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Abstract

This paper provides two groups of conditions of model consistency in least-absolute-
deviation mediation models. Under model consistency, we establish the asymptotic
theory of the difference estimator and the product estimator, and show that the two
estimators are not only numerically nonequivalent but asymptotically nonequivalent,
which is dramatically different from the situation in the least squares mediation anal-
ysis where these two estimators are numerically equivalent. In all three possible
scenarios of model parameters, both the asymptotic theories and simulation studies
show that the product estimator is more efficient than the difference estimator.
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Mathematics Subject Classification 62D20 - 62E20 - 62F12

1 Introduction

In many disciplines, the effect of the predictor on the outcome variable is often affected
by a third variable termed as a mediator. Mediation analysis aims to identify the
mediation effect between the predictor and the outcome via the change in the media-
tor (MacKinnon 2008; VanderWeele 2015; Hayes 2018). Since the seminal paper of
Baron and Kenny (1986), the empirical applications of mediation analysis have dramat-
ically expanded in sociology, psychology, epidemiology, and medicine. For example,
Lindquist (2012) determined whether activation in certain brain regions mediated the
effect of applied temperature on self-reported pain based on the data from a functional
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magnetic resonance imaging study of thermal pain. VanderWeele et al. (2013) exam-
ined whether the 4Rs intervention has an effect on students’ depressive symptoms by
changing the quality of other classes and changing the quality of a student’s own class.

The basic mediation model consists of three regression equations with the causality
assumptions. One usually adopts the least squares (LS) or the maximum likelihood
under normality to obtain two estimates of the mediation effect: the difference estimate
and the product estimate (MacKinnon et al. 2002) . These two estimates are numeri-
cally equivalent under mild conditions (MacKinnon et al. 1995; Wang et al. 2021).

Unfortunately, the real data sets are seldom normally distributed. Micceri (1989)
examined 440 data sets from the psychological and educational literature and found
that none of them was normally distributed. Instead, their distributions were either
heavy-tailed and/or skewed. Field and Wilcox (2017) further showed that some
assumptions about commonly used statistical methods are poorly understood and
likely to be violated in psychological data, so inappropriate statistical methods are
often applied. Mediation analysis for non-normal variables is an active research area
nowadays (Preacher 2015).

It is well known that the LS method may break down in the presence of outliers
and heavy-tailed errors. Therefore, it is important to develop robust alternatives of the
LS method. Zu and Yuan (2010) used the local influence method to identify outliers
which are far away from the majority of observations and strongly affect the mediation
analysis. Recently, Yuan and MacKinnon (2014) proposed the product estimate of the
mediation effect by applying the least-absolute-deviation (LAD) regression to data
with heavy-tailed errors. Shen et al. (2014) and Bind et al. (2017) suggested to employ
quantile mediation models to explore the information in the error distribution.

The purpose of this paper is to provide rigorous analyses on model consistency and
show nonequivalence of the difference and product estimators in the LAD mediation
model. In Sect. 2, we state the LAD mediation model and two groups of conditions
of model consistency. Both groups of conditions allow heavy-tailed errors: the first
group allows heteroskedasticity but the errors must be symmetrically distributed about
zero, while the second group excludes heteroskedasticity but allows skewed errors.
Under model consistency, we provide the asymptotic theory of the two LAD estima-
tors and show that they are not only numerically nonequivalent but asymptotically
nonequivalent in Sect. 3, which is dramatically different from the LS case where the
two estimators are numerically equivalent. Specifically, for all three possible scenarios
of model parameters, our asymptotic theories show that the product estimator is more
efficient than the difference estimator, which is confirmed by our simulation studies
in Sect. 4. Further discussion is provided in Sect. 5.

2 LAD mediation analysis
2.1 LAD mediation model
As mentioned in the Introduction, the mean (or the LS method) is sensitive to outliers

and performs poorly when the error distribution is heavy-tailed (Huber and Ronchetti
2009; Wilcox 2017). Thus, it is not always an appropriate summary of the center of
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the data distribution; as an alternative, the median may perform better for non-normal
distributions with heavy-tails. In this section, we apply the LAD regression to the basic
mediation model, provide two groups of conditions of model consistency, and state
the asymptotic theory for the LAD estimates of the basic parameters of the model.

Given the observations (X;, M;, Y;),i = 1, ..., n, the basic LAD mediation model
consists of three regression equations:

Yi = B1 +cXi + e (D
M; =B +aX; + ey (2)
Y; = B3+ X; +bM; + e3;, 3)

where the errors satisfy Med(ex; | X;) = O for k = 1,2, Med(es3; | Xi, M) =
Med(es; | X;, €2;) = 0, which implies Med(es; | X;) = 0, ¢’ is not the transpose of ¢
but the coefficient of X; in Eq. (3), and the transpose of a generic vector or matrix x
is denoted as xT throughout the paper. To compare with Eq. (1), we plug Eq. (2) into
Eqg. (3) to have

Yi =B+ Xi +b(Br+aXi +€) + €3 = (B3 +bpa) + (¢ +ab) X; +«;.
)

where €; = bes; +€3;. The parameter c represents the total effect of X on Y, a measures
the relation between X and M, ¢’ represents the direct effect of X on Y adjusted for
the effect of M, and b measures the relation between M and Y adjusted for the effect
of X.

