is less powerful than the LR test.
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Fig. 1. Comparison between 𝜉 and Exp(2).
 

Table 1
Comparison between two types of critical values.
 1 − 𝛼 .80 .85 .90 .925 .95 .975 .99  
 𝐹 −1

𝜉 (1 − 𝛼) 4.497 5.101 5.939 6.528 7.352 8.751 10.592 
 𝑝(𝑐𝛼 ) 0.894 0.922 0.949 0.962 0.975 0.987 0.995  
 𝑝−1(1 − 𝛼) 3.219 3.794 4.605 5.181 5.991 7.378 9.210  

Note that the event {𝛾0 ∈ conv
{

𝛾 ∶ 𝐿𝑅𝑛 (𝛾) ≤ 𝑥
}} is equivalent 

to {𝐿𝑅𝑛
(

𝛾_
)

≤ 𝑥 for some 𝛾_ ≤ 𝛾0 and 𝐿𝑅𝑛
(

𝛾+
)

≤ 𝑥 for some 
𝛾+ ≥ 𝛾0}, or equivalently, {inf 𝛾≤𝛾0 𝐿𝑅𝑛 (𝛾) ≤ 𝑥 and inf 𝛾≥𝛾0 𝐿𝑅𝑛 (𝛾) ≤
𝑥}. It turns out that the event 

{

inf 𝛾≤𝛾0 𝐿𝑅𝑛 (𝛾) ≤ 𝑥
}

 converges to 
{

2
[

max
(

𝜉1, 𝜉2
)

− 𝜉1
]

≤ 𝑥
} and the event 

{

inf 𝛾≥𝛾0 𝐿𝑅𝑛 (𝛾) ≤ 𝑥
}

 converges
to {2 [max

(

𝜉1, 𝜉2
)

− 𝜉2
]

≤ 𝑥
}

. So the event {𝛾0 ∈ conv
{

𝛾 ∶ 𝐿𝑅𝑛 (𝛾) ≤ 𝑥
}}

converges to
{

2
[

max
(

𝜉1, 𝜉2
)

− 𝜉1
]

≤ 𝑥
}

∩
{

2
[

max
(

𝜉1, 𝜉2
)

− 𝜉2
]

≤ 𝑥
}

=
{

2
[

max
(

𝜉1, 𝜉2
)

− min
(

𝜉1, 𝜉2
)]

≤ 𝑥
}

=
{

2 |
|

𝜉1 − 𝜉2|| ≤ 𝑥
}

,

while |
|

𝜉1 − 𝜉2|| ∼ 𝐸𝑥𝑝 (1) by symmetry of 𝜉1 and 𝜉2 and memorylessness 
of exponential distributions. It follows that 2 |

|

𝜉1 − 𝜉2|| ∼ 𝐸𝑥𝑝 (2), where 
note that 1 − 𝑒−

𝑥
2  in Theorem  1 is the cdf of 𝐸𝑥𝑝 (2).

For comparison, in Hansen (2000),

𝑃
(

𝐿𝑅𝑛
(

𝛾0
)

≤ 𝑥
)

→ 𝑃 (𝜉 ≤ 𝑥) = 𝑃
(

max
[

𝜉1, 𝜉2
]

≤ 𝑥
2

)

≤ 𝑃
(

max
[

𝜉1, 𝜉2
]

− min
[

𝜉1, 𝜉2
]

≤ 𝑥
2

)

,

where 𝜉 is defined in (3). Now, 𝑝−1 (𝑥) = −2 log (1 − 𝑥) while 𝐹−1
𝜉 (𝑥) =

−2 log
(

1 −
√

𝑥
)

, where 𝐹𝜉 is defined in (4). Fig.  1 shows the difference 
between these two distributions. Because 𝐸𝑥𝑝 (2) has a much thin-
ner right tail than 𝜉, its critical values are significantly smaller and 
𝑝
(

𝐹−1
𝜉 (1 − 𝛼)

)

= 𝑝
(

𝑐𝛼
)

> 1 − 𝛼 as shown in Table  1.
One may wonder why we need not consider the difference between 

these two types of CIs for regular parameters. To explain the reason, 
consider the LR-CI for 𝜇, where 𝜇 is the mean of a normal distribution 
with unit variance, i.e., we observe iid 𝑋𝑖 ∼ 𝑁 (𝜇, 1), 𝑖 = 1,… , 𝑛. The 
LR statistic is

𝐿𝑛 (𝜇) = 2 log
𝑛

(

𝜇
)

𝑛 (𝜇)
= 𝑛

(

𝑋 − 𝜇
)2

,

where 𝜇 = 𝑋 is the MLE of 𝜇, and 𝑛 (𝜇) is the likelihood function 
for 𝜇. As a result, {𝜇 ∶ 𝐿𝑛 (𝜇) ≤ 𝑐𝛼

}

=
[

𝑋 − 𝑛−1∕2𝑐1∕2𝛼 , 𝑋 + 𝑛−1∕2𝑐1∕2𝛼

]

