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Summary of A Data Set

Population and Samples

Although some econometricians treat "population" as a physical population (e.g.,
all individuals in the HK census) in the real world, the term "population" is often
treated abstractly , and is potentially infinitely large.

Since the population distribution is unknown, the population moments defined in
the last chapter are unknown.

In practice, we often have a set of finite data points (or samples) from the
population, so we can use the samples to estimate the population moments.
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Summary of A Data Set

Random Sample

Simple random sampling: n objects are selected at random from a population and
each member of the population is equally likely to be included in the sample.
- e.g., choose an individual worker at random from the workforce in HK.
- Prior to sample selection, the value of Y , a variable of interest (e.g., wage), is
random because the individual selected is random. Once the individual is selected
and the value of Y is observed, then Y is just a number - not random. The data
set is fY1,Y2, � � � ,Yng, where Yi = value of Y for the i th individual sampled.

In this case we say that the data are independent and identically distributed, or iid.
We call this data set a random sample.
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Summary of A Data Set

Distribution

Given a data set, the distribution of a variable refers to the way its values are
spread over all possible values.

We can summarize a distribution in a table or show a distribution visually with a
graph. [Figure here]
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Summary of A Data Set

Measures of Center in a Distribution

The mean is what we most commonly call the average value. It is found as follows:

mean=
sum of all values

total number of values
=

∑n
i=1 xi

n
� x .

The median is the middle value in the sorted data set (or halfway between the two
middle values if the number of values is even).

The mode is the most common value (or group of values) in a data set.

Example

Eight grocery stores sell the PR energy bar for the following prices:

$1.09,$1.29,$1.29,$1.35,$1.39,$1.49,$1.59,$1.79.

Find the mean, median, and mode for these prices.

Solution : 1.41,1.37,1.29.
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Summary of A Data Set

Effects of Outliers

An outlier in a data set is a value that is much higher or much lower than almost all
others.

In general, the value of an outlier has no effect on the median, because outliers
don’t lie in the middle of a data set. (However, the median may change if we delete
an outlier, because we are changing the number of values in the data set.)

Outliers do not affect the mode either.

The value of an outlier does affect the mean.
- Important for estimation based on mean.
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Summary of A Data Set

Variation Matters: An Example

Example

Customers at Big Bank can enter any one of three different lines leading to three
different tellers. Best Bank also has three tellers, but all customers wait in a single line
and are called to the next available teller. Here is a sample of wait times are arranged
in ascending order.

Big Bank (three lines) : 4.1,5.2,5.6,6.2,6.7,7.2,7.7,7.7,8.5,9.3,11.0

Best Bank (one line) : 6.6,6.7,6.7,6.9,7.1,7.2,7.3,7.4,7.7,7.8,7.8

The mean and median waiting times are 7.2 minutes at both banks. Which bank is
more annoying?

Solution : You will probably find more unhappy customers at Big Bank than at Best
Bank. The difference in customer satisfaction comes from the variation at the two
banks. [Figure here]
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Summary of A Data Set
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Summary of A Data Set

Measures of Variation in a Distribution: Range and Quartile

Range: The range of a set of data values is the difference between its highest and
lowest data values:

range= highest value (max)� lowest value (min)

Quartiles: The lower quartile (or first quartile or Q1) divides the lowest fourth of a
data set from the upper three-fourths. It is the median of the data values in the
lower half of a data set.

The middle quartile (or second quartile or Q2) is the overall median.

The upper quartile (or third quartile or Q3) divides the lowest three-fourths of a
data set from the upper fourth. It is the median of the data values in the upper half
of a data set.
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Summary of A Data Set

Five-Number Summary

The five-number summary for a data distribution consists of the following five
numbers: low value, lower quartile, median, upper quartile, high value.

Big Bank: Best Bank:
low = 4.1 low = 6.6
lower quartile = 5.6 lower quartile = 6.7
median = 7.2 median = 7.2
upper quartile = 8.5 upper quartile = 7.7
high = 11.0 high = 7.8
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Summary of A Data Set

Measures of Variation in a Distribution: Percentile

The nth percentile of a data set divides the bottom n% of data values from the top
(100�n)%.

A data value that lies between two percentiles is often said to lie in the lower
percentile.

