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An Overview of Classification

Classification

Qualitative variables take values in an unordered set C , such as:

eye color 2 fbrown, blue, greeng
email 2 fspam, hamg (ham=good email)
marital status 2 fmarried, single,divorced, widowedg
digit 2 f0, 1, � � � ,9g

Given a feature vector X and a qualitative response Y taking values in the set C ,
the classification task is to build a function C(X ) that takes as input the feature
vector X and predicts its value for Y ; i.e., C(X ) 2 C .

Often we are more interested in estimating the probabilities that X belongs to each
category in C .
- For example, it is more valuable to have an estimate of the probability that an
insurance claim is fraudulent, than a classification fraudulent or not.
- Such a classifier behaves like regression methods because Pr(Y = 1jX = x) =
E [I(Y = 1)jX = x ], just like E [Y jX = x ].
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An Overview of Classification

[Example] Credit Card Default

Y 2 fNo, Yesg is binary, X 2R2
+; ȳ = 3%, so only part of the yi = 0 data are shown.
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An Overview of Classification

Some Popular Classifiers Covered in This Lecture

logistic regression

linear discriminant analysis (LDA)

quadratic discriminant analysis (QDA)

naive Bayes

K -nearest neighbors (KNN)

Many other computer-intensive classification methods would be covered in later
lectures, e.g., support vector machines build structured models for C(x).
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Why Not Linear Regression?

Why Not Linear Regression?

(Section 4.2)
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Why Not Linear Regression?

Can We Use Linear Regression?

Suppose for the Default classification task that we code

Y =
�

0,
1,

if No,
if Yes.

Can we simply perform a linear regression of Y on X and classify as Yes if Ŷ > 0.5?

In this case of a binary outcome, linear regression does a good job as a classifier,
and is equivalent to LDA which we discuss later. [Exercise�]

Since in the population E [Y jX = x ] =Pr(Y = 1jX = x), we might think that regres-
sion is perfect for this task.

However, linear regression might produce probabilities less than zero or bigger than
one. Logistic regression is more appropriate. [Figure here]
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Why Not Linear Regression?

Linear versus Logistic Regression
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Why Not Linear Regression?

Y Takes More Than 2 Values

Beside Ŷ /2 [0,1] such that Ŷ cannot be give a probability interpretation, a re-
gression method cannot accommodate a qualitative response with more than two
classes.

First, if Y is not ordered, it is hard to assign meaningful values to Y ; e.g., for eye
color, if we assign 1, 2 and 3 to brown, blue, and green, why not 3, 2 and 1, and
why not 1, 3, 7?
- For different assignments, the prediction results are different.
- How about Y 2 f0,1g? Which outcome of Y is assigned 1 does not matter for
prediction! [Exercise]

Second, if Y is ordered such as Y 2 fbad, neutral, goodg, how do we know the
difference between bad and neutral is the same as that between neutral and good
if we assign f�1,0,1g to fbad, neutral, goodg?
Linear regression is not appropriate here. Multiclass Logistic Regression or Dis-
criminant Analysis are more appropriate.
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Logistic Regression

Logistic Regression

(Section 4.3)
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Logistic Regression

History of Logistic Regression

Joseph Berkson (1899-1982, Mayo Clinic)

Berkson introduced the logit model (and coined the term "logit") in 1944 as a con-
venient computational approximation to the probit (“probability unit”) model.
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Logistic Regression

The Logistic Model

Logistic regression does not model Y directly, but models the probability that Y
belongs to a particular category (so the values assigned to Y do not matter).
Let’s write p(X ) = Pr(Y = 1jX ) for short and consider using balance to predict
default. Logistic regression uses the logistic function1

p (X ) =
eβ 0+β 1X

1+eβ 0+β 1X
, (1)

where e � 2.71828 is the Euler’s number.
It is easy to see that no matter what values β 0,β 1 or X take, p(X ) will have values
between 0 and 1 [see Figure 4.2; how β 0 and β 1 affect the shape of p(X )?], and
∂p(X )

∂X is not constant [Exercise].
Solving out β 0+β 1X in (1) gives

log
�

p (X )
1�p (X )

�
= β 0+β 1X 2R.

This monotone increasing transformation of p (X ) is called the log odds 2or logit
transformation of p(X ), so rather than modeling p(X ) as a linear function of X , we
model logit(p (X )) linearly here.

1The logistic function ex

1+ex was introduced by Pierre François Verhulst in 1938 as a modified exponential
growth model. It is speculated that he used the term logistic as a contrast to logarithmic.

