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Introduction

In Lecture 7, we discuss how to estimate f (X ) = E [Y jX ] nonparametrically using
polynomials, steps functions, splines or local regression when X 2 R1; when X 2
Rp, we assume either f (X ) = β 0 (Xp)+β 1 (Xp)X1+ � � �+β p�1 (Xp)Xp�1 or f (X ) =
β 0+ f1 (X1)+ f2 (X2)+ � � �+ fp (Xp), i.e., the nonparametric dimension is 1.

Here we describe some general nonparametric methods – tree-based methods for
regression and classification.

Depending on the predicted outcome is discrete or continuous, it is called classifica-
tion tree and regression tree, respectively, and combined as so-called Classification
And Regression Tree (CART).

These involve stratifying or segmenting the predictor space into a number of simple
regions, and using the mean or mode response in the training region to which the
test point belongs for prediction.
- Different from step basis functions in Lecture 7, the stratifying regions are adap-
tively determined rather than predetermined.

Since the set of splitting rules used to segment the predictor space can be summa-
rized in a tree, these types of approaches are known as decision tree methods.
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Pros and Cons

Tree-based methods are simple and useful for interpretation.

However, they typically are not competitive with the best supervised learning ap-
proaches, such as those in Lectures 4 and 7, in terms of prediction accuracy.

Hence we also discuss bagging, random forests (RF), boosting, and Bayesian ad-
ditive regression trees (BART).1

These methods grow multiple trees which are then combined to yield a single con-
sensus prediction.

Combining a large number of trees can often result in dramatic improvements in
prediction accuracy, at the expense of some loss in interpretation.

These are examples of the ensemble method, which combines many simple "build-
ing block" models or weak learners to obtain a single more powerful model.

1(**) These are general approaches which can be applied to many other statistical learning methods for
regression or classification. We introduce them here because they are particularly useful and frequently used in
the context of decision trees.
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The Basics of Decision Trees

The Basics of Decision Trees

(Section 8.1)
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The Basics of Decision Trees Regression Trees

History of CART, Bagging and RF

Leo Breiman (1928-2005, UC-Berkeley)

Breiman, L., J.H. Friedman, R.A. Olshen, and C.J. Stone, 1984, Classification and Regression
Trees, Boca Raton, Fla.: Chapman & Hall/CRC.

Breiman, L., 1996, Bagging Predictors, Machine Learning, 24, 123-140.

Breiman, L., 2001, Random Forests, Machine Learning, 45, 5-32.
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The Basics of Decision Trees Regression Trees

Regression Trees

Using the Hitters data set, we try to predict a baseball player’s Salary (in log thou-
sands) based on Years and Hits (i.e., tenure and performance).

Salary is color-coded from low (blue, green) to high (yellow,red).
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The Basics of Decision Trees Regression Trees

Decision Tree for These Data

Years and Hits are integers, so the splitting points are the midpoints between two
adjacent values.
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The Basics of Decision Trees Regression Trees

Results

Overall, the tree stratifies or segments the players into three regions of predic-
tor space: R1 = fX jYears< 4.5g, R2 = fX jYears� 4.5, Hits< 117.5g, and R3 =
fX jYears� 4.5, Hits� 117.5g.

Think of the differences from the step functions: stratified regions, interactions, and
parameter restrictions. [Exercise]
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The Basics of Decision Trees Regression Trees

Terminology for Trees

In keeping with the tree analogy, the regions R1, R2, and R3 are known as terminal
nodes, or leaves.

Decision trees are typically drawn upside down, in the sense that the leaves are at
the bottom of the tree.

The points along the tree where the predictor space is split are referred to as inter-
nal (or interior) nodes.

In the hitters tree, the two internal nodes are indicated by the text Years< 4.5 and
Hits< 117.5.

If the tree has only two terminal nodes, i.e., split only once, it is called a stump or
best-first induced binary tree without pruning.

The segments of the trees that connect the nodes (either terminal or internal) are
called branches.
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The Basics of Decision Trees Regression Trees

Interpretation of Results

Years is the most important factor in determining Salary, and players with less
experience earn lower salaries than more experienced players.

Given that a player is less experienced, the number of Hits that he made in the
previous year seems to play little role in his Salary.

But among players who have been in the major leagues for five or more years, the
number of Hits made in the previous year does affect Salary, and players who made
more Hits last year tend to have higher salaries.

Surely an over-simplification, but compared to a regression model, it is easy to
display, interpret and explain.
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The Basics of Decision Trees Regression Trees

Details of the Tree-building Process

1 We divide the predictor space – that is, the set of possible values for X1, X2,� � � , Xp
– into J distinct and non-overlapping regions, R1, R2, � � � , RJ .

2 For every observation that falls into the region Rj , we make the same prediction,
which is simply the mean of the response values for the training observations in Rj .

In theory, the regions could have any shape. However, we choose to divide the
predictor space into high-dimensional rectangles, or boxes, for simplicity and for
ease of interpretation of the resulting predictive model.

The goal is to find boxes R1, R2, � � � , RJ that minimize the RSS, given by

J

∑
j=1

∑
i2Rj

�
yi � ŷRj

�2
,

where ŷRj
is the mean response for the training observations within the j th box.
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The Basics of Decision Trees Regression Trees

More Details of the Tree-building Process

Unfortunately, it is computationally infeasible to consider every possible partition of
the feature space into J boxes.

For this reason, we take a top-down, greedy approach that is known as recursive
binary splitting.

The approach is top-down because it begins at the top of the tree and then suc-
cessively splits the predictor space; each split is indicated via two new branches
further down on the tree.

It is greedy because at each step of the tree-building process, the best split is made
at that particular step, rather than looking ahead and picking a split that will lead to
a better tree in some future step.
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The Basics of Decision Trees Regression Trees

Continued

We first select the predictor Xj and the cutpoint s such that splitting the predictor
space into the regions R1 (j,s) :=

�
X jXj < s

	
and R2 (j,s) :=

�
X jXj � s

	
leads to

the greatest possible reduction in RSS.
- Mathematically, we are minimizing

∑
i :xi2R1(j,s)

�
yi � ŷR1

�2
+ ∑

i :xi2R2(j,s)

�
yi � ŷR2

�2
with respect to both j and s.
Next, we repeat the process, looking for the best predictor and best cutpoint in
order to split the data further so as to minimize the RSS within each of the resulting
regions.
However, this time, instead of splitting the entire predictor space, we split one of the
two previously identified regions. We now have three regions.
Again, we look to split one of these three regions further, so as to minimize the
RSS. The process continues until a stopping criterion is reached; for instance, we
may continue until no region contains more than five observations.

How to predict the response for a given test observation? Use the mean of the
training observations in the region to which that test observation belongs.
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The Basics of Decision Trees Regression Trees

The partitioning scheme in regression trees is obtained through nested parallel axis
splitting.
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The Basics of Decision Trees Regression Trees

(**) More Details

The tree splitting rules are invariant to monotone transformations of the X compo-
nents, so there is no need to standardize Xj ’s as in ridge regression.

For binary or ordinal variables, the cut-points can be defined by the collection of
all possible values. Unordered categorical variables with q levels are generally
expanded into q binary indicators of these levels, or consider all possible category
subsets.
- If a binary predictor were used in a splitting rule, then it would no longer be avail-
able for splitting rules at nodes below it.
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The Basics of Decision Trees Regression Trees

Tree Pruning

The process described above may produce good predictions on the training set,
but is likely to overfit the data, leading to poor test set performance. Why?

A smaller tree with fewer splits (that is, fewer regions R1, R2, � � � , RJ ) might lead to
lower variance and better interpretation at the cost of a little bias.

One possible alternative to the process described above is to grow the tree only so
long as the decrease in the RSS due to each split exceeds some (high) threshold.

This strategy will result in smaller trees, but is too short-signed: a seemingly worth-
less split early on in the tree might be followed by a very good split – that is, a split
that leads to a large reduction in RSS later on.

A better strategy is to grow a very large tree T0, and then prune it back in order to
obtain a subtree.

