
Lecture 10. Deep Learning
(Chapter 10)

Ping Yu

HKU Business School
The University of Hong Kong

Ping Yu (HKU) Deep Learning 1 / 85

Introduction

The cornerstone of deep learning is the neural network (NN).

Neural networks became popular in the late 1980s.

Lots of successes, hype, and great conferences: NeurIPS1 (Neural Information
Processing Systems).2

Then along came SVMs, RF and Boosting in the 1990s, and Neural Networks took
a back seat.

Re-emerged around 2010 as Deep Learning; by 2020s very dominant and success-
ful, especially in image and video recognization, and speech and text modeling.

Part of success due to vast improvements in computing power, larger training sets
(due to digitization), and software: Tensorflow (by Google) and PyTorch (by Face-
Book, now Meta).

Much of the credit goes to three pioneers and their students: Yann LeCun, Geof-
frey Hinton and Yoshua Bengio, who received the 2018 ACM (the Association for
Computing Machinery) Turing Award for their work in Neural Networks. [figure here]

We will concentrate on supervised deep learning (both regression and classifica-
tion); for unsupervised deep learning, see the Appendix.

1NeurlPS rather than NIPS because of the latter’s association with the word nipples.
2Reflecting its origins at Snowbird, Utah, in 1986, the conference was accompanied by workshops organized

at a nearby ski resort up until 2013.
Ping Yu (HKU) Deep Learning 2 / 85

History of Deep Learning

Figure: Yann LeCun (1960-, Meta and NYU), Geoffrey Hinton (1947-, Google and UToronto) and
Yoshua Bengio (1964-, UMontréal)

An Introduction: LeCun, Bengio and Hinton, 2015, Deep Learning, Nature, 521:
436-444.

Ping Yu (HKU) Deep Learning 3 / 85

Single Layer Neural Networks

Single Layer Neural Networks

(Section 10.1)

Ping Yu (HKU) Deep Learning 4 / 85

Single Layer Neural Networks

Single Layer Neural Networks

Different from other nonlinear models in Lectures 7 and 8, a NN uses a particular
structure to estimate f (X) = E [Y jX].
A feed-forward neural network for modeling a quantitative Y using p = 4 predictors
is shown in Figure 10.1.

In this simple NN,

f (X) = β 0+
K

∑
k=1

β k hk (X) = β 0+
K

∑
k=1

β k g

wk0+

p

∑
j=1

wkjXj

!
,

where each of the p features in the input layer feeds into each of the K hidden units
(or nodes) in the hidden layer.
- linear�!nonlinear�!linear�! �� � .
The K activations, AT = (A1, � � � ,AK), in the hidden layer,

Ak = hk (X) = g

wk0+

p

∑
j=1

wkjXj

!
,

where g (z) is a nonlinear activation function.

Ping Yu (HKU) Deep Learning 5 / 85

Single Layer Neural Networks

Ping Yu (HKU) Deep Learning 6 / 85

Single Layer Neural Networks

Activation Functions

Ak ’s are like the basis functions (i.e., some transformations of X , or derived fea-
tures) in Lecture 7, but they are not predetermined and learned during the training
of the NN, much like the trees in Lecture 8.
The unknown parameters include β 0,β 1, � � � ,β K and w10, � � � ,wKp, totally

(p+1)K +K +1

parameters.
The activation g (z) is known beforehand.
The sigmoid function is popular in early years of NN [see Figure 10.2]:

g (z) =
ez

1+ez =
1

1+e�z ,

which is the same function used in logistic regression to convert a linear function
into probabilities between zero and one.
- (**) Another smooth activation function is the hyperbolic tangent,

tanh (z) =
ez �e�z

ez +e�z ,

which ranges from �1 to 1 and looks similar as sigmoid.

Ping Yu (HKU) Deep Learning 7 / 85

Single Layer Neural Networks

Why Nonlinear g(�)?

If g(�) is linear, then f (�) is linear in X .
Nonlinear g (�) can model interaction effects (which linear models cannot): e.g.,
when p = 2 and K = 2, set g (z) = z2, and then for an appropriate choice of para-
meters, �

1
4
(X1+X2)

2� 1
4
(X1�X2)

2
�
= X1 �X2.

Ping Yu (HKU) Deep Learning 8 / 85

Single Layer Neural Networks

The ReLU Activation

In the 1990s, much efforts are spent on choosing among different g’s, but the con-
sensus nowadays is that if you have enough nodes and layers, the specific g does
not matter as long as it is nonlinear, so a simple and computationally convenient g
like ReLU below can be used.

The ReLU (rectified linear unit) function is favored in modern era [see Figure 10.2]:

g (z) = (z)+ :=max [0,z] ,3

- The ReLU activation can be computed and stored more efficiently than a sigmoid
activation because g(z) and g0 (z), which are needed in fitting an NN and predicting
for a test point, take simple forms.4

- Thresholding at 0 does not matter since the constant term wk0 will shift this inflec-
tion point.

3(*) This should be reminiscent of the hinge loss in SVM.
4For ReLU, g0 (z) = 1(z � 0), where the nondifferentiability at the origin is often ignored.

Ping Yu (HKU) Deep Learning 9 / 85

Single Layer Neural Networks

Where is the name "Neural Network" from?

­9.5 ­4.5 0.5 5.5 10.5
0

0.5

1

Figure: The Sigmoid Function with z0 = 0.5, and s = 0.5,1, and 10

Originally, g (�) is a step function (sigmoid g (s (z�z0)) as s! ∞), used to model
the neurons (nodes in Figure 10.1) to get fired when the total signal passed to that
unit through synapses (links in Figure 10.1) exceeded a certain threshold z0.

Ping Yu (HKU) Deep Learning 10 / 85

Single Layer Neural Networks

Loss Functions

If Y is quantitative, then minimize

n

∑
i=1
(yi � f (xi))

2 ,

where f (X) = β 0+∑K
`=1 β `A`.

- Predict y at the test point x as f̂ (x).
If Y is qualitative, taking M values, then generate M dummy variables, Ym =
I (Y =m), m= 1, � � � ,M, and estimate M class probabilities fm (X) =Pr(Y =mjX) =
E [YmjX].
- Note that one and only one Ym equals 1, so fYmgMm=1 is known as one-hot en-
coding.
- Note also that Y1, � � � ,YM are quite dependent.
- This is a multi-task learning where a single NN can be used to predict different
responses simultaneously.
Use the softmax function

fm (X) =
eZm

∑M
`=1 eZ`

where Zm = β m0+∑K
`=1 β m`A`, fm (X) 2 [0,1], and ∑M

m=1 fm (X) = 1.

