
Supplementary Material on "The Bootstrap in Threshold Regres-

sion"

1. No Error Term: An Illustration

This section uses a simple example to illustrate the main results of this paper. The speciality of this example

is that �nite-sample distributions of all estimators are available, but in the general case, such distributions are

hard to derive. In construction of this paper, this example provides the direction of conjecturing the general

results. We put this example here only to make the results in the main text more expected. Nevertheless,

connecting threshold regression with the existing boundary literature in the bootstrap environment seems

novel. As in the main text, we still use Z and Z� to represent the asymptotic distribution and the asymptotic

bootstrap distribution of the 
 estimators, respectively. Subscripts L andM are used to indicate the objects

based on the LLSE and the MLSE, respectively. We adopt an unusual notation of conditioning: jFn, jb
 and
jD(�) all indicate conditioning on the original sample path instead of on the �-�eld generated by Fn, b
 and
D(�) (which are de�ned below). Such notations are used in some statistical literature such as Bickel and

Freedman (1981).

We simplify (1) in the main text to the extreme case as follows:

y = 1(q � 
); q � U [0; 1]: (1)

This corresponds to x = 1, �1;0 = 1, �2;0 = 0, �1;0 = �2;0 = 0 in (1) of the main text. Here, q follows a

uniform distribution on [0; 1], and 
0 = 1=2 is of main interest. Note that there is no error term " in (1), so

the observed y values can only be 0 or 1. In this case, the threshold point is essentially a "middle" boundary

of q because there is a sharp change in y values when q switches from the left to the right side of 
0; see

Section 2 of Yu (2012) for a detailed analysis of this point. It is easy to see that the LLSE and LMLE are

the same, denoted as b
L, and equals the qi closest to 1=2 from the left.1 For t < 0,

P (n (b
L � 
0) � t) = P �qi =2 (
0 + t

n
; 
0] for all i

�
=

�
1 +

t

n

�n
! et; (2)

so the asymptotic distribution of n (b
L � 
0) is a negative standard exponential, and there is no density on
the positive axis. Note further that b
L is a nondecreasing function of n conditional on the original sample
path, and there is no data point between b
L and 
0. Similarly, the MLSE and MMLE are the same, denoted
as b
M , and equal the average of the two qi�s closest to 1=2 from the left and right. Suppose there are m yi�s

taking value 1, and the remaining (n �m) yi�s take value 0, then b
L = q(m) and b
M =
q(m)+q(m+1)

2 , where

1Strictly speaking, b
L depends on whether there exists qi no greater than 1=2 or not. If there is qi no greater than 1=2, thenb
L equals the qi closest to 1=2 from the left. Otherwise, b
L equals the qi closest to 1=2 from the right. Since the probability
that all qi�s are greater than 1=2 equals

�
1
2

�n
which converges to zero, we can assume b
L � 1

2
in the following discussion.
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Figure 1: Z, Z�, (Z� � Z) jD(�) and Z� � Z for the LLSE and MLSE

q(m) is the mth order statistic of fqigni=1. By a similar analysis as in (2),

P
�
n
�
q(m+1) � 
0

�
> t
�
=

�
1� t

n

�n
! e�t; (3)

for t � 0. So for t < 0,

P (n (b
M � 
0) � t) = P
 
n
�
q(m) � 
0

�
+ n

�
q(m+1) � 
0

�
2

� t
!

(4)

= P
�
n
�
q(m) � 
0

�
� 2t� n

�
q(m+1) � 
0

��
!
Z 1

0

e2t�sd
�
1� e�s

�
=
e2t

2
;

where the convolution form in the convergence step is from the fact that q(m+1) and q(m) are independent.

Similarly, for t � 0, P (n (b
M � 
0) > t) ! e�2t

2 . So n (b
M � 
0) converges to the double exponential

distribution with scale 1=2.

1.1 Invalidity of the Nonparametric Bootstrap

The objective function of the least squares estimation is
nP
i=1

(yi � 1(qi � 
))2. To consider the ability of the

bootstrap to approximate the distribution of n (b
L � 
0), we need to obtain the asymptotic distribution of
n (b
�L � b
L), where b
�L = argmin




nP
i=1

(y�i � 1(q�i � 
))
2 is the closest q�i to 1=2 from the left, and (y�i ; q

�
i )
0

follows the empirical distribution Fn. Since 
 is essentially a boundary, the following derivation is similar to

that in Example 3 of Bickel et al. (1997).

According to Chan (1993), b
L converges to 1=2 as n goes to in�nity for almost every sample point !
in 
. In bootstrap sampling, as long as

�
q(m); y(m)

�
is drawn, b
�L = q(m). So P � (n (b
�L � b
L) = 0jFn) =

2



1 � P �
��
q(m); y(m)

�
is not drawn

�
= 1 �

�
1� 1

n

�n ! 1 � e�1 > 0,2 while P (n (b
L � 1=2) = 0) ! 0 since

the asymptotic distribution of n (b
L � 1=2) is continuous. Therefore, the bootstrap is not consistent. In the
general case, there is no explicit form for the limit of P � (n (b
�L � b
L) = 0jFn) to check whether the bootstrap
is valid, so here we analyze the whole distribution of n (b
�L � b
L) jFn to provide more intuitions.
Actually, the limit distribution of n (b
�L � b
L) jFn does not exist. Suppose it indeed exists, then for any

t < 0;

P � (n (b
�L � b
L) < tjFn) = P �n �no q�i is sampled from [b
L + t

n
; b
L]����Fn� = �1� k

n

�n
must converge to a �xed value, where k =

nP
i=1

1
�b
L + t

n � qi � b
L�. This means that k must converge to a
�xed value. But lim

n!1
k =1 and lim

n!1
k = 0 for any !, so P � (n (b
�L � b
L) < tjFn) cannot converge. Neverthe-

less, we can �nd the weak limit of n (b
�L � b
L) under Pr. Conditional on b
L, k � 1+Bin�n� 1; jtj=n
1�(1=2�b
L)

�
converges weakly to 1+N(jtj) for any b
L, where N(�) is a standard Poisson process. So Pr (n (b
�L � b
L) < t)
converges to E

�
e�(1+N(jtj))

�
, which is the average of e�(1+N(jtj)) for all realizations of N(jtj), or the asymp-

totic distribution of the average bootstrap. For a given realization of N(jtj), the implied distribution by the

component measure e�(1+N(jtj)) is discrete. A new jump in e�(1+N(jtj)) happens as jtj gets larger such that

the expanding interval
�b
L + t

n ; b
L� covers a new qi. Because e�(1+N(jtj))jt=0 + �1� e�1� = 1, there is no

probability on the positive axis, which is similar to the asymptotic distribution. The left panel of Figure 1

shows a typical realization of e�(1+N(jtj)). The density function of E
�
e�(1+N(jtj))

�
is also shown in Figure 1.

It is obviously di¤erent from the asymptotic distribution since there is a point mass 1� e�1 at zero.

The above results are surprising in two aspects. First, while the asymptotic distribution of the threshold

estimator exists and is continuous, the conditional weak limit of the bootstrap estimator does not exist.

This is di¤erent from conventional models where the asymptotic distribution is normal. Essentially, this is

because the asymptotic bootstrap distribution of the threshold point relies on bootstrap sampling on the

local data (i.e., b
 + t
n � qi � b
) rather than sampling on the whole dataset in conventional models. Second,

the asymptotic distribution of the average bootstrap is a genuine mixture of discrete measures instead of a

�xed measure as required by the bootstrap validity. Although the point mass at zero is always 1 � e�1 for

all discrete measures, how to distribute the remaining e�1 probability depends on how the original data are

sampled. When more data are sampled in the left neighborhood of 1=2, the point masses on the negative

axis in Figure 1 will be closer to zero.