In the general setup of the LAD mediation model, we only assume that the con-
ditional medians of the errors are zero, and do not impose any other distributional
assumptions on them, i.e., independence (of X), homoscedasticity or normality; see
Sect. 2.2 for further discussions on the error term distributions. As in the LS medi-
ation model, the LAD mediation effect can be defined in two forms: the product of
parameters ab and the difference in parameters ¢ — ¢’. Next, we discuss the conditions
of model consistency, i.e., when will the difference in parameters ¢ — ¢’ be equal to
the product of parameters ab in population?

2.2 Model consistency

In LAD mediation analysis, Yuan and MacKinnon (2014) discussed the model con-
sistency for normally distributed errors in their Theorem 1. We restated their Theorem
1 using our notations in Lemma 1.

Lemma 1 If conditional on X;, €2; and €3; are independent and zero-mean normally
distributed, then Med(bey; + €3; | X;) = 0 such that ¢ — ¢’ = ab holds.

Note that we do not allow dependency between €3; and €3; conditional on X;. This

is because if their correlation corr(er;, €3; | X;) = p23(X;) # 0, then Med(es; |
X, e4) = E(e3i | X;,€) = €2i023(X;)03(X;)/02(X;) # 0, violating the basic
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requirement of Eq. (3) in LAD mediation analysis, where oy (X;) is the conditional
standard deviation of €;; given X;, k = 2, 3. As a result, the dependency between
€7; and €3; can arise only through X;. A typical case satisfying the assumptions in
Lemma lis €;; = o (X;)er; with g7; and €3; being independent and following N (0, 1).

Lemma 1 is a good starting point for model consistency in LAD mediation analysis.
However, the normality of errors is too strong as it is well known that the LS estimator
is more efficient than the LAD estimator for normal errors. The following proposition
tries to extend the model consistency to non-normal errors in two typical cases; the
first case allows dependency of (e7;, €3;) on X; while the second case does not.

Proposition 1 [feither of the following two cases hold, (i) conditional on X, €2; and €3;
are independent and symmetrically distributed about 0, (ii) (€2;, €3;) are independent
of Xi, and Med(ey;) = 0 and Med(e3; | €2i) = O; then in LAD mediation analysis,
we have the equality

¢c—c =ab.

The conditions in Case (i) imply Med(e; | X;) = 0 and Med(e3; | X;, €2i) =
Med(e3; | X;) = 0,andthe conditions in Case (ii) imply Med(e2; | X;) = Med(ez;) =
0 and Med(e3; | €27, X;) = Med(es; | €2;) = 0, which are the requirements of the
LAD mediation model, so are not restrictions. The real restrictions are independence
between €; and €3; and the symmetricity of their distributions given X; in Case (i) and
the independence between (€2;, €3;) and X; in Case (ii). Case (i) in Proposition 1 is an
extension of Lemma 1. It implies that the normality is not the key for Med(bes; +€3; |
X;) = 0, but the symmetricity (implied by the normality) is. A typical scenario
in Case (i) is € = ox(X;)eki, kK = 2,3, with g9; and ¢3; being independent and
symmetrically distributed about 0. Compared with Case (i), Case (ii) requires the
independence between (e€3;, €3;) and X; but relaxes the independence between €5; and
€3; and the symmetricity of their distributions, which implies that when the means of
€7; and e3; exist, E(ep;) and E (e3;) need not be zero. From the proof of Proposition 1
in Case (ii), Med(¢;) need not be zero such that 81 need not be equal to 83 + bfo,
but ¢ — ¢’ = ab still holds. When Med(¢;) # 0, we denote d = Med(e;), and then
B1 =d + B3+ bBr and €]; = €; — d. The conditions in Case (i) of Proposition 1 are
hard to relax, as shown in the following two examples.

Example 1 This example will show that in Case (i), even if €»; and €3; are symmetrically
distributed about 0 given X;, €; conditional on X; need not be symmetrically distributed
about 0 when €; and €3; are correlated. As a result, Med(e; | X;) will depend on X;
and ¢ — ¢’ = ab cannot hold. Assume €;; = o (X;) i, k = 2,3, where &; and
€3; are symmetrically distributed about O but correlated with each other; then ¢; =
o (X;) (e2i +€3i) = 0 (X;) & when b = 1. Specifically, if (¢7;, €3;) take three values
(—=1,1), (0, —1), (1, 1) with probabilities 1/4, 1/2, 1/4, respectively, then both &»;
and e3; are symmetrically distributed about 0, but ¢; is not. In consequence, Med(e; |
X;) = Med(g;)o(X;) = do(X;) depending on X;, and ¢ — ¢’ = ab cannot hold,
where d’ = Med(e;). Of course, independence between g; and &3; are only sufficient
but not necessary for the symmetricity of €y; + €3;. For example, if (e;, €3;) are
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uniformly distributed on the unit disk (and hence have symmetric marginal densities
but are not independent), then &>; + ¢3; also has a symmetric density.

Example 2 This example will show that in Case (i), even if €5; and €3; are independent
given X;, €; conditional on X; need not be symmetrically distributed about O if either
€7; or €3; is not symmetrically distributed about 0. As a result, Med(e; | X;) will
depend on X; and ¢ — ¢’ = ab cannot hold. Suppose X takes three values, 0, 1 and
2,62 ~ N(0,1), e3 ~ Ax{Exp(1) — In2} with the scale parameter Ay = X + 1,
and b = 1, where N (0, 1) and the standard exponential distribution Exp(1) are
independent. By numerical simulation, we obtain three different medians yy = 0.88,
y1 = 1.58 and y» = 2.24 which satisfy

pr(er < yx) = pr(ez < yy —bey) =0.5,

where x = 0, 1, 2. Obviously, the three medians are not the same and ¢ — ¢’ = ab
fails.

