Supplementary Material on "The Bootstrap in Threshold Regres-

sion"

1. No Error Term: An Illustration

This section uses a simple example to illustrate the main results of this paper. The speciality of this example
is that finite-sample distributions of all estimators are available, but in the general case, such distributions are
hard to derive. In construction of this paper, this example provides the direction of conjecturing the general
results. We put this example here only to make the results in the main text more expected. Nevertheless,
connecting threshold regression with the existing boundary literature in the bootstrap environment seems
novel. As in the main text, we still use Z and Z* to represent the asymptotic distribution and the asymptotic
bootstrap distribution of the v estimators, respectively. Subscripts L and M are used to indicate the objects
based on the LLSE and the MLSE, respectively. We adopt an unusual notation of conditioning: |F,, |¥ and
|D(-) all indicate conditioning on the original sample path instead of on the o-field generated by F,,, ¥ and
D(-) (which are defined below). Such notations are used in some statistical literature such as Bickel and
Freedman (1981).

We simplify (1) in the main text to the extreme case as follows:
y=1q¢<7), ¢~ U 1]. (1)

This corresponds to © =1, f10 =1, 20 = 0, 01,0 = 02,0 = 0 in (1) of the main text. Here, ¢ follows a
uniform distribution on [0, 1], and 79 = 1/2 is of main interest. Note that there is no error term ¢ in ({1f), so
the observed y values can only be 0 or 1. In this case, the threshold point is essentially a "middle" boundary
of ¢ because there is a sharp change in y values when ¢ switches from the left to the right side of 7g; see
Section 2 of Yu (2012) for a detailed analysis of this point. It is easy to see that the LLSE and LMLE are
the same, denoted as 7y, and equals the ¢; closest to 1/2 from the leftﬂ For t < 0,

P =) <0 =P (4 ¢ (ot Lol forall 1) = (14 ;) ~, 2)

so the asymptotic distribution of n (37, — 7o) is a negative standard exponential, and there is no density on
the positive axis. Note further that 4 is a nondecreasing function of n conditional on the original sample
path, and there is no data point between 7, and 7. Similarly, the MLSE and MMLE are the same, denoted
as yu, and equal the average of the two ¢;’s closest to 1/2 from the left and right. Suppose there are m y;’s

q(m)Fd(m+1)
2

taking value 1, and the remaining (n —m) y;’s take value 0, then 7, = q(,) and s = , where

I Strictly speaking, 77, depends on whether there exists g; no greater than 1/2 or not. If there is ¢; no greater than 1/2, then
7L equals the g; closest to 1/2 from the left. Otherwise, 71 equals the g; closest to 1/2 from the right. Since the probability
that all g;’s are greater than 1/2 equals (%)n which converges to zero, we can assume 7y, < % in the following discussion.
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Figure 1: Z, Z*, (Z* — Z)|D(-) and Z* — Z for the LLSE and MLSE
Q(m) is the mth order statistic of {¢;};—,. By a similar analysis as in ,
t\"
P(n(q(m+1)—’yo)>t): 1—ﬁ —e (3)
for t > 0. So for t < 0,
~ n(qm) —Y0) + 1 (g — 0
P(”(’YM—’Y())St)ZP< ((M) ) 5 ((m+1) )§t> (4)
o o2t
= P (n (q(m) —0) < 2t =1 (qemt1) —0)) —>/ ed(1—e*) = TR
0

where the convolution form in the convergence step is from the fact that q(,,+1) and q(,,) are independent.
Similarly, for ¢ > 0, P(n (am — 7o) > t) — ? So n (s — 7o) converges to the double exponential

distribution with scale 1/2.

1.1 Invalidity of the Nonparametric Bootstrap

n
The objective function of the least squares estimation is 3 (1; — 1(g; < 7))*. To consider the ability of the

i=1 -
bootstrap to approximate the distribution of n (37, — 7o), we need to obtain the asymptotic distribution of
n
n (Y5 —7L), where 45 = argmin Y (y; — 1(¢} < 7))2 is the closest ¢ to 1/2 from the left, and (y},q})
7 oi=1

follows the empirical distribution F},. Since -y is essentially a boundary, the following derivation is similar to

that in Example 3 of Bickel et al. (1997).

According to Chan (1993), 4, converges to 1/2 as n goes to infinity for almost every sample point w

in Q. In bootstrap sampling, as long as (q(m),y(m)) is drawn, 77 = q(m). So P*(n(y; —A7L) = 0|F,) =



n

1 — P* ((qm)>Y(m)) is not drawn) =1 — (1—-2)" -1 -1 > O while P (n (3, — 1/2) =0) — 0 since
the asymptotic distribution of n (7, — 1/2) is continuous. Therefore, the bootstrap is not consistent. In the
general case, there is no explicit form for the limit of P* (n (77 —41) = 0| F},) to check whether the bootstrap
is valid, so here we analyze the whole distribution of n (5 —7L) |F), to provide more intuitions.

Actually, the limit distribution of n (75 —71) |F,, does not exist. Suppose it indeed exists, then for any

-3

n

must converge to a fixed value, where k = > 1 (ﬁL + % <qg < ;?L) This means that k& must converge to a
i=1

fixed value. But lim k = oo and lim k = 0 for any w, so P* (n (7; —71) < t|F,,) cannot converge. Neverthe-

n—oo n—oo

t <0,
t
P*(n(A7 —9L) < t| Fy,) = P} (no q; is sampled from [y, + —, 7]
n

less, we can find the weak limit of n (7] — %) under P,. Conditional on 7y, k ~ 1+Bin (n -1, %)
converges weakly to 1+ N(Jt|) for any 7, where N(-) is a standard Poisson process. So P, (n (7] — L) < t)
converges to E [e_(HN(‘t'))], which is the average of e~ TN(tD) for all realizations of N(|t|), or the asymp-
totic distribution of the average bootstrap. For a given realization of N(|¢|), the implied distribution by the
component measure e~ TND) is discrete. A new jump in e~ (*+N (D)) happens as |t| gets larger such that
the expanding interval HL + %ﬁL] covers a new ¢;. Because e~ (1N (tD)|,_; 4 (1 — eil) = 1, there is no
probability on the positive axis, which is similar to the asymptotic distribution. The left panel of Figure
shows a typical realization of e~(!*N (D)) The density function of E [e_(l"’N('tD)] is also shown in Figure
It is obviously different from the asymptotic distribution since there is a point mass 1 — e~! at zero.