Cost complexity pruning is used to do this. Rather than considering every possible
subtree (too many such subtrees!), we consider a sequence of trees indexed by a
nonnegative tuning parameter α.
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The Basics of Decision Trees Regression Trees

Continued

For each value of α there corresponds a subtree Tα � T0 such that

jT j

∑
m=1

∑
i :xi2Rm

(yi � ŷRm )
2+α jT j

is as small as possible, where jT j indicates the number of terminal nodes of the
tree T .
- How? Use weakest link pruning: successively collapse the internal (non-terminal)

node that produces the smallest per-node increase in ∑jT jm=1 ∑i :xi2Rm
(yi � ŷRm )

2,
and continue until produce the single-node (root) tree; this sequence of subtrees
must contain Tα .

The tuning parameter α controls a trade-off between the subtree’s complexity and
its fit to the training data.
- As α increases from 0, we prune T0 in a nested and predictable fashion.

We select an optimal value α̂ using cross-validation (CV).

We then return to the full data set and obtain the subtree corresponding to α̂ [see
Algorithm 8.1].

Note that the order of pruning the tree is not the reverse order of building the tree.
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The Basics of Decision Trees Regression Trees
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The Basics of Decision Trees Regression Trees

Baseball Example Continued

ntrain = 132, and p = 9.
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The Basics of Decision Trees Regression Trees

ntest = 131, and six-fold CV; x-axis is jT j rather than α because the one-to-one
correspondence between jT j and α in the original tree.
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The Basics of Decision Trees Classification Trees

Classification Trees

Just as in the regression setting, we use recursive binary splitting to grow a classi-
fication tree.

In the classification setting, RSS cannot be used as a criterion for making the binary
splits.

A natural alternative to RSS is the classification error rate, which is simply the
fraction of the training observations in that region that do not belong to the most
commonly occurring class (i.e., the mode of yi in that region).

Define p̂mk =
1

nm
∑xi2Rm

I (yi = k) as the proportion of training observations in the
mth region that are from the k th class, where nm = ∑n

i=1 I (xi 2 Rm), and k (m) =
argmaxk p̂mk . Then

E =
1

nm
∑

xi2Rm

I (yi 6= k (m)) = 1�max
k
(p̂mk ) .

However, classification error is not sufficiently sensitive for tree-growing, and in
practice two other measures are preferable.
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The Basics of Decision Trees Classification Trees

Gini Index and Entropy

The Gini index is defined as

G =
K

∑
k=1

p̂mk (1� p̂mk ) ,

a measure of total variance across the K classes. The Gini index takes on a small
value if all of the p̂mk ’s are close to zero or one.
- The Gini index is thus referred to as a measure of node purity – a small value
indicates that a node contains predominantly observations from a single class.

An alternative to the Gini index is entropy :

D = �
K

∑
k=1

p̂mk log p̂mk =
K

∑
k=1

p̂mk log
1

p̂mk
,

where the base for log can be 2 (measured in bits), e (nats) or 10 (dits).
- (*) log 1

p̂mk
measures the surprise of outcome k , e.g., if p̂mk = 1, then log 1

p̂mk
= 0 –

not surprising at all, and if p̂mk ! 0, then log 1
p̂mk

! ∞ – very surprising. So entropy

is the average level of "surprise" ("information"2 or "uncertainty") inherent to the
system’s possible outcomes. For more discussions on entropy, see Appendix A.

2"information" and "surprise" are the same: a certain prediction when p̂mk is small is very informative.
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The Basics of Decision Trees Classification Trees

History of Entropy

Claudem E. Shannon (1916-2001, MIT), the father of information theory

Entropy in the information theory was introduced by Claude Shannonn in his 1948
landmark paper "A Mathematical Theory of Communication", and measures the
disorder of a random system (in our case, a random variable or a dataset); D with
base 2 in log gives the average (genuine) information in the unit of bits of a random
system.
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The Basics of Decision Trees Classification Trees

Continued

It turns out that the Gini index and entropy are very similar numerically. [figure here
for K = 2]
Gini index and entropy are also more sensitive to variations in the two child-node

probabilities
n

p̂mLk(mL), p̂mRk(mR)

o
, so are recommended to grow the tree. [see the

next2 slide]
They are differentiable, so more amenable to numerical optimization than misclas-
sification error.
Parallel to regression tree, where

jT j

∑
m=1

∑
i :xi2Rm

(yi � ŷRm )
2 =

jT j

∑
m=1

nm

"
1

nm
∑

i :xi2Rm

(yi � ŷRm )
2

#
,

we should weight QmL (T ) and QmR (T ) by nmL and nmR when splitting node m, i.e.,
we try to find the splitting that minimizes

nmL QmL (T )+nmR QmR (T ) ,

where QmL (T ) and QmR (T ) are either of the three measures of impurity in the left
and right branches.
- Equivalently, we use weighted QmL (T ) and QmR (T ), wmL QmL (T )+wmR QmR (T ),
where wmL = nmL /nm, and wmR = 1�wmL .
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The Basics of Decision Trees Classification Trees

Figure: Node impurity measures for two-class classification, as a function of the proportion p in
class 1. Entropy has been scaled to pass through (0.5,0.5).

Since p2 = 1�p1, G = p1 (1�p1)+p2 (1�p2) = 2p1 (1�p1) is symmetric about
p1 = 0.5, with G = 0.5 when p1 = 0.5 and G = 0 when p1 = 0.

D =�p1 logp1�p2 logp2 is also symmetric with D = log2 2= 1 when p1 = 0.5 and
D = 0 when p1 = 0 (by the convention 0 � log0= 0); i.e., when p1 = 0.5, the system
has the maximal disorder. This also indicates that entropy can be used to quantify
the similarity or difference in the probabilities of the outcomes.

Ping Yu (HKU) Tree-Based Methods 25 / 107



The Basics of Decision Trees Classification Trees

(**) Why Growing Classification Trees via Gini Index/Entropy Instead of
the Misclassification Error?

We take entropy for illustration since the analysis for Gini index is similar.
In the following example, x1, x2 and x3 are three binary features used for growing
the tree.
The questions is whether the first splitting would be conducted (implicitly, x1 is
the best splitter under either criterion); if YES, then the ensued splittings would
generate pure terminal nodes, the dream of any classification.
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The Basics of Decision Trees Classification Trees

(**) Continued

If misclassification error is used, then

∆E =
40

120
�
�

70
120

� 28
70
+

50
120

� 12
50

�
= 0,

so the first splitting would not be conducted.
If entropy is used, then

∆D =
�

40
120

log
120
40

+
80

120
log

120
80

�
�
�

70
120

�
�

28
70

log
70
28
+

42
70

log
70
42

�
+

50
125

�
�

12
50

log
50
12
+

38
50

log
50
38

��
= 0.02> 0,

so the first splitting would be conducted.

Why can this happen? Entropy is concave in p1 while misclassification error is
linear in p1 when p1 � 0.5.

In this example, Em = wmL EmL +wmR EmR , while Dm = D (Em) > wmL D (EmL ) +
wmR D (EmR ) = wmL DmL +wmR DmR , where

D (Em) = �Em logEm� (1�Em) log (1�Em) ,

EmL =
28
70 , EmR =

12
50 , wmL =

70
120 , and wmR =

50
120 . [figure here]
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The Basics of Decision Trees Classification Trees

x-axis is the misspecification error.
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The Basics of Decision Trees Classification Trees

Pruning the Tree

Typically, the misclassification error rate rather than Gini index or entropy is used to
prune the tree if prediction accuracy of the final pruned tree is the goal, i.e., use

jT j

∑
m=1

nmEm (T )+α jT j

to prune a tree.
- Note that ∑jT jm=1 nmEm (T ) is the total number of missclassifications in all terminal
nodes.

In other words, we use different criteria to grow a tree and prune a tree!
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The Basics of Decision Trees Classification Trees

[Example] Heart Data
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The Basics of Decision Trees Classification Trees

Comments

n = 303, and p = 13; the CV jT j is 6.

The two nodes in each splitting need not have different predictions.
- The split is performed because it can increase node purity, which is important for
prediction.
- The misclassification error rate need not decrease in both nodes.
- For example, 16 of 20 observations in one node is 1, and the right child node
contains 9 1’s, and the left contains 7 1’s and 4 0’s. Ef =

4
20 <

4
11 = EL, but 20�

16
20 �

4
20 > 11� 7

11 �
4

11 +9�0.3

Pure nodes are not split further since the objective function is zero for any splitting.

