Appendix: Lemmas to Theorem 1

Throughout the appendix, = means higher order terms are neglected, C refers to a positive constant which
may not be the same at each occurrence, and ~~ signifies the weak convergence of a stochastic process on

the relevant probability space.
Lemma 1 ¥ = O,(1) as ||do] — 0.

Proof. Take v > 0 for illustration and v < 0 can be similarly proved. Partition Ry := {v|v > 0} into the
"shells" S; = {v 27l < < Qj} with j ranging over the integers. Given an integer J,
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where the first equality is because

Now,
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and the last equality is from Markov’s inequality. Note that the demeaned process D (v) :=D (” 50H2) —

E {D <W)} satisfies for any s < ¢,
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where the second to last equality is because D (v) is an independent increments process with mean zero such
that D (t) — D (s) is independent of {D (7')} and has mean zero. So D (v) is a continuous martingale
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indexed by v and )f) (v)| is a submartingale. To calculate E
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inequality (see, e.g., Theorem 20 of Protter (2004)). First, by Assumption (iii),
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where Q5 = 76°E[x§£%j%]50 — Q and Qs =

(i). Now, by Doob’s martingale inequality,
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with the last equality from Assumption (i) and ||dg|| — 0. Since
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where C' = 32Q4/f, (7o) @2 is a positive constant. As a result,

we have
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as J — oo and the proof is complete.
Lemma 2 D (W) ~ C'(v) € Cpin (R) as ||0o]| — 0.

Proof. As in Lemmall] take v > 0. Define
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where fi5 = fq (7o) Qs and 0F = fo (7o) <4Q25 + ||50H2Q(2$>' Since 15 — fq (70) Q and 0§ — 4f, (7o) 2, by
Slutsky’s theorem, we need only show that Zs (v) ~ Wy (v). We check the two conditions in Theorem 2.3 of
Kim and Pollard. Specifically, (i) fidi-convergence: for any vy > vy > 0 and t;,t3 € R,
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and (ii) stochastic equicontinuity: for any € > 0,1 > 0, there exist a A > 0 such that
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To prove (i), note that
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where H?:l -:= 1. Because ||dp]| — 0, we take Taylor expansion of
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where E [Z%i] = O (1). In consequence,
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Similarly,
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In summary,
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giving the required result.

To prove (ii), note that
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where the last inequality is from Doob’s martingale inequality with the submartingale defined as ‘f) (s4+wv1)— D (v1)
indexed by 0 < s < A. So we can choose A arbitrarily small to make the above probability smaller than the
given 7).

Finally, we confirm that C (v) € Cyin (R). It is not hard to check that C(v) is continuous, has a unique

minimum (see Lemma 2.6 of Kim and Pollard (1990)), and ‘ llim C(v) = oo almost surely, which follows

since | llirn Wi (v) / |v] = 0 almost surely by virtue of the law of the iterated logarithm for Brownian motion.
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