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Introduction

Here we approach the two-class classification problem in a direct way:

We try and find a plane that separates the classes in feature space.

This results in the maximal margin classifier.

If we cannot, we get creative in two ways:

1 We soften what we mean by “separates”, which results in the support vector clas-
sifier.

2 We enrich and enlarge the feature space (to accommodate non-linear class bound-
aries) so that separation is possible, which results in the support vector machine
(SVM).

The SVM approach was developed in the 1990s, and is often considered one of the
best "out of the box" classifiers (like BART).
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History of SVM

Vladimir N. Vapnik (1936-, Meta) Alexey Ya. Chervonenkis (1938-2014, ULondon)1

1He died of hypothermia in a park near Mascow.
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Maximal Margin Classifier

Maximal Margin Classifier

(Section 9.1)
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Maximal Margin Classifier What Is a Hyperplane?

What Is a Hyperplane?

A hyperplane in p dimensions is a flat affine subspace of dimension p�1, e.g., a
line in R2, or a plane in R3.
- The word "affine" indicates that the subspace need not pass through the origin,
i.e., there is an intercept.

In general the equation for a hyperplane has the form

β 0+β 1X1+ � � �+β 2Xp =: β 0+β
T X = 0,

where β =
�

β 1,β 2, � � � ,β p

�T
, and X = (X1,X2, � � � ,Xp)

T .

- If p = 2, X2 = �
β 0
β 2
� β 1

β 2
X1, which is a line going through the origin if β 0 = 0, and

not through the origin otherwise.

The vector β is called the normal vector – it points in a direction orthogonal to the
surface of a hyperplane. [figure here for p = 2]2

The hyperplane divides the p-dimensional space into two halves, one with β 0 +

β
T X > 0 and one with β 0+β

T X < 0. [figure here]
2(**) Why is β = (β 1,β 2)

T orthogonal to the hyperplane in the figure? Take two points on the hyperplane,

(x (1)1 ,x (1)2 )T and (x (2)1 ,x (2)2 )T , whose difference, ∆x := (x (1)1 �x (2)1 ,x (1)2 �x (2)2 )T , is the direction of the hyperplane;

since β 1x (i)1 +β 2x (i)2 �6= 0, i = 1,2, taking difference of the two equations, we have β 1(x
(1)
1 �x (2)1 )+β 2(x

(1)
1 �

x (2)1 ) = β
T ∆x = 0, i.e., β is orthogonal to the hyperplane.
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Maximal Margin Classifier What Is a Hyperplane?

Hyperplane in 2 Dimensions

(**) How will you determine which half has β 1X1+β 2X2�6> 0 and which half has
β 1X1+β 2X2�6< 0?
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Maximal Margin Classifier Classification Using a Separating Hyperplane

Classification Using a Separating Hyperplane

If f (X ) = β 0+ β
T X , then f (X ) > 0 for points on one side of the hyperplane, and

f (X )< 0 for points on the other.
If we code the colored points as yi = +1 for blue, say, and yi = �1 for purple, and
if they can be perfectly separated, then we can construct a separating hyperplane
f (X ) = 0 that has the property that

f (xi )> 0 if yi = 1

and
f (xi )< 0 if yi = �1.

[see Figure 9.2]
In other words, a separating hyperplane has the property that

yi �f (xi )> 0 for all i .

It turns out that yi
kβk f (xi ) is the distance of xi to the separating hyperplane [see the

next2 slide], where kβk=
q

∑p
j=1 β

2
j is the Euclidean norm of β .

- Note that β 0 is not included in β , i.e., only slopes of f (X ) appear.
- If we normalize kβk = 1, then yi f (xi ) (f (xi )) is the (signed) distance of xi to the
separating hyperplane.
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Maximal Margin Classifier Classification Using a Separating Hyperplane

Separating Hyperplane
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Maximal Margin Classifier Classification Using a Separating Hyperplane

(**) Distance from a Point to a Hyperplane

In the figure, for any point x0 in the hyperplane L, β
T x0 = �β 0.

The signed distance of any point x to L is given by

β
�T (x �x0) =

1
kβk

�
β

T x �β
T
0 x
�
=

1
kβk

�
β

T x +β 0

�
=

1
kf 0 (x)k f (x) ,

where β
� = β /kβk.

Ping Yu (HKU) Support Vector Machines 9 / 62



Maximal Margin Classifier The Maximal Margin Classifier

The Maximal Margin Classifier

Among the infinite possible separating hyperplanes, find the one that makes the
biggest gap or margin between the two classes.