2by log we mean natural log: ln.
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Logistic Regression

Maximum Likelihood

Maximum likelihood is another basic principle of econometrics besides least squares;
it guesses the most likely reason (i.e.,the parameter value) for a phenomenon (i.e.,
the observed data).
Here, we use maximum likelihood to estimate the unknown parameters (β 0,β 1).
The likelihood function is

` (β 0,β 1) = ∏
i :yi=1

p (xi ) ∏
i 0 :yi 0=0

(1�p (xi 0 )) =
n

∏
i=1

p (xi )
yi (1�p (xi ))

1�yi .

This likelihood gives the probability of the observed zeros and ones in the data. We
pick β 0 and β 1 to maximize the likelihood of the observed data.
Essentially, we try to find β̂ 0 and β̂ 1 such that plugging these estimates into the
model for p(X ), given in (1), yields a number close to 1 for all individuals who
defaulted, and a number close to 0 for all individuals who did not. [Exercise, see
also Figure 4.2]
Most statistical packages can fit linear logistic regression models by maximum like-

lihood. In R we use the glm function. [bβ 1 =
∂ log odds

∂X , and sign
�bβ 1

�
=sign

�
∂ p̂(X )

∂X

�
]
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Logistic Regression

Making Predictions

What is our estimated probability of default for someone with a balance of $1000?

Since

p̂ (X ) =
eβ̂ 0+β̂ 1X

1+eβ̂ 0+β̂ 1X
,

we have

p̂ (1000) =
e�10.6513+0.0055�1000

1+e�10.6513+0.0055�1000 = 0.006;

similarly, p̂ (2000) = 0.586. [see Figure 4.2]

Let’s do it again, using the dummy variable student as the predictor.

bPr (default= Yesjstudent= Yes) =
e�3.5041+0.4049�1

1+e�3.5041+0.4049�1 = 0.0431,

bPr (default= Yesjstudent= No) =
e�3.5041+0.4049�0

1+e�3.5041+0.4049�0 = 0.0292.
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Logistic Regression

Multiple Logistic Regression

Like the extension from simple to multiple linear regression, we generalize

log
�

p (X )
1�p (X )

�
= β 0+β 1X1+ � � �+β pXp =: β 0+β

T X ) p (X ) =
eβ 0+β

T X

1+eβ 0+β
T X
,

where X = (X1, � � � ,Xp)
T are p predictors, β =

�
β 1, � � � ,β p

�T
collects the slopes.

Why is coefficient for student negative, while it was positive before?

Students tend to have higher balances than non-students, so their marginal default
rate is higher than for non-students. [see right panel of Figure 4.3]

But for each fixed level of balance, students default less than non-students [see left
panel of Figure 4.3]; the effect of student is confounded by balance.

Multiple logistic regression can tease this out.
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Logistic Regression

Confounding

Should the credit card company offer credit to a student? Depending on what
variables are controlled for; ideally, the confounding variables (i.e., the variables that
can explain Y and meanwhile correlate with the interested Xj ) should be included
in the logistic regression.
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Logistic Regression

Multinomial/Multiclass Logistic Regression

When there are K > 2 classes, we choose one class, say the K th class, as the
baseline, and model

Pr (Y = k jX = x) =
eβ k0+β k1x1+���+β kpxp

1+∑K�1
l=1 eβ l0+β l1x1+���+β lpxp

(2)

for k = 1, � � � ,K �1, and

Pr (Y = K jX = x) =
1

1+∑K�1
l=1 eβ l0+β l1x1+���+β lpxp

,

where note that β k :=
�

β k0,β k1, � � � ,β kp

�T
depends on k .

- When K = 2, we choose the class with Y = 0 as the baseline.

It is not hard to see that

log
�

Pr (Y = k jX = x)
Pr (Y = K jX = x)

�
= β k0+β k1x1+ � � �+β kpxp.

When K > 2, for different choices of baseline class, the predictions, log odds and
other key model outputs are the same although β̂ may be different.
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Logistic Regression

History of Multinomial Logistic Regression

David R. Cox
(1924-2022, Oxford)

Henri Theil
(1924-2000,

Chicago and Florida)

Daniel L. McFadden
(1937-, UC-Berkeley,

NP2000)

The multinomial logit model was introduced independently in Cox and Theil.

McFadden linked the multinomial logit model to the theory of discrete choice, which
gave a theoretical foundation for logistic regression.
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Logistic Regression

Softmax Coding

R package glmnet employs the following symmetric form, called the softmax coding,

Pr (Y = k jX = x) =
eβ k0+β k1x1+���+β kpxp

∑K
l=1 eβ l0+β l1x1+���+β lpxp

, (3)

where there is a linear function for each class.
- In (2), the baseline β K is set as 0.