One important similarity between the discrete component measure in the average bootstrap and the

asymptotic distribution is that both of them critically depend on the local information around the threshold

point. The asymptotic distribution depends on the density of q at 1=2, while those discrete measures depend

on the local data around b
 in the original sample. This is not di¢ cult to understand by noting that the true
distribution of q in the asymptotic theory is fq(�) (U [0; 1] in this example), and the true value of 
 is 1=2,

while in the bootstrap, the true distribution of q is the empirical distribution of fqigni=1, and the true value
2 In the general case, this probability is not constant from Figure 1 in the main text. So from Hewitt-Savage zero-one law,

P �
�
n
�b
�L � b
L� = 0jFn� cannot have a weak limit.
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of 
 is b
.
In summary, although this example is very simple, it shows one general feature of the bootstrap for the

threshold point: the local information around 
0 (or b
) is most important for the bootstrap inference. As a
result, the conditional weak limit of the bootstrap estimator does not exist, and the component measures in

the average bootstrap are discrete and depend on the original data. Therefore, the bootstrap of the threshold

point is invalid.

Putting this example in the general framework of threshold regression,

D (v) =

8<: N1(jvj),

N2(v),

if v � 0;

if v > 0;
and D� (v) =

8>><>>:
N1(jvj)P
i=1

N�
i�, if v � 0;

N2(v)P
i=1

N�
i+, if v > 0:

Now,

P � (n (b
�L � b
L) = 0jFn) �! P �
�
N�
1� > 0

�
= 1� e�1;

and for t � 0, Pr (n (b
�L � b
L) < t) is the average of the following probabilities for di¤erent realizations of
N(jtj): 8>>>>>>>>><>>>>>>>>>:

P �
�
N�
1� = 0

�
= e�1;

P �
�
N�
1� = 0; N

�
2� = 0

�
= e�2;

...

P � (Poisson(k + 1) = 0) = e�(k+1);
...

if N(jtj) = 0;

if N(jtj) = 1;
...

if N(jtj) = k;
...

= e�(1+N(jtj));

where N(jtj) is a truncated Poisson process starting from t0 � inf ft : N1 (jtj) = 0g. This N(jtj) is the same

as the N(jtj) above. The point mass implied in e�(1+N(jtj)) at the kth jump of D(v) on v � 0 is

P �
�
N�
j� = 0 for j � k and N�

(k+1)� > 0
�
= e�k �

�
1� e�1

�
;

which is exponentially decaying. Note also that under Pr, ZL has a thinner tail than Z�L and Z
�
L � ZL. For

comparison, their densities on t < 0 are listed below:

fZL (t) = e
t; fZ�L (t) = expft� t=eg

�
1� e�1

�
; fZ�L�ZL (t) = expft� t=e� 1g

�
1� e�1

�
:

In the general case, the bootstrap still fails as shown in Section 3.2, but there are some di¤erences in

the component measure. First, there is positive probability on the positive axis. Second, not every jumping

location of D (�) on v � 0 corresponds to a point mass. Third, the probability mass function is not necessarily

monotone on the negative axis. Fourth, the point mass at zero is not �xed as 1� e�1.
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If we consider the MLSE, then the asymptotic distribution of n (b
�M � b
M ) under Pr is the average of
the following discrete distributions:

P � (Z�M � ZM = 0jD(�)) = P �
�
N�
1� > 0; N

�
1+ > 0

�
=
�
1� e�1

�2
;

P �
�
Z�M � ZM =

T1+ � T2�
2

� T1+ � T1�
2

����D(�)� = P � �N�
1� = 0; N

�
2� > 0; N

�
1+ > 0

�
= e�1

�
1� e�1

�2
;

P �
�
Z�M � ZM =

T2+ � T1�
2

� T1+ � T1�
2

����D(�)� = P � �N�
1+ = 0; N

�
1� > 0; N

�
2+ > 0

�
= e�1

�
1� e�1

�2
;

P �
�
Z�M � ZM =

T2+ � T2�
2

� T1+ � T1�
2

����D(�)� = P � �N�
1� = 0; N

�
1+ = 0; N

�
2� > 0; N

�
2+ > 0

�
= e�2

�
1� e�1

�2
;

...

P �
�
Z�M � ZM =

Tk+ � Tj�
2

� T1+ � T1�
2

����D(�)� = P � �Poisson(k + j � 2) = 0; N�
j� > 0; N

�
k+ > 0

�
= e�(k+j�2)

�
1� e�1

�2
;

...

where Tk+ and Tj�, k; j = 1; 2; � � � , are jumping locations of D(�). So the unconditional density of Z�M �ZM
at t 6= 0 is

fZ�M�ZM (t) =

1X
k;j=1;k+j>2

e�(k+j�2)
�
1� e�1

�2
gk;j(t);

where when k; j � 2, gk;j(t) is the density of
T(k�1)+�T(j�1)�

2 , which is 2
k�je�2t

(j�2)!

k�2P
l=0

2�2l

l!(k�2�l)! t
k�2�l� (l + j � 1; 0 _ (�4t))

with � (�; �) being the upper incomplete gamma function, and when k = 1; j � 2, gk;j(t) is 2j�1 jtjj�2 e2t= (j � 2)!1 (t < 0)

and when k � 2; j = 1 is 2k�1 jtjk�2 e�2t= (k � 2)!1 (t > 0). So the unconditional density of Z�M � ZM at

t 6= 0 is

fZ�M�ZM (t) =
�
1� e�1

�2
e�2jtj

1X
k=2

2k�1e�(k�1)

(k � 2)! jtjk�2

+
�
1� e�1

�2
e�2t

1X
k=2

1X
j=2

2k�je�(k+j�2)

(j � 2)!

k�2X
l=0

2�2l

l! (k � 2� l)! t
k�2�l� (l + j � 1; 0 _ (�4t)) ;

which is symmetric and whose tail is thicker than that of fZM (t) = e�2jtj. By a similar analysis, we can

show that the unconditional density of Z�M is

fZ�M (t) =
1X

k;j=1

e�(k+j�2)
�
1� e�1

�2
gk+1;j+1(t) =

1X
k;j=2

e�(k+j�4)
�
1� e�1

�2
gk;j(t)

=
�
1� e�1

�2
e�2te2

1X
k=2

1X
j=2

2k�je�(k+j�2)

(j � 2)!

k�2X
l=0

2�2l

l! (k � 2� l)! t
k�2�l� (l + j � 1; 0 _ (�4t)) ;
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which is also symmetric and whose tail is also thicker than that of fZM . The right panel of Figure 1 shows

the MLSE counterparts of the LLSE in the left panel.

1.2 Invalidity of the (Parametric) Wild Bootstrap

Because the distribution of the error term is a point mass at zero, each bootstrap sample coincides with the

original sample. As a result, each bootstrap estimator is the same as the original MLE or LSE and does

not contain any randomness when conditioning on the original data. Consequently, the bootstrap CI only

includes the MLE or LSE itself and does not cover 
0 for almost all original sample pathes. Putting in the

general framework of threshold regression, we have D�
wn (v) = Dn (v) and D

�
pn (v) = Dpn (v), so Z

� = Z for

any D(�) for both estimators.

In this simple example, there is no error term, so a sharp jump in the value of y appears at q = 
0, which

induces the invalidity of the above bootstrap procedures. When a nondegenerate error term is added in (1),

the sharp di¤erence of y values in the left and right neighborhoods of q = 
0 is blurred. However, these

bootstrap schemes still fail in inference on 
 as shown in Section 3 of the main text. The following discusses

two valid bootstrap schemes in this simple example: the parametric bootstrap and the smoothed bootstrap.