Xj can be qualitative, e.g., Sex, Thal and ChestPain. [see Figure 8.6]

3Here, we can see the importance of weighting QmL (T ) and QmR (T ) by nmL
and nmR

, respectively. Oth-

erwise, 16
20 �

4
20 <

7
11 �

4
11 + 0. Essentially, we are weighting the impurity of each child-node by its probability

pmL =
nmL
nm

and pmR =
nmR
nm

; otherwise, we may split off a single data point (which is pure) to reduce the impurity
of the parent node. Similarly, in regression tree, we are actually using the weighted variance as the impurity
measure.
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The Basics of Decision Trees Trees Versus Linear Models

Trees Versus Linear Models
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The Basics of Decision Trees Advantages and Disadvantages of Trees

Advantages and Disadvantages of Trees

Trees are very easy to explain to people. In fact, they are even easier to explain
than linear regression!
Some people believe that decision trees more closely mirror human decision-making
than do the regression and classification approaches seen in previous lectures,
e.g., "Middle-aged professionals who reside in Hong Kong have the highest churn
rate" is a statement based on decision trees.
Trees can be displayed graphically, and are easily interpreted even by a non-expert
(especially if they are small).
Trees can easily handle qualitative predictors without the need to create dummy
variables.

Unfortunately, trees generally do not have the same level of predictive accuracy
(i.e., have high variance) as some of the other regression and classification ap-
proaches seen in this course.
Additionally, trees can be very non-robust. In other words, a small change in the
data can cause a large change in the final estimated tree.

However, by aggregating many decision trees, the predictive performance of trees
can be substantially improved.
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Bagging, Random Forests, Boosting, and BART

Bagging, Random Forests, Boosting, and
Bayesian Additive Regression Trees

(Section 8.2)
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Bagging, Random Forests, Boosting, and BART The Bootstrap

History of The Bootstrap

Bradley Efron (1938-, Stanford)4

Efron, B., 1979, Bootstrap Methods: Another Look at the Jackknife, Annals of Statistics, 7,
1-26.

4He won almost all honors in Statistics, e.g., the International Prize in Statistics, one of the two highest honours
in the field of Statistics (the other one is the COPPS Award, but Efron is too old to be eligible when the award
started in 1981 since the candidates must be under age 41), and the National Medal of Science, the highest
scientific honor by the United States.

Ping Yu (HKU) Tree-Based Methods 35 / 107



Bagging, Random Forests, Boosting, and BART The Bootstrap

The Bootstrap (Section 5.2)

The bootstrap is a powerful tool to quantify the uncertainty of an estimator or a
statistical learning method, especially when a measure of variability is difficult to
obtain, e.g., it can provide an estimate of the standard error of a coefficient, or a
confidence interval for that coefficient.

Where does the name come from? The use of the term bootstrap derives from
the phrase to pull oneself up by one’s bootstraps, widely thought to be based on
one story of the 18th century “The Surprising Adventures of Baron Munchausen”
by Rudolph Erich Raspe:
The Baron had fallen to the bottom of a deep lake. Just when it looked like all was
lost, he thought to pick himself up by his own bootstraps. [figure here]

In general, bootstrapping usually refers to a self-starting process that is supposed
to continue or grow without external input.

(**) In computer science, the term bootstrapping refers to language compilers that
are able to be coded in the same language (e.g., a C compiler is now written in
the C language). It also refers to the process of loading the basic software into the
memory of a computer after power-on, the kernel will load the operating system
which will then take care of loading other device drivers and software as needed.
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Bagging, Random Forests, Boosting, and BART The Bootstrap

A pair of boots with one bootstrap visible
Baron Munchausen pulls himself and his horse
out of a swamp by his pigtail (not bootstraps)
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Bagging, Random Forests, Boosting, and BART The Bootstrap

A Simple Example

Suppose we want to invest our money to two financial assets that yield returns X
and Y , respectively. It can be shown that the fraction of our money in X , say α, that
minimizes the total risk, Var(αX +(1�α)Y ) is

α =
σ2

Y �σXY

σ2
X +σ2

Y �2σXY
,

but σ2
X =Var(X ), σ2

Y =Var(Y ), and σXY =Cov(X ,Y ) are unknown.

Given a sample of (X ,Y ), we can estimate α by

α̂ =
σ̂

2
Y � σ̂XY

σ̂
2
X + σ̂

2
Y �2σ̂XY

,

but the uncertainty of α̂ is not easy (although not impossible) to quantify.
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Bagging, Random Forests, Boosting, and BART The Bootstrap

Continued

If we could obtain N samples of (X ,Y ) and each sample contains n data points,
(xi ,yi ), i = 1,2, � � � ,n, then we can calculate α̂ N times to have α̂ r , r = 1,2, � � � ,N.
[see Figure 5.9 for n = 100, and the left panel of Figure 5.10 for the histogram of
α̂ r when N = 1000]

Based on α̂ r , we have

α̂ =
1
N

N

∑
r=1

α̂ r and SDN (α̂) =

vuut 1
N�1

N

∑
r=1

�
α̂ r � α̂

�2
,

and we expect α̂ is close to E [α̂ ] (or even α) and SDN (α̂) is close to sd(α̂) when
N is large.
- This is indeed the case, e.g., α̂ = 0.5996 in the left panel of Figure 5.10, very
close to the true α = 0.6.
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Bagging, Random Forests, Boosting, and BART The Bootstrap
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Bagging, Random Forests, Boosting, and BART The Bootstrap

σ2
X = 1,σ2

Y = 1.25, and σXY = 0.5, so the true α = 0.6.
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Bagging, Random Forests, Boosting, and BART The Bootstrap

Now Back to the Real World

But in practice, N = 1, i.e., we have only one sample.

The bootstrap samples B distinct data sets (with sample size n) by repeatedly and
randomly sampling observations from the original data set with replacement. [see
Figure 5.11]
- What happens if sampling without replacement?
- Since with replacement, some observations may appear more than once in a
given bootstrap data set and some not at all.
- The pair (xi ,yi ) must be sampled as a whole with probability 1

n .
- This idea is to mimic sampling N independent samples from the population, but
the population in the bootstrap world is the original data set.
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Bagging, Random Forests, Boosting, and BART The Bootstrap
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Bagging, Random Forests, Boosting, and BART The Bootstrap

Continued

The counterpart of SDN (α̂) is

SEB (bα) =
vuut 1

B�1

B

∑
r=1

�
α̂
�r � α̂

�
�2
,

where α̂
�r is the α estimator based on the r th bootstrap data set, Z �r , and

α̂
� =

1
B

B

∑
r=1

α̂
�r .

We expect that SEB (bα) is close to sd(α̂) when B is large.
- This is indeed the case, e.g., in the middle panel of Figure 5.10, SEB (bα) = 0.087�
0.083=SDN (α̂) with B = N = 1000.
- (**) When B is large, α̂

� should be close to α̂ which is close to α when n is large.
- Check also the right panel of Figure 5.10 for a comparison of the distributions ofbα and α̂

�.
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Bagging, Random Forests, Boosting, and BART The Bootstrap

(**) The Bootstrap in General

In more complex data situations, figuring out the appropriate way to generate boot-
strap samples can require some thought.

For example, if the data is a time series, we can’t simply sample the observations
with replacement (why not?).

We can instead create blocks of consecutive observations, and sample those with
replacements. Then we paste together sampled blocks to obtain a bootstrap dataset.

Figure: A general picture for the bootstrap
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Bagging

Recall that given a set of n independent observations Z1, � � � , Zn, each with variance
σ2, the variance of the mean Z̄ of the observations is given by σ2/n. In other words,
averaging a set of observations reduces variance.
In the regression context, we could estimate f (x) by

f̂avg (x) =
1
B

B

∑
b=1

f̂ b (x)

based on B training sets, where f̂ b (x) is the regression tree estimate of f (x) based
on the bth training set.
Of course, this is not practical because we generally do not have access to multi-
ple training sets. Instead, we can bootstrap, by taking repeated samples from the
(single) training data set.
In this approach we generate B different bootstrapped training data sets. We then
train our method on the bth bootstrapped training set in order to get f̂ �b (x), the
prediction at a point x . We then average all the predictions to obtain

f̂bag (x) =
1
B

B

∑
b=1

f̂ �b (x) .