, 
exactly the same as the 𝑡-CI, where 𝑐𝛼 is the upper 𝛼th quantile of 𝜒2 (1). 
Why do we need only to check whether 𝐿𝑛

(

𝜇0
)

≤ 𝑐𝛼 to determine 
whether the CI covers 𝜇0? This is because 𝐿𝑛

(

𝜇0
)

≤ 𝑐𝛼 is equivalent 
to 𝜇0 ∈

{

𝜇 ∶ 𝐿𝑛 (𝜇) ≤ 𝑐𝛼
} when {𝜇 ∶ 𝐿𝑛 (𝜇) ≤ 𝑐𝛼

} is an interval. On the 
contrary, for the LR-CI of 𝛾 in TR, the event {𝐿𝑅 (

𝛾
)

≤ 𝑐
} is smaller 
𝑛 0 𝛼

3 
than {𝛾0 ∈ conv
{

𝛾 ∶ 𝐿𝑅𝑛 (𝛾) ≤ 𝑐𝛼
}}

. Fig.  2 illustrates this point. From 
the two upper graphs, we can see if 𝐿𝑛

(

𝜇0
)

≤ 𝑐𝛼 , then the CI covers 𝜇0, 
and vice versa. On the contrary, from the two lower graphs, although 
𝐿𝑅𝑛

(

𝛾0
)

≤ 𝑐𝛼 implies the CI covers 𝛾0, 𝐿𝑅𝑛
(

𝛾0
)

> 𝑐𝛼 does not imply 
the convex CI excludes 𝛾0.

3.1. Extension

Assumption D5 assumes that 𝐷 (𝛾), and 𝑉 (𝛾) are continuous at 
𝛾 = 𝛾0. This essentially assumes that the conditional distributions of 
the error 𝜀𝑖 and covariates 𝐱𝑖 given 𝑞𝑖 = 𝛾 are continuous at 𝛾0. When 
this assumption fails, i.e., there are structural changes in the error and 
covariate distributions across the two regimes, Bai (1997) develops 
the asymptotic distribution of ̂𝛾 in the structural change model where 
𝑞𝑖 is the time index. To state the counterpart of Theorem  1 in this 
generalized setup of threshold regression, we first modify the notations 
and Assumption D as follows. Define
𝐷± (𝛾) = E

[

𝐱𝑖𝐱′𝑖 |𝑞𝑖 = 𝛾±
]

, 𝐷± = 𝐷±
(

𝛾0
)

,

𝑉± (𝛾) = E
[

𝐱𝑖𝐱′𝑖𝜀
2
𝑖 |𝑞𝑖 = 𝛾±

]

, 𝑉± = 𝑉±
(

𝛾0
)

,

where 𝐷+ (𝛾) is understood as the right limit of E [

𝐱𝑖𝐱′𝑖 |𝑞𝑖 = ⋅
] at 𝛾, and 

𝐷− (𝛾) and 𝑉± (𝛾) are similarly understood.
Assumption D′:
Assumptions 1, 2, 3, 6 and 8 are the same as in Assumption D.

4. For all 𝛾 ∈ 𝛤 , E
[

|

|

𝐱𝑖||
4
|

|

𝜀𝑖||
4
|𝑞𝑖 = 𝛾±

]

≤ 𝐶 and E
[

|

|

𝐱𝑖||
4
|𝑞𝑖 = 𝛾±

]

≤
𝐶 for some 𝐶 < ∞, and 𝑓 (𝛾) ≤ 𝑓 < ∞.

5. 𝑓 (𝛾), 𝐷± (𝛾), and 𝑉± (𝛾) are continuous at 𝛾 = 𝛾0.
7. 𝑐′𝐷±𝑐 > 0, 𝑐′𝑉±𝑐 > 0, and 𝑓 = 𝑓

(

𝛾0
)

> 0.

Redefine

𝐿𝑅𝑛 (𝛾) ∶=
𝑆𝑛 (𝛾) − 𝑆𝑛

(

𝛾̂
)

𝜂2
,

where ̂𝜂2 = 𝛿′𝑉−𝛿
𝛿′𝐷̂−𝛿

 is a consistent estimator of

𝜂2 =
𝛿′𝑛𝑉−𝛿𝑛
𝛿′𝑛𝐷−𝛿𝑛

=
𝑐′𝑉−𝑐
𝑐′𝐷−𝑐

.