In Example 2, yp, y1 and y» do not fall on a straight line. In Example 1, if o (X;) is
not affine in X; (i.e., o (X;) cannot be expressed as a + bX; for some real numbers
a and b), Med(e¢; | X;) is not affine in X;. As a result, we cannot even find 8 and
c in Eq. (1) such that Med(ej; | X;) = 0. Of course, we can treat 81 + cX; as an
approximation of the true (nonlinear) conditional median Med(Y;|X;) as in Angrist
et al. (2006), but this seems out of the scope of the usual mediation analysis. In
contrast, in the LS mediation analysis, as long as E(ey; | X;) = E(e3; | X;) = 0,
E(e; | Xi) = E(bey; + €3; | X;) = 0. In summary, although the LS estimate of the
mediation effect is less robust to the heavy-tailedness of error distributions, its model
consistency allows a less restrictive relationship between (€3;, €3;) and X; and/or the
joint distribution of (€3;, €3;). So there is a trade-off between the choices of the LS
and LAD mediation models.

2.3 LAD estimates of mediation effect

The LS method is to minimize the squared errors between the dependent variable and
the regression function, while the LAD method is to minimize the absolute values of
errors. Compared with the sum of the squared errors, the sum of the absolute values of
errors is not sensitive to outliers. Thus, the LAD is a useful alternative to the LS when

facing outliers or heavy-tailed errors. The LAD estimates of regression parameters in
Egs. (1)—(3) are obtained by

n
(B1.0) = argrg}{lclz Y — B — cXil,
tjl
(B2. @) = argg;@gz IM; — B — aXil,
R l=1n
PN ) ,
(B3, ¢, b) = argﬂ?}cl/r}b; |Yi — B3 —c'Xi — bM,-| .
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For large samples, the LAD estimate is approximately normally distributed (Pollard
1991; Koenker 2005). To rigorously state the asymptotic distributions of c, <, c @andb,
which are the building blocks of our parameters of interest ¢ — ¢ and ab, we impose
the following conditions. First, for a generic random variable €, we define f, as the
probability density function (pdf) of €.

Condition 1 (i) X, € and €3 are independent of each other. (ii) Med (¢2) = 0 and
Med(e3) = 0. (iii) fo, (0) > Ofork = 1,2,3. (iv) E(|X|*) < 00 and E(|e2|*) < oc.

(v) fei, fe, and fe; are continuous at 0.

Condition 1 collects the conditions for the first-order expansions of ¢, 27, a and
b. Compared with Case (ii) of Proposition 1, Condition 1 restricts €, and €3 to be
independent; anyway, such an restriction allows heavy-tailedness and skewness of €
and €3 as encountered in practice. This restriction would greatly simplify our analysis,
but the proof ideas of Theorems 1-3 can be extended to other general cases; see the
discussionin Sect. 5. Assuming errors of a causal diagram to be independent is not new;
see Pearl (1995, 2009). Under this restriction, Fe, (x) = f Fe; (x+d —be) fe, (€2)der
and fe (x) = f fe;(x +d — ber) fe, (e2)dey, where for a generic random variable
€, Fc(-) is the cumulative distribution function (cdf) of €. Given the independence
between €; and €3, the nonzeroness of (ic,, (e, and d is only from the asymmetricity
of the distributions of €, and €3, where for a generic random variable X, ux = E(X).
When €; and €3 are symmetrically distributed, d = 0, Fey(€3) = 1 — Fey(—€3)
and fo,(€3) = fey(—€3), 50 Fo (x) = [{1 = Fey(ber — x)} fe, (€2)der, fe,(x) =
f Jfes(bea — x) fe, (€2)der, and fe, (0) > 0 is implied by f,(0) > 0, f¢;(0) > 0 and
fe, and f, are continuous at 0. Other conditions in Condition 1 are standard regularity
assumptions.

From Pollard (1991) and Knight (1998), we have the following asymptotic distri-
butions for ¢, ¢/, @ and b.

Lemma 2 Under Condition 1,

12 H>? 12,5 J>?
n'?2@—c)= N |0, 720 n'2(c -y = N |0, 720 )
1 3

12 H2’2 12 J3,3
n'“(a@a—a)=— N 074f€2(0) , n'“(b—b)— N O,W s
2 3

where the symbol ‘=" signifies weak convergence of the associated probability
measures, for a matrix A, A is the (i, j) element of A=\, H = E(xix,") with
xi =(1,X) ", and J = E(xox)"), withxp = (1, X, M) ™.

For a generic random variable X, define 0)2( =var(X), and set sz =var(eg),

k = 1,2, 3. Under Condition 1, if ‘71(2 exists, then we need only replace (4 fezk (0))~1
in Lemma 2 by akz to get the asymptotic distributions of the corresponding LS esti-
mates. Note that the LAD estimates need not dominate the LS estimates in efficiency.
From Lemma 2, the former is more efficient than the latter if and only if the ratio
ol/(4 fgk (0))~! > 1.Forexample, this ratiois 0.64, 5.75, 4o for the standard normal
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distribution N (0, 1), the contaminated normal distribution 0.9N (0, 1)+0.1N (0, 102),
and the heavy-tailed distribution #, which is the 7-distribution with two degrees of free-
dom, respectively.

