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a b s t r a c t

The existing differenced estimators of error variance in nonparametric regression are in-
terpreted as kernel estimators, and some requirements for a ‘‘good’’ estimator of error vari-
ance are specified. A new differenced method is then proposed that estimates the errors as
the intercepts in a sequence of simple linear regressions and constructs a variance estima-
tor based on estimated errors. The new estimator satisfies the requirements for a ‘‘good’’
estimator and achieves the asymptotically optimal mean square error. A feasible differ-
ence order is also derived, which makes the estimator more applicable. To improve the
finite-sample performance, two bias-corrected versions are further proposed. All three es-
timators are equivalent to some local polynomial estimators and thus can be interpreted as
kernel estimators. To determine which of the three estimators to be used in practice, a rule
of thumb is provided by analysis of the mean square error, which solves an open problem
in error variance estimation which difference sequence to be used in finite samples. Simu-
lation studies and a real data application corroborate the theoretical results and illustrate
the advantages of the new method compared with the existing methods.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Consider the nonparametric regression model

yi = m(xi) + ϵi (i = 1, . . . , n), (1)

where the design points xi satisfy 0 ≤ x1 < x2 < · · · < xn ≤ 1, m is an unknown smooth mean function, and
ϵi, i = 1, . . . , n, are independent and identically distributed random errors with zero mean and variance σ 2. Estimation of
σ 2 is an important topic in statistics. It is required in constructing confidence intervals, in checking goodness of fit, outliers,
and homoscedasticity, and also in estimating detection limits of immunoassay.

Most estimators of σ 2 proposed in the literature are quadratic forms of the observation vector Y = (y1, . . . , yn)T, namely,

σ̂ 2
W = Y TW̃Y/tr(W̃ ) , Y TWY , (2)

for some matrix W̃ , where Y T means Y ’s transpose, tr(W̃ ) means W̃ ’s trace, and W = W̃/tr(W̃ ). Roughly speaking, there
are two methods to obtain these estimators: the residual-based method and the differenced method. In the residual-based
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method, one usually fits the mean function m first by smoothing spline (Wahba, 1978; Buckley et al., 1988; Carter and
Eagleson, 1992; Carter et al., 1992) or by kernel regression (Müller and Stadtmüller, 1987; Hall and Carroll, 1989; Hall and
Marron, 1990; Neumann, 1994), and then estimates the variance σ 2 by the residual sum of squares. In general, the fitted
values of Y are Ŷ = HY for a linear smoothermatrixH , and σ 2 is then estimated in the form of (2) with W̃ = (I−H)T(I−H),
where I is the identity matrix. Buckley et al. (1988) showed that estimators based on minimax methods achieve the
asymptotically optimal mean square error (MSE) n−1var(ϵ2); Hall and Marron (1990) proposed a kernel-based estimator
which achieves the optimal MSE

n−1(var(ϵ2) + O(n−(4r−1)/(4r+1))), (3)

where r is the order ofm’s derivative, and the rate with r = 2 is that achieved in Buckley et al. (1988). They also pointed out
that optimal estimation of σ 2 demands less smoothing than optimal estimation ofm. In spite of asymptotic effectiveness of
these estimators, they depend critically on some smoothing condition in practical applications (Seifert et al., 1993)

{m(r)(x)}2dx/σ 2
≤ cr ,

for some smoothness order r and constant cr , e.g., r = 2 in Buckley et al. (1988). Given that our target is σ 2, while such
estimators require knowledge aboutm, it is commonly believed that these estimators are ‘‘indirect’’ for the estimation of σ 2.

The differenced method does not require estimation of the mean function, rather, it uses differencing to remove the
trend in the mean function, an idea originating in mean square successive difference (von Neumann, 1941) and time series
analysis (Anderson, 1971). Rice (1984) proposed the first-order differenced estimator

σ̂ 2
R =

1
2(n − 1)

n
i=2

(yi − yi−1)
2.

Later, Hall et al. (1990) generalized to the higher-order differenced estimator

σ̂ 2
HKT =

1
n − k1 − k2

n−k2
i=k1+1


k2

j=−k1

djyi+j

2

,

where k1, k2 ≥ 0, k1 + k2 is referred to as the difference order, and d−k1 , . . . , dk2 satisfy d−k1dk2 ≠ 0, and

k2
j=−k1

d2j = 1,
k2

j=−k1

dj = 0. (4)

The first condition in (4) ensures the asymptotic unbiasedness of the variance estimator, and the second condition removes
the constant term ofm(xi) from the viewpoint of Taylor expansion. Obviously, (d−1, d0) =


−1/

√
2, 1/

√
2

in Rice (1984)

satisfies these two conditions. Gasser et al. (1986) proposed the second-order differenced estimator

σ̂ 2
GSJ =

1
n − 2

n−1
i=2

((xi+1 − xi) yi−1 − (xi+1 − xi−1)yi + (xi − xi−1)yi+1)
2

(xi+1 − xi)2 + (xi+1 − xi−1)2 + (xi − xi−1)2
,

whose difference sequence satisfies the former two conditions (4), and an implied condition

1
j=−1

di,jxi+j = 0. (5)

Note here that the difference sequence

di,j
1
j=−1 depends on i; for equidistant design

σ̂ 2
GSJ =

2
3(n − 2)

n−1
i=2


1
2
yi−1 − yi +

1
2
yi+1

2

, (6)

whose difference sequence does not depend on i. The new condition (5) further eliminates the first-order term of m(xi)
besides the constant term, and results in less bias in variance estimation. Seifert et al. (1993) further developed the idea
through constraining

k2
j=−k1

di,jr(xi+j) = 0,

where r(·) is an ‘‘unknown’’ smooth function for the same purpose of bias-correction. Seifert et al. (1993) showed that Gasser
et al. (1986)’s estimator is a better choice than Hall et al. (1990)’s estimator; Dette et al. (1998) compared Hall et al. (1990)’s
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optimal differenced estimators and ordinary differenced estimators, and showed that ordinary differenced estimators have
a much better overall performance because they control the bias much better.

It seems that the residual-basedmethod and the differencedmethod are two sharply different methods since the former
need estimate m(·) while the latter need not. However, this distinction is only an illusion. Dette et al. (1998) indicated
implicitly the connection between these two methods: the differences order has an influence which is comparable with
the smoothing parameter. In Section 2, we show explicitly that four most used differenced estimators can be interpreted
as kernel estimators. Meanwhile, we point out the weaknesses of each estimator, and specify some requirements that a
‘‘good’’ estimator of σ 2 should satisfy. In Section 3, we put forward our estimator which satisfies the requirements specified
in Section 2. Our estimator is a weighted combination of second-order differences with different lags, so it is a differenced
estimator. On the other hand, the purpose of combining different second-order differences is to estimate ϵi (or equivalently,
m(xi)), so it is also a kernel estimator. We show that this estimator achieves the asymptotically optimal MSE n−1(var(ϵ2) +

O(n−1/2)) as derived in Tong and Wang (2005) and Wang et al. (2016). We also provide a feasible difference order which is
based on balancing two higher-order variance terms of our estimator. This makes our estimator more applicable.

As a differenced estimator, the asymptotic MSE of our estimator is determined by its variance and the bias is negligible.
In finite samples, however, the bias component may also be important. To improve the finite-sample performance of our
estimator, we further consider its two bias-corrected versions in Section 4. Bias correction is also considered in Tong and
Wang (2005) but there is a key difference. Their estimator is a weighted combination of the lagged Rice-type estimators

σ̂ 2
TW =

m
k=1

wkσ̂
2
R (k) , with σ̂ 2

R (k) =
1

2(n − k)

n
i=k+1

(yi − yi−k)
2,

where wk are weights. It is hard to improve to higher-order bias correction. While our estimators correct the bias in the
summands of different second-order sequences (or the bias in estimating ϵi) rather than the bias of σ 2 estimators, so can
further correct the bias of variance estimate. We show that our two bias-corrected estimators are equivalent to kernel
estimators with higher-order kernels, so as in kernel smoothing, smaller biases are attributed to the usage of higher-order
kernels. Relatedly, Dette et al. (1998) showed that Hall et al. (1990)’s estimator performs like a residual-based kernel-type
variance estimator using a kernel of order 1.

We now have three estimators in hand; which one should be used in practice? In Section 5, we propose a rule-of-thumb
to choose among the three estimators, which solves the open problem in Seifert et al. (1993) which difference sequence
to be used in finite samples. Our method is straightforward—choose the estimator that minimizes the MSE including the
higher-order terms. Simulation studies in Section 6 show that in most cases the performance of our estimator is better than
other differenced estimators and our method of choosing the best estimator in Section 5 matches the theoretical prediction
quite well. The paper concludes by some further discussions and some possible extensions of our approach. Throughout the
paper, our discussion will concentrate on the equidistant design, and the extension to non-equidistant design and random
design is only briefly discussed in Section 7. The proofs for all theorems are given in five Appendices. Since the proof idea
of the corollaries in the paper is similar to that of the theorems, we neglect these proofs in the paper but they are available
upon request.