There is some redundancy in the parametrization of softmax coding.

Some cancellation is possible, and only K � 1 linear functions are needed as in
2-class logistic regression.

It is not hard to see that the log odds ratio between the k th and k 0th classes equals

log
�

Pr (Y = k jX = x)
Pr (Y = k 0jX = x)

�
= (β k0�β k 00)+ (β k1�β k 01)x1+ � � �+

�
β kp�β k 0p

�
xp,

so the coefficients β k in (2) are actually the difference of β k and β K in (3), which is
why β K is normalized as 0.
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Generative Models for Classification

Generative Models for Classification

(Section 4.4)
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Generative Models for Classification

History of Discriminant Analysis

Ronald A. Fisher (1890-1962), UCL
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Generative Models for Classification

Generative Model vs Discriminative Model

Discriminative models draw boundaries in the data space, while generative models
try to model how data is placed throughout the space. [figure here]
- A generative model could generate new photos of animals that look like real ani-
mals, while a discriminative model could tell a dog from a cat. (GPT)

A generative model focuses on explaining how the data was generated, while a
discriminative model focuses on predicting the labels of the data.

Mathematically, given a set of data instances X and a set of labels Y , generative
models capture the joint probability Pr(X ,Y ), or just Pr (X ) if there are no labels,
while discriminative models capture the conditional probability Pr(Y jX ).
(**) A generative model is helpful to deal with missing input values, outliers and
unlabelled data points which requires access to p (x) and p (x) = ∑y p (y)p (x jy)
in a generative model.
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Generative Models for Classification

Figure: Difference Between Discriminative Model and Generative Model
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Generative Models for Classification LDA

Discriminant Analysis

Here the approach is to model the distribution of X in each of the classes separately,
and then use Bayes’ theorem to flip things around and obtain Pr(Y jX ). [Figure
here]

When we use normal (Gaussian) distributions for each class, this leads to linear or
quadratic discriminant analysis.

However, this approach is quite general, and other distributions can be used as
well. We will focus on normal distributions.

Why Discriminant Analysis?

When the classes are well-separated, the parameter estimates for the logistic re-
gression model are surprisingly unstable [Why?]. LDA does not suffer from this
problem.

If n is small and the distribution of the predictors X is approximately normal in each
of the classes, the LDA is again more stable than logistic regression.

LDA is popular when K > 2, because it also provides low-dimensional views of the
data.
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Generative Models for Classification LDA

History of Bayes’ Theorem

Thomas Bayes (1701-1761), English Reverend3

3He never published what would eventually become his most famous accomplishment; his notes
were edited and published after his death by Richard Price.
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Generative Models for Classification LDA

Bayes’ Theorem for Classification

The Bayes’ theorem states that

Pr (Y = k jX = x) =
Pr (X = x ,Y = k)

Pr (X = x)
=

Pr (Y = k)Pr (X = x jY = k)
Pr (X = x)

=
Pr (Y = k)Pr (X = x jY = k)

∑K
l=1 Pr (Y = l)Pr (X = x jY = l)

=:
πk fk (x)

∑K
l=1 π l fl (x)

.

fk (x) = Pr (X = x jY = k) is the density function for X in class k . Here, we will use
normal densities for these, separately in each class.4

πk = Pr (Y = k) is the marginal or prior probability for class k .

pk (x) := Pr (Y = k jX = x) is the posterior probability that an observation X = x
belongs to the k th class.

Instead of estimating pk (x) directly as in logistic regression, discriminant analysis
estimates πk and fk (x) separately and plugs them in the Bayes’ formula for pk (x) .

Estimating πk is usually trivial [see below], but estimating fk (x) is not, so is the
focus of the following discussion.

4Even if some Xj is discrete, normality assumption works well.
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Generative Models for Classification LDA

Illustration: p = 1 and K = 2

Figure: πk fk (x), k = 1,2

Recall that the Bayes classifier (which has the lowest possible error rate out of all
classifiers) classifies an observation x to the class for which pk (x) is largest.
When π1 = π2, we classify a new point according to which density fk (x) is highest
as shown in the left panel.
When π1 6= π2, we take them into account as well, and compare πk fk (x). On the
right, we favor the pink class – the decision boundary has shifted to the left.
We will discuss three different estimates of fk (x) to approximate the Bayes clas-
sifer: LDA, QDA, and naive Bayes.
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Generative Models for Classification LDA

LDA for p = 1

To estimate fk (x), we make a simplifying assumption,

fk (x) =
1p

2πσk
exp

 
� 1

2σ2
k

(x �µk )
2

!
=: φ

�
x jµk ,σ

2
k

�
,

i.e., X j(Y = k)� N
�

µk ,σ
2
k

�
, where π = 3.14159 � � � is Archimedes’ constant.

