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Abstract

In nonparametric regression, the derivative estimation has attracted much attention in re-
cent years due to its wide applications. In this paper, we propose a new method for the
derivative estimation using the locally weighted least absolute deviation regression. Dif-
ferent from the local polynomial regression, the proposed method does not require a finite
variance for the error term and so is robust to the presence of heavy-tailed errors. Mean-
while, it does not require a zero median or a positive density at zero for the error term in
comparison with the local median regression. We further show that the proposed estimator
with random difference is asymptotically equivalent to the (infinitely) composite quantile
regression estimator. In other words, running one regression is equivalent to combining
infinitely many quantile regressions. In addition, the proposed method is also extended to
estimate the derivatives at the boundaries and to estimate higher-order derivatives. For the
equidistant design, we derive theoretical results for the proposed estimators, including the
asymptotic bias and variance, consistency, and asymptotic normality. Finally, we conduct
simulation studies to demonstrate that the proposed method has better performance than
the existing methods in the presence of outliers and heavy-tailed errors, and analyze the
Chinese house price data for the past ten years to illustrate the usefulness of the proposed
method.
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1. Introduction

The derivative estimation is an important problem in nonparametric regression and it has
applications in a wide range of fields. For instance, when analyzing human growth data
(Müller, 1988; Ramsay and Silverman, 2002) or maneuvering target tracking data (Li and
Jilkov, 2003, 2010), the first- and second-order derivatives of the height as a function of
time are two important parameters, with the first-order derivative representing the speed
and the second-order derivative representing the acceleration. The derivative estimates are
also needed in change-point problems, e.g., for exploring the structures of curves (Chaudhuri
and Marron, 1999; Gijbels and Goderniaux, 2005), for detecting the extremum of derivatives
(Newell et al., 2005), for characterizing submicroscopic nanoparticle from scattering data
(Charnigo et al., 2007, 2011a), for comparing regression curves (Park and Kang, 2008), for
detecting abrupt climate changes (Matyasovszky, 2011), and for inferring the cell growth
rates (Swain et al., 2016).

In the existing literature, one usually obtains the derivative estimates as a by-product by
taking the derivative of a nonparametric fit of the regression function. There are three main
approaches for the derivative estimation: smoothing spline, local polynomial regression,
and differenced estimation. For smoothing spline, the derivatives are estimated by taking
derivatives of the spline estimation of the regression function (Stone, 1985; Zhou and Wolfe,
2000). For local polynomial regression, a polynomial using the Taylor expansion is fitted
locally by the kernel method (Ruppert and Wand, 1994; Fan and Gijbels, 1996; Delecroix
and Rosa, 1996). These two methods both require an estimate of the regression function.
As pointed out in Wang and Lin (2015), when the regression function estimator achieves the
optimal rate of convergence, the corresponding derivative estimators may fail to achieve the
rate. In other words, minimizing the mean square error of the regression function estimator
does not necessarily guarantee the derivatives be optimally estimated (Wahba and Wang,
1990; Charnigo et al., 2011b).

For the differenced estimation, Müller et al. (1987) and Härdle (1990) proposed a cross-
validation method to estimate the first-order derivative without estimating the regression
function. Unfortunately, their method may not perform well in practice as the variance of
their estimator is proportional to n2 when the design points are equally spaced. Observ-
ing this shortcoming, Charnigo et al. (2011b) and De Brabanter et al. (2013) proposed a
variance-reducing estimator for the derivative function called the empirical derivative that
is essentially a linear combination of the symmetric difference quotients. They further de-
rived the order of the asymptotic bias and variance, and established the consistency of the
empirical derivative. Wang and Lin (2015) represented the empirical derivative as a local
constant estimator in locally weighted least squares regression (LowLSR), and proposed a
new estimator for the derivative function to reduce the estimation bias in both valleys and
peaks of the true derivative function. More recently, Dai et al. (2016) generalized equidis-
tant design to non-equidistant design, and Liu and De Brabanter (2018) further generalized
the existing work to random design.

The aforementioned differenced derivative estimators are all based on the least squares
(LS) method. Although elegant, the least squares method is not robust to outliers (Hu-
ber and Ronchetti, 2009). To overcome this problem, various robust methods have been
proposed in the literature to improve the estimation of the regression function, see, for ex-

2



Robust Estimation of Derivatives

ample, kernel M-smoother (Härdle and Gasser, 1984), local least absolute deviation (LAD)
(Fan and Hall, 1994; Wang and Scott, 1994), and locally weighted least squares (Cleveland,
1979; Ruppert and Wand, 1994) among others. In contrast, little attention has been paid
to improving the derivative estimation except for the parallel developments of the above
remedies (Härdle and Gasser, 1985; Welsh, 1996; Boente and Rodriguez, 2006), so call for
a better solution.

In this paper, we propose a locally weighted least absolute deviation (LowLAD) method
by combining the differenced method and the L1 regression systematically. Over a neighbor-
hood centered at a fixed point, we first obtain a sequence of linear regression representation
in which the derivative is the intercept term. We then estimate the derivative by minimizing
the sum of weighted absolute errors. By repeating this local fitting over a grid of points, we
can obtain the derivative estimates on a discrete set of points. Finally, the entire deriva-
tive function is obtained by applying the local polynomial regression or the cubic spline
interpolation.

The rest of the paper is organized as follows. Section 2 presents the motivation, the first-
order derivative estimator and its theoretical properties, including the asymptotic bias and
variance, consistency, and asymptotic normality. Section 3 studies the relation between the
LowLAD estimator and the existing estimators. In particular, we show that the LowLAD
estimator with random difference is asymptotically equivalent to the (infinitely) composite
quantile regression estimator. Section 4 derives the first-order derivative estimation at the
boundaries of the domain, and Section 5 generalizes the proposed method to estimate the
higher-order derivatives. In Section 6 we conduct extensive simulation studies to assess the
finite-sample performance of the proposed estimators and compare them with the existing
competitors; we also apply our method to a real data set to illustrate its usefulness in
practice. Finally, we conclude the paper with some discussions in Section 7, and provide
the proofs of the theoretical results in six Appendices.

A word on notation:
.
= means that the higher-order terms are omitted, and ≈ means

an approximate result with up to two decimal digits.

2. First-Order Derivative Estimation

Combining the differenced method and the L1 regression, we propose the LowLAD regres-
sion to estimate the first-order derivative. The new method inherits the advantage of the
differenced method and also the robustness of the L1 method.

2.1. Motivation

Consider the nonparametric regression model

Yi = m(xi) + εi, 1 ≤ i ≤ n, (1)

where xi = i/n is the design point, Yi is the response variable, m(·) is an unknown regression
function, and εi are independent and identically distributed (iid) random errors with a
continuous density f(·).
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We first define first-order symmetric (about i) difference quotient (Charnigo et al., 2011b;
De Brabanter et al., 2013) as

Y
(1)
ij =

Yi+j − Yi−j
xi+j − xi−j

, 1 ≤ j ≤ k, (2)

where k is a positive integer, and then decompose Y
(1)
ij into two parts as

Y
(1)
ij =

m(xi+j)−m(xi−j)

2j/n
+
εi+j − εi−j

2j/n
, 1 ≤ j ≤ k. (3)

On the right hand side of (3), the first term contains the bias information of the true deriva-
tive, and the second term contains the variance information. By Wang and Lin (2015), the
first-order derivative estimation based on the third-order Taylor expansion usually outper-
forms the estimation based on the first-order Taylor expansion due to bias correction. For
the same reason, we assume that m(·) is three times continuously differentiable on [0, 1].
By the Taylor expansion, we obtain

m(xi+j)−m(xi−j)

2j/n
= m(1)(xi) +

m(3)(xi)

6

j2

n2
+ o

(
j2

n2

)
, (4)

where the estimation bias is contained in the remainder term of the Taylor expansion.
By (3) and (4), we have

Y
(1)
ij = m(1)(xi) +

m(3)(xi)

6

j2

n2
+
εi+j − εi−j

2j/n
+ o

(
j2

n2

)
. (5)

In Proposition 11 (see Appendix A), we show that the median of εi+j − εi−j is always zero,
no matter whether the median of εi is zero or not. As a result, for any fixed k = o(n), we
have

Median[Y
(1)
ij ] = m(1)(xi) +

m(3)(xi)

6
d2j + o

(
d2j
)
, 1 ≤ j ≤ k, (6)

where dj = j/n. We treat (6) as a linear regression with d2j and Y
(1)
ij as the independent

and dependent variables, respectively. In the presence of heavy-tailed errors, we propose to
estimate m(1)(xi) as the intercept of the linear regression using the LowLAD method.

2.2. Estimation Methodology

In order to derive the estimation bias, we further assume that m(·) is five times continuously
differentiable, that is, the regression function is two degrees smoother than our postulated
model due to the equidistant design. Following the paradigm of Draper and Smith (1981)
and Wang and Scott (1994), we discard the higher-order terms of m(·) and assume locally
that the approximate model is

Y
(1)
ij = βi1 + βi3d

2
j + βi5d

4
j + ζij ,

where βi = (βi1, βi3, βi5)
T = (m(1)(xi),m

(3)(xi)/6,m
(5)(xi)/120)T are the unknown co-

efficients of the true underlying quintic function, and ζij = (εi+j − εi−j)/(2j/n) with
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Median[ζij ] = 0. Under the assumption of the approximate model, βi1 can be estimated as

min
b

k∑
j=1

wj
∣∣Y (1)
ij − (bi1 + bi3d

2
j + bi5d

4
j )
∣∣ = min

b

k∑
j=1

∣∣Ỹ (1)
ij − (bi1dj + bi3d

3
j + bi5d

5
j )
∣∣,

where wj = dj are the weights, b = (bi1, bi3, bi5)
T , and Ỹ

(1)
ij = (Yi+j − Yi−j)/2. Accordingly,

the approximate model can be rewritten as

Ỹ
(1)
ij = βi1dj + βi3d

3
j + βi5d

5
j + ζ̃ij ,

where ζ̃ij = (εi+j − εi−j)/2 are iid random errors with Median[ζ̃ij ] = 0 and a continuous,
symmetric density g(·) which is positive in a neighborhood of zero (see Appendix A).

Rather than the best L1 quintic fitting, we search for the best L1 cubic fitting to Ỹ
(1)
ij .

Specifically, we estimate the model by LowLAD:

(β̂i1, β̂i3) = arg min
b

k∑
j=1

∣∣Ỹ (1)
ij − bi1dj − bi3d

3
j

∣∣
with b = (bi1, bi3)

T , and define the LowLAD estimator of m(1)(xi) as

m̂
(1)
LowLAD(xi) = β̂i1. (7)

The following theorem states the asymptotic behavior of β̂i1.

Theorem 1 Assume that εi are iid random errors with a continuous bounded density f(·).
Then as k →∞ and k/n→ 0, β̂i1 in (7) is asymptotically normally distributed with

Bias[β̂i1] = −m
(5)(xi)

504

k4

n4
+ o

(
k4

n4

)
, Var[β̂i1] =

75

16g(0)2
n2

k3
+ o

(
n2

k3

)
,

where g(0) = 2
∫∞
−∞ f

2(x)dx. The optimal k that minimizes the asymptotic mean square
error (AMSE) is

kopt ≈ 3.26

(
1

g(0)2m(5)(xi)2

)1/11

n10/11,

and, consequently, the minimum AMSE is

AMSE[β̂i1] ≈ 0.19

(
m(5)(xi)

6

g(0)16

)1/11

n−8/11.

