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Course Information

Instructor: Yu, Ping

Email: pingyu@hku.hk

Teaching Time: 9:00-9:50, 10:00-10:50 and 11:00-11:50am + 12:00nn-12:30pm &
2:00-2:50, 3:00-3:50 and 4:00-4:50 + 5:00-5:30pm, Friday j Sunday
- In both morning and afternoon, the first three sessions teach intuitions and details
of all kinds of algorithms, and the fourth session teaches how to implement these
algorithms by the software R.

Teaching Location: Cyberport Classroom H j KKL101 j Virtual by Zoom (the lec-
tures will be recorded and uploaded on moodle)

Office Hour: 11:00-12:00am, Thursday, f2f at KKL1110 j Virtual by Zoom
- I will NOT answer questions in email if the answer is long or is not easy to explain
exactly by words. Please stop by during my office hour (please make an appoint-
ment beforehand) either physically or online (by the same zoom link as lectures).

Tutor: Lily Wang
- The tutor will teach how to implement the algorithms by the software.
- ANY issues on administration (e.g., enrolment, moodle, time clash, software, etc.)
and HWs (e.g., clarification of problems) should contact the tutor.
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Our Textbook and Three References

I will roughly follow the following textbook:
1. An Introduction to Statistical Learning with Applications in R (ISLR hereafter), 2nd edi-

tion, by James, G., D. Witten, T. Hastie and R. Tibshirani, Springer, 2021.
- For illustration of methods by empirical applications, we will concentrate on business
and economic examples, and neglect biostatistical ones, e.g., gene expression data.

A more advanced textbook is only occasionally mentioned:
2. The Elements of Statistical Learning (ESL hereafter), 2nd edtion, by Hastie, T., R. Tib-

shirani, and J. Friedman, Springer, 2009.

- ISLR and ESL are freely available on moodle. [figure here]

Two other useful reference books at the level of ISLR:
3. Data Science for Business (DSB hereafter), by Provost, Foster and Tom Fawcett, O’Reilly,

2013.
4. Business Data Science (BDS hereafter), by Matt Taddy, McGraw Hill, 2019.

- The relevant chapters of DSB and BDS are available on moodle. [figure here]

ISLR is the default textbook, so unless necessary, I will only indicate DSB, BDS
and ESL (and suppress ISLR) when citing chapters or sections.
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ISLR ESL
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DSB BDS
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Software

We will use R and RStudio as the statistical software in this course; RStudio is an
Integrated Development Environment (IDE) for R.

Different from STATA or other softwares, both of them are free to download and
install.

Website for R: https://www.r-project.org/

Website for RStudio: https://www.rstudio.com/

Wiki for R: https://en.wikipedia.org/wiki/R_(programming_language)

Wiki for RStudio: https://en.wikipedia.org/wiki/RStudio
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Evaluation

Evaluation: Four Assignments (20% each, posted already) and one Final Project
(20%, not posted yet)
- No in-class midterm or final.
More Details on the Assignments:
- Turn in your HW on moodle on the due day (usually before midnight, 11:59pm, of
some Thursday).
- Late HWs are not acceptable for whatever reasons. To avoid any risk, start your
HW early (the HWs indicate clearly which problems can be solved after each lec-
ture).
- Each assignment contains both analytical and empirical problems; both types of
problems are mainly from ISLR, and some analytical and empirical problems are
written by the instructor.
- You can form teams up to five members to solve assignments and the final project
(each team need turn in only one copy of solution); the team members for each
of the four assignments and the project need not be the same or from the same
session, i.e., each student can join at most five teams with team members from
both sessions.
- All documents turned in must be typed (e.g., by LaTex or Word).
- For emprical problems, besides the final answers, R codes should also be sub-
mitted.
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Continued

More Details on the Project:
- Two datasets (D1 has a quantitative response and D2 has a qualitative response)
are provided with some responses randomly deleted, and you can choose one and
only one dataset for prediction.
- You can use any techniques in or out of this course in your prediction.
- For each dataset, the scores are uniformly distributed between 60 and 100.

- If only one group solves, say D1, then this group will automatically get a full
score.

- If two groups, then the group with better predictions gets a full score and the
other group gets 60.

- If three groups, then the scores would be 60,80,100.1

- R codes should be submitted; especially, the predictions should be submitted as
a separate data file.

1You will learn what "quantitative", "qualitative", "response", "better prediction" mean in the coming lectures.
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The Philosophy of This Course

Emphasize concepts (i.e., ideas) and algorithm, rather than mathematics and as-
ymptotic theories.

The main mathematical tools employed are linear algebra and optimization.

The main statistical tools employed are least squares (LS) and maximum likelihood
(ML).
- No GMM since this is a statistical book (this is covered in recent econometric
literature and may be incorporated in the future teaching).
- LS can be interpreted as ML.
- Bayesian methods are related to ML and will also be covered.
- So ML is the focal point of our statistical tools.

Two traditions in statistics: the frequentist approach and the Bayesian approach.
- The former treats the parameter as fixed (i.e., there is only one true value) and
the samples as random; LS and ML belong to the former.
- The latter treats the parameter as random and the samples as fixed.
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The Content of This Course

I will teach this course as a complement of Econ6001 or Econ6005,2 so all contents
in these two courses (esp. OLS) are assumed to be known and will not be repeated
(or repeated only briefly).