The above results are surprising in two aspects. First, while the asymptotic distribution of the threshold
estimator exists and is continuous, the conditional weak limit of the bootstrap estimator does not exist.
This is different from conventional models where the asymptotic distribution is normal. Essentially, this is
because the asymptotic bootstrap distribution of the threshold point relies on bootstrap sampling on the
local data (i.e., ¥+ % < g; <£7) rather than sampling on the whole dataset in conventional models. Second,
the asymptotic distribution of the average bootstrap is a genuine mixture of discrete measures instead of a
fixed measure as required by the bootstrap validity. Although the point mass at zero is always 1 — e~ ! for
all discrete measures, how to distribute the remaining e ' probability depends on how the original data are
sampled. When more data are sampled in the left neighborhood of 1/2; the point masses on the negative
axis in Figure [I] will be closer to zero.

One important similarity between the discrete component measure in the average bootstrap and the
asymptotic distribution is that both of them critically depend on the local information around the threshold
point. The asymptotic distribution depends on the density of g at 1/2, while those discrete measures depend
on the local data around 7 in the original sample. This is not difficult to understand by noting that the true
distribution of ¢ in the asymptotic theory is fq(-) (U[0,1] in this example), and the true value of 7 is 1/2,

while in the bootstrap, the true distribution of ¢ is the empirical distribution of {qi}?zl, and the true value

2In the general case, this probability is not constant from Figure 1 in the main text. So from Hewitt-Savage zero-one law,
P* (n (¥ —AL) = 0|F,) cannot have a weak limit.



of ~vis 7.

In summary, although this example is very simple, it shows one general feature of the bootstrap for the
threshold point: the local information around ~y (or %) is most important for the bootstrap inference. As a
result, the conditional weak limit of the bootstrap estimator does not exist, and the component measures in
the average bootstrap are discrete and depend on the original data. Therefore, the bootstrap of the threshold
point is invalid.

Putting this example in the general framework of threshold regression,

Ni(Jv]) ..
Ni(Jv]), ifv <O0; . P Ny ifv <05
D (v) = N it and D" (v) ={ ol
2(v), i v ; NELifv > 0.

Now,

P*(n(3; — A1) = 0| Fa) — P* (N} >0) =1 — ¢,

and for t < 0, P.(n (55 —~L) < t) is the average of the following probabilities for different realizations of
N(Jt]):

P*(Ni_=0)=¢1, if N(|t])
P* (N =0,N;_ =0) =e2, if N(|t]) =

0,
L,

— e~ (LN D)

P* (Poisson(k + 1) = 0) = e~ k1) if N(J¢]) = &,

where N(|t|) is a truncated Poisson process starting from to = inf {¢ : N7 (|t|) = 0}. This N(|t|) is the same
as the N(|t|) above. The point mass implied in e~ (TN(D) at the kth jump of D(v) on v < 0 is

pP* (N;L =0 for j <k and N(*k+1)7 > 0) =e k. (1 — e—l) 7

which is exponentially decaying. Note also that under P,., Z, has a thinner tail than Z7 and Z7 — Zr. For

comparison, their densities on ¢t < 0 are listed below:

fz, () =€ fzr (t) =exp{t —t/e} (1 —e"); fzr_z, (t) =exp{t —t/e—1}(1—e7").

In the general case, the bootstrap still fails as shown in Section 3.2, but there are some differences in
the component measure. First, there is positive probability on the positive axis. Second, not every jumping
location of D () on v < 0 corresponds to a point mass. Third, the probability mass function is not necessarily

monotone on the negative axis. Fourth, the point mass at zero is not fixed as 1 — e~ !.



If we consider the MLSE, then the asymptotic distribution of n (73, —9a) under P, is the average of

the following discrete distributions:

P*(Zy — Zy = 0]D(+))

P*(N;_>0,N;, >0) = (1—e1)?,

Ty —To Ty —Ti_
F(Z&—ZM: HZ 2-1+21 ):P* (Nf_ =0,N;5_ >0,N;, >0)=e ' (1—e1)?,
Toy —Ti_ Tiy —Ti_
W(Z&—%F:MQ = H21 ):P*NH_0N1>QMg>m=e*u—fwf
Toy —To_ Tip —Ti_
P%?&%4%ﬁ = ”21 )P*NFONHON%>ONH>®6 (1—e1)?,
Tpr —Tim  Tip —Ti_
?(Z&—zw:k*Qj —1+21 D@):P%mmmw+j—mqu;>aNg>m

— (R (1 = 671)2 7

where Ty and T, k,j = 1,2, - - -, are jumping locations of D(-). So the unconditional density of Z}, — Za
at t #0 is

(oo}

Izimza = Y e E (1) g0,

k,j=1,k+j>2

mmmwmnmj2zgwaﬁwmmmmmwﬁﬁt&gﬂﬁiawmmm2:ﬁﬁ’il%jfw “27I0 (145 — 1,0 V (—4t))
with T (-, -) being the upper incomplete gamma function, and when k = 1, > 2, g ;(¢) is 2971 [t 72 e2t/ (j —2)11 (t < 0)
and when k > 2,5 = 1 is 281 [¢|" 22t/ (k — 2)!1 (¢ > 0). So the unconditional density of Z%, — Zy at

t#0is

—(k=1)

fZ]*M*ZJVI (t) = (1 - 6_ _QM Z |t‘k_2
X gk— ]e—(k—l-j 2) k=2 9—21
l—e ) e I (4 — 1,0 v (—4t
k=2 j=2 1=0
which is symmetric and whose tail is thicker than that of fz,, (t) = e 2/l By a similar analysis, we can
show that the unconditional density of Z}, is
_ “1\2 _ _1\2
fzy, (t) = Z e k=D (1 — 1) gry1 i (t Z e BRI (1 — ™) gp s (1)

k,j=1 k,j=2
ok—jg—(k+j—2) k=2

(1—e) %2§:§: G }:”k 2_lthﬂ4ra+j—Lov@4@%

k=2 j=2




which is also symmetric and whose tail is also thicker than that of fz,,. The right panel of Figure || shows
the MLSE counterparts of the LLSE in the left panel.

1.2 Invalidity of the (Parametric) Wild Bootstrap

Because the distribution of the error term is a point mass at zero, each bootstrap sample coincides with the
original sample. As a result, each bootstrap estimator is the same as the original MLE or LSE and does
not contain any randomness when conditioning on the original data. Consequently, the bootstrap CI only
includes the MLE or LSE itself and does not cover g for almost all original sample pathes. Putting in the
general framework of threshold regression, we have Dy, (v) = D, (v) and Dj,, (v) = Dy, (v), so Z* = Z for

any D(-) for both estimators.

In this simple example, there is no error term, so a sharp jump in the value of y appears at ¢ = g, which
induces the invalidity of the above bootstrap procedures. When a nondegenerate error term is added in ,
the sharp difference of y values in the left and right neighborhoods of ¢ = = is blurred. However, these
bootstrap schemes still fail in inference on 7 as shown in Section 3 of the main text. The following discusses

two valid bootstrap schemes in this simple example: the parametric bootstrap and the smoothed bootstrap.