You can approximate the percentile of any data value with the following formula:

percentile of a data value=
number of values no greater than this data value

total number of values in data set
�100
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Summary of A Data Set

An Example
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Summary of A Data Set

Measures of Variation in a Distribution: Standard Deviation

Statisticians often prefer to describe variation with a single number. The single
number most commonly used to describe variation is standard deviation:

Standard Deviation=

s
sum of (deviations from the mean)2

total number of data values�1
=

s
∑n

i=1 (xi �x)2

n�1
.

- Variance = (Standard Deviation)2.

The definition here is for a sample, and one part of the calculation involves dividing
the sum of the squared deviations by the total number of data values minus 1.
When dealing with an entire population, we do not subtract the 1 (or, n is large
enough).
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Summary of A Data Set

An Example

Calculate the standard deviation for the waiting times at Big Bank.

standard deviation =
q

38.46
11�1 = 1.96.
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Summary of A Data Set

Interpreting the Standard Deviation

The range rule of thumb: The standard deviation is approximately related to the
range of a distribution by the range rule of thumb:

standard deviation=
range

4
.

If we know the range of a distribution (range=high�low), we can use this rule to
estimate the standard deviation.
Chebyshev’s Theorem: It states that, for any data distribution, at least 75% of all
data values lie within two standard deviations (σ ) of the mean (µ), and at least
89% of all data values lie within three deviations of the mean.

Proof.

First, P (jX �µj> 2σ) = P
�
jX �µj2 > 4σ2

�
. Since

E
h
jX �µj2

i
� E

h
jX �µj2 1

�
jX �µj2 > 4σ2

�i
� 4σ2P

�
jX �µj2 > 4σ2

�
, we have

P
�
jX �µj2 > 4σ

2
�
�

E
h
jX �µj2

i
4σ2 =

σ2

4σ2 = 25%,

which implies P (jX �µj � 2σ)� 1�25%= 75%. Similarly, we can show
P (jX �µj � 3σ) � 1� 1

9 = 89%.
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Summary of A Data Set

The Normal Distribution

Recall that the normal distribution is a symmetric, bell-shaped distribution with a
single peak. [Figure here] Its peak corresponds to the mean, median, and mode of
the distribution. Its variation can be characterized by the standard deviation of the
distribution.

A simple rule, called the 68-95-99.7 rule, gives precise guidelines for the
percentage of data values that lie within 1, 2, and 3 standard deviations (σ ) of the
mean (µ) for any normal distribution. [Figure here]
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Point Estimation

Point Estimation
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Point Estimation

Point Estimation

What are we interested in learning from a population? An unknow parameter that
determines a population distribution.
- e.g., the increase in wages with respect to another year of schooling.

Point estimation vs. interval estimate.

An estimator of a parameter is a rule that assigns each possible outcome of the
sample some value of the parameter.
- It is a function of an outcome, so a random variable.
- A realized value of an estimator is called an estimate.
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Point Estimation

Sample Average

Let fY1, � � � ,Yng be a random sample of size n from a population with mean µ and
variance σ2.

A natural estimator of µ is the sample average or sample mean, Y :

Y =
1
n
(Y1+ � � �+Yn) =

1
n

n

∑
i=1

Yi .

Y is a natural estimator of µ. But:
- What are the properties of Y ?
- Why should we use Y rather than some other estimator? e.g., Y1 (the first
observation), maybe unequal weights - not simple average, median(Y1, � � � ,Yn).

The starting point is the sampling distribution of Y .
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Point Estimation

The Sampling Distribution of Y

Example

Suppose Y follows the Bernoulli distribution with P (Y = 1) = .78= p. Then

E [Y ] = 0� (1�p)+1�p = p = .78,

Var (Y ) = p (1�p)2+(1�p)(0�p)2 = p(1�p) = .1716.

The sample distribution of Y depends on n. Consider n = 2. The sampling distribution
of Y is

P
�
Y = 0

�
= .222 = .0484,

P
�

Y = 1
2

�
= 2� .22� .78= .3432,

P
�
Y = 1

�
= .782 = .6084.
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Point Estimation

What do We Want to Know about the Sampling Distribution?

What is the mean of Y ?
- If E

�
Y
�
= true µ = .78, then Y is an unbiased estimator of µ.

What is the variance of Y ?
- How does Var

�
Y
�

depend on n?

Does Y become close to µ when n is large?
- Law of Large Numbers: Y is a consistent estimator of µ.

