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Abstract
This paper provides two groups of conditions of model consistency in least-absolute-
deviation mediation models. Under model consistency, we establish the asymptotic
theory of the difference estimator and the product estimator, and show that the two
estimators are not only numerically nonequivalent but asymptotically nonequivalent,
which is dramatically different from the situation in the least squares mediation anal-
ysis where these two estimators are numerically equivalent. In all three possible
scenarios of model parameters, both the asymptotic theories and simulation studies
show that the product estimator is more efficient than the difference estimator.

Keywords LAD mediation · Model consistency · Difference estimator · Product
estimator · Second-order asymptotic

Mathematics Subject Classification 62D20 · 62E20 · 62F12

1 Introduction

Inmany disciplines, the effect of the predictor on the outcome variable is often affected
by a third variable termed as a mediator. Mediation analysis aims to identify the
mediation effect between the predictor and the outcome via the change in the media-
tor (MacKinnon 2008; VanderWeele 2015; Hayes 2018). Since the seminal paper of
Baron andKenny (1986), the empirical applications ofmediation analysis havedramat-
ically expanded in sociology, psychology, epidemiology, and medicine. For example,
Lindquist (2012) determined whether activation in certain brain regions mediated the
effect of applied temperature on self-reported pain based on the data from a functional
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magnetic resonance imaging study of thermal pain. VanderWeele et al. (2013) exam-
ined whether the 4Rs intervention has an effect on students’ depressive symptoms by
changing the quality of other classes and changing the quality of a student’s own class.

The basic mediation model consists of three regression equations with the causality
assumptions. One usually adopts the least squares (LS) or the maximum likelihood
under normality to obtain two estimates of themediation effect: the difference estimate
and the product estimate (MacKinnon et al. 2002) . These two estimates are numeri-
cally equivalent under mild conditions (MacKinnon et al. 1995; Wang et al. 2021).

Unfortunately, the real data sets are seldom normally distributed. Micceri (1989)
examined 440 data sets from the psychological and educational literature and found
that none of them was normally distributed. Instead, their distributions were either
heavy-tailed and/or skewed. Field and Wilcox (2017) further showed that some
assumptions about commonly used statistical methods are poorly understood and
likely to be violated in psychological data, so inappropriate statistical methods are
often applied. Mediation analysis for non-normal variables is an active research area
nowadays (Preacher 2015).

It is well known that the LS method may break down in the presence of outliers
and heavy-tailed errors. Therefore, it is important to develop robust alternatives of the
LS method. Zu and Yuan (2010) used the local influence method to identify outliers
which are far away from themajority of observations and strongly affect the mediation
analysis. Recently, Yuan and MacKinnon (2014) proposed the product estimate of the
mediation effect by applying the least-absolute-deviation (LAD) regression to data
with heavy-tailed errors. Shen et al. (2014) and Bind et al. (2017) suggested to employ
quantile mediation models to explore the information in the error distribution.

The purpose of this paper is to provide rigorous analyses on model consistency and
show nonequivalence of the difference and product estimators in the LAD mediation
model. In Sect. 2, we state the LAD mediation model and two groups of conditions
of model consistency. Both groups of conditions allow heavy-tailed errors: the first
group allows heteroskedasticity but the errors must be symmetrically distributed about
zero, while the second group excludes heteroskedasticity but allows skewed errors.
Under model consistency, we provide the asymptotic theory of the two LAD estima-
tors and show that they are not only numerically nonequivalent but asymptotically
nonequivalent in Sect. 3, which is dramatically different from the LS case where the
two estimators are numerically equivalent. Specifically, for all three possible scenarios
of model parameters, our asymptotic theories show that the product estimator is more
efficient than the difference estimator, which is confirmed by our simulation studies
in Sect. 4. Further discussion is provided in Sect. 5.

2 LADmediation analysis

2.1 LADmediationmodel

As mentioned in the Introduction, the mean (or the LS method) is sensitive to outliers
and performs poorly when the error distribution is heavy-tailed (Huber and Ronchetti
2009; Wilcox 2017). Thus, it is not always an appropriate summary of the center of
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the data distribution; as an alternative, the median may perform better for non-normal
distributions with heavy-tails. In this section, we apply the LAD regression to the basic
mediation model, provide two groups of conditions of model consistency, and state
the asymptotic theory for the LAD estimates of the basic parameters of the model.

Given the observations (Xi , Mi , Yi ), i = 1, . . . , n, the basic LADmediation model
consists of three regression equations:

Yi = β1 + cXi + ε1i (1)

Mi = β2 + aXi + ε2i (2)

Yi = β3 + c′ Xi + bMi + ε3i , (3)

where the errors satisfy Med(εki | Xi ) = 0 for k = 1, 2, Med(ε3i | Xi , Mi ) =
Med(ε3i | Xi , ε2i ) = 0, which implies Med(ε3i | Xi ) = 0, c′ is not the transpose of c
but the coefficient of Xi in Eq. (3), and the transpose of a generic vector or matrix x
is denoted as xT throughout the paper. To compare with Eq. (1), we plug Eq. (2) into
Eq. (3) to have

Yi = β3 + c′ Xi + b (β2 + aXi + ε2i ) + ε3i = (β3 + bβ2) + (
c′ + ab

)
Xi + εi .

(4)

where εi = bε2i +ε3i . The parameter c represents the total effect of X onY , a measures
the relation between X and M , c′ represents the direct effect of X on Y adjusted for
the effect of M , and b measures the relation between M and Y adjusted for the effect
of X .

