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History of PCA

Karl Pearson (1857-1936), UCL
Harold Hotelling (1895-1973),

Columbia and UNC-Chapel Hill1

1Kenneth Arrow was supervised by him at Columbia!
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Principal Components Analysis

Principal Components Analysis

(Section 12.2)
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Principal Components Analysis What Are Principal Components?

What Are Principal Components?

PCA produces a low-dimensional representation of a dataset with a large set of
correlated variables. It finds a sequence of linear combinations of the variables that
have maximal variance, and are mutually uncorrelated.

The first principal component of a set of features X1,X2, � � � ,Xp is the normalized
linear combination of the features

Z1 = φ11X1+φ21X2+ � � �+φp1Xp

that has the largest variance. By normalized, we mean that ∑p
j=1 φ

2
j1 = 1.

We refer to the elements φ11, � � � ,φp1 as the loading of the first principal component;
together, the loadings make up the first principal component loading vector, φ1 =
(φ11, � � � ,φp1)

T , or the first principal component direction.

We constrain the loadings so that their sum of squares is equal to one, since other-
wise setting these elements to be arbitrarily large in absolute value could result in
an arbitrarily large variance.
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Principal Components Analysis What Are Principal Components?

PCA: Example
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Principal Components Analysis What Are Principal Components?

Computation of Principal Components

Suppose we have a n�p data set X. Since we are only interested in variance, we
always assume that each of the variables in X has been centered to have mean
zero below (i.e., the column means of X are zero).

We then look for the linear combination of the sample feature values of the form

zi1 = φ11xi1+φ21xi2+ � � �+φp1xip

for i = 1,2, � � � ,n that has largest sample variance, subject to the constraint that
∑p

j=1 φ
2
j1 = 1.

Since 1
n ∑n

i=1 xij = 0, so does 1
n ∑n

i=1 zi1 (for any φ1). Hence the sample variance of
fzi1gn

i=1 can be written as 1
n ∑n

i=1 z2
i1.

In other words, the first PC loading vector solves the optimization problem

max
φ11,���φp1

1
n

n

∑
i=1

 
p

∑
j=1

φ j1xij

!2

subject to
p

∑
j=1

φ
2
j1 = 1.

We refer to z11, � � � ,zn1 and Z1 := (z11, � � � ,zn1)
T as the scores and score vector of

the first PC.2
2We are abusing notations here: Z1 represents both the population random variable and the sample vector for

the first PC.
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Principal Components Analysis What Are Principal Components?

Further Principal Components

The second PC is the linear combination of X1,X2, � � � ,Xp that has maximal vari-
ance among all linear combinations that are uncorrelated with Z1.

The second principal component scores z12, � � � ,zn2 take the form

zi2 = φ12xi1+φ22xi2+ � � �+φp2xip,

where φ2 is the second PC loading vector, with elements φ12, � � � ,φp2.

It turns out that constraining Z2 to be uncorrelated with Z1 is equivalent to con-
straining the direction φ2 to be orthogonal (perpendicular) to the direction φ1. So
the optimization problem for the second PC is

maxφ12,���φp2
1
n ∑n

i=1

�
∑p

j=1 φ j2xij

�2

subject to ∑p
j=1 φ

2
j2 =: kφ2k

2 = 1,

and ∑p
j=1 φ j2φ j1 =: φ

T
2 φ1 = 0.

How about the third PC? φ3 satisfies kφ3k
2 = 1, φ

T
3 φ1 = 0, and φ

T
3 φ2 = 0.

There are at most rank(X) =min (n�1,p) PCs.
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Principal Components Analysis What Are Principal Components?

