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Appendix A: Proof of Proposition 1

Lemma 1. If ε2i and ε3i are independent and symmetrically distributed about
0, then εi = bε2i + ε3i for any b is symmetrically distributed about 0.

Proof. Denote the pdfs of ε2i and ε3i as fε2(·) and fε3(·), and the cdfs as
Fε2(·) and Fε3(·). For any δ, the equality pr(εi ≤ δ) = pr(εi ≥ −δ) implies
our conclusion. Now,

pr(εi ≤ δ) =

∫ ∞
−∞

fε2(ε2i)

∫ δ−bε2i

−∞
fε3(ε3i)dε2idε3i

=

∫ ∞
−∞

fε2(ε2i)Fε3(δ − bε2i)dε2i =

∫ −∞
∞

fε2(−ε2i)Fε3(δ − b(−ε2i))d(−ε2i)

=

∫ ∞
−∞

fε2(ε2i)Fε3(δ + bε2i)dε2i =

∫ ∞
−∞

fε2(ε2i){1− Fε3(−δ − bε2i)}dε2i

=

∫ ∞
−∞

fε2(ε2i)

∫ ∞
−δ−bε2i

fε3(ε3i)dε3idε2i = pr(εi ≥ −δ)

This completes the proof of Lemma 1.

Proof. For case (i), we condition on Xi everywhere. Since ε2i and ε3i have
symmetric densities about 0, εi has a symmetric density by Lemma 1 with
Med(εi | Xi) = 0. Taking median of Equations (1) and (4), we have

Med(Yi | Xi) = β1 + cXi,

Med(Yi | Xi) = (β3 + bβ2) + (c′ + ab)Xi.

Thus, ab = c− c′. In addition, we have β1 = β3 + bβ2 and εi = ε1i.
In case (ii), Med(εi | Xi) = Med(εi) ≡ d. So taking median of Equations

(1) and (4) , we have

Med(Yi | Xi) = β1 + cXi,

Med(Yi | Xi) = (β3 + bβ2 + d) + (c′ + ab)Xi.

Although β1 6= β3 + bβ2, we still have c− c′ = ab. Note also that ε1i = εi− d.
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Appendix B: Proof of Theorem 1

Proof. First, note that Condition 1(iv) implies E
[
|M |2

]
<∞ by Cauchy-

Schwarz inequality. As a result, E
[
‖x2‖2

]
<∞, and the conditions required

for the first-order expansion are met, see, e.g., Pollard (1991) and Knight
(1998b). Specifically, if we define xT

1 = (1, X), xT
2 = (1, X,M), and s (εki) =

{1/2− 1 (εki ≤ 0)}/fεk (0) for k = 1, 2, 3, we have

√
n

(
β̂1 − β1
ĉ− c

)
≈ E

[
fε1|X (0 | X) x1x

T

1

]−1
n−1/2

n∑
i=1

x1i

{
1

2
− 1 (ε1i ≤ 0)

}
,

= n−1/2
n∑
i=1

E [x1x
T

1 ]−1 x1is (ε1i) ,

n1/2

(
β̂2 − β2
â− a

)
≈ E

[
fε2|X (0 | X) x1x

T

1

]−1
n−1/2

n∑
i=1

x1i

{
1

2
− 1 (ε2i ≤ 0)

}
= n−1/2

n∑
i=1

E [x1x
T

1 ]−1 x1is (ε2i) ,

n1/2

 β̂3 − β3
ĉ′ − c′

b̂− b

 ≈ E
[
fε3|X,M (0 | X,M) x2x

T

2

]−1
n−1/2

n∑
i=1

x2i

{
1

2
− 1 (ε3i ≤ 0)

}

= n−1/2
n∑
i=1

E [x2x
T

2 ]−1 x2is (ε3i) ,

where ε1 = bε2 + ε3− d if d 6= 0. We are interested in ĉ, ĉ′, â and b̂, so the key
is to express E [x1x

T
1 ]−1 x1 and E [x2x

T
2 ]−1 x2 in a convenient way. For this

purpose, we conduct the following transformations on x1 and x2:

C1x1 =

(
1 0
−µX 1

)(
1
X

)
=

(
1

X̃

)
≡ x̃1,

C2x2 =

 1 0 0
−µX 1 0

−β2 − µε2 −a 1

 1
X
M

 =

 1

X̃
ε̃2

 ≡ x̃2;
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where the ”tilde” variable is the demeaned version of the original variable,
and then

E [x1x
T

1 ]−1 x1 = CT

1E [C1x1x
T

1CT

1 ]−1 C1x1

=

(
1 −µX
0 1

)
E [x̃1x̃

T

1 ]−1 x̃1

=

(
1 −µX
0 1

)(
1 0
0 σ2

X

)−1(
1

X̃

)
=

(
1 −µX
0 1

)(
1

X̃/σ2
X

)
=

(
1− µX

σ2
X
X̃

X̃
σ2
X

)
,

and similarly,

E [x2x
T

2 ]−1 x2 =

 1 −µX −β2 − µε2
0 1 −a
0 0 1

 1

X̃/σ2
X

ε̃2/σ
2
2

 =

 1− µX
σ2
X
X̃ − β2+µε2

σ2
2
ε̃2

X̃/σ2
X − aε̃2/σ2

2

ε̃2/σ
2
2

 .

As a result, we have the following first-order expansions:

n1/2 (ĉ− c) ≈ n−1/2
n∑
i=1

X̃i

σ2
X

s (ε1i) ,

n1/2 (â− a) ≈ n−1/2
n∑
i=1

X̃i

σ2
X

s (ε2i) ,

n1/2(ĉ′ − c′) ≈ n−1/2
n∑
i=1

(
X̃

σ2
X

− a ε̃2
σ2
2

)
s (ε3i) ,

n1/2(̂b− b) ≈ n−1/2
n∑
i=1

ε̃2
σ2
2

s (ε3i) .

It follows that

n1/2{ĉ− ĉ′ − (c− c′)} ≈ 1

n1/2

n∑
i=1

{
X̃is (ε1i)

σ2
X

−

(
X̃

σ2
X

− a ε̃2
σ2
2

)
s (ε3i)

}
,

and

n1/2(âb̂−ab) = n1/2b̂(â−a)+n1/2a(̂b−b) ≈ 1

n1/2

n∑
i=1

{
bX̃is (ε2i)

σ2
X

+ a
ε̃2
σ2
2

s (ε3i)

}
.
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So

n1/2(ĉ− ĉ′ − âb̂) =
1

n1/2

1

σ2
X

n∑
i=1

X̃i [s (ε1i)− s (ε3i)− bs (ε2i)] .

Next, we calculate the asymptotic variances of ĉ− ĉ′, âb̂ and ĉ− ĉ′ − âb̂.
The two terms in the first-order expansion are correlated in ĉ − ĉ′, but are
not in âb̂. Specifically,

Avar(ĉ− ĉ′) =
1

4fε1 (0)2 σ2
X

+
1/σ2

X + a2/σ2
2

4fε3 (0)2
− 2E [s (ε1) s (ε3)]

σ2
X

,

Avar(âb̂) =
b2

4fε2 (0)2 σ2
X

+
a2

4fε3 (0)2 σ2
2

where Avar(Xn) is the asymptotic variance of a generic sequence of random
variables Xn, and in E [s (ε1) s (ε3)],

E

[{
1

2
− 1 (ε1 ≤ 0)

}{
1

2
− 1 (ε3 ≤ 0)

}]
=

1

4
− 1

4
− 1

4
+ E {1 (ε1 ≤ 0) 1 (ε3 ≤ 0)}

= E {1 (bε2 + ε3 ≤ d) 1 (ε3 ≤ 0)} − 1

4
,

with

E [1 (bε2 + ε3 ≤ d) 1 (ε3 ≤ 0)]

= E

[
1 (ε3 ≤ −bε2 + d) 1 (ε3 ≤ 0) 1

(
ε2 <

d

b

)]
+ E

[
1 (ε3i ≤ −bε2 + d) 1 (ε3 ≤ 0) 1

(
ε2 ≥

d

b

)]
=

{
1
2
Fε2
(
d
b

)
+
∫∞
d/b
Fε3 (−bε2 + d) dFε2 (ε2) ,

1
2

(
1− Fε2

(
d
b

))
+
∫ d/b
−∞ Fε3 (−bε2 + d) dFε2 (ε2) ,

if b > 0,
if b < 0.