In the general setup of the LAD mediation model, we only assume that the con-
ditional medians of the errors are zero, and do not impose any other distributional
assumptions on them, i.e., independence (of X ), homoscedasticity or normality; see
Sect. 2.2 for further discussions on the error term distributions. As in the LS medi-
ation model, the LAD mediation effect can be defined in two forms: the product of
parameters ab and the difference in parameters c −c′. Next, we discuss the conditions
of model consistency, i.e., when will the difference in parameters c − c′ be equal to
the product of parameters ab in population?

2.2 Model consistency

In LAD mediation analysis, Yuan and MacKinnon (2014) discussed the model con-
sistency for normally distributed errors in their Theorem 1. We restated their Theorem
1 using our notations in Lemma 1.

Lemma 1 If conditional on Xi , ε2i and ε3i are independent and zero-mean normally
distributed, then Med(bε2i + ε3i | Xi ) = 0 such that c − c′ = ab holds.

Note that we do not allow dependency between ε2i and ε3i conditional on Xi . This
is because if their correlation corr(ε2i , ε3i | Xi ) ≡ ρ23(Xi ) �= 0, then Med(ε3i |
Xi , ε2i ) = E(ε3i | Xi , ε2i ) = ε2iρ23(Xi )σ3(Xi )/σ2(Xi ) �= 0, violating the basic
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requirement of Eq. (3) in LAD mediation analysis, where σk(Xi ) is the conditional
standard deviation of εki given Xi , k = 2, 3. As a result, the dependency between
ε2i and ε3i can arise only through Xi . A typical case satisfying the assumptions in
Lemma1 is εki = σk(Xi )εki with ε2i and ε3i being independent and following N (0, 1).

Lemma 1 is a good starting point for model consistency in LADmediation analysis.
However, the normality of errors is too strong as it is well known that the LS estimator
is more efficient than the LAD estimator for normal errors. The following proposition
tries to extend the model consistency to non-normal errors in two typical cases; the
first case allows dependency of (ε2i , ε3i ) on Xi while the second case does not.

Proposition 1 If either of the following two cases hold, (i) conditional on Xi , ε2i and ε3i

are independent and symmetrically distributed about 0; (ii) (ε2i , ε3i ) are independent
of Xi , and Med(ε2i ) = 0 and Med(ε3i | ε2i ) = 0; then in LAD mediation analysis,
we have the equality

c − c′ = ab.

The conditions in Case (i) imply Med(ε2i | Xi ) = 0 and Med(ε3i | Xi , ε2i ) =
Med(ε3i | Xi ) = 0, and the conditions inCase (ii) implyMed(ε2i | Xi ) = Med(ε2i ) =
0 and Med(ε3i | ε2i , Xi ) = Med(ε3i | ε2i ) = 0, which are the requirements of the
LAD mediation model, so are not restrictions. The real restrictions are independence
between ε2i and ε3i and the symmetricity of their distributions given Xi in Case (i) and
the independence between (ε2i , ε3i ) and Xi in Case (ii). Case (i) in Proposition 1 is an
extension of Lemma 1. It implies that the normality is not the key for Med(bε2i +ε3i |
Xi ) = 0, but the symmetricity (implied by the normality) is. A typical scenario
in Case (i) is εki = σk(Xi )εki , k = 2, 3, with ε2i and ε3i being independent and
symmetrically distributed about 0. Compared with Case (i), Case (ii) requires the
independence between (ε2i , ε3i ) and Xi but relaxes the independence between ε2i and
ε3i and the symmetricity of their distributions, which implies that when the means of
ε2i and ε3i exist, E(ε2i ) and E(ε3i ) need not be zero. From the proof of Proposition 1
in Case (ii), Med(εi ) need not be zero such that β1 need not be equal to β3 + bβ2,
but c − c′ = ab still holds. When Med(εi ) �= 0, we denote d = Med(εi ), and then
β1 = d + β3 + bβ2 and ε1i = εi − d. The conditions in Case (i) of Proposition 1 are
hard to relax, as shown in the following two examples.

Example 1 This examplewill show that inCase (i), even if ε2i and ε3i are symmetrically
distributed about 0 given Xi , εi conditional on Xi neednot be symmetrically distributed
about 0 when ε2i and ε3i are correlated. As a result, Med(εi | Xi ) will depend on Xi

and c − c′ = ab cannot hold. Assume εki = σ (Xi ) εki , k = 2, 3, where ε2i and
ε3i are symmetrically distributed about 0 but correlated with each other; then εi =
σ (Xi ) (ε2i + ε3i ) ≡ σ (Xi ) εi when b = 1. Specifically, if (ε2i , ε3i ) take three values
(−1, 1), (0,−1), (1, 1) with probabilities 1/4, 1/2, 1/4, respectively, then both ε2i

and ε3i are symmetrically distributed about 0, but εi is not. In consequence, Med(εi |
Xi ) = Med(εi )σ (Xi ) = dσ(Xi ) depending on Xi , and c − c′ = ab cannot hold,
where d ′ = Med(εi ). Of course, independence between ε2i and ε3i are only sufficient
but not necessary for the symmetricity of ε2i + ε3i . For example, if (ε2i , ε3i ) are
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uniformly distributed on the unit disk (and hence have symmetric marginal densities
but are not independent), then ε2i + ε3i also has a symmetric density.

Example 2 This example will show that in Case (i), even if ε2i and ε3i are independent
given Xi , εi conditional on Xi need not be symmetrically distributed about 0 if either
ε2i or ε3i is not symmetrically distributed about 0. As a result, Med(εi | Xi ) will
depend on Xi and c − c′ = ab cannot hold. Suppose X takes three values, 0, 1 and
2, ε2 ∼ N (0, 1), ε3 ∼ λX {Exp(1) − ln 2} with the scale parameter λX = X + 1,
and b = 1, where N (0, 1) and the standard exponential distribution Exp(1) are
independent. By numerical simulation, we obtain three different medians γ0 = 0.88,
γ1 = 1.58 and γ2 = 2.24 which satisfy

pr(ε1 ≤ γx ) = pr(ε3 ≤ γx − bε2) = 0.5,

where x = 0, 1, 2. Obviously, the three medians are not the same and c − c′ = ab
fails.