A word on notation: ≈ means that the higher-order terms are omitted; for a vector α, ∥α∥2 = (αTα)1/2 is its Euclidean
norm; and ⌊k⌋ is the largest integer below k.

2. Comments on the existing differenced estimators

If ϵi were known, a natural estimator of σ 2 is n−1n
i=1 ϵ2

i . When ϵi is unknown, a natural idea is to estimate ϵi by ϵ̂i and
then estimate σ 2 by a normalized


ϵ̂2
i . However, estimating ϵi is equivalent to estimate m(xi) since m(xi) = yi − ϵi. For a

given estimator ϵ̂i,m(xi) is implicitly estimated by m̂(xi) = yi − ϵ̂i. Essentially, the differenced method estimates ϵi directly,
but as argued above,m(xi) is implicitly estimated. In this section, we show that all differenced methods implicitly estimate
m(·) using different kernels and bandwidths. Specifically,

m̂(xi) =
1
nh


j≠i

K

xj − xi

h


yj, (7)

where K(·) is the kernel function with

K(u)du = 1, and h is the bandwidth.We do not need to divide 1/(nh)


j≠i K(

xj−xi
h )

because the density of x is known as 1 on its support [0, 1] in the equidistant design. Note that yi is excluded from the kernel
smoothing to keep themost important information in estimating ϵi. More specifically, ϵ̂i = yi−m̂(xi) = ϵi+


m(xi) − m̂(xi)


;

since m̂(xi) does not involve yi, ϵi rather than a fraction of ϵi appears in ϵ̂i. The variance σ 2 is then estimated by a normalized
ϵ̂2
i .
Rice (1984)’s first-order differenced estimator estimates m(xi) by yi−1. This estimator of m(xi) uses the kernel function

K(u) = 1(−1 ≤ u ≤ 0) and the bandwidth h = n−1, where 1(·) is the indicator function. Obviously, this estimator of σ 2

cannot work well because a one-sided kernel is used and no smoothing (nh = 1) is employed in estimating m(xi) so that
ϵ̂i has a large variance and bias. In Gasser et al. (1986)’s estimator (6), K(u) = 1(−1 ≤ u ≤ 1)/2 and h = n−1, which
generates the second-order differenced estimator. This estimator should perform better (less bias) than Rice’s estimator
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because a symmetric kernel is used but the bandwidth is still O(n−1). In Hall et al. (1990)’s estimator, d0 > 0, so the kernel
function is

K(u) =


−

−1
j=−k1

k
dj
d0

1


j
k

≤ u <
j + 1
k


−

k2
j=1

k
dj
d0

1


j
k

≤ u <
j + 1
k


, if k is even,

−

k
j=1

k
dj
d0

1


j
k

≤ u <
j + 1
k


, if k is odd,

where k = k1 + k2. That is, K(u) is two-sided when k is even and one-sided when k is odd. K(u) is a step function with
K(u)du = −


j≠0

dj
d0

= 1 because
k2

j=−k1
dj = 0 and d0 > 0 imply −


j≠0

dj
d0

= 1, and h = k/n. Dette et al. (1998)
also noticed that Hall et al.’s estimator performs like a residual-based kernel estimator using a kernel of order 1 (so that
the bias cannot be well controlled), and we make this kernel estimator explicit. The values of dj’s in K(u) are motivated by
minimizing the asymptotic variance of σ̂ 2

HKT rather than precisely estimatingm(xi), so this kernel cannot be a good choice for
estimating m(xi) (especially in the aspect of bias) and so cannot be a good choice for estimating σ 2. Furthermore, since k is
fixed, no smoothing is involved in their estimator. As a result, the variance ofm(xi) (or equivalently ϵi) estimate is large. This
is why neither of these three estimators reaches the optimal efficiency bound, var(ϵ2), as developed in Tong et al. (2013). In
one word, the lesson here is that to achieve the efficiency bound, we must let k → ∞ or nh → ∞.

Tong and Wang (2005)’s estimator indeed involves smoothing in estimating m(xi) as their k → ∞, so their estimator
reaches the efficiency bound. However, likeHall et al. (1990)’s estimator, since their estimator is notmotivated by estimating
ϵi (or equivalently, estimating m(xi)), there is some freedom in their kernel choice. From their Theorem 1, their estimator
σ̂ 2
TW can be written in the form of (2), where W̃ is symmetric but need not be positive definite (so σ̂ 2

TW need not be positive).
As a result, W̃ can have different decompositions, such as the LU or QR decomposition (but cannot be decomposed as ATA
for some matrix A). For example, in the LU decomposition, with proper row and/or column permutations, W̃ = LTU , where
L and U are upper triangular. Given that LY and UY are estimating {ϵi}

n
i=1, Tong and Wang implicitly estimate {ϵi}

n
i=1 in

two different ways and then use the inner product of the two ϵ̂i sequences to estimate σ 2. There is no reason why such an
estimator of σ 2 should perform well.

In summary, a good estimator of σ 2 should satisfy at least two conditions. First, the implied bandwidth h satisfies
nh → ∞. Second, the implied estimator of m(xi) (or ϵi) has the interpretation of a kernel smoother. In other words, the
estimator should have the form (2) with W̃ = D̃TD̃, where

D̃ =


d̃−k · · · d̃k 0 · · · 0

. . .
. . .

. . .
. . .

0 · · · 0 d̃−k · · · d̃k


(n−2k)×n

. (8)

We normalize d̃ ,

d̃−k, . . . , d̃0, . . . , d̃k


as d , (d−k, . . . , d0, . . . · · · , dk) = d̃/∥d̃∥2, and denote the counterpart of D̃ as

D. The normalized dj, j = −k, . . . , k, satisfy
k

j=−k d
2
j = 1, d0 → 1 and dj → 0 for j = ±1, . . . ,±k as k → ∞. When a

symmetric kernel is used, d−j = dj, j = 1, . . . , k. Our estimators to be developed satisfy these requirements. Our difference
sequences


dj
k
j=−k further satisfy some orthogonality conditions that eliminate the higher-order biases in estimatingm.

On the other hand, although our estimators can be interpreted as kernel estimators, they indeed explores special
structures of the data design, namely, ϵi is i.i.d. and xi is equally spaced. Ignoring these special informationmay incur practical
difficulties in implementation (see the discussion in Section 7). Our estimator combines the estimation ideas in both kinds
of estimators, so is different from and does not suffer the drawbacks of any existing estimator.

3. Estimation methodology

As in the differenced estimator, we estimate ϵi directly to estimate σ 2. We first use a simple example to illustrate our
estimation strategy of ϵi. Suppose

yi = β0 + β1xi + ϵi (i = 0, . . . , n), (9)

where xi’s are equidistantly designed (i.e., xi = i/n), and ϵi’s are i.i.d. random errors with zero mean and variance σ 2.
Suppose n = 100; our target is to estimate ϵ50 which is a random variable rather than a fixed parameter as in the usual case.
A common solution is to first estimate β , (β0, β1)

T by the least squares and then estimate ϵ50 by ϵ̃50 = y50 − β̃0 − β̃1x50,
where β̃ = (β̃0, β̃1)

T is the least squares estimator (LSE) of β . Our solution is different: we first remove the trend in (9)
by symmetric second-order differencing and then estimate ϵ50 by the least squares. In spirit, our method is similar to the
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Fig. 1. Scatterplot of the proposed estimator against the LSE of ϵ50: the red line is y = x. (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)

derivative estimation method ofWang and Lin (2015). Specifically, define y(2)
j = (−y50−j + 2y50 − y50+j)/2 (j = 1, . . . , 50).

It is easy to see that the trend is removed in y(2)
j ,

y(2)
j = ϵ50 + εj, (10)

where εj = −(ϵ50−j + ϵ50+j)/2 is independent of ϵ50 and has variance σ 2/2. Now, ϵ50 is like a random intercept in the
regression of y(2)

j on a constant, so can be estimated by the least squares. In other words, we estimate ϵ50 by ϵ̂50 = y(2), the
sample mean of y(2)

j . The consistency of ϵ̂50 is guaranteed by observing that

E(y(2)
j | ϵ50) = ϵ50.

Fig. 1 shows our estimates ϵ̂50 against the least squares residuals ϵ̃50 when β0 = 1, β1 = 2 and σ 2
= 1/100. It is clear that

these two estimators are almost identical in this simple scenario. Whenm(·) is nonparametric, we ‘‘localize’’ the idea above.

3.1. Error estimation based on the first-order Taylor expansion

Suppose the mean function m is continuously differentiable on [0, 1]. Then the first-order Taylor expansions of m(xi±j)
at xi are

m(xi+j) = m(xi) + m(1)(xi)
j
n

+ o


j
n


,

m(xi−j) = m(xi) − m(1)(xi)
j
n

+ o


j
n


.