In the local median regression (see Section 3.1 below for its definition), the density f(·)
is usually assumed to have a zero median and a positive f(0) value. While in Theorem 1,
we only require a continuity condition on the density f(·). In addition, the variance of the
LowLAD estimator depends on g(0) = 2

∫∞
−∞ f

2(x)dx which is always positive, while the
variance of the local median estimator relies on a single value f(0) only. In this sense, the
LowLAD estimator is more robust than the local median estimator.
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2.3. LowLAD with Random Difference

To further improve the estimation efficiency, we propose the LowLAD with random dif-
ference referred to as RLowLAD. First, define the first-order random difference sequence
as

Yijl = Yi+j − Yi+l, −k ≤ j, l ≤ k,
where we implicitly exclude j and l being 0 to be comparable to the LowLAD estimator.
Second, define the RLowLAD estimator as

m̂
(1)
RLowLAD(xi) = β̂RLowLAD

i1 , (8)

where

(β̂RLowLAD
i1 , β̂RLowLAD

i2 , β̂RLowLAD
i3 , β̂RLowLAD

i4 )

= arg min
b

k∑
j=−k

k∑
l=−k,l<j

∣∣Yijl − bi1(dj − dl)− bi2(d2j − d2l )− bi3(d3j − d3l )− bi4(d4j − d4l )∣∣
with the true value βi = (βi1, βi2, βi3, βi4)

T = (m(1)(xi),m
(2)(xi)/2,m

(3)(xi)/6,m
(4)(xi)/24)T

and b = (bi1, bi2, bi3, bi4)
T .

Theorem 2 Under the assumptions of Theorem 1, the bias and variance of the RLowLAD
estimator in (8) are, respectively,

Bias[β̂RLowLAD
i1 ] = −m

(5)(xi)

504

k4

n4
+ o

(
k4

n4

)
, Var[β̂RLowLAD

i1 ] =
75

24g(0)2
n2

k3
+ o

(
n2

k3

)
.

By replacing the symmetric difference with the random difference, we improve the esti-
mation accuracy with the variance from 75

16g(0)2
n2

k3
to 75

24g(0)2
n2

k3
. While the cost is to increase

the computation complexity from O(n) to O(n2).

3. Comparison with Existing First-Order Derivative Estimators

We first review some existing methods for the first-order derivative estimation which are
based on either the least squares regression or the quantile regression. Both methods can
be used to estimate the first-order derivative of m(·) due to the special structure of model
(1). Note that E [Yi|xi] = m(xi)+E [εi], and Qτ (Yi|xi) = m(xi)+Qτ (εi) because εi is inde-
pendent of xi, where Qτ (εi) is the τth unconditional quantile of εi. Although E [Yi|xi] may
not equal to Qτ (Yi|xi), their derivatives must be the same as the corresponding derivatives
of m(xi). To make the existing estimators comparable to our LowLAD and RLowLAD
estimators, we use the uniform kernel and the same order Taylor expansion throughout this
section.

3.1. LS, LowLSR and LAD Estimators

In Fan and Gijbels (1996), the first-order derivative is estimated by the least squares method:

(α̂LS
i0 , α̂

LS
i1 , α̂

LS
i2 , α̂

LS
i3 , α̂

LS
i4 ) = arg min

α

k∑
j=−k

(
Yi+j − αi0 − αi1dj − αi2d2j − αi3d3j − αi4d4j

)2
,

6
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where α = (αi0, αi1, αi2, αi3, αi4)
T . For ease of comparison, we exclude the point j = 0 so

that the same Yi’s are used as in the LowLAD estimation. Define the least squares (LS)
estimator as

m̂
(1)
LS (xi) = α̂LS

i1 . (9)

Corollary 3 Under the assumptions of Theorem 1, the bias and variance of the LS esti-
mator in (9) are, respectively,

Bias[α̂LS
i1 ] = −m

(5)(xi)

504

k4

n4
+ o

(
k4

n4

)
, Var[α̂LS

i1 ] =
75σ2

8

n2

k3
+ o

(
n2

k3

)
.

To obtain the optimal convergence rate of the derivative estimation, Wang and Lin
(2015) proposed the LowLSR estimator:

m̂
(1)
LowLSR(xi) = α̂LowLSR

i1 , (10)

where

(α̂LowLSR
i1 , α̂LowLSR

i3 ) = arg min
αi1,αi3

k∑
j=1

(
Ỹ

(1)
ij − αi1dj − αi3d

3
j

)2
.

Corollary 4 Under the assumptions of Theorem 1, the bias and variance of the LowLSR
estimator in (10) are, respectively,

Bias[α̂LowLSR
i1 ] = −m

(5)(xi)

504

k4

n4
+ o

(
k4

n4

)
, Var[α̂LowLSR

i1 ] =
75σ2

8

n2

k3
+ o

(
n2

k3

)
.

Wang and Scott (1994) proposed the local polynomial least absolute deviation (LAD)
estimator:

m̂
(1)
LAD(xi) = β̂LAD

i1 , (11)

where

(β̂LAD
i0 , β̂LAD

i1 , β̂LAD
i2 , β̂LAD

i3 , β̂LAD
i4 ) = arg min

b

k∑
j=−k

∣∣Yi+j − bi0 − bi1d1j − bi2d2j − bi3d3j − bi4d4j ∣∣
with b = (bi0, bi1, bi2, bi3, bi4)

T .

Corollary 5 Under the assumptions of Theorem 1, the bias and variance of the LAD es-
timator in (11) are, respectively,

Bias[β̂LAD
i1 ] = −m

(5)(xi)

504

k4

n4
+ o

(
k4

n4

)
, Var[β̂LAD

i1 ] =
75

32f(0)2
n2

k3
+ o

(
n2

k3

)
.

There is one key difference between the LS method and the LAD method. For the LS
method, the LS estimator and the LowLSR estimator are asymptotically equivalent; while
for the LAD method, the asymptotic variances of the LAD estimator and the LowLAD
estimator are very different, although their asymptotic biases are the same. We provide the
reasons for this key difference in Appendix F.
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3.2. Quantile Regression Estimators

Quantile regression (Koenker and Bassett, 1978; Koenker, 2005) exploits the distribution
information of the error term to improve the estimation efficiency. Following the composite
quantile regression (CQR) in Zou and Yuan (2008), Kai et al. (2010) proposed the local
polynomial CQR estimator. In general, the local polynomial CQR estimator of m(1)(xi) is
defined as

m̂
(1)
CQR(xi) = γ̂CQR

i1 , (12)

where

(
{
γ̂CQR
i0h

}q
h=1

, γ̂CQR
i1 , γ̂CQR

i2 , γ̂CQR
i3 , γ̂CQR

i4 )

= arg min
γ

q∑
h=1

 k∑
j=−k

ρτh(Yi+j − γi0h − γi1d1j − γi2d2j − γi3d3j − γi4d4j )

 ,

with γ =
(
{γi0h}qh=1, γi1, γi2, γi3, γi4

)T
, ρτ (x) = τx − xI(x < 0) is the check function, and

τh = h/(q + 1).

Corollary 6 Under the assumptions of Theorem 1, the bias and variance of the CQR
estimator in (12) are, respectively,

Bias[γ̂CQR
i1 ] = −m

(5)(xi)

504

k4

n4
+ o

(
k4

n4

)
, Var[γ̂CQR

i1 ] =
75R1(q)

8

n2

k3
+ o

(
n2

k3

)
,

where R1(q) =
∑q

l=1

∑q
l′=1 τll′/{

∑q
l=1 f(cl)}2, cl = F−1(τl), and τll′ = min{τl, τl′} − τlτl′.

As q →∞,

R1(q)→
1

12(E[f(ε)])2
=

1

3g(0)2
, Var[γ̂CQR

i1 ] =
75

24g(0)2
n2

k3
+ o

(
n2

k3

)
.

Zhao and Xiao (2014) proposed the weighted quantile average (WQA) estimator for the
regression function in nonparametric regression, an idea originated from Koenker (1984).
We now extend the WQA method to estimate m(1)(xi) using the local polynomial quantile
regression. Specifically, we define

m̂
(1)
WQA(xi) =

q∑
h=1

whγ̂
WQA
i1h , (13)

where
∑q

h=1wh = 1, and

(γ̂WQA
i0h , γ̂WQA

i1h , γ̂WQA
i2h , γ̂WQA

i3h , γ̂WQA
i4h )

= arg min
γh

 k∑
j=−k

ρτh(Yi+j − γi0h − γi1hd1j − γi2hd2j − γi3hd3j − γi4hd4j )


with γh = (γi0h, γi1h, γi2h, γi3h, γi4h)T .

8
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Corollary 7 Under the assumptions of Theorem 1, the bias and variance of the WQA
estimator in (13) are, respectively,

Bias[m̂
(1)
WQA(xi)] = −m

(5)(xi)

504

k4

n4
++o

(
k4

n4

)
, Var[m̂

(1)
WQA(xi)] =

75R2(q|w)

8

n2

k3
+o

(
n2

k3

)
,

where R2(q|w) = wTHw with w = (w1, · · · , wq)T , and H =
{

τll′
f(cl)f(cl′ )

}
1≤l,l′≤q

. The

optimal weights are given by w∗ =
H−1eq
eTq H

−1eq
, where eq = (1, . . . , 1)Tq×1, and R2(q|w∗) =

(eTq H−1eq)
−1. As q → ∞, under the regularity assumptions in Theorem 6.2 of Zhao and

Xiao (2014), the variance of the optimal CQR is

Var[m̂
(1)
WQA(xi)] =

75I(f)−1

8

n2

k3
+ o

(
n2

k3

)
,

where I(f) is the Fisher information of f .

LS LowLSR LAD CQR WQA LowLAD RLowLAD

s2 σ2 σ2 1
4f(0)2

R1(q) R2(q)
1

2g(0)2
1

3g(0)2

Asymptotic s2 σ2 σ2 1
4f(0)2

1
3g(0)2

I(f)−1 1
2g(0)2

1
3g(0)2

Table 1: s2 in the variances 75n2

8k3
s2 of the existing first-order derivative estimators.

For the LS, LowLSR, LAD, CQR, WQA, LowLAD and RLowLAD estimators with the
same k, their asymptotic biases are all the same. In contrast, their asymptotic variances
are 75n2

8k3
s2 with s2 being σ2, σ2, 1

4f(0)2
, R1(q), R2(q),

1
2g(0)2

and 1
3g(0)2

, as listed in Table

1. From the kernel interpretation of the differenced estimator by Wang and Yu (2017),
we expect an equivalence between the LS and LowLSR estimators. As q → ∞, we have
R1(q) → 1/{3g(0)2} and R2(q) → I(f)−1, and hence the WQA estimator is the most
efficient estimator as q becomes large. Nevertheless, it requires the error density function to
be known in advance to carry out the most efficient WQA estimator. Otherwise, a two-step
procedure is needed, where the first step estimates the error density. For a fixed q, the
three quantile-based estimators (i.e., LAD, CQR, WQA) depend only on the density values
of f(·) at finite quantile points, whose behaviors are uncertain and may not be reliable. In
contrast, our new estimators rely on g(0) = 2E[f(x)], which includes all information on the
density f(·) and hence is more robust.

3.3. Relationship Among the CQR, WQA and RLowLAD Estimators

From the asymptotic variances, we can see that the RLowLAD estimator is asymptotically
equivalent to the infinitely CQR estimator. Why can this happen? Intuitively, they use the
same information in different ways. First, in infinitely CQR, all local data (i.e., data at all
quantiles) are employed to estimate the same parameter m(1)(xi), which is the same as in
RLowLAD. Second, in infinitely CQR, we first use data horizontally (at fixed τ) and then
combine data vertically (across τ), while in RLowLAD, we first combine data vertically since

9
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the distribution of the error term of Yijl is
∫
f
(
F−1 (τ)

)
dτ , and then run a single regression

horizontally (at τ = 0.5). It is interesting (and may be also surprising) to see that these
two different ways of using information have the same efficiency. The RLowLAD estimation
is more powerful in practice by noticing that a single differencing in Yijl is equivalent to
combining all (infinitely many) quantiles.