LDA assumes further that σ2
1 = � � �= σ2

K = σ2.
Plugging this into Bayes’ formula, we get

pk (x) =
πk φ

�
x jµk ,σ

2
�

∑K
l=1 π l φ

�
x jµ l ,σ

2
� .

argmaxk pk (x) = argmaxk log (pk (x)), so taking logs, and discarding terms that
do not depend on k , we see that this is equivalent to assigning x to the class with
the largest discriminant score:

δ k (x) = x � µk

σ2 �
µ2

k
2σ2 + log (πk ) , [Exercise]

where as a function of x , δ k (x) is called the discriminant function, which is linear
in x so the name Linear DA.
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Generative Models for Classification LDA

Illustration: p = 1 and K = 2

Left: µ1 = �1.25, µ2 = 1.25, π1 = π2 = 0.5, and σ2 = 1.
- If K = 2 and π1 = π2 = 0.5, then the Bayes decision boundary is at

fx jδ 1 (x) = δ 2 (x)g=
n

µ1+µ2
2

o
.

Typically we don’t know these parameters; we just have the training data. In that
case LDA simply estimates the parameters and plug them into the rule.
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Generative Models for Classification LDA

Estimating the Parameters

πk can be estimated by

π̂k =
nk

n
,

where nk = ∑n
i=1 I (yi = k) is the sample size of the k th class.

µk and σ2 can be estimated by

µ̂k =
1
nk

∑
i :yi=k

xi ,

σ̂
2 =

1
n�K

K

∑
k=1

∑
i :yi=k

(xi � µ̂k )
2 =

K

∑
k=1

nk �1
n�K

� σ̂2
k

is a weighted average of
n

σ̂
2
k

oK

k=1
since

K
∑

k=1

nk�1
n�K = 1, where σ̂

2
k =

∑i :yi=k (xi�µ̂k )
2

nk�1 is

the usual formula for the estimated variance in the k th class.
- Totally, we lose K degrees of freedom.

The decision of LDA is based on argmaxk δ̂ k (x), where δ̂ k (x) = x � µ̂k

σ̂
2 �

µ̂
2
k

2σ̂
2 +

log (π̂k ). [in the right panel of Figure 4.4, the decision boundary is µ̂1+µ̂2
2 since

n1 = n2 such that π̂1 = π̂2]
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Generative Models for Classification LDA

LDA for p > 1

Assume

fk (x) =
1

(2π)p/2 jΣj1/2
exp

�
�1

2
(x �µk )

T Σ�1 (x�µk )

�
,

i.e., X j(Y = k)� N (µk ,Σ).

The discriminant function

δ k (x) = xT Σ�1
µk �

1
2

µ
T
k Σ�1

µk + log (πk )

is the vector/matrix version of the p = 1 case and is linear in x .
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Generative Models for Classification LDA

Illustration: p = 2 and K = 3

Left: Ellipses that contain 95% of the probability for each of the three classes are
shown. The dashed lines are the Bayes decision boundaries, where π1 = π2 =
π3 = 1/3. [Why linear? see the next slide]

Right: 20 observations were generated from each class, and the corresponding
LDA decision boundaries are indicated using solid black lines, where πk ,µk , and Σ
are estimated similarly as in the p = 1 case.

When K > 3, Appendix A shows how to visualize the discriminant rule efficiently.

Ping Yu (HKU) Classification 32 / 68



Generative Models for Classification LDA

More on the Decision Boundary

The decison boundaries are determined by δ k (x) = δ j (x) for some k and j .

Because δ k (x) is linear,
�

x jδ k (x) = δ j (x)
	

is a point when p = 1, a straight line
when p = 2, and a hyperplane when p > 2.

In logistic regression, the decision boundaries are determined by

fx jpk (x) = pj (x)g= fx jβ k0+β k1x1+ � � �+β kpxp = β j0+β j1x1+ � � �+β jpxpg,

which is also linear in the X space, where

pk (x) =
eβ k0+β k1x1+���+β kpxp

∑K
l=1 eβ l0+β l1x1+���+β lpxp

and recall that β K = 0.
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Generative Models for Classification LDA

From δ k (x) to Probabilities

Once we have estimates δ̂ k (x), we can turn these into estimates for class proba-
bilities:

p̂k (x) := bPr (Y = k jX = x) =
eδ̂ k (x)

∑K
l=1 eδ̂ l (x)

.