Ping Yu (HKU) Deep Learning 11 / 85

Single Layer Neural Networks

Continued

When M = 2,

f1 (X) =
eZ1

eZ1 +eZ2
=

e(β 10�β 20)+∑K
`=1(β 1`�β 2`)A`

1+e(β 10�β 20)+∑K
`=1(β 1`�β 2`)A`

=
1

1+e�(β 10�β 20)�∑K
`=1(β 1`�β 2`)A`

,

and f2 (X) = 1� f1 (X), where Y = 2 is selected as the baseline, so the softmax
function is over-parametrized, but regularization and the SGD discussed below will
constrain the solutions so that this is not a problem.
- The softmax function treats all M classes symmetrically without selecting a base-
line class.

Then minimize the cross-entropy [see Appendix A of Lecture 8], i.e., the negative
multinomial log-likelihood,

�
n

∑
i=1

M

∑
m=1

yim log (fm (xi)) = �
M

∑
m=1

∑
i :yim=1

log (fm (xi)) ,

a generalization of the log-likelihood for the two-class logistic regression.
- Predict y at the test point x as argmaxm f̂m (x).

Ping Yu (HKU) Deep Learning 12 / 85

Single Layer Neural Networks

Why a Hidden Layer in Classification?

The hidden layer can be seen as distorting the input in a non-linear way so that
categories become linearly separable by the last layer, just like in SVM.

Figure: A single layer neural network (shown by the connected dots) can distort the input space
to make the classes of data (examples of which are on the red and blue lines) linearly separable.
Note how a regular grid (shown on the left) in input space is also transformed (shown in the middle
panel) by hidden units.

Ping Yu (HKU) Deep Learning 13 / 85

Multilayer Neural Networks

Multilayer Neural Networks

(Section 10.2)

Ping Yu (HKU) Deep Learning 14 / 85

Multilayer Neural Networks

Multilayer Neural Networks: An Example

Although a single hidden layer with many hidden units (i.e., a wide NN) can approx-
imate any continuous function (i.e., is a universal approximator), it is much easier to
find a good solution with multiple layers each of modest size, so-called deep neural
nets (DNN).

The famous and publicly available MNIST (Modified National Institute of Standards
and Technology) handwritten digit dataset. [see Figure 10.3 for some examples]

X 2R28�28=784 with Xj 2 f0,1, � � � ,255g; note the structural arrangement of X .

Y = (Y0,Y1, � � � ,Y9) of 10 dummy variables for f0,1, � � � ,9g (i.e., M = 10).

60K train, 10K test images.

Goal: build a classifier to predict the image class.

We build a two-layer network with K1 = 256 units at first layer, K2 = 128 units at
second layer, and 10 units at output layer. [see Figure 10.4]
- The number of layers is greater than one, which is the name "deep" learning from.

Along with intercepts (called biases) there are 235,146 parameters (referred to as
weights5).
- (p+1)�K1+(K1+1)�K2+(K2+1)�M = 235,146.

5Often, only the slopes are called weights. They can be seen as "knobs" that define the input-output function
of the machine.

Ping Yu (HKU) Deep Learning 15 / 85

Multilayer Neural Networks

Historically, digit recognition problems were the catalyst for the development of NN.

Ping Yu (HKU) Deep Learning 16 / 85

Multilayer Neural Networks

A(1)k = h(1)k (X) = g(w (1)
k0 +∑p

j=1 w (1)
kj Xj), k = 1, � � � ,K1, and A(2)` = h(2)` (X) = g(w (2)

`0 +

∑K1
k=1 w (2)

`k A(1)k), `= 1, � � � ,K2.

Zm = β m0+∑K2
`=1 β m`h

(2)
` (X) = β m0+∑K2

`=1 β m`A
(2)
` .

W1 collects w (1)
kj , j = 0,1, � � � ,p, k = 1, � � � ,K1, W2 collects w (2)

`k , k = 0,1, � � � ,K1,
`= 1, � � � ,K2, and B collects β m`, `= 0,1, � � � ,K2, m = 0,1, � � � ,9.

Ping Yu (HKU) Deep Learning 17 / 85

Multilayer Neural Networks

The number of weights is 235,146� 60,000 = n, so use regularization to avoid
overfitting.

The number of weights is also� 785� 9 = 7,065, the number of parameters in
multinomial logistic regression.

Early success for neural networks in the 1990s.

Very overworked problem – best reported rates are < 0.5%!

Human error rate is reported to be around 0.2%, or 20 of the 10K test images.

Ping Yu (HKU) Deep Learning 18 / 85

Convolutional Neural Networks

Convolutional Neural Networks

(Section 10.3)

Ping Yu (HKU) Deep Learning 19 / 85

Convolutional Neural Networks

Convolutional Neural Networks: An Example

CIFAR100 (Canadian Institute for Advanced Research) database includes 20 su-
perclasses (e.g., aquatic mammals) with 5 classes per superclass (beaver, dolphin,
otter, seal, whale), so M = 100.
p = 32�32�3 (red, green, blue) array of 8-bit numbers, so a three-dimensional
array called a feature map.
- The first two axes are spatial, and the third is the channel axis.
ntrain = 50K, and ntest = 10K.
Major success story for classifying images.

Ping Yu (HKU) Deep Learning 20 / 85

Convolutional Neural Networks

Selectivity-Invariance Dilemma

A good classifier requires a good feature extractor that produces representations
that are selective to the aspects of the image that are important for discrimination
(i.e., even tiny differences in these aspects are critical for classification, e.g., the
faces of two look-alike people), but that are invariant to irrelevant aspects (e.g., the
pose of animal or the accent of speech).

The conventional option is to hand design good feature extractors, which requires
a considerable amount of engineering skill and domain expertise.

CNN avoids this difficulty by learning good features automatically.

Ping Yu (HKU) Deep Learning 21 / 85

Convolutional Neural Networks

How CNNs Work?

The CNN builds up an image in a hierarchical fashion, mimicing how humans clas-
sify images.

Edges and shapes are recognized and pieced together to form more complex
shapes, eventually assembling the target image.

This hierarchical construction is achieved using convolution and pooling layers.

Ping Yu (HKU) Deep Learning 22 / 85

Convolutional Neural Networks Convolution Layers

Convolution Layers

Input Image=

2664
a b c
d e f
g h i
j k l

3775, and Convolution Filter=
�

α β

γ δ

�
.

Convolved Image=

24 aα+bβ +dγ+eδ bα+ cβ +eγ+ f δ

dα+eβ +gγ+hδ eα+ f β +hγ+ iδ
gα+hβ + jγ+ kδ hα+ iβ + kγ+ lδ

35 .
The filter is itself an image, and represents a small shape, edge, etc.
We slide it around the input image, scoring for matches.
The scoring is done via dot-products (i.e., inner product), illustrated above.
If the subimage of the input image is similar to the filter, the score is high, otherwise
low, (which is a property of the dot-product), i.e., the convolved image highlights
regions of the original image that resemble the convolution filter. [see Figure 10.7]
The filters are learned during training; in the usual image processing, the filters are
predefined rather than learned.
Return to the single-layer NN framework with one hidden unit for each pixel in the
convolved image: the parameters are the convolution filter, so operate on localized
patches (i.e., many zeros), and the same weights in a given filter are reused for all
patches (i.e., highly constrained), so-called weight sharing.