(**) Technicalities

The optimization problems in PCA can be solved via a Singular Value Decomposi-
tion (SVD) of the matrix X, standard in linear algebra.
From SVD, X = UDVT , where U := [u1, � � � ,up ] 2 Rn�p such that UT U = Ip, V :=
[v1, � � � ,vp ] 2Rp�p such that VT V= Ip, and D=diag

�
d1,d2, � � � ,dp

	
with d1 � d2 �

�� � � dp � 0 called the singular values of X.3

If Z := [Z1, � � � ,Zp ] = XΦ, where Φ = [φ1, � � � ,φp ], then PCA requires

Var (Z) = Var (XΦ) =ΦT Var (X)Φ =ΦT XT X
n

Φ = Λ=diag
�

λ 1,λ 2, � � � ,λ p
	

with λ 1 � �� � � λ p � 0.
So φ1, � � � ,φp must be the eigenvectors of Var(X), which are also v1, � � � ,vp.

- Why? XT X
n = 1

n VDUT UDVT = V D2

n VT , so Φ= V and Λ= D2

n =diag
�

d2
1

n , � � � ,
d2

p
n

�
.

Now,

Z1 = Xv1 = UDVT v1 = [u1, � � � ,up ]diag
�

d1, � � � ,dp
	
[v1, � � � ,vp ]

T v1

= [u1, � � � ,up ]diag
�

d1, � � � ,dp
	

e1 = u1d1,

where e1 is the first base vector of Rp.
- Similarly, Zj = Xv j = u jdj .

3If X is full column rank, then dp > 0.
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Principal Components Analysis What Are Principal Components?

Geometry of PCA

The loading vector φ1 =
�

φ11, � � � ,φp1

�
defines a direction in feature space along

which the data vary the most.

If we project the n data points x1, ...,xn onto this direction, the projected values are
the principal component scores z11, � � � ,zn1 themselves.

Can you tell what are φ1 and fzi1gn
i=1 in Figure 6.14?

- φ11 = 0.839, and φ21 = 0.544, so

Z1 = 0.839� (pop�pop)+0.544�
�
ad�ad

�
.

In Figure 6.14, φ2 has only one choice since p= 2: φ12 = 0.544 and φ22 =�0.839.

Generally, we can plot Z1 against Z2, Z1 against Z3 etc.; this amounts to projecting
the original data onto the subspace spanned by φ1,φ2, and φ3, and plotting the
projected points.
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Principal Components Analysis What Are Principal Components?

Illustration: USArrests Data

USArrests data: For each of the fifty states in the United States, the data set con-
tains the number of arrests per 100,000 residents for each of three crimes: Assault,
Murder, and Rape. We also record UrbanPop (the percent of the population in each
state living in urban areas).

The PC score vectors have length n = 50, and the PC loading vectors have length
p = 4.

PCA was performed after standardizing each variable to have mean zero and stan-
dard deviation one.

In Figure 12.1, the blue state names represent the scores for the first two PCs.
- Mathematically, (Z1,Z2) 2R50�2.

The orange arrows indicate the first two PC loading vectors (with axes on the top
and right). For example, the loading for Rape on the first PC is 0.54, and its loading
on the second PC 0.17 [the word Rape is centered at the point (0.54,0.17)].
- Mathematically, (φ1,φ2) 2R4�2.

This figure is known as a biplot, because it displays both the PC scores and the PC
loadings.
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Principal Components Analysis What Are Principal Components?

PCA Loadings

φ1 places approximately equal weight on Assault, Murder, and Rape, but with much
less weight on UrbanPop, so it is roughly a measure of overall rates of serious
crimes. [refer to Figure 12.1]

φ2 places most of its weight on UrbanPop, but much less weight on the other three
features, so it is roughly a measure of urbanization. [refer to Figure 12.1]

In summary, PCA groups X into two uncorrelated parts of information, one corre-
sponds to crime and the other corresponds to urbanization.

Now, crimes rates: California, Nevada and Florida – high, North Dakota – low;
urbanization: California – high, Mississippi – low; Indiana – average in both.
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Principal Components Analysis Another Interpretation of Principal Components

Another Interpretation of Principal Components

The PC directions are directions in feature space along which the original data are
highly variable.

These directions also define lines and subspaces that are as close as possible to
the data cloud.