1.3 Validity of the Parametric Bootstrap and Smoothed Bootstrap

In parametric bootstrap sampling, the following DGP is used: y = 1(q � b
), where q � U [0; 1] and b
 is the
MLE which is also the LSE in this simple case. For any bootstrap sample fw�i g

n
i=1 from this DGP, b
� is

the MLE using fw�i g
n
i=1. The question left is to derive the asymptotic distribution of n (b
� � b
) conditional

on b
. For this simple setup, the exact distribution of n (b
� � b
) conditioning on b
 can be derived explicitly.
First consider the LMLE. For any t < 0,

P � (n (b
� � b
) � tjb
) = P ��q�i =2 �b
 + t

n
; b
� for all i���� b
� = �1 + t

n

�n
! et for any b
;

so the parametric bootstrap for 
 is consistent P almost surely. Note the similarity of this derivation with

(2). Next consider the MMLE. For any t < 0,

P � (n (b
� � b
) � tjb
) = P �
0@ n

�
q�(m) � b
�+ n�q�(m+1) � b
�

2
� t

������ b

1A

= P �
�
n
�
q�(m) � b
� � 2t� n�q�(m+1) � b
���� b
�

=

Z 1

0

�
1 +

2t� s
n

�n
d
�
1�

�
1� s

n

�n�
!
Z 1

0

e2t�sd
�
1� e�s

�
=
e2t

2

for any a.s. consistent b
. Similar analysis applies to t � 0. This derivation is similar to (4).
In the smoothed bootstrap, the only di¤erence is that q � bfq(�) which is a consistent estimator of fq(�).

6



­10 0 10
0

15

D
(v

)

D(v)

­10.5 0 9.5
0

0.28

1­e ­1

v

Fr
eq

ue
nc

y

(Z*­Z )|D(⋅)

­10 ­3.1 0 10

0

10
D(v)

D
(v

)

­6.9 0 13.1
0

0.28

(Z*­Z )|D(⋅)

v

Fr
eq

ue
nc

y

1­e ­1

­10 1.70 10

0

30
D(v)

D
(v

)

­11.7 0 8.3
0

0.28

(Z*­Z )|D(⋅)

v

Fr
eq

ue
nc

y

1­e ­1

Figure 2: Dependence of the Component Distribution of Z� � Z on D(�)

Now, for the LLSE,

P � (n (b
� � b
) � tjFn) = �1� � bFq (b
)� bFq �b
 + t

n

���n
! et

for any t < 0 as long as bfq(�) is consistent in a neighborhood of 
0 and b
 is a.s. consistent, where bFq(�) is
the cdf associated with bfq(�). For the MLSE,
P � (n (b
� � b
) � tjFn) = Z 1

0

�
1�

� bFq (b
)� bFq �b
 + 2t� s
n

���n
d
�
1�

�
1�

� bFq �b
 + s

n

�
� bFq (b
)��n�

which converges to e2t=2 for any t < 0. Similarly, for t � 0, P � (n (b
� � b
) > tjFn) converges to e�2t=2.
2. Results Based on the MLSE for the Example in Section 3.2

This section contains the analysis about the example in Section 3.2 based on the MLSE. Figure 2 corresponds

to Figure 1 in the main text. Comparing to Figure 1 there, the support of (Z� � Z) jD(�) based on the

MLSE is not completely contained in the set of middle points of the contiguous jumping locations of D(v);

the middle point of any two jumping locations can be included in the support of (Z� � Z) jD(�). This is of

course because N�
i� can be zero such that two or more jumps can be combined into one. Although there are

more point masses in the distribution of (Z� � Z) jD(�) based on the MLSE and we expect this conditional

distribution would give a better approximation to the distribution of Z, the bootstrap nevertheless fails since

the distribution of Z is continuous while the distribution of (Z� � Z) jD(�) is discrete.
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The �rst characteristic of the distribution of (Z� � Z) jD(�) based on the LLSE still holds here. The

largest point mass happens at zero. The second characteristic changes to that large point masses often

happen around deeply negative jumps. Since the calculation based on the MLSE is too involved, we only

provide some illustrations based on the LLSE here. Suppose Min� = 0, z11 > 0, z12 < 0, z1i > 0 for i > 2

and z2i � 0 for all i. In this case, P � (Min� = 1) = 0.3

P � (Min� = 2) = P
� �N�

1�z11 +N
�
2�z12 � 0; N�

3� > 0
�

=
�
1� e�1

�X1

k=0
P �
�
N�
1�z11 + k � z12 � 0

�
P �
�
N�
2� = k

�
=
�
1� e�1

�X1

k=0

e�1

k!
P �
�
N�
1� � �k

z12
z11

�
=
�
1� e�1

�X1

k=0

e�1

k!

Xj
�k z12z11

k
j=0

e�1

j!
;

and

P � (Min� = 3) = P
� �N�

1�z11 +N
�
2�z12 +N

�
3�z13 � 0; N�

4� > 0
�

= P �
�
N�
1�z11 +N

�
2�z12 � 0; N�

3� = 0; N
�
4� > 0

�
= e�1

�
1� e�1

�X1

k=0

e�1

k!

Xj
�k z12z11

k
j=0

e�1

j!
= e�1P � (Min� = 2) ;

where bxc is the greatest integer less than x. For k > 3, it can be similarly shown that P � (Min� = k) =

e�1P � (Min� = k � 1). For this simple sample path, the distribution on the left hand side of the deeply

negative jump mimics the distribution in the simple threshold model without error term; see Figure 1 for

intuitive impression. For more complicated sample paths of D(v), the decaying rate may not be exactly

e�1. The insight for the LLSE should be extended to the MLSE. The third characteristic cannot apply here.

The point masses in the right neighborhood of zero are not less than those in the left neighborhood. This

is con�rmed by checking the average bootstrap distribution Z� � Z in Figure 3 where the distribution of

Z� � Z is symmetric.

2.5% Quantile 97.5% Quantile Coverage

Asymptotic -12.18 12.18 95.00%

Min -89.28 -0.03 24.44%

Max 0.06 88.97 99.99%

Average -15.44 15.68 86.48%

Average Bootstrap -23.01 24.23 99.17%

Table 5: Characterizations of Quantiles and Coverages In the Bootstrap

3There is a general result: if z1k < 0, then P � (Min� = k � 1) = 0; if z2k > 0, then P � (Min+ = k) = 0, where Min+ is
the number of jumps before attaining the minimum of D(v) on v > 0.
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Figure 4: Distributions of 2.5% and 97.5% Quantiles and Coverage

Table 5 corresponds to Table 1 in the main text. The results here are quite similar as those based on the

LLSE. For example, the average coverage is less than 95%, which means that there will be an undercover

problem in practice when the bootstrap is based on the MLSE. Also, the absolute values of the quantiles of

the average bootstrap are larger than those of the asymptotic counterparts, which indicates that Z� � Z in

Figure 3 has a heavier tail than Z. This fact can also be con�rmed by noticing that V ar(n (b
� � 
0)) = 121:45
which is more than double of V ar(n (b
 � 
0)) = 31:06. Theoretically, 2.5% quantiles and 97.5% quantiles

should be symmetric; the little asymmetry in Table 5 is due to the simulation error. Figure 4 corresponds to

Figure 3 in the main text. Di¤erent from the LLSE case, the distributions of the 2.5% quantile and 97.5%

quantile are symmetric and there is no point mass at zero in the distribution of the 97.5% quantile.

3. Other Bootstrap Schemes

Parametric Bootstrap: Suppose the only unknown element in P is # = (�0; �0; �0)
0, where � 2 Rd� is

the nuisance parameter a¤ecting the shape of the conditional error distribution f("jx; q;�). Denote

the dependence of P on � by P�, then P = P�0 , and Pn = Pb�, where b� is the maximum likelihood

estimator (MLE) or the Bayes estimator (BE) in Yu (2012). As mentioned in Section 3.4 of Yu (2012),

9



the parametric bootstrap is valid.

It is noteworthy that in the parametric bootstrap, we must simulate from the joint distribution f(y; x; q)

to make the bootstrap procedure based on b� valid, where f(y; x; q) covers both f ("jx; q; b�) and f(x; q).
But even in a parametric model, f(x; q) is seldom speci�ed.4 So a natural bootstrap scheme to avoid this

di¢ culty is to condition on
�
(x0i; qi)

0	n
i=1

and only utilize the randomness from f ("jx; q; b�), which leads to
the parametric wild bootstrap below.