This result in the maximal margin hyperplane (aka the optimal separating hyper-
plane).
- The maximal margin hyperplane represent the mid-line of the widest "slab" that
we can insert between the two classes.3 [see Figure 9.3]

The three observations that "support" the maximal margin hyperplane are called
support vectors, i.e., these points were moved slightly then the maximal margin
hyperplane would move as well.
- The maximal margin hyperplane is determined only by the support vectors; of
course, which points are the support vectors depends on all observations.

The associated maximal margin classifier classifies the test observation x� based
on the sign of f (x�) = β 0+β

T x�.

3The term "margin" refers to either the smallest distance from the observations to a separating hyperplane or
the slab around a separating hyperplane.

Ping Yu (HKU) Support Vector Machines 10 / 62



Maximal Margin Classifier The Maximal Margin Classifier
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Maximal Margin Classifier Construction of the Maximal Margin Classifier

Construction of the Maximal Margin Classifier

The maximal margin classifier solves a constrained optimization problem:

max
β 0,β 1,��� ,β p

M

subject to kβk= 1,

yi

�
β 0+β

T xi

�
�M, 8 i = 1, � � � ,n.

From our discussions above, the two constraints ensure that each observation is on
the correct side of the hyperplane and at least a distance M from the hyperplane,
i.e., M is the margin of the hyperplane.
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Maximal Margin Classifier The Non-separable Case

The Non-separable Case

The optimization problem for the maximal margin classifier has no solution with
M > 0.
- This is often the case, unless n � p+1.
In the next section, we show how to almost separate the classes, using a so-called
soft margin.
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Support Vector Classifier

Support Vector Classifier

(Section 9.2)
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Support Vector Classifier Overview of the Support Vector Classifier

Overview of the Support Vector Classifier

Even if the data are separable, they are sometimes noisy. This can lead to a poor
solution for the maximal-margin classifier – (i) a tiny margin, so less confident about
whether an observation was correctly classified; (ii) sensitive to individual observa-
tions, so may have overfit the training data (especially when p is large). [see Figure
9.5]

So we may prefer a classifying hyperplane that does not perfectly separate the two
classes even if this could be done, in the interest of
� Greater robustness to individual observations, and
� Better classification of most of the training observations.

Different from the maximal margin classifier where all observations are not only on
the correct side of the hyperplane but also on the correct side of the margin, the
support vector classifier, sometimes called a soft margin classifier, allows some
observations to be on the incorrect side of the margin [see Figure 9.6, left panel],
or even the incorrect side of the hyperplane (which is inevitable when no separating
hyperplane exists) [see Figure 9.6, right panel].
- The margin is soft because it can be violated by some of the training observations.
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Support Vector Classifier Overview of the Support Vector Classifier
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Support Vector Classifier Overview of the Support Vector Classifier
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Support Vector Classifier Details of the Support Vector Classifier

Details of the Support Vector Classifier

The constrained optimization problem for the support vector classifier is

max
β 0,β 1,��� ,β p ,ε1,��� ,εn

M

subject to kβk= 1,

yi

�
β 0+β

T xi

�
�M (1� ε i ) ,

ε i � 0,
n

∑
i=1

ε i � C.

M is the width of the margin, and ε1, � � � ,εn are slack variables.

ε i = 0 (> 0, > 1) implies the i th observation is on the correct side of the margin
(wrong side of the margin, wrong side of the hyperplane). [figure here]4

C � 0 is a tuning parameter: C = 0 implies the maximal margin hyperplane (sup-
pose it exists), C > 0 is the total violations to the margin that we can tolerate, and it
implies no more than C observations can be on the wrong side of the hyperplane.
[see Figure 9.7 for the effect of decreasing C on the margin]
- C can be chosen by CV based on the misclassification error and controls the
bias-variance trade-off [C small ) low bias but high variance].

4M (1� ε i ) rather than M� ε i is due to a technical reason.
Ping Yu (HKU) Support Vector Machines 18 / 62



Support Vector Classifier Details of the Support Vector Classifier

Figure: The points labeled ξ
�
i violate their margin by an amount ξ

�
i = Mε i ; points on the correct

side have ξ
�
i = 0. The margin is maximized subject to a total budget ∑n

i=1 ε i � constant. Hence
∑n

i=1 ξ
�
i is the total distance of points violating their margin.
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Support Vector Classifier Details of the Support Vector Classifier

C as a Regularization Parameter
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Support Vector Classifier Details of the Support Vector Classifier

More Discussions on the Support Vector Classifier

Similar to the maximal margin classifier, only the support vectors are relevant in
determining the classifier, but here support vectors include observations that either
lie on the margin or that violate the margin.
- Note that support vectors need not stay between the two margin boundaries [ε i >
2].