In Example 2, γ0, γ1 and γ2 do not fall on a straight line. In Example 1, if σ(Xi ) is
not affine in Xi (i.e., σ (Xi ) cannot be expressed as a + bXi for some real numbers
a and b), Med(εi | Xi ) is not affine in Xi . As a result, we cannot even find β1 and
c in Eq. (1) such that Med(ε1i | Xi ) = 0. Of course, we can treat β1 + cXi as an
approximation of the true (nonlinear) conditional median Med(Yi |Xi ) as in Angrist
et al. (2006), but this seems out of the scope of the usual mediation analysis. In
contrast, in the LS mediation analysis, as long as E(ε2i | Xi ) = E(ε3i | Xi ) = 0,
E(εi | Xi ) = E(bε2i + ε3i | Xi ) = 0. In summary, although the LS estimate of the
mediation effect is less robust to the heavy-tailedness of error distributions, its model
consistency allows a less restrictive relationship between (ε2i , ε3i ) and Xi and/or the
joint distribution of (ε2i , ε3i ). So there is a trade-off between the choices of the LS
and LAD mediation models.

2.3 LAD estimates of mediation effect

The LS method is to minimize the squared errors between the dependent variable and
the regression function, while the LAD method is to minimize the absolute values of
errors. Compared with the sum of the squared errors, the sum of the absolute values of
errors is not sensitive to outliers. Thus, the LAD is a useful alternative to the LS when
facing outliers or heavy-tailed errors. The LAD estimates of regression parameters in
Eqs. (1)–(3) are obtained by

(β̂1, ĉ) = argmin
β1,c

n∑

i=1

|Yi − β1 − cXi | ,

(β̂2, â) = argmin
β2,a

n∑

i=1

|Mi − β2 − aXi | ,

(β̂3, ĉ′, b̂) = arg min
β3,c′,b

n∑

i=1

∣∣Yi − β3 − c′ Xi − bMi
∣∣ .
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For large samples, the LAD estimate is approximately normally distributed (Pollard
1991; Koenker 2005). To rigorously state the asymptotic distributions of ĉ, ĉ′, â and b̂,
which are the building blocks of our parameters of interest ĉ − ĉ′ and âb̂, we impose
the following conditions. First, for a generic random variable ε, we define fε as the
probability density function (pdf) of ε.

Condition 1 (i) X, ε2 and ε3 are independent of each other. (ii) Med (ε2) = 0 and
Med(ε3) = 0. (iii) fεk (0) > 0 for k = 1, 2, 3. (iv) E(|X |2) < ∞ and E(|ε2|2) < ∞.
(v) fε1 , fε2 and fε3 are continuous at 0.

Condition 1 collects the conditions for the first-order expansions of ĉ, ĉ′, â and
b̂. Compared with Case (ii) of Proposition 1, Condition 1 restricts ε2 and ε3 to be
independent; anyway, such an restriction allows heavy-tailedness and skewness of ε2
and ε3 as encountered in practice. This restriction would greatly simplify our analysis,
but the proof ideas of Theorems 1-3 can be extended to other general cases; see the
discussion in Sect. 5.Assuming errors of a causal diagram to be independent is not new;
see Pearl (1995, 2009). Under this restriction, Fε1(x) = ∫

Fε3(x +d −bε2) fε2(ε2)dε2
and fε1(x) = ∫

fε3(x + d − bε2) fε2(ε2)dε2, where for a generic random variable
ε, Fε(·) is the cumulative distribution function (cdf) of ε. Given the independence
between ε2 and ε3, the nonzeroness of με2 , με3 and d is only from the asymmetricity
of the distributions of ε2 and ε3, where for a generic random variable X , μX = E(X).
When ε2 and ε3 are symmetrically distributed, d = 0, Fε3(ε3) = 1 − Fε3(−ε3)

and fε3(ε3) = fε3(−ε3), so Fε1(x) = ∫ {
1 − Fε3(bε2 − x)

}
fε2(ε2)dε2, fε1(x) =∫

fε3(bε2 − x) fε2(ε2)dε2, and fε1(0) > 0 is implied by fε2(0) > 0, fε3(0) > 0 and
fε2 and fε3 are continuous at 0. Other conditions in Condition 1 are standard regularity
assumptions.

From Pollard (1991) and Knight (1998), we have the following asymptotic distri-
butions for ĉ, ĉ′, â and b̂.

Lemma 2 Under Condition 1,

n1/2(̂c − c) �⇒ N

(

0,
H2,2

4 f 2ε1(0)

)

, n1/2(ĉ′ − c′) �⇒ N

(

0,
J 2,2

4 f 2ε3(0)

)

,

n1/2(̂a − a) �⇒ N

(

0,
H2,2

4 f 2ε2(0)

)

, n1/2(̂b − b) �⇒ N

(

0,
J 3,3

4 f 2ε3(0)

)

,

where the symbol ‘�⇒’ signifies weak convergence of the associated probability
measures, for a matrix A, Ai, j is the (i, j) element of A−1, H = E(x1x T

1 ) with
x1 = (1, X) T, and J = E(x2x T

2 ), with x2 = (1, X , M) T.