1.3 Validity of the Parametric Bootstrap and Smoothed Bootstrap

In parametric bootstrap sampling, the following DGP is used: y = 1(¢ < 7), where ¢ ~ U[0, 1] and 7 is the
MLE which is also the LSE in this simple case. For any bootstrap sample {w}}!", from this DGP, 7* is
the MLE using {w;}._,. The question left is to derive the asymptotic distribution of n (3* —7¥) conditional
on 7. For this simple setup, the exact distribution of n (5* — %) conditioning on 7 can be derived explicitly.
First consider the LMLE. For any t < 0,

t t\"
P -5 <) = (¢ (74 2a] orands) = (14 1) = e torany 5,
n n

so the parametric bootstrap for v is consistent P almost surely. Note the similarity of this derivation with

(). Next consider the MMLE. For any ¢ < 0,

« n (qzkm) - :Y\) +n (qz(m—i-l) - 37)
2

P (n (3" ~9) <t]y) = P <15

= (i~ 7) <2 (ts 3)| )
L) (- (-2 = [T e =

for any a.s. consistent 4. Similar analysis applies to ¢t > 0. This derivation is similar to .

In the smoothed bootstrap, the only difference is that g ~ fq() which is a consistent estimator of f,(-).
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Figure 2: Dependence of the Component Distribution of Z* — Z on D(-)

Now, for the LLSE,
* ~k ~ oo~ - ~ i "
P - <dn) = (1- (F6)-F (34 1)) —e

for any ¢t < 0 as long as fq() is consistent in a neighborhood of vy and 7 is a.s. consistent, where ﬁq(-) is

the cdf associated with fq() For the MLSE,

P*(n (" —7) < {|F,) :/Oo <1— <ﬁq A) - F, <%+ Qtns>>>nd(1— (- (B (F+2)-F®)))

0

Sk

which converges to €' /2 for any ¢ < 0. Similarly, for ¢t > 0, P* (n (3* —7) > t|F,,) converges to e~2/2.

2. Results Based on the MLSE for the Example in Section 3.2

This section contains the analysis about the example in Section 3.2 based on the MLSE. Figure 2] corresponds
to Figure 1 in the main text. Comparing to Figure 1 there, the support of (Z* — Z)|D(:) based on the
MLSE is not completely contained in the set of middle points of the contiguous jumping locations of D(v);
the middle point of any two jumping locations can be included in the support of (Z* — Z)|D(-). This is of
course because IV, can be zero such that two or more jumps can be combined into one. Although there are
more point masses in the distribution of (Z* — Z) |D(-) based on the MLSE and we expect this conditional
distribution would give a better approximation to the distribution of Z, the bootstrap nevertheless fails since

the distribution of Z is continuous while the distribution of (Z* — Z)|D(-) is discrete.



The first characteristic of the distribution of (Z* — Z)|D(:) based on the LLSE still holds here. The
largest point mass happens at zero. The second characteristic changes to that large point masses often
happen around deeply negative jumps. Since the calculation based on the MLSE is too involved, we only
provide some illustrations based on the LLSE here. Suppose Min_ =0, z11 > 0, 2120 < 0, z1; > 0 for i > 2
and zy; > 0 for all 4. In this case, P* (Min_ =1) = OE|

P* (Min_ =2) = P* (N{_z11 + N3_z12 < 0,N5_ > 0)
= (1=e™) Y P Nz k210 <0) P* (NG = k)

—1 o0 671 * * 212
== 2 P (V= kT

211

and

p* (Mm, = 3) = pP* (Nf,zn + N;lez + Ngleg S O,NZ, > 0)

= p* (Nik_le +N;_212 S O,Ng_ = O,NI_ > O)

k212

—1 _ —1
=) Y G S =t e <),

where |x] is the greatest integer less than x. For k > 3, it can be similarly shown that P* (Min_ = k) =
e 1P*(Min_ =k —1). For this simple sample path, the distribution on the left hand side of the deeply
negative jump mimics the distribution in the simple threshold model without error term; see Figure [1] for
intuitive impression. For more complicated sample paths of D(v), the decaying rate may not be exactly
e~ !. The insight for the LLSE should be extended to the MLSE. The third characteristic cannot apply here.
The point masses in the right neighborhood of zero are not less than those in the left neighborhood. This
is confirmed by checking the average bootstrap distribution Z* — Z in Figure [3] where the distribution of

Z* — 7 is symmetric.

2.5% Quantile | 97.5% Quantile | Coverage
Asymptotic -12.18 12.18 95.00%
Min -89.28 -0.03 24.44%
Max 0.06 88.97 99.99%
Average -15.44 15.68 86.48%
Average Bootstrap -23.01 24.23 99.17%

Table 5: Characterizations of Quantiles and Coverages In the Bootstrap

3There is a general result: if z1, < 0, then P* (Min_ =k — 1) = 0; if 25 > 0, then P* (Miny = k) = 0, where Min is
the number of jumps before attaining the minimum of D(v) on v > 0.
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Figure 4: Distributions of 2.5% and 97.5% Quantiles and Coverage

Table 5 corresponds to Table 1 in the main text. The results here are quite similar as those based on the
LLSE. For example, the average coverage is less than 95%, which means that there will be an undercover
problem in practice when the bootstrap is based on the MLSE. Also, the absolute values of the quantiles of
the average bootstrap are larger than those of the asymptotic counterparts, which indicates that Z* — Z in
Figurehas a heavier tail than Z. This fact can also be confirmed by noticing that Var(n (3* — o)) = 121.45
which is more than double of Var(n (37 —v9)) = 31.06. Theoretically, 2.5% quantiles and 97.5% quantiles
should be symmetric; the little asymmetry in Table 5 is due to the simulation error. Figure |4| corresponds to
Figure 3 in the main text. Different from the LLSE case, the distributions of the 2.5% quantile and 97.5%

quantile are symmetric and there is no point mass at zero in the distribution of the 97.5% quantile.

3. Other Bootstrap Schemes

Parametric Bootstrap: Suppose the only unknown element in P is ¥ = (8’,0’,a’)’, where o € R% is
the nuisance parameter affecting the shape of the conditional error distribution f(g|z,¢; ). Denote
the dependence of P on 6 by Py, then P = Pp,, and P, = Pj, where 0 is the maximum likelihood
estimator (MLE) or the Bayes estimator (BE) in Yu (2012). As mentioned in Section 3.4 of Yu (2012),



the parametric bootstrap is valid.