This implies that the support vector classifier is robust to the behaviour of observa-
tions that are far away from the hyperplane.
- On the contrary, the classification rule in the LDA depends on all of the observa-
tions equally (through the mean of each class and the common within-class covari-
ance matrix).
- In this aspect, logistic regression is close to the support vector classifier; see
Section 9.5 below.

When C is large, the margin is wide, and there are many support vectors, so the
classifier has low variance but high bias, and vice versa.

Sometime a linear boundary simply won’t work, no matter what value of C [see
Figure 9.8]. The support vector machine in the next section will handle this issue.
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Support Vector Classifier Details of the Support Vector Classifier

Linear Boundary Can Fail
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Support Vector Machines

Support Vector Machines

(Section 9.3)
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Support Vector Machines Classification with Non-linear Decision Boundaries

Feature Expansion

As in Lecture 7, we can enlarge the space of features by including transformations,
e.g., X2

1 ,X
3
1 ,X1X2,X1X2

2 , � � � . Hence go from a p-dimensional space to a q > p di-
mensional space.

Fit a support-vector classifier in the enlarged space.

This results in non-linear decision boundaries in the original space.

For example, suppose we use (X1,X2,X2
1 ,X

2
2 ,X1X2) instead of just (X1,X2). Then

the decision boundary would be of the form

β 0+β 1X1+β 2X2+β 3X2
1 +β 4X2

2 +β 5X1X2 = 0.

This leads to nonlinear decision boundaries in the original space (quadratic conic
sections [figure here]).
- The support-vector classifier in the enlarged space solves the problem in the
lower-dimensional space (5 vs. 2).

There are many possible expansions and maybe end up with a huge q, which
results in an unmanageable computational burden.

The SVM will do this feature expansion in an automatic and computationally effi-
cient way through the use of kernels.
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Support Vector Machines Classification with Non-linear Decision Boundaries

Figure: Quadratic Conic Sections

Ping Yu (HKU) Support Vector Machines 25 / 62



Support Vector Machines The Support Vector Machine

Inner Products

We did not discuss how the support vector classifier is computed; actually this can
be done by setting up the Lagrangian and solving the Kuhn-Tucker conditions.

Anyway, it turns out that the solution to the support vector classifier problem in-
volves only the inner products of the observations (as opposed to the observations
themselves).

We have met the Euclidean inner product:

hxi ,xi 0i=
p

∑
j=1

xijxi 0 j =: xT
i xi 0 .

The linear support vector classifier can be represented as

f (x) = β 0+
n

∑
i=1

α i hx ,xi i= β 0+

 
n

∑
i=1

α ixi

!T

x ,

i.e., β = ∑n
i=1 α ixi .
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Support Vector Machines The Support Vector Machine

Support Vectors

To estimate the n parameters α1, � � � ,αn, all we need are the Cn
2 inner products

hxi ,xi 0i between all pairs of training observations.

It turns out that most of the α̂ i ’s are zero:

f̂ (x) = β̂ 0+ ∑
i2S

α̂ i hx ,xi i ,

where S is the support set of indices i such that α̂ i > 0.

Where is yi used? Actually, α̂ i = âiyi for some âi that is nonzero only for support
vectors.

How about β 0? Any point on the margin can be used to solve for β 0 by yi f (xi ) = 1,
and typically average all the solutions for numerical stability.
- Why 1 here? This involves some transformations of the original problem. Specif-

ically, yi

�
β 0+β

T xi

�
�M (1� ε i ) can be re-expressed as yi

�
b0+bT xi

�
� 1� ε i ,

where b0 = β 0/M, and b = β /M. Because kβk = 1, kbk = 1/M. In other words,
maximizing M is equivalent to minimizing kbk. Now, the margin point has ε i = 0, so

all points on the margin satisfy yi

�
b0+bT xi

�
= 1.
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Support Vector Machines The Support Vector Machine

Kernels and SVM

As we have seen, to get f̂ (x), we need only compute some inner products.

The Euclidean inner product is not the only choice; we can define the inner product
through kernels which quantify the similarity of two observations [think about the
Euclidean inner product].
- From this perspective, the kernel should emphasize the features that are relevant
for the classification when there are many features.

Here, we provide two other popular nonlinear kernels besides the linear kernel
K (xi ,xi 0 ) = xT

i xi 0 .
- This kernel is a linear kernel because f̂ (x) is linear in x ; it essentially quantifies
the similarity of a pair of observations using Pearson (standard) correlation.