Based on tlle LAD estimators of ¢, 27, a and Z; we can construct the difference
estimator ¢ — ¢’ and the product estimator ab of the mediation effect, where the latter
estimator is suggested by Yuan and MacKinnon (2014) in the LAD mediation model.
Unlike the numerical equivalence of the two parallel LS estimates (MacKinnon et al.
1995; Wang et al. 2021), the two LAD estimates are not numerically equivalent, that
is, ab #C— ¢ in general (see our simulation studies in Sect. 4). Actually, they are
not even asymptotically equivalent, as shown in the coming section.

3 Asymptotic theory for LAD estimates of mediation effect
3.1 Conditions for second-order asymptotics
We now study the asymptotic properties of —¢’ , ab and ¢—c’'—ab, where ¢, ¢/, @and b

are the LAD estimators defined in Sect. 2.3. It turns out that these asymptotic properties
critically depend on the zeroness of a and b. Whether b = 0 or not determines ¢—c '—ab

is n!/2-consistent or n3/*-consistent. Given b = 0, whether a = 0 or not determines the
convergence rates of ¢ — ¢’ and ab to be n'/? or faster than n'/2. For n'/?-consistency,

we require only the first-order expansions of ¢ — ¢ and ab, while for n3/ 4_consistency,
we require their second-order expansions. The second-order expansions need stronger
conditions than the first-order expansions as detailed below.

Condition 2 (i)—(iii) are the same as in Condition 1. (iv) E(|1X|?) < coand E(|e2]?) <
00. (V) fe, is continuous at 0, and fe, is differentiable at 0.

Compared with Condition 1, Condition 2 imposes stronger conditions on the
moments of X and €; and the smoothness of f., at 0. Because €; = €3 when b = 0,
fe (0) > 0 and fe, is continuous at 0 in Condition 1 can be omitted. Now, we are
ready to discuss the asymptotic properties of ¢ — ¢/, aband ¢ — ¢’ — ab when b # 0,
b =0buta # 0, and a = b = 0 which are labeled as Case one, Case two and Case
three, respectively.

3.2 Caseone:b # 0

We first consider the case with b # 0 in Theorem 1.
Theorem 1 When b # 0, if Condition 1 holds, then

n'2(E— ¢ — (c — )} = N,03), n'?@bh—ab) = N(0,03),
n'2@— ¢ —Gb) = N(0, 52),

where
02— 1 /og +a*/o5 A1, €3) o2 b? N a?
P4t 0202 4f,(0)2 or P T AL 0%0F T 4f, (0207
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, 1 1 1 b?
— —2A(e1, €3) — 2bA(er, €2) |,

= + +
41 (02  4f (02 4f,(0)2
with

B[ <0l <0l 14
Aer ) = 700 /o 0) k=23

0
E[l(e; =0)l(e2 =0)] = / Fe; (—bery + d)dFe, (€2),

YEa (D) + [ Fa(=ber + d)dFey (2), ifb > 0,

< < =
E[l(e; <0)1(e3 <0)] {;(1 Fo(d ))+fd/b Fe(—bes + d)dF., (e2), ifb < 0.
We gixe a few comments on Theorem 1 here. First, the asymptotic variance of
n'/2(@—¢’ —ab) is the not the sum of those of n/2{¢— ¢’ — (¢ —¢’)} and n'/2 (@b — ab)
because they are asymptotically correlated Their asymptotic covariance is bA (€1, €2)
which is included in the last term of 2. Second, the asymptotic distributions ofc—¢/,
@b and ¢ — ¢ — ab do not depend on B7, B3 and ¢/, and that of ¢ — ¢’ — @b does not
even depend on a. Third, when d = 0,

1 o0
E[l(e; = 0)1(e3 = 0)] — 1 =/0 Fey(— bl €2)d Fe, (€2),

SO the formulae of O'D and o2 can be s1mp11ﬁed Fourth, when a = 0, the formulae
of o2 nand o 5 can be simplified. However, o 2 depends only on b but not on a . When
b=0,¢e; =¢€3,50

» 1 [ 1 n 1 _ZE[1(€3§0)]—1/4:|=0

02 |4/ (02 " 41,02 fer (0)2 ’
and a further refinement on the asymptotic distribution of ¢ — ¢ —abis required; see
Sect. 3.3. Fifth, it is interesting to discuss why the product estimator and the difference
estimator are asymptotically (even numerically) equivalent in the LS mediation model
while they are not in the LAD mediation model. From the proof of Theorem 1, the first-
order asymptotic representations (FOARs) of the two estimators in the LAD mediation
model are

o
i=1 X

n2E - —(c =)y =n12 i {—s(el,) (i - ) s(em} ,
: )

~ n
n'2@b —ab) =n='? { s(e) + “Qfs<e3,>} :
i=1

where X; = X; — [y, € = €2 — ley, and s(exi) = {1/2 — L < 0)}/ f¢, (0),

k =1,2,3, the two terms in nl/z{c ¢’ — (c — ")} are correlated even if € and €3
are independent, while the two terms in nl/2@b — ab) are uncorrelated. As a result,
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the FOAR of @ — ¢ — @b is
n'2@—c —ab)y=n" Zx {s(eni) — s(e3i) — bs(ean)).
X i=1
which is not zero. In LS mediation g\nalys}i\s, we need only replace s(ei;) by €,
k =1, 2,3, to have the FOAR of ¢ — ¢/ — ab as
n\2CE—¢ —ab)y=n" ZX (€1i — €3 — beyi) = 0.
X i=1

where the last equality is from €1; = bep; + €3;.