It should be emphasized that the ways of combining the infinitely many quantiles in

CQR and WQA are different. Suppose we use the equal weights wE =
(
1
q , · · · ,

1
q

)T
in

WQA. Such a weighting scheme is parallel to CQR where an equal weight is imposed on
each check function. Then from Theorem 2 of Kai et al. (2010), R2(q|wE)→ 1 as q →∞;
while R1(q) → 1

3g(0)2
. From Table 2 of Kai et al. (2010), 1

3g(0)2
< 1 for most distributions

(except N (0, 1)). Why can this difference happen? Note that

{
γ̂WQA
ih

}q
h=1

= arg min
γ1,··· ,γq

 q∑
h=1

k∑
j=−k

ρτh(Yi+j − γi0h − γi1hd1j − γi2hd2j − γi3hd3j − γi4hd4j )


where γ̂WQA

ih = (γ̂WQA
i0h , γ̂WQA

i1h , γ̂WQA
i2h , γ̂WQA

i3h , γ̂WQA
i4h )T , so the CQR estimator is a constrained

WQA estimator with the constraints being that the slopes at different quantiles must be the
same. On the other hand, the WQA estimator can be interpreted as a minimum distance
estimator,

arg min
γ

(
γ̂WQA
i1 − γeq

)T
W
(
γ̂WQA
i1 − γeq

)
=
eTq Wγ̂WQA

i1

eTq Weq
= wT γ̂WQA

i1 ,

where γ̂WQA
i1 =

(
γ̂WQA
i11 , · · · , γ̂WQA

i1q

)T
, W is a symmetric weight matrix, and w =

Weq
eTq Weq

.

When W = Iq, the q × q identity matrix, we get the equally-weighted WQA estimator;
when W = H−1, we get the optimally weighted WQA estimator; and when

W = aIq + (1− a)H−1 6= Iq,

we get an estimator that is asymptotically equivalent to the CQR estimator, where

a =
− (q −B) (1−BC) +

√
(q2 −AB) (1−BC)

A− (2q −B) (1−BC)− q2C
6= 1

with A = eTq Heq = q2R2(q|wE), B = R2 (q|w∗)−1 and C = R1 (q). For example, if
ε ∼ N (0, 1), then when q = 5, a = −0.367; when q = 9, a = −0.165; when q = 19,
a = −0.067; and when q = 99, a = −0.011. This is why imposing constraints directly on
the objective function (i.e., the CQR estimator) or on the resulting estimators (i.e., the
WQA estimator) would generate different estimators. The RLowLAD estimator and the
CQR estimator have the same asymptotic variance because both of them impose constraints
directly on the objective function.

3.4. Asymptotic Relative Efficiency

In this subsection, we study the Asymptotic Relative Efficiency (ARE) of the RLowLAD
estimator with respect to the LowLSR and LAD estimators by comparing their asymptotic
variances and AMSEs.

10
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Since all estimators have the same bias, the comparison of their variances becomes
important. We define the variance ratios of the LowLSR and LAD estimators relative to
the RLowLAD estimator as

RLowLSR =
Var(m̂LowLSR(1))

Var(m̂
(1)
RLowLAD)

= 3σ2g(0)2,

RLAD =
Var(m̂

(1)
LAD)

Var(m̂
(1)
RLowLAD)

=
3g(0)2

4f(0)2
.

In addition, the overall performance of an estimator is usually measured by its AMSE, so
we define the AREs based on AMSE as

ARELowLSR =
AMSE(m̂

(1)
LowLSR)

AMSE(m̂
(1)
RLowLAD)

,

ARELAD =
AMSE(m̂

(1)
LAD)

AMSE(m̂
(1)
RLowLAD)

.

The LowLSR estimator has the AMSE

AMSE(m̂
(1)
LowLSR) =

{
m(5)(xi)

504

k4

n4

}2

+
75σ2

8

n2

k3
,

and the optimal k minimizing the AMSE is

koptLowLSR =

{
893025σ2

(m(5)(xi))2

}1/11

n10/11

Similarly, we have

koptRLowLAD =

{
893025

3g(0)2(m(5)(xi))2

}1/11

n10/11 = R
−1/11
LowLSRk

opt
LowLSR.

As n→∞, we can show

ARELowLSR = RLowLSR
8/11,

ARELAD = RLAD
8/11.

Since the variance ratio and ARE have a close relationship, we only report the vari-
ance ratios. We consider eight distributions for the random errors: the normal distribution
N(0, 12), the Laplace (double exponential) distribution, the Logistic distribution, the t dis-
tribution with 3 degrees of freedom, the mixed normal distribution 0.9N(0, 12)+0.1N(0, 32)
and 0.9N(0, 12)+0.1N(0, 102), the Cauchy distribution, the mixed double gamma distribu-
tion 0.9Gamma(0, 1) + 0.1Gamma(1, 1) and 0.9Gamma(0, 1) + 0.1Gamma(3, 1), and the
bimodal distribution 0.5N(−1, 1) + 0.5N(1, 1) and 0.5N(−3, 1) + 0.5N(3, 1), which were
adopted in the robust location estimation by Koenker and Bassett (1978) and the variable
selection by Zou and Yuan (2008).

11
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f(0) g(0) σ2 RLowLSR RLAD

N(0, 1) 0.40 0.56 1 0.95 1.5
0.9N(0, 1) + 0.1N(0, 32) 0.37 0.50 1.8 1.37 1.38
0.9N(0, 1) + 0.1N(0, 102) 0.36 0.47 10.9 7.28 1.27

t(3) 0.37 0.46 3 1.90 1.17
Laplace 0.50 0.50 2 1.50 0.75
Logistic 0.25 0.33 3.29 1.10 1.33
Cauchy 0.32 0.32 ∞ ∞ 0.75

0.9Gamma(0, 1) + 0.1Gamma(1, 1) 0.50 0.45 1.1 1.63 0.68
0.9Gamma(0, 1) + 0.1Gamma(3, 1) 0.46 0.42 1.3 2.44 0.68

0.5N(−1, 1) + 0.5N(1, 1) 0.15 0.39 2 0.89 5.18
0.5N(−3, 1) + 0.5N(3, 1) 4.92× 10−5 0.28 10 2.39 2.46× 107

Table 2: Variance ratios for different error distributions.

Table 2 lists the variance ratios for these eight error distributions which are derived in
Appendix E. From Table 2, a few interesting results can be drawn. First of all, the variance
of the RLowLAD estimator is usually smaller and more robust than that of the LowLSR
and LAD estimators in most cases. Secondly, the LAD estimator is not robust since it relies
on the density value at one point 0, so when facing the bimodal errors the variance is huge.
Thirdly, the minimum value of RLowLSR in Table 2 is 0.89. Actually, there is an exact lower
bound for RLowLSR as stated in Theorem 4 of Kai et al. (2010). For completeness, we repeat
their Theorem 4 in the following Lemma 8.

Lemma 8 Let F denote the class of error distributions with mean 0 and variance 1. Then

inf
f∈F

RLowLSR(f) ≈ 0.86.

The lower bound is reached if and only if the error follows the rescaled beta(2, 2) distribution.
Thus,

inf
f∈F

ARELowLSR(f) = R
8/11
LowLSR ≈ 0.90.

In other words, the potential efficiency loss of the RLowLAD estimator relative to the
LowLSR estimator is at most 10%.

In Appendix E, we further illustrate the trade-off between the sharp-peak and heavy-
tailed errors using three error distributions.

4. Derivative Estimation at Boundaries

At the left boundary with 2 ≤ i ≤ k, the bias and variance of the LowLAD estimator are
−m(5)(xi)(i− 1)4/(504n4) and 75n2/(16g(0)2(i− 1)3), respectively. At the endpoint i = 1,
the LowLAD estimator is not well defined. Similar results hold for the estimation at the
right boundary with n − k + 1 ≤ i ≤ n − 1. In this section, we propose an asymmetrical
LowLAD method (As-LowLAD) to reduce the estimation variance as well as to improve the
finite-sample performance at the boundaries.

12
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Assume that m(·) is twice continuously differentiable on [0, 1] and Median[εi] = 0. For
1 ≤ i ≤ k, we define the asymmetric lag-j first-order difference quotients as

Y <1>
ij =

Yi+j − Yi
xi+j − xi

, −(i− 1) ≤ j ≤ k, j 6= 0.

By decomposing Y <1>
ij into two parts, we have

Y <1>
ij =

m(xi+j)−m(xi)

j/n
+
εi+j − εi
j/n

= m(1)(xi) + (−εi)d−1j +
εi+j
j/n

+
m(2)(xi)

2!

j

n
+ o

(
j

n

)
,

where εi is fixed as j changes. Thus, Median(Y <1>
ij

∣∣εi) = m(1)(xi) + (−εi)d−1j + m(2)(xi)
2!

j
n .

Ignoring the last term, we can rewrite the above model as

Y <1>
ij = βi1 + βi0d

−1
j + δij + o(1), −(i− 1) ≤ j ≤ k, j 6= 0,

where (βi0, βi1)
T = (−εi,m(1)(xi))

T , δij =
εi+j
j/n . By the LowLAD method, the regression

coefficients can be estimated as(
β̂i0, β̂i1

)
= arg min

b

k∑
j=−(i−1)

∣∣Y <1>
ij − bi1 − bi0d−1j

∣∣wj
= arg min

b

k∑
j=−(i−1)

∣∣Ỹ <1>
ij − bi0 − bi1dj

∣∣, (14)

where wj = dj , b = (bi0, bi1)
T , and Ỹ <1>

ij = Yi+j − Yi. The As-LowLAD estimator of

m(1)(xi) is β̂i1.
Similarly to Theorem 1, we can prove the asymptotic normality for β̂i1. The following

theorem states its asymptotic bias and variance.

Theorem 9 Assume that εi are iid random errors with median 0 and a continuous, positive
density f(·) in a neighborhood of zero. Furthermore, assume that m(·) is twice continuously
differentiable on [0, 1]. Then for each 1 ≤ i ≤ k, the leading terms of the bias and variance
of β̂i1 in (14) are, respectively,

Bias[β̂i1] =
m(2)(xi)

2

k4 + 2k3i− 2ki3 − i4

n(k3 + 3k2i+ 3ki2 + i3)
,

Var[β̂i1] =
3

f(0)2
n2

k3 + 3k2i+ 3ki2 + i3
.

For the estimation at the boundaries, Wang and Lin (2015) proposed a one-side LowLSR
(OS-LowLSR) estimator of the first-order derivative, with the bias and variance being
m(2)(xi)k/(2n) and 12σ2n2/k3, respectively. In contrast, if we consider the one-side LowLAD
(OS-LowLAD) estimator of the first-order derivative, its bias and variance arem(2)(xi)k/(2n)

13
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and 3n2/(f(0)2k3), respectively. Note that the two biases are the same, while the variances
are different with the former related to σ2 and the latter related to f(0). Note also that
different from the LowLAD estimator at the interior point, the variance of the OS-LowLAD
estimator involves f(0) rather than g(0).

Theorem 9 shows that our estimator has a smaller bias than the OS-LowLSR and OS-
LowLAD estimators. In the special case i = k, the bias disappears (in fact it reduces
to the higher-order term O(k2/n2)). With normal errors, when 1 < i < b0.163kc, the

order of variances of the three estimators is Var(m̂
(1)
OS−LAD(xi)) > Var(m̂

(1)
AS−LAD(xi)) >

Var(m̂
(1)
OS−LSR(xi)), where for a real number x, bxc means the largest integer less than x;

when b0.163kc < i < k, the order of variances of the three estimators is Var(m̂
(1)
OS−LSR(xi)) >

Var(m̂
(1)
OS−LAD(xi)) > Var(m̂

(1)
AS−LAD(xi)). As i approaches k, the variance of the As-

LowLAD estimator is reduced to one-eighth of the variance of the OS-LowLAD estimator,
and is much smaller than the variance of the OS-LowLSR estimator.

