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Abstract

In social and behavioral sciences, the mediation test based on the indirect
effect is an important topic. There are many methods to assess the interven-
ing variable effects. In this paper, we focus on the difference method and the
product method in mediation models. Firstly, we analyze the regression func-
tions in the simple mediation model, and provide an expectation-consistent
condition. We further show that the difference estimator and the product
estimator are numerically equivalent based on the least squares regression
regardless of the error distribution. Secondly, we generalize the equivalence
result to the three-path model and the multiple mediators model, and prove
a general equivalence result in a class of restricted linear mediation models.
Finally, we investigate the empirical distributions of the indirect effect es-
timators in the simple mediation model by simulations, and show that the
indirect effect estimators are normally distributed as long as one multiplicand
of the product estimator is large.
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1. Introduction

In many disciplines, the effect of an exposure on the outcome variable
is often mediated by an intermediate variable. Mediation analysis aims to
identify the direct effect of the predictor on the outcome and the indirect
effect between the same predictor and outcome via the change in a mediator
(MacKinnon, 2008). Since the seminal paper of Baron and Kenny (1986),
mediation analysis has become one of the most popular statistical methods
in social sciences. For basic information on mediation analysis, one may re-
fer to the recent books including MacKinnon (2008), Hayes (2013), Preacher
(2015), and VanderWeele (2015). Empirical applications of mediation anal-
ysis have dramatically expanded in sociology, psychology, epidemiology, and
medicine (Ogden et al., 2010; Lockhart et al., 2011; Rucker et al., 2011;
Newland et al., 2013; Richiardi et al., 2013). Meanwhile, modern scientific
investigations require sophisticated models for conducting mediation analy-
sis (VanderWeele and Tchetgen, 2017; Frölich and Huber, 2017; Lachowicz
et al., 2018).

One important issue in mediation studies is to infer the mediated effects.
Various approaches have been proposed to test the statistical significance of
a mediated effect. The first approach is the causal steps approach (Baron
and Kenny, 1986), which specifies a series of tests of links in a causal chain.
Some variants of this method that test three different hypotheses have been
proposed (Allison, 1995; Kenny et al., 1998). The second approach is the dif-
ference in coefficients approach (Freedman and Schatzkin, 1992), which takes
the difference between a regression coefficient before and after being adjusted
by the intervening variable. The third approach is the product of coefficients
approach which involves paths in a path model (Sobel, 1982; MacKinnon
et al., 1998; MacKinnon and Lockwood, 2001). MacKinnon et al. (2002)
gave a summary and comparison of the existing methods, and evaluated
their performance via Monte Carlo simulations based on normally distribut-
ed data. For more references, see, for example, MacKinnon and Lockwood
(2004), Preacher and Hayes (2008), and Preacher and Selig (2012).

In this paper, we focus on the total indirect effect based on the least
squares regression. Firstly, we review the simple mediation model and some
basic inference methods, provide an expectation-consistent condition for the
model, and prove the equivalence between the difference and product estima-
tors using the closed-form expressions. Secondly, we prove the equivalence
between the difference and product estimators in the three-path model (Tay-
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lor et al., 2008) and in the multiple mediators model (Daniel et al., 2015;
Tafuri et al., 2018). Thirdly, we prove a general result on the numerical
equivalence between the two estimators in a general linear mediation mod-
el with restriction. Finally, we report some empirical distributions of the
indirect effect estimators by simulations, and meanwhile point out some lim-
itations of the existing inference methods by analyzing a real data on DNA
methylation.

We emphasize that the main result of this paper is Theorem 6 in Section
4. To avoid understanding difficulties, we first use a simple mediation model
and two more complex linear models to illustrate this result, and then state
the general result in Theorem 6.

2. Simple Mediation Model

The simple mediation model is given in Figure 1, where X is the indepen-
dent variable, Y is the dependent variable, and M is the mediating variable
that mediates the effects of X on Y. Given the observations (Xi,Mi, Yi) for
i = 1, . . . , n, the simple mediation model consists of three regression equa-
tions:

Yi = β0 + cXi + ε0,i, (1)

Mi = β1 + aXi + ε1,i, (2)

Yi = β2 + c′Xi + bMi + ε2,i, (3)

where c represents the total effect of X on Y , a represents the relation be-
tween X and M , c′ represents the direct effect of X on Y after adjusting the
effect of M , and b represents the relation between M and Y after adjusting
the effect of X.