This is called Bootstrap aggregation, or bagging.
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Bagging Classification Trees

For each test observation, we record the class predicted by each of the B classifi-
cation trees, and take a majority vote: the overall prediction is the most commonly
occurring class among the B predictions.

In Figure 8.8, the bagging test error rate is slightly lower than that in a single tree
for the Heart data.
- Note that B is not a critical parameter; using a large B will not lead to overfitting.
- In practice, use a B sufficiently large such that the error has settled down.

We grow deep and unpruned trees in bagging such that individual trees have low
bias but high variance.

In other words, the main purpose of bagging is to reduce variance rather than
reduce bias.
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[Example] Heart Data
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Out-of-Bag Error Estimation

It turns out that there is a very straightforward way to estimate the test error of a
bagged model, without the need to perform CV or the validation set approach.

Recall that the key to bagging is that trees are repeatedly fit to bootstrapped subsets
of the observations. One can show that on average, each bagged tree makes use
of around two-thirds of the observations.
- (*) 1�

�
1� 1

n

�n
�! 1�e�1 = 0.632.

The remaining one-third of the observations not used to fit a given bagged tree are
referred to as the out-of-bag (OOB) observations. [figure here]

We can predict the response for the i th observation using each of the trees in
which that observation was OOB. This will yield around B/3 predictions for the
i th observation, which we average or take a majority vote to get a single OOB
prediction f̂OOB (xi ) .
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Figure: Out-of-Bag Samples

One set, the bootstrap sample, is the data chosen to be "in-the-bag" by sampling
with replacement. The out-of-bag set is all data not chosen in the sampling process.
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Continued

The OOB error estimate is

errOOB =
1
n

n

∑
i=1

L
�

yi , f̂OOB (xi )
�
,

where
L
�

yi , f̂OOB (xi )
�
= (yi � f̂OOB (xi ))

2

in regression and

L
�

yi , f̂OOB (xi )
�
= I(yi 6= f̂OOB (xi ))

in classification. [see Figure 8.8]
- When B is large enough, it is equivalent to LOOCV error; i.e., the number of trees
can be chosen along the way without extra cost (for each B, we plant B trees rather
than nB trees as in LOOCV).
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Variable Importance Measures

Bagging improves prediction accuracy at the expense of interpretability.
But we can obtain an overall summary of the importance of each predictor using
the RSS (for regression) or the Gini index (for classification).
- For classification, deviance is also used, which is defined as �2 times the maxi-
mized log-likelihood,

�2∑
m

∑
k

nmk log p̂mk .

Specifically, we record the total amount that the objective function is decreased due
to splits over a given predictor (maybe multiple times, maybe none), averaged over
all B trees, referred to as "relative importance".
The variable importance plot for the Heart data is shown in Figure 8.9, where the
most important variables include two qualitative variables Thal and ChestPain, and
one quantitative variable Ca among the 13 predictors.
(**) Another way to measure variable importance is referred to as "permutation
importance" and is considerably slower than the relative importance: one at a time,
each feature is shuffled and an OOB estimation of the prediction error is made on
this ‘shuffled’ data set; intuitively, irrelevant features will not change the prediction
error when altered in this way, opposite to the very relevant ones; the relative loss
in performance between the ‘original’ and ‘shuffled’ data sets is therefore related to
the relevance of the shuffled feature.
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[Example] Heart Data
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Random Forests

Random forests (RF) provide an improvement over bagged trees by way of a small
tweak that decorrelates the trees. This reduces the variance when we average the
trees.
- If Z1 = � � �= Zn, then Var

�
Z̄
�
= Var (Zi )!

As in bagging, we build a number of decision trees on bootstrapped training sam-
ples.

But when building these decision trees, each time a split in a tree is considered, a
random sample of m predictors is chosen as split candidates from the full set of p
predictors. The split is allowed to use only one of those m predictors.

A fresh selection of m predictors is taken at each split, and typically we choose
m�pp (4 out of the 13 for the Heart data; see Figure 8.8 for the improvement over
bagging where m = p).

Why works? Think of the case with a strong predictor; give other predictors a
chance (with p�m

p probability the strong predictor not chosen, usually greater than
1
2 !).
- This is typically helpful when we have a large number of correlated predictors.

OOB error estimation and variable importance measures are similarly defined as in
bagging; also, a large B will not overfit.
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History of Boosting

Yoav Freund (1961-, UCSD) Robert E. Schapire (1963-, Microsoft)5

Freund, Y., and R.E. Schapire, 1997, A Decision-Theoretic Generalization of On-Line Learn-
ing and an Application to Boosting, Journal of Computer and System Sciences, 55, 119-139.

5previoiusly at Princeton.
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Boosting

Different from bagging and RF, boosting repeatedly grow shallow trees, so its main
purpose is bias reduction (or debiasing) rather than variance reduction.

The trees in boosting are grown in an adaptive and sequential way to remove bias,
and hence are not fit independently and not i.d. (identically distributed) as in bag-
ging and RF.
- Each tree is grown using information from previously grown trees – the residuals
rather than yi . [see Algorithm 8.2]

Boosting has three tuning parameters, d , λ and B.

d is typically small, e.g., d = 1 (a stump). In general, d is the interaction depth, e.g.,
d = 2, each tree involves at most two variables. Smaller trees aid in interpretability,
e.g., d = 1 leads to an additive model. [Exeicise]

By fitting small trees to the residuals, we slowly improve f̂ in areas where it does
not perform well. The shrinkage parameter λ , typically, 0.01 or 0.001 (depending
on the problem), slows the process down even further, allowing more and different
shaped trees to attack the residuals.
- In general, statistical learning approaches that learn slowly tend to perform well.

Different from bagging and RF, boosting can overfit if B is too large.
- B can be chosen by CV.
- Trade-off between λ and B.
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Boosting is somewhat similar to PLS.
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Boosting Classification Trees and Variable Importance

The original boosting algorithm is AdaBoost (adaptive boosting) which is developed
for the two-class classification problem and uses an exponential loss.
Adaboost and Algorithm 8.2 are special cases of gradient boosting. [see Appendix
B for more details on AdaBoost and Gradient Boosting]
The R package gbm (gradient boosted models) handles a variety of regression and
classification problems.

R uses the "relative importance" to measure the variable importance in boosting:
record how much a given metric (e.g. MSE) changes every time a given variable
is used for splitting, get the average reductions across all base-learners for each
variable, and then normalize the total importance as 100 (rather than the most
important variable as 100 as in Figure 8.9).
- "relative importance" is not "absolute importance", i.e., it is not the percentage of
Var (Y ) explained.
- (**) We can imagine the "permutation importance" can also be computed.
R also reports partial dependence plots, which plot

f̂ (xs) =
1
n

n

∑
i=1

f̂ (xs,xic)

against xs, where x = (xs,xc), xs is the variable of interest, and xc includes all other
variables.
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History of BART

Hugh A. Chipman (Acadia) Edward I. George (UPenn) Robert E. McCulloch (ASU)

Chipman, H.A., E.I. George, and R. McCulloch, 2010, BART: Bayesian Additive Regression
Trees, Annals of Applied Statistics, 4, 266-298.
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Bayesian Additive Regression Trees

We discuss BART only for regression (see Appendix D for the classification algo-
rithm and more details on the regression algorithm).

Bagging/RF: average of regression trees, each of which is built using a random
sample of data and/or predictors.

Boosting: weighted sum of trees, each of which is constructed by fitting a tree to
the residual of the current fit.

BART is related to both approaches: each tree is constructed in a random manner
as in the former, and each tree tries to capture signal not yet accounted for by the
current model as in the latter.

The main novelty in BART is the way in which new trees are generated.

Notations: K is the number of trees in each iteration, B is the number of iterations,
and f̂ b

k (x) is the prediction at x for the k th tree used in the bth iteration.

At the end of each iteration, the K trees from that iteration will be summed, i.e.,

f̂ b (x) =
K

∑
k=1

f̂ b
k (x) .
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Discussions on Algorithm 8.3

Step 3(a).i: Note that for fitting the partial residual in the k th tree of the bth iteration,
only f̂ b

k 0 , k 0 < k , and f̂ b�1
k 0 , k 0 > k , are involved. [hand-drawn figure here]

- (**) This is similar to the Gibbs sampler, a Markov chain Monte Carlo (MCMC)
algorithm; this is also the qualifier "Bayesian" in BART from.
- (**) This is easier to understand through the backfitting algorithm in GAM of Lec-
ture 7.