It is noteworthy that in the parametric bootstrap, we must simulate from the joint distribution f(y,z, q)
to make the bootstrap procedure based on 8 valid, where f(y,z,q) covers both f (g|lx,q;@) and f(z,q).
But even in a parametric model, f(x,q) is seldom speciﬁedﬂ So a natural bootstrap scheme to avoid this
difficulty is to condition on {(1:;, qi)'}jzl and only utilize the randomness from f (g|z, ¢; @), which leads to

the parametric wild bootstrap below.

Parametric Wild Bootstrap: P, is constructed conditional on {(x;, Qi)/}?:r For each (z/,¢;)’, the con-
ditional distribution of y; is derived from
y ;b1 +o1e}, @i <A
i = ~
zifa + G2}, @i >
where € ~ f(e|z,q;@). This bootstrap scheme is not consistent for . As shown in Yu (2012), the
Bayesian credible set is an appropriate choice in parametric models since it does not rely on the specific

form of f(z,q) and has a good performance in finite samples.
Similarly, we have the wild bootstrap of Wu (1986) and Liu (1988).

Wild Bootstrap: P, is similarly constructed as in the parametric wild bootstrap with the only difference
being that ef = d}g; where E* [¢}] = 0, E* [e}?] = €7 and E* [e}®] = €. As noted in Liu (1988),

matching the third moment can improve the rate of convergence of the bootstrap estimate for regular

parameters like 5. A popular choice of the d} distribution is the two-point distribution:

SRR TS Sy A SR

For other choices of the df distribution, see Liu (1988) and Mammen (1993). Although the wild
bootstrap is consistent and may have some finite-sample refinements for regular parameters (see Liu
(1988) and Mammen (1993)), it is not consistent for 7. If €; is independent of (z},q;)’, then we can
extract more information from {&;};_, by letting &} follow PZ, where P% is the empirical distribution
of {€;}!"_,. This procedure is often termed as bootstrapping residuals. To guarantee that the residuals
have mean zero, the centered residuals, {?Z — ?}n , are often used to substitute {£;}._,, where z=

=1

n~! 2?21 €;. We still denote the corresponding empirical measure as PS.

~ / ~ /
In the wild bootstrap, we localize the objective function around (ﬁ’ ﬁ) since (ﬂ’ , ?) is the true value

When g is independent of (z, ), we can condition on {z;}] ;, and simulate only from f (e|z; @) and f4(g). But the problem
remains since fq(g) is seldom known in reality and must be estimated nonparametrically. See more related discussions on the
smoothed bootstrap in Section 4.1 below.
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of (8',~)" under P,, and uniformly for h in a compact set,

nP; (m(-’%\%%i)—m( Eﬁ)) (6)

= v} F [z;z;1 (¢; < v0)]ur + usE [zl (¢ > o) uz — Wi, (w) + Dy, (v) 4+ 0p, (1)

where
W, (w) = Wiy, (u1) + Wa,, (u2) ,
and . :
Dy, (v) =;z%;*1 (F+2<a<7) +izzlz;v;1 (F<a<a+r),
with

* 2CT1’0 n « * 2CT270 " «
Wlu)n (ul) = ull ( \/ﬁ ;dz xig;l (ql < 70)) ; Wan (UQ) = uIQ (ﬁ ;dz z;€;l (ql > 70))

Zﬂ* = 293§ (51,0 - 52,0) Ul,od?&' + (51,0 - 52,0) 331952 (51,0 - ﬂz,o) )

Zy; = —2x; (B1,0 — B2,0) 02,0d;€i + (Br,0 — B2,0) Tz (Bro0 — P2,0) -

and d; following the distribution . The following Theorem 3 corresponds to Theorem 1 in the nonpara-

metric bootstrap.

Theorem 1 Under Assumption D with D5 changing to E[e%] < 0o and E[||z||**°] < 0o for some § > 0, (@
holds and
(Wi () Dy (0)) ~ (W (u), Dy, (v))

on any compact set, where W* (u) = 2ui W + 2uiW5 is defined in Theorem 1, and

Ni(lv])+1
w* wW* - .
5+ Y 217, if v < 05

DL ={ v

)
> 257, if v > 0;
=1

=SW*

with zy* following the conditional distribution of Zjj* given q; = ~o. Furthermore, Wi, W5, {z1%*, zé"i*}@l,
Ni(+) and Na(-) are mutually independent of each other, and {d;},~, are i.i.d. sequences independent of the

rest components of D2 (v).

Proof:. We first show @ Note that & =¢; + Op (n*1/4) uniformly over ¢ = 1,--- ,n. From the modified

Assumption D5, max |z;| < n?/+9 and max |e;| < n'/* with probability one by the Borel-Cantelli
1<j<n 1<j<n

11



lemma. Also, we know that § — 9 = Op(n=1), B — Bo = Op(n~/2) and & — 0y = Op(n=1/2). Now,

5
- , — @ -
Ei_gizul(%f’y)-‘r

.
Yi — TiB2 ~
T (g > ) — &
01 02

$»310+01051—$51

’ I3
= 1(qg <y A7)+ zifz0 + 0,2\’061 zibs

1(g: > V7A)

01 02
ziB10+ 01,060 *1’52 x}B2,0 + 02,0€ —xﬂl R
+ : 1(7 < <)+ : 1(0 < <7) —e&
09 o1
510 51 520 52 .
u 1(g < A7) + 1} 1(g; > V7)
Ul (72

g
* {al(q‘%AV) 022 I(Qz>70\/7)1:| EZJrOP( *3/4)

=0Op (nil/ﬁl) uniformly for 4.

Given these facts, uniformly for h in any compact set of R?*+1,

2 T;T 201 . )] - x;T) v
_Z</ Ui\/ﬁfidigi)l qigv/\7+n)+;(u'2 " Ly — uQImld €Z> l(qi>'y\/'y+ﬁ)
n /
i~ U2 12 i~ U2 / ~ gk~
+ Bi—=Br——F7= ) zx; | B1—Po— —F= | +2x; | B1 — B2 — —= | 01d;&; 1(7+*<Qz§7)
P Vn n

n
= ; (Ull x;;”v;m — ) 2\0/_%,()xid;f‘5i> 1(q <)+ ; <u’2 xf; Uy — u2f$1d*€z> 1(q; > v0) + Dy, (v) 4+ op.(1),
where the simplification to D, (v) in the last equality uses the fact that max. 2| < n/(4+9) Now, (ﬁ)
follows directly.