For the simple mediation model, the mediated effect, also called the in-
direct effect, can be defined in two different forms: ab or c − c′. In general,
the main goal of mediation analysis is to test whether the null hypothesis
H0 : ab = 0 or H0 : c − c′ = 0 is true. In this section, we compare the two
forms of indirect effect in the least squares regression framework.

2.1. Zero-Mean Error Condition for Model Consistency

Note that the regression Equations (1)-(3) are interrelated in the simple
mediation model. We substitute Equation (2) into Equation (3) to obtain
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Figure 1: Causal diagram of the simple mediation model, where X is the independent
variable, M is the mediating variable, and Y is the dependent variable.

the following equation:

Yi = β2 + c′Xi + b(β1 + aXi + ε1,i) + ε2,i

= (β2 + bβ1) + (c′ + ab)Xi + εi, (4)

where εi = bε1,i + ε2,i. Assume also that ε1,i and ε2,i are zero-mean dis-
tributed, where “zero-mean” indicates their conditional means are zero, i.e.,
E[ε1,i|Xi] = 0 and E[ε2,i|Xi] = 0. Then consequently, εi is also zero-mean
distributed by noting that E[εi|Xi] = bE[ε1,i|Xi] + E[ε2,i|Xi] = 0. Further by
Equations (1) and (4), we have

E[Yi|Xi] = β0 + cXi,

E[Yi|Xi] = (β2 + bβ1) + (c′ + ab)Xi.

This shows that c = c′+ ab. The two expressions of E[Yi|Xi] also imply that
εi in (4) is equal to ε0,i in (1).

Theorem 1. For the simple mediation model, assume that εj,i are zero-mean
distributed with E[εj,i|Xi] = 0 for j = 1, 2. Then we have the equality

ab = c− c′.

In particular, if εj,i
i.i.d.∼ N(0, σ2

j ) for j = 1, 2, then they satisfy the zero-
mean condition, where i.i.d. is an abbreviation of independent and identically
distributed. And if we further assume that ε1,i and ε2,i are independent, then
ε0,i is also normally distributed with variance σ2

0 = b2σ2
1 + σ2

2.
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2.2. Least Squares Regression

The standard mediation analysis uses the least squares regression to es-
timate the regression parameters. Specifically, by minimizing the sum of
squared errors, we have

(β̂0, ĉ)
T = (X̃T X̃)−1X̃TY = arg min

β0,c

n∑
i=1

(Yi − β0 − cXi)
2, (5)

(β̂1, â)T = (X̃T X̃)−1X̃TM = arg min
β1,a

n∑
i=1

(Mi − β1 − aXi)
2, (6)

(β̂2, ĉ
′, b̂)T = (X̌T X̌)−1X̌TY = arg min

β2,c′,b

n∑
i=1

(Yi − β2 − c′Xi − bMi)
2, (7)

where X = (X1, . . . , Xn)T , M = (M1, . . . ,Mn)T , Y = (Y1, . . . , Yn)T , I =
(1, . . . , 1)T , X̃ = (I,X), and X̌ = (I,X,M). Moreover, if we assume that

ε1,i
i.i.d.∼ N(0, σ2

1), ε2,i
i.i.d.∼ N(0, σ2

2), and they are independent. Then the least
squares estimators in (5)-(7) follow the normal distributions as

ĉ ∼ N(c, σ2
0e
T
2,2(X̃

T X̃)−1e2,2),

â ∼ N(a, σ2
1e
T
2,2(X̃

T X̃)−1e2,2),

ĉ′ ∼ N(c′, σ2
2e
T
2,3(X̌

T X̌)−1e2,3),

b̂ ∼ N(b, σ2
2e
T
3,3(X̌

T X̌)−1e3,3),

where e2,2 = (0, 1)T , e2,3 = (0, 1, 0)T , e3,3 = (0, 0, 1)T , and σ2
0 = b2σ2

1 + σ2
2.

The above results are straightforward and hence is omitted. When the
random errors are normally distributed, it is known that the least squares
estimator is the most efficient estimator, the minimum variance unbiased
estimator, and also the maximum likelihood estimator. In principle, the nor-
mality of the errors is too strong for model consistency, and the least squares
estimator does not need the normality assumption, but only requires that
the expectations of the errors are zero. As an example, the error distribution
that is symmetric about zero satisfy the zero-mean condition.