Specifically, the first PC loading vector defines the line in p-dimensional space that
is closest to the n observations (using average squared Euclidean distance as a
measure of closeness). [see Figure 6.15]

The notion of PCs as the dimensions that are closest to the n observations extends
beyond just the first PC.

For instance, the first two PCs of a data set span the plane that is closest to the n
observations, in terms of average squared Euclidean distance. [see Figure 12.2]
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Principal Components Analysis Another Interpretation of Principal Components

Technicalities

Generally, xij can be approximated by M PCs:

xij �
M

∑
m=1

zimφ jm.

fzmgM
m=1 and fφmg

M
m=1 can be found by the following minimization problem:

min
A2Rn�M ,B2Rp�M

p

∑
j=1

n

∑
i=1

 
xij �

M

∑
m=1

aimbjm

!2

= min
A2Rn�M ,B2Rp�M

trace
��

X�ABT
��

X�ABT
�T
�
,

where A = (aim), B =
�
bjm
�
, and fbmgM

m=1 are normalized as kbmk2 = 1 for any m,
and bT

mbk = 0 for any m 6= k .
- (*) Unique up to a sign flip: no effect on the problem if (φm,zm)! (�φm,�zm);
intuitively, φm and �φm spans the same line, and Var(Zm) =Var(�Zm).

(*) When M =min (n�1,p), we get a perfect fit: xij = ∑M
m=1 zimφ jm.

Ping Yu (HKU) PCA 16 / 49



Principal Components Analysis The Proportion of Variance Explained

The Proportion of Variance Explained

To understand the strength of each component, we are interested in knowing the
proportion of variance explained (PVE) by each one.

The total variance present in a data set is defined as

p

∑
j=1

Var
�
Xj
�
=

p

∑
j=1

1
n

n

∑
i=1

x2
ij ,

and the variance explained by the mth PC is

Var (Zm) =
1
n

n

∑
i=1

z2
im =

1
n

n

∑
i=1

 
p

∑
j=1

φ jmxij

!2

.

It can be shown that ∑p
j=1Var

�
Xj
�
= ∑M

m=1Var(Zm) with M =min (n�1,p).
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Principal Components Analysis The Proportion of Variance Explained

Continued

Therefore, the PVE of the mth PC is given by the positive quantity in (0,1):

PVEm =
∑n

i=1 z2
im

∑p
j=1 ∑n

i=1 x2
ij

.

∑min(n�1,p)
m=1 PVEm = 1, so we also display the cumulative PVEs. [see Figure 12.3]

It can be shown that
p

∑
j=1

1
n

n

∑
i=1

x2
ij| {z }

Var. of data

=
M

∑
m=1

1
n

n

∑
i=1

z2
im| {z }

Var. of first M PCs

+
1
n

p

∑
j=1

n

∑
i=1

 
xij �

M

∑
m=1

zimφ jm

!2

| {z }
MSE of M-dimensioanl approximation

.

Since the LHS is fixed, maximizing the variance and minimizing the approximation
error are equivalent.
It is also obvious from this decomposition that

M

∑
m=1

PVEm = 1�
∑p

j=1 ∑n
i=1

�
xij �∑M

m=1 zimφ jm

�2

∑p
j=1 ∑n

i=1 x2
ij

= 1� RSS
TSS

,

i.e., a kind of R2, but different from least squares, we are now explaining p (instead
of 1) columns using (the same unknown) M columns.
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Principal Components Analysis The Proportion of Variance Explained

PVE1 = 62.0%, PVE2 = 24.7%, so PVE1+PVE2 = 87%.

The left panel is known as a scree plot.4

4Scree means a mass of small loose stones that form or cover a slope on a mountain.
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Principal Components Analysis Principal Components Regression

Principal Components Regression (Section 6.3.1)

After the first M PCs are obtained, we can fit the linear regression model

yi = θ0+
M

∑
m=1

θmzim+ ε i , i = 1, � � � ,n,

using least squares, where

Zm =
p

∑
j=1

φ jmXj .