The weak convergence of W (u) is straightforward, so we concentrate on D (v). Asin the proof of The-
orem 1, we need only calculate the limit of the characteristic function P, (exp {\/j <t1 Xn: T35 +to Zn: TL—) }) ,
where T3, =21 (7 + £ < ¢; <7) and Tj; =251 (¥ < ¢; <75 + £). The proof is almlozs{c the saniedas that
of Theorem 1, but there are two points worth noting. First, since ¥ —~ = Op(n~1), the discussion can focus
on 7 € [v0— £, 790 + €] for a large enough C without affecting the asymptotic properties of D}, (v). So the

n n
conditioning on ¢; = 7 in the calculation of Theorem 1 is still valid. Second, > T3; = Z 25 (e =7)+
=1

Z zZ11 (7 +2<q< 'y) and the first term on the right hand side includes only one summand. =

= For DZ (v), the randomness introduced by the wild bootstrap appears only in {d} }121, so the procedure
(e.g., Step 2) in Section 2.3 can be similarly used as in the nonparametric bootstrap to show the invalidity of
the wild bootstrap for . The reason for the wild bootstrap failure is the same as that for the nonparametric

bootstrap failure: only the bootstrap sampling in the neighborhood of 7 (or 7g) is informative to the inference

12



on . Nevertheless, there are indeed some differences between these two schemes besides the multipliers in
Dy (+) (df) and D* (-) (N/). In D} (v) (and D, (v)), we localize the objective function around -y, so there
is a random interval around zero without any jump in D* (v) (and D(v)). In D}, (v), however, we localize
the objective function around %4 and % equals some g;, so there is a jump in D} (v) immediately as v gets
negative. By the argmax continuous mapping theorem, n (¥* —75) ~» Z¥ = arg mvin Dy (v). Given this
special structure of D7 (v), we expect that there will be a point mass at 0 in the component measure and
also in Z;“J The detailed analysis as in the example of Section 3.2 is omitted here to avoid replication. In
summary, we first localize the objective function at v then recenter ¥* at ¥ by (¥* — ) — (¥ — 7) in the
nonparametric bootstrap, while in the wild bootstrap, we localize the objective function directly at 7, so
there is no need to recenter 4*. In short, the order of the two operations, arg min and recentering at 7, are
different in these two bootstrap schemes.

Under some stronger assumptions on the conditional distribution of (z}, Ei)/ given ¢; = 9, we can show
the nonexistence of the conditional weak limit of n (3* —%). To simplify notations, define the random

variables with the conditional distribution of (27, ;)" given ¢; = 7o as (2, ¢;)’, and define the event

A={a! (Bro— fa0) = € & < — (Bro — Boo) 22} (Bro — Bao) / [(1+VB)Z, (Bro — Bao) 71o]
{2} (Bro — Ba0) < =6 & > = (Bro — o) 2.2 (Bro — B20) / [(1+ VB)! (Bro — Bro) 0] }
U{ef (810 = Bo) = € 21 = = (Bro = Bro) iz (Bro = Bao) / (L= VB (Bro — Bao) o1,0] }
U{a (Bro = Bao) < € & < — (Bro — Bao) 2zl (Bro — fo) / [(1 = VB)z! (Bro — B0 r10] }

EA1UA2UA3UA4

Y

with e being a positive constant. Now, it is not hard to see that for each w € A, P* (3* #£7) is at least
(vV5—1)/(2v5) > 0. This is because zi%* < 0 for df = (1 +/5)/2 on A; U A3 and d} = (1 - V/5)/2 on
Az U Ay. So if we assume P(A) > 0, then applying the proof idea in (iii) of Theorem 2, we can show the
conditional weak limit of n (3* —7) does not exist for w’s with a positive probability (which is at least as
large as P(A)). The assumption that P(A) > 0 is not restrictive as it seems, e.g., if the conditional support
of g; given z; is R, then P(A) > 0. For the specific example in Section 3.2, 2 =1, f10 — f2,0 =1, 01,0 = 1,
and g; = ¢;. In this case, if we let € = 1/2, then A = {&g; < —1/(1+V/5) or&; > —1/(1 —V/5)}, whose
probability is obviously positive given that &; ~ N(0,1).

From Lemma 4.4 of Seijo and Sen (2011) (or Lemma 6 in the next section) and Theorem 3, the asymptotic

results for bootstrapping residuals and the parametric wild bootstrap are much expected. In bootstrapping

5But Z7 should not have low densities in the right neighborhood of zero since the structure of D} (v) is somewhat like
canceling the first waiting time on v <0 in D (v).

13



residuals, D¥  (v) is changed to

n

* S =T P~ v =~ =T =~ =~ v
Dy, (v) =Y 70 (7+E<Qig7)+222i (v<qiﬁv+ﬁ),
i=1

=1

where

Z1F = {22 (B1.0 — B20) o1,06f + (Br.0 — B20) i, (Bro — B20)}

z5r = {=22} (B1,0 — B2.0) 02,06; + (B1,0 — B2.0) Tiz} (B1,0 — B2,0)} -

The randomness introduced by bootstrapping residuals only appears in {}},.,, where ¢} follows the dis-

*
™

tribution f. (¢f) and is independent of all other components of Dy, (v). In the parametric wild bootstrap,

Dy . (v) changes to

n

n
Dp ) =AM (T+ 2 <a<q)+ Y H1(T<a<q+ ),
i=1

i=1
where
71,0 o1,06; +2;(B1,0—=B82,0) | ... . 02,0 o208l 2, (Bao—Br0) | .
Zp* —1n 02,0 fslm,q ( 02,0 T,y qiy o gp* 1 71,0 fe\r q o1.0 Ti,qi; Qo
1i = - 2y = . ’
l Fele,q (51w, g3 o) ' EER CHENEET))
and D,,(v) changes to
n n
v v
— 4 —p
Dy (v) = E Z;1 (%—i_ﬁ <%’§’Yo>—|— E Z5;1 (fyo<qi§70+ﬁ>,
=1 i=1
where
71,0 o1,08i+z5(B1,0—B2,0) . 72,0 o2.08i+2,(B2.0—B1.0) .
. afe\x,q ( : 20 Ti,qi; Qo . gl_ofshc,q - 1.0 Zi, g5 Q0
D , , , »
Zy; = In 1 Zg; = In .

f€|x,q (5i|xi7Qi;a0) fs\z,q (8i|miaqi;a0)

The randomness introduced by the parametric wild bootstrap only appears in {¢}} i>17 where ¢ follows the
same conditional distribution f,|, 4 (€7 |74, ¢i; 20) as €; and is conditionally independent of &; given (z;,¢;).
So we expect arg mvinD;n (v) and arg mvinDpn (v) are highly correlated under P, just as in the nonparametric
bootstrap case. When ¢ is independent of (2, ¢)’, we simulate € independently from f. without conditioning
on (7,q;)'. Accordingly, all conditional densities f.|,, in Dpn (v) and D}, (v) change to f., and &} is
independent of all other components of Dy, (v). The proofs combine the proof ideas in Yu (2012) and

Theorem 4, but a formal development of these results is beyond the scope of this paper.
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4. Proof of Theorem 3

To prove theorem 3, we need the following four lemmas. The first lemma extends Lemma 4.4 of Seijo and
Sen (2011) to the case with nonconstant covariates. The other three correspond to Lemma 3, 4 and 1 in
Appendix B, respectively. We use @,, to denote the probability measure of w implied by the smoothed
bootstrap procedure, and use )}, for the empirical smoothed bootstrap measure. 6, and 68} are used for the

true value and the bootstrap estimator of 6 in the smoothed bootstrap; that is, 6, = 6p(Q,) and 67 = 0(Q?).