Up to now, we have the first-order derivative estimators {m̂(1)(xi)}ni=1 on the discrete
points {xi}ni=1. To estimate the first-order derivative function, we suggest two strategies for
different noise levels of the derivative data: the cubic spline interpolation in Knott (2000)
for ‘good’ derivative estimators, and the local polynomial regression in Brown and Levine
(2007) and De Brabanter et al. (2013) for ‘bad’ derivative estimators. Here, the terms
‘good’ and ‘bad’ indicate small and large estimation variances of the derivative estimators,
respectively.

5. Second- and Higher-Order Derivative Estimation

In this section, we generalize our robust method for the first-order derivative estimation to
the second- and higher-order derivatives estimation.

5.1. Second-Order Derivative Estimation

Define the second-order difference quotients as

Y
(2)
ij =

Yi−j − 2Yi + Yi+j
j2/n2

, 1 ≤ j ≤ k, (15)

and assume that m(·) is six times continuously differentiable. Then we can decompose (15)
into two parts and simplify it by the Taylor expansion as

Y
(2)
ij =

m(xi−j)− 2m(xi) +m(xi+j)

j2/n2
+
εi−j − 2εi + εi+j

j2/n2

= m(2)(xi) +
m(4)(xi)

12

j2

n2
+
m(6)(xi)

360

j4

n4
+ o

(
j4

n4

)
+
εi−j − 2εi + εi+j

j2/n2
.

Since i is fixed as j varies, the conditional expectation of Y
(2)
ij given εi is

E[Y
(2)
ij

∣∣εi] = m(2)(xi) +
m(4)(xi)

12

j2

n2
+
m(6)(xi)

360

j4

n4
+ o

(
j4

n4

)
+ (−2εi)

n2

j2
.
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This results in the true regression model as

Y
(2)
ij = αi2 + αi4d

2
j + αi6d

4
j + o

(
d4j
)

+ αi0d
−2
j + δij , 1 ≤ j ≤ k,

where αi = (αi0, αi2, αi4, αi6)
T = (−2εi,m

(2)(xi),m
(4)(xi)/12,m(6)(xi)/360)T , and the er-

rors δij =
εi+j+εi−j
j2/n2 . If εi has a symmetric density about zero, then δ̃ij = j2

n2 δij = εi+j + εi−j
has median 0 (see Appendix D). Following the similar procedure as in the first-order deriva-
tive estimation, our LowLAD estimator of m(2)(xi) is defined as

m̂
(2)
LowLAD(xi) = α̂i2, (16)

where

(α̂i0, α̂i2, α̂i4)
T = arg min

a

k∑
j=1

∣∣Y (2)
ij − (ai2 + ai4d

2
j + ai0d

−2
j )
∣∣Wj

= arg min
a

k∑
j=1

∣∣Ỹ (2)
ij − (ai0 + ai2d

2
j + ai4d

4
j )
∣∣

with a = (ai0, ai2, ai4)
T , Wj = d2j , and Ỹ

(2)
ij = Yi−j − 2Yi + Yi+j . The following theorem

shows that m̂
(2)
LowLAD(xi) behaves similarly as m̂

(1)
LowLAD(xi).

Theorem 10 Assume that εi are iid random errors whose density f(·) is continuous and
symmetric about zero. Then as k →∞ and k/n→ 0, α̂i2 in (16) is asymptotically normally
distributed with

Bias[α̂i2] = −m
(6)(xi)

792

k4

n4
+ o

(
k4

n4

)
, Var[α̂i2] =

2205

16h(0)2
n4

k5
+ o

(
n4

k5

)
,

where h(0) =
∫∞
−∞ f

2(x)dx. The optimal k that minimizes the AMSE is

kopt ≈ 3.93

(
1

h(0)2m(6)(xi)2

)1/13

n12/13,

and, consequently, the minimum AMSE is

AMSE[α̂i2] ≈ 0.24

(
m(6)(xi)

10

h(0)16

)1/13

n−8/13.

5.2. Higher-Order Derivative Estimation

We now propose a robust method for estimating the higher-order derivatives m(l)(xi) with
l > 2 via a two-step procedure. In the first step, we construct a sequence of symmetric
difference quotients in which the higher-order derivative is the intercept of the linear regres-
sion derived by the Taylor expansion, and in the second step, we estimate the higher-order
derivative using the LowLAD method.
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When l is odd, let d = (l + 1)/2. We linearly combine m(xi±j) subject to

d∑
h=1

[ajd+hm(xi+jd+h) + a−(jd+h)m(xi−(jd+h))] = m(l)(xi) +O

(
j

n

)
, 0 ≤ j ≤ k,

where k is a positive integer. We can derive a total of 2d equations through the Taylor
expansion to solve out the 2d unknown parameters. Define

Y
(l)
ij =

d∑
h=1

[ajd+hYi+jd+h + a−(jd+h)Yi−(jd+h)],

and consider the linear regression

Y
(l)
ij = m(l)(xi) + δij , 0 ≤ j ≤ k,

where δij =
∑d

h=1[ai,jd+hεi+jd+h + ai,−(jd+h)εi−(jd+h)] +O(j/n).

When l is even, let d = l/2. We linearly combine m(xi±j) subject to

bjm(xi) +

d∑
h=1

[ajd+hm(xi+jd+h) + a−(jd+h)m(xi−(jd+h))] = m(l)(xi) +O

(
j

n

)
, 0 ≤ j ≤ k,

where k is a positive integer. We can derive a total of 2d+ 1 equations through the Taylor
expansion to solve out the 2d+ 1 unknown parameters. Define

Y
(l)
ij = bjYi +

d∑
h=1

[ajd+hYi+jd+h + a−(jd+h)Yi−(jd+h)],

and consider the linear regression

Y
(l)
ij = m(l)(xi) + bjεi + δij , 0 ≤ j ≤ k,

where δij =
∑d

h=1[ai,jd+hεi+jd+h + ai,−(jd+h)εi−(jd+h)] +O(j/n).

When k is large, we suggest to keep the j2/n2 term as in (6) to reduce the estimation
bias. If

∑d
h=1[ai,jd+hεi+jd+h + ai,−(jd+h)εi−(jd+h)] has median zero, then we can obtain the

higher-order derivative estimators by the LowLAD method and deduce their asymptotic
properties by similar arguments as in the previous sections. To save space, we omit the
technical details in this paper.

6. Simulation Studies and Empirical Application

In this section, we conduct simulations to evaluate the finite-sample performance of our first-
and second-order derivative estimators and compare them with some existing estimators.
We also apply our method to a real data set to illustrate its usefulness in practice.
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6.1. First-Order Derivative Estimators

We first consider the following three regression functions:

m0(x) = (x) =
√
x(1− x) sin((2.1π)/(x+ 0.05)), x ∈ [0.25, 1],

m1(x) = sin(2πx) + cos(2πx) + log(4/3 + x), x ∈ [−1, 1],

m2(x) = 32e−8(1−2x)
2
(1− 2x), x ∈ [0, 1].

These three functions were also considered in Hall (2010) and De Brabanter et al. (2013).
For normal errors, we consider the functionm0(x) and compare the LowLAD, RLowLAD

and LowLSR estimators. The data set of size 300 is generated from model (1) with er-

rors εi
iid∼ N(0, 0.12) and is plotted in Figure 1(a). Figure 1 (2) displays the LowLAD

(RLowLAD) estimator (use the R package ‘L1pack’ in Osorio (2015)) and the LowLSR
estimator with k ∈ {6, 12, 25, 30, 50}. When k is small (see Figure 1(b) and 1(c)), both
estimators are noise-corrupted versions of the true first-order derivatives; as k becomes
larger (see Figure 1(d)-(f)), our estimator provides a similar performance as the LowLSR
estimator. Furthermore, by combining the left part of Figure 1(d), the middle part of 1(e)
and the right part of 1(f), more accurate derivative estimators can be obtained for practical
use.

In addition, note that the three estimators have the same variation trend, whereas
the LowLAD estimator has a slightly large oscillation and the RLowLAD estimator has a
similar performance compared to the LowLSR estimator. These simulation results coincide
with the theoretical results: the three estimators have the same bias, which explains the

same variation trend; the variance ratios are Var(m̂
(1)
LowLSR)/Var(m̂

(1)
LowLAD) ≈ 0.64 and

Var(m̂
(1)
LowLSR)/Var(m̂

(1)
RLowLAD) ≈ 0.95, which explains the oscillation performance.

Next, we consider the non-normal errors: 90% of the errors come from ε ∼ N(0, σ2) with
σ = 0.1, and the remaining 10% come from ε ∼ N(0, σ20) with σ0 = 1 or 10 corresponding to
the low or high contamination level. Figures 3 and 4 present the finite-sample performance
of the first-order derivative estimators for the regression functions m1 and m2, respectively.
They show that the estimated curves of the first-order derivative based on LowLAD fit
the true curves more accurately than LowLSR in the presence of heavy-tailed errors. The
heavier the tail, the more significant the improvement.

We also compute the mean absolute errors to further assess the performance of the four
methods, i.e., LowLAD, RLowLAD, LowLSR and LAD. Since the oscillation of a periodic
function depends on its frequency and amplitude, we consider the sine function in the
following form as the regression function,

m3(x) = A sin(2πfx), x ∈ [0, 1].

The errors are generated in the above contaminated way. We consider two sample sizes:
n = 100 and 500, two standard deviations: σ = 0.1 and 0.5, two contaminated standard
deviations: σ0 = 1 and 10, two frequencies: f = 0.5 and 1, and two amplitudes: A = 1 and
10.

We use the following adjusted mean absolute error (AMAE) as the criterion of perfor-
mance evalution:

AMAE(k) =
1

n− 2k

n−k∑
i=k+1

∣∣m̂(1)(xi)−m(1)(xi)
∣∣.
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Figure 1: The comparison between the LowLAD and LowLSR estimators. (a) Simulated

data set of size 300 from model (1) with equidistant xi ∈ [0.25, 1], εi
iid∼ N(0, 0.12),

and the true regression function m0(x) (bold line). (b)-(f) The first-order
LowLAD derivative estimators (green points) and the first-order LowLSR deriva-
tive estimators (red dashed line) for k ∈ {6, 9, 12, 25, 30, 50}. As a reference, the
true first-order derivative fucntion is also plotted (bold line).

Due to the heavy computation (for example, it needs more than 48 hours for the case
n = 500 and k = n/5 = 100 based on 1000 repetitions on our personal computer), we
choose k = n/5 uniformly.

Table 3 reports the simulation results based on 1000 repetitions. The numbers outside
and inside the parentheses represent the mean and standard deviation of the AMAE, respec-
tively. It is evident that RLowLAD performs uniformly better than LowLAD and performs
the best for most of cases. In particular for the cases with σ0 = 2σ, the contamination is
very light and thus LowLSR is better than LowLAD; while for the cases with σ0 = 10σ, the
contamination is very heavy and thus LowLSR is worse than LowLAD. These simulation
results coincide with the theoretical results.
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Figure 2: The comparison between the RLowLAD and LowLSR estimators for the same
data set as in Figure 1

6.2. Second-Order Derivative Estimators

To assess the finite-sample performance of the second-order derivative estimators, we con-
sider the same regression functions as in Section 6.1. Figures 5 and 6 present the estimated
curves of the second-order derivatives ofm1 andm2, respectively. It shows that our LowLAD
estimator fits the true curves more accurately than the LowLSR estimator in all settings.