That is, m(·) behaves like a linear function in the neighborhood of xi, just as in the simple setup (9). Consequently, we can
eliminate the ‘‘local’’ trendm(xi) + m(1)(xi)j/n by the second-order differencing. Specifically, define

y(2)
ij =

−yi+j + 2yi − yi−j

2
(j = 1, . . . , k).

Then

y(2)
ij =

−m(xi+j) + 2m(xi) − m(xi−j)

2
+

−ϵi+j + 2ϵi − ϵi−j

2

= o


j
n


+ ϵi + εij,
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where εij = −(ϵi+j+ϵi−j)/2 is independent of ϵi. Note here that i is fixedwhile j changes. Since E(y(2)
ij | ϵi) = ϵi+o(j/n) ≈ ϵi,

we can estimate ϵi by

ϵ̂i = argmin
βi0

k
j=1

(y(2)
ij − βi0)

2
= (XT

1X1)
−1XT

1Y
(2)
i ,

where k → ∞ employs smoothing to improve efficiency, k = o(n) ensures the approximation of Taylor expansion accurate
enough, X1 = (1, . . . , 1)T is a vector of ones of length k, Y (2)

i = (y(2)
i1 , . . . , y(2)

ik )T = GY (0)
i with

G =

 −1/2 1 −1/2

. .
. ...

. . .

−1/2 1 −1/2


k×(2k+1)

and Y (0)
i =


yi−k
...
yi
...

yi+k


(2k+1)×1

.

How to understand this estimator of ϵi? It turns out that it can be treated as either a differenced estimator or a kernel
estimator. Since

ϵ̂i = (XT
1X1)

−1XT
1GY

(0)
i =

k
j=−k

d̃jyi+j,

where d̃ = (d̃−k, . . . , d̃−1, d̃0, d̃1, . . . , d̃k) = (XT
1X1)

−1XT
1G =


−

1
2k , . . . ,−

1
2k , 1, −

1
2k , . . . ,−

1
2k


is the difference sequence

in (8), ϵ̂i is a 2kth-order differenced estimator. The key difference from the existing differenced estimators is that k → ∞,
that is, smoothing is involved. On the other hand, since ϵ̂i = yi − m̂(xi) with m̂(xi) = (2k)−1

j≠i yj1(−k ≤ j − i ≤ k), ϵ̂i is
a kernel estimator with the uniform kernel K(u) = 1(−1 ≤ u ≤ 1)/2 and the bandwidth h = k/n.

The following two theorems provide asymptotic results on the bias, variance, and MSE of ϵ̂i, and establish its pointwise
consistency and asymptotic normality.

Theorem 1. Assume that the nonparametric model (1) holds with equidistant design and normally distributed error. Assume
further that the unknown function m(·) is twice continuously differentiable on [0, 1]. Then

var(ϵ̂i | ϵi) =
1
2

σ 2

k
uniformly over k + 1 ≤ i ≤ n − k, and

bias(ϵ̂i | ϵi) ≈ −
m(2)(xi)

6
k2

n2

for k + 1 ≤ i ≤ n − k. The optimal k that minimizes the asymptotic MSE (AMSE) of ϵ̂i is

kopt = 1.35


σ 2

(m(2)(xi))2

1/5

n4/5,

and the corresponding AMSE is

AMSE(ϵ̂i) = 0.46

σ 8 m(2)(xi)

21/5
n−4/5.

There is no mystery in the form of bias and variance of ϵ̂i. Since ϵ̂i − ϵi = yi − m̂(xi) − (yi − m(xi)) = m(xi) −

m̂(xi), bias(ϵ̂i|ϵi) = −bias(m̂(xi)) and var

ϵ̂i | ϵi


= var(m̂(xi)). It is well known that for a kernel estimator (7),

bias

m̂(xi)


≈ h2m(2)(xi)


K(u)u2du/2 and var(m̂(xi)) ≈ σ 2/(nh)


K(u)2du. For the uniform kernel,


K(u)u2du/2 = 1/6

and

K(u)2du = 1/2. From Theorem 1, if k → ∞ and k/n → 0, then ϵ̂i − ϵi

p
−→ 0. Also the implied optimal bandwidth

hopt = kopt/n = O

n−1/5


, which is the popular rate of optimal bandwidth in estimating m(xi). Note that kopt is not an

integer in general, and we can replace it by ⌊kopt⌋ in practice. We further establish its asymptotic normality in the following
theorem.

Theorem 2. Under the assumptions of Theorem 1, if k → ∞ and k/n → 0, then

k1/2


ϵ̂i − ϵi +
m(2)(xi)

6
k2

n2


d

−→N

0,

σ 2

2


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for k + 1 ≤ i ≤ n − k. Furthermore, if k → ∞ and k5/4/n → 0, then

k1/2

ϵ̂i − ϵi

 d
−→N


0,

σ 2

2


uniformly over k + 1 ≤ i ≤ n − k.

Theorem 2 shows that with suitable choice of k our error estimator ϵ̂i is asymptotically normal. This asymptotic approxima-
tion can be used for constructing confidence intervals of ϵ̂i (or equivalently m̂(xi)).

3.2. Variance estimation based on the estimated errors

Given the estimated errors {ϵ̂i}
n−k
i=k+1, σ

2 can be naturally estimated by

1
n − 2k

n−k
i=k+1

ϵ̂2
i =

1
n − 2k

Y TD̃T
1D̃1Y ,

where D̃1 takes the form of (8) with d̃ defined in the last subsection. We further normalize our estimator to

σ̂ 2
D1

= Y TD̃T
1D̃1Y/tr


D̃T
1D̃1


,

which takes the form of (2) with W̃ = D̃T
1D̃1. Note that tr


W̃


= (n − 2k) ∥d̃∥2
2, so

σ̂ 2
D1

=
1

n − 2k
Y TDT

1D1Y =
1

n − 2k

n−k
i=k+1


k

j=−k

djyi+j

2

,

where D1 = D̃1/∥d̃∥2 is the normalized D̃1 with

dj =

{2k/(2k + 1)}1/2, j = 0,
−{2k(2k + 1)}−1/2, −k ≤ j ≤ −1, 1 ≤ j ≤ k,
0, otherwise.

Note that d0 → 1 and dj → 0, j ≠ 0, as k → ∞; the former is to reserve ϵi and the latter is to remove m(xi). This ‘spike’
difference sequence is also intuitively suggested in Hall et al. (1990) but no theoretical justification is provided.

As in our reinterpretation of the differenced estimators in Section 2, the new estimator is motivated from estimating
ϵi as the building block, so is intuitively interpretable: every difference term in D̃1Y is an error estimator. With normally
distributed errors, we have

bias

σ̂ 2
D1


= mT

nW̃mn/tr(W̃ ),

var

σ̂ 2
D1


=


4σ 2mT

nW̃
2mn + 2σ 4tr(W̃ 2)


/tr(W̃ )2,

from Buckley et al. (1988), wheremn = (m(x1), . . . ,m(xn))T. We now derive the asymptotic bias, variance, and MSE for the
variance estimator σ̂ 2

D1
in the following theorem.

Theorem 3. Under the assumptions of Theorem 1,

bias

σ̂ 2
D1


≈

L2k4

36n4
, var


σ̂ 2
D1


≈ 2σ 4


1
n

+
2k
n2

+
5

6nk


,

where L2 =
 1
0


m(2)(x)

2 dx. So the AMSE of σ̂ 2
D1

is

AMSE

σ̂ 2
D1


≈

2σ 4

n
+

4σ 4k
n2

+
5σ 4

3nk
+

L22
362

k8

n8
,

and the optimal k that minimizes the AMSE of σ̂ 2
D1

is k∗

1 = (5n/12)1/2.

From this theorem, the bias of σ̂ 2
D1

is related to the roughness of m(2) (·) which also appears in the asymptotic mean
integrated squared error of the kernel estimation of m (·). This is understandable since we implicitly estimate m(xi) at all
xi, k + 1 ≤ i ≤ n − k, to estimate σ 2. The first term of var(σ̂ 2

D1
), 2σ 4/n, is the asymptotic variance of the ideal estimatorn

i=1 ϵ2
i /n or the efficiency bound. The second term 4σ 4k/n2 is due to the missing 2k error estimators ϵ̂i for 1 ≤ i ≤ k and

n− k+1 ≤ i ≤ n. The third term 5σ 4/(3nk) is caused by the correlation between the error estimators. The implied optimal
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bandwidth h∗
= k∗/n = O(n−1/2) is smaller than the optimal bandwidth in estimatingm(xi) but is of the same rate as that

in Tong andWang (2005). In other words, we need undersmooth the estimate ofm(xi) such that ϵ̂i contains less bias than in
its pointwise optimal estimation. This result matches that in Wang et al. (2008) where it is suggested to estimatem(·) with
minimal bias in estimating the conditional variance function.