- Different from subset selection and shrinkage methods where the original predic-
tors, X1, � � � ,Xp, are used, we here use transformed variables to fit least squares.
- Because this approach reduces the dimension of unknown parameters from p+1
to M+1 with M < p, it is referred to as a dimension reduction method.

PCR assumes that the directions in which X1, � � � ,Xp show the most variation are
also the directions that are associated with Y .

PCR is not a feature selection (but a feature averaging) method since all original
features are used in Zm.
- (*) In this sense, PCR is more closely related to ridge regression than to the lasso,
and the ridge regression can be treated as a continuous version of PCR. [figure
here]
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Principal Components Analysis Principal Components Regression

Comparison of PCR and RR

Figure: RR shrinks the regression coefficients of the PC while PCR truncates them.

Ping Yu (HKU) PCA 21 / 49



Principal Components Analysis Principal Components Regression

(**) Continued: Technicalities

Given the SVD of X, X= UDVT , it is not hard to see that the fitted values of OLS is

ŷ = X
�

XT X
��1

XT y = UDVT
�

VDUT UDVT
��1

VDUT y = UUT y,

where UT y =
h
uT

1 y, � � � ,uT
p y
iT

is the coordinates of y projected on the basis vectors

U= [u1, � � � ,up ].

Now, the fitted values of RR is

Xβ̂
R
λ = X

�
XT X+λ I

��1
XT y = UD

�
D2+λ I

��1
DUT y

=
p

∑
j=1

u j
d2

j

d2
j +λ

uT
j y,

so RR shrinks the OLS coordinate of u j by a factor d2
j /
�

d2
j +λ

�
� 1.

- A greater amount of shrinkage is applied to the coordinates of basis vectors with
smaller d2

j .
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Principal Components Analysis Principal Components Regression

Constrained Least Squares Interpretation

Note that

M

∑
m=1

θmzim =
M

∑
m=1

θm

p

∑
j=1

φ jmxij =
p

∑
j=1

M

∑
m=1

θmφ jmxij =
p

∑
j=1

β jxij ,

where

β j =
M

∑
m=1

θmφ jm, (1)

so PCR can be treated as a constrained least squares regression since β j must
take the form of (1).

The constraints (1) would bias the coefficient estimates, but may significantly re-
duce the variance of fitted coefficients especially when p is large relative to n.
- If M = p, and all the Zm are linear independent, then the PCR fitting is equivalent
to the original least squares.

PCR mitigates overfitting by estimating only M � p coefficients.
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Principal Components Analysis Principal Components Regression

Application to PCR

In the simulation, n = 50, and p = 45. y in the first dataset involves all predictors,
but in the second dataset only two.
PCR performs better than LS (M = 45) especially in the first dataset, but worse
than the ridge or lasso regression.
PCR tends to do well when the first few PCs are sufficient to capture most of the
variation in Xj ’s as well as their relationship with Y .
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Principal Components Analysis Principal Components Regression

A Design Favorable to PCR

Compared with Figure 6.18, the bias of PCR drops to zero rapidly with M and the
MSE displays a clear minimum at M = 5.

PCR, ridge and lasso all perform better than LS with PCR and ridge slightly outper-
forming lasso.
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Principal Components Analysis Principal Components Regression

Choosing the Number of Directions M

The Credit dataset contains credit card debt information for 10,000 customers.

The CV M = 10, almost no dimension reduction given that p = 11.

The left panel reports four β j ’s in (1) as a function of M, where "standardized" is
discussed below.
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Principal Components Analysis Partial Least Squares

Partial Least Squares (Section 6.3.2)

PCR identifies linear combinations, or directions, that best represent the predictors
X1, � � � ,Xp.

These directions are identified in an unsupervised way, since the response Y is not
used to help determine the principal component directions.

That is, the response does not supervise the identification of the principal compo-
nents.

Consequently, PCR suffers from a potentially serious drawback: there is no guaran-
tee that the directions that best explain the predictors will also be the best directions
to use for predicting the response.