Ping Yu (HKU) Deep Learning 23 / 85

Convolutional Neural Networks Convolution Layers

(**) Why the name "Convolution"?

Recall that the convolution of two functions f and g on R is

(f �g) (t) =
Z ∞

�∞
f (τ)g (t� τ)dτ,

i.e., (f �g) (t) is the area under the function f (τ) weighted by the function g (�τ)
shifted by the amount t (i.e., shift invariance).
- As t changes, the weighting function g (t� τ) emphasizes different parts of the
input function f (τ).
- When f and g are supported on [0,∞], then (f �g) (t) =

R t
0 f (τ)g (t� τ)dτ.

convolution �! visual explanation

Convolution filter conducts a discrete convolution on a rectangle area of Z2.

Ping Yu (HKU) Deep Learning 24 / 85

https://en.wikipedia.org/wiki/Convolution

Convolutional Neural Networks Convolution Layers

Convolution Example

The idea of convolution with a filter is to find common patterns that occur in different
parts of the image.

Ping Yu (HKU) Deep Learning 25 / 85

Convolutional Neural Networks Convolution Layers

More Details

The two dimensions of the filter, say (`1,`2), are usually small positive integers but
need not be the same.
- For CIFAR100, we use `1 = `2 = 3.
Note that for an L�L image, if convolved by a `�` filter, then we get an (L� `+1)�
(L� `+1) image. To get an image with the same dimensions as the original image,
we need padding.
If we pad each side p pixels, then solving L+2p� `+1= L, we have p= `�1

2 . This
is why ` is usually odd.
- We can pad either a zero or the closest pixel.
For each (color) channel, use a different filter (or the whole filter is `� `�3); the
three convolutions are summed to form a two-dimensional image; the color infor-
mation is used separately only at this point.
If K different filters are used, we get a single L�L�K feature map (from a L�L�3
feature map), i.e., there are K channels now.
Return to the single-layer NN framework: this L� L�K feature map is like the
activations in a hidden layer except organized and produced in a spatially structured
way.
Typically, a bias term is added to each channel, and apply ReLU to generate a
separate layer afterwards, called a detector layer where a positive value indicates
presence of a feature.

Ping Yu (HKU) Deep Learning 26 / 85

Convolutional Neural Networks Pooling Layers

Pooling Layers

Max pool:

2664
1 2 5 3
3 0 1 2
2 1 3 4
1 1 2 0

3775�! � 3 5
2 4

�
.

Each non-overlapping 2�2 block is replaced by its maximum.

This sharpens the feature identification by condensing a large image into a smaller
summary image.

Allows for locational invariance: a small neighborhood is likely to contain similar
information, so only the largest value in the 2�2 block is maintained in the reduced
image.

Reduces the dimension by a factor of 4 – i.e. factor of 2 in each dimension.

Ping Yu (HKU) Deep Learning 27 / 85

Convolutional Neural Networks Architecture of a Convolutional Neural Network

Architecture of a CNN

Many convolve + pool layers.

Ping Yu (HKU) Deep Learning 28 / 85

Convolutional Neural Networks Architecture of a Convolutional Neural Network

More Details

Filters are typically small, e.g., each channel 3�3.

Each filter creates a new channel in convolution layer.
- The second convolve layer is like the first, but one `� ` filter applies to all K
channels (because no color information now) and then adds up.

As pooling reduces size, the number of filters/channels in convolution is typically
increased (3! 6! 12! 24 in Figure 10.8).

Sometimes repeat several convolve layers before a pool layer to increase the di-
mension of the filter (i.e., operate on more pixels).

When the pooling reduces the dimension of each channel to a few (4 in the figure)
pixels, then flattening: all pixels in all channels (4� 4� 24 in the figure) are fed
into one or more (2 in the figure) fully-connected (i.e., not locally-connected) layers
before reaching the output layer.

Number of layers can be very large, e.g., the resnet50 (see the next slide) classifier
trained on imagenet 1000-class image data base has 50 layers (48 convolutional
layers, one MaxPool layer, and one average pool layer before softmax)!

Ping Yu (HKU) Deep Learning 29 / 85

Convolutional Neural Networks Architecture of a Convolutional Neural Network

(**) Deep Residual Networks

When the network is very deep, there is a phenomenon called exploding/vanishing
gradients because the gradient of the first hidden layer is the product of the gradi-
ents in the remaining layers in the backpropagation algorithm.

To avoid this problem, residual networks add an identity map to an existing frag-
ment, say F (x), of the network.

In the figure below, for every two layers, an identity map is added:

x 7! g (x+F (x)) = g
�
x+W0g (Wx+b)+b0

�
,

where x can be hidden nodes from any layer, W and W0 are the weights, and b and
b0 are the biases.

The name comes from the fact that if�F (x) is a fit of x, then x+F (x) is the residual
of the fitting.

The motivation can be explained from the angle of numerical stability: if the magni-
tude of F (x) is small, then the spectra (singular values) of Jacobian of x+F (x) is
close to 1, so we expect better numerical stability.

By repeating this structure throughout all layers, we are able to train neural nets
with hundreds of layers easily, which overcome well-observed training difficulties in
deep neural nets.

Ping Yu (HKU) Deep Learning 30 / 85

Convolutional Neural Networks Architecture of a Convolutional Neural Network

(**) Skip Connections

Figure: Skip Connections: after skipping two layers, reconnect to x

Ping Yu (HKU) Deep Learning 31 / 85

Convolutional Neural Networks Results Using a Pretrained Classifier

Using Pretrained Networks to Classify Images

Weight freezing: use the weights from resnet50 (and train just the last few layers).

Ping Yu (HKU) Deep Learning 32 / 85

Document Classification

Document Classification

(Section 10.4)

Ping Yu (HKU) Deep Learning 33 / 85

Document Classification

Document Classification: IMDB Movie Reviews

The IMDB corpus consists of user-supplied movie ratings for a large collection of
movies. Each has been labeled for sentiment as positive or negative. Here is the
beginning of a negative review:
This has to be one of the worst films of the 1990s. When my friends & I were
watching this film (being the target audience it was aimed at) we just sat & watched
the first half an hour with our jaws touching the floor at how bad it really was. The
rest of the time, everyone else in the theater just started talking to each other,
leaving or generally crying into their popcorn � � �
We have labeled training and test sets, each consisting of 25K reviews, and each
balanced with regard to sentiment.