If the model is homoskedastic in the left regime, i.e., E [

𝜀2|𝑥, 𝑞
]

= 𝜎2−
for 𝑞 ≤ 𝛾0, then 𝜂2 = 𝜎2−, and ̂𝜂2 can be replaced by
𝜎2− ∶= 𝑆−

𝑛
(

𝛾̂
)

∕𝑛1,

where 𝑆−
𝑛
(

𝛾̂
)

=
∑𝑛

𝑖=1

(

𝑦𝑖 − 𝐱′𝑖𝛽1
)2

1
(

𝑞𝑖 ≤ 𝛾̂
)

, and 𝑛1 =
∑𝑛

𝑖=1 1
(

𝑞𝑖 ≤ 𝛾̂
)

.
The following corollary states the asymptotic distribution of 𝛾̂, as 

well as the asymptotic coverages of the CI by inverting 𝐿𝑅𝑛 and its 
convex hull.
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Fig. 2. Comparison of the CI construction for 𝜇 and 𝛾.
Corollary 1.  Under Assumption D′,

𝑛𝑓

(

𝛿′𝐷̂−𝛿
)2

𝛿′𝑉−𝛿

(

𝛾̂ − 𝛾0
) 𝑑
⟶ argmax

𝑣

{

− 1
2 |𝑣| + 𝐵1(−𝑣),

− 1
2𝜙𝑣 +

√

𝜔𝐵2(𝑣),
if 𝑣 ≤ 0,
if 𝑣 > 0.

𝑃
(

𝛾0 ∈
{

𝛾 ∶ 𝐿𝑅𝑛 (𝛾) ≤ 𝑥
})

→ 𝑃
(

max
[

𝜉1, 𝜉2 (𝜙,𝜔)
]

≤ 𝑥
2

)

= (1 − 𝑒−𝑥)(1 − 𝑒−𝑥𝜙∕𝜔),

and

𝑃
(

𝛾0 ∈ conv
{

𝛾 ∶ 𝐿𝑅𝑛 (𝛾) ≤ 𝑥
})

→ 𝑃
(

max
[

𝜉1, 𝜉2 (𝜙,𝜔)
]

− min
[

𝜉1, 𝜉2 (𝜙,𝜔)
]

≤ 𝑥
2

)

= 𝑝(𝑥) = 1 − 𝑒−
𝑥
2 ,

where 𝐷̂− and 𝑉− are consistent estimators of 𝐷− and 𝑉−, respectively, 
𝜙 = 𝑐′𝐷+𝑐

𝑐′𝐷−𝑐
, 𝜔 = 𝑐′𝑉+𝑐

𝑐′𝑉−𝑐
, 𝜉1 ∼ 𝐸𝑥𝑝 (1) and 𝜉2 (𝜙,𝜔) ∼ 𝐸𝑥𝑝 (𝜔∕𝜙) are 

independent.

It is interesting to notice that although the coverage of the tradi-
tional CI, 𝑃 (

𝛾0 ∈
{

𝛾 ∶ 𝐿𝑅𝑛 (𝛾) ≤ 𝑥
})

, depends on the nuisance parame-
ter 𝜔∕𝜙, the coverage of the convex CI, 𝑃 (

𝛾0 ∈ conv
{

𝛾 ∶ 𝐿𝑅𝑛 (𝛾) ≤ 𝑥
})

, 
does not. In other words, we can use the same critical values 𝑝−1 (1 − 𝛼)
in Table  1 regardless of the value of 𝜔∕𝜙 if the convex CI is employed. 
In this sense, the convex CI combined with the critical values 𝑝−1 (1 − 𝛼)
are more natural and convenient to use in practice.

4. Simulations

In this section, we re-examine the simulation studies in Hansen 
(2000) to illustrate our theoretical results above, where the data are 
iid, 𝐱𝑖 =

(

1, 𝑧𝑖
)′ with 𝑧𝑖 = 𝑞𝑖 or 𝑧𝑖 = 𝑥𝑖, 𝑥𝑖 ∼ 𝑁 (0, 1), 𝑞𝑖 ∼ 𝑁 (2, 1), 

𝜀𝑖 ∼ 𝑁 (0, 1), 𝛽2 = 0, 𝛿𝑛 =
(

0, 𝛿20
)′, and 𝛾0 = 2. We label the case 

with 𝑧𝑖 = 𝑞𝑖 as DGP1 and 𝑧𝑖 = 𝑥𝑖 as DGP2. We will concentrate on the 
scenarios where Hansen’s CIs overcover. Specifically, we set 𝛿20 = 0.5, 1
(1,2) in DGP1 (DGP2) and 𝑛 = 50, 100, 500; the replication number is 
set as 10,000 to improve the precision of simulation. As for why 𝛿20 in 
DGP2 is set as double of that in DGP1, the reason is as follows. The 
normalization factor in (2) converges to

𝑛𝑓

(

𝛿′𝑛𝐷𝛿𝑛
)2

′ = 𝑛
𝛿′𝑛𝐷𝛿𝑛
√

=
𝑛𝛿220𝐷22
√

,

𝛿𝑛𝑉 𝛿𝑛 2𝜋 2𝜋

4 
where 𝐷 = E

[

(

1
𝑞

)

(1, 𝑞)
|

|

|

|

|

𝑞 = 2

]

=
(

1 2
2 4

)

 in DGP1 and 𝐷 =

E
[(

1
𝑥

)

(1, 𝑥)
]

=
(

1 0
0 1

)

 in DGP2, and 𝑉 = 𝐷.2 Because 𝐷22 in 
DGP1 is four times of 𝐷22 in DGP2, we set 𝛿20 in DGP1 as half of 𝛿20
in DGP2 to ensure 𝛿220𝐷22 the same in the two DGPs.