Here, we introduce an alternative of PCR – PLS.
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Principal Components Analysis Partial Least Squares

History of PLS

Herman Wold (1908-1992), Uppsala U of Sweden5

5He is also famous for the Cramér–Wold theorem characterizing the normal distribution and the Wold decom-
position in time series analysis.
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Principal Components Analysis Partial Least Squares

Continued

Like PCR, PLS is a dimension reduction method, which first identifies a new set of
features Z1, � � � ,ZM that are linear combinations of the original features, and then
fits a linear model via OLS using these M new features.
But unlike PCR, PLS identifies these new features in a supervised way – that is, it
makes use of the response Y in order to identify new features that not only approx-
imate the old features well, but also that are related to the response.
Roughly speaking, the PLS approach attempts to find directions that help explain
both the response and the predictors.
The details of PLS are described in the next slide.
Here, we explain some notations in the algorithm:

X= (x1,x2, � � � ,xp) ,y = (y1, � � � ,yn)
T ,1= (1,1, � � � ,1)T ,

i.e., x j is the j th column of X, y collects all n observations of the response Y , and 1
is an n�1 column of ones; 


x j ,xk
�

:= xT
j xk :=

n

∑
i=1

xijxik

is the Euclidean inner product between x j and xk .
PLS assigns weights on x j not solely based X as in PCR, but places the highest
weight on the variables that are most strongly related to y.
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Principal Components Analysis Partial Least Squares

[Algorithm] Partial Least Squares

(*) Note that in Step 2(d), although the mean of x(m)j is zero, we did not normalize
its variance to be one. As a result, ϕ̂mj in Step 2(a) is not the OLS coefficient in

regressing y on x(m�1)
j , but the covariance between them. Anyway, ϕ̂mj for any j

is the scaled coefficient (with the same scale) in regressing x(m�1)
j on y and this

scale will not affect bθmzm.
The ultimate number of zm used in PLS, M, can be chosen by CV as in PCR.

Ping Yu (HKU) PCA 30 / 49



Principal Components Analysis Partial Least Squares

[Example] Sales

z1 in PLS puts a larger (relative) weight on pop than in PCR, implying pop is more
highly correlated with the sales than is ad.
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Principal Components Analysis Partial Least Squares

A Comparison of the Selection and Shrinkage Methods

In the following two slides, we compare the performance of six methods we have
learned until now in a simple setup.

There are only two features, X1 and X2, with correlation ρ = 0.5 or �0.5, β 1 = 4,
and β 2 = 2.

The tuning parameters for ridge and lasso vary over a continuous range, while best
subset, PLS and PCR take just two discrete steps to the LS solution.

When ρ = 0.5, ridge shrinks the coefficients together until it finally converges to
LS. PLS and PCR show similar behavior to ridge, although are discrete and more
extreme. Best subset overshoots the solution and then backtracks. The behavior
of the lasso is intermediate to the other methods.

When ρ = �0.5, again PLS and PCR roughly track the ridge path, while all of the
methods are more similar to one another.

PLS often performs no better than ridge regression or PCR – while the supervised
dimension reduction of PLS can reduce bias, it also has the potential to increase
variance.
- (*) Like ridge and PCR, PLS also tends to shrink the low-variance directions, but
can actually inflate some of the higher variance directions, which makes it less
stable.
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Principal Components Analysis Partial Least Squares

Figure: Coefficient profiles from different methods for a simple problem: two inputs with correlation
ρ = 0.5, and the true regression coefficients β = (4,2)T .
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Principal Components Analysis Partial Least Squares

Figure: ρ = �0.5

To summarize, PLS, PCR and ridge regression tend to behave similarly. Ridge
regression may be preferred because it shrinks smoothly, rather than in discrete
steps. Lasso falls somewhere between ridge regression and best subset regres-
sion, and enjoys some of the properties of each.
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Principal Components Analysis More on PCA

Scaling the Variables

Principal components are sensitive to scaling of X, so it is recommended to first
standardize the columns of X to have mean 0 and variance 1. [see Figure 12.4]
- If they are in the same units (say, kilograms, or inches), you might or might not
scale the variables.
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Principal Components Analysis More on PCA

Deciding How Many PCs to Use

We would like to use the smallest number of PCs required to get a good under-
standing of the data.