Finally,

AVar(ĉ− ĉ′ − âb̂)

=
1

σ4
X

[
σ2
X

4fε1 (0)2
+

σ2
X

4fε3 (0)2
+

b2σ2
X

4fε2 (0)2
− 2

σ2
X {E [1 (ε1 ≤ 0) 1 (ε3 ≤ 0)]− 1/4}

fε1 (0) fε3 (0)

−2
bσ2

X {E [1 (ε1 ≤ 0) 1 (ε2 ≤ 0)]− 1/4}
fε1 (0) fε2 (0)

]
=

1

σ2
X

[
1

4fε1 (0)2
+

1

4fε3 (0)2
+

b2

4fε2 (0)2
− 2

E [1 (ε1 ≤ 0) 1 (ε3 ≤ 0)]− 1/4

fε1 (0) fε3 (0)

−2
b {E [1 (ε1 ≤ 0) 1 (ε2 ≤ 0)]− 1/4}

fε1 (0) fε2 (0)

]
,
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where

E
[
X̃s (ε1) X̃s (ε3)

]
=

σ2
X {E [1 (ε1 ≤ 0) 1 (ε3 ≤ 0)]− 1/4}

fε1 (0) fε3 (0)
,

E
{
X̃s (ε1) bX̃s (ε2)

}
=

bσ2
X {E [1 (ε1 ≤ 0) 1 (ε2 ≤ 0)]− 1/4}

fε1 (0) fε2 (0)
,

E
[
X̃s (ε3) bX̃s (ε2)

]
= 0

with

E [1 (ε1 ≤ 0) 1 (ε2 ≤ 0)] = E [1 (ε3 ≤ −bε2 + d) 1 (ε2 ≤ 0)]

=

∫ 0

−∞
Fε3 (−bε2 + d) dFε2 (ε2) .

Appendix C: Proof of Corollary 1

Proof. When ε2 and ε3 both follow N (0, 1), d = 0, so the difference of the

asymptotic variances of ĉ− ĉ′ and âb̂ is 1/σ2
X times

1

4fε1 (0)2
+

1

4fε3 (0)2
− b2

4fε2 (0)2
−

2
∫∞
0
Fε3 (− |b| ε2) dFε2 (ε2)

fε1 (0) fε3 (0)

=
b2 + 1

4/ (2π)
+

1

4/ (2π)
− b2

4/ (2π)
−
√
b2 + 1

1/ (2π)
pr (ε3 ≤ − |b| ε2 | ε2 > 0)

= π − 2π
√
b2 + 1P (ε3 ≤ − |b| ε2 | ε2 > 0)

= π − 2π
√
b2 + 1

(
1

2
− 1

π
arctan |b|

)
= π −

√
b2 + 1

|b|
π − 2 arctan |b|

1/ |b|
,

and by L’Hôpital’s rule,

lim
|b|→∞

π −
√
b2 + 1

|b|
π − 2 arctan |b|

1/ |b|
= lim
|b|→∞

π − −2/(1 + b2)

−1/b2
= π − 2,
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where

d
∫∞
0
Fε3 (− |b| ε2) dFε2 (ε2)

d |b|
=

d
∫∞
0

Φ (− |b| ε2) dΦ (ε2)

d |b|
= −

∫ ∞
0

ε2φε3 (− |b| ε2)φε2 (ε2) dε2

= − 1√
2π (b2 + 1)

1√
2π/ (b2 + 1)

∫ ∞
0

ε2 exp

(
−b

2 + 1

2
ε22

)
dε2

= − 1√
2π (b2 + 1)

1√
b2 + 1

φ (0) = − 1

2π (b2 + 1)

with φ (·) an Φ (·) being the pdf and cdf of the standard normal distribution,
respectively, so∫ ∞

0

Fε3 (− |b| ε2) dFε2 (ε2) = −
∫ |b|
0

1

2π (b2 + 1)
db+

∫ ∞
0

Φ (0)φε2 (ε2) dε2

=
1

4
− 1

2π
arctan |b| .