I classify the machine learning (ML)3 problems into three groups: regression, clas-
sification and clustering.

Mathematically, the former two are estimating the conditional mean and the last is
estimating the joint density.

Less and less information is provided in the three problems.
- The response Y is available in the former two, but not available in the last, which
is why the name "supervised learning" and "unsupervised learning".4

- Y in regression is quantitative and in classification is qualitative (e.g., binary or
categorical), where "quantitative" means the magnitude of variable conveys usual
information, but "qualitative" is the converse (e.g., we can assign values to a binary
variable as 0/1 or �1/1).

2Econ6001 and Econ6005 emphasize LS and GMM and this course emphasizes ML, and these three are the
most important approaches in econometrics.

3ML stands for either maximum likelihood or machine learning, depending on the context.
4In the former two, our target is to build a prediction model, or a learner, while in the latter, we try to understand

how the data are organized or clustered.
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Course Outline

Lecture 01: Introduction to Statistical Learning (Chapters 1-3)
Lecture 02: Classification (Chapter 4)
Lecture 03: Clustering (2nd half of Chapter 12)
Lecture 04: Model Selection and Regularization (Chapter 6 and 1st half of Chap 5)
Lecture 05: Principal Components Analysis (1st half of Chapter 12)
Lecture 06*: Text As Data (Chapter 8 of BDS and Chapter 10 of DSB)

[ECON6087: Textual Analysis for Economists]
Lecture 07: Moving Beyond Linearity (Chapter 7)
Lecture 08: Tree-Based Methods (Chapter 8 and 2nd half of Chapter 5)
Lecture 09: Support Vector Machines (Chapters 9)
Lecture 10: Deep Learning (Chapter 10)

- Lectures 4, 8 and 10 may take more than one half day (i.e., 3 hours) to cover.

Slides indexed by (*): may be covered in the lecture, but not related to the assign-
ments.
Slides indexed by (**) and Appendices: not covered in the lecture, only for after-
class reading.
Suggestion: Preview the slides before attending the lecture and concentrate in
class on the points about which you found confused.
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A Brief History of Statistical Learning

A Brief History of Statistical Learning

(Chapter 1)
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A Brief History of Statistical Learning

Statistics in the News

How IBM Built Watson, Its ’Jeopardy’-Playing Supercomputer , 2011:

Watson in Jeopardy

- Learning from its mistakes : According to David Ferrucci (PI of Watson DeepQA
technology for IBM Research), "Watson’s software is wired for more that handling
natural language processing".
- “It’s machine learning allows the computer to become smarter as it tries to answer
questions — and to learn as it gets them right or wrong.”
FiveThirtyEight 5 – Nate Silver’s Political Calculus: correctly predicted Obama and
Biden in 50 and 48 out of 50 states; mistakenly predicted Trump, but less mistaken
than other analysts. Something new:

How (un)popular is Joe Biden?

What Redistricting Looks Like In Every State?

For Today’s Graduate, Just One Word: Statistics , 2009:

Statistics is the Future

- ”I keep saying that the sexy job in the next 10 years will be statisticians. And I’m
not kidding.” — Hal Varian, chief economist at Google.

5538 is the number of electors in the United States electoral college.
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A Brief History of Statistical Learning

A Brief History of Statistical Learning

Statistical learning refers to a set of tools for making sense of/understanding com-
plex datasets.

1795: linear regression

1936: linear discriminant analysis (LDA)

1940s: logistic regression

early 1970s: ridge regression and generalized linear models (GLM)

until end of 1970s: all about linear methods due to computational constraints

mid 1980s: classification and regression trees (CART), followed shortly by gener-
alized additive models (GAM)

late 1980s: neural networks

1990s: lasso, support vector machines (SVM), random forests (RF), boosting,
BART

new millennium: powerful and relatively user-friendly softwares, such as R and
Python.
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A Brief History of Statistical Learning

Our Plan

Traditional toolkit of statistical learning:
- Linear Regression.
- Ridge Regression.
- Logistic Regression.
- Linear (or Quadratic) Discriminant Analysis.
- K -Nearest Neighbors
- Principal Components Analysis (PCA)

Modern toolkit of statistical learning:
- Lasso
- Bagging
- Random Forests
- Boosting
- BART
- Support Vector Machines
- Deep Learning
- Matrix Completion
- Clustering
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What Is Statistical Learning?

What Is Statistical Learning?

(Section 2.1)
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What Is Statistical Learning?

[Example] Advertising

Can we predict sales using these three variables?

Perhaps we can do better using a model

sales� f (TV, radio, newspaper) .
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What Is Statistical Learning?

Notation

We will roughly follow the notations of ISLR.

Here sales is a response, or output variable, or target, or dependent variable that
we wish to predict. We generically refer to the response as Y .

TV is a feature, or input variable, or predictor, or independent variable, or just a
variable; we name it X1.

Likewise name radio as X2, and so on.

We can refer to the input vector (by default, a column) collectively as

X =

0@ X1
X2
X3

1A= (X1,X2,X3)
T , where T is the transpose.

Now we write our model as
Y = f (X )+ ε,

where ε is a random error term, independent of X and E [ε ] = 0, capturing mea-
surement errors and other discrepancies (e.g., missing variables), and f represent
the systematic information that X provides about Y .