Lemma 1 Let F, and ¢ be, respectively, the distribution and characteristic function of €. Then

(i) for any n >0, sup |[exp {/—TIte} dP;(c) — ‘P(t){ — 0;
[t[<n

(i) | P:(e) — Fule)]l, = 0;

(iii) [e2dPs(e) 25 1;
(iv) [leldP;(e) = Pl
(v) [e'dP;(e) = Op(1).

Proof. Let F and f/—*‘\ﬁ be the empirical distribution of €1,--- ,&, and &y, -- - ,&,, respectively. Since
/exp {V—=1te} dP;(c) = exp {—v—lt?} f/—*‘\s (exp {V—1te}),
for any ¢ € R with [¢] <7,

’/eXp {\/jts} dP;(g) —exp {let?} E: (exp {ﬁts})‘
FE (exp {V/~1te}) — F£ (exp {\/jtg})’ < || F (IE—e]),

where F), is the empirical measure on the n data points and is understandable from the context. From the

proof of Theorem 3, F, (| —¢|) = Op(n~"/*). Thus

sup
[tI<n

/exp {V—1te} dP:(c) — exp {\/jlt?} F: (exp {ﬁte})' L0

and (i) follows immediately because & = fﬁ (e) £, 0and F? converges to F. in total variation distance with
probability one. (ii) is implied by (i) since F; is assumed to be continuous and (i) implies that the charac-

teristic functions of P; converges to the characteristic function of F. on the entire real line in probability.
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n

For (iii), as [e2dPs(e) = F= (%) - ?2, we need only show F¢ (%) — F: (%) — 0.

) )
~ yi — x5 ~ Yi — ;52 ~
& = l,\ill((h S’Y)“!‘Z,\ill(%‘ >’Y)

g1 02
x}Ba o + 02,06i — X} F2

P

/ )
xiB1.0 + 01,060 — TP ~
= : = 1(g; < A7)+
) (g < A7)

1(q >0 VA7)

_|_

zibro + o108 — TP (

iB2,0 + 02081 — Tif1 (
02

7<q¢ <)+ > Yo < qi <7)
1

(ﬂl,o - Bl) 1(g < A7)+ (52,0 - 31) 1(v<q<7)
o1
(52,0 - 32) 1(g > VA)+ (51,0 - Bz) 1(7 <q <)

(o)

!

:[L’Z

!/
+

01,0 4 /~ 020 ~
+ {A’l("y<qi <)+ —="1(7 <Qi§’7)} £
092 g1

01,0 ~ ; 020 ~
+ |:81(Qi < A7F)+ = 1(g; >vovfy)—1} git+ ¢
1 2

=A+B+C+D+¢e=0pn"Y2)+0p(n?)+0p(n~He; + Op(n~?)e; + &; uniformly for i,

where A and B are Op(n~'/2) due to the boundedness of z;. So 82 — &2 = (A+B+C+ D)* +2(A +

B+ C+ D)e; and F2 (e2) — FZ (e2) = Op(nY2) + Op(n=Y2)F% (%) = Op(n~Y/2). For (iv), notice that

[ el dPE(e) — [ |e] dFE(e)| = |F (‘g—gj . |s|)‘ < F (F—e]) + ‘?‘ 2,0, 50 [|¢]dP5(c) has the same

_j4 13 ~
probability limit as [ |e|dF<(g) which is Ple|. For (v), notice that [e*dP:(e) < ‘5‘ +4 ‘E‘ Fe (Je|) +
42 ~ N . ~ ~
6 ‘5’ Fe (|€|2) +4 }E’ Ft <|5|3) + F¢ (|5|4>, so we need only show FZ (|5|l> = Op(1) in probability, | =
1,2,3,4. Take [ = 4 as an example. By expanding the expression of ; above and using E[e] < oo, it is not

hard to show this indeed holds. m
Lemma 2 Under Assumptions D and E, 07, — g2 0.

Proof. First note that

On = arg meannm(wW)v
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+Qn([x' )] 16 <a<+ [ (B 5) 1(ﬁ<q§v)>
+Qn ([33/ (Al - ﬂl) 315] 1(g<HAY)+ {xl (32 - 52) 325] 1(q > WV’Y)>
+Qu ([o (Br=52) 3re| 1 < a < A) + |2/ (B — 1) s 1E < g < )

+Qn (67e°1(q <7) +531(¢ > 7)) =A+ B+ C+ D+ E.

Since under @y, € and (2’,q)" are independent and P: (¢) =0, C' = D = 0. E does not depend on 6 and is
finite as n gets large enough from Lemma 6. So arg meinQnm(wW) = arg mein (A + B). From Assumptions E1,
E3 and E4 and the dominated convergence theorem, A+ B is finite and continuous in €, so 6,, exists. Actually,
A+ B >0 and = 0 when 0, = 5, so without loss of generality, we can take 6, = 5, and correspondingly,
on = 0 + op(1). In the general case when ¢ and (2’,¢q)" are not independent and (z’,¢)" are not bounded,
then C' and D may not be zero and the dominated convergence theorem cannot be applied, so the analysis
is more involved.

We now prove v — vy, LN 0. The proof below mimics the proof of Lemma 3. Suppose v > ,. Note that

*/

sk [l L —
Y* = X*Bay + 0™ + X;%érgn + 6(,”52%, and X* lies in the space spanned by P; = X, (X’Y/X’Y) X,

—_— _

where Y*, X*, Xi,yn, X, e* and E*<,Yn are the counterparts of Y, X, X<, X,, € and €<, in the smoothed

v
bootstrap environment, dg, = S1r, — fa2n, and 0y, = 015, — 2y S0 as the counterpart of M, () in Lemma 3,