We wish to build a classifier to predict the sentiment of a review.

Ping Yu (HKU) Deep Learning 34 / 85

Document Classification

Featurization: Bag-of-Words

Documents have different lengths, and consist of sequences of words. How do we
create features X to characterize a document? [see Lecture 6 for more details]
- From a dictionary, identify the 10K most frequently occurring words.
- Create a binary vector of length p = 10K for each document, and score a 1 in
every position that the corresponding word occurred (counts or proportions may be
more informative).
- With n documents, we now have a n�p sparse feature matrix X (only 1.3% nonze-
ros in this example).

We compare a lasso logistic regression model to a two-hidden-layer NN (actually a
nonlinear logistic regression) on the next slide. (No convolutions here!)
- glmnet was used to fit the lasso model, and is very effective because it can exploit
sparsity in the X matrix.
- For NN, K1 = K2 = 16 ReLU units appear in the two hidden layers.
- 2K validation data from 25K training data are used to choose tuning parameters.
- Simpler lasso logistic regression model works as well as NN in this case, about
88% accuracy (i.e., 1�classification error).

Bag-of-words are unigrams. We can instead use bigrams (occurrences of adjacent
word pairs), and in general m-grams to take into account of context.

Ping Yu (HKU) Deep Learning 35 / 85

Document Classification

Lasso versus Neural Network – IMDB Reviews

Ping Yu (HKU) Deep Learning 36 / 85

Recurrent Neural Networks

Recurrent Neural Networks

(Section 10.5)

Ping Yu (HKU) Deep Learning 37 / 85

Recurrent Neural Networks

Recurrent Neural Networks

Often data arise as sequences:
- Documents are sequences of words such as the IMDB example in the last section,
and their relative positions have meaning.
- Time-series such as weather data or financial indices.
- Recorded speech (e.g., give a text transcription or a language translation) or music
(e.g., assess its quality).
- Handwriting, such as doctor’s notes.

RNNs build models that take into account this sequential nature of the data, and
build a memory of the past.

The feature for each observation is a sequence of vectors, e.g., in document classi-
fication, X = fX1, � � � ,XLg with X` representing a one-hot encoding for the `th word.

The target Y is often of the usual kind – e.g., a single variable such as sentiment,
or a one-hot vector for multiclass.

However, Y can also be a sequence, such as the same document in a different
language.

Ping Yu (HKU) Deep Learning 38 / 85

Recurrent Neural Networks

Architecture of a Simple RNN

An RNN can be thought of as multiple copies of the same network, each passing a
message to a successor.

Ping Yu (HKU) Deep Learning 39 / 85

Recurrent Neural Networks

More Details

The hidden layer is a sequence of vectors fA`gL`=1, receiving as input X` as well as
A`�1. A` produces an output O`.

Suppose XT
` =

�
X`1, � � � ,X`p

�
, and AT

` = (A`1, � � � ,A`K).

A`k = g
�

wk0+∑p
j=1 wkjX`j +∑K

s=1 uksA`�1,s

�
: (p+1)�K +K �K parameters

O` = β 0+∑K
k=1 β k A`k : (K +1) parameters

The same weights W, U and B are used at each step in the sequence – hence the
term recurrent.
- This is a form of weight sharing, like the filtering in CNN.
- (*) Weight sharing is related to the notion of translational invariance in CNN and
stationarity in RNN.

The A` sequence represents an evolving model for the response that is updated as
each element X` is processed.
- As we proceed from beginning to end, the activations A` accumulate a history of
what has been seen before, so that the learned context can be used for prediction.

Often we are concerned only with the prediction OL at the last unit.

- Define aiLk = g
�

wk0+∑p
j=1 wkjxiLj +∑K

s=1 uksai,L�1,s

�
.

Ping Yu (HKU) Deep Learning 40 / 85

Recurrent Neural Networks

Continued

For the squared error loss, and n sequence/response pairs, we would minimize

n

∑
i=1
(yi �oiL)

2 =
n

∑
i=1

yi �

β 0+

K

∑
k=1

β k aiLk

!!2

.

For the cross-entropy loss, we would minimize

�
n

∑
i=1

M

∑
m=1

yim log (fiLm) = �
n

∑
i=1

M

∑
m=1

yim log

eoiLm

∑M
l=1 eoiLl

!
,

where yT
i = (yi1, � � � ,yiM), and oT

iL= (oiL1, � � � ,oiLM) with oiLm = β m0+∑K
k=1 β mk aiLk .

- B contains M� (K +1) parameters now.

Return to the single-layer NN framework: X 2Rp�L, and A 2RK�L, but A is gener-
ated sequentially.

O` is reported because it comes for free, and in some learning tasks (e.g., text tran-
scription), the response is also a sequence, so the output sequence fO1, � � � ,OLg
is explicitly needed.

Ping Yu (HKU) Deep Learning 41 / 85

Recurrent Neural Networks Sequential Models for Document Classification

[Example] Document Classification

In the bag-of-word model, X 2Rp with p = 10K and L ones appearing in X , but in
RNN, X 2Rp�L with only one 1 in each column.
- If the document has more than L words, use the last L words, and if less than L
words, pad with zeros at the beginning to have L words.

This results in an extremely sparse feature representation, and would not work well.

Instead we use a lower-dimensional pretrained6 word embedding matrix E2Rm�10K.
[see Figure 10.13].
- Embeddings are pretrained on very large corpora of documents, using methods
similar to PCA in Lecture 5 on the so-called word co-occurrence matrix.
- The idea is that the positions of words in the embedding space preserve semantic
meaning; e.g., synonyms should appear near each other. [see Lecture 6]
- E can be learned (as part of the optimization) by adding an embedding layer
before feeding in X`.

This reduces the binary feature vector of length 10K to a real feature vector of
dimension m� 10K (e.g., m in the low hundreds), typically with nonzero elements.

6This is the weight freezing in CNN. (GPT)
Ping Yu (HKU) Deep Learning 42 / 85

Recurrent Neural Networks Sequential Models for Document Classification

Word Embedding

Ping Yu (HKU) Deep Learning 43 / 85

Recurrent Neural Networks Sequential Models for Document Classification

RNN on IMDB Reviews

For the IMDB data, use RNN with E learned (m= 32 and K = 32) and only achieve
76% accuracy.
We then fit a more exotic RNN than the one displayed – a LSTM with long and short
term memory.
- Here, A` receives input from A`�1 (short term memory) as well as from a version
that reaches further back in time (long term memory) to avoid early signals being
washed out.
- Compare "the clouds are in the sky" and “I grew up in France. . . I speak fluent
French.”.
- For a tutorial on LSTM, see

LSTM

- (**) The sequential nature precludes parallelization within training examples, which
becomes critical at longer sequence lengths, as memory constraints limit batching
across examples. A recent model architecture, called the Transformer, eschews
recurrence and instead relying entirely on an attention mechanism to draw global
dependencies between input and output, which allows for significantly more paral-
lelization. (GPT)
Now we get 87% accuracy, slightly less than the 88% achieved by glmnet.
These data have been used as a benchmark for new RNN architectures:

IMDB leaderboard

Ping Yu (HKU) Deep Learning 44 / 85

https://colah.github.io/posts/2015-08-Understanding-LSTMs/
https://paperswithcode.com/sota/sentiment-analysis-on-imdb

Recurrent Neural Networks Time Series Forecasting

[Example] Time Series Forecasting

Ping Yu (HKU) Deep Learning 45 / 85

Recurrent Neural Networks Time Series Forecasting

NYSE Data: Dec. 3, 1962 – Dec. 31, 1986

Log trading volume (vt): This is the fraction of all outstanding shares that are traded
on that day, relative to a 100-day moving average of past turnover, on the log scale.