For differenced estimators, we need two inputs—the difference order 2k and the difference sequence {dj}kj=−k. To our
best knowledge, there is no theoretical result on the choice of k. By minimizing the MSE, we obtain the optimal k value.
Note that this optimal k value is determined by a trade-off between two higher-order variance terms, rather than between
higher-order variance terms and the bias term. This iswhy theMSE of our estimators is n−1var(ϵ2)+O(n−3/2) rather than the
optimal rate n−1var(ϵ2)+O(n−8r/(4r+1)) developed inHall andMarron (1990). Roughly speaking, the kernel estimator of Hall
andMarron (1990) estimates all ϵi’s, while we only estimate ϵi’s for k+1 ≤ i ≤ n−k. This is whywe have two higher-order
variance terms, while they have only one. This is also why the optimal higher-order term of MSE is O(n−8r/(4r+1)) rather
than O(n−3/2). Although less efficient in theory, our estimator is more practical because an optimal k is provided. Truncating
the estimates of ϵi’s at the boundary of x’s support is a common feature of the differenced estimator. Such a truncation is
understandable from the practical point of view—our target is σ 2 instead of ϵi, so it is preferable to use only the easily-
available ϵi estimates rather than all ϵi estimates.

Remark 1. For comparison, we repeat the AMSE of Tong and Wang (2005) here,

AMSE(σ̂ 2
TW ) ≈

2σ 4

n
+

9σ 4k
56n2

+
9σ 4

4nk
.

This expression of AMSE has a similar explanation: the first term is the asymptotic variance of the ideal estimator
n

i=1 ϵ2
i /n;

the second term is due to themissing information of 2k boundary error estimators; the third term is caused by the correlation
between the error estimators. From the formula of σ̂ 2

R (k) in Tong andWang (2005), their estimator misses only k boundary
errors but has a larger correlation term:

9σ 4k
56n2

<
4σ 4k
n2

,
9σ 4

4nk
>

5σ 4

3nk
.

Most importantly, their estimator is hard to extend to correct higher-order biases,while such corrections are straightforward
to our estimator (see Section 4).

Theorem3 indicates that σ̂ 2
D1

is a consistent estimator ofσ 2.We further establish its asymptotic normality in the following
theorem.

Theorem 4. Under the assumptions of Theorem 1, if k → ∞ and k/n → 0, then

n1/2


σ̂ 2
D1

− σ 2
−

L2k4

36n4


d

−→N

0, 2σ 4 .

Furthermore, if k8/7/n → 0, then

n1/2 σ̂ 2
D1

− σ 2 d
−→N


0, 2σ 4 .

Different from most previous differenced estimators (except Tong and Wang, 2005), our estimator achieves the efficiency
bound due to k → ∞.

Remark 2. The above four theorems assume ϵi following the normal distribution to simplify proofs. Actually, we require
only that ϵi has the fourth-order moment. Without normality, the asymptotic variance in Theorem 4 changes to var(ϵ2).

4. Bias-corrected variance estimation

In Theorem 3, the optimal k is determined solely byminimizing the asymptotic variance since the bias term is dominated
at k∗

1 . In finite samples, the bias term of σ̂ 2
D1

may not be neglectable especially when m(·) highly oscillates (which will

generate a large L2). To alleviate this problem, we eliminate higher order terms in the bias of E(y(2)
ij |ϵi) by applying higher

order Taylor expansions onm(·).
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4.1. Variance estimation based on the third-order Taylor expansion

Assume that the mean function m (·) is three times continuously differentiable on [0, 1]. We can show by a similar
argument as in Section 3.1 that

m(xi+j) − 2m(xi) + m(xi−j) = m(2)(xi)
j2

n2
+ o


j3

n3


.

As a result,

y(2)
ij = ϵi −

m(2)(xi)
2

j2

n2
+ o


j3

n3


− εij, j = 1, . . . , k.

Therefore, ϵi can be estimated by the minimizer β̂i0 in the following minimization problem:

min
βi0,βi1

k
j=1


y(2)
ij − βi0 − βi1

j2

n2

2

. (11)

In other words,

ϵ̂i = e(2)T
1 (XT

2X2)
−1XT

2Y
(2)
i ,

where

e(q)
1 = (1, 0, . . . , 0  

q−1

)T and X2 =


1 12/n2

1 22/n2

...
...

1 k2/n2


k×2

.

Corollary 1. Assume that the nonparametric model (1) holds with equidistant design and normally distributed error. Assume
further that the unknown function m(·) is four times continuously differentiable on [0, 1]. Then

var(ϵ̂i | ϵi) ≈
9
8

σ 2

k
uniformly over k + 1 ≤ i ≤ n − k, and

bias(ϵ̂i | ϵi) ≈
m(4)(xi)
280

k4

n4

for k + 1 ≤ i ≤ n − k.

Corollary 2. Under the assumptions of Corollary 1, if k → ∞ and k9/8/n → 0, then

k1/2

ϵ̂i − ϵi

 d
−→N


0,

9
8
σ 2


uniformly over k + 1 ≤ i ≤ n − k.

Given the error estimator {ϵ̂i}, we follow the construction of σ̂ 2
D1

and propose the new variance estimator

σ̂ 2
D2

= Y TD̃T
2D̃2Y/tr(D̃T

2D̃2), (12)

where D̃2 is the same as D̃1 except that the difference sequence

(d̃−k, . . . , d̃−1, d̃0, d̃1, . . . , d̃k) = e(2)T
1 (XT

2X2)
−1XT

2G.

Similarly as in σ̂ 2
D1
, it is not hard to show that d̃0 = 1 here.We derive the bias and variance of σ̂ 2

D2
, and establish its asymptotic

normality in the following two corollaries.

Corollary 3. Under the assumptions of Corollary 1,

bias

σ̂ 2
D2


≈

L4k8

2802n8
, var


σ̂ 2
D2


≈ 2σ 4


1
n

+
2k
n2

+
1.61
nk


,
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where L4 =
 1
0 (m(4)(x))2dx. So the AMSE of σ̂ 2

D2
is

AMSE

σ̂ 2
D2


≈

2σ 4

n
+

4σ 4k
n2

+
3.22σ 4

nk
+

L24k
16

2804n16
,

and the optimal k that minimizes AMSE is k∗

2 ≈ 0.90n1/2.

Corollary 4. Under the assumptions of Corollary 1, if k → ∞ and n−1k16/15 → 0, then

n1/2(σ̂ 2
D2

− σ 2)
d

−→N(0, 2σ 4).

From Corollary 3, bias(σ̂ 2
D2

) is smaller than bias(σ̂ 2
D1

) when the optimal k’s are used. When the bias is still suspected to
be too large, we can continue our bias correction by applying the fifth-order Taylor expansion onm(·).

4.2. Variance estimation based on the fifth-order Taylor expansion

Assume that the mean function m (·) is five times continuously differentiable on [0, 1]. We can show similarly as in the
last subsection that

ϵ̂i = e(3)T
1 (XT

3X3)
−1XT

3Y
(2)
i , (13)

where

X3 =


1 12/n2 14/n4

1 22/n2 24/n4

...
...

...

1 k2/n2 k4/n4


k×3

.

Corollary 5. Assume that the nonparametric model (1) holds with equidistant design and normally distributed error. Assume
further that the unknown function m(·) is six times continuously differentiable on [0, 1]. Then

var

ϵ̂i | ϵi


≈

225
128

σ 2

k
uniformly over k + 1 ≤ i ≤ n − k, and

bias(ϵ̂i | ϵi) ≈ −
m(6)(xi)
33 264

k6

n6

for k + 1 ≤ i ≤ n − k.

Corollary 6. Under the assumptions of Corollary 5, if k → ∞ and k13/12/n → 0, then

k1/2

ϵ̂i − ϵi

 d
−→N


0,

225
128

σ 2


uniformly over k + 1 ≤ i ≤ n − k.

Similar to σ̂ 2
D1

and σ̂ 2
D2
, we construct the new variance estimator as

σ̂ 2
D3

= Y TD̃T
3D̃3Y/tr(D̃T

3D̃3), (14)

where D̃3 is the same as D̃1 except that difference sequence

(d̃−k, . . . , d̃−1, d̃0, d̃1, . . . , d̃k) = e(3)T
1 (XT

3X3)
−1XT

3G.

Corollary 7. Under the assumptions of Corollary 5,

bias

σ̂ 2
D3


≈

L6k12

33 2642n12
, var


σ̂ 2
D3


≈ 2σ 4


1
n

+
2k
n2

+
2.35
nk


,

where L6 =
 1
0 (m(6)(x))2dx. So the AMSE of σ̂ 2

D3
is

AMSE

σ̂ 2
D3


≈

2σ 4

n
+

4σ 4k
n2

+
4.70σ 4

nk
+

L26k
24

33 2644n24
,

and the optimal k that minimizes AMSE is k∗

3 ≈ 1.08n1/2.
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Corollary 8. Under the assumptions of Corollary 5, if k → ∞ and n−1k24/23 → 0, then

n1/2(σ̂ 2
D3

− σ 2)
d

−→N(0, 2σ 4).