Parametric Wild Bootstrap: Pn is constructed conditional on
�
(x0i; qi)

0	n
i=1
. For each (x0i; qi)

0, the con-

ditional distribution of yi is derived from

yi =

8<: x0i
b�1 + b�1"�i ;

x0i
b�2 + b�2"�i ;

qi � b
;
qi > b
;

where "�i � f ("jx; q; b�). This bootstrap scheme is not consistent for 
. As shown in Yu (2012), the
Bayesian credible set is an appropriate choice in parametric models since it does not rely on the speci�c

form of f(x; q) and has a good performance in �nite samples.

Similarly, we have the wild bootstrap of Wu (1986) and Liu (1988).

Wild Bootstrap: Pn is similarly constructed as in the parametric wild bootstrap with the only di¤erence

being that "�i = d�i b"i where E� ["�i ] = 0, E�
�
"�2i
�
= b"2i and E� �"�3i � = b"3i . As noted in Liu (1988),

matching the third moment can improve the rate of convergence of the bootstrap estimate for regular

parameters like �. A popular choice of the d�i distribution is the two-point distribution:

P �

 
d�i =

1�
p
5

2

!
=
1 +

p
5

2
p
5

and P �
 
d�i =

1 +
p
5

2

!
=

p
5� 1
2
p
5
: (5)

For other choices of the d�i distribution, see Liu (1988) and Mammen (1993). Although the wild

bootstrap is consistent and may have some �nite-sample re�nements for regular parameters (see Liu

(1988) and Mammen (1993)), it is not consistent for 
. If "i is independent of (x0i; qi)
0, then we can

extract more information from fb"igni=1 by letting "�i follow P "n, where P "n is the empirical distribution
of fb"igni=1. This procedure is often termed as bootstrapping residuals. To guarantee that the residuals
have mean zero, the centered residuals,

nb"i � b"on
i=1
, are often used to substitute fb"igni=1, where b" =

n�1
Pn

i=1 b"i. We still denote the corresponding empirical measure as P "n.
In the wild bootstrap, we localize the objective function around

�b�0; b
�0 since �b�0; b
�0 is the true value
4When q is independent of (x; "), we can condition on fxigni=1, and simulate only from f ("jx; b�) and fq(q). But the problem

remains since fq(q) is seldom known in reality and must be estimated nonparametrically. See more related discussions on the
smoothed bootstrap in Section 4.1 below.
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of (�0; 
)0 under Pn, and uniformly for h in a compact set,

nP �n

�
m

�
�
����b� + up

n
; b
 + v

n

�
�m

�
�
���b�; b
�� (6)

= u01E [xix
0
i1 (qi � 
0)]u1 + u02E [xix0i1 (qi > 
0)]u2 �W �

wn (u) +D
�
wn (v) + oPr (1) :

where

W �
wn (u) =W

�
1wn (u1) +W

�
2wn (u2) ;

and

D�
wn (v) =

nX
i=1

zw�1i 1
�b
 + v

n
< qi � b
�+ nX

i=1

zw�2i 1
�b
 < qi � b
 + v

n

�
;

with

W �
1wn (u1) = u

0
1

 
2�1;0p
n

nX
i=1

d�i xi"i1 (qi � 
0)
!
, W �

2wn (u2) = u
0
2

 
2�2;0p
n

nX
i=1

d�i xi"i1 (qi > 
0)

!
zw�1i = 2x

0
i (�1;0 � �2;0)�1;0d�i "i + (�1;0 � �2;0)xix0i (�1;0 � �2;0) ;

zw�2i = �2x0i (�1;0 � �2;0)�2;0d�i "i + (�1;0 � �2;0)xix0i (�1;0 � �2;0) :

and d�i following the distribution (5). The following Theorem 3 corresponds to Theorem 1 in the nonpara-

metric bootstrap.

Theorem 1 Under Assumption D with D5 changing to E["4] <1 and E[kxk4+�] <1 for some � > 0, (6)

holds and

(W �
wn (u) ; D

�
wn (v)) (W � (u) ; D�

w (v))

on any compact set, where W � (u) = 2u01W
�
1 + 2u

0
2W

�
2 is de�ned in Theorem 1, and

D�
w (v) =

8>><>>:
zw�11 +

N1(jvj)+1P
i=2

zw�1i , if v < 0;

N2(v)P
i=1

zw�2i , if v � 0;

with zw�`i following the conditional distribution of zw�`i given qi = 
0. Furthermore, W �
1 , W

�
2 , fzw�1i ; zw�2i gi�1,

N1(�) and N2(�) are mutually independent of each other, and fd�i gi�1 are i.i.d. sequences independent of the

rest components of D�
w (v).

Proof:. We �rst show (6). Note that b"i = "i +OP �n�1=4� uniformly over i = 1; � � � ; n. From the modi�ed

Assumption D5, max
1�j�n

jxj j < n1=(4+�), and max
1�j�n

j"j j < n1=4 with probability one by the Borel-Cantelli
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lemma. Also, we know that b
 � 
0 = OP (n�1), b� � �0 = OP (n�1=2) and b� � �0 = OP (n�1=2). Now,
b"i � "i = yi � x0ib�1b�1 1 (qi � b
) + yi � x0ib�2b�2 1 (qi > b
)� "i

=
x0i�1;0 + �1;0"i � x0ib�1b�1 1 (qi � 
0 ^ b
) + x0i�2;0 + �2;0"i � x0ib�2b�2 1 (qi > 
0 _ b
)

+
x0i�1;0 + �1;0"i � x0ib�2b�2 1 (b
 < qi � 
0) + x0i�2;0 + �2;0"i � x0ib�1b�1 1 (
0 < qi � b
)� "i

= x0i
�1;0 � b�1b�1 1 (qi � 
0 ^ b
) + x0i �2;0 � b�2b�2 1 (qi > 
0 _ b
)

+

�
�1;0b�1 1 (qi � 
0 ^ b
) + �2;0b�2 1 (qi > 
0 _ b
)� 1

�
"i +OP

�
n�3=4

�
= OP

�
n�1=4

�
uniformly for i:

Given these facts, uniformly for h in any compact set of R2k+1,

nP �n

�
m

�
�
����b� + up

n
; b
 + v

n

�
�m

�
�
���b�; b
��

=
nX
i=1

�
u01
xix

0
i

n
u1 � u01

2b�1p
n
xid

�
i b"i�1�qi � b
 ^ b
 + v

n

�
+

nX
i=1

�
u02
xix

0
i

n
u2 � u02

b�2p
n
xid

�
i b"i�1(qi > b
 _ b
 + v

n
)

+

nX
i=1

"�b�1 � b�2 � u2p
n

�0
xix

0
i

�b�1 � b�2 � u2p
n

�
+ 2x0i

�b�1 � b�2 � u2p
n

�b�1d�i b"i
#
1
�b
 + v

n
< qi � b
�

+
nX
i=1

"�b�1 + u1p
n
� b�2�0 xix0i�b�1 + u1p

n
� b�2�� 2x0i�b�1 + u1p

n
� b�2�b�2d�i b"i

#
1
�b
 < qi � b
 + v

n

�
=

nX
i=1

�
u01
xix

0
i

n
u1 � u01

2�1;0p
n
xid

�
i "i

�
1 (qi � 
0) +

nX
i=1

�
u02
xix

0
i

n
u2 � u02

�2;0p
n
xid

�
i "i

�
1(qi > 
0) +D

�
wn (v) + oPr (1);

where the simpli�cation to D�
wn (v) in the last equality uses the fact that max

1�j�n
jxj j < n1=(4+�). Now, (6)

follows directly.