Step 3(a).ii: Rather than fitting a fresh tree to this partial residual as in boosting,
BART randomly chooses a perturbation to the tree from the previous iteration (f̂ b�1

k )
from a set of possible perturbations, favoring ones that improve the fit to the partial
residual.
- Fitting a perturbation rather than a fresh tree guards against overfitting since it
limits how "hard" we fit the data.
- Also, the individual trees are typically quite small ((**) implied by the prior on the
tree structure), so avoid overfitting.
- (**) More formally, BART avoids overfitting by fitting weak learners through prior
distribution specification and posterior sampling and averaging rather than loss
minimization as in boosting; in other words, BART is model-based rather than
algorithm-based.
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Perturbations

There are two components to the perturbation in Step 3(a).ii:
1 We may change the structure of the tree by adding or pruning branches.6 [see Figure

8.12, (d)&(c)]
2 We may change the prediction in each terminal node of the tree. [see Figure 8.12, (b)]

(**) The first component is from the proposal distribution for the tree structure in
a blocked Metropolis-Hastings algorithm (which is another popular MCMC algo-
rithm), and the second component is from the conditional distribution of the leaf
parameters given the tree structure (with the prior implying "shrunk toward zero").

(**) In summary, Step 3(a) is a Metropolis-within-Gibbs sampler by assuming

yi = f (xi )+ ε i ,ε i
iid� N

�
0,σ2

�
,

where

f (x) = E [Y jX = x ] =
K

∑
k=1

g (x ,Tk ,Mk )

with K being fixed, Tk being the tree structure and Mk being the leaf parameters in
the k th tree.

6(**) There are two other operations, change an interior node and swap two interior (parent-child) nodes, but
these two operations are particularly computationally efficient.
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[Example] Heart Data (K = 200)

See also the discussions in the next slide.
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More Discussions on BART

Compared with boosting, BART tends not to overfit. In Figure 8.13,
- BART: only a small difference between the training error and the test error, indi-
cating no overfitting.
- Boosting: the training error decreases as B increases and the test error increases
when B > 500, indicating overfitting.

BART has three tuning parameters: K , B and L. We typically choose large values
for B and K , and a moderate value for L: e.g., the default K = 200,B = 1000, and
L= 100.
- BART has been shown to have impressive out-of-box performance – i.e., it per-
forms well with minimal tuning.

To measure the importance of variables, we can count the average frequency of
each variable in all splittings:

vj =
1

B�L

B

∑
b=L+1

zjb,

where zjb is the total number of times that xj is used in a tree decision rule (over all
K trees) of the bth iteration.
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Summary of Tree Ensemble Methods

Trees are an attractive choice of weak learner for an ensemble method because of
their flexibility and ability to handle predictors of mixed types.

Bagging: the trees tend to be quite similar to each other such that bagging can get
caught in local optima and can fail to thoroughly explore the model space.

RF: decorrelate the trees by randomly sampling the features in each splitting, so
the model space is more thoroughly explored than bagging.

Boosting: use only the original data, and no random sampling is involved; use
"slow" learning approach: each new tree is fit to the signal left over from the earlier
trees, and shrunken down before it is used.

BART: like boosting, use only the original data, and grow the trees successively,
but each tree is perturbed to avoid local minima and achieve a more thorough
exploration of the model space.
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Lab: Decision Trees

(Section 8.3)

Fitting Classification Trees

Fitting Regression Trees

The Bootstrap (Section 5.3.4)

Bagging

Random Forests

Boosting

BART
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Appendix A: More on Entropy
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Axioms for Entropy

If we denote the entropy of a discrete r.v. X as H (X ), then

H (X ) = �
n

∑
i=1

p (xi ) logp (xi ) =: �
n

∑
i=1

pi logpi =: Hn (p1, � � � ,pn) .

If the base of the logarithm is b, we denote the entropy as Hb(X ).
- Because logb p = logb a loga p, we have Hb(X ) = (logb a)Ha (X ).

The choice of logarithm in the definition of entropy seems arbitrary; it is actually a
must if we assume H (p1, � � � ,pn) satisfies the following three natural conditions:

(i) Continuity: Hn (p1, � � � ,pn) is continuous, i.e., changing the values of the
probabilities by a very small amount should only change the entropy by
a small amount.

(ii) Positive Monotonicity: If pi =
1
n , then Hn

�
1
n , � � � ,

1
n

�
is increasing in n.

(iii) Additivity: if an experiment can be decomposed into a few successive
experiments, then the entropy of the original experiment is the weighted
sum of entropies of these successive experiments.

- For example, Hn

�
1
n , � � � ,

1
n

�
=Hk

�
b1
n , � � � ,

bk
n

�
+∑k

i=1
bk
n Hbi

�
1
bi
, � � � , 1

bi

�
.

Choosing bi = 1, we have H1 (1) = 0.
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Theorem

The H function satisfying the conditions (i)-(iii) must take the form

Hn (p1, � � � ,pn) = �K
n

∑
i=1

pi logpi ,

where K plays the role of logb a in base changing.

Proof.

We prove this theorem in three steps.

Step 1: denote A (n) = Hn

�
1
n , � � � ,

1
n

�
; then A (sm) =mA (s), where s,m 2N.

By (iii),

Hsm

�
1

sm , � � � ,
1

sm

�
= Hs

�
sm�1

sm , � � � , sm�1

sm

�
+ s

�
sm�1

sm Hs

�
sm�2

sm�1 , � � � ,
sm�2

sm�1

��
+ � � �+ sm�1

�
s

sm Hs

�
1
s
, � � � , 1

s

��
= mHs

�
1
s
, � � � , 1

s

�
.
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Proof.

If sm � tn < sm+1, where s,m, t ,n 2N, then taking logarithm on both sides, we have

m logs � n log t < (m+1) logs,

i.e.,
m
n
� log t

logs
<

m
n
+

1
n
,

so ����mn � log t
logs

����< 1
n
. (1)

By (ii), A (n) is increasing in n, and from Step 1, we have

mA (s)� nA (t)< (m+1)A (s) ,

i.e.,
m
n
� A (t)

A (s)
<

m
n
+

1
n
,

so ����mn � A (t)
A (s)

����< 1
n
. (2)
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Proof.

By (1) and (2), we have ���� A (t)
A (s)

� log t
logs

����< 2
n
.

Because the left hand side does not depend on n, n can be arbitrary, which implies

A (t)
A (s)

=
log t
logs

or
A (t)
log t

=
A (s)
logs

= K > 0;

in other words,
A (t) = K log t .

Hence,

Hn

�
1
n
, � � � , 1

n

�
= K logn = �K ∑ 1

n
log

1
n
,

i.e.„ the theorem holds for pi =
1
n , i = 1, � � � ,n.
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Proof.

Step 2: If pi ’s are nonnegative rational numbers, we can show the theorem holds.
First of all, pi can be written as

pi =
ni

∑r
i=1 ni

, i = 1, � � � , r .

By (iii), we have

Hr (p1, � � � ,pr )+
r

∑
i=1

piA (ni ) = A

 
r

∑
i=1

ni

!
,

so from Step 1,

Hr (p1, � � � ,pr ) = A

 
r

∑
i=1

ni

!
�

r

∑
i=1

piA (ni ) = K log

 
r

∑
i=1

ni

!
�K

r

∑
i=1

pi log (ni )

= K
r

∑
i=1

pi

"
log

 
r

∑
i=1

ni

!
� log (ni )

#
= �K

r

∑
i=1

pi

�
log
�

ni

∑r
i=1 ni

��

= �K
r

∑
i=1

pi logpi .

Step 3: From Step 2, the general result holds by (i).
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Further Properties of Entropy

Symmetry: H is unchanged if the outcomes xi are re-ordered. That is,

Hn (p1,p2, � � � ,pn) = Hn
�
pi1 , � � � ,pin

�
for any permutation fi1, � � � , ing of f1, � � � ,ng.
Maximum: H is maximized if all outcomes are equally likely, i.e.,

Hn (p1, � � � ,pn) = Hn

�
1
n
, � � � , 1

n

�
.