In essence, statistical learning refers to a set of approaches for estimating f .
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What Is Statistical Learning?

Why Estimate f?

Prediction: With a good f we can make predictions of Y at new points X = x .
- Ŷ = f̂ (X ), where the form of f̂ does not matter, as long as it yields accurate
predictions of Y , so can be treated as a black box.

Inference: (i) We can understand which components of X = (X1, � � � ,Xp)
T are im-

portant in explaining Y , and which are irrelevant, e.g., seniority (or experience) and
years of education have a big impact on income, but marital status typically does
not. (ii) Depending on the complexity of f , we may be able to understand how each
component Xj of X affects Y . (iii) Is a linear f̂ enough to model the relationship
between Y and X?
- The form of f̂ is important for this purpose.
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What Is Statistical Learning?

Reducible and Irreducible Errors

In prediction, assume both f̂ and X are fixed; then

E
h�

Y � Ŷ
�2
i

= E
��

f (X )+ ε� f̂ (X )
�2
�

=
h
f (X )� f̂ (X )

i2

| {z }
Reducible

+ Var [ε ]| {z }
Irreducible

,

where the randomness is only from ε.
- ε is not predictable from X since it is independent of X , so is irreducible.
- The irreducible error provides an upper bound on the accuracy of prediction, and
this bound is usually unknown in practice.

What is the optimal f (X ) in the sense of minimizing E
h
(Y �g (X ))2

i
among all

functions g?
From Econ6001 or Econ6005, we know that the ideal f (x) = E [Y jX = x ], the re-
gression function.6

So one main target of machine learning is to find f̂ , aiming to minimize the reducible

error
h
f (X )� f̂ (X )

i2
with f (X ) = E [Y jX ], i.e., estimate E [Y jX ].

6We use capital normal font to denote random variables/vectors, and lower case normal font to denote their
realizations.
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What Is Statistical Learning?

How Do We Estimate f?

First, suppose we have n observations

f(x1,y1) , � � � , (xn,yn)g ,

where xi =
�
xi1, � � � ,xip

�T .

These observations are called the training data because they are used to train, or
teach, our method how to estimate f .
- Training sample/data and training/learning in machine learning are equivalent to
the statistical terms "observed data" and "estimating".

To estimate E [Y jX = x ], we need many data points at X = x , but typically we have
few if any data points with X = x exactly.

Ping Yu (HKU) Introduction 21 / 90



What Is Statistical Learning?

K -Nearest Neighbors Estimator

Relax the definition and let

f̂ (x) = Ave (Y jX 2N (x)) :=
1
K ∑

i2N (x)

yi ,

where N (x) is some neighborhood of x , e.g., including K (say, 10%n) nearest
neighbors results in the K -nearest neighbors (KNN) estimator. [figure here]
- Implicitly, we assume f (x) is smooth since the data points near x can provide
information on f (x).

Nearest neighbor averaging can be pretty good for small p — i.e., p � 4 and large-
ish N .

We will discuss smoother versions, such as kernel and spline smoothing later in
Lecture 7; these three are all nonparametric methods.
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What Is Statistical Learning?

History of the KNN Estimator

Evelyn Fix
(1904-1965, UC-Berkeley)

Joseph L. Hodges Jr.
(1922-2000, UC-Berkeley)
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What Is Statistical Learning?

The Curse of Dimensionality

Nearest neighbor methods can be lousy when p is large.

Reason: Nearest neighbors (e.g., 10% neighborhood) tend to be far away in high
dimensions (i.e., not neighbors anymore), called the curse of dimensionality.
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What Is Statistical Learning?

Parametric and Structured Models

The linear model is an important example of a parametric model:

fL (X ) = β 0+β 1X1+ � � �+β pXp =: β 0+β
T X ,

where β =
�

β 1, � � � ,β p

�T
.

A linear model is specified in terms of p+1 parameters, β 0,β 1, � � � ,β p.

We estimate the parameters by fitting the model to training data, e.g., by least
squares.

Although it is almost never correct, a linear model often serves as a good and
interpretable approximation to the unknown true function f (X ).

The next slide shows the difference in applying KNN, a linear model, and a quadratic
model on a simulated dataset with p = 1, where fL (X ) = β 0 + β 1X in the linear
model, fQ (X ) = β 0+β 1X +β 2X2 in the quadratic model, and both the linear and
quadratic models are fitted by least squares.
- Order of fitting: KNN � quadratic � linear.
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What Is Statistical Learning?
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What Is Statistical Learning?

[Example] Income: p = 2
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What Is Statistical Learning?

Linear Model

The linear model does not capture the curvature of f (X ), but captures the posi-
tive relationship between years of education and income and slightly less positive
relationship between seniority and income .
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What Is Statistical Learning?

Nonparametric Model

By choosing the correct amount of smoothness, the nonparametric estimator f̂ is
very close to the true f .
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What Is Statistical Learning?

Overfitting

Overfitting means the fitted model follows the errors, or noise, too closely, which is
not desirable when the fitted model is applied to test data.7

7Test data are independent of training data but following the same probability distribution.
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What Is Statistical Learning?

The Trade-Off Between Prediction Accuracy and Model Interpretability

Linear models are easy to interpret (which is good for inference); thin-plate splines
are not.

On the other hand, more flexible models tend to predict well, although not always
so.
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What Is Statistical Learning?