Like σ̂ 2
D1
, σ̂ 2

D2
and σ̂ 2

D3
can be interpreted as kernel estimators. Actually, the ϵ̂i estimators in σ̂ 2

D2
and σ̂ 2

D3
are equivalent to

the local polynomial estimator (LPE) of order 3 and 5, respectively. Specifically, the pth order LPE of m(xi) is defined as the
minimizer β̂i0 in the following minimization problem:

min
βi0,...,βip

k
j=−k,j≠0


yi+j − βi0 − βi1

j
n

− · · · − βip


j
n

p2

. (15)

Explicitly,

β̂
(p)
i0 = e(p+1)T

1


X̃T
p X̃p

−1
X̃T
pY

(0)
i ,

where

X̃p =



1 −k/n · · · (−k/n)p
...

...
...

...
1 −1/n · · · (−1/n)p

0 0 · · · 0
1 1/n · · · (1/n)p
...

...
...

...
1 k/n · · · (k/n)p


(2k+1)×(p+1)

.

The following theorem rigorously states this equivalence result.

Theorem 5. ϵ̂i in σ̂ 2
D1

equals yi − β̂
(1)
i0 , ϵ̂i in σ̂ 2

D2
equals yi − β̂

(3)
i0 , and ϵ̂i in σ̂ 2

D3
equals yi − β̂

(5)
i0 .

It is well known that the LPE is equivalent to a kernel estimator. Fig. 2 shows the implied higher-order kernels in σ̂ 2
D2

and
σ̂ 2
D3
. So essentially, the smaller biases in σ̂ 2

D2
and σ̂ 2

D3
are attributed to the usage of higher-order kernels in estimatingm(xi).

Remark 3. All of our three variance estimators σ̂ 2
Dq

(q = 1, 2, 3) achieve the asymptotically optimal MSE. The dominating
term of their asymptotic variances is 2σ 4/n, and high-order terms are 5.16σ 4/n3/2, 7.18σ 4/n3/2, 8.70σ 4/n3/2 respectively,
which increase approximately at a linear rate. The bias orders are O(k4/n4), O(k8/n8) and O(k12/n12) respectively, which
decrease at an exponential rate. In otherwords, asmore approximation terms ofm(·) are included, variance increases slowly
whereas bias decreases rapidly. So in practice we can sacrifice variance a little bit to exchange for a great reduction in bias,
especially when themean function has immense oscillation and the sample size is small. Also note that the optimal k values
are 0.65n1/2, 0.90n1/2 and 1.08n1/2 respectively, which are increasing. This is reasonable because more observations are
required when a higher-order Taylor expansion is applied.

Remark 4. As to the choice of k, neither of Rice (1984), Gasser et al. (1986) andHall et al. (1990) conducts theoretical analysis.
Tong andWang (2005) provide a theoretically optimal k value equal to (14n)1/2, but this k value is too big to use in practical
applications. They alternatively suggest using k = n1/2 while this value of k is almost the same as our theoretical results. As
for the difference sequence {dj}, all estimators except ours neglect the effect of themean function on σ 2 estimation, although
Buckley and Eagleson (1989), Seifert et al. (1993), and Dette et al. (1998) realized the importance of bias-correction; details
are relegated to the discussion section.

5. Determining the optimal order of Taylor expansion in finite samples

Under different smoothness assumptions, we obtain three different variance estimators σ̂ 2
Dq

(q = 1, 2, 3). Which one
should be used in finite samples? It is still an open problem, see Seifert et al. (1993). The order of Taylor expansion mainly
determines the bias, so the question can be reformulated as when introducing an additional correction termwill reduce the
bias more than increase the variance. As a result, a natural criterion to determine the order of Taylor expansion is to use the
MSE.Wemust emphasize here that order selection is a finite-sample problem. In large samples, the bias is always dominated
by the variance, while in finite samples the bias may be nonnegligible because the constants Ls, s = 2q, q = 1, 2, 3, in the
bias formula may become significant.

To compare the MSEs of the three estimators, we must estimate the nuisance parameters in the MSE formulas. If k
takes the optimal value k∗

q , and σ 2 takes the corresponding estimator σ̂ 2
Dq
, then the only nuisance parameter is Ls. We
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Fig. 2. Equivalent higher-order kernels in the estimation of ϵ̂i in σ̂ 2
D2

and σ̂ 2
D3
.

describe how to estimate Ls below. First fit a polynomial of order (s + 2) globally to m(·), leading to the parametric fit
m̃s+2(x) = α̃0 + α̃1x + · · · + α̃s+2xs+2, and then estimate Ls, by

L̂s =
1
n

n
i=1


(s + 2)!

2!
α̃s+2


i
n

2

+ (s + 1)!α̃s+1


i
n


+ s!α̃s

2

.

m̃(s)
s+2(x) = (s + 2)!/2!α̃s+2x2 + (s + 1)!α̃s+1x + s!α̃s takes a quadratic form, allowing for a certain flexibility in estimating

the curvature. A similar rule-of-thumb procedure is used in the bandwidth selection of local polynomial regression, see
Section 4.2 of Fan and Gijbels (1996). Finally, we pick q∗

∈ {1, 2, 3} that minimizes

2σ̂ 4
D1

n
+

4σ̂ 4
D1
k∗

1

n2
+

5σ̂ 4
D1

3nk∗

1
+

L̂22
362

k∗8
1

n8
with k∗

1 = ⌊0.65n1/2
⌋,

2σ̂ 4
D2

n
+

4σ̂ 4
D2
k∗

2

n2
+

3.22σ̂ 4
D2

nk∗

2
+

L̂24k
∗16
2

2804n16
with k∗

2 = ⌊0.90n1/2
⌋,

2σ̂ 4
D3

n
+

4σ̂ 4
D3
k∗

3

n2
+

4.70σ̂ 4
D3

nk∗

3
+

L̂26k
∗24
3

33 2644n24
with k∗

3 = ⌊1.08n1/2
⌋.

In practice, we can monitor L̂2
36

k∗41
n4

/


2σ̂ 4

D1
n

1/2

,
L̂4k∗82
2802n8

/


2σ̂ 4

D2
n

1/2

,
L̂6k∗123

33 2642n12
/


2σ̂ 4

D3
n

1/2

and L̂2
36

k∗41
n4

/


8σ̂ 4

D1
k∗1

n2

1/2

,

L̂4k∗82
2802n8

/


8σ̂ 4

D2
k∗2

n2

1/2

, L̂6k∗123
33 2642n12

/


8σ̂ 4

D3
k∗3

n2

1/2

to check the ratio of bias to the dominating variance term and higher order

terms, where 8σ̂ 4
Dq
k∗
q/n

2 rather than 4σ̂ 4
Dq
k∗
q/n

2 appears in the denominator because the higher order variance is double of
4σ̂ 4

Dq
k∗
q/n

2 given the optimal k∗
q . Although we can check even higher order expansions in principle, orders higher than 6

seem unattractive in practice (see Table 6).

6. Simulations and application

In this section, we conduct some simulations to compare the performance of the estimators of Rice, Gasser et al., Hall
et al., Tong andWang, and ours. Similar to Seifert et al. (1993), Dette et al. (1998) and Tong andWang (2005), we specifym(x)
as the periodic function A sin (2π fx) and ϵi ∼ N(0, σ 2). We consider a few specifications of the amplitude A, the frequency
f and the error standard deviation σ : A = 1100, f = 0.5, 1, 2, and σ = 0.1, 0.5, 2. As to the sample size n, we consider
n = 50, 200, 1000, corresponding to small, moderate and large samples, respectively.

The smoothing parameter k is a key input in all estimators. We use k∗
q in σ̂ 2

Dq
(q = 1, 2, 3), set k = 2 in σ̂ 2

HKT , i.e.,

σ̂ 2
HKT =

1
n − 2

n−1
i=2

(0.809Yi−1 − 0.5Yi − 0.309Yi+1)
2,
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Table 1
Relative MSEs of various estimators for n = 1000.