For a generic random variable X , define σ 2
X =var(X), and set σ 2

k =var(εk),
k = 1, 2, 3. Under Condition 1, if σ 2

k exists, then we need only replace (4 f 2εk
(0))−1

in Lemma 2 by σ 2
k to get the asymptotic distributions of the corresponding LS esti-

mates. Note that the LAD estimates need not dominate the LS estimates in efficiency.
From Lemma 2, the former is more efficient than the latter if and only if the ratio
σ 2

k /(4 f 2εk
(0))−1 > 1. For example, this ratio is 0.64, 5.75,+∞ for the standard normal
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distribution N (0, 1), the contaminated normal distribution 0.9N (0, 1)+0.1N (0, 102),
and the heavy-tailed distribution t2 which is the t-distribution with two degrees of free-
dom, respectively.

Based on the LAD estimators of ĉ, ĉ′, â and b̂, we can construct the difference
estimator ĉ − ĉ′ and the product estimator âb̂ of the mediation effect, where the latter
estimator is suggested by Yuan and MacKinnon (2014) in the LAD mediation model.
Unlike the numerical equivalence of the two parallel LS estimates (MacKinnon et al.
1995; Wang et al. 2021), the two LAD estimates are not numerically equivalent, that
is, âb̂ �= ĉ − ĉ′ in general (see our simulation studies in Sect. 4). Actually, they are
not even asymptotically equivalent, as shown in the coming section.

3 Asymptotic theory for LAD estimates of mediation effect

3.1 Conditions for second-order asymptotics

Wenowstudy the asymptotic properties of ĉ−ĉ′ , âb̂ and ĉ−ĉ′−âb̂, where ĉ, ĉ′, â and b̂
are the LADestimators defined in Sect. 2.3. It turns out that these asymptotic properties
critically dependon the zeroness ofa andb.Whetherb = 0or not determines ĉ−ĉ′−âb̂
is n1/2-consistent or n3/4-consistent.Given b = 0,whethera = 0 or not determines the
convergence rates of ĉ − ĉ′ and âb̂ to be n1/2 or faster than n1/2. For n1/2-consistency,
we require only the first-order expansions of ĉ− ĉ′ and âb̂, while for n3/4-consistency,
we require their second-order expansions. The second-order expansions need stronger
conditions than the first-order expansions as detailed below.

Condition 2 (i)–(iii) are the same as in Condition1 . (iv) E(|X |3) < ∞ and E(|ε2|3) <

∞. (v) fε2 is continuous at 0, and fε3 is differentiable at 0.

Compared with Condition 1, Condition 2 imposes stronger conditions on the
moments of X and ε2 and the smoothness of fε3 at 0. Because ε1 = ε3 when b = 0,
fε1 (0) > 0 and fε1 is continuous at 0 in Condition 1 can be omitted. Now, we are
ready to discuss the asymptotic properties of ĉ − ĉ′, âb̂ and ĉ − ĉ′ − âb̂ when b �= 0,
b = 0 but a �= 0, and a = b = 0 which are labeled as Case one, Case two and Case
three, respectively.

3.2 Case one: b �= 0

We first consider the case with b �= 0 in Theorem 1.

Theorem 1 When b �= 0, if Condition 1 holds, then

n1/2{̂c − ĉ′ − (c − c′)} �⇒ N (0, σ 2
D), n1/2(̂ab̂ − ab) �⇒ N (0, σ 2

P ),

n1/2(̂c − ĉ′ − âb̂) �⇒ N (0, σ 2),

where

σ 2
D = 1

4 fε1(0)2σ
2
X

+ 1/σ 2
X + a2/σ 2

2

4 fε3(0)2
− 2

	(ε1, ε3)

σ 2
X

, σ 2
P = b2

4 fε2 (0)2σ
2
X

+ a2

4 fε3(0)2σ
2
2

,
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σ 2 = 1

σ 2
X

[
1

4 fε1(0)2
+ 1

4 fε3(0)2
+ b2

4 fε2 (0)2
− 2	(ε1, ε3) − 2b	(ε1, ε2)

]
,

with

	(ε1, εk) = E [1(ε1 ≤ 0)1(εk ≤ 0)] − 1/4

fε1(0) fεk (0)
, k = 2, 3,

E [1(ε1 ≤ 0)1(ε2 ≤ 0)] =
∫ 0

−∞
Fε3(−bε2 + d)dFε2(ε2),

E [1(ε1 ≤ 0)1(ε3 ≤ 0)] =
{ 1

2 Fε2 (
d
b ) + ∫∞

d/b Fε3(−bε2 + d)dFε2(ε2),

1
2 (1 − Fε2 (

d
b )) + ∫ d/b

−∞ Fε3(−bε2 + d)dFε2(ε2),

if b > 0,
if b < 0.

We give a few comments on Theorem 1 here. First, the asymptotic variance of
n1/2(̂c− ĉ′− âb̂) is the not the sum of those of n1/2{̂c− ĉ′−(c−c′)} and n1/2(̂ab̂−ab)

because they are asymptotically correlated. Their asymptotic covariance is b	(ε1, ε2)

which is included in the last term of σ 2. Second, the asymptotic distributions of ĉ− ĉ′,
âb̂ and ĉ − ĉ′ − âb̂ do not depend on β2, β3 and c′, and that of ĉ − ĉ′ − âb̂ does not
even depend on a. Third, when d = 0,

E [1(ε1 ≤ 0)1(ε3 ≤ 0)] − 1

4
=
∫ ∞

0
Fε3(− |b| ε2)d Fε2(ε2),

so the formulae of σ 2
D and σ 2 can be simplified. Fourth, when a = 0, the formulae

of σ 2
D and σ 2

P can be simplified. However, σ 2 depends only on b but not on a . When
b = 0, ε1 = ε3, so