When the support vector classifier is combined with a non-linear kernel, the result-
ing classifier is known as a SVM.
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Support Vector Machines The Support Vector Machine

Polynomial Kernel

Polynomial Kernel of degree d :

K (xi ,xi 0 ) = (1+ hxi ,xi 0i)d ,

where d is a positive integer.

It computes the inner-products needed for d dimensional polynomials – Cp+d
d (which

is often written as
�

p+d
d

�
) basis functions!5 e.g., if p = d = 2, then Cp+d

d = 6, and

K (x ,y) = 1+2x1y1+2x2y2+ x2
1 y2

1 + x2
2 y2

2 +2x1x2y1y2 = hh (x) ,h (y)i

with h (x)T =
�

1,
p

2x1,
p

2x2,x2
1 ,x

2
2 ,
p

2x1x2

�
.

- The solution has the form f̂ (x) = β̂ 0+∑i2S α̂ iK (x ,xi ) which is nonlinear in x if
d > 1. [see the Appendix]

5Why? Choose d from p+1 unordered with replacement.
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Support Vector Machines The Support Vector Machine

Radial Kernel

The Radial (basis function) Kernel (RBF Kernel) or squared exponential kernel (SE
kernel) takes the form

K (xi ,xi 0 ) = exp
�
�γ kxi �xi 0k2

�
,

which is essentially a Gaussian kernel, where γ is a positive constant.

The feature space is implicit and infinite-dimensional [Exercise], so the direct com-
putation hh (xi ) ,h (xi 0 )i is formidable if not impossible.

Again, f̂ (x) = β̂ 0 +∑i2S α̂ iK (x ,xi ) [see the Appendix], but K (�, �) is the radial
kernel now.
- This classifier controls variance by squashing down most dimensions severely
since most α̂ i ’s are zero.
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Support Vector Machines The Support Vector Machine

How does the Radial Kernel Work?

Given a test observation x�, if kx��xik is large, then K (x�,xi ) will be tiny so that
xi will play virtually no role in f̂ (x�).6

Recall that x� is classified based on sign
�

f̂ (x�)
�

, so training observations far from

x� will play essentially no role in the predicted class label for x�; in other words, the
radial kernel is "local", similar to the kernel function in local regression of Lecture 7.

The larger γ is, the more local K is, the more effective dimension the feature space
has, and the more nonlinear f̂ (x) is.

6Correlation and a decreasing function of Euclidean distance are two popular measures of similarity; see
hierarchical clustering in Lecture 3 for some closely related dissimilarity measures.
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Support Vector Machines The Support Vector Machine

The dashed lines are the margins, f (x) = �1.

Left Panel: d = 3, so Cp+d
d = C5

3 = 10.7 Write out f (x) explicitly after class.

7There are totally 78 cubic plane curves.
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Support Vector Machines An Application to the Heart Disease Data

An Application to the Heart Disease Data

n = 303� 6(missing)= 297, p = 13, ntrain = 207, and ntest = 90.

In Figure 9.10, recall that "false positive rate" is Pr(type I error) and "true positive
rate" is the power= 1�Pr(type II error) in testing H0: negative vs. H1: positive.

The fp and tp rates are changing by changing the cutoff t in the decision

2 � I
�

f̂ (X )� t
�
�1.

In the left panel, LDA and the support vector classifier perform similarly with the
latter being slightly better.

In the right panel, γ = 10�1 gives an almost perfect ROC curve, but this may overfit.
[see Figure 9.11]

In the left panel of Figure 9.11, the support vector classifier seems to have a small
advantage over LDA (although statistically insignificant) on the test data; in the right
panel, the SVM with γ = 10�1 gives the worst result on the test data, and the other
three classifiers perform similarly.
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Support Vector Machines An Application to the Heart Disease Data
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Support Vector Machines An Application to the Heart Disease Data
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SVMs with More than Two Classes

SVMs with More than Two Classes

(Section 9.4)
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SVMs with More than Two Classes

SVM with More than Two Classes

The SVM as defined works for K = 2 classes. What do we do if we have K > 2
classes?

OVO (one-versus-one) or all-pairs approach: Fit all CK
2 pairwise classifiers f̂k`(x).

Classify x� to the class that wins the most pairwise competitions.

OVA (one-versus-all) approach: Fit K different 2-class SVM classifiers f̂k (x), k =
1, � � � ,K ; each class versus the rest. Classify x� to the class for which f̂k (x�) is
largest, as this amounts to a high level of confidence that x� belongs to the k th
class rather than to any of the other classes.

Which to choose? If K is not too large, use OVO.