No single (or simple) answer to this question, as cross-validation is not available for
this purpose.
- Why not? No object like Y is supervised!
- When could we use cross-validation to select the number of components? Think
about PCR.

The scree plot in Figure 12.3 can be used as a guide: we look for an “elbow”.
- In this example, M = 2 seems enough.
- Quite subjective!

In practice, we can try the first few PCs to check whether there are interesting
patterns; if YES, then continue until NO; if NO, then stop directly.
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Missing Values and Matrix Completion

Missing Values and Matrix Completion

(Section 12.3)
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Missing Values and Matrix Completion

Missing Values

The missing values phenomenon is everywhere, e.g., the USArrests data contain
20 (out of 200) missing values.
- Missing can be necessary: a customer of Netflix cannot watch all movies in its
catalog; actually, most data of ratings (1 to 5) are missing [see the example below].

Possible Solutions:
- Remove the rows containing missing values: too wasteful, and unrealistic if the
number of missing rows is too big.
- Replace the missing xij by the mean of j th column (using non-missing entries):
does not exploit the correlation with other columns (i.e., other variables).

A process called matrix completion, which is based on PCA, is more successful in
imputing the missing values.
- Key Assumption: missing at random (MAR), e.g., the missing of a patient’s weight
is due to a low battery of the scale rather than that the patient is too heavy.

The completed matrix can then be used in statistical learning as in other lectures,
e.g., a completed rating matrix can be used to recommend unseen movies to a
customer.
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Missing Values and Matrix Completion

PCA with Missing Values

We first approximate the observed data by M PCs:

min
A2Rn�M ,B2Rp�M

8<: ∑
(i,j)2O

 
xij �

M

∑
m=1

aimbjm

!2
9=; , (2)

where O is the set of indices for all observed data, so card(O) < np with card(�)
meaning cardinality of a set.

We can then approximate the missing xij by

x̂ij =
M

∑
m=1

âimb̂jm.

It is hard to solve (2) exactly, but the following iterative "hard-impute" algorithm
works out at least a local optimum.
- Note that (12.14) checks the fitting of observed data, and it will decrease in each
iteration [Why? In (12.13), ∑p

j=1 ∑n
i=1 = ∑(i,j)2O+∑(i,j)/2O . If use the âim and b̂jm in

the previous step, ∑(i,j)/2O = 0 and ∑(i,j)2O remains the same. Since we minimize

(12.13), ∑p
j=1 ∑n

i=1 is smaller while ∑(i,j)/2O > 0, so ∑(i,j)2O must be smaller].
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Missing Values and Matrix Completion

(**) Regularization Using Nuclear Norm

Like RR or lasso, it is better to regularize aim and bjm when dim (X) is large.
We can restrict the rank of the completed matrix, but the rank of a matrix is like the
number of nonzeros in a vector, i.e., `0 norm, so it is better to consider its convex
relaxation, the nuclear norm, which can be treated as the `1 norm of a matrix.
The nuclear norm of a matrix A, kAkN , is the sum of its singular values.
The matrix completion problem reduces to

min
Z
kZkN subject to Z and X share the same known entries.