The coverages and lengths of three kinds of 90% LR-CIs for 𝛾 are 
summarized in Table  2. From Table  2, we can draw the following 
conclusions. First, as expected, the actual coverages using Hansen’s 
critical values (upper row) and the interval coverages using our new 
critical values (lower row) are lower than the coverages of Hansen’s 
CIs (middle row). Second, when 𝛿20 gets larger, the gap between the 
actual coverage and the interval coverage using Hansen’s critical values 
gets smaller. Actually, when 𝛿20 is large, 𝛤 (1 − 𝛼) tends to be an 
interval such that the two coverages are close. Third, as expected, when 
Hansen’s CIs overcover, our new convex CIs tend to overcover less and 
match the nominal level better in most cases. Fourth, when √𝑛𝛿20 is 
small, our new convex CIs may undercover a little bit. This is because 
our asymptotics require √𝑛𝛿20 → ∞, and a small √𝑛𝛿20 value may 
invalidate the asymptotic arguments. Fifth, all CIs are shorter as 𝛿20
gets larger and/or 𝑛 gets larger; our new convex CIs (lower row) are 
shorter than Hansen’s CIs (upper row) because smaller critical values 
are used.

5. Empirical application

In this section, we re-analyze the dataset of Hansen (2000) using 
our new critical values. This dataset was used in Durlauf and Johnson 
(1995) to check whether the growth pattern depends on the initial 
conditions. The growth theory with multiple equilibria motivates the 
following threshold regression model (see Box  I).

For each country 𝑖, 
(

𝑌
𝐿

)

𝑖,𝑡
 is the real GDP per member of the 

population aged 15–64 in year 𝑡, 
(

𝐼
𝑌

)

𝑖
 is the investment to GDP ratio, 𝑛𝑖

is the growth rate of the working-age population, and 𝑆𝑖 is the fraction 
of working-age population enrolled in secondary schools. The variables 

2 The calculation here also confirms the result of Dufour (1997) in our 
setup, i.e., when 𝛿20 is close to zero, the length of the 𝑡-CI diverges to infinity 
because the normalization factor shrinks to zero.
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Fig. 3. Confidence interval construction for 𝛾 in two stages.
Table 2
Coverage and length of 90% LR-CI.
 𝑛 ↘ 𝛿20 ⟶ 𝑧 = 𝑞 𝑧 = 𝑥

 0.5 1 1 2  
 50 0.851

0.909 
0.840

0.940
0.949 
0.913

0.903
0.931 
0.879

0.957
0.962 
0.938

 

 Coverage 100 0.887
0.925 
0.868

0.956
0.960 
0.930

0.929
0.945 
0.905

0.970
0.974 
0.949

 

 500 0.938
0.955 
0.899

0.967
0.970 
0.942

0.946
0.958 
0.928

0.975
0.979 
0.957

 

 50 1.597
1.301

0.530
0.409

1.097
0.881

0.350
0.304

 

 Length 100 1.287
0.989

0.168
0.140

0.578
0.465

0.169
0.146

 

 500 0.098
0.074

0.024
0.020

0.091
0.075

0.033
0.029

 

Note: For coverage, the upper and middle rows are actual and interval coverages using Hansen’s critical values, and the lower row is interval 
coverage using new critical values. For length, the upper and lower rows are the average lengths corresponding to the CIs in the middle and 
lower rows of coverage, respectively.
ln
(

𝑌
𝐿

)

𝑖,1985
− ln

(

𝑌
𝐿

)

𝑖,1960

=

⎧

⎪

⎨

⎪

⎩

𝛽10 + 𝛽11 ln
(

𝑌
𝐿

)

𝑖,1960
+ 𝛽12 ln

(

𝐼
𝑌

)

𝑖
+ 𝛽13 ln

(

𝑛𝑖 + 𝑔 + 𝛿
)

+ 𝛽14 ln𝑆𝑖 + 𝜀𝑖,

𝛽20 + 𝛽21 ln
(

𝑌
𝐿

)

𝑖,1960
+ 𝛽22 ln

(

𝐼
𝑌

)

𝑖
+ 𝛽23 ln

(

𝑛𝑖 + 𝑔 + 𝛿
)

+ 𝛽24 ln𝑆𝑖 + 𝜀𝑖,

if 𝑞𝑖 ≤ 𝛾;

if 𝑞𝑖 > 𝛾.

Box I. 
not indexed by 𝑡 are annual averages over the period 1960–1985. 
Following Durlauf and Johnson (1995), we set 𝑔+𝛿 = 0.05. As suggested 
in Hansen (2000), we will check two possible threshold variables; the 
5 
first one is ln
(

𝑌
𝐿

)

𝑖,1960
 and the second one is the adult literacy rate in 

1960, 𝐿𝑅𝑖,1960. Also following Hansen (2000), we will consider only the 
heteroskedastic-consistent procedures.
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In the first stage, we use ln
(

𝑌
𝐿

)

𝑖,1960
 as 𝑞𝑖. The middle-point LSE of 𝛾 is $871, which generates the same sample splitting as the left-endpoint 

LSE $863. We employ the critical value in Table  1 to construct the CI for 𝛾. The 95% critical value is 5.991, much smaller than 7.352 as suggested 
in Hansen (2000). If we use the kernel method to estimate 𝜂2, then both Hansen’s critical value and ours generate the same CI for 𝛾, [$594, $1842). 
The left graph of Fig.  3 illustrates these two CIs. Obviously, this CI is quite wide since it covers 40 out of the 96 countries in the sample.