Our simulation studies in Sect. 4 show that 012) > 012, for a few error distributions,
i.e., the product estimator is more efficient. Corollary 1 rigorously states this fact when
¢, and €3 follow the standard normal.

Corollary 1 Under the assumptions of Theorem 1, if €2 and €3 both follow N (0, 1),
then

o3 —op ={m — B>+ D2 (x —2arctan |b|)} /o3,
which is positive when b # 0 and converges to (m — 2) /0)2( when |b| — oo.

In Corollary 1, only the relative variance between € and €3 is relevant, and

resetting ¢ ~ N (0, /cz) is equivalent to set b as bk, sO now 0[2) — 0123 =

{m — @** + DV2(r — 2arctan |blx)} /og.

3.3 Casetwo:b =0buta # 0

We next consider the case with b = 0 but a # 0 in Theorem 2.

Theorem 2 When b = 0 but a # 0, if Condition 1 holds, then
n'2@—¢) = N(,0), n'*ab = N(0,0d),

with oé = 512/{4]”63 (0)20'22}, and if further assume Condition 2 holds, then,
Y@~ —ab) = D2 (Z2) — D1 (Z1) —aD2 (22,

where Dl( ) is a zero-mean Gaussian process on | R? with D1 0) =0, Dz( Yand D3 (+)
are zero-mean Gaussian processes on R3 with Dz 0) =D, (0) =0,

~\ 2
1 X
E[{D1(w) — Dy(W)H{Di(w) — Di(v)}"] =70 |:<U)2(> [x] (u — V)|:| ,
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ElDa2@) — Dy} Daw) — Do)} = ——E z—g—zle(—)\
2(u L (VD2 (u 2 (V =70 ) a%z xyu—v)| |,

2
] ~
E[{D2(u) = D2y(M}{D2(w) — D2(v)}']1 = - (O)E |:<:2) x5 (u — V)[| ,

-~ 1 X (X €
E [Dl(u)Dz(v)] = 7O E g ((7}2( - azz) (|uTx1| A |VTX2|) 1(u"xx3v > O)i| ,
X
0,2

E [51(11)52(V)] = % (|I.ITX1| A |VTX2|) 1(u"x1x3v > O)i| ,
2

1
- E
fa @ |

1 (X &a\&a, ., . .
[Dz(u)Dz(V)] - (0) (2 — aé) 0—22 (|u x2| A |V x2|) I(u xox,v > 0)i| ,

L\%x 03

(Z1, Z) ~ N (0, X) with

2fe3 (0)

X X2 -1
= E = E T
Spn=E [xlxﬂ_1 E[xix;] E [xzxg]_l , S =E [xzxg]_l ,
and (51(-), 52(~), D> (~)) and (Z1, Z») are independent of each other.

We give a few comments on Theorem 2 here. First, when b = 0, Condition 1(v)
reduces to assume that fe, and fe, are continuous at 0, and we strengthen f; to be
differentiable at O for the second-order asymptotic representation (SOAR) of c—¢’ and
b. Second, because ¢ — ¢’ and @b have the same asymptotic variance, to compare their
efficiency, the second-order expansion is required. From the proof of Theorem 2, both

n'/2(@—¢’)—FOAR and n'/2Gh —FOAR are n'/*-consistent but have different asymp-
totic distributions, where FOAR is their common first-order asymptotic representation
(revisit (5) to check this fact). These asymptotic distributions are uncorrelated with
(although not independent of) the first-order asymptotic distributions (Z,", Z,") of
((B\l ,0), (//3\3, J 7;)) whose asymptotic variance %#)2 ¥ is given an explicit formula
in the proof of Theorem 2. This is dramatically dlfferent from the SOAR in LS medi-
ation analysis. From typical Edgeworth expansions, we know that the SOAR of ¢ — J

(and ab which is the same as ¢ — ¢/ ) is nl/ 2-<:0n51stent rather than n'/# -consistent.

Third, the asymptotic distribution of n3/*(¢ — o — ab) follows a (variance) mixture
normal distribution, whose density is tedious to express in the explicit form. We will
prov1de an explicit formula for it when a = 0 in Sect. 3.4. Fourth, when a = 0,

O'C = 0, so the asymptotic distributions of ¢ — ¢ and @b will degenerate and further
refinements are required; see Sect. 3.4. Fifth, from our simulations in Sect. 4, although
the FOAR of ¢ — ¢’ and ab are the same when b = 0, the variance of the SOAR of
¢ — ¢’ is much larger than that of @b when a is relatively small. In other words, @b is
still more efficient than ¢ — ¢’ in finite samples as in Case one.
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3.4 Casethree:a=b=0
We finally consider the case with @ = b = 0 in Theorem 3.
Theorem 3 When a = b = 0, if Condition 1 holds, then

P 1
= 4, 0) fe (0) ox 02

2122,

and if further assume Condition 2 holds, then

3/4(3 ) = Dy (Z2) — Dy (Z)),
n*4@— —ab) = Da (Z2) — Dy (Z1),

where z1 and z; are two independent standard normal random variablis, 51 ), 5~2(-),
Z1 and Z, are defined in Theorem 2 with the covariance kernels of D1(-) and D> (-)
reduced to

E[{D1(u) — Dy(v)}{D1(u) — D;(v)}"]
1

" fa (O)od
E[{Dy(u) — Dy(V)}{D2(u) — Dy(v)}7]

1 m~
B mE -X2 [x3(u - V)|] =3%p, (u—v),
E [51(u)l~)2(v)]
1

:—E-
fe; 0oy L

E :}N(z |x](u— v)|] =Y¥p, (u—v),

X2 (|uTx1| A |VTX2|) 1(u"x1x3v > 0)] = Xp, W, v).