Appendix D: Proof of Theorem 2

Proof. The asymptotic distributions of ĉ− ĉ′ and âb̂ when b = 0 but a 6= 0
are implied by Theorem 1. Specifically, the asymptotic variance of ĉ− ĉ′ is

1

4fε3 (0)2 σ2
X

+
1/σ2

X + a2/σ2
2

4fε3 (0)2
− 1

2fε3 (0)2 σ2
X

=
a2

4fε3 (0)2 σ2
2

,

which is the same as that of âb̂. As the asymptotic variance of ĉ − ĉ′ − âb̂
degenerates to zero, we next refine its asymptotic distribution.

First of all, for a general LAD regression, yi = xT
i β+εi, where xi ∈ Rk, εi is

independent of xi with Med (εi) = 0, E(
[
|xi|3

]
<∞ and fε are differentiable

at 0, Theorem 3 of Knight (1997) (see also Knight (1998a)) shows that

n1/4

{
n1/2

(
β̂ − β

)
− E [xxT]−1

1

n1/2

n∑
i=1

xis (εi)

}

= −fε (0)−1E [xxT]−1 n−1/4
n∑
i=1

xi
{

1(εi ≤ ZTxi/n
1/2)− 1(εi ≤ 0)− fε (0)ZTxi/n

1/2
}

+ op(1)

=⇒ −fε (0)−1E [xxT]−1D(Z),
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where D(u) is a zero-mean Gaussian process (independent of Z) with D(0) =
0 and

E
[
(D(u)−D(v)) (D(u)−D(v))T

]
= fε (0)E

[
xxT

∣∣(u− v)T x
∣∣]

for u,v ∈ Rk, and Z ∼ N(0, (4fε(0)2)−1E [xxT]−1). We apply this general
result to our case. Note that Condition 2(iv) implies E(

[
|M |3

]
< ∞ by

Hölder’s inequality, so E
[
‖x2‖3

]
< ∞ holds. Also, ε1 = ε3 when b = 0, so

we require only the differentiability of ε3.
First,

n1/4

[
n1/2

{
ĉ− ĉ′ − (c− c′)

}
− 1

n1/2

n∑
i=1

aε̃2i
σ2
2

s (ε3i)

]

= − (0, 1)

fε3 (0)
n−1/4

n∑
i=1

E [x1x
T

1 ]−1 x1i

{
1(ε3i ≤ ZT

1 x1i/n
1/2)− 1(ε3i ≤ 0)− fε3 (0)ZT

1 x1i/n
1/2
}

+
(0, 1, 0)

fε3 (0)
n−1/4

n∑
i=1

E [x2x
T

2 ]−1 x2i

{
1(ε3i ≤ ZT

2 x2i/n
1/2)− 1(ε3i ≤ 0)− fε3 (0)ZT

2 x2i/n
1/2
}

=⇒ D̃2 (Z2)− D̃1 (Z1) ,

which cannot be simplified if a 6= 0, where the covariance kernel of D̃1 (·) is

1

fε3 (0)
E

( X̃

σ2
X

)2

|xT

1 (u− v)|

 ,
the covariance kernel of D̃2 (·) is

1

fε3 (0)
E

( X̃

σ2
X

− a ε̃2
σ2
2

)2

|xT

2 (u− v)|

 ,
D̃1 (·) and D̃2 (·) are correlated with the covariance kernel equal to

lim
n→∞

n1/2 1

fε3 (0)2
E
[
(0, 1)E [x1x

T

1 ]−1 x1ix
T

2iE [x2x
T

2 ]−1 (0, 1, 0){
1(ε3i ≤ uTx1i/n

1/2)− 1(ε3i ≤ 0)− fε3 (0) uTx1i/n
1/2
}{

1(ε3i ≤ vTx2i/n
1/2)− 1(ε3i ≤ 0)− fε3 (0) vTx2i/n

1/2
}]

=
1

fε3 (0)
E

[
X̃

σ2
X

(
X̃

σ2
X

− a ε̃2
σ2
2

)
(|uTx1| ∧ |vTx2|) 1(uTx1x

T

2v > 0)