Dow Jones returns (rt): This is the difference between the log of the DJIA on con-
secutive trading days.

Log volatility (zt): This is based on the absolute values of daily price movements.

Goal: predict Log trading volume tomorrow, given its observed values up to today,
as well as those of Dow Jones returns and Log volatility.
- Predicting stock prices is extremely hard, but predicting trading volume is much
easier and useful for planning trading strategies.

ntrain = 4,281, and ntest = 1,770.

Ping Yu (HKU) Deep Learning 46 / 85

Recurrent Neural Networks Time Series Forecasting

Autocorrelation

The autocorrelation at lag ` is the correlation of all pairs (vt ,vt�`) that are ` trading
days apart.

These sizable correlations give us confidence that past values will be helpful in
predicting the future.
- Think of the IMDB example.

This is a curious prediction problem: the response vt is also a feature vt�`!

Ping Yu (HKU) Deep Learning 47 / 85

Recurrent Neural Networks Time Series Forecasting

RNN Forecaster

We only have one series of data! How do we set up for an RNN?

We extract many short mini-series of input sequences X = (X1, � � � ,XL) 2R3�L with
a predefined length L known as the lag:

X1 =

0@ vt�L
rt�L
zt�L

1A ,X2 =

0@ vt�L+1
rt�L+1
zt�L+1

1A , � � � ,XL =

0@ vt�1
rt�1
zt�1

1A , and Y = vt .

Note that this L is the same as the L in Figure 10.12, and there are n= T �L+1=
6046 observations in total, where T = ntrain+ntest = 6,051, and L= 5.

We fit an RNN with K = 12 hidden units per lag step (i.e. per A`.)

L and K are tuning parameters and can be chosen by CV.

Ping Yu (HKU) Deep Learning 48 / 85

Recurrent Neural Networks Time Series Forecasting

RNN Results for NYSE Data

R2 = 0.42 for RNN. Recall that R2 = 1� ∑
ntest
t=1 (yntrain+t�byntrain+t)

2

∑
ntest
t=1 (yntrain+t�ȳntrain+�)

2 .

R2 = 0.18 for straw man, – use yesterday’s value of Log trading volume to predict
that of today.

Note that when predicting y4281+t , we are using (x4281+t�L, � � � ,x4281+t�1) rather
than (x̂4281+t�L, � � � , x̂4281+t�1).

Ping Yu (HKU) Deep Learning 49 / 85

Recurrent Neural Networks Time Series Forecasting

Autoregression Forecaster

The RNN forecaster is similar in structure to a traditional autoregression (AR) pro-
cedure.

Define y =

26664
vL+1
vL+2

...
vT

37775 and M=

26664
1 vL � � � v1
1 vL+1 � � � v2
...

...
. . .

...
1 vT�1 � � � vT�L

37775.

Fit an OLS regression of y on M, giving

v̂t = β̂ 0+ β̂ 1vt�1+ � � �+ β̂ Lvt�L,

known as an order-L autoregression model or AR(L).
For the NYSE data we can include lagged versions of DJ_return and log_volatility
in matrix M, resulting in 3L+1 columns.
- Using the terminology of RNN, AR(L) is a kind of flattening.
R2 = 0.41 for AR(5) model (p�L+1= 16 parameters).
R2 = 0.42 for RNN model (K � (1+p+K)+K +1= 205 parameters).
R2 = 0.42 for nonlinear AR(5) model fit by a single-layer NN with K = 32.
R2 � 0.46 for all models if we include day of week (Mondays and Fridays have high
trading volumes) of day being predicted.
LSTM can improve R2 of RNN up to 1% in this example.

Ping Yu (HKU) Deep Learning 50 / 85

Recurrent Neural Networks Summary of RNNs

Summary of RNNs

We have presented the simplest of RNNs. Many more complex variations exist.

One variation treats the sequence as a one-dimensional image, and uses CNNs
for fitting. For example, a sequence of words using an embedding representation
can be viewed as an image, and the CNN convolves by sliding a convolutional filter
along the sequence to learn particular phrases or short subsequences.

Can have additional hidden layers, where each hidden layer is a sequence, and
treats the previous hidden layer as an input sequence. [Figure here]

Bidirectional RNNs: scan the document in both directions.

Can have output also be a sequence, and input and output share the hidden units.
So-called Seq2Seq learning are used for language translation (e.g., Google Trans-
late).

Ping Yu (HKU) Deep Learning 51 / 85

Recurrent Neural Networks Summary of RNNs

Multilayer RNNs

Figure: An RNN with two hidden layers. Higher-level hidden states hl
t (like our At) are determined

by the old states hl�1
t and lower-level hidden states hl

t�1. Multilayer RNNs generalize both feed-
forward neural nets and one-hidden-layer RNNs.

Multilayer RNNs usually do not have very large depth (e.g., 2–5), since T is already
very large.

Ping Yu (HKU) Deep Learning 52 / 85

When to Use Deep Learning

When to Use Deep Learning

(Section 10.6)

Ping Yu (HKU) Deep Learning 53 / 85

When to Use Deep Learning

When to Use Deep Learning?

CNNs have had enormous successes in image classification and modeling, and
are starting to be used in medical diagnosis.
- Examples include digital mammography, ophthalmology eye scans, MRI (mag-
netic resonance imaging) scans, and digital X-rays.

RNNs have had big wins in speech modeling, language translation, and forecasting.

Should we always use deep learning models?

Ping Yu (HKU) Deep Learning 54 / 85

When to Use Deep Learning

Continued

Often the big successes occur when the signal to noise ratio is high – e.g., im-
age recognition and language translation. Datasets are large (so that fitting high-
dimensional nonlinear models is possible), and overfitting and/or interpretability is
not a big problem.