Regression versus Classification Problems

In all examples above, Y is quantitative, i.e., takes numerical values. We refer to
the associated problems as regression problems.

When Y is qualitative (aka categorical), i.e., takes K , K � 2, unordered values
such as the brand of product purchased, we refer to the associated problems as
classification problems.
- Other popular classification problems: spam filtering of our mailbox, post code
reading, face recognizing, disease diagnosis, potential customer detecting, etc.
- Logistic regression in Lecture 2 is termed as a regression, but is a classification
method.

Some methods can be used in either regression or classification, e.g., KNN, ran-
dom forests, boosting, BART, deep learning, etc.

The types of predictors are less important for most methods in this course.
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What Is Statistical Learning?

Supervised versus Unsupervised Learning

When there are yi ’s to monitor or supervise, we develop supervised learning meth-
ods, e.g., the regression and classification problems.

When only xi ’s are available, we develop unsupervised learning methods.

Except cluster analysis or clustering (Lecture 3) and principal components analysis
(Lecture 5), all other lectures are devoted to supervised learning methods.

Yet another machine learning method that we will not touch is the so-called re-
inforcement learning, which focuses on finding a balance between exploration (of
uncharted territory) and exploitation (of current knowledge) as time passing.
- The power of reinforcement learning was exaggerated by the success of AlphaGo.

Alphago Beats Lee Sedol
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What Is Statistical Learning?

Philosophy

Supervised Learning

It is important to understand the ideas behind the various techniques, in order to
know how and when to use them.

One has to understand the simpler methods first, in order to grasp the more so-
phisticated ones.

It is important to accurately assess the performance of a method, to know how well
or how badly it is working [simpler methods often perform as well as fancier ones!]

This is an exciting research area, having important applications in science, industry
and finance.

Statistical learning is a fundamental ingredient in the training of a modern data
scientist.

Unsupervised Learning

Objective is more fuzzy — find groups of samples that behave similarly, find fea-
tures that behave similarly, find linear combinations of features with the most varia-
tion.

Difficult to know how well your are doing.

Different from supervised learning, but can be useful as a pre-processing step for
supervised learning.
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What Is Statistical Learning?

Statistical Learning versus Machine Learning

Machine learning arose as a subfield of Artificial Intelligence (AI).

Statistical learning arose as a subfield of Statistics.

There is much overlap — both fields focus on supervised and unsupervised prob-
lems:
- Machine learning has a greater emphasis on large scale applications and predic-
tion accuracy based on algorithms.
- Statistical learning emphasizes models and their interpretability, and precision and
uncertainty.
- There are a lot of pitfalls and caveats in machine learning without thinking statis-
tically!

But the distinction has become more and more blurred, and there is a great deal of
“cross-fertilization”.

Machine learning has the upper hand in Marketing!

Along the following spectrum, you move from heavy focus on measuring and infer-
ring the truth to a more pragmatic "useful is true" pattern discovery approach:

Econometrics �! Statistics�! Data Mining/Big Data/Data Science

�! Machine Learning and AI
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Assessing Model Accuracy

Assessing Model Accuracy

(Section 2.2)
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Assessing Model Accuracy

Measuring the Quality of Fit

Why so many different machine learning methods, rather than a single best method?

For different datasets, the best methods are different!

How to choose the best method given a dataset? We first introduce some relevant
concepts here, and explain how to apply these concepts in future lectures.

Suppose we fit a model f̂ (x) to some training data Tr = fxi ,yigN
i=1, and we wish to

see how well it performs.

We could compute the average squared prediction error over Tr – the mean squared
error (MSE):

MSETr = Avei2Tr

h
yi � f̂ (xi )

i2
:=

1
N ∑

i2Tr

h
yi � f̂ (xi )

i2
.

- This may be biased toward more overfit models.

Instead we should, if possible, compute it using fresh test data Te = fxi ,yigM
i=1:

MSETe = Avei2Te

h
yi � f̂ (xi )

i2
=

1
M ∑

i2Te

h
yi � f̂ (xi )

i2
.
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Assessing Model Accuracy

Training MSE versus Test MSE

Figures 2.9–2.11: training MSE tends to be quite a bit smaller than test MSE, and
a low training MSE by no means guarantee a low test MSE.
- Training MSE always decreases as flexibility increases, but test MSE exhibits a
U-shape.

In Figures 2.10, the test MSE of linear regression is close to the minimum of test
MSE curve because the true f is close to linear.

In Figures 2.11, there is a rapid decrease in both curves before the test MSE starts
to increase slowly because the true f is highly nonlinear.
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Assessing Model Accuracy
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Assessing Model Accuracy
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Assessing Model Accuracy
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Assessing Model Accuracy

The Bias-Variance Trade-Off

The expected test MSE, for a given value x0, is

E
��

Y � f̂ (X )
�2
jX = x0

�
= Var [ε ]+

h
Bias

�
f̂ (x0)

�i2
+Var

�
f̂ (x0)

�
= Irreducible Error+Bias2+Variance.

- The overall expected test MSE can be computed by averaging E [(Y� f̂ (x0))
2jX =

x0] over all possible values of x0 in the test set.

In general, more flexible statistical methods have higher variance.
- The green curve in Figures 2.9 follows the observations closely, so changing any
data point would change f̂ considerably. The orange least squares line is the oppo-
site case.