A f σ σ̂ 2
R σ̂ 2

GSJ σ̂ 2
HKT σ̂ 2

TW σ̂ 2
D1

σ̂ 2
D2

σ̂ 2
D3

1 0.5 0.1 1.50 1.95 1.25 1.03 1.07 1.11 1.13
0.5 1.53 1.99 1.26 1.06 1.11 1.14 1.16
2 1.51 1.96 1.25 1.05 1.10 1.13 1.17

1 0.1 1.49 1.94 1.23 1.03 1.08 1.11 1.14
0.5 1.51 1.96 1.26 1.06 1.09 1.12 1.15
2 1.53 1.99 1.26 1.05 1.08 1.12 1.15

2 0.1 1.53 1.98 1.31 1.17 1.14 1.15 1.18
0.5 1.50 1.94 1.26 1.03 1.07 1.11 1.13
2 1.48 1.91 1.25 1.04 1.09 1.12 1.15

100 0.5 0.1 3.04E3 1.92 1.89E4 1.72E4 4.85E1 1.10 1.13
0.5 6.50 1.94 3.18E1 2.89E1 1.16 1.11 1.14
2 1.50 1.92 1.37 1.15 1.07 1.10 1.12

1 0.1 4.86E4 1.97 3.03E5 3.27E5 1.21E4 1.13 1.16
0.5 7.91E1 1.93 4.86E2 5.23E2 2.04E1 1.11 1.14
2 1.79 1.93 3.13 3.11 1.16 1.13 1.15

2 0.1 7.78E5 2.00 4.85E6 9.25E6 3.06E6 1.12 1.15
0.5 1.25E3 1.93 7.76E3 1.48E4 4.90E2 1.10 1.13
2 6.37 1.92 3.16E1 5.91E1 2.03E1 1.12 1.14

Table 2
Relative MSEs of various estimators for n = 200.

A f σ σ̂ 2
R σ̂ 2

GSJ σ̂ 2
HKT σ̂ 2

TW σ̂ 2
D1

σ̂ 2
D2

σ̂ 2
D3

1 0.5 0.1 1.49 1.93 1.28 1.09 1.18 1.29 1.39
0.5 1.54 2.01 1.29 1.09 1.21 1.32 1.41
2 1.521 1.99 1.26 1.09 1.22 1.32 1.41

1 0.1 1.58 1.95 1.67 1.29 1.23 1.29 1.37
0.5 1.53 1.98 1.29 1.10 1.23 1.32 1.41
2 1.50 1.95 1.25 1.10 1.22 1.31 1.40

2 0.1 2.50 1.96 7.24 7.72 9.38 1.28 1.35
0.5 1.47 1.91 1.25 1.10 1.22 1.30 1.39
2 1.53 1.99 1.27 1.09 1.21 1.32 1.41

100 0.5 0.1 3.77E5 1.99 2.33E6 7.91E5 1.41E4 1.31 1.39
0.5 6.05E2 1.95 3.73E3 1.27E3 2.39E1 1.31 1.39
2 3.88 1.95 1.59E1 6.29 1.28 1.27 1.36

1 0.1 6.03E6 2.60 3.72E7 1.70E7 3.52E6 1.31 1.38
0.5 9.65E3 1.94 5.96E4 2.73E4 5.64E3 1.28 1.36
2 3.94E1 2.03 2.34E2 1.08E2 2.33E1 1.30 1.39

2 0.1 9.64E7 1.74E2 5.95E8 6.49E8 8.15E8 3.54E2 1.37
0.5 1.54E5 2.29 9.52E5 1.04E6 1.30E6 1.85 1.37
2 6.05E2 1.96 3.72E3 4.06E3 5.10E3 1.30 1.38

and choose k = n1/3 for small n and n1/2 for moderate and large n in Tong and Wang’s estimator as suggested in their
simulation studies.

Tables 1–3 summarize our simulation results for n = 1000, 200, 50 based on 1000 repetitions, where Ea = 10a,
a = 1, 2, . . . , is a display in scientific notation. To compare with the ideal estimator n−1n

i=1 ϵ2
i , we report the relative

MSE of all estimators. The relative MSE is a ratio between MSE in simulation and the asymptotically optimal MSE 2σ 4/n,
that is, n · MSE/(2σ 4). The smaller (or closer to 1) the relative MSE is, the better the estimator performs. In most cases, the
relative MSE is increasing in A and f , and decreasing in σ and n. In general, our estimators perform better than the existing
estimators in most settings. First, when A is small and n is large, MSE(σ̂ 2

TW ) ≃ MSE(σ̂ 2
D1

) < MSE(σ̂ 2
D2

) < MSE(σ̂ 2
D3

) <

MSE(σ̂ 2
HKT ) < MSE(σ̂ 2

R ) < MSE(σ̂ 2
GSJ); this ranking is roughly maintained when n gets smaller. Second, when A is large and

n is large, σ̂ 2
R , σ̂

2
HKT , σ̂

2
TW , and σ̂ 2

D1
are dominated by σ̂ 2

GSJ which is in turn dominated by σ̂ 2
D2

and σ̂ 2
D3
. Third, when A is large, n

gets smaller, and f gets larger, all estimators lose effectiveness except σ̂ 2
D3
. All these results are intuitively understandable.

We next compare the performance of the smoothness-adaptive estimator with σ̂ 2
Dq
, q = 1, 2, 3. We first determine the

ideal best estimator in each specification, that is, the minimizer qopt of AMSE(σ̂ 2
Dq

) with σ and Ls known. It can be shown
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Table 3
Relative MSEs of various estimators for n = 50.

A f σ σ̂ 2
R σ̂ 2

GSJ σ̂ 2
HKT σ̂ 2

TW σ̂ 2
D1

σ̂ 2
D2

σ̂ 2
D3

1 0.5 0.1 1.73 1.95 2.74 1.39 1.48 1.73 1.96
0.5 1.51 1.99 1.28 1.36 1.44 1.70 1.96
2 1.52 2.00 1.30 1.36 1.44 1.72 1.96

1 0.1 5.30 2.02 2.36E1 1.60 5.21 1.71 1.96
0.5 1.55 2.02 1.37 1.38 1.46 1.73 1.97
2 1.54 2.03 1.31 1.39 1.48 1.76 2.01

2 0.1 6.08E1 2.04 3.48E2 7.26 5.81E2 1.90 1.98
0.5 1.59 1.98 1.84 1.35 2.40 1.69 1.97
2 1.58 2.06 1.35 1.42 1.50 1.79 2.03

100 0.5 0.1 2.34E7 4.78E1 1.39E8 6.61E5 1.71E6 1.74 1.99
0.5 3.74E4 2.11 2.23E5 1.07E3 2.73E3 1.74 1.99
2 1.47E2 2.00 8.73E2 5.98 1.21E1 1.73 1.98

1 0.1 3.73E7 1.16E4 2.22E9 1.44E7 3.78E8 5.95E2 2.00
0.5 5.97E5 2.06E1 3.55E6 2.30E4 6.05E5 2.67 1.96
2 2.33 2.093 1.39E4 9.31E1 2.36E3 1.67 1.91

2 0.1 5.93E9 2.92E6 3.46E10 5.62E8 5.78E10 1.65E7 2.05E2
0.5 9.48E6 4.67E3 5.54E7 8.99E5 9.24E7 2.64E4 2.28
2 3.70E4 2.01E1 2.17E5 3.52E3 3.61E5 1.05E2 1.98

that Ls =
1
2A

2(2π f )2s, so qopt minimizes

4σ 4k∗

1

n2
+

5σ 4

3nk∗

1
+

A4(2π f )8

4 × 362

k∗8
1

n8
with k∗

1 = ⌊0.65n1/2
⌋,

4σ 4k∗

2

n2
+

3.22σ 4

nk∗

2
+

A4(2π f )16

4 × 2804

k∗16
2

n16
with k∗

2 = ⌊0.90n1/2
⌋,

4σ 4k∗

3

n2
+

4.70σ 4

nk∗

3
+

A4(2π f )24

4 × 33 2644

k∗24
3

n24
with k∗

3 = ⌊1.08n1/2
⌋.

Table 4 reports relative AMSE(σ̂ 2
Dq

). Compared to Tables 1–3, the AMSE is a reasonable approximation of the MSE in
finite samples. Table 5 summarizes the qopt . As expected from Table 4, qopt matches theminimizer of the three finite-sample
MSEs in Tables 1–3 perfectly. Table 6 summarizes the coincidence rate of the q∗ selected as in Section 5 and the ideal qopt ,
and Table 7 summarizes the relative MSE of the selected estimator. From Table 6, q∗ matches qopt quite well except in the
case with n = 1000 and A = 1, but the selected estimator performs very closely to the optimal one in that case. More
optimistically, theMSE of the selected estimator is close to the optimal one in all cases, while neither of the three estimators
performs uniformly well in all scenarios.

We next apply our estimationmethod of σ 2 to a real data set, which is named as ‘‘Mandible’’ in R package ‘‘lmtest’’ (Chitty
et al., 1993; Royston and Altman, 1994). There are 167 observations on two variables: gestational age inweeks andmandible
length in mm.We treat age and length as independent and response variables, respectively. For this data set, the estimators
of σ 2 are σ̂ 2

R = 5.49, σ̂ 2
GSJ = 5.18, σ̂ 2

HKT = 5.77, σ̂ 2
TW = 5.68, σ̂ 2

D1
= 5.37, σ̂ 2

D2
= 5.46, and σ̂ 2

D3
= 5.20, respectively. The

smoothness-adaptive estimator is σ̂ 2
D3

which performs similarly as σ̂ 2
GSJ because both have better bias control.

Combining all the simulation and application results in this section, we can conclude that our estimators, especially the
smoothness-adaptive estimator, is preferable to other estimators in practice.