For noisier data, simpler models can often work better.
- On the NYSE data, the AR(5) model is much simpler than an RNN, and performed
as well.
- On the IMDB review data, the linear model fit by glmnet did as well as the NN,
and better than the RNN.
- Read the textbook on the Hitters data example, run Lab 10.9.1, and solve Assign-
ment IV.9.

We endorse the Occam’s razor principle again – we prefer simpler models if they
work as well. More interpretable and robust!
- Whenever possible, try the simpler models as well, and then make a choice based
on the performance/complexity tradeoff.

Ping Yu (HKU) Deep Learning 55 / 85

Fitting a Neural Network

(*) Fitting a Neural Network

(Section 10.7)

Ping Yu (HKU) Deep Learning 56 / 85

Fitting a Neural Network

Fitting NNs

Take the single-layer NN for regression as an illustration.

We try to solve the nonlinear least squares problem:

min
fwkgK

1 ,β

1
2

n

∑
i=1
(yi � f (xi))

2 ,

where

f (xi) = β 0+
K

∑
k=1

β k g

wk0+

p

∑
j=1

wkjxij

!
.

This problem is difficult because the objective is non-convex.
- Nested arrangement of parameters and the symmetry of the hidden units imply
multiple solutions – in Figure 10.17, one is a local minimum, and the other is the
global minimum.

Despite this, effective algorithms have evolved that can optimize complex NN prob-
lems efficiently.

Two general strategies: (i) Slow Learning by using gradient descent; (ii) Regular-
ization such as in ridge or lasso.

Ping Yu (HKU) Deep Learning 57 / 85

Fitting a Neural Network

Ping Yu (HKU) Deep Learning 58 / 85

Fitting a Neural Network

Non Convex Functions and Gradient Descent

Let

R (θ) =
1
2

n

∑
i=1
(yi � fθ (xi))

2 ,

where θ =
�
fwkgK1 ,β

�
.

Step 1: Start with a guess θ0 for all the parameters in θ , and set t = 0.

Step 2: Iterate until the objective R (θ) fails to decrease:

(a) Find a vector δ that reflects a small change in θ , such that θ
t+1 =

θ
t + δ reduces the objective; i.e., R

�
θ

t+1
�
< R

�
θ

t
�

.

(b) Set t t+1.

In this simple example we reached the global minimum.

If we had started a little to the left of θ0 we would have gone in the other direction,
and ended up in a local minimum.

Although θ is multi-dimensional, we have depicted the process as one-dimensional.
It is much harder to identify whether one is in a local minimum in high dimensions.

Ping Yu (HKU) Deep Learning 59 / 85

Fitting a Neural Network

Gradient Descent Continued

How to find a direction δ that points downhill? We compute the gradient vector:

∇R
�

θ
t
�
=

∂R
�

θ
t
�

∂θ

������
θ=θ

t

,

i.e., the vector of partial derivatives at the current guess θ
t .

∇R
�

θ
t
�

is the direction in θ -space in which R (θ) increases (i.e., goes uphill) most

rapidly at θ
t , so the idea of gradient descent is to move θ a little in the opposite

direction (i.e., go downhill) [figure here; see also Figure 10.17]:

θ
t+1 = θ

t + δ = θ
t �ρ∇R

�
θ

t
�
, (1)

where ρ is the learning rate (typically small, e.g. ρ = 0.01, i.e., slow learning as in
boosting).

Ping Yu (HKU) Deep Learning 60 / 85

Fitting a Neural Network

Figure: Steepest Descent: dim (θ) = 2

Ping Yu (HKU) Deep Learning 61 / 85

Fitting a Neural Network Backpropagation

Backpropagation

R (θ) = ∑n
i=1 Ri (θ) is a sum, so gradient is sum of gradients, where

Ri (θ) =
1
2
(yi � fθ (xi))

2 =
1
2

yi �β 0�

K

∑
k=1

β k g

wk0+

p

∑
j=1

wkjxij

!!2

.

For ease of notation, let zik = wk0+∑p
j=1 wkjxij .

Backpropagation uses the chain rule for differentiation:

∂Ri (θ)

∂β k
=

∂Ri (θ)

∂ fθ (xi)

∂ fθ (xi)

∂β k
= � (yi � fθ (xi))g (zik) =: δ ig (zik) , (2)

and

∂Ri (θ)

∂wkj
=

∂Ri (θ)

∂ fθ (xi)

∂ fθ (xi)

∂g (zik)

∂g (zik)

∂zik

∂zik

∂wkj
=� (yi � fθ (xi)) �β k �g0 (zik) �xij =: sik �xij ,

(3)
where �δ i is the residual yi � fθ (xi), so both ∂Ri (θ)

∂β k
and ∂Ri (θ)

∂wkj
are fractions of the

residual.

Ping Yu (HKU) Deep Learning 62 / 85

Fitting a Neural Network Backpropagation

Two-Pass Algorithm

δ i and ski are "errors" from the current model at the output and hidden layer units,
and

sik = g0 (zik)β k δ i , (4)

known as the backpropagation equations.

Forward Pass: the current θ̂ is fixed and the predicted values are f
θ̂
(xi).

Backward Pass: the errors δ i are computed (using f
θ̂
(xi)), and then back-progagated

via (4) to give the errors sik .
- Both sets of errors are then used to compute the gradients for the updates in (1),
via (2) and (3).

This two-pass procedure is what is known as backpropagation.

Ping Yu (HKU) Deep Learning 63 / 85

Fitting a Neural Network Backpropagation

(**) More General Case

In general,

∂R (θ)

∂h(`�1)
=

∂h(`)

∂h(`�1)

∂R (θ)

∂h(`)
=
�

W(`)
�T

diag
n

1(W(`)h(`�1)+b(`) � 0)
o

∂R (θ)

∂h(`)
,

and
∂R (θ)

∂W (`)
jm

=
∂R (θ)

∂h(`)j

�g0 �h(`�1)
m ,

where h(`), W(`) and b(`) collects the hidden nodes, weights and biases in the `th
hidden layer, g0 = 1 if the j th element of W(`)h(`�1)+b(`) is nonnegative, and g0 = 0
otherwise.

Ping Yu (HKU) Deep Learning 64 / 85

Fitting a Neural Network Regularization and Stochastic Gradient Descent

Stochastic Gradient Descent and Regularization

When n is large, rather than compute the gradient using all the data, use a small
minibatch drawn at random at each step.7 E.g., for MNIST data, with n = 60K,
ntrain = 48K and nvalid = 12K, we use minibatches of 128 observations.
This process is known as stochastic gradient descent (SGD).
An epoch is a count of iterations and amounts to the number of minibatch updates
such that n samples in total have been processed; i.e.,48K/128 � 375 gradient
steps for MNIST. [see Figure 10.18]
In the first row of Table 10.1, we use ridge regularization (known as weight decay
here):

R (θ ;λ) = �∑n
i=1 ∑9

m=0 yim log (fm (xi))+λ ∑j θ
2
j .