In the second stage, we use 𝐿𝑅𝑖,1960 as 𝑞𝑖 and apply threshold regression to the right regime in the first stage defined by ln
(

𝑌
𝐿

)

𝑖,1960
> 871. The 

middle-point LSE of 𝛾 is 47%. We will still use the critical value in Table  1 to construct the CI for 𝛾. It turns out that Hansen’s CI is [19%, 61%), while 
ours is [29%, 61%), which is much shorter. Hansen’s CI covers 19 while ours covers 14 out of the 78 countries in this subsample, so our shorter CI 
indicates less uncertainty in the sample splitting using 𝐿𝑅𝑖,1960. The right graph of Fig.  3 illustrates these two CIs.

As commented in Hansen (2000), his CI is sufficiently wide that there is considerable uncertainty regarding the threshold value. This paper 
shows that his CI can be much shortened by using an appropriate critical value.

Appendix. Proofs

We here collect some notations for future reference. 𝑎𝑛 = 𝑛1−2𝜑. ⇝ signifies weak convergence over a metric space. 𝑢 =
(

𝑢′1, 𝑢
′
2
)′ and 𝑣 are local 

parameters for 𝛽 and 𝛾. 𝑑= denotes equality in distribution.

Proof of Theorem  1.  Note that when 𝛾 = 𝛾0 + 𝑎−1𝑛 𝑣, the true 𝛾 value is still 𝛾0. Re-write 𝐿𝑅𝑛 (𝛾) as

𝐿𝑅𝑛 (𝛾) =

[

𝑆𝑛

(

𝛾, 𝛽 (𝛾)
)

− 𝑆𝑛
(

𝛾0, 𝛽0
)

]

−
[

𝑆𝑛

(

𝛾̂ , 𝛽
)

− 𝑆𝑛
(

𝛾0, 𝛽0
)

]

𝜂2
.

Because

𝑆𝑛
(

𝛾0 + 𝑎−1𝑛 𝑣, 𝛽0 + 𝑛−1∕2𝑢
)

− 𝑆𝑛
(

𝛾0, 𝛽0
)

⇝ 𝑢′1E
[

𝐱𝐱′1(𝑞≤𝛾0)
]

𝑢1 + 𝑢′2E
[

𝐱𝐱′1(𝑞>𝛾0)
]

𝑢2 − 2𝑢′1𝑊1 − 2𝑢′2𝑊2 + 𝜇 |𝑣| + 2
√

𝜆𝐵 (𝑣) ,

where 𝜇 = 𝑐′𝐷𝑐𝑓 and 𝜆 = 𝑐′𝑉 𝑐𝑓 , we have

𝑆𝑛

(

𝛾, 𝛽 (𝛾)
)

− 𝑆𝑛
(

𝛾0, 𝛽0
)

⇝ −𝑊 ′
1E

[

𝐱𝐱′1(𝑞≤𝛾0)
]−1

𝑊1 −𝑊 ′
2E

[

𝐱𝐱′1(𝑞>𝛾0)
]−1

𝑊2 + 𝜇 |𝑣| + 2
√

𝜆𝐵 (𝑣) ,

by taking minimum with respect to 𝑢, and

𝑆𝑛

(

𝛾̂ , 𝛽
)

− 𝑆𝑛
(

𝛾0, 𝛽0
)

⇝ −𝑊 ′
1E

[

𝐱𝐱′1(𝑞≤𝛾0)
]−1

𝑊1 −𝑊 ′
2E

[

𝐱𝐱′1(𝑞>𝛾0)
]−1

𝑊2 + min
𝑣

{

𝜇 |𝑣| + 2
√

𝜆𝐵 (𝑣)
}

by taking minimum with respect to both 𝑢 and 𝑣. As result,

𝐿𝑅𝑛
(

𝛾0 + 𝑎−1𝑛 𝑣
)

⇝ 𝐿𝑅∞ (𝑣) ∶= 1
𝜂2

[

𝜇 |𝑣| + 2
√

𝜆𝐵 (𝑣) − min
𝑣

{

𝜇 |𝑣| + 2
√

𝜆𝐵 (𝑣)
}]

𝑑
= 1

𝜂2

[

𝜇 |𝑣| + 2
√

𝜆𝐵 (𝑣) + sup
𝑣

{

−𝜇 |𝑣| + 2
√

𝜆𝐵 (𝑣)
}

]

.