- p̂k (x) = eδ̂ k (x)+C = eδ̂ k (x)eC for some constant C, so we need only determine

eC ; while ∑K
l=1 eδ̂ l (x)eC = 1 so eC =

�
∑K

l=1 eδ̂ l (x)
��1

.

So classifying to the largest δ̂ k (x) amounts to classifying to the class for which
p̂k (x) is largest.

When K = 2, we classify to class 2 if p̂2 (x)� p̂1 (x) or p̂2 (x)� 0.5, else to class 1.
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Generative Models for Classification LDA

[Example] Credit Card Default

The training error rate = (23+252)/10000= 2.75%, quite low.

Some Caveats:

This is training error, and we may be overfitting. The higher p/n, the worse (see
Section 6.4 in Lecture 4). Not a big concern here since n = 10000 and p = 2
[balance and student from logistic regression]!
If we classified to the prior — always to class No in this case — we would make
333/10000 errors, or only 3.33%.
Of the true No’s, we make 23/9667 = 0.2% errors; of the true Yes’s, we make
252/333= 75.7% errors!
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Generative Models for Classification LDA

Types of Errors

False positive rate: The fraction of negative examples that are classified as positive
— 0.2% in example.
False negative rate: The fraction of positive examples that are classified as negative
— 75.7% in example.
LDA tries to approximate the Bayes classifier which has the lowest total error rate,
but does not distinguish the sources of errors.
We produced Table 4.4 by classifying to class Yes ifbPr (default= Yesjbalance, student)� 0.5.

We can change the two error rates by changing the threshold from 0.5 to some
other value in [0,1]:bPr (default= Yesjbalance, student)� threshold .
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Generative Models for Classification LDA

[Example] Credit Card Default

The credit card company cares more about the false negative rate, the rate of iden-
tifying default as no default.

In order to reduce this rate, we may want to reduce the threshold to 0.1 or less.

Which threshold should be used? Use domain knowledge, such as the costs asso-
ciated with the two types of errors.
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Generative Models for Classification LDA

Summary of Terms

In Table 4.7, "false positive rate" is also called the false alarm rate, and the "true
positive rate is also called the hit rate.
In Table 4.7, note that the denominators for the first two terms are the actual pop-
ulation counts in each class, while the denominators for the last two terms are the
total predicted counts for each class.
- F1 score= 2 � prec�rec

prec+rec =
2

1
prec+

1
rec

: overall summary that balances precision and

recall.
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Generative Models for Classification LDA

ROC Curve

The ROC curve displays both types of errors simultaneously for all possible thresh-
olds.
- "ROC", coming from communications theory, means receiver operating character-
istics.
- More properties of the ROC curve are explored in Assignment I.
The ideal ROC curve hugs the top left corner, indicating a high true positive rate
and a low false positive rate.
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Generative Models for Classification LDA

AUC

Sometimes we use the AUC (area under the curve) to summarize the overall per-
formance for all possible thresholds.

Higher AUC is good since it is the probability that a classifier will rank a randomly
chosen y = 1 example higher than a randomly chosen y = 0 [see Appendix B].

In Figure 4.8, AUC= 0.95, close to the maximum 1.

We expect a classifier cannot perform worse than the diagonal line in Figure 4.8
whose AUC = 0.5.

ROC curves are useful for comparing different classifiers.
- The ROC curve for the logistic regression is almost the same as Figure 4.8, so
logistic regression has the same AUC as LDA in this application.
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Generative Models for Classification QDA

Other Forms of Discriminant Analysis

In the Bayes’ formula of pk (x) =
πk fk (x)

∑K
l=1 π l fl (x)

, we can get different classifiers by alter-

ing the forms for fk (x).

With Gaussians but different Σk in each class, we get QDA, where the discriminant
function

δ k (x) = �
1
2
(x �µk )

T Σ�1
k (x �µk )�

1
2

log jΣk j+ logπk

is quadratic in x so the name Quadratic DA.
- Compared with LDA, QDA has a lower bias but higher variance; when p and/or
K is large5 and/or n is small, LDA is preferred since variance is the main concern
now. [see Figure 4.9]

With fk (x) =∏p
j=1 fkj

�
xj
�

(conditional independence model – Xj ’s are independent
given Y = k ) in each class we get naive Bayes.
- For Gaussian this means the Σk ’s are diagonal.
- Compared with QDA, naive Bayes does not require normality assumption but
assumes conditional independence.