Anyway, some experiments show that OVA is as accurate as OVO, and has the
merit of being conceptually simple and straightforward to implement.
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Relationship to Logistic Regression

(*) Relationship to Logistic Regression

(Section 9.5)

Ping Yu (HKU) Support Vector Machines 38 / 62



Relationship to Logistic Regression

Relationship to Logistic Regression

It turns out that one can rephrase the support vector classifier optimization when
f (X ) = β 0+β

T X as

min
β 0,β

(
n

∑
i=1

max [0,1�yi f (xi )]+λ kβk2

)
,

which takes the "Loss + Penalty" form, where λ � 0 is a tuning parameter which is
positively related to the budget C above, and λ kβk2 is a ridge penalty term.
The loss function as a function of yf (x), L(y , f ) =max [0,1�yf ] =: (1�yf )+ is the
positive part of 1�yf , known as the hinge loss, due to its shape.
- Only support vectors (i.e., yf � 1) count! It is the flat part of the hinge function that
gives rise to the sparsity of the SVM solution.
In logistic regression with yi 2 f1,�1g rather than f1,0g, the binomial deviance (i.e.,
negative log-likelihood) loss is

LB(y , f ) = �fI(y = �1) logPr (y = �1jx)+ I (y = +1) logPr (y = +1jx)g

= �
(

I(y = �1) log
�

1

1+ef (x)

�
+ I (y = +1) log

 
ef (x)

1+ef (x)

!)
= log

�
1+e�yf (x)

�
. [see Figure 9.12 ]
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Relationship to Logistic Regression
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Relationship to Logistic Regression

Which to Use? SVM or Logistic Regression?

When the classes are well separated, SVMs tend to behave better than logistic
regression. So does LDA.

When not, i.e., in more overlapping regimes, logistic regression (with ridge penalty)
and SVM behave similarly although logistic regression is often preferred.

If you wish to estimate probabilities, logistic regression is the choice.
- (**) This is because the SVM does not have a probabilistic interpretation, i.e., it
cannot be interpreted as a MLE or MAP.

For nonlinear boundaries, kernel SVMs are popular. Can use kernels with logistic
regression and LDA as well, but computations are more expensive (because none
of the α̂ i ’s is zero!).
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Relationship to Logistic Regression

Comparison with Other Popular Loss Functions

Adaboost, SVM and logistic regression all provide convex surrogates for the mis-
classification error loss I (z < 0) with z = yf .
- This is just like using RR and lasso as convex surrogates of best subset selection
to avoid computational difficulties.
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Relationship to Logistic Regression

Support Vector Regression

When y is quantitative, suppose we consider the linear regression model, E [y jx ] =:
f (x) = xT β +β 0.

Support vector regression machine estimates β by minimizing

H (β ,β 0) =
N

∑
i=1

V (yi � f (xi ))+λ kβk2 , (1)

where V (�) is an "ε-insensitive" error measure:

Vε (r ) = (jr j� ε)+ =maxf0, jr j� εg=
�

0,
jr j� ε,

if jr j< ε,
otherwise,

which ignores errors of size less than ε. [figure here]

The ε-insensitive error function inherits some properties of the SVM classifier: the
counterparts of the points well inside their class boundary are those with small
residuals; these low error points do not incur loss.

We can also extend f (x) to nonlinear functions by kernels.

Similar to SVM, f̂ (x) = β̂ 0+∑i2S α̂ iK (x ,xi ), where the support vectors are points
for which the errors lie on or outside the ε tube of f̂ (�).

Ping Yu (HKU) Support Vector Machines 43 / 62



Relationship to Logistic Regression

Figure: The ε-insensitive error function used by the support vector regression machine.
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Lab: Support Vector Machines

Lab: Support Vector Machines

(Section 9.6)

Support Vector Classifier

Support Vector Machine

ROC Curves

SVM with Multiple Classes
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Appendix: Reproducing Kernel Hilbert Space

Appendix: Reproducing Kernel Hilbert Space
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Appendix: Reproducing Kernel Hilbert Space

Kernels

This appendix is based on Appendix E and Section 11.3 of Giraud (2021).

Definition

A function K : X �X �!R is said to be a nonnegative definite kernel if it is symmetric
(i.e., K (x ,y) = K (y ,x) for all x ,y 2 X ), and if for any N 2 N, x1, � � � ,xN 2 X and
a1, � � � ,aN 2R we have

N

∑
i,j=1

aiajK
�
xi ,xj

�
� 0.