The interval coverage converges to

𝑃
(

inf
𝑣≤0

𝐿𝑅∞ (𝑣) ≤ 𝑐𝛼 and inf𝑣≥0
𝐿𝑅∞ (𝑣) ≤ 𝑐𝛼

)

,

where 𝑐𝛼 is the upper 𝛼th quantile of sup𝑣 {− |𝑣| + 2𝐵 (𝑣)}. Making the change-of-variables 𝑣 =
(

𝜆
𝜇2

)

𝑟 and noting the distributional equality 
𝐵
(

𝑎2𝑟
)

= 𝑎𝐵 (𝑟), we have

inf
𝑣≤0

𝐿𝑅∞ (𝑣) = 1
𝜂2

[

inf
𝑟≤0

{

𝜇
|

|

|

|

𝜆
𝜇2

𝑟
|

|

|

|

+ 2
√

𝜆𝐵
(

𝜆
𝜇2

𝑟
)}

− inf
𝑟

{

𝜇
|

|

|

|

𝜆
𝜇2

𝑟
|

|

|

|

+ 2
√

𝜆𝐵
(

𝜆
𝜇2

𝑟
)}]

= 𝜆
𝜂2𝜇

[

inf
𝑟≤0

{|𝑟| + 2𝐵 (𝑟)} − inf
𝑟
{|𝑟| + 2𝐵 (𝑟)}

]

= inf
𝑣≤0

{|𝑣| + 2𝐵 (𝑣)} − inf
𝑣
{|𝑣| + 2𝐵 (𝑣)} ,

where the last equality is from the fact that 𝜂2 = 𝜆∕𝜇; similarly,

inf
𝑣≥0

𝐿𝑅∞ (𝑣) = inf
𝑣≥0

{|𝑣| + 2𝐵 (𝑣)} − inf
𝑣
{|𝑣| + 2𝐵 (𝑣)} .

As a result,

𝑝
(

𝑐𝛼
)

= 𝑃
(

inf
𝑣≤0

{|𝑣| + 2𝐵 (𝑣)} + 𝜉 ≤ 𝑐𝛼 and inf𝑣≥0
{|𝑣| + 2𝐵 (𝑣)} + 𝜉 ≤ 𝑐𝛼

)

= 𝑃
(

−2𝜉1 + 2max
[

𝜉1, 𝜉2
]

≤ 𝑐𝛼 and − 2𝜉2 + 2max
[

𝜉1, 𝜉2
]

≤ 𝑐𝛼
)

= 𝑃
(

max
[

𝜉1, 𝜉2
]

− min
[

𝜉1, 𝜉2
]

≤
𝑐𝛼
2

)

= 𝑃
(

𝜉1 − 𝜉2 ≤
𝑐𝛼
2

 and 𝜉1 > 𝜉2
)

+ 𝑃
(

𝜉2 − 𝜉1 ≤
𝑐𝛼
2

 and 𝜉2 > 𝜉1
)

= 2
∞ (

𝑒−𝜉2 − 𝑒−
𝑐𝛼
2 −𝜉2

)

𝑒−𝜉2𝑑𝜉2 = 2
(

1 − 𝑒−
𝑐𝛼
2
) ∞

𝑒−2𝜉2𝑑𝜉2 = 1 − 𝑒−
𝑐𝛼
2 ,
∫0 ∫0
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where

𝜉 = − inf
𝑣
{|𝑣| + 2𝐵 (𝑣)}

𝑑
= sup

𝑣
{− |𝑣| + 2𝐵 (𝑣)} = 2max

(

𝜉1, 𝜉2
)

,

with

𝜉1 ∶= sup
𝑣≤0

{

−
|𝑣|
2

+ 𝐵 (𝑣)
}

∼ 𝐸𝑥𝑝 (1)  and 𝜉2 ∶= sup
𝑣≥0

{

−
|𝑣|
2

+ 𝐵 (𝑣)
}

∼ 𝐸𝑥𝑝 (1)

being independent.  ■

Proof of Corollary  1.  In the proof of Theorem  1, we have 

𝑆𝑛

(

𝛾, 𝛽 (𝛾)
)

− 𝑆𝑛
(

𝛾0, 𝛽0
)

⇝ −𝑊 ′
1E

[

𝐱𝐱′1(𝑞≤𝛾0)
]−1

𝑊1 −𝑊 ′
2E

[

𝐱𝐱′1(𝑞>𝛾0)
]−1

𝑊2 +
{

𝜇− |𝑣| + 2
√

𝜆−𝐵1(−𝑣),
𝜇+𝑣 + 2

√

𝜆+𝐵2(𝑣),
if 𝑣 ≤ 0,
if 𝑣 > 0,

(5)

and

𝑆𝑛

(

𝛾̂ , 𝛽
)

− 𝑆𝑛
(

𝛾0, 𝛽0
)

⇝ −𝑊 ′
1E

[

𝐱𝐱′1(𝑞≤𝛾0)
]−1

𝑊1 −𝑊 ′
2E

[

𝐱𝐱′1(𝑞>𝛾0)
]−1

𝑊2 + inf
𝑣

{

𝜇− |𝑣| + 2
√

𝜆−𝐵1(−𝑣),

𝜇+𝑣 + 2
√

𝜆+𝐵2(𝑣),
if 𝑣 ≤ 0,
if 𝑣 > 0,

where 𝜇± = 𝑐′𝐷±𝑐𝑓 and 𝜆± = 𝑐′𝑉±𝑐𝑓 .  From (5),

𝑎𝑛
(

𝛾̂ − 𝛾0
)

⇝ argmin
𝑣

{

𝜇− |𝑣| + 2
√

𝜆−𝐵1(−𝑣),

𝜇+𝑣 + 2
√

𝜆+𝐵2(𝑣),
if 𝑣 ≤ 0,
if 𝑣 > 0.