2.3. Equivalence between the Difference and Product Estimators

The indirect effect of X on Y can be estimated by two methods: the
difference of the estimated coefficients ĉ−ĉ′, and the product of the estimated
coefficients âb̂. In this section, we show that the two methods provide the
same estimate in mediation analysis.
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Theorem 2. In the simple mediation model, the difference estimator is e-
quivalent to the product estimator, i.e.

âb̂ = ĉ− ĉ′,

regardless of the error distribution.

The proof of Theorem 2 is provided in Appendix A. This theorem shows
that, no matter what the error distribution is, the two estimators for the in-
direct effect are exactly the same in the closed expression of the least squares
estimators. The equivalence of the two estimators is attributed to three fact-
s: complete data, linear equation and least squares regression. If there are
missing data, or if the model is multilevel or logistic, or if we apply the least
absolute deviation or the other loss functions, then the equivalence between
the two estimators will no longer hold.

MacKinnon et al. (1995) provided the result in Theorem 1, by explicitly
deriving the formula of ab and c−c′; we provide an alternative proof without
explicit derivation. MacKinnon et al. (1995) claimed the numerical equiva-
lence of âb̂ and ĉ− ĉ′ by examining a few samples, but no rigorous proof was
provided; Theorem 2 filled this gap.

2.4. Inference

In mediation analysis, the main aim is to test whether the estimated
indirect effect is significantly different from zero. For the difference and
product estimators, the test statistics can be constructed as

zp =
âb̂

σ̂p
(8)

and

zd =
ĉ− ĉ′

σ̂d
, (9)

where σ̂p and σ̂d are the standard errors of the two estimators, respectively.
Since the two estimators are equivalent, their variances should satisfy σ2

p =
σ2
d, where σ2 without a hat means the variance, and with a hat means an

estimator of the variance. Under the assumption of normality, the variance
estimation is a key step for inference. There are many works on the variance
estimation.
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For the product estimator, Sobel (1982) applied the multivariate delta
method and proposed an approximate formula for the standard error as

σ̂p =

√
â2σ̂2

b + b̂2σ̂2
a,

For the difference estimator, Freedman and Schatzkin (1992) developed a
method to study binary health measures and proposed to estimate the stan-
dard error of ĉ− ĉ′ by

σ̂d =

√
σ̂2
c + σ̂2

c′ − 2
√

1− ρ̂2σ̂cσ̂c′ ,

where ρ̂ is the sample correlation between the independent variable X and
the mediation variable M . For more estimators of the standard error, one
may refer to MacKinnon et al. (2002). Thus the (1− α) confidence intervals
of ab and c− c′ are

[âb̂− z1−α/2σ̂p, âb̂+ z1−α/2σ̂p], (10)

[ĉ− ĉ′ − z1−α/2σ̂d, ĉ− ĉ′ + z1−α/2σ̂d], (11)

respectively, where α is the specified significance level, and z1−α/2 is the
(1− α/2) quantile of the standard normal distribution.

Remark 1. Although the estimators â and b̂ are normally distributed, the
product âb̂ is not normally distributed, no matter whether or not the two
estimators are independent (Cui et al., 2016; Nadarajah and Pogány, 2016).
Due to the equivalence of the two estimators, the distribution of the difference
between ĉ and ĉ′ is not normally distributed either, which implies that ĉ and
ĉ′ are not jointly normally distributed.