Y �µ appears bell shaped for n large. . . is this generally true?
- In fact, Y �µ is approximately normally distributed for n large (Central Limit
Theorem).
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Point Estimation

Small-Sample Properties

It can be shown that generally,

E
�
Y
�
=

1
n

n

∑
i=1

E [Yi ] =
1
n

nµ = µ,

Var
�
Y
�

=
1
n2

n

∑
i=1

Var (Yi ) =
1
n2 nσ

2 =
σ2

n
.

Implications:
1 Y is unbiased.
2 The spread of the sampling distribution (e.g., standard deviation) is proportional to 1p

n
(larger sample, less uncertainty).

Actually, Y is the best estimator of µ in the sense that it has a smaller variance
than all other linear unbiased estimators (Gauss-Markov Theorem).
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Point Estimation

Asymptotic (Large-Sample) Properties

For small sample sizes, the distribution of Y is complicated, but if n is large, the
sampling distribution is simple!
- As n increases, the distribution of Y becomes more tightly centered around µ

(the Law of Large Numbers).
- Moreover, the distribution of Y �µ becomes normal (the Central Limit Theorem).

Definition

As estimator is consistent if the probability that it falls within an interval of the true
population value tends to one as the sample size increases.

Theorem (LLN)

If (Y1, � � � ,Yn) are i.i.d. with mean µ and variance σ2, 0< σ2 < ∞, then Y is a
consistent estimator of µ, i.e., for any δ > 0,

P(
��Y �µ

��> δ )! 0 as n! ∞,

denoted as Y
p�! µ (read as "Y converges in probability to µ").
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Point Estimation

Figure: As Var
�
Y
�

Decreases with n, the Distribution of Y Concentrates Around µ
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Point Estimation

The Central Limit Theorem

Theorem (CLT)

If (Y1, � � � ,Yn) are i.i.d. with mean µ and variance σ2, 0< σ2 < ∞, then when n is large
the distribution of Y is well approximated by a normal distribution.

Y is approximately distributed N
�

µ, σ2

n

�
(normal distribution with mean µ and

variance σ2

n ).
p

n
�
Y �µ

�
/σ is approximately distributed N(0,1) (standard normal), i.e.,

"standarized" Y =
Y�E[Y ]q

Var(Y)
= Y�µp

σ2/n
is approximately distributed as N(0,1).

The larger is n, the better is the approximation.
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Point Estimation

Figure: The Sampling Distribution of
p

n
�
Y �µ

�
/σ Compared with N (0,1)
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Point Estimation

Summary: The Sampling Distribution of Y

For (Y1, � � � ,Yn) i.i.d. with mean µ and variance σ2, 0< σ2 < ∞.
The exact (or finite-sample) sampling distribution of Y has mean µ (Y is an
unbiased estimator of µ) and variance σ2/n.

Other than its mean and variance, the exact distribution of Y is complicated and
depends on the distribution of Y (the population distribution).

When n is large, the sampling distribution simplifies:

- Y
p�! µ (LLN)

-
Y�E[Y ]q

Var(Y)
is approximately N(0,1) (CLT)
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Hypothesis Testing

Hypothesis Testing

Hypothesis testing is to make a provisional decision, based on the sample
evidence at hand, whether a null hypothesis (H0) is true or some other alternative
hypothesis (H1) is true.

For example, we want to test a null hypothesis that the average return to a high
school diploma is positive against an alternative hypothesis that it has no effects
on wages.

One-sided alternative hypothesis:

H0 : E [Y ] = µ0 vs. H1 : E [Y ] > µ0

or
H0 : E [Y ] = µ0 vs. H1 : E [Y ] < µ0

Two-sided alternative hypothesis:

H0 : E [Y ] = µ0 vs. H1 : E [Y ] 6= µ0
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Hypothesis Testing

Conducting A Test

One hypothesis testing includes the following steps.
1 specify the null and alternative.
2 construct the test statistic.
3 derive the distribution of the test statistic under the null.
4 decide if the realized (observed) value of the test statistic is compatible with H0.

Example

Suppose that fY1, � � � ,Yng is a random sample with mean µ and variance 1. We want

to test whether H0: µ = 0 against H1: µ 6= 0. Under H0, Y a� N
�

0, 1
n

�
in large samples.