_We give a few comments on Theorem 3 here. First, it is interesting to observe that
@b and ¢ — ¢ have different convergence rates. This is dramatically different from
Cases one and two where they have the same convergence rates n 172 . This is also very
different from the case in LS mediation analysis where ab = c — ¢ and both are
n-consistent. Since @b has a faster convergence rate than c—citis superior, same
as in Cases One and Two; also, it implies n3/4@C - ¢ — ab) and n%/4 (c— c’) have the
same asymptotic distribution. Second when a = 0, Dl() Dz() Z1 and Z; in the
asymptotic distribution of ¢ — ¢’ — @b in Theorem 2 can be simplified as detailed in
the proof of Theorem 3. Third, whena = b = 0, X1, X1, and X, in Theorem 2 can be
simplified such that we can write Z, T = (Z + (z3,0), Zz) with (z2, z3) independent
of Z1,Z, ~ N (0, X), and

1 I —pum
9 T ~ N 0’ - A7 A ( ) ;
(2.2 ( 4o 002 \—im 1,
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see Appendix F for details. Fourth, 52 (Zy) — 51 (Zy) follows a (variance) mixture
normal distribution. Its density is

g(x) = f £ 10,031.22))f (@125 | 0. £)dz1dzs,

where f(x | 0, 2) is the pdf of the normal distribution with mean 0 and variance
matrix 2, and

op(21,22) = Tp, (1) + Zp, (22) — 2Zp,, (21, 2)
with 2],z € R%. The asymptotic variance of n3/4 (c— 27) is
E [EDl (Zl) + EDZ (ZZ) - 22D12 (Z], Z2)] .

When px = 0, it can be further simplified; see Appendix F for details. Fifth, from
Theorem 3,

1 1 1
—16en? £, (0)% fo, (0% 0203

var(ab) ~ : ! : E(z%z%)
16n? f., (0)* fo, (0% 030

which is equal to w2/ (4n20)2() when €, and €3 follow the standard normal, where ~
means higher order terms are omitted throughout this paper.

4 Simulations
4.1 Simulation designs

Because B2, B3 and ¢’ will not affect the asymptotic distribution of any parameter of
interest as indicated in Theorems 1,2 and 3, we set 8o = B3 = Oand ¢’ = 1 throughout
our simulations. The sample size is set at n = 200, 500, 1000, 2000, 5000, 10,000,
and the replication number is set at N = 10,000. To save space, we report only the
simulation results for » = 200 and 1000 in our three tables as the results for the
other sample sizes are consistent with these two sample sizes. Anyway, in our four
figures, we use information from all sample sizes. In the three tables, we report the
finite-sample MSE companioned with the MSE predicted by the asymptotic theory
for the LS and two LAD estimators. As the bias is ignorable in both finite samples
and large samples, the MSE is roughly equal to the variance. To satisfy Conditions 1
and 2, we set X ~ N(0, 1), e2 ~ N (0, 1), and €3 follows three popular distributions:
I N(O,1),dDHO0INO, 1)+ 0.1N (0, 10%), and (IIT) . Simulation results show that
the product estimator has less MSE than the difference estimator. In addition, we set
€y ~ Laplace(0, 1) and find the same conclusion (see Appendix G).
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Table1 MSE (x 10*3) for LS and two LAD estimates

€3 n a=b=0.14 a=b=14
MSE[ s MSEp MSEp MSE[ s MSEp MSEp
@ 200 0.22 0.38 1.69 19.68 31.03 36.46
0.20 0.31 1.56 19.60 30.79 35.82
1000 0.04 0.06 0.32 3.94 6.20 7.17
0.04 0.06 0.31 3.92 6.16 7.16
In 200 1.44 0.42 1.86 118.82 34.35 41.69
1.17 0.33 1.69 116.62 33.18 40.36
1000 0.25 0.07 0.35 23.47 6.57 8.17
0.23 0.07 0.34 23.32 6.64 8.07
(III) 200 1.93 0.44 2.00 149.37 35.50 44.11
00 0.35 1.79 00 35.00 43.73
1000 0.68 0.07 0.36 32.18 7.05 8.75
00 0.07 0.36 00 7.00 8.73

For each €3 distribution and n, the first row is the finite-sample MSE and the second row is the MSE
predicted by the asymptotic theory

4.2 Caseone:b # 0

When b # 0, we seta = b = 0.14, 1.4, corresponding to small and large mediation
effects. From Table 1, we can draw the following conclusions. First, the large-sample
MSE matches the finite-sample MSE very well, which implies that the convergence
rates of all three estimators are n'/? as predicted by Theorem 1. Second, the product
LAD estimator is the most efficient except in case (I) where the LS estimator is the most
efficient. Third, the difference estimator is less efficient than the product estimator and
the efficiency of the former gets closer to that of the latter when the mediation effect
gets larger. Finally, the MSE is larger when €3 has a heavier tail (or fe,(0) is smaller)
for all three estimators. N