Candès and Recht (2009) show that for an n� n matrix of rank r , if the number
of known entries K > Cn5/4r logn for some positive constant C, then with high
probability, X can be perfectly recovered.
In algorithm, we solve the following minimization problem as in Mazumder et al.
(2010):

min
Z

1
2



(X�Z)O


2

F +λ kZkN , (3)

where k�kF is the Frobenius norm or Euclidean norm of a matrix, and the subscript
O means we consider only the observed entries.
Using matrix notation, (2) can be re-expressed as

min
A,B

1
2




�X�ABT
�

O




2

F
. (4)
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(**) Relationship with (4)

Like RR, we can regularize A and B in (4),

min
A,B

1
2




�X�ABT
�

O




2

F
+

λ

2

�
kAk2

F + kBk
2
F

�
, (5)

resulting in the maximum-margin factorization of Srebro et al. (2005).
If X is fully known, and we restrict Z in (3) to have rank r , then the solution to (3) isbZ= Ur Sλ (Dr )VT

r ,

where Ur , Dr and Vr are inherited from the SVD of X but retain only the first r rows
and/or columns, and Sλ (Dr ) =diag

�
(d1�λ )+ , � � � , (dr �λ )+

	
.

This solution is the same as the solution to (5), i.e., bZ= bAbBT , wherebA = Ur Sλ (Dr )
1/2 and bB = Vr Sλ (Dr )

1/2 .

When X is not fully known, we can complete it as in Algorithm 12.1.
- Specifically, we estimate A and B alternately (because (5) is convex in A and B
separately but not jointly) like in RR, and then complete X as XO +(bAbBT )O = (X�bAbBT )O + bAbBT , which produces an efficient sparse plus low rank representation of
X, where the subscript O means entries unobserved.
- This is the Soft-impute Alternating Least Squares algorithm of Hastie et al. (2015).
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[Example] USArrests

n = 50 (states), p = 4, and discard 20 observations by randomly choose 20 states
and then randomly discard one variable for each chosen state, so card(O) = 180.
- Standardize the data with mean 0 and variance 1 before discarding.

Apply Algorithm 12.1 with M = 1.

Figure 12.5 shows that the imputed values match the original values very well.

In 100 random runs, the average correlation between the true and imputed values
is 0.63, with a sd 0.11.

If we estimate the 20 missing values using the first PC from the complete data
(rather than incomplete data as in Algorithm 12.1) in each run, then the correlation
is 0.79, with a sd 0.08, which is the infeasible benchmark for comparison.

Figure 12.6 shows more details of the comparison: the left is the average imputed
âi1 (with a sd bar) against true âi1, i = 1, � � � ,50, and the right is the average imputed
b̂j1 (with a sd bar) against true b̂j1, j = 1, � � � ,4.

Comments: (i) Since p = 4 is small, it is hard to borrow information from other
variables, which is why we discard only one variable per state and set M = 1. (ii)
How to choose M? We can randomly leave out a few observed elements as the
validation set to see which M performs the best.
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[Example] Recommender Systems of Netflix

n = 480,189, p = 17,770, and each rating between 1 and 5. Averagely, each cus-
tomer watches 200 movies, so 1�200/17,770= 99% data are missing.
We can use Algorithm 12.1 to impute x̂ij = ∑M

m=1 âimb̂jm, where âim is the strength
with which the i th customer belongs to the mth clique (a group of customers that
enjoys movies of the mth genre), and b̂jm is the strength with which the j th movie
belongs to the mth genre.
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The Netflix Prize

Competition started in October 2006. Training data are as above.

The objective is to predict the rating for a set of 2,817,131 customer-movie pairs
that are missing in the training data.

Netflix’s original algorithm Cinematch achieved a root MSE of 0.9525. The first
team to achieve a 10% improvement wins one million dollars.

The leaderboard

Netflix Prize leaderboard

BellKor’s Pragmatic Chaos wins, beating The Ensemble by a narrow margin.
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Conclusions

Unsupervised learning is important for understanding the variation and grouping
structure of a set of unlabeled data, and can be a useful pre-processor for super-
vised learning.

It is intrinsically more difficult than supervised learning because there is no gold
standard (like an outcome variable) and no single objective (like test set accuracy).

It is an active field of research, with many recently developed tools such as self-
organizing maps, independent components analysis and spectral clustering; see
Chapter 14 of ESL.
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Lab: Principal Components Analysis

(Section 12.5.1-2 and 6.5.3)

Principal Components Analysis

Matrix Completion

PCR and PLS Regression
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