Some examples of nonnegative definite kernel in X =Rd :
- linear kernel: K (x ,y) = hx ,yi
- Gaussian kenrel: K (x ,y) = e�kx�yk2/2σ2

- histogram kernel (d = 1 and X = [0,1]): K (x ,y) =min (x ,y)
- exponential kernel: K (x ,y) = e�kx�yk/σ
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Appendix: Reproducing Kernel Hilbert Space

RKHS

Parzen’s theorem: Every nonnegative definite kernel K possesses a unique repro-
ducing kernel Hilbert space (RKHS), denoted HK , defined as follows:
(i) HK is a Hilbert space with inner product h�, �iHK

.
(ii) K (�,x) 2HK for any x 2X .
(iii) Reproducing property: hK (�,x) , f (�)iHK

= f (x) for f 2HK and x 2X .

It can be checked that the following space (F ,h�, �iF ) can serve as
�
HK ,h�, �iHK

�
:

F =

(
f : X �!Rjf (x) =

∞

∑
i=1

aiK (x ,xi ) , (xi ) 2RN,
∞

∑
i,j�1

aiajK
�
xi ,xj

�
< ∞

)
, and

hf ,giF =
∞

∑
i,j�1

aibjK
�
xi ,yj

�
=

∞

∑
i=1

aig (xi ) =
∞

∑
i=1

bj f (yi )

for f = ∑∞
i=1 aiK (�,xi ) and g = ∑∞

i=1 bjK
�
�, ,yj

�
, where the last two equalities en-

suers that hf ,giF does not depend on the choice of the expansion of f and g.

Because��f (x)� f
�
x 0
���= ���hf ,K (�,x)iHK

�


f ,K

�
�,x 0
��

HK

���� kfkHK



K (�,x)�K
�
�,x 0
�



HK
,

the smoothness of a function in the RKHS is driven by its norm.
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More Discussions

Let’s reverse the discussion in the last slide, i.e., first define a functional on f , and
then check how the kernel is deduced.
For any Hilbert space H of functions on a set X , we may define for each x 2X
the evaluation functional f 7�! f (x).
If every such evaluation functional is bounded, then by the Riesz representation
theorem, we can find for each x an Rx 2H so that f (x) = hf (�) ,Rx (�)iH , i.e., H
is a RKHS.
The kernel K : X �X �!R can be defined as K (x ,y) = Rx (y).
K is symmetric: K (x ,y) = Rx (y) =



Rx (�) ,Ry (�)

�
=


Ry (�) ,Rx (�)

�
= Ry (x) =

K (y ,x).

K is nonnegative definite: ∑N
i,j=1 aiajK

�
xi ,xj

�
=
D

∑N
i=1 aiRxi (�) ,∑N

i=1 aiRxi (�)
E
=


∑N

i=1 aiRxi (�)



2
� 0.

K is unique: if K and K 0 are both kernels, then for each x 2X ,

K (�,x)�K 0 (�,x)


2

=


K (�,x)�K 0 (�,x) ,K (�,x)�K 0 (�,x)

�
=



K (�,x)�K 0 (�,x) ,K (�,x)

�
�


K (�,x)�K 0 (�,x) ,K 0 (�,x)

�
=

�
K (x ,x)�K 0 (x ,x)

�
�
�
K (x ,x)�K 0 (x ,x)

�
= 0,

where the second to last equality uses the reproducing property.
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SVM with Kernel Bases

The objective function here is

min
f2C

n
∑n

i=1 [1�yi f (xi )]+

o
,

where C = ff 2F jkfkF � Rg which neglects the constant β 0 for simplicity, F is a
RKHS, and k�kF is the associated norm.
- Since the smoothness of a function in an RKHS is driven by its norm, the ball C
corresponds to a set of smooth functions.
The dual Lagrangian problem is

min
f2F

n
∑n

i=1 [1�yi f (xi )]++λ kfk2
F

o
. (2)

It turns out that the solution of (2) fulfills a representation formula:

f̂ =∑n
j=1 α̂ jK

�
�,xj
�
, (3)

with
α̂ = arg min

α2Rn

�
∑n

i=1

h
1�∑n

j=1 α j yi K
�
xi ,xj

�i
+
+λ ∑n

i,j=1 α i α j K
�
xi ,xj

��
.

- This formula reduces the infinite-dimensional minimization problem to an n-dim
convex minimization problem, but we must narrow the space of candidate functions
f from the space of all functions on X to the set C in the RKHS F ..
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Proof

Proof.

Let V be the linear space spanned by
�

K
�
�,xj
�	n

j=1. Decomposing f = fV + fV? , where
fV is the orthogonal projection of f on V , we have by the reproducing property,

f (xi ) = hf ,k (�,xi )i= hfV ,k (�,xi )i= fV (xi ) .

Combining this formula with the Pythagorean formula, we obtain

∑n
i=1 [1�yi f (xi )]++λ kfk2

F =∑n
i=1 [1�yi fV (xi )]++λ kfV k2

F +λ kfV?k2
F .