Figure 1 shows log{MSE(¢c — ¢’ — ab)}/2 against logn when b # 0; it indicates
that the convergence rate of ¢ — ¢ — @b is indeed n'/? when b # 0 as predicted
by Theorem 1. Furthermore, since the asymptotic Varlance of C— ¢ —ab is roughly

e290, where 6 is the intercept of regressing log{MSE(c — - ab)}/Z on logn, Fig. 1
indicates that this asymptotic variance increases with the heaviness of €3’s tail and
the magnitude of the mediation effect. For example, if a = 0.14, the ratio of the
asymptotic variances when €3 ~ 1, and N (0, 1) is e’2><0'48/e’2"0'60 ~~ 1.29, and if
€3 ~ N (0, 1), this ratio when @ = 1.4 and a = 0.14 is ¢>¥02 /¢=2x0.60 ~ 9 36,

4.3 Casetwo:b = Obuta # 0
When b = 0, we set a = 0.14, 1.4. From Table 2, we can draw the following conclu-
sions. First, the large-sample MSE matches the finite-sample MSE very well except

for the difference estimator when a = 0.14; as a result, the finite-sample MSEs of
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€3 ~ N(0,1) €3 ~ 0.9N(0,1) + 0.1N(0, 10%) €3~ ty
a=b=0.14 a=b=0.14 a=b=0.14
~ 3 -3 -3
=
% 35 35
I
w4 -4
I
% 45 4.5
A — 0.60— 0510 y=—0.54—051z
= 5 -5
=
< 55 5.5 5.5
109(200)  log(1000) log(10000)  10g(200)  log(1000) log(10000)  log(200)  log(1000) log(10000)
log(n) log(n) log(n)
a=b=14 a=b=14 a=b=14
™~ - g
=
<
RS
I
|
2 y=0.52— 051z y = 0.58 — 0.50z y = 0.63 — 0.50z
~
=]
=
S 45 45 -4.5
109(200)  log(1000) log(10000)  10g(200)  log(1000) log(10000)  10g(200)  log(1000) log(10000)
log(n) log(n) log(n)
Fig. 1 log{MSE(¢ — ¢/ — ab)}/2 against log n for two (a, b) values and three €3 distributions

the two LAD estimators are very different when @ = 0.14 even if their asymptotic
MSE:s are the same as predicted by Theorem 2. When a = 0.14, the FOAR is not
a good approximation to the asymptotic distribution of ¢ c —c. Actually, the SOAR
takes in charge. Figure 2 shows log{MSE(c — c’) — 05 Z/n}/2 against logn, where
MSE(c — ?’) — crg /n is approximately the variance of the SOAR by recalling that the
FOAR and the SOAR are asymptotically uncorrelated. As mentioned after Theorem 2,
the root-mean-square error (RMSE) of the SOAR in the LAD estimates is O(n=3%
rather than O(n™') as _in the LS estimate. Because the asymptotic variance of the
SOAR is large for ¢ — ¢ when a is small, its effect on the MSE cannot be neglected;
on the other hand, the counterpart for ab is very small, so the asymptotic variance of
the FOAR is a good approximation to the MSE. For example, when €3 ~ N (0, 1) and
a = 0.14, the asymptotic variance of the SOAR of T— s 2X036 & 2, 06, while
that of @b is close to zero. From Fig. 2, we can see that the asymptotic variance of the
SOAR of ¢ — ¢’ also increases with the heaviness of €3’s tail, just as the asymptotic
variance of the FOAR as indicated in Table 2. Second, the second and third conclusions
in Case one still hold.

As Figs. 1 and 3 shows log{MSE(¢c — ¢ — ab)}/2 against logn when b = 0 but
a # 0. Different from Figs. 1 and 3 indicates that the convergence rate of ¢ — ¢ —ab
is n3/4 when b = 0 (rather than n'/? when b # 0), Wthh matches the prediction of
Theorem 2. Also, the asymptotic variance of ¢ — ¢’ — @b increases with the heaviness
of €37s tail, but does not seem to increase with a as in the b # 0 case. Comparing Figs.
2 and 3, we can see that MSE(¢ — ¢/ — ab) and MSE(C — ¢) — aé/n whena = 0.14
are quite close, which is because the asymptotic variance of the SOAR of ab is close
to zero so that both MSEs are roughly the variance of the SOAR of ¢ — ¢'.
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Table2 MSE (x 10*3) for LS and two LAD estimates

€3 n b=0,a=0.14 b=0,a=14
MSE; g MSE p MSEp MSE; g MSE p MSEp
D 200 0.13 0.23 0.92 9.96 15.86 16.68
0.10 0.15 0.15 9.80 15.39 15.39
1000 0.02 0.03 0.10 1.95 3.06 3.11
0.02 0.03 0.03 1.96 3.08 3.08
(1) 200 1.38 0.27 1.09 112.23 18.81 19.74
1.07 0.18 0.18 106.82 17.79 17.79
1000 0.22 0.04 0.12 21.56 3.71 3.78
0.21 0.04 0.04 21.36 3.56 3.56
(1) 200 1.43 0.29 1.15 169.12 20.04 20.92
00 0.20 0.20 00 19.60 19.60
1000 0.34 0.04 0.12 39.06 3.98 4.04
00 0.04 0.04 00 3.92 3.92
€5~ N(0,1) €3 ~ 0.9N(0,1) + 0.1N(0,10%) €~ ty
35 3.5 35
N -4 -4 -4
=
N%-zt.s 45 45
©
I
& 8 5 5
|
& 55 5.5 5.5
5
E sl ¥=036-075 6l ¥=051-076z 5 y = 0.56 — 0.76
E;
~ 65 6.5 65
7 -7 -7
10g(200)  log(1000) 10g(10000)  10g(200)  log(1000) 10g(10000)  log(200)  log(1000) 10g(10000)

log(n) log(n) log(n)