On the other hand, more flexible statistical methods have lower bias.

The optimal flexibility is determined by the trade-off between squared bias and
variance. [see Figures 2.12]

It is easy to find a low bias method (e.g., passing through all training data points) or
a low variance method (e.g., a horizontal line), but the wisdom of statistical learning
is to balance these two factors.
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Assessing Model Accuracy

Trade-Off Between Squared Bias and Variance

The optimal flexibility varies a lot among the three datasets, depending on f (given
the distribution of X and ε).

In practice, f is unknown; we would use cross validation to estimate the test MSE
in Lecture 4.
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Assessing Model Accuracy

The Classification Setting

When Y is qualitative, we often use the training error rate, the fraction of incorrect
classification, to quantify the accuracy of f̂ :

ErrTr = Avei2Tr I
�

yi 6= f̂ (xi )
�

:=
1
n

n

∑
i=1

I (yi 6= ŷi ) , (1)

where I (yi 6= ŷi ) is an indicator variable, equal to 1 if yi 6= ŷi and 0 otherwise.

The test error rate applies (1) to test data.

A good classifier minimizes the test error.
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Assessing Model Accuracy

The Bayes Classifier

It can be shown that [Exercise for K = 2]

arg min
g(x0)

E [I (Y 6= g (X )) jX = x0] = arg max
k2f1,��� ,Kg

Pr (Y = k jX = x0) ,

i.e., assigns each test observation to the most likely class, given its predictor values,
where Pr (Y = k jX = x0), k = 1, � � � ,K , are the conditional class probabilities at x0.

This classifier is called the Bayes classifier, which is parallel to E [Y jX = x0] in the
regression case.

When K = 2, the Bayes classifier reduces to predict 1 at x0 if Pr (Y = 1jX = x0) >
0.5 and 2 otherwise.
- The Bayes classifier’s prediction is determined by the Bayes decision boundary,
i.e., the line where Pr (Y = 1jX = x0) = 0.5. [see Figure 2.13]

The test error rate of the Bayes classifier is called the Bayes error rate, which is
equal to 1�maxk Pr (Y = k jX = x0) at X = x0.
- The overall Bayes error rate is given by 1�E [maxk Pr (Y = k jX )].
The Bayes error rate is analogous to the irreducible error in the regression setting.
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Assessing Model Accuracy

Bayes Decision Boundary

The (overall) Bayes error rate is 0.133 > 0 since the classes overlap in the true
population such that maxk Pr (Y = k jX = x0)< 1 for some x0.
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Assessing Model Accuracy

KNN

To apply the Bayes classifer at x0, we need to estimate

Pr (Y = k jX = x0) = E [I (Y = k) jX = x0] .

Since E [I (Y = k) jX = x0] is a conditional mean, we can estimate it by KNN:

bPr (Y = k jX = x0) =
1
K ∑

i2N (x0)

I (yi = k) ,

and classify the test observation x0 to argmaxk
bPr (Y = k jX = x0), where K is the

number of nearest neighbors, not the number of classes.

KNN is a completely non-parametric approach: no assumptions are made about
the shape of the decision boundary.
- The counterpart of linear regression, logistic regression, will be discussed in Lec-
ture 2.
- As a nonparametric method, bPr (Y = k jX = x0) will also suffer from the curse of
dimensionality; however, the impact of p on argmaxk

bPr (Y = k jX = x0) is less than
on bPr (Y = k jX = x0).

See Figure 2.14 for K = 3, and Figure 2.15 for K = 10.
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Assessing Model Accuracy
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Assessing Model Accuracy

The KNN decision boundary is close to the Bayes decision boundary; the test error
rate of KNN is also close the Bayes error rate.
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Assessing Model Accuracy

Choice of K

Low K : low bias and high variance;

High K : high bias and low variance.
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Assessing Model Accuracy

Training Error Rate versus Test Error Rate

Training error rate does not match the test error rate, e.g., when 1/K = 1, the former
is zero but latter is high.
As in the regression setting, the test error exhibits a U-shape; similarly, K can be
chosen by cross validation.
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Simple Linear Regression

Simple Linear Regression

(Section 3.1)
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Simple Linear Regression

History of Least Squares

The least-squares method is usually credited to Gauss (1809), but it was first pub-
lished as an appendix to Legendre (1805) which is on the paths of comets. Never-
theless, Gauss claimed that he had been using the method since 1795 at the age
of 18.

Carl F. Gauss
(1777-1855, Göttingen)

A.-M. Legendre
(1752-1833, Éole Normale)
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Simple Linear Regression

Simple Linear Regression Using a Single Predictor X

We assume a model
Y = β 0+β 1X + ε,

where β 0 and β 1 are two unknown constants that represent the intercept and slope,
also known as coefficients or parameters, and ε is the error term.

In the Advertising example, let Y be sales and X be TV.

Given some estimates β̂ 0 and β̂ 1 for the model coefficients, we predict future sales
using

ŷ = β̂ 0+ β̂ 1x ,

where ŷ indicates a prediction of Y on the basis of X = x .
- The hat symbol denotes an estimated value.
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Simple Linear Regression

Estimating The Coefficients

Let ŷi = β̂ 0+ β̂ 1xi be the prediction for Y based on the i th value of X . Then ei =
yi � ŷi represents the i th residual.