Making the change-of-variables 𝑣 =
(

𝜆−
𝜇2−

)

𝑟 and noting the distributional equality 𝐵𝓁
(

𝑎2𝑟
)

= 𝑎𝐵𝓁 (𝑟), we have

argmin
𝑣

{

𝜇− |𝑣| + 2
√

𝜆−𝐵1(−𝑣),

𝜇+𝑣 + 2
√

𝜆+𝐵2(𝑣),
if 𝑣 ≤ 0,
if 𝑣 > 0,

=
𝜆−
𝜇2
−
argmin

𝑟

⎧

⎪

⎨

⎪

⎩

𝜆−
𝜇−

|𝑟| + 2 𝜆−
𝜇−

𝐵1(−𝑟),

𝜆−
𝜇−

𝜇+
𝜇−

𝑟 + 2 𝜆−
𝜇−

√

𝜆+
𝜆−

𝐵2(𝑟),
if 𝑟 ≤ 0,
if 𝑟 > 0,

𝑑
=

𝜆−
𝜇2
−
argmax

𝑣

{

− 1
2 |𝑣| + 𝐵1(−𝑣),

− 1
2𝜙𝑣 +

√

𝜔𝐵2(𝑣),
if 𝑣 ≤ 0,
if 𝑣 > 0.

It follows that

𝑎𝑛
𝜇2
−

𝜆−

(

𝛾̂ − 𝛾0
)

= 𝑛𝑓

(

𝛿′𝑛𝐷−𝛿𝑛
)2

𝛿′𝑛𝑉−𝛿𝑛

(

𝛾̂ − 𝛾0
)

⇝ argmax
𝑣

{

− 1
2 |𝑣| + 𝐵1(−𝑣),

− 1
2𝜙𝑣 +

√

𝜔𝐵2(𝑣),
if 𝑣 ≤ 0,
if 𝑣 > 0.

Because 𝑎𝑛
(

𝛾̂ − 𝛾0
)

= 𝑂𝑝 (1), and

𝑛2𝜑𝑓

(

𝛿′𝐷̂−𝛿
)2

𝛿′𝑉−𝛿

/

𝑛2𝜑𝑓

(

𝛿′𝑛𝐷−𝛿𝑛
)2

𝛿′𝑛𝑉−𝛿𝑛
=

𝑓
𝑓

(

𝛿′𝐷̂−𝛿
𝛿′𝑛𝐷−𝛿𝑛

)2
𝛿′𝑛𝑉−𝛿𝑛
𝛿′𝑉−𝛿

= 1 + 𝑜𝑝 (1) ,

we conclude that 𝑛𝑓
(

𝛿′𝐷̂−𝛿
)2

𝛿′𝑉−𝛿

(

𝛾̂ − 𝛾0
) and 𝑛𝑓

(

𝛿′𝑛𝐷−𝛿𝑛
)2

𝛿′𝑛𝑉−𝛿𝑛

(

𝛾̂ − 𝛾0
) have the same asymptotic distribution.

Next,

𝐿𝑅𝑛
(

𝛾0 + 𝑎−1𝑛 𝑣
)

⇝ 𝐿𝑅∞ (𝑣)

∶= 1
𝜂2

[{

𝜇− |𝑣| + 2
√

𝜆−𝐵1(−𝑣),

𝜇+𝑣 + 2
√

𝜆+𝐵2(𝑣),
if 𝑣 ≤ 0,
if 𝑣 > 0,

− inf𝑣

{{

𝜇− |𝑣| + 2
√

𝜆−𝐵1(−𝑣),

𝜇+𝑣 + 2
√

𝜆+𝐵2(𝑣),
if 𝑣 ≤ 0,
if 𝑣 > 0,

}]

𝑑
= 1

𝜂2
𝜆−
𝜇−

[{

|𝑣| + 2𝐵1(−𝑣),

𝜙𝑣 + 2
√

𝜔𝐵2(𝑣),

if 𝑣 ≤ 0,

if 𝑣 > 0,
− inf𝑣

{

|𝑣| + 2𝐵1(−𝑣),

𝜙𝑣 + 2
√

𝜔𝐵2(𝑣),
if 𝑣 ≤ 0,
if 𝑣 > 0

]

,

so

𝐿𝑅𝑛
(

𝛾0
)