Since λ > 0, any minimizer f̂ must have f̂V? = 0, so it is of the form

f̂ =∑n
j=1 α̂ jK

�
�,xj
�
.

Furthermore, the reproducing property ensures that


k
�
�,xj
�
,k (�,xi )

�
= k

�
xi ,xj

�
, so

kfV k2
F =∑n

i,j=1 α i α jK
�
xi ,xj

�
.
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Further Simplification for the Hinge Loss

The representation formula actually holds for any loss function; for the hinge loss,
we have further simplification.
It turns out that

α̂ i = 0 if yi f̂ (xi )> 1;

α̂ i =
yi

2λ
if yi f̂ (xi )< 1;

0 � yi α̂ i �
1

2λ
if yi f̂ (xi ) = 1;

so only the support vectors count in determining f̂ .
Why? Denote K for the symmetric matrix

�
K
�
xi ,xj

��
i,j=1,��� ,n; then

α̂ = arg min
α2Rn

n
∑n

i=1 [1�yi [K α ]i ]++λα
T K α

o
.

This objective function is not smooth, so we introduce some slack variables ξ i =
(1�yi [K α ]i )+ and rewrite the minimization problem as�

α̂, ξ̂
�
= arg min

α,ξ2Rn s.t. ξ i�1�yi [K α ]i ,ξ i�0

n
∑n

i=1 ξ i +λα
T K α

o
,

which is now smooth and convex.
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Continued

The Kuhn-Tucker conditions for the Lagrangian dual problem�
α̂, ξ̂

�
= arg min

α,ξ2Rn

n
∑n

i=1 ξ i +λα
T K α�∑n

i=1 [η i (ξ i �1+ yi [K α ]i )+ γ i ξ i ]
o

gives the formula for i, j = 1, � � � ,n

FOCs : 2λ [K α̂ ]j =∑n
i=1 Kij η iyi and η i + γ i = 1,

Slackness Conditions : min
�

η i , ξ̂ i �1+ yi [K α̂ ]i

�
= 0 and min

�
γ i , ξ̂ i

�
= 0.

The FOC is fulfilled with α̂ i = η iyi / (2λ ). Since f̂ (xi ) = [K α̂ ]i , the first slack-
ness condtion enforces that α̂ i = 0 if yi f̂ (xi ) > 1. The second slackness con-
dition, together with the second FOC, endorces that α̂ i = yi / (2λ ) if ξ̂ i > 0 and
0� yi α̂ i � 1/ (2λ ) otherwise.

When ξ̂ i > 0, we have α̂ i and η i nonzero, and therefore yi f̂ (xi ) = 1� ξ̂ i < 1 ac-
cording to th first slackness condition.
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Geometrical Interpretation

Denote φ : X �!F for the map φ (x) = K (�,x), usually called the "feature map".

By the reproducing property, we have

f̂ (x) =
D

f̂ ,φ (x)
E
=
D
∑n

j=1 α̂ j φ
�
xj
�
,φ (x)

E
.

A point x 2 X is classified by sign
�

f̂ (x)
�

, therefore, the function φ (x) 2 F is

classified according to the linear classifer on F

g 7�! sign
�


ŵφ ,g
��

where ŵφ =∑n
j=1 α̂ j φ

�
xj
�
.

The separating frontier
n

x 2X jf̂ (x) = 0
o

is the reciprocal image by φ of the hy-

perplane
�

f 2F j


ŵφ , f

�
= 0

	
in F , which is nonlinear in general. [figure here]

For all the discussions above, we need only know the kernel K and need not identify
the RKHS associated with K ; such a property is referred to as the "kernel trick".
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Figure: Classification with a nonlinear kernel: The linear classification in F produces a non-linear
classification in X via the reciprocal image of φ
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Smoothing Splines

Recall that the objective function for smoothing splines is
n

∑
i=1

L (yi , f (xi ))+λJ (f ) (4)

where L (yi , f (xi )) = (yi � f (xi ))
2, J (f ) =

R
f 00 (t)2 dt , and WLOG, let X = [0,1] so

xi 2 [0,1].
Our goal is to construct an RKHS whose norm corresponds to this J.
Recall that Taylor’s Theorem with integral remainder term states that if f 0 is ab-
solutely continuous on [0,1] and f 00 2 L2 [0,1], then

f (t) = f (0)+ f 0 (0) t+
Z t

0
(t�x) f 00 (x)dx . (5)

It will be helpful to rewrite the integral as
R 1
0 (t�x)+ f 00 (x)dx .