We further compare LowLAD with two other well-known methods: the local polyno-
mial regression with p = 5 (use R package ‘locpol’ in Cabrera (2012)) and the penalized
smoothing splines with norder = 6 and method = 4 (use R package ‘pspline’ in Ramsay
and Ripley (2013)). For simplicity, we consider the simple version of m3 with A = 5 and
f = 1:

m4(x) = 5 sin(2πx), x ∈ [0, 1].

We let n = 500, and generate the errors in the same way as in Section 6.1. With 1000
repetitions, the simulation results are reported in Figures 7 and 8 which indicate that our

19



Wang, Yu, Lin, and Tong

−1.0 −0.5 0.0 0.5 1.0

−
5

0
5

10

(a) LowLAD (k=70)

1s
t d

er
iv

at
iv

e

−1.0 −0.5 0.0 0.5 1.0

−
5

0
5

10

(b) LowLSR (k=70)

1s
t d

er
iv

at
iv

e
−1.0 −0.5 0.0 0.5 1.0

−
5

0
5

10

(c) LowLAD (k=70)

1s
t d

er
iv

at
iv

e

−1.0 −0.5 0.0 0.5 1.0

−
5

0
5

10
(d) LowLSR (k=100)

1s
t d

er
iv

at
iv

e

Figure 3: (a-b) The true first-order derivative function (bold line), LowLAD (green line) and
LowLSR estimators (red line). Model (1) with equidistant xi ∈ [−1, 1], regression
function m1, and ε ∼ 90%N(0, 0.12) + 10%N(0, 12). (c-d) The same designs as in
(a-b) except ε ∼ 90%N(0, 0.12) + 10%N(0, 102).
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Figure 4: (a-d) The true first-order derivative function (bold line), LowLAD (green line)
and LowLSR estimators (red line). The same designs as in Figure 3 except the
regression function being m2.
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robust estimator is superior to the existing methods in the presence of sharp-peak and
heavy-tailed errors.

6.3. House Price of China in Latest Ten Years

In reality, there are many data sets recorded by year, month, week, day, hour, minute, etc.
For example, human growth is usually recorded by year, and temperature is recorded by
hour, day or month. In this section, we apply RLowLAD to the data set of house price
in two cities of China, i.e., Beijing and Jinan. We collect these monthly data from the
web: http://www.creprice.cn/ (see Figure 9), which last from January 2008 to July 2018
and have size 127. We analyze this date set in two steps. Firstly, we apply our method
to estimate the first-order derivative with k = 8 for RLowLAD and k = 6 for lower-order
RLowLAD, where the lower-order means that we conduct the Taylor expansion to order 2
instead of order 4. Secondly, we define the relative growth rate as the ratio between the
RLowLAD estimator and the house price at the same month, and then plot the relative
growth rates in Figures 10 and 11. In the last ten years, the house price goes through
tricycle fast increasing, and the monthly growth rate is larger than 0 most of the time with
the maximum value at about 0.05.

7. Conclusion and Extensions

In this paper, we propose a robust differenced method for estimating the first- and higher-
order derivatives of the regression function in nonparametric models. The new method
consists of two main steps: first construct a sequence of symmetric difference quotients, and
second estimate the derivatives using the LowLAD regression. The main contributions are
as follows:

(1) Unlike LAD, our proposed LowLAD has the unique property of double robustness (or
robustness2. Specifically, it is robust not only to heavy-tailed error distributions (like
LAD), but also to low density of the error term at a specific quantile (LAD needs a
high value of the error density at median; otherwise, the relative efficiency of LAD
can be arbitrarily small compared with LowLAD). Following Theorem 1, the asymp-
totic variance of the LowLAD estimator includes the term g(0) = 2

∫∞
−∞ f

2(x)dx =

2
∫∞
−∞ f(F−1 (τ))dτ , which implies that we are able to utilize the information of the

whole error density. While for the LAD estimator, its variance depends on a single
value f(0) only. In this sense, the LowLAD estimator is more robust than the LAD
estimator.

(2) Our proposed LowLAD does not require the error distribution to have a zero median,
and so is more flexible than LAD. To be more specific, our symmetric differenced
errors are guaranteed to have a zero median and a positive symmetric density in a
neighborhood of zero, regardless of whether or not the distribution of the original error
is symmetric. While for LAD, we must require the error distribution to have a zero
median, and consequently, the practical usefulness of LAD will be rather limited.

(3) More surprisingly, as an extension of LowLAD, our proposed RLowLAD based on ran-
dom difference is asymptotically equivalent to the infinitely composite quantile regres-
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sion (CQR) estimator. In other words, running one RLowLAD regression is equivalent
to combining infinitely many quantile regressions.

(4) Lastly, it is also worthwhile to mention that the differences between LowLAD and LAD
are strikingly distinct from the differences between LowLSR and LS. For the same data
and the same tuning parameter k, we have LS = LowLSR, whereas LAD 6= LowLAD.
What is more, RLowLAD is able to further improve the estimation efficiency compared
with LowLAD, while RLowLSR, the LS counterpart of RLowLAD, is not able to improve
efficiency relative to LowLSR.

LowLAD is a new idea to explore the information of density function by combining
first-order difference and LAD. We can adopt the third-order symmetric difference {(Yi+j−
Yi−j) + (Yi+l − Yi−l)} or the third-order random difference {(Yi+j + Yi+l)− (Yi+u + Yi+v)},
even higher-order difference, to explore the information of density function. Whether and
how to achieve the Cramer-Rao Lower bound deserves further study. These questions would
be investigated in a separate paper.

In this paper, we focus on the derivative estimation with fixed designs and iid errors.
With minor technical extensions, the proposed method can be extended to random designs
with heteroskedastic errors. Further extensions to linear model, high-dimensional model for
variable selection, semiparametric model, and change-point detection are also possible.
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Appendix A. Proof of Theorem 1

Proposition 11 If εi are iid with a continuous, positive density f(·) in a neighborhood of
the median, then ζ̃ij = (εi+j − εi−j)/2 (j=1,. . . , k) are iid with median 0 and a continuous,
positive, symmetric density g(·), where

g(x) = 2

∫ ∞
−∞

f(2x+ ε)f(ε)dε.

Proof of Proposition 11 The distribution of ζ̃ij = (εi+j − εi−j)/2 is

Fζ̃ij (x) = P ((εi+j − εi−j)/2 ≤ x)

=

∫∫
εi+j≤2x+εi−j

f(εi+j)f(εi−j)dεi+jdεi−j

=

∫ ∞
−∞
{
∫ 2x+εi−j

−∞
f(εi+j)dεi+j}f(εi−j)dεi−j

=

∫ ∞
−∞

F (2x+ εi−j)f(εi−j)dεi−j .

Then the density of ζ̃ij is

g(x) ,
dFζ̃ij (x)

dx
= 2

∫ ∞
−∞

f(2x+ εi−j)f(εi−j)dεi−j .

The density g(·) is symmetric due to

g(−x) = 2

∫ ∞
−∞

f(−2x+ εi−j)f(εi−j)dεi−j

= 2

∫ ∞
−∞

f(εi−j)f(εi−j + 2x)dεi−j

= g(x).

Therefore, we have

Fζ̃ij (0) =

∫ ∞
−∞

F (εi−j)f(εi−j)dεi−j =
1

2
F 2(εi−j) |∞−∞=

1

2
,

g(0) = 2

∫ ∞
−∞

f2(εi−j)dεi−j .

Proof of Theorem 1 Rewrite the objective function as

Sn (b) =
1

n

∑
j

fn

(
Ỹij |b

)
,
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where

fn

(
Ỹij |b

)
=
∣∣∣Ỹ (1)
ij − bi1dj − bi3d

3
j

∣∣∣ 1

h
1(0 < dj ≤ h)

with b = (bi1, bi3)
T and h = k/n. Define Xj =

(
dj , d

3
j

)T
and H =diag

{
h, h3

}
. Note that

arg min
b
Sn (b) = arg min

b
[Sn(b)− Sn (β)], where β =

(
m(1)(xi),m

(3)(xi)/6
)T

.

We first show that H
(
β̂ − β

)
= op(1), where β̂ = (β̂i1, β̂i3)

T . We use Lemma 4 of

Porter and Yu (2015) to show the consistency. Essentially, we need to show that

(i) sup
b∈B
|Sn (b)− Sn (β)− E [Sn (b)− Sn (β)]| p−→ 0,

(ii) inf
‖H(b−β)‖>δ

E [Sn (b)− Sn (β)] > ε for n large enough, where B is a compact parameter

space for β, and δ and ε are fixed positive small numbers.

We use Lemma 2.8 of Pakes and Pollard (1989) to show (i), where

Fn =
{
fn

(
Ỹ |b
)
− fn

(
Ỹ |β

)
: b ∈ B

}
.

Note that Fn is Euclidean (see, e.g., Definition 2.7 of Pakes and Pollard (1989) for the
definiton of an Euclidean-class of functions) by applying Lemma 2.13 of Pakes and Pollard
(1989), where α = 1, f(·, t0) = 0, φ(·) = ‖Xj‖ 1

h1(0 < dj ≤ h) and the envelope function
is Fn (·) = Mφ(·) for some finite constant M . Since E [Fn] = E

[
‖Xj‖ 1

h1(0 < dj ≤ h)
]

=
O (h) <∞, Lemma 2.8 of Pakes and Pollard (1989) implies

sup
b∈B
|Sn (b)− Sn (β)− E [Sn (b)− Sn (β)]| p−→ 0.

As to inf
‖H(b−β)‖>δ

E [Sn (b)− Sn (β)], by Proposition 1 of Wang and Scott (1994),

E [Sn (b)− Sn (β)]

.
=

1

n

∑
j

g(0)
[
XT
j H

−1H (b− β)
]2 1

h
1(0 < dj ≤ h)

− 1

n

∑
j

2g(0)

[
m (di+j)−m(di−j)

2
−XT

j β

] [
XT
j H

−1H (b− β)
] 1

h
1(0 < dj ≤ h)

&δ2 − h5δ,

where
.
= means that the higher-order terms are omitted, and & means the left side is

bounded blow by a constant times the right side.

We then derive the asymptotic distribution of
√
nhH

(
β̂ − β

)
by applying the empirical

process technique. First, the first order conditions can be written as

1

n

∑
j

sign
(
Ỹ

(1)
ij − Z

T
j Hβ̂

)
Zj

√
h

h
1(0 < dj ≤ h) = op (1) ,
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which is denoted as
1

n

∑
j

f ′n(Ỹ
(1)
ij |β̂) , S′n

(
β̂
)

= op (1) ,

where Zj = H−1Xj . By Example 2.9 of Pakes and Pollard (1989), F ′n forms an Euclidean-

class of functions with envelope F ′n = ‖Zj‖
√
h
h 1(0 < dj ≤ h), where F ′n =

{
f ′n(Ỹ

(1)
ij |b) : b ∈ B

}
,

and E
[
F ′2n
]
<∞. So by Lemma 2.17 of Pakes and Pollard (1989) and H

(
β̂ − β

)
= op(1),

Gn

(
f ′n(Ỹ

(1)
ij |β̂)

)
= Gn

(
f ′n(Ỹ

(1)
ij |β)

)
+ op(1),

where Gn (f) =
√
n (Pn − P ) f is the standardized empirical process, and Pn is the empirical

measure of the original data. Since

√
n
∑
j

(
E
[
f ′n(Ỹ

(1)
ij |β̂)

]
− E

[
f ′n(Ỹ

(1)
ij |β)

])
.
= −
√
nh

2g(0)

nh

∑
j

ZjZ
T
j H

(
β̂ − β

)
,

and

1

nh

∑
j

sign
(
Ỹ

(1)
ij − Z

T
j Hβ

)
Zj1(0 < dj ≤ h)

− 1

nh

∑
j

sign

(
Ỹ

(1)
ij −

m (di+j)−m(di−j)

2

)
Zj1(0 < dj ≤ h)

.
=

2g(0)

nh

∑
j

Zjd
5
j

m(5)(xi)

5!
,

we have

√
nh

H (β̂ − β)−
 1

nh

∑
j

ZjZ
T
j

−1 1

nh

∑
j

Zjd
5
j

m(5)(xi)

5!