The weak convergence ofW �
wn (u) is straightforward, so we concentrate onD

�
wn (v). As in the proof of The-

orem 1, we need only calculate the limit of the characteristic function Pr

�
exp

�p
�1
�
t1

nP
i=1

T �3i + t2
nP
i=1

T �4i

���
,

where T �3i = z
w�
1i 1

�b
 + v
n < qi � b
� and T �4i = zw�2i 1 �b
 < qi � b
 + v

n

�
. The proof is almost the same as that

of Theorem 1, but there are two points worth noting. First, since b
�
0 = OP (n�1), the discussion can focus
on b
 2 [
0 � C

n ; 
0 +
C
n ] for a large enough C without a¤ecting the asymptotic properties of D

�
wn (v). So the

conditioning on qi = 
0 in the calculation of Theorem 1 is still valid. Second,
nP
i=1

T �3i =
nP
i=1

zw�1i 1 (qi = b
)+
nP
i=1

zw�1i 1
�b
 + v

n < qi < b
� and the �rst term on the right hand side includes only one summand.

For D�
w (v), the randomness introduced by the wild bootstrap appears only in fd�i gi�1, so the procedure

(e.g., Step 2) in Section 2.3 can be similarly used as in the nonparametric bootstrap to show the invalidity of

the wild bootstrap for 
. The reason for the wild bootstrap failure is the same as that for the nonparametric

bootstrap failure: only the bootstrap sampling in the neighborhood of b
 (or 
0) is informative to the inference
12



on 
. Nevertheless, there are indeed some di¤erences between these two schemes besides the multipliers in

D�
w (�) (d�i ) and D� (�) (N�

i�). In D
�
n (v) (and Dn(v)), we localize the objective function around 
0, so there

is a random interval around zero without any jump in D� (v) (and D(v)). In D�
wn (v), however, we localize

the objective function around b
 and b
 equals some qi, so there is a jump in D�
w (v) immediately as v gets

negative. By the argmax continuous mapping theorem, n (b
� � b
)  Z�w � argmin
v
D�
w (v). Given this

special structure of D�
w (v), we expect that there will be a point mass at 0 in the component measure and

also in Z�w.
5 The detailed analysis as in the example of Section 3.2 is omitted here to avoid replication. In

summary, we �rst localize the objective function at 
0 then recenter b
� at b
 by (b
� � 
0) � (b
 � 
0) in the
nonparametric bootstrap, while in the wild bootstrap, we localize the objective function directly at b
, so
there is no need to recenter b
�. In short, the order of the two operations, argmin and recentering at b
, are
di¤erent in these two bootstrap schemes.

Under some stronger assumptions on the conditional distribution of (x0i; "i)
0 given qi = 
0, we can show

the nonexistence of the conditional weak limit of n (b
� � b
). To simplify notations, de�ne the random

variables with the conditional distribution of (x0i; "i)
0 given qi = 
0 as (x0i; "i)

0, and de�ne the event

A =
n
x0i (�1;0 � �2;0) � �, "i � � (�1;0 � �2;0)xix0i (�1;0 � �2;0) =

h
(1 +

p
5)x0i (�1;0 � �2;0)�1;0

i o
[
n
x0i (�1;0 � �2;0) � ��, "i � � (�1;0 � �2;0)xix0i (�1;0 � �2;0) =

h
(1 +

p
5)x0i (�1;0 � �2;0)�1;0

io
[
n
x0i (�1;0 � �2;0) � �, "i � � (�1;0 � �2;0)xix0i (�1;0 � �2;0) =

h
(1�

p
5)x0i (�1;0 � �2;0)�1;0

io
[
n
x0i (�1;0 � �2;0) � ��, "i � � (�1;0 � �2;0)xix0i (�1;0 � �2;0) =

h
(1�

p
5)x0i (�1;0 � �2;0)�1;0

io
� A1 [A2 [A3 [A4

with � being a positive constant. Now, it is not hard to see that for each ! 2 A, P � (b
� 6= b
) is at least�p
5� 1

�� �
2
p
5
�
> 0. This is because zw�12 � 0 for d�i = (1 +

p
5)=2 on A1 [ A2 and d�i = (1 �

p
5)=2 on

A3 [ A4. So if we assume P (A) > 0, then applying the proof idea in (iii) of Theorem 2, we can show the

conditional weak limit of n (b
� � b
) does not exist for !�s with a positive probability (which is at least as
large as P (A)). The assumption that P (A) > 0 is not restrictive as it seems, e.g., if the conditional support

of "i given xi is R, then P (A) > 0. For the speci�c example in Section 3.2, x0i = 1, �1;0 � �2;0 = 1, �1;0 = 1,

and "i = "i. In this case, if we let � = 1=2, then A =
�
"i < �1=(1 +

p
5) or "i > �1=(1�

p
5)
	
, whose

probability is obviously positive given that "i � N(0; 1).

From Lemma 4.4 of Seijo and Sen (2011) (or Lemma 6 in the next section) and Theorem 3, the asymptotic

results for bootstrapping residuals and the parametric wild bootstrap are much expected. In bootstrapping

5But Z�w should not have low densities in the right neighborhood of zero since the structure of D�
w (v) is somewhat like

canceling the �rst waiting time on v � 0 in D (v).
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residuals, D�
wn (v) is changed to

D�
rn (v) =

nX
i=1

zr�1i1
�b
 + v

n
< qi � b
�+ nX

i=1

zr�2i1
�b
 < qi � b
 + v

n

�
;

where

zr�1i = f2x0i (�1;0 � �2;0)�1;0"�i + (�1;0 � �2;0)xix0i (�1;0 � �2;0)g ;

zr�2i = f�2x0i (�1;0 � �2;0)�2;0"�i + (�1;0 � �2;0)xix0i (�1;0 � �2;0)g :

The randomness introduced by bootstrapping residuals only appears in f"�i gi�1, where "�i follows the dis-

tribution f" ("�i ) and is independent of all other components of D
�
rn (v). In the parametric wild bootstrap,

D�
wn (v) changes to

D�
pn (v) =

nX
i=1

zp�1i 1
�b
 + v

n
< qi � b
�+ nX

i=1

zp�2i 1
�b
 < qi � b
 + v

n

�
;

where

zp�1i = ln

�1;0
�2;0

f"jx;q

�
�1;0"

�
i+x

0
i(�1;0��2;0)
�2;0

���xi; qi;�0�
f"jx;q ("

�
i jxi; qi;�0)

; zp�2i = ln

�2;0
�1;0

f"jx;q

�
�2;0"

�
i+x

0
i(�2;0��1;0)
�1;0

���xi; qi;�0�
f"jx;q ("

�
i jxi; qi;�0)

;

and Dn(v) changes to

Dpn (v) =
nX
i=1

zp1i1
�

0 +

v

n
< qi � 
0

�
+

nX
i=1

zp2i1
�

0 < qi � 
0 +

v

n

�
;

where

zp1i = ln

�1;0
�2;0

f"jx;q

�
�1;0"i+x

0
i(�1;0��2;0)
�2;0

���xi; qi;�0�
f"jx;q ("ijxi; qi;�0)

; zp2i = ln

�2;0
�1;0

f"jx;q

�
�2;0"i+x

0
i(�2;0��1;0)
�1;0

���xi; qi;�0�
f"jx;q ("ijxi; qi;�0)

:

The randomness introduced by the parametric wild bootstrap only appears in f"�i gi�1, where "�i follows the

same conditional distribution f"jx;q ("�i jxi; qi;�0) as "i and is conditionally independent of "i given (xi; qi).

So we expect argmin
v
D�
pn (v) and argmin

v
Dpn (v) are highly correlated under Pr just as in the nonparametric

bootstrap case. When " is independent of (x0; q)0, we simulate "�i independently from f" without conditioning

on (x0i; qi)
0. Accordingly, all conditional densities f"jx;q in Dpn (v) and D�

pn (v) change to f", and "
�
i is

independent of all other components of D�
pn (v). The proofs combine the proof ideas in Yu (2012) and

Theorem 4, but a formal development of these results is beyond the scope of this paper.
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4. Proof of Theorem 3

To prove theorem 3, we need the following four lemmas. The �rst lemma extends Lemma 4.4 of Seijo and

Sen (2011) to the case with nonconstant covariates. The other three correspond to Lemma 3, 4 and 1 in

Appendix B, respectively. We use Qn to denote the probability measure of w implied by the smoothed

bootstrap procedure, and use Q�n for the empirical smoothed bootstrap measure. �n and �
�
n are used for the

true value and the bootstrap estimator of � in the smoothed bootstrap; that is, �n = �0(Qn) and ��n = �0(Q
�
n).