]
,
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both D̃1 (·) and D̃2 (·) are independent of Z1 and Z2,

Z1 ∼ {2fε3 (0)}−1N
(
0, E [x1x

T

1 ]−1
)
≡ 1

2fε3 (0)
N (0,Σ1) ,

Z2 ∼ (2fε3 (0))−1N
(
0, E [x2x

T

2 ]−1
)
≡ 1

2fε3 (0)
N (0,Σ2) ,

E [Z1Z
T

2 ] = E [x1x
T

1 ]−1E [x1x
T

2s (ε1) s (ε3)]E [x2x
T

2 ]−1

=
1

4fε3 (0)2
E [x1x

T

1 ]−1E [x1x
T

2 ]E [x2x
T

2 ]−1 ≡ 1

4fε3 (0)2
Σ12,

with

Σ1 = CT

1E [C1x1x
T

1CT

1 ]−1 C1

=

(
1 −µX
0 1

)(
1 0
0 σ2

X

)−1(
1 0
−µX 1

)
=

(
1 +

µ2X
σ2
X
−µX
σ2
X

−µX
σ2
X

1
σ2
X

)
,

Σ2 = CT

2E [C2x2x
T

2CT

2 ]−1 C2

=

 1 −µX −β2 − µε2
0 1 −a
0 0 1


 1 0 0

0 1
σ2
X

0

0 0 1
σ2
2


 1 0 0

−µX 1 0
−β2 − µε2 −a 1



=

 1 +
µ2X
σ2
X

+
(β2+µε2)

2

σ2
2

a
β2+µε2
σ2
2
− µX

σ2
X
−β2+µε2

σ2
2

a
β2+µε2
σ2
2
− µX

σ2
X

1
σ2
X

+ a2

σ2
2

− a
σ2
2

−β2+µε2
σ2
2

− a
σ2
2

1
σ2
2


and

Σ12 = E

( 1− µX
σ2
X
X̃

X̃
σ2
X

) 1− µX
σ2
X
X̃ − β2+µε2

σ2
2
ε̃2

X̃/σ2
X − aε̃2/σ2

2

ε̃2/σ
2
2




=

(
1 +

µ2X
σ2
X
−µX
σ2
X

0

−µX
σ2
X

1
σ2
X

0

)
.
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Second, because

n1/2(âb̂− ab) = n1/2b̂(â− a) + n1/2a(̂b− b)
= n1/2Op(n

−1/2){Op(n
−1/2) +Op(n

−3/4)}+ n1/2a{Op(n
−1/2) +Op(n

−3/4)}
= aOp(1) + aOp(n

−1/4) + op(n
−1/4),

we have

n1/4

{
n1/2

(
âb̂− ab

)
− 1

n1/2

n∑
i=1

aε̃2i
σ2
2

s (ε3i)

}

= a
(0, 0, 1)

fε3 (0)
n−1/4

n∑
i=1

[
E [x2x

T

2 ]−1 x2i{1(ε3i ≤ ZT

2 x2i/n
1/2)

−1(ε3i ≤ 0)− fε3 (0)ZT

2 x2i/n
1/2}

]
+ op(1)

=⇒ aD2 (·) ,

where the covariance kernel of D2 (·) is

1

fε3 (0)
E

[(
ε̃2
σ2
2

)2

(|uTx2| ∧ |vTx2|) 1(uTx2x
T

2v > 0)

]
,

the covariance kernel between D̃1 (·) and D2 (·) is

1

fε3 (0)
E

[
X̃

σ2
X

ε̃2
σ2
2

(|uTx1| ∧ |vTx2|) 1(uTx1x
T

2v > 0)

]
,

and between D̃2 (·) and D2 (·) is

1

fε3 (0)
E

[(
X̃

σ2
X

− a ε̃2
σ2
2

)
ε̃2
σ2
2

|xT

2 (u− v)|

]
,

In summary,

n3/4
(
ĉ− ĉ′ − âb̂

)
=⇒ D̃2 (Z2)− D̃1 (Z1)− aD2 (Z2) ,

where D̃2 (·) , D̃1 (·) and D2 (·) are correlated zero-mean Gaussian processes.
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Appendix E: Proof of Theorem 3

Proof. From Theorem 1, we have

nâb̂ = n1/2 (â− a)n1/2
(
b̂− b

)
=⇒ N

(
0,

1

4fε2 (0)2 σ2
X

)
N

(
0,

1

4fε3 (0)2 σ2
2

)
=

1

4fε2 (0) fε3 (0)σXσ2
z1z2.