.
=

1

2g(0)

 1

nh

∑
j

ZjZ
T
j

−1 1√
nh

∑
j

sign
(
ζ̃
(1)
ij

)
Zj1(0 < dj ≤ h).

In other words,

2g(0)Vk

β̂ − β − V −2k

k∑
j=1

Xjd
5
j

m(5)(xi)

5!

 .
= V −1k

k∑
j=1

sign
(
ζ̃
(1)
ij

)
Xj ,

where Vk = (
∑k

j=1XjX
T
j )1/2 is a symmetric positive definite matrix. By Cramér-Wold

device and Lyapunov CLT, we complete the proof of asymptotic normality.

The bias of β̂i1 is

Bias[β̂i1]
.
= [1, 0]

∑
j

XjX
T
j

−1 k∑
j=1

Xjd
5
j

m(5)(xi)

5!
= −m

(5)(xi)

504

k4

n4
.
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and the variance is

Var[β̂i1]
.
=

1

4g(0)2
[1, 0]

∑
j

XjX
T
j

−1 [ 1
0

]
≈ 75

16g(0)2
n2

k3
.

Combining the squared bias and the variance, we obtain the AMSE

AMSE[β̂i1] =
m(5)(xi)

2

5042
k8

n8
+

75

16g(0)2
n2

k3
. (17)

To minimize (17) with respect to k, we take the first-order derivative of (17) and yield the
gradient as

dAMSE[β̂i1]

dk
=
m(5)(xi)

2

31752

k7

n8
− 225

16g(0)2
n2

k4
.

Our optimization problem is to solve dAMSE[β̂i1]
dk = 0. So we obtain

kopt =

(
893025

2g(0)2m(5)(xi)2

)1/11

n10/11 ≈ 3.26

(
1

g(0)2m(5)(xi)2

)1/11

n10/11,

and

AMSE[β̂i1] ≈ 0.19(m(5)(xi)
6/g(0)16)1/11n−8/11.

Appendix B. Proof of Theorem 2

Rewrite the objective function as a U-process,

Sn (b) =
∑
l<j

fn (Yi+j , Yi+l|b) ,

where

fn (Yi+j , Yi+l|b) =
∣∣Yi+j − Yi+l − b1(dj − dl)− bi2(d2j − d2l )− b3(d3j − d3l )− b4(d4j − d4l )∣∣
· 1

h2
1(0 < |dj | ≤ h)1(0 < |dl| ≤ h)

with b = (bi1, bi2, bi3, bi4)
T and h = k/n. Define Un = 2

n(n−1)Sn (b), H =diag
{
h, h2, h3, h4

}
and Xjl =

(
dj − dl, d2j − d2l , d3j − d3l , d4j − d4l

)T
. Note that arg min

b
Sn (b) = arg min

b
Un(b) =

arg min
b

[Un(b)− Un (β)], where β =
(
m(1)(xi),m

(2)(xi)/2!,m(3)(xi)/3!,m(4)(xi)/4!
)T

.

We first show thatH
(
β̂ − β

)
= op(1), where β̂ = (β̂RLowLAD

i1 , β̂RLowLAD
i2 , β̂RLowLAD

i3 , β̂RLowLAD
i4 )T .

We use Lemma 4 of Porter and Yu (2015) to show the consistency. Essentially, we need to
show that

(i) sup
b∈B
|Un (b)− Un (β)− E [Un (b)− Un (β)]| p−→ 0,
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(ii) inf
‖H(b−β)‖>δ

E [Un (b)− Un (β)] > ε for n large enough, where B is a compact parameter

space for β, and δ and ε are fixed positive small numbers.

We use Theorem A.2 of Ghosal et al. (2000) to show (i), where

Fn = {fn (Yi+j , Yi+l|b)− fn (Yi+j , Yi+l|β) : b ∈ B} .

Note that Fn forms an Euclidean-class of functions by applying Lemma 2.13 of Pakes and
Pollard (1989), where α = 1, f(·, t0) = 0, φ(·) = ‖Xjl‖ 1

h2
1(|dj | ≤ h)1(|dl| ≤ h) and the

envelope function is Fn (·) = Mφ(·) for some finite constant M . It follows that

N
(
ε ‖Fn‖Q,2 ,Fn, L2 (Q)

)
. ε−C

for any probability measure Q and some positive constant C, where . means the left side
is bounded by a constant times the right side. Hence,

1

n
E

[∫ ∞
0

logN (ε,Fn, L2 (Un2 )) dε

]
.

1

n

√
E [F 2

n ]

∫ ∞
0

log
1

ε
dε = O

(
1

n

)
,

where Un2 is the random discrete measure putting mass 1
n(n−1) on each of the points

(Yi+j , Yi+l). Next, by Lemma A.2 of Ghosal et al. (2000), the projections

fn (Yi+j |b) =

∫
fn (Yi+j , Yi+l|b) dFYi+l(Yi+l)

satisfy

sup
Q
N
(
ε
∥∥Fn∥∥Q,2 ,Fn, L2 (Q)

)
. ε−2C ,

where Fn =
{
fn (Yi+j |b)− fn (Yi+j |β) : b ∈ B

}
, and Fn is an envelope of Fn. Thus

1√
n

E

[∫ ∞
0

logN
(
ε,Fn, L2 (Pn)

)
dε

]
.

1√
n

√
E
[
F

2
n

] ∫ ∞
0

log
1

ε
dε = O

(
1√
n

)
.

By Theorem A.2 and Markov’s inequality, sup
b∈B
|Un (b)− Un (β)− E [Un (b)− Un (β)]| p−→ 0.

As to inf
‖H(b−β)‖>δ

E [Un (b)− Un (β)], by Proposition 1 of Wang and Scott (1994),

E [Un (b)− Un (β)]

.
=

2

n(n− 1)

∑
l<j

g(0)

2

[
XT
jlH

−1H (b− β)
]2 1

h2
1(0 < |dj | ≤ h)1(0 < |dl| ≤ h)

− 2

n(n− 1)

∑
l<j

g(0)
[
m (di+j)−m(di+l)−XT

jlβ
] [
XT
jlH

−1H (b− β)
]

1

h2
1(0 < |dj | ≤ h)1(0 < |dl| ≤ h)

&δ2 − h5δ.
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We then derive the asymptotic distribution of
√
nhH

(
β̂ − β

)
. First, by Theorem A.1

of Ghosal et al. (2000), we approximate the first order conditions by an empirical process.

Second, we derive the asymptotic distribution of
√
nhH

(
β̂ − β

)
by applying the empirical

process technique.

First, the first order conditions can be written as

2

n(n− 1)

∑
l<j

sign
(
Yi+j − Yi+l − ZTjlHβ̂

)
Zjl

√
h

h2
1(0 < |dj | ≤ h)1(0 < |dl| ≤ h) = op (1) ,

which is denoted as

2

n(n− 1)

∑
l<j

f ′n(Yi+j , Yi+l|β̂) ,
2

n(n− 1)
S′n

(
β̂
)

= op (1) ,

where Zjl = H−1Xjl. By Example 2.9 of Pakes and Pollard (1989), F ′n forms an Euclidean-

class of functions with envelope F ′n = ‖Zjl‖
√
h

h2
1(|dj | ≤ h)1(|dl| ≤ h), where

F ′n =
{
f ′n(Yi+j , Yi+l|b) : b ∈ B

}
,

so

N
(
ε
∥∥F ′n∥∥Q,2 ,F ′n, L2 (Q)

)
. ε−V

for any probability measure Q and some positive constant V . By Theorem A.1 and the
discussion following Theorem A.1 and A.2 in Ghosal et al. (2000), it follows that

nE

[
sup
f ′n∈F ′n

∣∣Un2 f ′n − 2Pn
[
E2

[
f ′n(Yi+j , Yi+l|b)

]]
− E

[
f ′n(Yi+j , Yi+l|b)

]∣∣]

.E

[∫ ∞
0

logN
(
ε,F ′n, L2 (Un2 )

)
dε

]
.
∫ 1

0
log
(
ε−V

)
dε

√
E
[
(F ′n)2

]
. h−1/2,

where E2 [·] takes expectation on Yi+l and also averages over dl, and E [·] takes expectation
on (Yi+j , Yi+l) and also averages over (dj , dl). As a result,

√
n sup
f ′n∈F ′n

∣∣Un2 f ′n − 2Pn
[
E2 [·]

[
f ′n(Yi+j , Yi+l|b)

]]
+ E

[
f ′n(Yi+j , Yi+l|b)

]∣∣ = op(1),

which implies

√
n
(

2Pn

[
E2

[
f ′n(Yi+j , Yi+l|β̂)

]]
− E

[
f ′n(Yi+j , Yi+l|β̂)

])
= op(1),

where

E2

[
f ′n(Yi+j , Yi+l|b)

]
=

√
h

nh2

∑
l

[
2Fε

(
Yi+j −m(di+l)− ZTjlHb

)
− 1
]
Zjl1(0 < |dj | ≤ h)1(0 < |dl| ≤ h)
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with Fε (·) being the cumulative distribution function of ε. In other words,

2Gn

(
E2

[
f ′n(Yi+j , Yi+l|β̂)

])
+
√
nE
[
f ′n(Yi+j , Yi+l|β̂)

]
= op(1).

By Lemma 2.13 of Pakes and Pollard (1989), F ′1n =
{
E2 [f ′n(Yi+j , Yi+l|b)] : b ∈ B

}
is Eu-

clidean with envelope F1n =
√
h

nh2
∑
l

‖Zjl‖ 1(0 < |dj | ≤ h)1(0 < |dl| ≤ h), so by Lemma 2.17

of Pakes and Pollard (1989) and H
(
β̂ − β

)
= op(1),

Gn

(
E2

[
f ′n(Yi+j , Yi+l|β̂)

])
= Gn

(
E2

[
f ′n(Yi+j , Yi+l|β)

])
+ op(1).

As a result,

2Gn

(
E2

[
f ′n(Yi+j , Yi+l|β)

])
+
√
nE
[
f ′n(Yi+j , Yi+l|β̂)

]
=2
√
nPn

(
E2

[
f ′n(Yi+j , Yi+l|β)

])
− 2
√
nE
[
f ′n(Yi+j , Yi+l|β)

]
+
√
n
(
E
[
f ′n(Yi+j , Yi+l|β̂)

]
− E

[
f ′n(Yi+j , Yi+l|β)

])
+
√
nE
[
f ′n(Yi+j , Yi+l|β)

]
=2
√
nPnE2

[
f ′n(Yi+j , Yi+l)

]
+ 2
√
nPn

(
E2

[
f ′n(Yi+j , Yi+l|β)

]
− E2

[
f ′n(Yi+j , Yi+l)

])
+
√
n
(
E
[
f ′n(Yi+j , Yi+l|β̂)

]
− E

[
f ′n(Yi+j , Yi+l|β)

])
−
√
nE
[
f ′n(Yi+j , Yi+l|β)

]
=2
√
nPnE2

[
f ′n(Yi+j , Yi+l)

]
+
√
n
(
E
[
f ′n(Yi+j , Yi+l|β̂)

]
− E

[
f ′n(Yi+j , Yi+l|β)

])
+
√
nE
[
f ′n(Yi+j , Yi+l|β)

]
=op(1),

where

E2

[
f ′n(Yi+j , Yi+l)

]
=

√
h

nh2

∑
l

[2Fε (εi+j)− 1]Zjl1(0 < |dj | ≤ h)1(0 < |dl| ≤ h)

satisfies E
[
E2 [f ′n(Yi+j , Yi+l)]

]
= 0, and the second to last equality is from

√
nPn

(
E2

[
f ′n(Yi+j , Yi+l|β)

]
− E2

[
f ′n(Yi+j , Yi+l)

]) .
=
√
nE
[
f ′n(Yi+j , Yi+l|β)

]
.

