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Appendix A: Proof of Proposition 1

Lemma 1. Ifey; and e3; are independent and symmetrically distributed about
0, then €; = beg; + €3; for any b is symmetrically distributed about 0.

PROOF. Denote the pdfs of ey and €5, as f.,(-) and f.(-), and the cdfs as
F,(-) and F,(-). For any 0, the equality pr(e; < 0) = pr(e; > —0) implies

€2
our conclusion. Now,
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This completes the proof of Lemma 1.

PRrOOF. For case (i), we condition on X; everywhere. Since €y; and €3; have
symmetric densities about 0, ¢; has a symmetric density by Lemma 1 with
Med(e; | X;) = 0. Taking median of Equations (1) and (4), we have

Med(Yz | Xz) = ﬁl + CXi,
Med(Y; | X;) = (B3 + bBs) + (¢ + ab) X;.
Thus, ab = ¢ — . In addition, we have 8; = B3 + b3y and €; = €y;.
In case (ii), Med(e; | X;) = Med(¢;) = d. So taking median of Equations
(1) and (4) , we have

Med(Y; | Xi) = 1+ eX,
Med(Y; | Xi) = (B3 +0B2+d)+ (¢ + ab) X;.

Although B; # 3+ bfs, we still have ¢ — ¢ = ab. Note also that e1; = ¢; — d.



Appendix B: Proof of Theorem 1

PROOF. First, note that Condition 1(iv) implies E [|M |2] < 00 by Cauchy-

Schwarz inequality. As a result, £ [HX2||2] < 00, and the conditions required
for the first-order expansion are met, see, e.g., Pollard (1991) and Knight
(1998b). Specifically, if we define x| = (1, X), x3 = (1, X, M), and s (&) =
{1/2 —1(ex; <0)}/fe, (0) for k =1,2,3, we have
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where €; = bey + €3 — d if d # 0. We are interested in ¢, ., d and /b\, so the key
is to express F [x;xT] ' x; and E [x,x%] ' x, in a convenient way. For this
purpose, we conduct the following transformations on x; and x»:
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where the "tilde” variable is the demeaned version of the original variable,
and then
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and similarly,

As a result, we have the following first-order expansions:
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It follows that
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Next, we calculate the asymptotic variances of ¢ — ¢, Gb and @ — ¢ — ab.
The two_terms in the first-order expansion are correlated in ¢ — ¢, but are
not in ab. Specifically,
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where Avar(X,,) is the asymptotic variance of a generic sequence of random
variables X,,, and in F [s (e1) s (e3)],
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Appendix C: Proof of Corollary 1

PRrOOF. When €; and €3 both follow N (0, 1) d = 0, so the difference of the
asymptotic variances of ¢ — d and @b is 1 /o% times
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with ¢ () an @ (-) being the pdf and cdf of the standard normal distribution,
respectively, so
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Appendix D: Proof of Theorem 2

PROOF. The asymptotic distributions of @— ¢ and @b when b = 0 but a#0
are implied by Theorem 1. Specifically, the asymptotic variance of ¢ — ¢’ is

1 1/o% + a*/o3 1 a?

A, (0202 4f, (07 2, (0%0%  4f, (0702

which is the same as that of ab. As the asymptotic variance of ¢ — ¢ — ab
degenerates to zero, we next refine its asymptotic distribution.

First of all, for a general LAD regression, y; = x7 3+¢;, where x; € R*, ¢; is
independent of x; with Med (¢;) =0, E ([|XZ|3} < oo and f. are differentiable
at 0, Theorem 3 of Knight (1997) (see also Knight (1998a)) shows that
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where D(u) is a zero-mean Gaussian process (independent of Z) with D(0) =
0 and

E [(D(w) - D(v)) (D(u) — DV))*] = £. (0) B [xx™ [(u — v)" x]]

for u,v € R*, and Z ~ N(0, (4f.(0)2)'E[xx"]""). We apply this general
result to our case. Note that Condition 2(iv) implies E([|M|3} < oo by
Holder’s inequality, so E [HX2||3] < oo holds. Also, €; = €3 when b = 0, so
we require only the differentiability of e3.
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which cannot be simplified if a # 0, where the covariance kernel of D, (+) is
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both Dy (+) and D, (-) are independent of Z; and Zs,
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Second, because
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In summary,
w4 (- & —ab) = Dy (Z) - Dy (21) ~ aDs (22).

where D, (), Dy () and Ds () are correlated zero-mean Gaussian processes.
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Appendix E: Proof of Theorem 3

ProoF. From Theorem 1, we have

nab = n'/? (@—a)n'/? <E—b)
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Finally,
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so n®4(¢ — ¢ — Gb) has the same asymptotic distribution as n®4(@ — &).
When a = 0, ¥; and X5 cannot be simplified, but ¥, reduces to
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Appendix F: Simplifications and Simulations in Case Three

In Case three, a = b = 0, and X, Y15 and Y5 in Theorem 2 can be
simplified as

MZ X N2 X
1+ 55 =5 1+25% =55 0
Y1 = x X Yo = X x
e 1 ’ _Bx 1 0 )’
0'2 0'2 0'2 0'2
X X X X
1 + 15 + ('82"’_“52) _EXx B2+iiey
X o5 o% 93
_ 1
B, = —x o0
x X
,82+M52 O 1
o3 o3

As a result, we can write Z3 = (Z] + (z3,0), 22) with (29, z3) independent of

Zy, Ly~ m‘]\[ (07 21)7 and
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where iy = B2 + pte,. In consequence,

2,77 2,77 0
1 B - - 220 2923
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with |2 = 0. Also, when py = 0, the variance of Dy (Z5) — Dy (Z1) reduces
to

_ 2 2
(@ s,y [{B[X ial] + £[X ]
—2F [72(|XTZ1| A |x329|)1 (2] X1X5 29 > 0)} } f <z1 zy |0 ;E) dz,dz,
1 2 1 2 ’ ’4fe3 (O)Q ’

where X = X/ox has mean zero and variance 1, and ¥ can be further
simplified. Note that assuming pux = 0 does not lose generality, e.g., in
Equation (1), 51 + ¢X = (£ + cux) + cX.