7. Discussion

We first discuss the difference sequence {dj}. Onemain role of {dj} is to eliminate the bias in estimating ϵi. Rice’s first-order
differenced estimator eliminates the constant term in the Taylor series of the mean function m(·); Gasser et al.’s second-
order differenced estimator and Tong and Wang’s estimator eliminates both the constant term and the first-order term.
On the other hand, Hall et al.’s kth-order differenced estimator does not eliminate higher-order terms, rather, it eliminates
the constant term only. Our estimators (especially σ̂ 2

D2
and σ̂ 2

D3
) eliminate the terms of even higher orders, so have less

biases. As a cost, more restrictive conditions are imposed on the difference sequence {dj} in our estimators. For the previous
differenced estimators, the difference sequence {dj} satisfies two conditions in (4). As mentioned in the introduction, the
first condition ensures the unbiasedness of the variance estimators, and the second condition removes the constant term.
{dj} in our estimators satisfies p + 2 other conditions besides the former two,

dj = d−j, k1 = k2 = k,
k

j=−k

dj
jℓ

nℓ
= 0 (ℓ = 1, . . . , p),
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Table 4
Relative AMSEs of σ̂ 2

Dq
, q = 1, 2, 3.

A f σ 1000 200 50
σ̂ 2
D1

σ̂ 2
D2

σ̂ 2
D3

σ̂ 2
D1

σ̂ 2
D2

σ̂ 2
D3

σ̂ 2
D1

σ̂ 2
D2

σ̂ 2
D3

1 0.5 0.1 1.08 1.11 1.14 1.18 1.25 1.31 1.37 1.51 1.61
0.5 1.08 1.11 1.14 1.18 1.25 1.31 1.37 1.51 1.61
2 1.08 1.11 1.14 1.18 1.25 1.31 1.37 1.51 1.61

1 0.1 1.08 1.11 1.14 1.20 1.25 1.31 2.54 1.51 1.61
0.5 1.08 1.11 1.14 1.18 1.25 1.31 1.37 1.51 1.61
2 1.08 1.11 1.14 1.18 1.25 1.31 1.37 1.51 1.61

2 0.1 1.08 1.11 1.14 5.87 1.25 1.31 3.01E2 1.60 1.61
0.5 1.08 1.11 1.14 1.19 1.25 1.31 1.85 1.51 1.61
2 1.08 1.11 1.14 1.18 1.25 1.31 1.37 1.51 1.61

100 0.5 0.1 3.57E1 1.11 1.14 7.15E3 1.25 1.31 4.58E5 1.51 1.61
0.5 1.14 1.11 1.14 1.26E1 1.25 1.31 7.33E2 1.51 1.61
2 1.08 1.11 1.14 1.23 1.25 1.31 4.23 1.51 1.61

1 0.1 8.86E3 1.11 1.14 1.83E6 1.25 1.31 1.17E8 1.32E2 1.61
0.5 1.53E1 1.11 1.14 2.93E3 1.25 1.31 1.87E5 1.72 1.61
2 1.14 1.11 1.14 1.26E1 1.25 1.31 7.33E2 1.51 1.61

2 0.1 2.27E6 1.11 1.14 4.69E8 1.61E2 1.31 3.00E10 8.56E6 9.89E1
0.5 3.63E3 1.11 1.14 7.50E5 1.51 1.31 4.80E7 1.37E4 1.77
2 1.53E1 1.11 1.14 2.93E3 1.25 1.31 1.87E5 5.50E1 1.61

Table 5
Ideal best variance estimator.

n f 0.5 1 2
A | σ 0.1 0.5 2 0.1 0.5 2 0.1 0.5 2

50 1 1 1 1 2 1 1 2 2 1
100 2 2 2 3 2 2 3 3 3

200 1 1 1 1 1 1 1 2 1 1
100 2 2 1 2 2 2 3 3 2

1000 1 1 1 1 1 1 1 1 1 1
100 2 2 1 2 2 2 2 2 2

Table 6
Coincidence rate of q∗ and qopt .

n f 0.5 1 2
A | σ 0.1 0.5 2 0.1 0.5 2 0.1 0.5 2

50 1 633 712 721 682 680 733 369 581 689
100 622 703 705 1000 916 649 1000 1000 1000

200 1 780 786 781 568 731 780 989 680 765
100 986 984 559 977 985 982 1000 443 980

1000 1 0 0 0 0 0 0 0 0 0
100 1000 1000 0 1000 1000 1000 1000 1000 1000

Table 7
Relative MSE of the smoothness-adaptive estimator.

n f 0.5 1 2
A | σ 0.1 0.5 2 0.1 0.5 2 0.1 0.5 2

50 1 1.55 1.47 1.55 1.68 1.50 1.55 1.76 1.79 1.71
100 1.82 1.66 1.70 1.99 1.96 1.91 2.05E2 2.52 1.99

200 1 1.28 1.23 1.17 1.34 1.27 1.24 1.26 1.29 1.23
100 1.34 1.39 1.21 1.28 1.37 1.25 1.49 1.74 1.30

1000 1 1.12 1.09 1.11 1.09 1.12 1.08 1.19 1.13 1.10
100 1.14 1.18 1.12 1.10 1.18 1.16 1.15 1.12 1.10

where k is a positive integer, and p is some positive odd integer which depends on the order of Taylor expansion. The first
two conditions rely on equidistant designing, and the latter p conditions remove the high-order terms of Taylor series of
m. From Theorem 5, our estimators can be interpreted as the LPEs. The p conditions are actually the discrete orthogonality
conditions in the local polynomial estimation. Due to dj = d−j, this condition automatically holds when ℓ is odd. This
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is also why we need only regress on jℓ/nℓ with ℓ even in our estimation — odd terms are automatically eliminated by the
second-order differencing because the design is symmetric around xi, k+1 ≤ i ≤ n−k. Based on our simulation experience,
when the bias is small, all our three estimators perform similarly. However, when the bias is large, their performances are
very different, and bias correction is critical for our estimator to perform satisfactorily in such cases.

In this paper, we correct the bias in the second-order differences to estimate ϵi more precisely. A natural question is
whether a higher-order difference can be employed. For example, we can use y(3)

ij = (yi−2j −4yi−j +6yi −4yi+j +yi+2j)/6 to
further eliminatem(2) in Taylor series ofm before correcting the bias. However, such higher-order differences have at least
two disadvantages. First, we will lose 4k instead of 2k ϵi estimates now. Second, there is some overlapping in the data usage
of y(3)

ij , e.g., y(3)
ij and y(3)

i,2j have common elements yi−2j and yi+2j, which makes the MSE analysis of variance estimators more
troublesome.

Our method focuses on the case with equidistant design. For the non-equidistant design or the conditioned random
design, the analysis is more messy. To see why, consider the parallel of σ̂ 2

D2
in the non-equidistant design. Note that

m(xi+j) = m(xi) + m(1)(xi)(xi+j − xi) + o

xi+j − xi


,

m(xi−j) = m(xi) − m(1)(xi)

xi − xi−j


+ o


xi − xi+j


.

So the parallel of y(2)
ij is

y(2)
ij =


yi+j − yi

 
xi − xi−j


+

yi−j − yi


(xi+j − xi)

xi−j − xi+j

=
xi+j − xi
xi−j − xi+j

yi−j + yi +
xi − xi−j

xi−j − xi+j
yi+j

= −m(2)(xi)


(xi+j − xi)2

2
xi − xi−j

xi+j − xi−j
+

(xi − xi−j)
2

2
xi+j − xi
xi+j − xi−j


+ o


j3

n3


+ ϵi + εij,

where we assume xi+j − xi = O(j/n) and εij =
xi+j−xi

xi−j−xi+j
ϵi−j +

xi−xi−j
xi−j−xi+j

ϵi+j. y
(2)
i1 appears in Gasser et al. (1986) and eliminates

the bias of order 1/n. If we want to eliminate the bias of order 1/n2, we need to regress y(2)
ij , j = 1, . . . , k, on a constant and

(xi+j−xi)2

2
xi−xi−j

xi+j−xi−j
+

(xi−xi−j)
2

2
xi+j−xi

xi+j−xi−j
, and the resulting estimator of ϵi is not neat (e.g., the difference sequence depends on i

and is not symmetric) althoughmathematically straightforward. As a result, the MSE of σ̂ 2
D2

depends on the design of x such
that the optimal choice of k is hard to derive. We hope our choice of k in the equidistant design can serve as a benchmark
for this more general case. There is also some literature on variance estimation in the random design, e.g., Müller et al.
(2003) proposed a weighted differenced estimator, and Du and Schick (2009) extended Müller et al.’s idea to Gasser et al.’s
estimator.