Since

E
[
f ′n(Yi+j , Yi+l|b)

]
=

√
h

n2h2

∑
l,j

Zjl1(0 < |dj | ≤ h)1(0 < |dl| ≤ h)

·
[
2

∫
Fε
(
ε+m(di+j)−m(di+l)− ZTjlHb

)
− 1

]
f (ε) dε,

we have

√
n
(
E
[
f ′n(Yi+j , Yi+l|β̂)

]
− E

[
f ′n(Yi+j , Yi+l|β)

]) .
=−
√
nhg(0)

 1

n2h2

∑
l,j

ZjlZ
T
jl

H
(
β̂ − β

)
,

√
nE
[
f ′n(Yi+j , Yi+l|β)

] .
=
√
nhg(0)

1

n2h2

∑
l,j

Zjl
(
d5j − d5l

) m(5)(xi)

5!
.
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In summary,

√
nh

H (β̂ − β)−
 1

n2h2

∑
l,j

ZjlZ
T
jl

−1 1

n2h2

∑
l,j

Zjl
(
d5j − d5l

) m(5)(xi)

5!


.
=2g(0)−1

 1

n2h2

∑
l,j

ZjlZ
T
jl

−1√nPnE2

[
f ′n(Yi+j , Yi+l)

]
,

Thus, the asymptotic bias is

eTH−1

 1

n2h2

∑
l,j

ZjlZ
T
jl

−1 1

n2h2

∑
l,j

Zjl
(
d5j − d5l

) m(5)(xi)

5!
= −m

(5)(xi)

504

k4

n4
,

and the asymptotic variance is

4

kg(0)2
eTH−1G−1V G−1H−1e =

75

24g(0)2
n2

k3
,

where e = (1, 0, 0, 0)T , G = 1
k2
∑

l,j ZjlZ
T
jl , and V = 1

3k

∑k
j=−k(

1
k

∑k
l=−k Zjl)(

1
k

∑k
l=−k Zjl)

T

with Var (2Fε (εi+j)− 1) = 1/3.

Appendix C. Proof of Theorem 9

Proof of Theorem 9 Following the proof of Theorem 1, the leading term of the bias is

Bias[β̂i11] =
m(2)(xi)

2

k4 + 2k3i− 2ki3 − i3

n(k3 + 3k2i+ 3ki2 + i3)
,

and the leading term of the variance is

Var[β̂i11] =
3

f(0)2
n2

k3 + 3k2i+ 3ki2 + i3
.

Appendix D. Proof of Theorem 10

Proposition 12 If the errors εi are iid with a symmetric (about 0), continuous, positive
density function f(·), then δ̃ij = εi+j + εi−j (j=1, . . . , k) are iid with Median[δ̃ij ] = 0 and
a continuous, positive density h(·) in a neighborhood of 0, where

h(x) =

∫ ∞
−∞

f(x− ε)f(ε)dε.
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Proof of Proposition 12 The distribution of δ̃ij = εi+j + εi−j is

Fδ̃ij (x) =P (εi+j + εi−j ≤ x)

=

∫∫
εi+j≤x−εi−j

f(εi+j)f(εi−j)dεi+jdεi−j

=

∫ ∞
−∞
{
∫ x−εi−j

−∞
f(εi+j)dεi+j}f(εi−j)dεi−j

=

∫ ∞
−∞

F (x− εi−j)f(εi−j)dεi−j .

Then the density of δ̃ij is

h(x) ,
dFδ̃ij (x)

dx
=

∫ ∞
−∞

f(x− εi−j)f(εi−j)dεi−j .

By the symmetry of the density function, we have

Fδ̃ij (0) =

∫ ∞
−∞

F (−εi−j)f(εi−j)dεi−j

=

∫ ∞
−∞

(1− F (εi−j))f(εi−j)dεi−j

=(F − 1

2
F 2(εi−j)) |∞−∞

=
1

2
,

h(0) =

∫ ∞
−∞

f2(εi−j)dεi−j .

Proof of Theorem 10 Following the proof of Theorem 1, the asymptotic bias is

Bias[α̂i2] = −m
(6)(xi)

792

k4

n4
+ o

(
k4

n4

)
,

and the asymptotic variance of α̂i1 is

Var[α̂i2] =
2205

64h(0)2
n4

k5
+ o

(
n4

k5

)
.

Combining the squared bias and the variance, we obtain the AMSE as

AMSE[α̂i2] =
m(6)(xi)

2

7922
k8

n8
+

2205

64h(0)2
n4

k5
. (18)
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To minimize (18) with respect to k, we take the first-order derivative of (18) and yield the
gradient as

dAMSE[α̂i2]

dk
=
m(6)(xi)

2

78408

k7

n8
− 11025

16h(0)2
n4

k6
.

Now the optimization problem is to solve dAMSE[α̂i2]
dk = 0. So we obtain

kopt =

(
108056025

8h(0)2m(6)(xi)2

)1/13

n12/13 ≈ 3.54

(
1

h(0)2m(6)(xi)2

)1/13

n12/13,

and

AMSE[α̂i2] ≈ 0.29(m(6)(xi)
10/h(0)16)1/13n−8/13.

Appendix E. Variance Ratios for Popular Distributions

Variance Ratios for Eight Error Distributions

In this subsection, we investigate the variance ratio of the RLowLAD estimator with respect
to the LowLSR and LAD estimators for eight error distributions.

From the main text,

RLowLSR(f) = 3σ2g(0)2, RLAD(f) =
3g(0)2

4f(0)2
.

Example 1: Normal distribution. The error density function is f(ε) = 1√
2π

exp(−ε2/2),

which implies

f(0) =
1√
2π
, g(0) = 2

∫ ∞
−∞

1

2π
e−ε

2
dε =

1√
π
.

Due to σ2 = 1, we have

RLowLSR(f) = 3/π ≈ 0.95, RLAD(f) = 1.50.

In other words, the RLowLAD estimator is almost as efficient as the LowLSR estimator for
the normal distribution.

Example 2: Mixed normal distribution. The error density function is

f(ε;α, σ0) = (1− α)
1√
2π
e−ε

2/2 + α
1√

2πσ0
e−ε

2/(2σ2
0)
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with 0 < α ≤ 1/2 and σ0 > 1, which implies

f(0;α, σ0) =(1− α)
1√
2π

+ α
1√

2πσ0
,

g(0;α, σ0) =2

∫ ∞
−∞

f2(ε)dε

=2

{
(1− α)2

∫ ∞
−∞

1

2π
e−ε

2
dε+ 2α(1− α)

∫ ∞
−∞

1

2πσ0
e
−( ε

2

2
+ ε2

2σ21
)
dε

+α2

∫ ∞
−∞

1

2πσ20
e
− x

2

σ20 dε

}

=2

{
(1− α)2

1

2
√
π

+ 2α(1− α)
1

√
2π
√

1 + σ20
+ α2 1

2
√
πσ0

}
,

Var(εi) =(1− α) + ασ20 , σ2.

Thus,

RLowLSR(α, σ0) =12
{

(1− α) + ασ20
}{

(1− α)2
1

2
√
π

+ 2α(1− α)
1

√
2π
√

1 + σ20
+ α2 1

2
√
πσ0

}2

,

RLAD(α, σ0) =

3

{
(1− α)2 1

2
√
π

+ 2α(1− α) 1√
2π
√

1+σ2
0

+ α2 1
2
√
πσ0

}2

{
(1− α) 1√

2π
+ α 1√

2πσ0

}2 .

In particular,

RLowLSR(0.1, 3) ≈1.80, RLowLSR(0.1, 10) ≈ 10.90,

RLAD(0.1, 3) ≈1.38, RLAD(0.1, 10) ≈ 1.27.

Example 3: t distribution. The error density function is

f(ε; ν) =
Γ((ν + 1)/2)√
νπΓ(ν/2)

(
1 +

ε2

ν

)−(ν+1)/2)

with the degree of freedom ν > 2, which implies

f(0) =
Γ((ν + 1)/2)√
νπΓ(ν/2)

,

g(0) =2

∫ ∞
−∞

1

νπ

(
Γ((ν + 1)/2)

Γ(ν/2)

)2(
1 +

ε2

ν

)−(ν+1)

dε =
2√
νπ

(
Γ((ν + 1)/2)

Γ(ν/2)

)2 Γ(ν + 1/2)

Γ(ν + 1)
.

Due to σ2 = ν/(ν − 2), we have

RLowLSR(ν) =
12

(ν − 2)π

(
Γ((ν + 1)/2)

Γ(ν/2)

)4(Γ(ν + 1/2)

Γ(ν + 1)

)2

,

RLAD(ν) =3

(
Γ((ν + 1)/2)

Γ(ν/2)

)2(Γ(ν + 1/2)

Γ(ν + 1)

)2

.
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For ν = 3,

RLowLSR(3) = 75/(4π2) ≈ 1.90, RLAD(3) = 75/64 ≈ 1.17.

Example 4: Laplace (double exponential) distribution. The error density function is
f(ε) = 1

2 exp(−|ε|), which implies

f(0) =
1

2
, g(0) = 2

∫ ∞
−∞

1

4
e−2|ε|dε =

1

2
.

Due to σ2 = 2, we have

RLowLSR(f) = 1.50, RLAD(f) = 0.75.

Example 5: Logistic distribution. The error density function is f(ε) = exp(ε)/(exp(ε) +
1)2, which implies

f(0) =
1

4
, g(0) = 2

∫ ∞
−∞

e2ε

(exp(ε) + 1)4
dε =

1

3
.

Due to σ2 = π2/3, we have

RLowLSR(f) = π2/9 ≈ 1.10, RLAD(f) = 4/3 ≈ 1.33.

Example 6: Cauchy distribution. The error density function is f(ε) = 1/(π(1 + ε2)),
which implies

f(0) =
1

π
, g(0) =

1

π
, Var(ε) =∞.

Thus,

RLowLSR(f) =∞, RLAD(f) = 0.75.

Example 7: Mixed double Gamma distribution. The error density function is

f(ε;α, k) = (1− α)
1

2
e−|ε| + α

1

2Γ(k + 1)
|ε|ke−|ε|

with parameter k > 0 and the mixed ratio α, which implies

f(0;α, k) =
1− α

2
+

α

2Γ(k + 1)
,

g(0;α, k) =2

∫ ∞
−∞

f2(ε;α, k)dε

=

∫ ∞
−∞

(1− α)2

2
e−2|ε| +

(1− α)α

Γ(k + 1)
|ε|ke−2|ε| + α2

2Γ(k + 1)2
|ε|2ke−2|ε|dε

=
(1− α)2

2
+
α(1− α)

2k
+

α2Γ(2k + 1)

22k+1Γ2(k + 1)
,

Var(ε|α, k) =1 + αk.
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Thus,

RLowLSR(α, k) =3(1 + αk)

{
(1− α)2

2
+
α(1− α)

2k
+

α2Γ(2k + 1)

22k+1Γ2(k + 1)

}
,

RLAD(α, k) = 3

{
(1− α)2

2
+
α(1− α)

2k
+

α2Γ(2k + 1)

22k+1Γ2(k + 1)

}2
/{

4

(
1− α

2
+

α

2Γ(k + 1)

)2
}
.