Since the sampling distributions of zp and zd are not normally distribut-
ed, but are skewed and leptokurtic in most cases (MacKinnon et al., 2002;
MacKinnon and Lockwood, 2004; Preacher and Hayes, 2004, 2008; Sisbu-
Sakarya et al., 2014), the tests based on the statistics (8) and (9) have low
powers and are often criticized in the literature. Some remedies are pro-
posed by MacKinnon et al. (1998), MacKinnon and Lockwood (2001) and
Shrout and Bolger (2002). In general, there are two methods for inference
of the indirect effect: the method based on the correct distribution of the
product and the resampling method. Firstly, the distribution of the product
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strategy explores the correct distribution of âb̂ rather than assumes its nor-
mality. The distribution function of the product of two standardized normal
variables are presented in Meeker et al. (1981). Preacher and Selig (2012)
indicated: “This method performs well in simulation studies, but until re-
cently required recourse to tables with limited availability and knowledge of
the population values of either a or b”. Secondly, the bootstrap is a popular
resampling method to conduct inference (MacKinnon and Lockwood, 2004;
Preacher and Hayes, 2008). To improve the finite-sample performance, oth-
er bias-corrected and bias-adjusted versions are also provided (MacKinnon,
2008; Preacher and Selig, 2012; Hayes, 2013). The Monte Carlo simulation
is an alternative method to the bootstrap, which directly generates sam-
ple statistics from their joint distribution, not reasmpling the original data
(MacKinnon and Lockwood, 2004; Preacher and Selig, 2012). The drawbacks
to the resampling methods include slight inconsistency among replications of
the same experiment with the same data due to resampling variability and
no theoretical results to guarantee their asymptotic consistency.

3. Beyond Simple Mediation Model

In the previous section, we have focused on the simple mediation model
with only one mediator, in which the only mediator transmits the influence
of the independent variable to the dependent variable. In applications, the
mediation chain with more than two paths or one mediator is also popular
(Tein et al., 2000; Allen and Griffeth, 2001; Tekleab et al., 2005; Kim and
Cicchetti, 2010; Nübold et al., 2015). In this section, we consider two such
mediation models: the three-path mediation model (Taylor et al., 2008) and
the multiple mediators model (Preacher and Hayes, 2008), and prove the
equivalence of the two least squares estimators for indirect mediation effects.

3.1. Three-Path Mediation Model

In a three-path mediation model, two mediators M1 and M2 intervene in
a series between an independent variable and a dependent variable (Taylor
et al., 2008), which is depicted as a path diagram in Figure 2. It consists of
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Figure 2: Causal diagram of three-path mediation model: X is the independent variable,
M1 and M2 are two mediating variables, and Y is the dependent variable.

four regression equations:

Yi = β0 + cXi + ε0,i, (12)

M1,i = β1 + a1Xi + ε1,i, (13)

M2,i = β2 + a2Xi + dM1,i + ε2,i, (14)

Yi = β3 + c′Xi + b1M1,i + b2M2,i + ε3,i, (15)

where the coefficients can be similarly interpreted as in the simple mediation
model.

The total indirect mediated effect, the effect passing through all paths, is
defined as the sum of the product of the coefficients:

a1b1 + a2b2 + a1db2.

Taylor et al. (2008) indicated that:“Although it may be possible to develop a
three-path test of mediation based on differences in coefficients, this method
would likely be cumbersome in comparison to the product-of-coefficients
test.” As a result, the difference method is not considered in Taylor et al.
(2008). In this subsection, we consider the indirect effect based on both the
product and difference methods.

Following the discussion in Section 2, we have the similar equivalent re-
lationship.
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Figure 3: Causal diagram of mediation model with two mediators: X is the independent
variable, M1 and M2 are two mediating variables, and Y is the dependent variable.

Theorem 3. In the three-path mediation model, assume that εj,i for j =
1, 2, 3 are zero-mean distributed. Then, we have the equality

(1) the parameters of the regression model satisfy the equality

c− c′ = a1b1 + a2b2 + a1db2;

(2) the least squares estimates of parameters satisfy the equality

ĉ− ĉ′ = â1b̂1 + â2b̂2 + â1d̂b̂2.

The proof of Theorem 3 is provided in Appendixes B.

3.2. Multiple Mediators Model

In this subsection, we consider the general mediation model with multiple
mediators (Preacher and Hayes, 2008). For simplicity, we consider only two
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mediators model with mediators M1 and M2, which can be expressed in the
form of four regression equations:

Yi = β0 + cXi + ε0,i, (16)

M1,i = β1 + a1Xi + ε1,i, (17)

M2,i = β2 + a2Xi + ε2,i, (18)

Yi = β3 + c′Xi + b1M1i + b2M2i + ε3,i. (19)

This form of the model is a special case of the three-path model with d in
Equation (14) equal to zero. The total indirect mediated effect, the effect
passing through either mediator, is defined as the sum of the product of the
coefficients:

a1b1 + a2b2.