We define the residual sum of squares (RSS) as

RSS=
n

∑
i=1

e2
i

or equivalently,

RSS=
n

∑
i=1

�
yi � β̂ 0� β̂ 1xi

�2
.

The least squares approach chooses β̂ 0 and β̂ 1 to minimize the RSS.

The minimizing values can be shown to be

β̂ 1 =
∑n

i=1 (xi � x̄) (yi � ȳ)

∑n
i=1 (xi � x̄)2

,

β̂ 0 = ȳ � β̂ 1x̄ ,

where ȳ := 1
n ∑n

i=1 yi and x̄ := 1
n ∑n

i=1 xi are the sample means.

Ping Yu (HKU) Introduction 55 / 90



Simple Linear Regression

[Example] Advertising
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Simple Linear Regression

Assessing the Accuracy of the Coefficient Estimates

The standard error of an estimator reflects how it varies under repeated sampling.
We have

SE
�

β̂ 1

�2
=

σ2

∑n
i=1 (xi � x̄)2

, SE
�

β̂ 0

�2
= σ

2

"
1
n
+

x̄2

∑n
i=1 (xi � x̄)2

#
,

where σ2 =Var[ε ] can be estimated by the residual standard error, RSE=
q

RSS
n�2 .

These standard errors can be used to compute confidence intervals (CI).
A 95% confidence interval is defined as a range of values such that with 95% prob-
ability, the range will contain the true unknown value of the parameter.
It has the form

β̂ 1�2 �SE
�

β̂ 1

�
.

That is, there is approximately a 95% chance that the intervalh
β̂ 1�2 �SE

�
β̂ 1

�
, β̂ 1+2 �SE

�
β̂ 1

�i
will contain the true value of β 1 (under a scenario where we got repeated samples
like the present sample).
Similarly for the CI of β 0.
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Simple Linear Regression

Hypothesis Testing

Standard errors can also be used to perform hypothesis tests on the coefficients.

The most common hypothesis test involves testing the null hypothesis of

H0: There is no relationship between X and Y

versus the alternative hypothesis

H1: There is some relationship between X and Y .

Mathematically, this corresponds to testing

H0: β 1 = 0

versus
H1: β 1 6= 0,

since if β 1 = 0 then the model reduces to Y = β 0+ ε, and X is not associated with
Y .
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Simple Linear Regression

Continued

To test the null hypothesis, we compute a t-statistic, given by

t =
β̂ 1�0

SE
�

β̂ 1

� .
This will have a t-distribution with n�2 degrees of freedom, assuming β 1 = 0.

Using statistical software, it is easy to compute the probability of observing any
value equal to jt j or larger. We call this probability the p-value.

Typical p-value cutoffs for rejecting the null are 5% or 1%, corresponding to t-
statistics around 2 and 2.57 when n � 30.

Ping Yu (HKU) Introduction 59 / 90



Simple Linear Regression

Assessing the Overall Accuracy of the Model

Residual Standard Error:

RSE=

r
1

n�2
RSS=

s
1

n�2

n

∑
i=1
(yi � ŷi )

2 =: σ̂ .

R2 or fraction of variance explained is

R2 =
TSS-RSS

TSS
= 1� RSS

TSS
,

where TSS= ∑n
i=1 (yi � ȳ)2 is the total sum of squares.

RSE is an absolute measure of lack of fit, while R2 is a relative measure, always in
[0,1] and independent of the scale of Y .

It can be shown that in this simple linear regression setting that R2 = r2, where r is
the correlation between X and Y :

Cor (X ,Y ) =
∑n

i=1 (xi � x̄) (yi � ȳ)q
∑n

i=1 (xi � x̄)2
q

∑n
i=1 (yi � ȳ)2

.
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Simple Linear Regression

[Example] Advertising

The 95% CIs for β 1 and β 0 are [0.042,0.053] and [6.130,7.935], respectively.
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Multiple Linear Regression

Multiple Linear Regression

(Section 3.2)
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Multiple Linear Regression

Multiple Linear Regression

Here our model is
Y = β 0+β 1X1+ � � �+β pXp+ ε.

We interpret β j as the average effect on Y of a one unit increase in Xj , holding all
other predictors fixed.

In the Advertising example, the model becomes

sales= β 0+β 1�TV+β 2� radio+β 3newspaper+ ε.
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Multiple Linear Regression

Interpreting Regression Coefficients

The ideal scenario is when the predictors are uncorrelated — a balanced design:
- Each coefficient can be estimated and tested separately.
- Interpretations such as “a unit change in Xj is associated with a β j change in Y ,
while all the other variables stay fixed”, are possible.

Correlations amongst predictors cause problems:
- The variance of all coefficients tends to increase, sometimes dramatically.
- Interpretations become hazardous — when Xj changes, everything else changes.

Claims of causality should be avoided for observational data.
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Multiple Linear Regression

The Woes of (Interpreting) Regression Coefficients

“Data Analysis and Regression”, Mosteller and Tukey, 1977.
- A regression coefficient β j estimates the expected change in Y per unit change
in Xj , with all other predictors held fixed. But predictors usually change together!
- Example: Y = total amount of change in your pocket; X1 = # of coins; X2 = # of
pennies, nickels and dimes. By itself, regression coefficient of Y on X2 will be > 0.
But how about with X1 in model?
- Y =number of tackles by a football player in a season; W and H are his weight
and height. Fitted regression model is Ŷ = b0+ .50W � .10H. How do we interpret
β̂ 2 < 0?