From Theorem 2,

n3/4
(
ĉ− ĉ′

)
= n3/4

{
ĉ− ĉ′ − (c− c′)

}
=⇒ D̃2 (Z2)− D̃1 (Z1) ,

where the covariance kernel of D̃1 (·) remains as

1

fε3 (0)
E

( X̃

σ2
X

)2

|xT

1 (u− v)|

 ,
the covariance kernel of D̃2 (·) reduces to

1

fε3 (0)
E

( X̃

σ2
X

)2

|xT

2 (u− v)|

 ,
and the covariance kernel between D̃1 (·) and D̃2 (·) reduces to

=
1

fε3 (0)
E

( X̃

σ2
X

)2

(|uTx1| ∧ |vTx2|) 1(uTx1x
T

2v > 0)

 .
Finally,

n3/4(ĉ− ĉ′ − âb̂) = n3/4(ĉ− ĉ′)− n−1/4nâb̂ = n3/4(ĉ− ĉ′) + op(1),

so n3/4(ĉ− ĉ′ − âb̂) has the same asymptotic distribution as n3/4(ĉ− ĉ′).
When a = 0, Σ1 and Σ12 cannot be simplified, but Σ2 reduces to 1 +

µ2X
σ2
X

+
(β2+µε2)

2

σ2
2

−µX
σ2
X
−β2+µε2

σ2
2

−µX
σ2
X

1
σ2
X

0

−β2+µε2
σ2
2

0 1
σ2
2

 .
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Appendix F: Simplifications and Simulations in Case Three

In Case three, a = b = 0, and Σ1, Σ12 and Σ2 in Theorem 2 can be
simplified as

Σ1 =

(
1 +

µ2X
σ2
X
−µX
σ2
X

−µX
σ2
X

1
σ2
X

)
, Σ12 =

(
1 +

µ2X
σ2
X
−µX
σ2
X

0

−µX
σ2
X

1
σ2
X

0

)
,

Σ2 =

 1 +
µ2X
σ2
X

+
(β2+µε2)

2

σ2
2

−µX
σ2
X
−β2+µε2

σ2
2

−µX
σ2
X

1
σ2
X

0

−β2+µε2
σ2
2

0 1
σ2
2

 .

As a result, we can write ZT
2 = (ZT

1 + (z3, 0) , z2) with (z2, z3) independent of
Z1, Z1 ∼ 1

2fε3 (0)
N (0,Σ1), and

(z2, z3)
T ∼ 1

2fε3 (0)σ2
N

(
0,

(
1 −µM
−µM µ2

M

))
,

where µM = β2 + µε2 . In consequence,

1

4fε3 (0)2
Σ = E


Z1Z

T
1 Z1Z

T
1 0

Z1Z
T
1 Z1Z

T
1 +

(
z23 0
0 0

) (
z2z3

0

)
0 (z2z3, 0) z22


with |Σ| = 0. Also, when µX = 0, the variance of D̃2 (Z2)− D̃1 (Z1) reduces
to

{σ2
Xfε3(0)}−1

∫ {
E
[
X

2 |xT

1z1|
]

+ E
[
X

2 |xT

2z2|
]

−2E
[
X

2
(|xT

1z1| ∧ |xT

2z2|)1(zT

1x1x
T

2z2 > 0)
]}

f

(
z1, z2 | 0,

1

4fε3 (0)2
Σ

)
dz1dz2,

where X = X/σX has mean zero and variance 1, and Σ can be further
simplified. Note that assuming µX = 0 does not lose generality, e.g., in
Equation (1), β1 + cX = (β1 + cµX) + cX̃.