- Because log µ is a strictly concave function, for any p1, � � � ,pn > 0 and ∑n
i=1 pi = 1,

Hn (p1, � � � ,pn) =
n

∑
i=1

pi log
1
pi
� log

 
n

∑
i=1

pi
1
pi

!

= logn = Hn

�
1
n
, � � � , 1

n

�
.

When some pi , say p1, equals zero, then

Hn (0,p2, � � � ,pn) = Hn�1 (p2, � � � ,pn)� Hn�1

�
1

n�1
, � � � , 1

n�1

�
< Hn

�
1
n
, � � � , 1

n

�
,

where 0log∞= 0 by convention, and the last equality is from (ii).
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Cross-Entropy

The cross-entropy of the distribution q relative to the distribution p is defined as
H (p,q) = �∑M

m=1 pm log (qm), where (q1, � � � ,qM ) are the predicted probabilities
while (p1, � � � ,pM ) are the true probabilities.

For example, in the negative multinomial log-likelihood,

�
n

∑
i=1

M

∑
m=1

yim log (fm (xi )) ,

qim = fm (xi ), and pim = yim which takes 1 for some m and 0 for all others since we
know the true class to which the i th observation belongs.

In information theory, the cross-entropy is the average message length to code
data generated from p under q (in bits when the base for log is 2); if the predicted
probabilities match the true probabilities, the cross-entropy is equal to entropy, and
the length is shortest.
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Appendix B: AdaBoost and Gradient Boosting

(Chapter 10 of ESL)
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AdaBoost

When Y 2 f�1,1g, we mimic the idea in boosting for regression trees.

First, we use the exponential loss L (z) = e�z to substitute the squared-error loss,
and define some weak learners, e.g., hj (x) =sign

�
xj � tj

�
with tj 2R, to mimic the

stumps in regression trees.

The principle of AdaBoost is to perform a greedy minimization of

f̂ = arg min
f2spanfh1,��� ,hpg

(
1
n

n

∑
i=1

exp (�yi f (xi ))

)
.

More precisely, it computes a sequence of functions f̂m for m = 0, � � � ,M by starting
from f̂0 = 0 and then solving for m = 1, � � � ,M

f̂m = f̂m�1+β mhjm ,

where

(β m, jm) = arg min
j=1,��� ,p

β2R

1
n

n

∑
i=1

exp
�
�yi

�
f̂m�1 (xi )+βhj (xi )

��
.

The final classification is performed according to ĥM (x) =sign
�

f̂M (x)
�
.
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Continued

The exponential loss allows us to compute (β m, jm) very efficiently.

Actually, setting w (m)
i = n�1 exp

�
�yi f̂m�1 (xi )

�
, we have

1
n

n

∑
i=1

exp
�
�yi

�
f̂m�1 (xi )+βhj (xi )

��
=

n

∑
i=1

w (m)
i exp

�
�βyihj (xi )

�
= e�β ∑

yi=hj (xi )

w (m)
i +eβ ∑

yi 6=hj (xi )

w (m)
i

=
�

eβ �e�β
� N

∑
i=1

w (m)
i I

�
yi 6= hj (xi )

�
+e�β

n

∑
i=1

w (m)
i .

w (m)
i >1/n if xi is misclassified in stage m�1 and w (m)

i <1/n otherwise; ∑n
i=1 w (m)

i
need not equal 1 when m � 1.
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Continued

When no initial classifier hj perfectly classifies the data (xi ,yi )i=1,��� ,n, so that

errm (j) =
∑n

i=1 w (m)
i I

�
yi 6= hj (xi )

�
∑n

i=1 w (m)
i

< 1 for all j = 1, � � � ,p.

- errm (j) is a weighted classification error rate with the weights determined from
the previous stage.
As a result, the minimizers (β m, jm) are given by

jm = arg min
j=1,��� ,p

errm (j) and β m =
1
2

log
�

1�errm (jm)
errm (jm)

�
.

- β m > 0 because hjm is better than random guessing whose error rate is 50%.
- When hj depends on unknown parameters such as tj in sign

�
xj � tj

�
, we can

estimate them together with jm.
So fitting the remaining misclassification in the original formulation of AdaBoost
turns out to be minimizing a weighted error rate with the weights determined by the
remaining misclassification from the last iteration.

For squared-error loss, L
�

yi , f̂m�1 (xi )+βhj (xi )
�
=
�

yi � f̂m�1 (xi )�βhj (xi )
�2
=�

rim�βhj (xi )
�2, where rim is the residual of the current model on the i th observa-

tion, and βhj (xi ) is a shallow tree; but we do not shrink βhj (xi ) in AdaBoost.
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AdaBoost in Summary

Init: w (m)
i = 1/n for i = 1, � � � ,n.

Iterate: For m = 1, � � �M do

jm = arg min
j=1,��� ,p

errm (j) with errm (j) =
∑n

i=1 w (m)
i I

�
yi 6= hj (xi )

�
∑n

i=1 w (m)
i

,

2β m = log
�

1�errm (jm)
errm (jm)

�
,

w (m+1)
i = w (m)

i �e�β myi hjm (xi ) = w (m)
i �e2β m I(yi 6=hjm (xi ))�β m ,

where the second equality in w (m+1)
i is due to �yihjm (xi ) = 2 � I

�
yi 6= hjm (xi )

�
�1.

Output: f̂M = ∑M
m=1 β mhjm (x), and ĥM (x) =sign

�
f̂M (x)

�
.

From the expression of w (m+1)
i , AdaBoost gives more and more weight in errm (j) to

the data points Xi , which are wrongly classified at the stage m [2β mI
�
yi 6= hjm (xi )

�
�

β m > 0 if yi 6= hjm (xi )], whereas gives less and less weights to those that were clas-
sified correctly.
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Why Exponential Loss?

AdaBoost was originally motivated differently.

The main advantage of exponential loss is computational.

What does it estimate? It is easy to show that

f �(x) = argmin
f (x)

EY jx
�

e�Yf (x)
�
= argmin

f (x)
e�f (x)Pr (Y = 1jx)+ef (x)Pr (Y = �1jx)

=
1
2

log
Pr (Y = 1jx)

Pr (Y = �1jx) ,

or equivalently,

Pr (Y = 1jx) = 1

1+e�2f �(x)
,

So fM in AdaBoost is estimating one-half the log-odds of Pr(Y = 1jx).
- f �(x)> 0() Pr(Y = 1jx)> 1/2, so hM (x) =sign(fM (x)).

The exponential loss imposes exponential penalties on large negative margins
yf (x), so is not robust; the deviance loss imposes linear penalties for large negative
margins, so is more robust.
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History of Gradient Boosting

Jerome H. Friedman (1939-, Stanford)7

Friedman, J.H., 2001, Greedy Function Approximation: A Gradient Boosting Machine, Annals
of Statistics, 29, 1189-1232.

Friedman, J.H., 1991, Multivariate Adaptive Regression Splines, Annals of Statistics, 19, 1-
141.

7He is also famous for MARS in Appendix C and projection pursuit.
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Gradient Boosting

For a general loss function, we conduct the gradient boosting:
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Comments on Algorithm 10.3

f0(x) is obtained from a single terminal node tree.
rim ’s are referred to as generalized or pseudo residuals.
Algorithm 10.3 was called MART for "multiple additive regression tress".
To appreciate the definition of rim, note that for squared-error loss,

rim = �
"

∂ (yi � f (xi ))
2

∂ f (xi )

#
f=fm�1

= yi � fm�1 (xi ) ;

and for exponential loss,

rim = �
�

∂ exp (�yi f (xi ))

∂ f (xi )

�
f=fm�1

= exp (�yi fm�1 (xi ))yi = nw (m)
i yi

is a re-weighted yi .
In two-class classification, the deviance loss is

L (y , f (x)) = �y log f (x)� (1�y) log (1� f (x)) ,

so

rim =
yi

fm�1 (xi )
� 1�yi

1� fm�1 (xi )
=

yi � fm�1 (xi )

fm�1 (xi ) (1� fm�1 (xi ))
.
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Appendix C: Multivariate Adaptive Regression Splines
(MARS)

(Section 9.4 of ESL)
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MARS

MARS uses expansions in piecewise linear basis functions of the form (x� t)+ and
(x � t)�. [see Figure 9.9]
Specifically, the collection of basis functions is

C =
n�

Xj � t
�
+
,
�
t�Xj

�
+

o
t2fx1j ,��� ,xnjg

j=1,��� ,p
,8

i.e., totally 2np basis functions formed for each input Xj with knots at each observed
value xij , where each basis fucntion is considered as function in Rp although it
depends only on Xj .
MARS can be viewed as a generalization of stepwise linear regression. Instead of
using the original input Xj , it uses functions from C and their products:

f (X ) = β 0+
M

∑
m=1

β mhm (X ) ,

where each hm (X ) is a function in C , or a product of two or more such functions.