Many other forms, by proposing specific density models for fk (x), including non-
parametric approaches.

5QDA has Kp (p+1)/2+Kp parameters while LDA has only p (p+1)/2+Kp parameters.
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Generative Models for Classification QDA

LDA versus QDA

Left: Σ1 = Σ2 =

�
1 0.7

0.7 1

�
.

Right:
�

1 0.7
0.7 1

�
= Σ1 6= Σ2 =

�
1 �0.7

�0.7 1

�
.
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Generative Models for Classification Naive Bayes

Naive Bayes

pk (x) =
πk � fk1 (x1)��� �� fkp (xp)

∑K
l=1 π l � fl1 (x1)��� �� flp (xp)

Conditional independence is useful when p is large where multivariate methods like
QDA and even LDA break down.
Gaussian naive Bayes assumes each Σk is diagonal:

δ k (x) ∝ log

"
πk

p

∏
j=1

fkj
�
xj
�#
= �1

2

p

∑
j=1

264
�

xj �µkj

�2

σ2
kj

+ logσ
2
kj

375+ logπk .

Generally, for quantitative Xj , we can estimate fkj
�
xj
�

by a histogram or a kernel
density estimator which is a smoothed version of histogram.
Naive Bayes can use for mixed feature vectors (qualitative and quantitative). If Xj is
qualitative, replace fkj

�
xj
�

with probability mass function (histogram) over discrete
categories.
Despite strong assumptions (neglecting the association between Xj ’s), naive Bayes
often produces good classification results, by decreasing variance although intro-
ducing some bias, especially when n is not large enough relative to p such that the
joint distribution fk (x) cannot be effectively estimated.
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Generative Models for Classification Naive Bayes

Illustration: p = 3 and K = 2

X1 and X2 are quantitative, and X3 is qualitative with three levels.

π̂1 = π̂2 = 0.5. For x� = (0.4,1.5,1)T , p̂1 (x�) = 0.944 and p̂2 (x�) = 0.056.
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Generative Models for Classification Naive Bayes

[Example] Credit Card Default

Compared with Table 4.4, LDA has a slightly lower overall error rate, while naive
Bayes (with Gaussian quantitative) correctly predicts a higher fraction of the true
defaulters.

Compared with Table 4.5, Naive Bayes has a higher error rate, but correctly predicts
almost two-thirds of the true defaults. [p = 2 is not large relative to n = 10,000.]
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A Comparison of Classification Methods

A Comparison of Classification Methods

(Section 4.5)
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A Comparison of Classification Methods

Logistic Regression versus LDA/QDA

argmaxk pk (x) = argmaxk log
�

pk (x)
pK (x)

�
, k = 1,2, � � � ,K .

One can show [read Section 4.5.1 for the details] that for LDA

log
�

pk (x)
pK (x)

�
= ak +

p

∑
j=1

bkjxj ,

so it has the same form as logistic regression.

The difference is in how the parameters are estimated.
- Logistic regression uses the conditional likelihood based on Pr(Y jX ) (known as
discriminative learning).
- LDA uses the full likelihood based on Pr(X ,Y ) (known as generative learning).
- Despite these differences, in practice the results are often very similar.

For QDA,

log
�

pk (x)
pK (x)

�
= ak +

p

∑
j=1

bkjxj +
p

∑
j=1

p

∑
l=1

ckjlxjxl .

Logistic regression can also fit quadratic boundaries like QDA, by explicitly including
quadratic terms in the model.
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A Comparison of Classification Methods

Naive Bayes versus LDA/QDA

For naitve Bayes,

log
�

pk (x)
pK (x)

�
= log

 
πk ∏p

j=1 fkj
�
xj
�

πK ∏p
j=1 fKj

�
xj
�!

= log
�

πk

πK

�
+

p

∑
j=1

log

 
fkj
�
xj
�

fKj
�
xj
�!= ak +

p

∑
j=1

gkj
�
xj
�
,

which takes the form of a generalized additive model [see Lecture 7].
Any classifier with a linear decision boundary is a special case of naive Bayes with
gkj
�
xj
�
= bkjxj .

- LDA is a special case of naive Bayes although the former takes into account of
the correlation among Xj while the latter does not.

If fkj
�
xj
�
= φ

�
xj jµkj ,σ

2
j

�
, where σ2

j does not depend on k , then Naive Bayes is a

special case of LDA with Σ =diag
n

σ2
1, � � � ,σ

2
p

o
.