Lemma 1 Let F" and ' be, respectively, the distribution and characteristic function of ". Then

(i) for any � > 0, sup
jtj��

��R exp�p�1t"	 dP "n(")� '(t)�� P�! 0;

(ii) kP "n(")� F"(")k1
P�! 0;

(iii)
R
"2dP "n(")

P�! 1;

(iv)
R
j"j dP "n(")

P�! P j"j ;

(v)
R
"4dP "n(") = OP (1).

Proof. Let F "n and bF "n be the empirical distribution of "1; � � � ; "n and b"1; � � � ; b"n, respectively. SinceZ
exp

�p
�1t"

	
dP "n(") = exp

n
�
p
�1tb"o bF "n �exp�p�1t"	� ;

for any t 2 R with jtj � �,����Z exp
�p
�1t"

	
dP "n(")� exp

np
�1tb"oF "n �exp�p�1t"	�����

=
��� bF "n �exp�p�1t"	�� F "n �exp�p�1t"	���� � j�jFn (jb"� "j) ;

where Fn is the empirical measure on the n data points and is understandable from the context. From the

proof of Theorem 3, Fn (jb"� "j) = OP (n�1=4). Thus
sup
jtj��

����Z exp
�p
�1t"

	
dP "n(")� exp

np
�1tb"oF "n �exp�p�1t"	����� P�! 0

and (i) follows immediately because b" = bF "n (") P�! 0 and F "n converges to F" in total variation distance with

probability one. (ii) is implied by (i) since F" is assumed to be continuous and (i) implies that the charac-

teristic functions of P "n converges to the characteristic function of F" on the entire real line in probability.
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For (iii), as
R
"2dP "n(") = bF "n �"2�� b"2, we need only show bF "n �"2�� F "n �"2� P�! 0.

b"i = yi � x0ib�1b�1 1 (qi � b
) + yi � x0ib�2b�2 1 (qi > b
)
=
x0i�1;0 + �1;0"i � x0ib�1b�1 1 (qi � 
0 ^ b
) + x0i�2;0 + �2;0"i � x0ib�2b�2 1 (qi > 
0 _ b
)

+
x0i�1;0 + �1;0"i � x0ib�2b�2 1 (b
 < qi � 
0) + x0i�2;0 + �2;0"i � x0ib�1b�1 1 (
0 < qi � b
)

= x0i

�
�1;0 � b�1�1 (qi � 
0 ^ b
) + ��2;0 � b�1�1 (
0 < qi � b
)b�1

+ x0i

�
�2;0 � b�2�1 (qi > 
0 _ b
) + ��1;0 � b�2�1 (b
 < qi � 
0)b�2

+

�
�1;0b�2 1 (b
 < qi � 
0) + �2;0b�1 1 (
0 < qi � b
)

�
"i

+

�
�1;0b�1 1 (qi � 
0 ^ b
) + �2;0b�2 1 (qi > 
0 _ b
)� 1

�
"i + "i

� A+B + C +D + "i = OP (n�1=2) +OP (n�1=2) +OP (n�1)"i +OP (n�1=2)"i + "i uniformly for i,

where A and B are OP (n�1=2) due to the boundedness of xi. So b"2i � "2i = (A+B + C +D)
2
+ 2(A +

B + C +D)"i and bF "n �"2�� F "n �"2� = OP (n�1=2) + OP (n�1=2)F "n �"2� = OP (n�1=2). For (iv), notice that��R j"j dP "n(")� R j"j dF "n(")�� = ���Fn ����b"� b"���� j"j���� � Fn (jb"� "j) + ���b"��� P�! 0, so
R
j"j dP "n(") has the same

probability limit as
R
j"j dF "n(") which is P j"j. For (v), notice that

R
"4dP "n(") �

���b"���4 + 4 ���b"���3 bF "n (j"j) +
6
���b"���2 bF "n �j"j2� + 4 ���b"��� bF "n �j"j3� + bF "n �j"j4�, so we need only show bF "n �j"jl� = OP (1) in probability, l =

1; 2; 3; 4. Take l = 4 as an example. By expanding the expression of b"i above and using E["4] <1, it is not
hard to show this indeed holds.

Lemma 2 Under Assumptions D and E, ��n � b� Qn�! 0.

Proof. First note that

�n = argmin
�
Qnm(wj�);
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where

Qnm(wj�) = Qn (y � x0�11(q � 
)� x0�21(q > 
))2

= Qn

��
x0b�1 + b�1"�1(q � b
) + �x0b�2 + b�2"�1(q > b
)� x0�11(q � 
)� x0�21(q > 
)�2

= Qn

�h
x0
�b�1 � �1�i2 1(q � b
 ^ 
) + hx0 �b�2 � �2�i2 1(q > b
 _ 
)�

+Qn

�h
x0
�b�1 � �2�i2 1(
 < q � b
) + hx0 �b�2 � �1�i2 1(b
 < q � 
)�

+Qn

�h
x0
�b�1 � �1� b�1"i1(q � b
 ^ 
) + hx0 �b�2 � �2� b�2"i1(q > b
 _ 
)�

+Qn

�h
x0
�b�1 � �2� b�1"i1(
 < q � b
) + hx0 �b�2 � �1� b�2"i1(b
 < q � 
)�

+Qn
�b�21"21(q � b
) + b�22"21(q > b
)� � A+B + C +D + E:

Since under Qn, " and (x0; q)0 are independent and P "n (") = 0, C = D = 0. E does not depend on � and is

�nite as n gets large enough from Lemma 6. So argmin
�
Qnm(wj�) = argmin

�
(A+B). From Assumptions E1,

E3 and E4 and the dominated convergence theorem, A+B is �nite and continuous in �, so �n exists. Actually,

A + B � 0 and = 0 when �n = b�, so without loss of generality, we can take �n = b�, and correspondingly,
�n = b� + oP (1). In the general case when " and (x0; q)0 are not independent and (x0; q)0 are not bounded,
then C and D may not be zero and the dominated convergence theorem cannot be applied, so the analysis

is more involved.

We now prove 
�n�
n
Qn�! 0. The proof below mimics the proof of Lemma 3. Suppose 
 � 
n. Note that

Y � = X��2n + �2n"
� +X�

�
n��n + ��n"
�
�
n , and X

� lies in the space spanned by P �
 = X
�



�
X
�0

 X

�



��1
X
�0

 ,

where Y �, X�, X�
�
n , X

�

 , "

� and "��
n are the counterparts of Y , X, X�
0 , X
 , " and "�
0 in the smoothed

bootstrap environment, ��n = �1n��2n, and ��n = �1n��2n. So as the counterpart of Mn(
) in Lemma 3,

M�
n (
) =

1

n
Y �0

�
I � P �


�
Y �

=
1

n

�
2�2n�

0
�nX

�0
�
n

�
I � P �


�
"� + 2��n�

0
�nX

�0
�
n

�
I � P �


�
"��
n + 2�2n��n"

�0 �I � P �
 � "��
n
+�0�nX

�0
�
n

�
I � P �


�
X�
�
n��n + �

2
2n"

�0 �I � P �
 � "� + �2�n"�0�
n �I � P �
 � "��
n� :
By a Glivenko-Cantelli theorem, see, e.g., Theorem 8.3 of Pollard (1990),

sup

2�:
�
n

jM�
n (
)�M� (
)j Qn�! 0;

where

M� (
) = �0�n

�
M (
n)�M (
n)M (
)

�1
M (
n)

�
��n +Qn

h
(�2n"+ ��n"1 (q � 
n))2

i
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with M (
) = Qn [xx
01(q � 
)]. The second term is �nite as n gets large and does not depend on 
, so

arg min

:
�
n

M� (
) = arg min

:
�
n

�0�n

�
M (
n)�M (
n)M (
)

�1
M (
n)

�
��n. Since ��n 6= 0 as n gets large,

it is enough to show M (
n) �M (
n)M (
)
�1
M (
n) > M (
n) �M (
n)M (
n)

�1
M (
n) = 0. M (
n)

is positive de�nite for n large enough by the dominated convergence theorem and Assumption D2, so we

need only show M (
) > M (
n). But M (
) �M (
n) = Qn [xx
01(
n < q � 
)] > 0 for n large enough by

the dominated convergence theorem and Assumptions D3 and D4. Symmetrically, we can show the case

with 
 < 
n. An extended version of Theorem 2.1 of Newey and McFadden (1994) can be applied to show


�n � 
n
Qn�! 0. With the consistency of 
�n in hand, it is easy to show the consistency of ��n (


�
n), the

counterpart of b� (b
), by a dominance argument.
Lemma 3 Under Assumptions D and E, 
�n = b
 +OQn

�
1
n

�
, and ��n = b� +OQn

�
1p
n

�
.