Given fhm (X )gM
m=1, fβ mg

M
m=1 are estimated by least squares.

8Does not require feature standardization on Xj , but missing values must be pre-processed. For quantiative
predictors, consider all possible binary partitions of the categories; each partition generates a pair of piecewise
constant basis functions.
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The basis functions are linear splines with a knot at t .

(x � t)+ and (t�x)+ are called a reflected pair.
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The Forward Pass

The real art of MARS is in the construction of the functions hm (x).
MARS is a greedy forward algorithm for including only those tensor products that
are deemed necessary by least squares.
Start from the constant function h0 (X ) = 1, and all functions in C are candidate
functions. [figure here]
Suppose the current model is M (see the left panel of the figure below). We search
for a new basis function pair of this form

h` (X ) �
�
Xj � t

�
+

and h` (X ) �
�
t�Xj

�
+

that produces the largest decrease in residual sum-of-squares, where h` 2M , j =
1, � � � ,p, and t 2

�
xij
	

.
- i.e., we choose one pair from jM j �np candidate pairs.
Continue this process until the model set M contains some preset maximum num-
ber of terms.
- A useful option is to set an upper limit on the order of interaction κ; e.g., if κ = 2, we
search over only the pairs among jM j �np with κ � 2, which can aid interpretation
of the final model, and if κ = 1, we have an additive model.
In summary, MARS fits a low-order interaction model adaptively and is suitable to
large p problem.
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An Illustrative Example

At the first stage, we add a pair of the form
�
Xj � t

�
+

and
�
t�Xj

�
+

, t 2
�

xij
	

, since
multiplication by the constant function just produces the function itself.

Suppose the best choice is (X2�x72)+ and (x72�X2)+.

Now, M =
�

1, (X2�x72)+ , (x72�X2)+
	
=: fh0 (X ) ,h1 (X ) ,h2 (X )g.

At the second stage, we search for a pair of product in the form

hm (X ) �
�
Xj � t

�
+

and hm (X ) �
�
t�Xj

�
+
,m = 0,1,2,

where j 6= 2 when m= 1,2, i.e., each input can appear at most once in a product to
prevent higher-order powers of an input.
- This restriction avoids too sharply increase (or decrease) of higher-order powers
near the boundaries of the feature space; rather, such powers can be approximated
in a more stable way with piecewise linar functions (similar to natural cubic splines).

The third choice produces functions such as (X1�x51)+ � (x72�X2)+. [see Figure
9.11]

Ping Yu (HKU) Tree-Based Methods 91 / 107



Appendix C: Multivariate Adaptive Regression Splines (MARS)

Ping Yu (HKU) Tree-Based Methods 92 / 107



Appendix C: Multivariate Adaptive Regression Splines (MARS)

The Backward Pass

The final model in the above procedure is large and typically overfits the data, so a
backward deletion procedure is applied.
At each stage, delete the term (not pair) whose removal causes the smallest in-
crease in residual squared error, producing an estimated best model f̂λ of each
size λ , where λ is the number of terms.
Then choose λ by CV, or for computational savings by GCV, i.e., minimizing

GCV (λ ) =
∑n

i=1

�
yi � f̂λ (xi )

�2

(1�M (λ )/n)2
,

where M (λ ) is the effective number of parameters in the model, which accounts
both for the number of terms in the models, plus the number of parameters used in
selecting the optimal positions of the knots.
Some mathematical and simulation results suggest that one should pay a price of
three parameters for selecting a knot in a piecewise linear regression.
In other words, M (λ ) = λ+cK , where K is number of knots (selected in the forward
process) in the model f̂λ , and c = 3.
- If the interaction order κ = 1, set c = 2.
- c is a smoothing parameter; larger c will lead to fewer knots and thereby smoother
function estimates.
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Advantages of Piecewise Linear Basis Functions

First, they can operate locally. They are zero over part of their range and when
multiplied together, the result is nonzero only over the small part of the feature
space where all component functions are nonzero.
- The regression surface is built up parsimoniously, and the parameters are "spent"
only where they are needed, which is important when p is large.

Second, the structure of C makes the computation much quickly than the brute-
force fit of tons of least squares.

The forward modeling strategy in MARS is hierarchical, e.g., a four-way product
can only be added to the model if one of its three-way components is already in the
model.
- The philosophy here is that a higher-order interaction will likely only exist if some
of its lower-oder "footprints" exist as well.
- This is also the reason why the model can be built up parsimoniously.

Disadvantages: not accurate if the local linear relationships are incorrect (see Sec-
tion 9.4.2 of ESL); typically not as accurate as more advanced nonlinear algorithms
(random forests, gradient boosting).

Ping Yu (HKU) Tree-Based Methods 94 / 107



Appendix C: Multivariate Adaptive Regression Splines (MARS)

[Example] Spam Data

Apply MARS with κ = 2 although Y is binary; GCV chooses λ = 60, which is
roughly the samllest model giving optimal performace.
The leading interactions involve (ch$, remove) , (ch$, free) and (hp, CAPTOT), but
these interactions give no improvement in performance over GAM (which involves
also cubic terms of a single Xj ).
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MARS for Classification

When K = 2, code Y as 0/1, and perform MARS as in the above example.

When K > 2, code Y as a K -dimensional 0/1 vector, and perform a multi-response
MARS regression.
- Use common set of basis functions for all K response variables.
- Classification is made to the class with the largest predicted response value.
- There are potential masking problems; a generally superior approach is the "opti-
mal scoring" method discussed in Section 12.5.1 of ESL.

PolyMARS: use the multinomial logit, but at each stage use a quadratic approxima-
tion to the log-likelihood to search for the next basis-function pair; once found, the
enlarged model is fit by maximum likelihood, and the process is repeated.
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Relationship of MARS to CART

MARS can also be viewed as an improvement of CART in the regression setting.

MARS is the same as CART if we make the following two changes:

1 Replace the piecewise linear basis functions by step functions I (x � t > 0) and
I (x � t � 0).
- Multiplying a step function by a pair of reflected step functions is equivalent to
splitting a node at the step.

2 When a model term in M is involved in a multiplication by a candidate term, it gets
replaced by the interaction, and hence is not available for further interactions.
- It implies that a node may not be split more than once.
- It also implies that CART cannot model additive structures.
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The Model

Suppose

y = f (x)+ ε :=
m

∑
j=1

g
�
x ;Tj ,Mj

�
+σε, (3)

where ε �N (0,1), Tj summarizes the structure (i.e., topology and splitting rules) of
the j th binary regression tree, and Mj summarizes the terminal node parameters.

Although a single tree is enough to approximate f (x), BART borrows an idea from
boosting and uses the sum of many small trees to approximate f (x).

Like other ensemble methods, a sum-of-trees model tends to be more robust (to a
small change in data) and less variable (in prediction) than a single-tree model.

Here, we follow the notations of BART in the original paper, which is a little different
from those in the main text.
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Prior Specification

The unknown parameters include m,
�

Tj ,Mj
	m

j=1, and σ .

In practice, we usually fix m at a large (default) integer, say 200, rather than treat it
as random.

For other parameters, the BART priors impose independence and symmetry.

Specifically, we assume

p ((T1,M1) , � � � , (Tm,Mm) ,σ) =
m

∏
j=1

p
�
Tj ,Mj

�
p (σ) =

"
m

∏
j=1

p
�
Mj jTj

�
p
�
Tj
�#

p (σ)

and

p
�
Mj jTj

�
=

κ j

∏
t=1

p
�

µ tj jTj

�
,

where κ j is the number of terminal nodes of the j th tree, and µ tj is the mean as-
signed to the t th terminal node of the j th tree.