σ 2 = 1

σ 2
X

[
1

4 fε3(0)2
+ 1

4 fε3(0)2
− 2

E [1(ε3 ≤ 0)] − 1/4

fε3(0)2

]
= 0,

and a further refinement on the asymptotic distribution of ĉ − ĉ′ − âb̂ is required; see
Sect. 3.3. Fifth, it is interesting to discuss why the product estimator and the difference
estimator are asymptotically (even numerically) equivalent in the LSmediation model
while they are not in the LADmediationmodel. From the proof of Theorem 1, the first-
order asymptotic representations (FOARs) of the two estimators in the LADmediation
model are

n1/2{̂c − ĉ′ − (c − c′)} = n−1/2
n∑

i=1

{
X̃i
σ 2

X
s(ε1i ) −

(
X̃i
σ 2

X
− aε̃2i

σ 2
2

)
s(ε3i )

}
,

n1/2(̂ab̂ − ab) = n−1/2
n∑

i=1

{
bX̃i
σ 2

X
s(ε2i ) + aε̃2i

σ 2
2

s(ε3i )

}
,

(5)

where X̃i = Xi − μX , ε̃2i = ε2i − με2 , and s(εki ) = {1/2 − 1(εki ≤ 0)}/ fεk (0),
k = 1, 2, 3, the two terms in n1/2{̂c − ĉ′ − (c − c′)} are correlated even if ε2 and ε3
are independent, while the two terms in n1/2(̂ab̂ − ab) are uncorrelated. As a result,
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the FOAR of ĉ − ĉ′ − âb̂ is

n1/2(̂c − ĉ′ − âb̂) = n−1/2 1

σ 2
X

n∑

i=1

X̃i {s(ε1i ) − s(ε3i ) − bs(ε2i )},

which is not zero. In LS mediation analysis, we need only replace s(εki ) by εki ,
k = 1, 2, 3, to have the FOAR of ĉ − ĉ′ − âb̂ as

n1/2(̂c − ĉ′ − âb̂) = n−1/2 1

σ 2
X

n∑

i=1

X̃i (ε1i − ε3i − bε2i ) = 0.

where the last equality is from ε1i = bε2i + ε3i .
Our simulation studies in Sect. 4 show that σ 2

D > σ 2
P for a few error distributions,

i.e., the product estimator is more efficient. Corollary 1 rigorously states this fact when
ε2 and ε3 follow the standard normal.

Corollary 1 Under the assumptions of Theorem 1, if ε2 and ε3 both follow N (0, 1),
then

σ 2
D − σ 2

P = {π − (b2 + 1)1/2(π − 2 arctan |b|)}/σ 2
X ,

which is positive when b �= 0 and converges to (π − 2)/σ 2
X when |b| → ∞.

In Corollary 1, only the relative variance between ε2 and ε3 is relevant, and
resetting ε2 ∼ N

(
0, κ2

)
is equivalent to set b as bκ , so now σ 2

D − σ 2
P ={

π − (b2κ2 + 1)1/2(π − 2 arctan |b|κ)
}
/σ 2

X .

3.3 Case two: b = 0 but a �= 0

We next consider the case with b = 0 but a �= 0 in Theorem 2.

Theorem 2 When b = 0 but a �= 0, if Condition 1 holds, then

n1/2(̂c − ĉ′) �⇒ N (0, σ 2
C ), n1/2âb̂ �⇒ N (0, σ 2

C ),

with σ 2
C = a2/{4 fε3(0)

2σ 2
2 }, and if further assume Condition 2 holds, then,

n3/4(̂c − ĉ′ − âb̂) �⇒ D̃2 (Z2) − D̃1 (Z1) − aD2 (Z2) ,

where D̃1(·) is a zero-mean Gaussian process onR2 with D̃1(0) = 0, D̃2(·) and D2 (·)
are zero-mean Gaussian processes on R

3 with D̃2(0) = D2 (0) = 0,

E[{D̃1(u) − D̃1(v)}{D̃1(u) − D̃1(v)}T] = 1

fε3 (0)
E

⎡

⎣
(

X̃

σ 2
X

)2
∣∣xT

1(u − v)
∣∣

⎤

⎦ ,
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E[{D̃2(u) − D̃2(v)}{D̃2(u) − D̃2(v)}T] = 1

fε3 (0)
E

⎡

⎣
(

X̃

σ 2
X

− a
ε̃2

σ 2
2

)2
∣∣xT

2(u − v)
∣∣

⎤

⎦ ,

E[{D2(u) − D2(v)}{D2(u) − D2(v)}T] = 1

fε3 (0)
E

⎡

⎣
(

ε̃2

σ 2
2

)2
∣
∣xT

2(u − v)
∣
∣

⎤

⎦ ,

E
[
D̃1(u)D̃2(v)

] = 1

fε3 (0)
E

[
X̃

σ 2
X

(
X̃

σ 2
X

− a
ε̃2

σ 2
2

)
(∣∣uTx1

∣
∣ ∧ ∣

∣vTx2
∣
∣) 1(uTx1xT

2v > 0)

]

,

E
[
D̃1(u)D2(v)

] = 1

fε3 (0)
E

[
X̃

σ 2
X

ε̃2

σ 2
2

(∣∣uTx1
∣∣ ∧ ∣∣vTx2

∣∣) 1(uTx1xT
2v > 0)

]

,

E
[
D̃2(u)D2(v)

] = 1

fε3 (0)
E

[(
X̃

σ 2
X

− a
ε̃2

σ 2
2

)
ε̃2

σ 2
2

(∣∣uTx2
∣∣ ∧ ∣∣vTx2

∣∣) 1(uTx2xT
2v > 0)

]

,

(Z1, Z2) ∼ 1
2 fε3 (0) N (0, �) with

� =
(

�1 �12

�T
12 �2

)

, �1 = E
[
x1xT

1

]−1
,

�12 = E
[
x1xT

1

]−1
E
[
x1xT

2

]
E
[
x2xT

2

]−1
, �2 = E

[
x2xT

2

]−1
,

and
(
D̃1(·), D̃2(·), D2 (·)) and (Z1, Z2) are independent of each other.