To further extend to the non-equidistant design, suppose for a general differenced estimator, say,

σ̂ 2
=

1
n − 2k

n−k
i=k+1


k

j=−k

di,jyi+j

2

,

its MSE isMSE(d), where d =

(di,−k, . . . , di,k)

n−k
i=k+1. For Hall et al. (1990)’s estimators, we choose d by

min
d

MSE(d) s.t.
k

j=−k

di,j = 0,
k

j=−k

d2i,j = 1,

and the resulting d does not depend on i, while to eliminate higher-order biases, the constraints are strengthened to

k
j=−k

di,jxℓ
i+j = 0, ℓ = 0, 1, . . . , p,

k
j=−k

d2i,j = 1,

where p is a positive integer. It is hard to derive the explicit formula for d in terms of xi (Hall et al., 1990 and Yatchew,
unpublished derived the optimal difference sequence by the unit-root method). Also, the resulting d depends on i, i.e., for
each i, the difference sequence, di,j, j = −k, . . . , k, is different, which makes the asymptotic analysis extremely messy,
while for the equidistant design, di,j does not depend on i at all. Although the theoretical results are hard to derive, the idea
of optimization with respect to difference sequence can be used in practice, and deserves further research.

The main purpose of this paper is to estimate σ 2, so we assume ϵi is homoskedastic. The heteroskedastic case is well
studied in the literature, see, e.g., Hall and Carroll (1989) and Wang et al. (2008). In this case, the literature concentrates
on the estimation of the variance function rather than a constant variance. So the optimal convergence rate of the variance
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function and how themean function estimation affects the variance function estimation are ofmain concerns. An interesting
question is what our estimators are estimating in the case of heterogeneous variance. It turns out that

1
n − 2k

n−k
i=k+1

ϵ̂2
i

p
−→


σ 2(x)dx,

i.e., the average variance. We are not sure whether this parameter is an interesting parameter in practice.
This paper concentrates on the univariate x case; some extensions tomultivariate x have been developed in the literature.

Hall et al. (1991) generalized Hall et al. (1990)’s estimator to bivariate lattice designs and discussed the problem of
different configurations in details. Kulasekera and Gallagher (2002) introduced an algorithm to order the design points
in x ∈ [0, 1]d. Spokoiny (2002) and Munk et al. (2005) proposed a residual-based estimator and a differenced estimator
respectively for multivariate regression. Fan et al. (2012) used refitted cross-validation method in ultrahigh dimensional
linear regression. Dicker (2014) proposed a method of moments in high-dimensional linear regression. Extension of our
method to multivariate x is a big challenge and left to further research.
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Appendix A. Proof of Theorem 1

The variance of ϵ̂i (Fan and Gijbels, 1996) is var(ϵ̂i | ϵi) = σ 2(XT
1X1)

−1/2. Owing to XT
1X1 = k, we have

var(ϵ̂i | ϵi) =
σ 2

2k
.

The bias of ϵ̂i is bias(ϵ̂i | ϵi) = (XT
1X1)

−1XT
1E(δi), where δi = (y(2)

i1 − ϵi, . . . , y
(2)
ik − ϵi)

T
= (δi1, . . . , δik)

T. Visiting the
second-order Taylor expansion ofm(xi±j) at xi, we have

y(2)
ij = ϵi −

m(2)(xi)
2!

j2

n2
+ o


j2

n2


−

ϵi−j + ϵi+j

2
.

Now δij = −m(2)(xi)j2/(2!n2) + o(j2/n2) − (ϵi−j + ϵi+j)/2, so we have

bias(ϵ̂i | ϵi) = −
m(2)(xi)

6
k2

n2
+ o


k2

n2


.

The AMSE is

AMSE(ϵ̂i | ϵi) =
(m(2)(xi))2

36
k4

n4
+

1
2

σ 2

k
.

To minimize the AMSE with respect to k, let

d[AMSE(ϵ̂i | ϵi)]

dk
=

(m(2)(xi))2

9
k3

n4
−

1
2

σ 2

k2
= 0.

Then the optimal k value is kopt ≈ 1.35(σ 2/(m(2)(xi))2)1/5n4/5, and the AMSE of ϵ̂i is

AMSE(ϵ̂i) ≈ 0.46

σ 8(m(2)(xi))2

1/5
n−4/5.

Appendix B. Proof of Theorem 2

{y(2)
ij }

k
j=1 are independent given ϵi and have the same conditional variance σ 2/2. By the Lindeberg–Feller Theorem

(Serfling, 1980), the asymptotic normality can be obtained if and only if the Lindeberg condition is satisfied.
Let B2

k = kσ 2/2. For any δ > 0, we verify the Lindeberg condition:

k
j=1


|x|>δBk

x2 1
√

πσ
exp−

x2

σ2 dx

B2
k

=


|x|>δBk

x2 1
√

πσ
exp−

x2

σ2 dx

σ 2/2
→ 0, k → ∞.
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So we have the asymptotic normality

k1/2


ϵ̂i − ϵi +
m(2)(xi)

6
k2

n2


d

−→N

0,

1
2
σ 2


for k + 1 ≤ i ≤ n − k. If n−1k5/4 → 0, then the bias disappears. We obtain the asymptotic normality

k1/2(ϵ̂i − ϵi)
d

−→N

0,

1
2
σ 2


uniformly for k + 1 ≤ i ≤ n − k.

Appendix C. Proof of Theorem 3

The bias of σ̂ 2
D1

ismT
nD1mn/tr(D1). By Theorem 1, we have

mT
nD1mn = (D̃1mn)

TD̃1mn =

n−k
i=k+1

(m(2)(xi))2

62

k4

n4
.

Owing to tr(D1) = n − 2k, the bias of σ̂ 2
D1

is

bias(σ̂ 2
D1

) =
1

n − 2k

n−k
i=k+1

(m(2)(xi))2

62

k4

n4
=

L2
36

k4

n4
+ o


k4

n4


,

where L2 =
 1
0 (m(2)(x))2dx.

The variance of σ̂ 2
D1

is {4σ 2mT
nD

2
1mn + 2σ 4tr(D2

1)}/tr(D1)
2. Since

mT
nD

2
1mn = o

n
k


, tr(D2

1) = (n − 2k)

1 +

5
6k

+ o

1
k


,

the variance of the σ̂ 2
D1

is

var

σ̂ 2
D1


= 2σ 4


1
n

+
2k
n2

+
5

6nk


+ o


k
n2


+ o


1
nk


,

and the AMSE of σ̂ 2
D1

is

AMSE

σ̂ 2
D1


=

2σ 4

n
+

4σ 4k
n2

+
5σ 4

3nk
+

L22
362

k8

n8
.

Minimizing the AMSE with respect to k, we have the asymptotically optimal bandwidth k∗

1 = (5n/12)1/2.

Appendix D. Proof of Theorem 4

Lemma 1. Consider the form

Λ =

n
j=1

n
k=1

aj−kzjzk

in which the zj’s are identically distributed with zero mean. This will tend to normality in distribution as n → ∞ if the following
conditions are fulfilled:

(1) E | zj |4+2δ is finite for some δ in (0, 1);
(2)


∞

j=−∞
a2j is finite.

Lemma 1 is borrowed from Whittle (1964). Note that σ̂ 2
D1

= mT
nD1mn/tr(D1) + 2mT

nD1ϵ/tr(D1) + ϵTD1ϵ/tr(D1),
where ϵ = (ϵ1, . . . , ϵn)

T. Let zj = ϵj for j = 1, . . . , n; then the zj’s are independent normally distributed with zero
mean and variance σ 2. So condition (1) is satisfied since E | zj |5 is finite for δ = 1/2. Condition (2) is satisfied due to

∞

j=−∞
a2j → 1 + 5/(6k) < 2. By Lemma 1,

n1/2 ϵTD1ϵ/tr(D1) − σ 2 d
−→N(0, 2σ 4).
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By the proof of Theorem 3,mT
nD1mn/tr(D1) =

L2
36

k4

n4
+ o


k4

n4


, andmT

nD1ϵ/tr(D1) = o

n1/2/(k1/2(n − 2k))


. So if k → ∞ as

n → ∞ such that k/n → 0, then

n1/2


σ̂ 2
D1

− σ 2
−

L2k4

36n4


d

−→N(0, 2σ 4).

If k → ∞ as n → ∞ such that n−1k8/7 → 0, then

n1/2 σ̂ 2
D1

− σ 2 d
−→N(0, 2σ 4).

Appendix E. Proof of Theorem 5

The proof involves some tedious but straightforward calculations. Specifically, we need to show that

e(2)
1


X̃T
1 X̃1

−1
X̃T
1 = (0, . . . , 0  

k

, 1, 0, . . . , 0  
k

) − (XT
1X1)

−1X T
1 G,

e(4)
1


X̃T
3 X̃3

−1
X̃T
3 = (0, . . . , 0  

k

, 1, 0, . . . , 0  
k

) − e(2)
1 (XT

2X2)
−1X T

2 G,

e(6)
1


X̃T
5 X̃5

−1
X̃T
5 = (0, . . . , 0  

k

, 1, 0, . . . , 0  
k

) − e(3)
1 (XT

3X3)
−1X T

3 G.
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