1
My ()= Y (I =P Y

= % (209085, X2 (I = P2) " 4 205n03y X2, (I = PY) e + 202,050 (I — PY) el

+5anX;lvn (I - Pv*) X;%(SB” + Ugng*/ (I o P“T) e+ 5f2m5*§/7n (I - P;) E*Svn] :
By a Glivenko-Cantelli theorem, see, e.g., Theorem 8.3 of Pollard (1990),
* * Q’n
sup  [M () = M* ()] =0,
YTy 2yn

where

M*(7) = 8 (M () = M (3) M (3) ™ M (1)) 50 + Q[ (0208 + el (g < 7))’
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with M (y) = Qn [z2'1(g < v)]. The second term is finite as n gets large and does not depend on 7, so
arg’yglg’lynM* (7) = arg ﬁgn%" (M (V) = M (o) M ('y)_1 M(fyn)) dpn. Since dg, # 0 as n gets large,
it is enough to show M (y,) — M (2) M ()" M () > M (1) = M () M ()™ M (y) = 0. M (7,,)
is positive definite for n large enough by the dominated convergence theorem and Assumption D2, so we
need only show M (v) > M (v,). But M (v) — M (7)) = Qn [22'1( < ¢ < v)] > 0 for n large enough by
the dominated convergence theorem and Assumptions D3 and D4. Symmetrically, we can show the case
with 7 < 7,. An extended version of Theorem 2.1 of Newey and McFadden (1994) can be applied to show
Vr = Yn 9 0. With the consistency of ~/ in hand, it is easy to show the consistency of 5% (7)), the

counterpart of 3 (7), by a dominance argument. ®

Lemma 3 Under Assumptions D and E, v =7+ Oq,, (%), and B = B+ Oq,, (ﬁ)

Proof. We apply the proof idea of Theorem 3.2.5 in Van der Vaart and Wellner (1996) in this proof.
Define d (9, é\) = Hﬁ — B‘ + /|y = Al. We first bound Q,,(m(w|f) — m(w|§)) for 6 in a neighborhood of

)

o~

Qu(m(w]6) = m(w(d))
= (b1 — 51)lQn [z2'1(q <y A7) (Bl - 51) + (32 - 52)lQn [v2'1(q > vV 7)] (Bz - 52)
1= 2) Qulaa 1y AT <a <A (B~ 82) + (B~ 51) Qulaa'1G <a <7 vA) (B - 1)

A~
)

>0 (- + |-l + b -a) = e (0.0)

_|_

where the last inequality need some explanations. By the dominated convergence theorem, all @, in the
equality can be substituted by P and 7 substituted by o for n large enough, so by the arguments in Lemma
4, we can find some C such that the inequality holds for the given 6.

For each n, the parameter space (minus the point #) can be partitioned into the "shells" S;, =

{9 227 < prpd (9, é\) < 27} with r, = v/n and j ranging over the integers. Given an integer J,

On (rnd (9;;,5) > 2") < > O <eei%f. (QI/m (w]0) — Q=m (w|§)) < o) +Q, (2d (0;,5) > n) .
]ZJ J:n
27 <nry,

The second term converges to zero as n — oo for every n > 0 by the consistency of 8, so we can concentrate

on the first term. Note that

Qam (wl6) = Qm (wlf) = (@5 = Qu) (m (wl0) = m (w]B) ) +Qu (m (wl6) = m (w]d)).
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~

By the bound of @, (m(w|f) — m(w|f)) above and the maximal inequality, we have

@ (it (@imwip) - @ (ulf)) <0)

0€S; n

<Q. ( sup [(@; — @) (m (w}t) — m (wfd))] > 022H>

2
0€S; n n

27 2252 r
<C C =C—.
- \/ﬁrn/ r2 \/n2i

Consequently,

~ r
Qn (rnd (9;;,9) > 2M> <oy
= V/n2i
which can be made arbitrarily small by letting J large enough since by definition r,, = /n. ®

Lemma 4 Under Assumptions D and E, uniformly for h in any compact set of R2*+1,
s (m (-[7+ =i+ 2 ) - m ([5.3))
= uy P [z;271 (g; < 7o) ur + up P [2271 (i > 70)] uz — W (u) + D3, (v) + 0q, (1)
where Wy, (u) is specified in Section 3.1, and
- v - v
D* = 71'1(/\ *<i<A> 7i1(A<i<A 7)
() ;zl T+ <a <y +;ZQ T<a <A+

with w in W, (u) and D%, (v) following Q, rather than P.

Proof. Note that

nQ: (m (‘B—l— \;%,ﬁ-l—:;) —m('

Tz 201 PN ~ Tixh 0 PO
:Zl<u’1 ;Zul—uﬁﬁmiai 1<qi§'y/\'y+g)+z uf lnlug—u'zﬁmiei 1(g; >AVAy+ E)
=

— - — — - — i 1( —<q < )
+i§:1 <51 B2 NG 1 2 >01€] ’)’"‘n g <7

n

>
i=1

</§1+3%—B2 Ty Br+ —=— B,

+
|
=
[V}
~——
Q)
[\¥)
™
&
[
/N
)
AN
S
IN
=)
+
Sl
N

’

n
> SR wl (a6 STAT + £) —uiQn [riofl (6 STAT + 2)]w
i=1

verges to zero in probability for i in any compact set. By the dominated convergence theorem and the a.s.

By a uniform law of large number, con-

convergence of 7 to Yo, Qy [z}l (s <AAF+ 2)] — Plz;xi1 (g < 70)] as n goes to infinity. Similarly,

n ’
Z:l u) g1 (q; > 5 VA + L) converges to uhP [z;@51 (¢; > 70)] uz for h in any compact set.
i=

n
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Next, we show that the difference between wu/ 2% Z zigil (s SFAF+ L) and Wiy, (u1) is og, (1).

v

n
n

Since ﬁ Y wigil (s <FAFT+ L) = Oq, (1), eg., by calculating its second moment, and 71 converges
i=1

n
to 01,0 almost surely, we need only show that the difference between \% > xieil (qi <AAF+ E) and
=1

iﬂi zie1 (¢ < v0)is 0, (1). SmceIeri (@ <ANT+ ) -7 Zzsz (¢ <o) = foal (70 <
Qi §l YANY+ =) and ¥ = v + Op(n~ ) by Assumption E3, D4 and the domlnated convergence theorem
we can show the second moment of —= E ;6,1 ( Yo < q <AANY+ 3) converges to zero. By tedious but
quite similar arguments, we can show the dlﬂ'erence between the remaining terms and the targets we want
is 0g,(1). m
Proof of Theorem 3. The proof completely parallels the proof of Theorem 1 and Theorem 2. We first
derive the finite-dimensional limit distributions of (W,, (u) , D%, (v)), then check its stochastic equicontinuity,
and finally apply the argmax continuous mapping theorem to show that the asymptotic distribution of 87 is
as specified in the theorem.

First, define T7; and Tb; as in the proof of Theorem 1, T5; = Z1;1 (ﬁ + o <q < 3), and Ty; = Zo;1 (3 <q <A+ %),
then

Qn (exp {V=1[sT1; + s4Ti + +t1T31‘ + 2T })
= Qu (exp {VIs'T,/V/}) + ° fq ) Qn (exp {V—=15'T;/v/n} [exp {V—1t1z1;} — 1]| ¢ =7)

+ 2, 6) Qu (o0 {VEIVT V) [oxp (V- Ttam} = 1]]as=3) +0 (7).