We give a few comments on Theorem 2 here. First, when b = 0, Condition 1(v)
reduces to assume that fε2 and fε3 are continuous at 0, and we strengthen fε3 to be
differentiable at 0 for the second-order asymptotic representation (SOAR) of ĉ− ĉ′ and
b̂. Second, because ĉ − ĉ′ and âb̂ have the same asymptotic variance, to compare their
efficiency, the second-order expansion is required. From the proof of Theorem 2, both

n1/2(̂c−ĉ′)−FOAR and n1/2âb̂−FOAR are n1/4-consistent but have different asymp-
totic distributions, where FOAR is their common first-order asymptotic representation
(revisit (5) to check this fact). These asymptotic distributions are uncorrelated with
(although not independent of) the first-order asymptotic distributions (Z T

1 , Z T
2 ) of

((β̂1, ĉ), (β̂3, ĉ′, b̂)) whose asymptotic variance 1
4 fε3 (0)2

� is given an explicit formula

in the proof of Theorem 2. This is dramatically different from the SOAR in LS medi-
ation analysis. From typical Edgeworth expansions, we know that the SOAR of ĉ − ĉ′
(and âb̂, which is the same as ĉ − ĉ′) is n1/2-consistent rather than n1/4 -consistent.
Third, the asymptotic distribution of n3/4(̂c − ĉ′ − âb̂) follows a (variance) mixture
normal distribution, whose density is tedious to express in the explicit form. We will
provide an explicit formula for it when a = 0 in Sect. 3.4. Fourth, when a = 0,
σ 2

C = 0, so the asymptotic distributions of ĉ − ĉ′ and âb̂ will degenerate and further
refinements are required; see Sect. 3.4. Fifth, from our simulations in Sect. 4, although
the FOAR of ĉ − ĉ′ and âb̂ are the same when b = 0, the variance of the SOAR of
ĉ − ĉ′ is much larger than that of âb̂ when a is relatively small. In other words, âb̂ is
still more efficient than ĉ − ĉ′ in finite samples as in Case one.
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3.4 Case three: a = b = 0

We finally consider the case with a = b = 0 in Theorem 3.

Theorem 3 When a = b = 0, if Condition 1 holds, then

nâb̂ �⇒ 1

4 fε2 (0) fε3 (0) σXσ2
z1z2,

and if further assume Condition 2 holds, then

n3/4(̂c − ĉ′) �⇒ D̃2 (Z2) − D̃1 (Z1) ,

n3/4(̂c − ĉ′ − âb̂) �⇒ D̃2 (Z2) − D̃1 (Z1) ,

where z1 and z2 are two independent standard normal random variables, D̃1(·), D̃2(·),
Z1 and Z2 are defined in Theorem 2 with the covariance kernels of D̃1(·) and D̃2(·)
reduced to

E[{D̃1(u) − D̃1(v)}{D̃1(u) − D̃1(v)}T]
= 1

fε3 (0) σ 4
X

E
[

X̃2
∣∣xT

1(u − v)
∣∣
]

≡ �D1 (u − v) ,

E[{D̃2(u) − D̃2(v)}{D̃2(u) − D̃2(v)}T]
= 1

fε3 (0) σ 4
X

E
[

X̃2
∣∣xT

2(u − v)
∣∣
]

≡ �D2 (u − v) ,

E
[
D̃1(u)D̃2(v)

]

= 1

fε3 (0) σ 4
X

E
[

X̃2 (∣∣uTx1
∣∣ ∧ ∣∣vTx2

∣∣) 1(uTx1xT
2v > 0)

]
≡ �D12 (u, v) .

We give a few comments on Theorem 3 here. First, it is interesting to observe that
âb̂ and ĉ − ĉ′ have different convergence rates. This is dramatically different from
Cases one and two where they have the same convergence rates n1/2. This is also very
different from the case in LS mediation analysis where âb̂ = ĉ − ĉ′ and both are
n-consistent. Since âb̂ has a faster convergence rate than ĉ − ĉ′, it is superior, same
as in Cases One and Two; also, it implies n3/4(̂c − ĉ′ − âb̂) and n3/4(̂c − ĉ′) have the
same asymptotic distribution. Second, when a = 0, D̃1(·), D̃2(·) , Z1 and Z2 in the
asymptotic distribution of ĉ − ĉ′ − âb̂ in Theorem 2 can be simplified as detailed in
the proof of Theorem 3. Third, when a = b = 0,�1,�12 and�2 in Theorem 2 can be
simplified such that we can write Z T

2 = (
Z T
1 + (z3, 0) , z2

)
with (z2, z3) independent

of Z1, Z1 ∼ N (0, �1), and

(z2, z3)
T ∼ N

(

0,
1

4 fε3 (0)2 σ 2
2

(
1 −μM

−μM μ2
M

))

;
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see Appendix F for details. Fourth, D̃2 (Z2) − D̃1 (Z1) follows a (variance) mixture
normal distribution. Its density is

g(x) =
∫

f (x | 0, σ 2
D(z1, z2)) f (z1, z2 | 0, �)dz1dz2,

where f (x | 0,
) is the pdf of the normal distribution with mean 0 and variance
matrix 
, and

σ 2
D(z1, z2) = �D1 (z1) + �D2 (z2) − 2�D12 (z1, z2)

with z1, z2 ∈ R
2. The asymptotic variance of n3/4(̂c − ĉ′) is

E
[
�D1 (Z1) + �D2 (Z2) − 2�D12 (Z1, Z2)

]
.