In our simulations, 0% =1, 03 =1, ux = 0 and py = 0, so

1 00
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s~ N(0,1) €3 ~ 0.9N(0,1) + 0.1N(0,10%) €35~ ty

6_ 6— o b
3 é—¢ 3 é—c 3 é—¢
N N
= =
4 -4 o4
| |
S5 5 S5
= =
0 2!
~ ~
= = — 05 "
= -6 y = 0.41 - 0.76x -6 y=0.52 - 0.76z = -6 y=0.57 - 0.76z
2 2
-7 -7 -7
l0g(200)  log(1000) l0g(10000)  log(200)  log(1000) 10g(10000)  log(200)  log(1000) 10g(10000)
log(n) log(n) log(n)
ab ab ab
4 4 4
L5 5 -5
ey
S 6 6 6
@
-~ -7 -7 -7
=
0
S -8 y =0.50 — 1.01z -8 y = 0.56 — 1.00z -8 y =0.66 — 1.01z
-9 -9 -9
log(200) log(1000) log(10000) log(200) log(1000) log(10000) log(200) log(1000) log(10000)
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Figure 1: log{ MSE(¢—¢)}/2 and log{ M SE(ab)} /2 against logn for a = b = 0 and three
€3 distributions.

As a result, the variance of D, (Zy) — D, (Z1) in Case three is
B X2 [xIZ[] + B [X2[x3 2] — 2B [X2 (K1 2] A [X32)) L(Z7xix3 s > 0)]
2f., (0)* ’

where x; = (1, X)" and x, = (1, X, M)" with (X, M) ~ N(0,1,), Zf =
(Z], z2) with zp independent of Z;, Z; ~ N (0, 1), and 2z ~ N (0,1), and Z,
is independent of x5. By simulation,

E [X? |x]{ Z1||4E [ X? |x3 Z5|| —2E [ X? (|x{ Z1| A x5 Z5|) 1(Z]x1%3 Z> > 0)] = 0.63.

We finally analyze the convergence rates of the two LAD estimates in Case
three. Fig. 1 shows log{ MSE(@— )}/2 and log{ MSE(@b)}/2 against logn
when a = b = 0. Different from the common convergence rate n 12 of ¢ —
and ab in Cases one and two, the convergence rate of ¢ —  is n3/* and that of
ab is n, which are clearly shown in Table 3. Also, the asymptotic variances of
both @— ¢ and @b increase with the heaviness of €;’s tail. Comparing Fig. 1
and Fig. 4, we can see that MSE(c— ¢ —ab) and MSE(¢—¢) are close, which
is because ab has a faster convergence rate so its MSE in MSE(¢ — d— ab) is
neglectable.
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Table 1: MSE (x1073) for LS and two LAD estimates with non-normal e, error

a=0b0=0.14 a=b=14
€3 n MSELS MSEP MSED MSELS MSEP MSED
(I) 200 5.63E5 0.26 4.07  5.63E7  26.14 41.01
1000  1.62E4 0.05 0.78  1.62E6 4.91 8.03
(I) 200 1.78E4 0.27 4.63 1.78E6  27.05 48.97
1000  6.18Eb5 0.05 0.89  6.18E6 4.89 9.15
(II1) 200 1.73E5 0.27 494  1.73E7T  26.76  50.81
1000  6.86E6 0.05 091  6.86E8 4.95 9.71
b=0,a=0.14 b=0,a=14
() 200 0.03 0.02E1 036  0.10 011 044
1000 0.01E-1 0.05E-4 0.02 0.04E-1 0.04E-1 0.02
(II) 200 0.27 0.00 0.43 1.04 0.21 0.65
1000 0.01 0.00 0.02 0.05 0.01 0.03
(III) ~ 200 0.28 0.00 0.50 1.69 0.22 0.71
1000 0.01 0.00 0.02 0.07 0.01 0.03
a=b=0
IO 200 251 0.03 3329
1000 0.10 0.00 1.72
(II) 200 26.73 0.15 43.22
1000 1.10 0.00 2.31
(III) 200 25.10 0.14 49.64
1000 1.24 0.00 2.39

For each e3 distribution and n, we only list the finite-sample MSE based on 10000 repli-
cations, but not the MSE predicted by the asymptotic theory .

Appendix G: Simulation Results with Non-normal e, Errors

Following the reviewer’s comments, we set €2 ~ Laplace(0, 1) (non-normal
distribution), and e follows N(0;1), 0.9N(0;1) + 0.1N(0;10%), or t5. The
other settings are the same as those in Section 4.1 of the paper. Simulation
results are provided in Table 1, which show that our conclusions still hold in
these cases.
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