- As in RR, it is better to standardize the predictors.
- We can use different λ ’s for different layers; here, we penalize W1 and W2 only
and do not penalize B since dim (B) is small [recall that the bias terms are not
penalized in RR].
- SGD enforces its own form of approximately quadratic regularization.
- The validation objective starts to increase by 30 epochs, so early stopping can be
used as an additional regularization.

7(**) Random draws without replacement have some advantages in theory and practice. The minibatch size
m is typically 32–512. Because n/m need not be an integer, the learning rate ρ in the last minibatch should be
appropriately adjusted.

Ping Yu (HKU) Deep Learning 65 / 85

Fitting a Neural Network Regularization and Stochastic Gradient Descent

The objective function is �∑n
i=1 ∑9

m=0 yim log (fm (xi)).

Two other popular forms of regularization are dropout and augmentation.

Ping Yu (HKU) Deep Learning 66 / 85

Fitting a Neural Network Dropout Learning

Dropout Learning

At each SGD update, randomly remove units with probability φ , and scale up the
weights of those retained by 1/(1�φ) to compensate.
In simple scenarios like linear regression, a version of this process can be shown
to be equivalent to ridge regularization.
Dropout has been used in practice to avoid correlation between weights which is in
turn due to correlation/multicollinearity between nodes, just as in RR.
This is also similar to randomly omitting variables when growing trees in RF, pre-
venting nodes from becoming too-specialized.

Ping Yu (HKU) Deep Learning 67 / 85

Fitting a Neural Network Data Augmentation

Ridge and Data Augmentation

Make many copies of each (xi ,yi) and add a small amount of Gaussian noise to
the xi – a little cloud around each observation – but leave the copies of yi alone!

This makes the fit robust to small perturbations in xi , and is equivalent to ridge
regularization in an OLS setting.

Ping Yu (HKU) Deep Learning 68 / 85

Fitting a Neural Network Data Augmentation

Data Augmentation on the Fly

Data augmentation is especially effective with SGD, here demonstrated for a CNN
and image classification.

Natural distortions (e.g., zoom, horizontal and vertical shift, shear, small rotations,
and in this case horizontal flips) are made of each training image when it is sampled
by SGD, thus ultimately making a cloud of images around each original training
image.

The label is left unchanged – in each case still tiger.

We do not need to store the distorted images in fitting the CNN.

Improves performance of CNN and is similar to ridge.

Ping Yu (HKU) Deep Learning 69 / 85

Fitting a Neural Network Network Tuning

Network Tuning

1 The architecture of NN (the number of hidden layers, and the number of units per
layer): the number of units per hidden layer can be large, and control overfitting by
regularization.

2 Regularization tuning parameters (dropout rate φ and the strength λ of lasso and
ridge): typically set separately at each layer.

How to achieve dropout for each layer? Set the weights associated with the "dropped
out" units to zero, while keeping the architecture intact.

3 Details of SGD: batch size, the number of epochs, and details of data augmentation.

Ping Yu (HKU) Deep Learning 70 / 85

Interpolation and Double Descent

(**) Interpolation and Double Descent

(Section 10.8)

Ping Yu (HKU) Deep Learning 71 / 85

Interpolation and Double Descent

Interpolation and Double Descent

With NNs, it seems better to have too many hidden units than too few.

Likewise more hidden layers better than few.

Running SGD till zero training error (i.e., interpolate the training data) often gives
good out-of-sample error.

Increasing the number of units or layers and again training till zero error sometimes
gives even better out-of-sample error. [brief Figure 10.20]

Typically, we expect a U-shape test error curve (and a monotonically decreasing
training error curve), and advocate an intermediate level of model complexity.

What happened to overfitting and the usual bias-variance trade-off?

The discussion below is based on "Belkin, Hsu, Ma, and Mandal, 2019, Reconciling
Modern Machine Learning and the Bias-Variance Trade-off, PNAS, 116, 15849–
15854"

Ping Yu (HKU) Deep Learning 72 / 85

Interpolation and Double Descent

Simulation

Y = sin (X)+ ε with X � U [�5,5] and ε � N
�

0,0.32
�

Gaussian with S.D.= 0.3.

- The signal-to-noise ratio – Var (f (X))/Var (ε) – is 5.9, quite high.
Training set n = 20, test set very large (10K).
We fit a natural spline to the data with d degrees of freedom – i.e., a linear regres-
sion onto d basis functions:

ŷi = β̂ 1N1 (xi)+ β̂ 2N2 (xi)+ � � �+ β̂ d Nd (xi) . [see Figure 10.21]

When d = 20 we fit the training data exactly, and get all residuals equal to zero.
When d > 20, we still fit the data exactly, but the solution is not unique. Among the
zero-residual solutions, we pick the one with minimum norm, i.e., the zero-residual

solution with smallest ∑d
j=1 β̂

2
j .

- To achieve a zero-residual solution with d = 20 is a real stretch! Easier for larger
d (e.g., d = 42 and 80 in Figure 10.21).

In Figure 10.20,

When d � 20, model is OLS, and we see usual bias-variance trade-off.
When d > 20, we revert to minimum-norm. As d increases above 20, the minimum

∑d
j=1 β̂

2
j decreases since it is easier to achieve zero error, and hence less wiggly

solutions.

Ping Yu (HKU) Deep Learning 73 / 85

Interpolation and Double Descent

The Double-Descent Error Curve

Ping Yu (HKU) Deep Learning 74 / 85

Interpolation and Double Descent

Less Wiggly Solutions

Ping Yu (HKU) Deep Learning 75 / 85

Interpolation and Double Descent

Some Comments

The double-descent phenomenon does not contradict the bias-variance trade-off!
- The x-axis is d rather than the "flexibility" of models, e.g., d = 42 is less "flexible"
than d = 20, so has lower variance.
Most of the statistical learning methods in this course do not exhibit double descent,
e.g., the regularization approaches typically do not interpolate since they can give
great results without interpolating. Think about the example here.
The maximal margin classifiers and SVMs that have zero training error often achieve
good test error. This is because they seek smooth minimum norm solutions, similar
to the minimum-norm natural spline here.

In a wide linear model (p� n) fit by least squares, SGD with a small step size leads
to a minimum norm zero-residual solution.
Stochastic gradient flow – i.e., the entire path of SGD solutions – is somewhat
similar to ridge path.
By analogy, deep and wide NNs fit by SGD down to zero training error often give
good solutions that generalize well.
In particular cases with high signal-to-noise ratio – e.g., image recognition – are
less prone to overfitting; the zero-error solution is mostly signal!
Nonetheless, we typically do not want to rely on double descent in NNs, e.g.,
through regularization or early stopping.