Two Quotes by Famous Statisticians:
- “Essentially, all models are wrong, but some are useful” – George Box
- “The only way to find out what will happen when a complex system is disturbed is
to disturb the system, not merely to observe it passively” – Fred Mosteller and John
Tukey, paraphrasing George Box.
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Multiple Linear Regression

Estimation and Prediction for Multiple Linear Regression

Given estimates β̂ 0, β̂ 1, � � � , β̂ p, we can make predictions using the formula

ŷ = β̂ 0+ β̂ 1x1+ � � �+ β̂ pxp.

We estimate β 0,β 1, � � � ,β p as the values that minimize the sum of squared residu-
als

RSS =
n

∑
i=1
(yi � ŷi )

2

=
n

∑
i=1

�
yi � β̂ 0� β̂ 1x1��� �� β̂ pxp

�2
.

This is done using standard statistical software. The values β̂ 0, β̂ 1, � � � , β̂ p that min-
imize RSS are the multiple least squares regression coefficient estimates.
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Multiple Linear Regression

Illustration: Fitting Multiple Linear Regression with p = 2
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Multiple Linear Regression

[Example] Advertising

Different from the simple linear regression, the coefficient of newspaper is not sig-
nificant now.

newspaper is a surrogate for radio; it gets "credit" in the simple linear regression for
the association between radio and sales.
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Multiple Linear Regression

Some Important Questions

1 Is at least one of the predictors X1,X2, ...,Xp useful in predicting the response?

2 Do all the predictors help to explain Y , or is only a subset of the predictors useful?

3 How well does the model fit the data?

4 Given a set of predictor values, what response value should we predict, and how
accurate is our prediction?
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Multiple Linear Regression

Is There a Relationship Between the Response and Predictors?

For the first question, we can use the F -statistic:

F =
(TSS�RSS)/p
RSS/ (n�p�1)

� Fp,n�p�1

under H0: β 1 = � � �= β p = 0.

- E
h

RSS
n�p�1

i
= σ2 as long as the linear model is correct, while E

h
TSS�RSS

p

i
= σ2

under H0 and > σ2 under H1: at least one β j is non-zero, so we reject H0 for a
large F .
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Multiple Linear Regression

Deciding on the Important Variables, Model Fit and Prediction
Uncertainty

If there is at least one variable useful, which one or ones?

Checking individual p-values does not work well especially when p is large because
we are likely to make some false discoveries even if no variables are useful.

In Lecture 4, we will discuss this variable selection problem in details.

R2 =Cor
�
Y , Ŷ

�2
now.

RSE=
q

1
n�p�1 RSS=: σ̂ now.

Prediction uncertainty still includes three parts: Irreducible Error+Bias2+Variance.
Suppose we ignore the model bias; then compared with the CI of f (X ), the predic-
tion interval of Y would be wider since it includes also the irreducible error compo-
nent.
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Other Considerations in the Regression Model

Other Considerations in the Regression Model

(Section 3.2)
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Other Considerations in the Regression Model

Qualitative Predictors

Some predictors are not quantitative but are qualitative, taking a discrete set of
values.

These are also called categorical predictors or factor variables.

See for example the scatterplot matrix of the Credit card data in the next slide.

In addition to the 7 quantitative variables shown, there are 4 qualitative variables:
own (house ownership), student (student status), status (marital status), and region
(East, West or South).
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Other Considerations in the Regression Model
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Other Considerations in the Regression Model

Predictors with Only Two Levels

Suppose that we wish to investigate differences in credit card balance between
those who own a house and those who don’t, ignoring the other variables.

We create a new dummy variable

xi =

�
1,
0,

if i th person owns a house
if i th person does not own a house.

(3.26)

Resulting Model:

yi = β 0+β 1xi + ε i =

�
β 0+β 1+ ε i ,
β 0+ ε i ,

if i th person owns a house
if i th person does not own a house.

(3.27)
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Other Considerations in the Regression Model

Result for the Own Model

What is the meaning of β̂ 0, β̂ 0+ β̂ 1 and β̂ 1?

The p-value for the dummy variable is large. What does that mean?

The final prediction does not depend on (i) which category is coded as 1, (ii) a
0/1 coding or a �1/1 coding is employed, which only affect the interpretation of
coefficients.
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Other Considerations in the Regression Model

Qualitative Predictors with More than Two Levels

With more than two levels, we create additional dummy variables. For example, for
the region variable we create two dummy variables. The first could be

xi1 =

�
1,
0,

if i th person is from the South
if i th person is not from the South,

(3.28)

and the second could be

xi2 =

�
1,
0,

if i th person is from the West
if i th person is not from the West.

(3.29)

Then both of these variables can be used in the regression equation, in order to
obtain the model

yi = β 0+β 1xi1+β 2xi2+ ε i =

8<:
β 0+β 1+ ε i ,
β 0+β 2+ ε i ,
β 0+ ε i ,

if i th person is from the South
if i th person is from the West
if i th person is from the East.

(3.30)

There will always be one fewer dummy variable than the number of levels. The level
with no dummy variable — East in this example — is known as the baseline.
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Other Considerations in the Regression Model

Result for the Region Model

What is the meaning of β̂ 0, β̂ 1 and β̂ 2?