⇝ 𝐿𝑅∞ (0)
𝑑
= sup

𝑣

{

− |𝑣| + 2𝐵1(−𝑣),

−𝜙𝑣 + 2
√

𝜔𝐵2(𝑣),
if 𝑣 ≤ 0,
if 𝑣 > 0,

where recall that 𝜂2 = 𝜆−
𝜇−
. As a result,

𝑃
(

𝛾0 ∈
{

𝛾 ∶ 𝐿𝑅𝑛 (𝛾) ≤ 𝑥
})

= 𝑃
(

𝐿𝑅𝑛
(

𝛾0
)

≤ 𝑥
)

→ 𝑃 (𝜉 (𝜙,𝜔) ≤ 𝑥∕2) = 𝑃
(

𝜉1 ≤ 𝑥∕2, 𝜉2 (𝜙,𝜔) ≤ 𝑥∕2
)

= 𝑃
(

𝜉1 ≤ 𝑥∕2
)

𝑃
(

𝜉2 (𝜙,𝜔) ≤ 𝑥∕2
)

= (1 − 𝑒−𝑥∕2)(1 − 𝑒−𝑥𝜙∕2𝜔),

where

𝜉 (𝜙,𝜔) = sup
{

− |𝑣| + 2𝐵1(−𝑣),
√

if 𝑣 ≤ 0, = max
(

𝜉1, 𝜉2 (𝜙,𝜔)
)

,

𝑣 −𝜙𝑣 + 2 𝜔𝐵2(𝑣), if 𝑣 > 0,

7 
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with

𝜉1 ∶= sup
𝑣≤0

{

−
|𝑣|
2

+ 𝐵1 (𝑣)
}

∼ 𝐸𝑥𝑝 (1)  and 𝜉2 (𝜙,𝜔) ∶= sup
𝑣≥0

{

−
𝜙𝑣
2

+
√

𝜔𝐵2 (𝑣)
}

∼ 𝐸𝑥𝑝
(

𝜔
𝜙

)

being independent.
Finally, for 𝑥 > 0,

𝑃
(

𝛾0 ∈ conv
{

𝛾 ∶ 𝐿𝑅∗
𝑛 (𝛾) ≤ 𝑥

})

→ 𝑃
(

inf
𝑣≤0

{

|𝑣| + 2𝐵1 (𝑣)
}

+ 𝜉 (𝜙,𝜔) ≤ 𝑥 and inf
𝑣≥0

{

𝜙𝑣 + 2
√

𝜔𝐵2(𝑣)
}

+ 𝜉 (𝜙,𝜔) ≤ 𝑥
)

= 𝑃
(

−2𝜉1 + 2max
[

𝜉1, 𝜉2 (𝜙,𝜔)
])

≤ 𝑥 and − 2𝜉2 (𝜙,𝜔) + 2max
[

𝜉1, 𝜉2 (𝜙,𝜔)
]

≤ 𝑥

= 𝑃
(

max
[

𝜉1, 𝜉2 (𝜙,𝜔)
]

− min
[

𝜉1, 𝜉2 (𝜙,𝜔)
]

≤ 𝑥∕2
)

= 𝑃
(

𝜉1 − 𝜉2 (𝜙,𝜔) ≤
𝑥
2  and 𝜉1 > 𝜉2 (𝜙,𝜔)

)

+ 𝑃
(

𝜉2 (𝜙,𝜔) − 𝜉1 ≤
𝑥
2  and 𝜉2 (𝜙,𝜔) > 𝜉1

)

= 𝑃
(

𝜉2 (𝜙,𝜔) < 𝜉1 ≤ 𝜉2 (𝜙,𝜔) +
𝑥
2

)

+ 𝑃
(

𝜉1 < 𝜉2 (𝜙,𝜔) ≤ 𝜉1 +
𝑥
2

)

= ∫ ∞
0

(

𝑒−𝜉2 − 𝑒−𝜉2−
𝑥
2
)

𝜙
𝜔 𝑒

− 𝜙
𝜔 𝜉2𝑑𝜉2 + ∫ ∞

0

(

𝑒−
𝜙
𝜔 𝜉1 − 𝑒−

𝜙
𝜔

(

𝜉2+
𝑥
2

))

𝑒−𝜉1𝑑𝜉1

= ∫ ∞
0

(

𝑒−
𝜔
𝜙 𝑧 − 𝑒−

𝜔
𝜙 𝑧− 𝑥

2
)

𝑒−𝑧𝑑𝑧 + ∫ ∞
0

(

𝑒−
𝜙
𝜔 𝑧 − 𝑒−

𝜙
𝜔

(

𝑧+ 𝑥
2

))

𝑒−𝑧𝑑𝑧

=
(

1 − 𝑒−
𝑥
2
)/(

1 + 𝜔
𝜙

)

+
(

1 − 𝑒−
𝑥
2
)/(

1 + 𝜙
𝜔

)

=
(

1 − 𝑒−
𝑥
2
)

,

which is the cdf of 𝐸𝑥𝑝 (2).  ■

Data availability

Data will be made available on request.
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