Ping Yu (HKU) Deep Learning 76 / 85

Lab: Deep Learning

Lab: Deep Learning

(Section 10.9)

A Single Layer Network on the Hitters Data

A Multilayer Network on the MNIST Digit Data

Convolutional Neural Network

Using Pretrained CNN Models

IMDB Document Classification

Recurrent Neural Networks

Ping Yu (HKU) Deep Learning 77 / 85

Appendix: Deep Unsupervised Learning

Appendix: Deep Unsupervised Learning

Ping Yu (HKU) Deep Learning 78 / 85

Appendix: Deep Unsupervised Learning

Alternative Interpretation of PCA

We will discuss two unsupervised learning methods in deep learning: Autoencoders
and Generative Adversarial Networks (GANs).
Autoencoders can be interpreted as a nonlinear PCA for dimension reduction; like
in PCR, they can be used for pre-training in supervised learning, especially in small
datasets, to avoid overfitting.
First, we express PCA in the following way:

X= (UMDM)V
T
M = (XVM)V

T
M ,

where the subscript M means keeping the first M columns of U,D and V.
In other words, VT

M and VM are the solutions of the following minimization problem:

min
Wf ,Wg

1
n

XT �Wf WgXT

2
= min

Wf ,Wg

1
n

n

∑
i=1

x i �Wf Wgx i

2
,

where Wg : Rp!RM and Wf : RM !Rp are treated as linear functions f (x) =Wf x
and g (h) =Wgh for x 2Rp and h 2RM .
The encoder function f (�) maps the input x 2Rp to a hidden code/representation
h = f (x) 2RM , and the decoder function g (�) maps the hidden representation h to
a point g (h) 2Rp.
So PCA is often known as the undercomplete linear autoencoder.

Ping Yu (HKU) Deep Learning 79 / 85

Appendix: Deep Unsupervised Learning

Autoencoders

The autoencoder amounts to solving the following minimization problem:

min
f ,g

1
n

n

∑
i=1

L (x i ,g (h i)) with h i = f (x i) for all i, (5)

where L (�, �) is a loss function that measures the difference between the two argu-
ments, f (x i) 2RM and g (h i) 2Rp can be generated by multilayer neural networks.
[figure here]
Parallel to PCA, if M < p, we get the undercomplete autoencoder.
Generally, we can put some structures on the autoencoder to achieve sparsity (if
M > p) or robustness (to contamination on x i).
Sparse Autoencoders: in (5), add a regularization term to the objective function:

min
f ,g

1
n

n

∑
i=1

L (x i ,g (h i))+λ kh ik1 with h i = f (x i) for all i

Denoising Autoencoders: like data augmentation, solve

min
f ,g

1
n

n

∑
i=1

L
�
x i ,g

�
f
�ex i
���
,

where ex i = x i + ξ i with ξ i being the noise created on purpose.

Ping Yu (HKU) Deep Learning 80 / 85

Appendix: Deep Unsupervised Learning

Ping Yu (HKU) Deep Learning 81 / 85

Appendix: Deep Unsupervised Learning

Generative Adversarial Networks (GANs)

GANs are designed as an implicit density estimator of PX when p is large. Why?
(i) GANs put more emphasis on sampling from the distribution PX than estimation.
(ii) GANs define the density estimation implicitly through a source distribution PZ
and a generator function g(�).
The structure of GANs can be summarized in the following figure:

Ping Yu (HKU) Deep Learning 82 / 85

Appendix: Deep Unsupervised Learning

Sampling View of GANs

Suppose the data at hand are all real images, and the target of GANs is to generate
new natural images.

With this goal in mind, the generator G and discriminator D play a zero-sum game.

Suppose g (�) and d (�) are constructed by deep neural networks (e.g., CNN for
images) with parameters θG and θD ; then GAN tries to solve the following min-
max problem:

min
θG

max
θD

Ex�PX [logd (x)]+Ez�PZ [log (1�d (g (z)))] , (6)

where PZ is usually a standard multivariate normal distribution with dim(Z) < p in
the order of hundreds, g (z) 2 Rp is a fake sample generated from G , and d (�) 2
[0,1] is the probability of a (real or fake) sample being a real sample from PX .
- Fix θG , θD maximizes the ability of differentiation; fix θD , θG tries to generate
more realistic sample g (z) to fool D .

Ping Yu (HKU) Deep Learning 83 / 85

Appendix: Deep Unsupervised Learning

Density Estimation View of GANs

(6) can be re-written as

min
PG

max
d(�)

Ex�PX [logd (x)]+Ex�PG
[log (1�d (x))] , (7)

where PG is the distribution induced by G when z�PZ .

The inner maximization problem is solved by the likelihood ratio:

d� (x) =
PX (x)

PX (x)+PG (x)
.

As a result, (7) can be simplified as

min
PG

JS (PX kPG) ,

where JS(� k �) denotes the Jensen-Shannon divergence between two distributions

JS (PX kPG) =
1
2

KL
�

PX k
PX +PG

2

�
+

1
2

KL
�

PG k
PX +PG

2

�
with KL(PX kPG) =

R
PX (x) log

�
PX (x)
PG (x)

�
dx being Kullback–Leibler divergence be-

tween PX and PG which was introduced in Appendix A of Lecture 6.

Ping Yu (HKU) Deep Learning 84 / 85

Appendix: Deep Unsupervised Learning

Continued

The JS divergence can be replaced by other metrics.

One popular choice is the Wasserstein distance, which generates the Wasserstein
GAN (W-GAN):

min
θG

WS (PX kPG) =min
θG

sup
f :f 1-Lipschitz

Ex�PX [f (x)]�Ex�PG
[f (x)] ,

where f (�) is taken over all Lipschitz functions with coefficient 1, and PG is gener-
ated by a neural network model gθG

.
- Comparing with (6), f (�) corresponds to the discriminator D in the sense that they
share similar objectives to differentiate the true distribution PX from the fake one
PG .

Obviously, GANs are harder to train than supervised deep learning models; how to
evaluate GANs objectively and effectively is also hard.

We can see the close connection of GANs with the supervised density estimation
in the appendix of Lecture 6.

Ping Yu (HKU) Deep Learning 85 / 85

	Single Layer Neural Networks
	Multilayer Neural Networks
	Convolutional Neural Networks
	Convolution Layers
	Pooling Layers
	Architecture of a Convolutional Neural Network
	Results Using a Pretrained Classifier

	Document Classification
	Recurrent Neural Networks
	Sequential Models for Document Classification
	Time Series Forecasting
	Summary of RNNs

	When to Use Deep Learning
	Fitting a Neural Network
	Backpropagation
	Regularization and Stochastic Gradient Descent
	Dropout Learning
	Data Augmentation
	Network Tuning

	Interpolation and Double Descent
	Lab: Deep Learning
	Appendix: Deep Unsupervised Learning