In particular,

RLowLSR(0.1, 3) ≈1.63, RLowLSR(0.1, 10) ≈ 2.44,

RLAD(0.1, 3) ≈0.68, RLAD(0.1, 10) ≈ 0.68.

Example 8: Bimodal distribution (mixed normal distribution with different locations).
The error density function is

f(ε;µ) = 0.5
1√
2π
e−(ε−µ)

2/2 + 0.5
1√
2π
e−(ε+µ)

2/2

with µ > 0, which implies

f(0;µ) =
e−µ

2

√
2π
, g(0;µ) =

1 + e−µ
2

2
√
π

, σ2 = 1 + µ2.

Thus,

RLowLSR(µ) = 3(1 + µ2)
1 + e−µ

2

2
√
π

, RLAD(µ) = 3

(
1 + e−µ

2

2
√
π

)2/4

(
e−µ

2

√
2π

)2
 .

In particular,

RLowLSR(1) ≈0.89, RLowLSR(3) ≈ 2.39,

RLAD(1) ≈5.18, RLAD(3) ≈ 2.46× 107.

Variance Ratio Functions for Three Error Distributions

To further illustrate the trade-off between the sharp-peak and heavy-tailed errors, we con-
sider three of the above examples: Examples 2, 3, and 8.

For the mixed normal distribution, we list in Table 4 the critical value of σ0 such that
the LowLAD (or RLowLAD) and LowLSR estimators have the same variance. When σ0 is
smaller than the critical value, the LowLAD (or RLowLAD) estimator is more efficient than
the LowLSR estimator. The overall comparison curve is given in Figure 12. Since LowLAD
and RLowLAD have a close relationship, we consider only RLowLAD in the following
comparisons. Another critical σ0 curve comparing RLowLAD and LAD is provided in
Figure 13. When σ0 is larger than the critical value, the RLowLAD estimator is more
efficient than the LAD estimator.

For the t(ν) distribution, the variance ratio function between LowLSR and RLowLAD
is shown in Figure 14. We see that the ratio between LowLSR and RLowLAD is greater
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than 1 for small degrees of freedom (from 3 to 18). As ν increases, the ratio converges
to 3/π ≈ 0.95. This phenomenon is expected because the T distribution converges to the
normal distribution as ν → ∞, and the variance ratio for the normal distribution is 0.95.
Figure 15 shows the ratio between LAD and RLowLAD, where we see that this ratio is
greater than 1 for all degrees of freedom. As ν increases, the ratio converges to 1.50. This
is expected from the stirling formula Γ(ν) =

√
2πe−ννν−1/2, which implies RLAD(f)→ 1.50

as ν →∞.

For the bimodal distribution, the variance ratio function between LowLSR and RLowLAD
is given in Figure 16. As µ increases, the ratio becomes smaller and achieves the minimum
value 0.89 at point 1.12, and then becomes larger and tends to ∞. The variance ratio func-
tion between LAD and RLowLAD is shown in Figure 17. As µ increases, the ratio diverges
fast to ∞.

Appendix F. One Key Difference between LS and LAD Methods

For the LS method, the LS estimator and the LowLSR estimator are asymptotically equiv-
alent; while for the LAD method, the asymptotic variances of the LAD estimator and the
LowLAD estimator are very different, although their asymptotic biases are the same. To
understand this discrepancy, we show that the objective functions of the LS and LowLSR
estimation are asymptotically equivalent while those of the LAD and LowLAD estimation
are not. Note that the objective function of the LowLSR estimation is equivalent to

4
∑k

j=1

(
Ỹ

(1)
ij − αi1dj − αi3d3j

)2
=
∑k

j=1

(
Yi+j − Yi−j − 2αi1dj − 2αi3d

3
j

)2
=
∑k

j=1

(
Yi+j − Yi−j − (αi0 − αi0)− αi1 (dj − d−j)− αi2

(
d2j − d2−j

)
− αi3

(
d3j − d3−j

)
− αi4

(
d4j − d4−j

))2
=
∑k

j=1

(
Yi+j − αi0 − αi1dj − αi2d2j − αi3d3j − αi4d4j

)2
+
∑k

j=1

(
Yi−j − αi0 − αi1d−j − αi2d2−j − αi3d3−j − αi4d4−j

)2
−2
∑k

j=1

(
Yi+j − αi0 − αi1dj − αi2d2j − αi3d3j − αi4d4j

)(
Yi−j − αi0 − αi1d−j − αi2d2−j − αi3d3−j − αi4d4−j

)
,

where d−j = −j/n. It can be shown that the cross term in the last equality is a higher-order
term and is negligible, and the first two terms constitute exactly the objective function of
the least squares estimation. More specifically, we can show that

m̂
(1)
LS (xi)−m(1)(xi)− Bias

.
= (0, 1, 0, 0, 0)

(∑k

j=−k
XjX

′
j

)−1∑k

j=−k
Xjεi+j

=
∑k

j=−k
Djεi+j

with Xj =
(

1, dj , d
2
j , d

3
j , d

4
j

)T
and

Dj = n
j(75k4 + 150k3 − 75k + 25)− j3

(
105k2 + 105k − 35

)
k(8k6 + 28k5 + 14k4 − 35k3 − 28k2 + 7k + 6)

= −D−j ,
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and
m̂

(1)
LowLSR(xi)−m(1)(xi)− Bias

.
= (1, 0)

[(
0 1 0 0 0
0 0 0 1 0

)(∑k
j=1XjX

′
j

)( 0 1 0 0 0
0 0 0 1 0

)T]−1
·
(

0 1 0 0 0
0 0 0 1 0

)∑k
j=1Xj

εi+j−εi−j
2

=
∑k

j=1 2Dj
εi+j−εi−j

2 =
∑k

j=−kDjεi+j .

The influence functions of m̂
(1)
LS (xi) and m̂

(1)
LowLSR(xi) are exactly the same, so the contribu-

tion of the cross term is null.
On the contrary, the objective function of the LowLAD estimator is equivalent to

2
∑k

j=1

∣∣∣Ỹ (1)
ij − βi1dj − βi3d3j

∣∣∣
=
∑k

j=1

∣∣∣Yi+j − Yi−j − (βi0 − βi0)− βi1 (dj − d−j)− βi2
(
d2j − d2−j

)
− βi3

(
d3j − d3−j

)
− βi4

(
d4j − d4−j

)∣∣∣
=
∑k

j=1

∣∣∣Yi+j − βi0 − βi1dj − βi2d2j − βi3d3j − βi4d4j ∣∣∣+
∑k

j=1

∣∣∣Yi−j − βi0 − βi1d−j − βi2d2−j − βi3d3−j − βi4d4−j∣∣∣
+ extra term,

where the extra term is equal to

−2 max

(
sign

(
Yi+j − βi0 − βi1dj − βi2d2j − βi3d3j − βi4d4j

)
·sign

(
Yi−j − βi0 − βi1d−j − βi2d2−j − βi3d3−j − βi4d4−j

)
, 0

)
·min

(∣∣∣Yi+j − βi0 − βi1dj − βi2d2j − βi3d3j − βi4d4j ∣∣∣ , ∣∣∣Yi−j − βi0 − βi1d−j − βi2d2−j − βi3d3−j − βi4d4−j∣∣∣) ,

and cannot be neglected, where sign(x) = 1 if x > 0 and sign(x) = −1 if x < 0. More
specifically, we can show that

m̂
(1)
LAD(xi)−m(1)(xi)− Bias

.
= (0, 1, 0, 0, 0)

(
2f(0)

∑k
j=−kXjX

′
j

)−1∑k
j=−kXjsign (εi+j)

= 1
2f(0)

∑k
j=−kDjsign (εi+j) = 1

f(0)

∑k
j=1Dj

sign(εi+j)−sign(εi−j)
2 ,

and

m̂
(1)
LowLAD(xi)−m(1)(xi)− Bias

.
= (1, 0)

[
2g(0)

(
0 1 0 0 0
0 0 0 1 0

)(∑k
j=1XjX

′
j

)( 0 1 0 0 0
0 0 0 1 0

)T]−1
·
(

0 1 0 0 0
0 0 0 1 0

)∑k
j=1Xjsign

(
εi+j−εi−j

2

)
= 1

g(0)

∑k
j=1Djsign

(
εi+j−εi−j

2

)
.

So the contribution of the extra term to the influence function is

Dj

[
sign

(
εi+j−εi−j

2

)
g(0) − sign(εi+j)−sign(εi−j)

2f(0)

]
=

Dj
g(0)

{
sign (εi+j − εi−j) , if εi+jεi−j > 0,(

1− g(0)
f(0)

)
sign (εi+j) , if εi+jεi−j < 0,
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which is not null, where we neglect the event that εi+jεi−j = 0 because the probability of
such an event is zero.
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Figure 5: (a)-(d) The true second-order derivative function (bold line), LowLAD (green
line) and LowLSR estimators (red line) based on the simulated data set from
Figure 3.
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Figure 6: (a)-(d) The true second-order derivative function (bold line), LowLAD (green
line) and LowLSR estimators (red line) based on the simulated data set from
Figure 4.
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Figure 7: Boxplot of four estimators for the function m4 with ε ∼ 95%N(0, 0.12) +
5%N(0, 12).
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Figure 8: Boxplot of four estimators for the function m4 with ε ∼ 95%N(0, 0.12) +
5%N(0, 102).
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Figure 9: Black and green points denote the house prices in Beijing and Jinan, respectively.

α 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009
σLowLAD
0 24.04 17.10 14.04 12.22 10.99 10.09 9.38 8.82 8.36

σRLowLAD
0 7.19 5.27 4.44 3.95 3.62 3.38 3.20 3.05 2.93

α 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

σLowLAD
0 7.96 5.88 4.99 4.47 4.12 3.87 3.69 3.54 3.42

σRLowLAD
0 2.83 2.29 2.06 1.92 1.83 1.76 1.71 1.67 1.64

α 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50
σLowLAD
0 3.32 3.01 2.86 2.79 2.77 2.78 2.83 2.92 3.05

σRLowLAD
0 1.61 1.52 1.48 1.45 1.43 1.42 1.42 1.42 1.43

Table 4: The critical values of σ0 that equate the variances of the LowLAD (RLowLAD)
and LowLSR derivative estimators with different contaminations.

45



Wang, Yu, Lin, and Tong

Figure 10: Black and green curves denote the relative growth rates for Beijing and Jinan,
respectively. Relative growth rate is defined as RLowLAD/Price.

Figure 11: Black and green curves denote the relative growth rates based on the lower-order
RLowLAD estimator.
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Figure 12: The red line is the critical σ0 curve between LowLSR and LowLAD with εi ∼
(1− α)N(0, 1) + αN(0, σ20), and the red horizontal line is σ0 = 2.77; The green
line is the critical σ0 curve between LowLSR and RLowLAD, and the green
horizontal line is σ0 = 1.42; the black line is σ0 = 1.

Figure 13: The red line is the critical σ0 curve between RLowLAD and LAD with the same
error distribution as in Figure 12, where the ratio larger than 20 is truncated at
20, the green horizontal line is σ0 = 3.28, and the black line is σ0 = 1.
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Figure 14: The red point-curve is the variance ratio function between LowLSR and
RLowLAD for t(ν) with different ν’s; the green horizontal line is Ratio = 0.95.

Figure 15: The red point-curve is the variance ratio function between LAD and RLowLAD
estimators for (ν) with different ν’s; and the green horizontal line isRatio = 1.50.
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Figure 16: The red curve is the variance ratio function between LowLSR and RLowLAD
for εi ∼ 0.5N(µ, 1) + 0.5N(−µ, 1) with different µ’s; the green horizontal line is
Ratio = 0.89.

Figure 17: The red curve is the variance ratio function between RLowLAD and LAD for the
same error distribution as in Figure 16; the green horizontal line is Ratio = 1.50.
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