Proof. We apply the proof idea of Theorem 3.2.5 in Van der Vaart and Wellner (1996) in this proof.

De�ne d
�
�; b�� = 


� � b�


+pj
 � b
j. We �rst bound Qn(m(wj�)�m(wjb�)) for � in a neighborhood ofb�.

Qn(m(wj�)�m(wjb�))
=
�b�1 � �1�0Qn [xx01(q � 
 ^ b
)]�b�1 � �1�+ �b�2 � �2�0Qn [xx01(q > 
 _ b
)]�b�2 � �2�

+
�b�1 � �2�0Qn [xx01(
 ^ b
 < q � b
)]�b�1 � �2�+ �b�2 � �1�0Qn [xx01(b
 < q � 
 _ b
)]�b�2 � �1�

� C
�


b�1 � �1


2 + 


b�2 � �2


2 + j
 � b
j� = Cd2 ��; b�� ;

where the last inequality need some explanations. By the dominated convergence theorem, all Qn in the

equality can be substituted by P and b
 substituted by 
0 for n large enough, so by the arguments in Lemma
4, we can �nd some C such that the inequality holds for the given �.

For each n, the parameter space (minus the point b�) can be partitioned into the "shells" Sj;n =n
� : 2j�1 < rnd

�
�; b�� � 2jo with rn = pn and j ranging over the integers. Given an integer J ,

Qn

�
rnd

�
��n;
b�� > 2J� � X

j�J
2j��rn

Qn

�
inf

�2Sj;n

�
Q�nm (wj�)�Q�nm

�
wjb��� � 0�+Qn �2d���n; b�� � �� :

The second term converges to zero as n!1 for every � > 0 by the consistency of ��n, so we can concentrate

on the �rst term. Note that

Q�nm (wj�)�Q�nm
�
wjb�� = (Q�n �Qn)�m (wj�)�m�wjb���+Qn �m (wj�)�m�wjb��� :
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By the bound of Qn(m(wj�)�m(wjb�)) above and the maximal inequality, we have
Qn

�
inf

�2Sj;n

�
Q�nm (wj�)�Q�nm

�
wjb��� � 0�

� Qn

 
sup
�2Sj;n

���(Q�n �Qn)�m (wj�)�m�wjb������ � C 22j�2r2n

!

� C 2jp
nrn

�
C
22j�2

r2n
= C

rnp
n2j

:

Consequently,

Qn

�
rnd

�
��n;
b�� > 2M� � CX

j�J

rnp
n2j

;

which can be made arbitrarily small by letting J large enough since by de�nition rn =
p
n.

Lemma 4 Under Assumptions D and E, uniformly for h in any compact set of R2k+1,

nQ�n

�
m

�
�
����b� + up

n
; b
 + v

n

�
�m

�
�
���b�; b
��

= u01P [xix
0
i1 (qi � 
0)]u1 + u02P [xix0i1 (qi > 
0)]u2 �Wn (u) +D

�
sn (v) + oQn

(1) :

where Wn (u) is speci�ed in Section 3.1, and

D�
sn (v) =

nX
i=1

z1i1
�b
 + v

n
< qi � b
�+ nX

i=1

z2i1
�b
 < qi � b
 + v

n

�

with w in Wn (u) and D�
sn (v) following Qn rather than P .

Proof. Note that

nQ�n

�
m

�
�
����b� + up

n
; b
 + v

n

�
�m

�
�
���b�; b
��

=
nX
i=1

�
u01
xix

0
i

n
u1 � u01

2b�1p
n
xi"i

�
1
�
qi � b
 ^ b
 + v

n

�
+

nX
i=1

�
u02
xix

0
i

n
u2 � u02

b�2p
n
xi"i

�
1(qi > b
 _ b
 + v

n
)

+
nX
i=1

"�b�1 � b�2 � u2p
n

�0
xix

0
i

�b�1 � b�2 � u2p
n

�
+ 2x0i

�b�1 � b�2 � u2p
n

�b�1"i#1�b
 + v

n
< qi � b
�

+
nX
i=1

"�b�1 + u1p
n
� b�2�0 xix0i�b�1 + u1p

n
� b�2�� 2x0i�b�1 + u1p

n
� b�2�b�2"i#1�b
 < qi � b
 + v

n

�
:

By a uniform law of large number,

���� nP
i=1

u01
xix

0
i

n u11
�
qi � b
 ^ b
 + v

n

�
� u01Qn

�
xix

0
i1
�
qi � b
 ^ b
 + v

n

��
u1

���� con-
verges to zero in probability for h in any compact set. By the dominated convergence theorem and the a.s.

convergence of b
 to 
0, Qn �xix0i1 �qi � b
 ^ b
 + v
n

��
! P [xix

0
i1 (qi � 
0)] as n goes to in�nity. Similarly,

nP
i=1

u01
xix

0
i

n u11
�
qi > b
 _ b
 + v

n

�
converges to u02P [xix

0
i1 (qi > 
0)]u2 for h in any compact set.
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Next, we show that the di¤erence between u01
2b�1p
n

nP
i=1

xi"i1
�
qi � b
 ^ b
 + v

n

�
and W1n (u1) is oQn

(1).

Since 1p
n

nP
i=1

xi"i1
�
qi � b
 ^ b
 + v

n

�
= OQn

(1), e.g., by calculating its second moment, and b�1 converges
to �1;0 almost surely, we need only show that the di¤erence between 1p

n

nP
i=1

xi"i1
�
qi � b
 ^ b
 + v

n

�
and

1p
n

nP
i=1

xi"i1 (qi � 
0) is oQn(1). Since
1p
n

nP
i=1

xi"i1
�
qi � b
 ^ b
 + v

n

�
� 1p

n

nP
i=1

xi"i1 (qi � 
0) = 1p
n

nP
i=1

xi"i1(
0 <

qi � b
 ^ b
 + v
n ) and b
 = 
0 + OP (n

�1), by Assumption E3, D4 and the dominated convergence theorem,

we can show the second moment of 1p
n

nP
i=1

xi"i1
�

0 < qi � b
 ^ b
 + v

n

�
converges to zero. By tedious but

quite similar arguments, we can show the di¤erence between the remaining terms and the targets we want

is oQn(1).

Proof of Theorem 3. The proof completely parallels the proof of Theorem 1 and Theorem 2. We �rst

derive the �nite-dimensional limit distributions of (Wn (u) ; D
�
sn (v)), then check its stochastic equicontinuity,

and �nally apply the argmax continuous mapping theorem to show that the asymptotic distribution of ��n is

as speci�ed in the theorem.