The p-values for the two dummy variables are large. What does that mean?

Although the coefficients and their p-values depend on the choice of dummy vari-
able coding, the final prediction does not.

We can use the F -test to check whether there is any relationship between balance
and region , H0: β 1 = β 2 = 0, which does not depend on coding.
- The p-value in this example is 0.96.
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Other Considerations in the Regression Model

Extensions of the Linear Model: Interaction

In our previous analysis of the Advertising data, we assumed that the effect on
sales of increasing one advertising medium is independent of the amount spent on
the other media.

But suppose that spending money on radio advertising actually increases the effec-
tiveness of TV advertising, so that the slope term for TV should increase as radio
increases.

In this situation, given a fixed budget of $100,000, spending half on radio and half
on TV may increase sales more than allocating the entire amount to either TV or to
radio . [see Figure 3.5]

In marketing, this is known as a synergy effect, and in statistics it is referred to as
an interaction effect.
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Other Considerations in the Regression Model
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Other Considerations in the Regression Model

Interaction Term

Adding an interaction term in the linear model, we have

sales = β 0+β 1�TV+β 2� radio+β 3 (radio�TV)+ ε

= β 0+(β 1+β 3� radio)�TV+β 2� radio+ ε,

so the slope of TV depends on radio.

The p-value for the interaction term is small, so the new model is superior to the
model that contains only main effects.
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Other Considerations in the Regression Model

Hierarchical Principle

Sometimes it is the case that an interaction term has a very small p-value, but the
associated main effects (in this case, TV and radio) do not.

The hierarchy principle:
If we include an interaction in a model, we should also include the main effects,
even if the p-values associated with their coefficients are not significant.

The rationale for this principle is that interactions are hard to interpret in a model
without main effects — their meaning is changed.

Specifically, if the main effect of TV does not exist, i.e., β 1 = 0, then

∂sales
∂TV

= β 3� radio,

i.e., TV does not affect sales solely but only through radio!
- radio�TV is correlated with TV, so it is hard to imagine to leave TV out but keep
radio�TV .
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Other Considerations in the Regression Model

Interactions between Qualitative and Quantitative Variables

Consider the Credit data set, and suppose that we wish to predict balance using
income (quantitative) and student (qualitative).

Without an interaction term, the model takes the form [see the left panel of Figure
3.7]

balancei � β 0+β 1� incomei +

�
β 2,
0,

if i th person is a student
if i th person is not a student

= β 1� incomei +

�
β 0+β 2,
β 0,

if i th person is a student
if i th person is not a student.

(3.34)

With interactions, it takes the form [see the right panel of Figure 3.7]

balancei � β 0+β 1� incomei +

�
β 2+β 3� incomei ,
0,

if student
if not student

= +

�
(β 0+β 2)+ (β 1+β 3)� incomei ,
β 0+β 1� incomei ,

if student
if not student.

(3.35)
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Other Considerations in the Regression Model

β̂ 2 > 0, and β̂ 3 < 0.
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Other Considerations in the Regression Model

Extensions of the Linear Model: Nonlinear Relationships
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Other Considerations in the Regression Model

Polynomial Regression

Figure 3.8 suggests that

mpg= β 0+β 1�horsepower+β 2�horsepower2+ ε

may provide a better fit.

The p-value for horsepower2 is small.

Are higher-order polynomials necessary? wiggly� � �
Polynomial regression and other nonlinear extensions of the linear model will be
discussed in Lecture 7.
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Other Considerations in the Regression Model

Potential Problems

1 Nonlinearity of the data: residual plot, ei := yi � ŷi against ŷi , as a detection tool.
2 Correlation of error terms: in time series, plot ei against time to detect tracking.
3 Non-constant variance of error terms: funnel shape in the residual plot; apply

weighted least squares.
4 High leverage points: unusual xi ; typically has great effects on β̂ ; use leverage

statistic hi to detect high leverage points.
5 Outliers: unusual yi ; typically has no great effect on β̂ but has great effects on its

inference; plot studentized residuals ei
σ̂
p

1�hi
against ŷi to detect outliers (jabsj> 3).

6 Collinearity: use the variance inflation factor (VIF) to detect multicollinearity (> 5 or
10); either drop one of the collinear variables or average the standardized versions
of collinear variables.
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Other Considerations in the Regression Model

Generalizations of the Linear Model

In much of the rest of this course, we discuss methods that expand the scope of
linear models and how they are fit:
- Classification problems: logistic regression, support vector machines
- Non-linearity: kernel smoothing, splines and generalized additive models; nearest
neighbor methods.
- Interactions: Tree-based methods, bagging, random forests, boosting, BART and
deep learning (these also capture non-linearities)
- Regularized fitting: Ridge regression and lasso

Ping Yu (HKU) Introduction 88 / 90



Lab1: Introduction to R

Lab1: Introduction to R

(Section 2.3)

Basic Commands

Graphics

Indexing Data

Loading Data

Additional Graphical and Numerical Summaries
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Lab2: Linear Regression

Lab2: Linear Regression

(Section 3.6)

Libraries

Simple Linear Regression

Multiple Linear Regression

Interaction Terms

Non-linear Transformations of the Predictors

Qualitative Predictors

Writing Functions
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