The similar equivalent relationship between the product and difference
estimators is obtained.

Theorem 4. In the two mediators model, assume that εj,i for j = 1, 2, 3 are
zero-mean distributed. Then, we have the equality

(1) the parameters of the regression model satisfy the equality

c− c′ = a1b1 + a2b2;

(2) the least squares estimates of parameters satisfy the equality

ĉ− ĉ′ = â1b̂1 + â2b̂2.

The proof of Theorem 4 is simpler than that of Theorem 3, and thus is
omitted.

In general, the estimation equality still holds for k > 2 mediators.

Corollary 5. In the multiple mediators model with k > 2 mediators, we
have the estimation equality

ĉ− ĉ′ =
k∑
j=1

âj b̂j,

where âj b̂j is the estimated indirect effect through mediator Mj.

This corollary is a special case of the general result in the next subsection.
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4. General Linear Mediation Models

There are many linear mediation models with more than two mediators
or more than two paths. A mediation graph consists of a set V of vertices
and a set E of edges that connect some pairs of vertices (Pearl, 2009). The
vertices in mediation graphs correspond to variables including the indepen-
dent variable X, the dependent variable Y and the mediating variables M ,
and the edges denote a certain linear relationship between pairs of variables
in linear mediation models. A path is defined as a sequence of edges (e.g.
((X,M1), (M1,M2), (M2, Y ))) that start from X and end at Y , and each edge
starts with the vertex ending the preceding edge. In the general linear medi-
ation models, we assume all pathes start from X; in other words, Mj cannot
start a path.

In this section, we consider the cases where each edge is directed, which
means that each edge in a path is an arrow that points from the first to the
second vertex of the pair. However, the mediation graph is restricted to be
acyclic, i.e., contains no directed cycles (e.g., X → M , M → X) and no
self-loops (M → M). Now a specific group of linear regression equations is
one-to-one to a mediation graph.

Based on the discussions in the previous subsection, we provide a theorem
on the equivalence between the difference and product estimators in the
general linear mediation model.

Theorem 6. In a linear mediation model, if

(i) the mediation graph is acyclic;

(ii) the errors are the zero-mean distributed;

(iii) each Mj equation contains X as a regressor;

(iv) the estimation method is the least squares regression.

Then the estimates of parameters satisfy the equivalence relationship: the
difference estimator equals the sum of the product of the estimated parameters
in each path.

The assumption (iii) that each Mj equation contains X as a regressor cannot
be dropped; see the simulation in the following Section 4.2 for an illustration.
The proof of Theorem 6 is provided in Appendixes C.
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5. Simulation Studies

In this section, we conduct simulations to illustrate the empirical distri-
butions of the indirect effect estimators. The first subsection consider the
simple mediation model and the second subsection considers the three-path
mediation model in Figure 2 where the edge from X to M2 is deleted. We do
not intend to evaluate test methods under the assumption of normal error
distribution.

5.1. Empirical Distribution in Simple Mediation Model

In this simulation study, the independent variable and error are generated
from the standard normal distribution independently. The values of ab were
chosen to be zero (0), medium (0.02, −0.02), and large (2), corresponding
to the cases where (a, b) is equal to (0, 0)/ (0.2, 0.1), (0.02, 1)/ (−0.2, 0.1),
(−2, 0.01) and (2, 1), respectively. The sample size is 100, and the number
of replications is set to be 10000 for each case.

Figure 4 shows the empirical distributions of the indirect effect estimators
in red color. For comparison, we plot the corresponding normal distribution-
s with the same mean and variance as the empirical distributions. These
two distributions may be very different. For the zero indirect effect with
(a, b) = (0, 0), the empirical distribution is not normally distributed, because
it has a sharper peak than the corresponding normal distribution. For the
small indirect effects with (a, b) = (0.2, 0.1) and (−0.2, 0.1), the empirical dis-
tributions are skewed, right-skewed for the positive effect and left-skewed for
the negative effect. While for the small indirect effects with (a, b) = (0.02, 1)
and (−2, 0.01), the empirical distributions are still normally distributed. For
the large indirect effect with (a, b) = (2, 1), the empirical distribution is also
normally distributed. In one word, the empirical distribution is normally
distributed as long as one of the values of a and b is large in the simple
mediation model.