I ~
where s = (s} s5)’, T, ( Si, Sh; ) . f4(q) = [ f(z,q)dz is a uniformly consistent estimator of f,(¢), and
o (1) is a quantity going to zero uniformly over ¢ = 1,--- ,n from Assumption E3. By the Taylor expansion

of exp {v/=1s'T;//n}, the dominated convergence theorem and Lemma 6,
Qn (exp {V-1T;//n}) =1— %s'js +o (711) ,
where
J = lim Qn (TiT}) = diag { P [z2'e”1 (¢ < )] , P [22'"1 (g > 70)] } = diag {P [z2"1 (¢ < %0)], P w21 (¢ > )]} -
Next,

Qn (exp {V=1s'T;/v/n} [exp {V-1t171;} — 1] ‘ ¢ =7) = Qy ([exp {V—-1t:1z1;} — 1] | @ =7) +o(1)
— [ lexp {v=Ttizi} - 1] fJf( DdaaPi(e) +oft) = P [{exp (=Tt} o= ] =1

q\Y
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where the first equality is from Taylor expanding exp {V—ls’Ti / \/ﬁ}7 the second equality is from the de-

finition of @, and the convergence is from the dominated convergence theorem and Lemma 6. Similarly,

Qn (exp {\/jls’Tz/\/ﬁ} [exp {\/jltgfgi} — 1] | g = ?) — P [{exp {\/jltgfgi}ﬂ = 'yg] —1. In summary,

Qn (exp {V=1[sT1; + 55T + +t1 T3 + t2T4;] })

=14 = 1 [—5 Ts+ fq (v 1)1( [{exp{\/itlzh}ﬂql—’yo] —1)
iy G0y (P [{exo {VTmi Y = 0] = D] +0 (1)

So
Qn (exp {\/ -1 [81 ZTM + 59 ZTm + +t1 ZT&‘ + ty ZTzu'
i=1 i=1 i=1 i=1

H Qn (exp {V=1 [$'Ti/v/n + t:1T5; + t2T4;] })
=1

)

—>exp{ % sTs+ fq(70) vl( [{exp{rtlzll}}|qz—70]—l)
+fq () va2 (P [{exp {V=1t2Zai } }[ a; = %0] = 1)},

which matches the characteristic function of (W (u), D (v)), and the result of interest follows.
Second, for the stochastic equicontinuity, note that for any € > 0 and 0 < v; < vy which are stopping

times in a compact set,

Qn< sup |3 (12) — (v1)|>e><Qn<Zzzz sip 1(7+2<q<q+)> )

|[vg—v1|<d |vg—v1|<8

V2
< n i 1( 7< i < 7)
E Q [22 sup ~+ ¢ <A+ -

i=1 |’U2 ’U1‘<(5

0
/e < @ for n large enough,
€

where C' in the last inequality can take (?q +¢) sup Qr [|Z2i] lgi = 7] < oo from Assumption D4, DG,
Yo—€e<y<70+te€
E3 and Lemma 6. = ’ ’

5. Simulation Results for Pseudo-SB

To avoid the curse of dimensionality in the SB of DGP2 and DGP4, we can simulate only from the marginal
density estimate of ¢ instead of the joint density estimate of (¢,&)" and (z,q)’, but then there is a misspec-
ification problem. We label such a SB procedure as the pseudo-SB; see Section 7 of Seijo and Sen (2011)
for a detailed description. Similarly, we label the NPI that is based on the marginal density of € in DGP2
as the pseudo-NPI. The results for pseudo-SB and pseudo-NPI are summarized in Table 4. The results in
the table show that the pseudo-SB intervals are not reliable. In DGP 2, their coverage is almost 1, which
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induces long intervals, while in DGP4, their performance is close to that of the correct SB procedures. It is

hard to filter out which cases are suitable to use pseudo-SB intervals.

Length

n— 50 200 500
CIs| Cov and Leng(x1071)— | Coverage | Length | Coverage | Length | Coverage
DGP2
Pseudo-SB-LLSE (ET) 0.988 7.461 0.997 1.539 0.998
Pseudo-SB-LLSE (S) 0.992 8.141 0.992 1.643 0.994
Pseudo-SB-MLSE (ET) 0.989 7.089 1 1.425 1
Pseudo-SB-MLSE (S) 0.995 7.305 1 1.419 1
Pseudo-NPI 0.976 2.565 0.991 0.575 0.987
DGP4
Pseudo-SB-LLSE (ET) 0.961 6.170 0.936 1.423 0.949
Pseudo-SB-LLSE (S) 0.958 6.688 0.948 1.534 0.938
Pseudo-SB-MLSE (ET) 0.945 5.650 0.943 1.308 0.941
Pseudo-SB-MLSE (S) 0.943 5.616 0.942 1.301 0.943

0.593
0.636
0.549
0.546
0.222

0.560
0.603
0.516
0.513

Table 4: Performance of Pseudo-SB and Pseudo-NPI: Coverage and Average Length of

the Nominal 95% Confidence Intervals for v (Based on 1000 Repetitions)

6. Construction of the Nonparametric Posterior Interval

The following algorithm is given in Yu (2008).
N ’
Step 1: Get the LSE (ﬁ, B, 3’) and the corresponding residuals {£;}.-_,.

Step 2: Estimate the joint density of w by kernel smoothing,

Foo = e LK (M)

i=1

where h is the bandwidth, and K (-) : R¥*2 — R is a kernel density.

Step 3: Construct the estimated likelihood function as

~ n 1 ~ i—{l?;/\ 1~ 1‘—.73;/\
La(y) = H lAf (Zlﬁﬁl’x’"%) g <v)+=f (Mﬂ%%) 1(g; > 7)]

1 02 02

- 1oy —aliB S
= exp {Z 1(g; <7)In (&f (81”7%%)) + g >y
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and the posterior distribution as

e {LG)}m ()
Jrexo {Z() pma () a7

~

()

where 7 () is the prior of ~, e.g., m2 (y) can be the uniform distribution on (¢min, gmax) With gmin

(¢max) being the minimum (maximum) of {¢;}._;.

Step 4: Based on a MCMC algorithm, draw a Markov chain

whose marginal density is approximately p,, (7). Then the (1 — 7) NPI is constructed by picking out
the 7/2 and 1 — 7/2 quantiles of S.

M=

When ¢ is independent of (2, g)’, f(w) in Step 2 and 3 is substituted by fg (e) = # K (&; —¢), where

h is the bandwidth, and K () : R — R is a kernel density.

1
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