In our simulations, σ2
X = 1, σ2

2 = 1, µX = 0 and µM = 0, so

Σ1 = I2, Σ2 = I3, Σ12 =

(
1 0 0
0 1 0

)
.
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ĉ′
))
/
2

-7

-6

-5

-4

-3

ǫ3 ∼ t2
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Figure 1: log{MSE(ĉ− ĉ′)}/2 and log{MSE(âb̂)}/2 against log n for a = b = 0 and three
ε3 distributions.

As a result, the variance of D̃2 (Z2)− D̃1 (Z1) in Case three is

E [X2 |xT
1Z1|] + E [X2 |xT

2Z2|]− 2E [X2 (|xT
1Z1| ∧ |xT

2Z2|) 1(ZT
1 x1x

T
2Z2 > 0)]

2fε3 (0)2
,

where x1 = (1, X)T and x2 = (1, X,M)T with (X,M) ∼ N (0, I2), Z
T
2 =

(ZT
1 , z2) with z2 independent of Z1, Z1 ∼ N (0, I2), and z2 ∼ N (0, 1), and Z2

is independent of x2. By simulation,

E
[
X2 |xT

1Z1|
]
+E

[
X2 |xT

2Z2|
]
−2E

[
X2 (|xT

1Z1| ∧ |xT

2Z2|) 1(ZT

1 x1x
T

2Z2 > 0)
]

= 0.63.

We finally analyze the convergence rates of the two LAD estimates in Case
three. Fig. 1 shows log{MSE(ĉ− ĉ′)}/2 and log{MSE(âb̂)}/2 against log n
when a = b = 0. Different from the common convergence rate n1/2 of ĉ − ĉ′
and âb̂ in Cases one and two, the convergence rate of ĉ− ĉ′ is n3/4 and that of
âb̂ is n, which are clearly shown in Table 3. Also, the asymptotic variances of
both ĉ− ĉ′ and âb̂ increase with the heaviness of ε3’s tail. Comparing Fig. 1
and Fig. 4, we can see that MSE(ĉ− ĉ′− âb̂) and MSE(ĉ− ĉ′) are close, which

is because âb̂ has a faster convergence rate so its MSE in MSE(ĉ− ĉ′− âb̂) is
neglectable.
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Table 1: MSE (×10−3) for LS and two LAD estimates with non-normal ε2 error

a = b = 0.14 a = b = 1.4
ε3 n MSELS MSEP MSED MSELS MSEP MSED

(I) 200 5.63E5 0.26 4.07 5.63E7 26.14 41.01
1000 1.62E4 0.05 0.78 1.62E6 4.91 8.03

(II) 200 1.78E4 0.27 4.63 1.78E6 27.05 48.97
1000 6.18E5 0.05 0.89 6.18E6 4.89 9.15

(III) 200 1.73E5 0.27 4.94 1.73E7 26.76 50.81
1000 6.86E6 0.05 0.91 6.86E8 4.95 9.71

b = 0, a = 0.14 b = 0, a = 1.4
(I) 200 0.03 0.02E-1 0.36 0.10 0.11 0.44

1000 0.01E-1 0.05E-4 0.02 0.04E-1 0.04E-1 0.02
(II) 200 0.27 0.00 0.43 1.04 0.21 0.65

1000 0.01 0.00 0.02 0.05 0.01 0.03
(III) 200 0.28 0.00 0.50 1.69 0.22 0.71

1000 0.01 0.00 0.02 0.07 0.01 0.03

a = b = 0
(I) 200 2.51 0.08 33.29

1000 0.10 0.00 1.72
(II) 200 26.73 0.15 43.22

1000 1.10 0.00 2.31
(III) 200 25.10 0.14 49.64

1000 1.24 0.00 2.39

For each ε3 distribution and n, we only list the finite-sample MSE based on 10000 repli-

cations, but not the MSE predicted by the asymptotic theory .

Appendix G: Simulation Results with Non-normal ε2 Errors

Following the reviewer’s comments, we set ε2 ∼ Laplace(0, 1) (non-normal
distribution), and ε3 follows N(0; 1), 0.9N(0; 1) + 0.1N(0; 102), or t2. The
other settings are the same as those in Section 4.1 of the paper. Simulation
results are provided in Table 1, which show that our conclusions still hold in
these cases.
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