First, de�ne T1i and T2i as in the proof of Theorem 1, T3i = z1i1
�b
 + v

n < qi � b
�, and T4i = z2i1 �b
 < qi � b
 + v
n

�
,

then

Qn
�
exp

�p
�1 [s01T1i + s02T2i ++t1T3i + t2T4i]

	�
= Qn

�
exp

�p
�1s0Ti=

p
n
	�
+
v1
n
bfq (b
)Qn �exp�p�1s0Ti=pn	 �exp�p�1t1z1i	� 1��� qi = b
�

+
v2
n
bfq (b
)Qn �exp�p�1s0Ti=pn	 �exp�p�1t2z2i	� 1��� qi = b
�+ o� 1

n

�
;

where s = (s01 s
0
2)
0, Ti =

�
S01i S02i

�0
, bfq(q) = R bf(x; q)dx is a uniformly consistent estimator of fq(q), and

o (1) is a quantity going to zero uniformly over i = 1; � � � ; n from Assumption E3. By the Taylor expansion

of exp
�p
�1s0Ti=

p
n
	
, the dominated convergence theorem and Lemma 6,

Qn
�
exp

�p
�1s0Ti=

p
n
	�
= 1� 1

2n
s0J s+ o

�
1

n

�
;

where

J = lim
n!1

Qn (TiT
0
i ) = diag

�
P
�
xx0"21 (q � 
0)

�
; P
�
xx0"21 (q > 
0)

�	
= diag fP [xx01 (q � 
0)] ; P [xx01 (q > 
0)]g :

Next,

Qn
�
exp

�p
�1s0Ti=

p
n
	 �
exp

�p
�1t1z1i

	
� 1
��� qi = b
� = Qn ��exp�p�1t1z1i	� 1��� qi = b
�+ o(1)

=

Z �
exp

�p
�1t1z1i

	
� 1
� bf(x; b
)bfq(b
) dxdP "n(") + o(1)! P

��
exp

�p
�1t1z1i

		�� qi = 
0�� 1;
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where the �rst equality is from Taylor expanding exp
�p
�1s0Ti=

p
n
	
, the second equality is from the de-

�nition of Qn, and the convergence is from the dominated convergence theorem and Lemma 6. Similarly,

Qn
�
exp

�p
�1s0Ti=

p
n
	 �
exp

�p
�1t2z2i

	
� 1
��� qi = b
�! P

��
exp

�p
�1t2z2i

		�� qi = 
0��1. In summary,
Qn
�
exp

�p
�1 [s01T1i + s02T2i ++t1T3i + t2T4i]

	�
= 1 +

1

n

�
�1
2
s0J s+ fq (
0) v1

�
P
��
exp

�p
�1t1z1i

		�� qi = 
0�� 1�
+fq (
0) v2

�
P
��
exp

�p
�1t2z2i

		�� qi = 
0�� 1��+ o� 1
n

�
:

So

Qn

 
exp

(
p
�1
"
s1

nX
i=1

T1i + s2

nX
i=1

T2i ++t1

nX
i=1

T3i + t2

nX
i=1

T4i

#)!

=

nY
i=1

Qn
�
exp

�p
�1
�
s0Ti=

p
n+ t1T3i + t2T4i

�	�
! exp

�
�1
2
s0J s+ fq (
0) v1

�
P
��
exp

�p
�1t1z1i

		�� qi = 
0�� 1�
+fq (
0) v2

�
P
��
exp

�p
�1t2z2i

		�� qi = 
0�� 1�	 ;
which matches the characteristic function of (W (u) ; D (v)), and the result of interest follows.

Second, for the stochastic equicontinuity, note that for any � > 0 and 0 < v1 < v2 which are stopping

times in a compact set,

Qn

 
sup

jv2�v1j<�
jD�

sn(v2)�D�
sn(v1)j > �

!
� Qn

 
nX
i=1

jz2ij � sup
jv2�v1j<�

1
�b
 + v1

n
< qi � b
 + v2

n

�
> �

!

�
nX
i=1

Qn

"
jz2ij sup

jv2�v1j<�
1
�b
 + v1

n
< qi � b
 + v2

n

�#,
� � C�

�
for n large enough,

where C in the last inequality can take
�
fq + �

�
sup


0���
�
0+�
Qn [jz2ij jqi = 
] <1 from Assumption D4, D6,

E3 and Lemma 6.

5. Simulation Results for Pseudo-SB

To avoid the curse of dimensionality in the SB of DGP2 and DGP4, we can simulate only from the marginal

density estimate of q instead of the joint density estimate of (q; ")0 and (x; q)0, but then there is a misspec-

i�cation problem. We label such a SB procedure as the pseudo-SB; see Section 7 of Seijo and Sen (2011)

for a detailed description. Similarly, we label the NPI that is based on the marginal density of " in DGP2

as the pseudo-NPI. The results for pseudo-SB and pseudo-NPI are summarized in Table 4. The results in

the table show that the pseudo-SB intervals are not reliable. In DGP 2, their coverage is almost 1, which

21



induces long intervals, while in DGP4, their performance is close to that of the correct SB procedures. It is

hard to �lter out which cases are suitable to use pseudo-SB intervals.

n! 50 200 500

CIs# Cov and Leng(�10�1)! Coverage Length Coverage Length Coverage Length

DGP2

Pseudo-SB-LLSE (ET) 0.988 7.461 0.997 1.539 0.998 0.593

Pseudo-SB-LLSE (S) 0.992 8.141 0.992 1.643 0.994 0.636

Pseudo-SB-MLSE (ET) 0.989 7.089 1 1.425 1 0.549

Pseudo-SB-MLSE (S) 0.995 7.305 1 1.419 1 0.546

Pseudo-NPI 0.976 2.565 0.991 0.575 0.987 0.222

DGP4

Pseudo-SB-LLSE (ET) 0.961 6.170 0.936 1.423 0.949 0.560

Pseudo-SB-LLSE (S) 0.958 6.688 0.948 1.534 0.938 0.603

Pseudo-SB-MLSE (ET) 0.945 5.650 0.943 1.308 0.941 0.516

Pseudo-SB-MLSE (S) 0.943 5.616 0.942 1.301 0.943 0.513

Table 4: Performance of Pseudo-SB and Pseudo-NPI: Coverage and Average Length of

the Nominal 95% Con�dence Intervals for 
 (Based on 1000 Repetitions)

6. Construction of the Nonparametric Posterior Interval

The following algorithm is given in Yu (2008).

Step 1: Get the LSE
�b
; b�0; b�0�0 and the corresponding residuals fb"igni=1.

Step 2: Estimate the joint density of w by kernel smoothing,

bf (w) = 1

nhk+2

nX
i=1

K

�bwi � w
h

�

where h is the bandwidth, and K (�) : Rk+2 ! R is a kernel density.

Step 3: Construct the estimated likelihood function as

bLn(
) = nY
i=1

"
1b�1 bf

 
yi � x0ib�1b�1 ; xi; qi

!
1(qi � 
) +

1b�2 bf
 
yi � x0ib�2b�2 ; xi; qi

!
1(qi > 
)

#

= exp

(
nX
i=1

1(qi � 
) ln
 
1b�1 bf

 
yi � x0ib�1b�1 ; xi; qi

!!
+

nX
i=1

1(qi > 
) ln

 
1b�2 bf

 
yi � x0ib�2b�2 ; xi; qi

!!)
� exp

nbLn(
)o ;
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and the posterior distribution as

bpn(
) = exp
nbLn(
)o�2 (
)R

�
exp

nbLn(e
)o�2 (e
) de
 ;
where �2 (
) is the prior of 
, e.g., �2 (
) can be the uniform distribution on (qmin; qmax) with qmin

(qmax) being the minimum (maximum) of fqigni=1.

Step 4: Based on a MCMC algorithm, draw a Markov chain

S =
�

(1); � � � ; 
(B)

�
whose marginal density is approximately bpn(
). Then the (1 � �) NPI is constructed by picking out
the �=2 and 1� �=2 quantiles of S.

When " is independent of (x0; q)0, bf(w) in Step 2 and 3 is substituted by bf" (") = 1
nh

nP
i=1

K (b"i � "), where
h is the bandwidth, and K (�) : R! R is a kernel density.
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