5.2. Empirical Distributions when X is Not a Regressor of an M Equation

In the three-path mediation model of Figure 2, suppose there is no edge
from X to M2. Other parameters are set as β1 = β2 = β3 = a1 = b1 =
b2 = c′ = d = 1 for simplicity, and the errors ε1, ε2 and ε3 are independently
normal distributed with the same variance 1. The sample sizes are set at
n = 100 and 1000, and the number of replications is set to be 10000.
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Figure 4: The empirical distribution (red) vs the normal distribution (black) with the same
mean and variance as the empirical distribution: the upper-left, upper-right, middle-left,
middle-right, lower-left and lower-right figures correspond to the cases where (a, b) is equal
to (0, 0), (0.2, 0.1), (−0.2, 0.1), (2, 1), (−2, 0.01) and (0.02, 1), respectively.
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Figure 5: Histograms of the difference between the difference and product estimators with
and without X as a regressor: the upper two graphs and lower two graphs correspond to
n = 100 and n = 1000, respectively; the left two graphs and right two graphs is with and
without a2, respectively.

The upper two graphs in Figure 5 show the histograms of the difference
between the difference and product estimators when n = 100 and 1000.
For comparison, we also report in the lower two graphs the histograms of
the difference between the two estimators when the edge from X to M2 is
added in and a2 is set at zero. It shows that the two estimators with X
as a regressor are numerically equivalent, while they are not without X as a
regressor. Simulation results match the prediction of Theorem 6. Specifically,
the mean and standard error for the difference between the two estimators
are computed as (−1.17 × 10−7, 5.29 × 10−6), (2.22 × 10−3, 7.24 × 10−2),
(1.05 × 10−9, 3.00 × 10−6) and (1.45 × 10−4, 2.27 × 10−2), which correspond
to the cases: n = 100 without X, n = 1000 and without X, n = 100 and
with X, n = 1000 and with X, respectively.
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6. Real Data Analysis

In this section, we apply the least squares methods to a real data set
to estimate the indirect effects (IE) of socioeconomic status (SES) on body
mass index (BMI) that might be mediated by DNA methylation CpG sites
on chromosome 17, where SES is quantified by a scalar index ranging from 0
to 100, and BMI is a body fatness index of an individual as in Loucks et al.
(2016). To compare the two estimators, we choose three possible continuous
mediators from DNA methylation: cg05157340, cg05156120 and cg05157970,
take SES as the exposure X, and BMI as the outcome Y .

For the simple mediation analysis, the IEs are estimated using the least
squares method in Section 2, the standard errors (SE) are estimated by
the formulas σ̂p and σ̂d for product and difference estimators, and the 95%
confidence intervals (CI) based on variance estimation (which are denoted
by CI1) are constructed using formulas (10) and (11), and the bootstrap CIs
(which are denoted by CI2) are constructed as

[2âb̂− (â∗b̂∗)0.975, 2âb̂− (â∗b̂∗)0.025],

where (â∗b̂∗)q is the qth quantile of the bootstrap distribution of âb̂, based
on 1000 bootstrap samples. Table 1 summarizes the estimated IE values,
SEs and the two 95% CIs. It can be seen that the difference and product
estimators are numerically equivalent, while their SEs are different because
different formulas are employed, which results in different CIs and different
inference conclusions, e.g., when the mediator is cg05156120, we cannot reject
the null that the indirect effect is zero based on IE1 but can reject based on
IE2. Bootstrap CIs are different from those based on variance estimate,
although the inference conclusions are the same in this example.

7. Discussions

In the literature, there are two estimation methods for the indirect medi-
ated effect: the difference method and the product method. Most researcher-
s recommend using the product form as the measure of the indirect effect,
because it is in line with the causal interpretation of the mediation effect
(MacKinnon et al., 2007; Pearl, 2012; Yuan and MacKinnon, 2014).