Furthermore, we assume p
�

µ tj jTj

�
and p

�
Tj
�

are the same for each t and j , thus

we need only specify three priors, p
�

µ tj jTj

�
, p
�
Tj
�

and p (σ).
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p
�
Tj
�

Given the data, there are only finite many possible trees, but BART does not impose
prior on each of these trees because there are too many; rather, it describes how
to grow a tree which implies a prior on each of the possible trees.

(i): The probability of splitting a node (i.e., the node is not terminal) at depth d
(= 0,1,2, � � � ) is

α (1+d)�β , α 2 (0,1) ,β 2 [0,∞).

- A larger α and smaller β imply a larger tree; the default (α,β ) is (0.95,2).
- Because the probability is decreasing in d , this prior implies "bushy" trees, i.e.,
trees with terminal nodes having similar depths.

(ii): In case of splitting an interior node, each variable has the same probability to
be chosen as the splitting variable.

(iii): Given a splitting variable, there are finite discrete possible splitting values; each
possible splitting rule has the same probability to be employed.
- (ii) and (iii) indicate that BART uses the uniform prior on the splitting variables and
rules.
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p
�

µ tj jTj

�

BART uses conjugate normal priors on µ tj , N
�

µµ ,σ
2
µ

�
, where "conjugate" means

that the prior takes the same functional form as the likelihood function.

To specify the hyperparameters µµ and σ2
µ , BART assumes the resulting prior on

f (x) can cover the data with high probability.

Since µ tj ’s are i.i.d., the induced prior on f (x) is N
�

mµµ ,mσ2
µ

�
. So we choose µµ

and σ2
µ such that

mµµ �k
p

mσ µ = ymin and mµµ + k
p

mσ µ = ymax

for some k , where ymin and ymax are the minimum and maximum of yi , respectively.
- The default k = 2 implies 95% of the prior probability of f (x) falls in (ymin,ymax).
- If yi is shifted and rescaled such that ymin = �0.5 and ymax = 0.5, then µµ = 0

and σ µ =
0.5

k
p

m
, which implies shrinkage toward the center of yi , more so for large

m and/or k .
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p (σ)

BART also uses a conjugate prior on σ , σ2 �IG
�

ν

2 ,
νλ

2

�
, the inverse Gamma dis-

tribution, which implies σ2 � νλ /χ2
ν .

We still use data to guide the specification of the hyperparameters ν and λ .

For a rough over-estimate of σ , bσ , e.g., the standard error of the linear regression,
we pick ν and λ such that

P (σ < bσ) = q

for some q.
- The default (ν,q) is (3,0.90).

BART seems robust to small changes in the specification of (α,β ,m,k ,ν,q).

We can use CV to choose (m,k ,ν,q) for improvement in prediction, but it is more
time-consuming.

Compared with boosting where m is chosen by CV to avoid overfitting, m in BART
is usually fixed, and a large m only slightly degrades its performance.

Like neural networks in Lecture 10, BART is overparametrized when m is large;
although the "fit" can be shifted among the trees when m is large, the overall fitting
is stable to m.
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Posterior Simulation

At a general level, BART is a Gibbs sampler.
We start the algorithm by setting

g0 �x ;Tj ,Mj
�
=

1
m

y , and f 0 (x) = y ,

i.e., trees with a single node at depth d = 0.
We then successively draw (T1,M1) , � � � , (Tm,Mm) and σ conditional on the data
and the other parameters: �

Tj ,Mj
�
jT(j),M(j),σ ,D ,

σ jT1, � � � ,Tm,M1, � � � ,Mm,D ,

where D is the observed data, T(j) is the set of all trees except Tj , and M(j) is
similarly defined.
For

�
Tj ,Mj

�
jT(j),M(j),σ ,D , BART takes a blocked Metropolis-Hastings (MH) ap-

proach, i.e., first simulates the marginal posterior distribution of Tj , and then simu-
lates Mj conditional on Tj .
For σ jT1, � � � ,Tm,M1, � � � ,Mm,D , it can be shown that

p (σ jT1, � � � ,Tm,M1, � � � ,Mm,D) = IG(
ν+n

2
,

νλ +nε2

2
),

where ε2 = 1
n ∑n

i=1 ε2
i with ε i = yi �∑m

j=1 g(xi ;Tj ,Mj ).
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Simulate
�
Tj ,Mj

�
jT(j),M(j),σ ,D

It can be shown that p
�

Tj ,Mj jT(j),M(j),σ ,D
�

depends on
�

T(j),M(j),D
�

only through

Rij := yi �∑k 6=j g (xi ;Tk ,Mk ) ,

which follows N(g
�
xi ;Tj ,Mj

�
,σ2), so we can treat Rj as the response and adopt

the single-tree MCMC algorithm.
The integrated likelihood of Tj is

L
�

Tj jT(j),M(j),σ ,D
�
=
Z n

∏
i=1

p
�

Rij jMj ,Tj ,T(j),M(j),σ
�

p
�
Mj jTj ,σ

�
dMj ,

which has a closed-form expression given the conjugate prior on µ tj .
We then generate a candidate tree T �j � q(T �j jTj ), a proposal distribution, and
accept this new T �j with probability

min

8<:q
�

Tj jT �j
�

q
�

T �j jTj

� L
�

T �j jT(j),M(j),σ ,D
�

p
�

T �j

�
L
�

Tj jT(j),M(j),σ ,D
�

p
�
Tj
� ,1

9=; .
Given the updated Tj , we sample

Mj � p(Mj jTj ,T(j),M(j),σ ,D).
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The Proposal Distribution

The candidate trees take four possible forms of perturbations on Tj in the previous
round:
(i) grow: randomly pick a terminal node, and split it into two new ones based on the
prior;
(ii) prune: randomly pick a parent of two terminal nodes and collapse the nodes
below it;
(iii) change: randomly pick an internal node, and reassign a splitting rule based on
the prior;
(iv) swap: randomly pick a parent-child pair that are both internal nodes and swap
their splitting rules.
- The default probabilities of these four perturbations are (0.25,0.25,0.4,0.1).
- Among the four operations, the birth/death pair (i)/(ii) are particularly computation-
ally efficient.
- All these perturbations are reversible, so q(Tj jT �j ) and q(T �j jTj ) are both mean-
ingful.
One advantage of this MH algorithm is that by using the prior as the splitting rule in
the grow (prune) step, there is substantial cancelation between p(T �j ) (p(Tj )) and

q(T �j jTj ) (q(Tj jT �j )), and in the change and swap steps,
q(Tj jT �

j )

q(T �
j jTj )

= 1 so calculation

of the q values is avoided.
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Classification

If Y 2 f0,1g, assume

p (x) = Pr (Y = 1jX = x) = Φ (G (x)) ,

where Φ (�) is the cdf of N (0,1), and G (x) = ∑m
j=1 g

�
x ;Tj ,Mj

�
.

- Each classification probability p (x) is obtained as a function of G(x), our sum
of regression trees, which contrasts with the often used aggregate classifier ap-
proaches which use a majority or an average vote based on an ensemble of clas-
sification trees.
The prior specification is similar as in the regression case, but now σ = 1 is fixed,
(ymin,ymax) = (Φ�1 (�3) ,Φ�1 (3)), and µ tj � N(0, 3

k
p

m
).

To re-use the algorithm for regression, introduce latent variables Z1, � � � ,Zn
i.i.d.�

N (G (x) ,1) such that Yi = 1 if Zi > 0 and Yi = 0 if Zi � 0.
- Note that Zi j(Yi = 1)�maxfN (G (x) ,1) ,0g and Zi j(Yi = 1)�minfN (G (x) ,1) ,0g.
The Gibbs sampler iterations here entail n successive draws of Zi jyi , i = 1, � � � ,n,
followed by m successive draws of

�
Tj ,Mj

�
jT(j),M(j),z1, � � � ,zn, j = 1, � � � ,m.

The induced sequence of sum-of-trees functions

p� (�) = Φ(∑m
j=1 g(�;T �j ,M

�
j ))

for the sequence of draws (T �1 ,M
�
1), � � � , (T

�
m,M

�
m), is thus converging to the poste-

rior distribution on the “true” p(�).
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