Neither QDA nor naive Bayes is a special case of the other – log
�

pk (x)
pK (x)

�
of the

former can include interactions among xj ’s while that of the latter can include more
complex functions of xj ’s than quadratic.
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A Comparison of Classification Methods

Summary

Logistic regression is very popular for classification, especially when K = 2.

LDA is useful when n is small, or the classes are well separated, and Gaussian
assumptions are reasonable. Also when K > 2.

Naive Bayes is useful when p is very large.

None of these methods uniformly dominates the others: the choice of mothod de-
pends on the true fk (x), and the relative magnitude of n and p which ties into the
bias-variance trade-off.
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A Comparison of Classification Methods

(*) KNN versus the Methods in This Lecture

Because KNN is completely nonparametric, it would dominate LDA and logistic
regression when the decision boundary is highly non-linear, provided n is large and
p is small.

KNN requires a large n relative to p due to its nonparametric nature.

When the decision boundary is non-linear, but n is moderate, or p is not very small,
QDA may be preferred to KNN.

Unlike logistic regression, KNN does not tell us which predictors are important.

KNN is more nonparametric than naive Bayes, so suffers more from the curse of
dimensionality.

Read also Section 4.5.2 for an empirical comparison of all these methods.
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Generalized Linear Models

(**) Generalized Linear Models

(Section 4.6)
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Generalized Linear Models

Linear Regression on the Bikeshare Data

Sometimes, Y is neither quantitative nor qualitative, e.g., in the Bikeshare dataset,
Y , the number of hourly users of a bike sharing program in Washington, DC. bikers,
takes on non-negative integer values, or counts.

In Table 4.10 and Figure 4.13, all coefficients of linear regression seem reasonable.
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Generalized Linear Models

Problems with Linear Regression

9.6% of the fitted values, byi , are negative.
When the mean of bikers is small, its variance tends also to be small [see Figure
4.14], i.e., there is heteroskedasticity, but the linear regression model in Lecture 1
assumes homoskedasticity.
In linear regression, Y should be continuous since the error term ε is continuous,
but bikers is discrete.
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Generalized Linear Models

Logarithmic Transformation on Y ?

Fitting log (Y ) on X can partially solve the first two problems. But it is hard to
interpret β̂ j ; also, log0 is not well defined.
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Generalized Linear Models

Poisson Regression on the Bikeshare Data

Recall that, if Y �Poisson(λ ), then

Pr (Y = k) =
e�λ λ

k

k !
for k = 0,1, � � � .

E [Y ] = Var [Y ] = λ ; a larger mean implies a larger variance.

Given X , we model λ as a function of X , λ (X ), and

log (λ (X )) = β 0+β
T X ,

or equivalently,

λ (X ) = exp
�

β 0+β
T X
�
> 0.

Estimate β 0 and β by maximum likelihood, where the likelihood function

` (β 0,β ) =
n

∏
i=1

e�λ (xi )λ (xi )
yi

yi !
.

The results are qualitatively similar to those from linear regression. [see Table 4.11
and Figure 4.15]
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Generalized Linear Models
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Generalized Linear Models

Poisson Regression versus Linear Regression

Interpretation: E [Y jXj=1]
E [Y jXj=0] = exp

�
β j

�
, so exp (�0.08) = 0.923 means that on aver-

age, only 92.3% as many people will use bikes when it is cloudy relative to when it
is clear.

Mean-Variance Relationship: E [Y jX ] = λ (X ) = Var [Y jX ], so Poission regression
can handle (some specific form of) heteroskedasticity.

Nonnegative Fitted Values: ŷi = λ̂ (xi ) = exp
�

β̂ 0+ β̂
T

X
�

cannot be negative.
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Generalized Linear Models

Unifying Linear, Logistic and Poisson Regressions

Linear regression, logistic regression, Poisson regression share some common
properties:

First, we use X to predict Y , and assume Y jX follows some distributions – Gaussian,
Bernoulli and Poisson.

Second, we model E [Y ] as a function of X :

Linear Regression : E [Y jX ] = β 0+β
T X ,

Logistic Regression : E [Y jX ] = Pr (Y = 1jX ) = eβ 0+β
T X

1+eβ 0+β
T X
,

Poisson Regression : E [Y jX ] = λ (X ) = eβ 0+β
T X .