In this paper, we provide an identification condition for expectation con-
sistency in the simple mediation model, prove that the difference estimator
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Estimate SE 95% CI1 95% CI2
cg05157340

IE1 -0.0056 0.0056 [-0.0166, 0.0054] [-0.0337, 0.0220]
IE2 -0.0056 0.0205 [-0.0457, 0.0345] [-0.0381, 0.0222]

cg05156120
IE1 -0.0227 0.0104 [-0.0373, -0.0080] [-0.0465, 0.0106]
IE2 -0.0227 0.0156 [-0.0532, 0.0078] [-0.0462, 0.0110]

cg05157970
IE1 -0.0922 0.0174 [-0.1264, -0.0580] [-0.1431, -0.0265]
IE2 -0.0922 0.0272 [-0.1455, -0.0388] [-0.1410, -0.0303]

Table 1: The indirect effects in the SES-BMI data: IE1 and IE2 are the difference and
product estimators, CI1 and CI2 are the confidence intervals based on variance estimation
and the bootstrap, respectively.

is numerically equivalent to the product estimator in the least squares re-
gression, and summarize the statistical theories. One interesting finding is
that the equivalence of the two estimators depends only on the estimation
method-least squares, not on the error distribution. Furthermore, the equiv-
alence can be generalized to the three-path mediation model and the multiple
mediators model.

Since the two estimators are equivalent, they should have the same dis-
tribution. However, inferences based on the two estimators may be different,
and our real data analysis indicates this phenomenon. MacKinnon et al.
(2002), MacKinnon and Lockwood (2004) and Preacher and Hayes (2004)
made extensive simulations based on normal errors to assess their Type I
error rate and the power, and recommended to use the distribution of the
product estimator. These empirical results depend on the assumption of nor-
mal error distribution. As far as we know, there are not asymptotic results
for either estimator, and thus the performance of empirical studies is not
well understood. The mathematical expressions for the indirect effect esti-
mators pave a way to develop the asymptotic theory, which is helpful to the
statistical inference.

In practical applications, violations of normality commonly encountered
include heavy tails, skewness, outliers, contamination, and multimodality.
Micceri (1989) examined 440 data sets from the psychological and education-
al literature, including 125 psychometric measures such as scales measuring
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personality, anxiety, and satisfaction. None of these data sets are normally
distributed at the α = 0.01 significance level; rather, the distributions were
often heavy-tailed and skewed. In order to further improve the estimation ef-
ficiency and the power for the hypothesis testing, we can apply the composite
quantile regression of Zou and Yuan (2008), the weighted quantile average
regression of Zhao and Xiao (2014), and the difference method of Wang et al.
(2019) to the mediation model. These works deserve further investigation.
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Appendix A: Proof of Theorem 2

Proof. We first consider the simple case where β0 = β1 = β2 = 0. The
least squares estimators for the simplified models are

ĉ = arg min
c

n∑
i=1

(Yi − cXi)
2 =

XTY

XTX
,

â = arg min
a

n∑
i=1

(Mi − aXi)
2 =

XTM

XTX
,

(ĉ′, b̂)T = arg min
c′,b

n∑
i=1

(Yi − c′Xi − bMi)
2 =

Y

(
MTMXT −XTMMT

XTXMT −XTMXT

)
XTXMTM −XTMXTM

.

where X = (X1, . . . , Xn)T , M = (M1, . . . ,Mn)T , and Y = (Y1, . . . , Yn)T . By
the above least squares estimators, the difference estimator is

ĉ− ĉ′ = XTM(XTXMT −XTMXT )Y

XTX(XTXMTM −XTMXTM)
,

and the product estimator is

âb̂ =
XTM(XTXMT −XTMXT )Y

XTX(XTXMTM −XTMXTM)
.

This shows that ĉ− ĉ′ = âb̂. That is, the difference estimator is equivalent to
the product estimator for the linear regression models with zero intercept.

The proof can readily be generalized to the models with non-zero intercept
and so is omitted.

Appendix B: Proof of Theorems 3

Proof. By substituting Equations (13) and (14) into Equation (15), it fol-
lows that

Yi = β3 + c′Xi + b1M1,i + b2(β2 + dM1,i + a2Xi + ε2,i) + ε3,i

= (β3 + b2β2) + (c′ + a2b2)Xi + (b1 + b2d)M1,i + (b2ε2,i + ε3,i)

= (β3 + b2β2) + (c′ + a2b2)Xi + (b1 + b2d)(β1 + a1Xi + ε1,i) + (b2ε2,i + ε3,i)

= (β3 + b2β2 + (b1 + b2d)β1) + (c′ + a2b2 + a1b1 + a1db2)Xi + εi, (20)
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where εi = (b1 + b2d)ε1,i + b2ε2,i + ε3,i. Since εj,i for j = 1, 2, 3 are zero-
mean distributed, εi is also zero-mean distributed with E[εi|Xi] = 0. Taking
expectation of Equations (12) and (20), we have

E[Yi|Xi] = β0 + cXi,

E[Yi|Xi] = (β3 + b2β2 + (b1 + b2d)β1) + (c′ + a1b1 + a2b2 + a1db2)Xi.