Fig.2 log{MSE(¢c — ;’) — o% /n}/2 against logn for a = 0.14, b = 0 and three €3 distributions

4.4 Casethree:ta=b6=0

The first, second and fourth conclusions from Table 1 still apply to Table 3; especially,
the first conclusion implies that the convergence rates of the LS and product estimators
are n while the convergence rate of the difference estimator is n3/* (see Appendix F for
more discussions), which is in accordance with Theorem 3 and dramatically different
from Cases one and two where all three estimators are n 1/2_consistent. As Figs. 1 and
3, Fig. 4 shows log{MSE(c — o — ab)}/2 againstlogn whena = b = 0. As predicted
by Theorem 3, the convergence rate of ¢ — ¢’ — abis n¥/4, same as in Case two. Also,
similar to Cases One and Two, the asymptotic variance of ¢ — ¢’ — @b increases with
the heaviness of €3’s tail.
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€3~ N(0,1) €3 ~ 0.9N(0,1) 4+ 0.1N(0, 10%) €3~ 1y
a=0.14 a=0.14 a=0.14
™ -3 - -
=
=
S
|
()
I 5
<
2
£ 6! vy=0.39—-0.75z y = 0.50 — 0.76x
-
@®
=7 -7 -7
10g(200)  log(1000) 10g(10000)  10g(200)  log(1000) 10g(10000)  log(200)  log(1000) log(10000)
log(n) log(n) log(n)
a=14 a=14 a=14
™ -3 -3 -3
=
=
T -4 -4 -4
<
I 5 -5 -5
©
K
E 6 y = 0.42 — 0.76x 6 y=0.48 — 0.75x 6 y=0.54 — 0.76z
E)
= .7 -7 -7
10g(200)  log(1000) 10g(10000)  log(200)  log(1000) 10g(10000)  10g(200)  log(1000) 10g(10000)

log(n) log(n) log(n)

Fig.3 log{MSE(¢ — J - 225)}/2 against log n for b = 0, two a values and three €3 distributions

Table3 MSE (x1075) for LS

and two LAD estimates when €3 " MSELs MSEp MSEp
a=b=0 o 200 2.59 6.26 72.40
2.50 6.17 70.06
1000 0.10 0.25 6.32
1.10 0.25 6.27
an 200 27.77 7.99 92.50
27.25 7.13 80.96
1000 L11 0.29 747
1.09 0.29 724
(11D 200 3391 8.58 99.62
o0 7.85 89.21
1000 1.44 0.32 8.42
00 031 7.98

5 Discussion

This paper develops asymptotic theories for two forms of mediation effect estimates
and shows their asymptotic nonequivalence in a basic LAD mediation model. Although
we consider only a restrictive scenario specified by Conditions 1 and 2, our conclusions
of Theorems 1-3 can be qualitatively extended to other more general cases. We state
three such cases here: (i) there are additional control variables Z influencing X, M
and Y; (ii) other quantiles beyond the median are of interest; (iii) condition (i) rather
than condition (ii) of Proposition 1 is imposed. The key in the proofs of all these
general cases is a transformation of the regressors in equation (3) as illustrated in the
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e~ N(0,1) €3 ~ 0.9N(0,1) + 0.1N(0,10%) €3 ~ o
-3.5 -3.5 -3.5

~ 4 -4 -4
=
ey
S 45 45 45

|
By

| -5 -5 -5
<
4
2 -5.5 -5.5 -5.5
b= y=0.38 — 0.752 y =0.49 — 0.76z y=051—0.75z

6.5 Y

-6.5 -6.5

10g(200)  log(1000) 10g(10000)  log(200)  log(1000) log(10000)  10g(200)  log(1000) 1og(10000)
log(n) log(n) log(n)

Fig.4 log{MSE(c — J - ab)}/2 against logn for a = b = 0 and three 3 distributions

proof of Theorem 1. Such a transformation is possible due to the triangular structure
of a mediation model. Take case (i) as an example. The chain of effects is 1 —
Z - X — M — Y, where all variables preceding a chosen variable will affect the
variable, i.e., the constant will affect Z, (1, Z) will affect X, (1, Z, X) will affect M,
and (1, Z, X, M) will affect Y. This special structure makes the analysis tractable.

The LAD method in this paper can also be generalized to multilevel mediation
models (Hox 2002; Preacher et al. 2010) and multi-mediator models (VanderWeele
and Vansteelandt 2014). In order to further improve the estimation efficiency, many
other robust methods can be applied to the mediation model, including the weighted
quantile average regression (Zhao and Xiao 2014), the differenced method (Wang et al.
2019), and the general M-estimation method (Huber and Ronchetti 2009). Analyses
in these general models and for other robust methods are left for future research, but
the results in this paper will definitely shed some lights on these extensions.

Supplementary Material

Supplementary material available at 7est online includes the proofs of Proposition 1,
Theorems 1-3, Corollary 1, and simplifications in Case three and simulations.
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