If we define W 0
2 to be the functions under the hypotheses of (5) with f (0) = f 0 (0) =

0, then for f 2W 0
2 , we have

f (t) =
Z 1

0
(t�x)+ f 00 (x)dx , (6)

where the subscript 2 in W 0
2 represents the 2nd derivative, and the superscript 0

means all derivatives less than 2 are 0.
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W 0
2 and H0 as RKHS

With the inner product

hf ,gi=
Z 1

0
f 00 (x)g00 (x)dx ,

and the kernel

K 1 (s, t) =
Z 1

0
(s�x)+ (t�x)+ dx ,

the space W 0
2 forms an RKHS.

To see that K 1 is a kernel, first notice that K 100
t (s) = (t�s)+ from (6).

Then D
f ,K 1 (�, t)

E
=
Z 1

0
f 00 (x) (t�x)+ dx = f (t) .

Now define the nullspace of the penalty functional:

H0 = span (f1,xg) =: span (fφ1 (x) ,φ2 (x)g) =: span (φ (x)) .

The kernel for H0 is
K 0 (s, t) = 1+ st ,

which is the Euclidean inner product of (1,s) and (1, t).
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Solution for a General Loss

It is not hard to see that the space W2 of functions under the hypotheses of (5) can
be written as a direct sum

W2 =H0�W 0
2

with kernel K = K 0+K 1.

Also, J(f ) corresponds to the squared norm of the projection Pf of f onto W 0
2 , so

for f 2W2 (4) becomes
n

∑
i=1

L (yi , f (xi ))+λJ (Pf ) . (7)

Following the proof of (3), it is easy to prove that the solution to (7) is the natural
generalization of (3):

fλ (x) =
n

∑
i=1

ciK
1 (x ,xi )+ (d1+d2x) =: K 1 (x ,X)T c+φ (x)T d. (8)

In other words, fλ consists of an unpenalized component from H0 as well as a
linear combination of the projections onto W 0

2 of the representers of evaluation at
the n input data points.

Ping Yu (HKU) Support Vector Machines 58 / 62



Appendix: Reproducing Kernel Hilbert Space

Solution for the Squared-Error Loss

First,

K 1 (s, t) =
Z 1

0
(s�x)+ (t�x)+ dx =

� 1
2 ts2� 1

6 s3,
1
2 st2� 1

6 t3,

if s � t ,
if t � s,

which is a cubic in s on [0, t ] and linear on [t ,1] with continuous first and second
derivatives.
Then (8) differs from the natural cubic spline only in that the latter is required be
linear on the interval [0,x1], which would be shown below.

Define the n�2 matrix T=
�

φ j (xi )
�

and the n�n matrix S=
�

K 1 �xi ,xj
��

.

Then in matrix notation, (4), with (8) plugged in, becomes

ky� (Sc+Td)k2+λcT Sc. (9)

Taking derivatives to minimize (9), we find that

c =M�1
�

I�T
�

TT M�1T
��1

TT M�1
�

y,

where M = S+ λ I. Therefore, TT c = 0, from which we obtain ∑n
i=1 ci = 0 and

∑n
i=1 cixi = 0.
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Continued

Therefore, for t 2 [0,x1], we have

Pfλ (t) =
n

∑
i=1

ciK
1 (t ,xi ) =

n

∑
i=1

ci

Z 1

0
(t�x)+ (xi �x)+ dx

=
n

∑
i=1

ci

Z t

0
(t�x) (xi �x)dx =

Z t

0
(t�x)

n

∑
i=1

ci (xi �x)dx = 0,

where the first equality in the second line is because for x � t , xi � x .

As a result, only the d1+d2x term appears in Pfλ (t) for t 2 [0,x1].

We can re-organize the terms of fλ in (8) as

fλ (x) =
n

∑
j=1

Nj (x)θ j ,

where the Ni (x) are the basis functions of natural cubic splines.
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Continued

Then the objective function reduces to

PRSS (θ ) = (y�Nθ )T (y�Nθ )+λθ
T Ωnθ ,

where N=
�
Nj (xi )

�
is full rank, and Ωn =

�R
N 00

i (t)N
00
j (t)dt

�
whose first two rows

and columns are zeros so is not full rank.

The solution is easily seen to be

θ̂ =
�

NT N+λ Ωn

��1
NT y,

a generalized RR.

The fitted smoothing spline is given by

f̂ (x) =
n

∑
j=1

Nj (x) θ̂ j .

The vector of n fitted values can be written as

ĝλ = N
�

NT N+λ Ωn

��1
NT y =

�
I+λ

�
NT
��1

ΩnN�1
��1

y := Sλ y.
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Smoothing Spline as a Local Smoother
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