This leads to β0 = β3 + b2β2 + (b1 + b2d)β1 and c− c′ = a1b1 + a2b2 + a1db2.
For the simplified models with β0 = β1 = β2 = β3 = 0, the least squares

estimators are

c̃ = arg min
c

(Yi − cXi)
2 =

A7

A1

,

ã1 = arg min
a

(M1,i − a1Xi)
2 =

A2

A1

,

(ã2, d̃)T = arg min
a2,d

(M2,i − a2Xi − dM1,i)
2 =

(
A3A4 − A2A10

A1A10 − A2A3

)
A1A4 − A2A2

,

(c̃′, b̃1, b̃2)
T = arg min

c′,b1,b2
(Yi − c′Xi − b1M1,i − b2M2,i)

2

=

 (A4A6 − A5A5)A7 + (A3A5 − A2A6)A8 + (A2A5 − A3A4)A9

(A3A5 − A2A6)A7 + (A1A6 − A3A3)A8 + (A2A3 − A1A5)A9

(A2A5 − A3A4)A7 + (A2A3 − A1A5)A8 + (A1A4 − A2A2)A9


A1(A4A6 − A5A5) + A2(A3A5 − A2A6) + A3(A2A5 − A3A4)

.

where A1 = XTX, A2 = XTM1, A3 = XTM2, A4 = MT
1 M1, A5 = MT

1 M2,
A6 = MT

2 M2, A7 = XTY , A8 = MT
1 Y , A9 = MT

2 Y , and A10 = MT
1 M2.

By the above least squares estimators, it is easy to verify that c̃ − c̃′ =
ã1b̃1 + ã2b̃2 + ã1d̃b̃2. That is, the difference estimator is equivalent to the
product estimator for the linear regression models with zero intercept.

The proof can readily be generalized to the models with non-zero intercept
and so is omitted.

Appendix C: Proof of Theorem 6

Proof. Suppose there are k mediators:

Mj = βj +RT
j aj + εj, j = 1, . . . , k,

Y = βk+1 +Xc′ +RT
Y b+ εk+1,
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where Rj contains the non-constant regressors in the equation for Mj, which
may include X and/or other Mj’s, and other symbols can be similarly un-
derstood. After substituting the equations for Mj, j = 1, . . . , k, into the
equation for Y , suppose we have

Y = α0 + (c′ + α1)X + ε0 ≡ α0 + cX + ε0,

where (α0, α1) are functions of the coefficients in the equations for {Mj}kj=1

and Y , i.e.,

α0 = f(β1, . . . , βk+1; a1, . . . , ak, b),

α1 = f(a1, . . . , ak, b),

α1 does not depend on β1, . . . , βk+1 because it measures the sensitivity of Y
to X while β1, . . . , βk+1 does not contain such information, c′ is the coefficient
of X in the equation for Y , and ε0 is a linear combination of the error terms
in these (k + 1) equations, so it satisfies E[ε0|X] = 0.

Because all the coefficients are estimated by least squares regression, they
employ the moment conditions

E

[(
1
Rj

)
(Mj − βj +RT

j aj)

]
= 0,

E

 1
X
Rj

 (Y − βk+1 −Xc′ −RT
Y b)

 = 0.

If these moment conditions imply

E

[(
1
X

)
(Y − α0 − cX)

]
= 0,

then our result follows since we just replace E[·] by 1/n
∑n

i=1 in the least
squares estimation. However, this indeed holds because ε0 is a linear function
of {εj}k+1

j=1 so that

E

[(
1
X

)
εj

]
= 0

implies

E

[(
1
X

)
ε0

]
= 0.
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Here, note thatX must be a regressor in theMj equation, otherwise E

[(
1
X

)
εj

]
=

0 cannot hold such that E

[(
1
X

)
ε0

]
= 0 cannot hold and the equivalence

result fails.
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