When μX = 0, it can be further simplified; see Appendix F for details. Fifth, from
Theorem 3,

var(̂ab̂) ≈ 1

16n2

1

fε2 (0)2 fε3 (0)2
1

σ 2
Xσ 2

2

E
(

z21z22

)
= 1

16n2

1

fε2 (0)2 fε3 (0)2
1

σ 2
Xσ 2

2

which is equal to π2/(4n2σ 2
X ) when ε2 and ε3 follow the standard normal, where ≈

means higher order terms are omitted throughout this paper.

4 Simulations

4.1 Simulation designs

Because β2, β3 and c′ will not affect the asymptotic distribution of any parameter of
interest as indicated in Theorems 1, 2 and 3 ,we setβ2 = β3 = 0 and c′ = 1 throughout
our simulations. The sample size is set at n = 200, 500, 1000, 2000, 5000, 10,000,
and the replication number is set at N = 10,000. To save space, we report only the
simulation results for n = 200 and 1000 in our three tables as the results for the
other sample sizes are consistent with these two sample sizes. Anyway, in our four
figures, we use information from all sample sizes. In the three tables, we report the
finite-sample MSE companioned with the MSE predicted by the asymptotic theory
for the LS and two LAD estimators. As the bias is ignorable in both finite samples
and large samples, the MSE is roughly equal to the variance. To satisfy Conditions 1
and 2, we set X ∼ N (0, 1), ε2 ∼ N (0, 1), and ε3 follows three popular distributions:
(I) N (0, 1), (II) 0.9N (0, 1) + 0.1N (0, 102), and (III) t2. Simulation results show that
the product estimator has less MSE than the difference estimator. In addition, we set
ε2 ∼ Laplace(0, 1) and find the same conclusion (see Appendix G).
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Table 1 MSE (×10−3) for LS and two LAD estimates

ε3 n a = b = 0.14 a = b = 1.4

MSEL S MSEP MSED MSEL S MSEP MSED

(I) 200 0.22 0.38 1.69 19.68 31.03 36.46

0.20 0.31 1.56 19.60 30.79 35.82

1000 0.04 0.06 0.32 3.94 6.20 7.17

0.04 0.06 0.31 3.92 6.16 7.16

(II) 200 1.44 0.42 1.86 118.82 34.35 41.69

1.17 0.33 1.69 116.62 33.18 40.36

1000 0.25 0.07 0.35 23.47 6.57 8.17

0.23 0.07 0.34 23.32 6.64 8.07

(III) 200 1.93 0.44 2.00 149.37 35.50 44.11

∞ 0.35 1.79 ∞ 35.00 43.73

1000 0.68 0.07 0.36 32.18 7.05 8.75

∞ 0.07 0.36 ∞ 7.00 8.73

For each ε3 distribution and n, the first row is the finite-sample MSE and the second row is the MSE
predicted by the asymptotic theory

4.2 Case one: b �= 0

When b �= 0, we set a = b = 0.14, 1.4, corresponding to small and large mediation
effects. From Table 1, we can draw the following conclusions. First, the large-sample
MSE matches the finite-sample MSE very well, which implies that the convergence
rates of all three estimators are n1/2 as predicted by Theorem 1. Second, the product
LADestimator is themost efficient except in case (I)where theLS estimator is themost
efficient. Third, the difference estimator is less efficient than the product estimator and
the efficiency of the former gets closer to that of the latter when the mediation effect
gets larger. Finally, the MSE is larger when ε3 has a heavier tail (or fε3(0) is smaller)
for all three estimators.

Figure 1 shows log{MSE(̂c − ĉ′ − âb̂)}/2 against log n when b �= 0; it indicates
that the convergence rate of ĉ − ĉ′ − âb̂ is indeed n1/2 when b �= 0 as predicted
by Theorem 1. Furthermore, since the asymptotic variance of ĉ − ĉ′ − âb̂ is roughly

e2θ̂0 , where θ̂0 is the intercept of regressing log{MSE(̂c − ĉ′ − âb̂)}/2 on log n, Fig. 1
indicates that this asymptotic variance increases with the heaviness of ε3’s tail and
the magnitude of the mediation effect. For example, if a = 0.14, the ratio of the
asymptotic variances when ε3 ∼ t2 and N (0, 1) is e−2×0.48/e−2×0.60 ≈ 1.29, and if
ε3 ∼ N (0, 1), this ratio when a = 1.4 and a = 0.14 is e2×0.52/e−2×0.60 ≈ 9.36.

4.3 Case two: b = 0 but a �= 0

When b = 0, we set a = 0.14, 1.4. From Table 2, we can draw the following conclu-
sions. First, the large-sample MSE matches the finite-sample MSE very well except
for the difference estimator when a = 0.14; as a result, the finite-sample MSEs of
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Fig. 1 log{MSE(̂c − ĉ′ − âb̂)}/2 against log n for two (a, b) values and three ε3 distributions

the two LAD estimators are very different when a = 0.14 even if their asymptotic
MSEs are the same as predicted by Theorem 2. When a = 0.14, the FOAR is not
a good approximation to the asymptotic distribution of ĉ − ĉ′. Actually, the SOAR
takes in charge. Figure 2 shows log{MSE(̂c − ĉ′) − σ 2

C/n}/2 against log n, where
MSE(̂c − ĉ′) − σ 2

C/n is approximately the variance of the SOAR by recalling that the
FOAR and the SOAR are asymptotically uncorrelated. As mentioned after Theorem 2,
the root-mean-square error (RMSE) of the SOAR in the LAD estimates is O(n−3/4)

rather than O(n−1) as in the LS estimate. Because the asymptotic variance of the
SOAR is large for ĉ − ĉ′ when a is small, its effect on the MSE cannot be neglected;
on the other hand, the counterpart for âb̂ is very small, so the asymptotic variance of
the FOAR is a good approximation to the MSE. For example, when ε3 ∼ N (0, 1) and
a = 0.14, the asymptotic variance of the SOAR of ĉ − ĉ′ is e2×0.36 ≈ 2.06, while
that of âb̂ is close to zero. From Fig. 2, we can see that the asymptotic variance of the
SOAR of ĉ − ĉ′ also increases with the heaviness of ε3’s tail, just as the asymptotic
variance of the FOAR as indicated in Table 2. Second, the second and third conclusions
in Case one still hold.