All three E [Y jX ]’s can be expressed using a link function, η ,

η (E [Y jX ]) = β 0+β
T X ,

where η (µ) = µ for linear regression, η (µ) = log (µ/ (1�µ)) =logit(µ) for logistic
regression, and η (µ) = log (µ) for Poisson regression.
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Generalized Linear Models

Generalized Linear Models

These three distributions above are members of the exponential family.
For other members of this family like exponential distribution, the Gamma distrib-
ution, and the negative binomial distribution, we can use different link functions to
transform E [Y jX ] to a linear function of X .
Any regression approach that follows this very general recipe is known as a gener-
alized linear model (GLM).
Other examples of GLM include Gamma regression and negative binomial regres-
sion, where

η (µ) = � 1
µ

for Gamma regression,6

η (µ) = log
�

µ

r + µ

�
for negative binomial regression.

- The negative binomial distribution has a pmf Pr(Y = k) =
�

k + r �1
r �1

�
pr (1�p)k ,

k = 0,1, � � � , which is the probability for k failures until a predefined number r
of successes have occurred in a sequence of independent Bernoulli trials; since
E [Y ] = (1�p) r/p � (1�p) r/p2 = Var [Y ] with equality as p ! 1, it can model
the overdispersion phenomenon that the Poisson distribution cannot.

6The exponential distribution is a special case of the Gamma distribution, so shares the same link function.
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Lab: Classification Methods

Lab: Classification Methods

(Section 4.7)

The Stock Market Data

Logistic Regression

Linear Discriminant Analysis

Quadratic Discriminant Analysis

Naive Bayes

K -Nearest Neighbors
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Appendix A: Fisher’s Discriminant Plot

Appendix A: Fisher’s Discriminant Plot

(Section 4.3.3 of ESL)
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Appendix A: Fisher’s Discriminant Plot

Fisher’s Discriminant Plot

When there are K classes, linear discriminant analysis can be viewed exactly in a
K �1 dimensional plot.
Why? Because it essentially classifies to the closest centroid, and they span a
K �1 dimensional plane.
- This is convenient when p� K .
Even when K > 3, we can find the “best” 2-dimensional plane for visualizing the
discriminant rule.
Fisher defined "best" to mean that the projected centroids were spread out as much
as possible in terms of variance.
So we try to find Z` = vT

` X , ` = 1, � � � ,min (K �1,p), such that v1 maximizes the
Rayleigh quotient,

max
a

aT Ba
aT Wa

,

or equivalently,
max

a
aT Ba subject to aT Wa= 1,

and v2 solves

max
a2

aT
2 Ba2

aT
2 Wa2

subject to aT
2 Wa1 = 0,

etc., where B is the between-class covariance and W is the within-class covariance
of X .
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Appendix A: Fisher’s Discriminant Plot

Why Imposing the Constraint aT Wa= 1?
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Appendix A: Fisher’s Discriminant Plot

Illustration: p = 10 and K = 11

As ` increases, the centroids become less spread out. In the lower right panel they
appear to be superimposed, and the classes most confused.
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Appendix B: More on Classification Assessment

Appendix B: More on Classification Assessment
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Appendix B: More on Classification Assessment

Interpretation of AUC

For a generic score function s (�), we classify a test point x positive if s (x) is greater
than some threshold t .
- E.g., in LDA, if we define class 2 as positive, then s (�) = δ 2 (�)�δ 1 (�).
Denote fk (s), k = 0,1, as the pdf of the scores for the negative and positive class,
respectively, with cdf Fk (s).
- The pdf of all scores, f (s), is f0 (s)π0+ f1 (s)π1.

For the threshold t , the type I error is 1�F0 (t), and the power is 1�F1 (t).

AUC is a plot of 1�F1 (t) against 1�F0 (t), so

AUC =
Z 1

0
(1�F1 (t))d (1�F0 (t))

= �
Z �∞

∞
(1�F1 (t)) f0 (t)dt

=
Z ∞

�∞
(1�F1 (t)) f0 (t)dt .

which is the probability that a randomly drawn member of class 0 will produce a
score lower than the score of a randomly drawn member of class 1.
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Appendix B: More on Classification Assessment

Cumulative Response and Lift Curves
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Appendix B: More on Classification Assessment

Continued

y -axis in the cumulative response curve (CRC) is the percentage of positives that
are correctly classified among all positives if all test instances below the threshold
marked by the x-axis are classified as positive.
- Why does the random classifier have the diagonal CRC?
- What does the CRC for a perfect classifier look like?

The lift curve is the ratio of the CRC and the diagonal line.

Different from ROC where the tp/fp rate is computed using only the actual posi-
tive/negative examples, the x-axis of the CRC and lift curve involves both groups
of examples, so they implicitly assume that the test set has exactly the same class
priors as the population, but this need not be true especially when one class is
rare in the population such that the other class is down-sampled (think about the
responders of an advertisement).
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