As Figs. 1 and 3 shows log{MSE(̂c − ĉ′ − âb̂)}/2 against log n when b = 0 but
a �= 0. Different from Figs. 1 and 3 indicates that the convergence rate of ĉ − ĉ′ − âb̂
is n3/4 when b = 0 (rather than n1/2 when b �= 0), which matches the prediction of
Theorem 2. Also, the asymptotic variance of ĉ − ĉ′ − âb̂ increases with the heaviness
of ε3’s tail, but does not seem to increase with a as in the b �= 0 case. Comparing Figs.
2 and 3, we can see that MSE(̂c − ĉ′ − âb̂) and MSE(̂c − ĉ′) − σ 2

C/n when a = 0.14
are quite close, which is because the asymptotic variance of the SOAR of âb̂ is close
to zero so that both MSEs are roughly the variance of the SOAR of ĉ − ĉ′.
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Table 2 MSE (×10−3) for LS and two LAD estimates

ε3 n b = 0, a = 0.14 b = 0, a = 1.4

MSEL S MSEP MSED MSEL S MSEP MSED

(I) 200 0.13 0.23 0.92 9.96 15.86 16.68

0.10 0.15 0.15 9.80 15.39 15.39

1000 0.02 0.03 0.10 1.95 3.06 3.11

0.02 0.03 0.03 1.96 3.08 3.08

(II) 200 1.38 0.27 1.09 112.23 18.81 19.74

1.07 0.18 0.18 106.82 17.79 17.79

1000 0.22 0.04 0.12 21.56 3.71 3.78

0.21 0.04 0.04 21.36 3.56 3.56

(III) 200 1.43 0.29 1.15 169.12 20.04 20.92

∞ 0.20 0.20 ∞ 19.60 19.60

1000 0.34 0.04 0.12 39.06 3.98 4.04

∞ 0.04 0.04 ∞ 3.92 3.92

Fig. 2 log{MSE(̂c − ĉ′) − σ 2
C /n}/2 against log n for a = 0.14, b = 0 and three ε3 distributions

4.4 Case three: a = b = 0

The first, second and fourth conclusions from Table 1 still apply to Table 3; especially,
the first conclusion implies that the convergence rates of the LS and product estimators
are n while the convergence rate of the difference estimator is n3/4 (see Appendix F for
more discussions), which is in accordance with Theorem 3 and dramatically different
from Cases one and two where all three estimators are n1/2-consistent. As Figs. 1 and
3, Fig. 4 shows log{MSE(̂c − ĉ′ − âb̂)}/2 against log n when a = b = 0. As predicted
by Theorem 3, the convergence rate of ĉ − ĉ′ − âb̂ is n3/4, same as in Case two. Also,
similar to Cases One and Two, the asymptotic variance of ĉ − ĉ′ − âb̂ increases with
the heaviness of ε3’s tail.
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Fig. 3 log{MSE(̂c − ĉ′ − âb̂)}/2 against log n for b = 0, two a values and three ε3 distributions

Table 3 MSE (×10−5) for LS
and two LAD estimates when
a = b = 0

ε3 n MSEL S MSEP MSED

(I) 200 2.59 6.26 72.40

2.50 6.17 70.06

1000 0.10 0.25 6.32

1.10 0.25 6.27

(II) 200 27.77 7.99 92.50

27.25 7.13 80.96

1000 1.11 0.29 7.47

1.09 0.29 7.24

(III) 200 33.91 8.58 99.62

∞ 7.85 89.21

1000 1.44 0.32 8.42

∞ 0.31 7.98

5 Discussion

This paper develops asymptotic theories for two forms of mediation effect estimates
and shows their asymptotic nonequivalence in a basicLADmediationmodel.Although
we consider only a restrictive scenario specified byConditions 1 and 2, our conclusions
of Theorems 1-3 can be qualitatively extended to other more general cases. We state
three such cases here: (i) there are additional control variables Z influencing X , M
and Y ; (ii) other quantiles beyond the median are of interest; (iii) condition (i) rather
than condition (ii) of Proposition 1 is imposed. The key in the proofs of all these
general cases is a transformation of the regressors in equation (3) as illustrated in the
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Fig. 4 log{M SE (̂c − ĉ′ − âb̂)}/2 against log n for a = b = 0 and three ε3 distributions

proof of Theorem 1. Such a transformation is possible due to the triangular structure
of a mediation model. Take case (i) as an example. The chain of effects is 1 →
Z → X → M → Y , where all variables preceding a chosen variable will affect the
variable, i.e., the constant will affect Z , (1, Z) will affect X , (1, Z , X) will affect M ,
and (1, Z , X , M) will affect Y . This special structure makes the analysis tractable.

The LAD method in this paper can also be generalized to multilevel mediation
models (Hox 2002; Preacher et al. 2010) and multi-mediator models (VanderWeele
and Vansteelandt 2014). In order to further improve the estimation efficiency, many
other robust methods can be applied to the mediation model, including the weighted
quantile average regression (Zhao andXiao 2014), the differencedmethod (Wang et al.
2019), and the general M-estimation method (Huber and Ronchetti 2009). Analyses
in these general models and for other robust methods are left for future research, but
the results in this paper will definitely shed some lights on these extensions.

Supplementary Material

Supplementary material available at Test online includes the proofs of Proposition 1,
Theorems 1–3, Corollary 1, and simplifications in Case three and simulations.
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