Is the sample mean, say y , likely under N
�

0, 1
n

�
?
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Hypothesis Testing

t-Statistic

We usually standardize a test statistic to transform it into a random variable with a
simple distribution. It is called a t-statistic.

(normal, known σ2 = σ2
0) Suppose that fY1, � � � ,Yng is a random sample from

N
�

µ,σ2
0

�
. Under H0: µ = µ0,

t =
Y �µ0

σ0/
p

n
� N (0,1) .

(normal) If we do not know σ2, then we replace it with the estimatorbσ2 = 1
n�1 ∑n

i=1

�
Yi �Y

�2
. Then under H0: µ = µ0,

t =
Y �µ0

se
�
Y
� � tn�1,

where se
�
Y
�
= bσ/

p
n is the standard error of Y .

The standard error of Y is an estimator of the standard deviation of Y (σ/
p

n).

Ping Yu (HKU) Statistics 32 / 42



Hypothesis Testing

Critical Value and Significance Level

Pick a critical value, compare a test statistic to this critical value, and reject H0
when a test statistic is more adverse to H0.
- (1-sided) H0: µ = 0 vs. H1: µ > 0. Reject H0 in favor of H1 if t > c1.
- (2-sided) H0: µ = 0 vs. H1: µ 6= 0. Reject H0 in favor of H1 if jt j> c2.

The values of a test statistic that result in the rejection of H0 are collectively know
as the rejection region. [Figure here]

To determine the critical value, we need to pre-select a significance level α such
that

P (t > c1jH0 is true) = α

in the one-sided test and

P (jt j> c2jH0 is true) = α

in the two-sided test.

There is no objective scientific basis for choice of α. Nevertheless, the common
practice is to set α = 0.05 (5%). Alternative values are α = 0.10 (10%) and
α = 0.01 (1%).
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Hypothesis Testing

5% Rejection Rule for the
Alternative H1 : µ > 0 with 28 df

5% Rejection Rule for the
Alternative H1 : µ 6= 0 with 25 df
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Hypothesis Testing

Type I Error and Type II Error

There is always a chance to reject H0 even if H0 is true. A false rejection of the null
hypothesis H0 is called a Type I error.

A false acceptance of the null hypothesis H0 (accepting H0 when H1 is true) is
called a Type II error.

There is a trade-off between the Type-I error and Type II error.

State of NaturenDecision Accept H0 Reject H0
H0 is true Correct Decision Type I Error
H1 is true Type II Error Correct Decision

Table: Hypothesis Testing Decisions
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Hypothesis Testing

Different Traditions of Hypothesis Testing

Rejection/Acceptance Dichotomy:

Jerzy Neyman (1894-1981), Berkeley Egon Pearson (1895-1980)1, UCL

p-Value: R.A. Fisher.

1He is the son of Karl Pearson.
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Hypothesis Testing

p-Value

If the significance level is made smaller and smaller, there will be a point where the
null hypothesis cannot be rejected anymore.

The smallest significance level at which the null hypothesis is still rejected, is
called the p-value of the hypothesis test.
- The p-value is the significance level at which one is indifferent between rejecting
and not rejecting the null hypothesis. [figure here]
- A null hypothesis is rejected if and only if the corresponding p-value is smaller
than the significance level.
- In the figure, for a significance level of 5% the t statistic would not lie in the
rejection region.

A small p-value is evidence against the null hypothesis and vice versa.

P-values are more informative than tests at fixed significance levels because you
can choose your own significance level.
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Hypothesis Testing

Figure: Obtaining the P-Value Against a Two-Sided Alternative, When t = 1.85 and df = 40
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Hypothesis Testing

Large n

For large n, say n > 30, the t-distribution is very close to N(0,1). So, we can use
the standard normal distribution instead.

For historical reasons, statistical software typically uses the t-distribution to
compute p-values, but this is irrelevant when the sample size is moderate or large.

P-values computed by statistical software using t-distribution are similar to those
based on normal.

When n is large, even if Yi is not sampled from N
�

µ,σ2
�

, the t-statistic

approximately follows N (0,1) by the CLT.
- In the two-sided test, we reject H0 at the significance level 5% if

jt j=
�����Y �µ0

se
�
Y
� �����> 1.96,

where 1.96 is the 5% critical value for a standard normal distribution.
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Confidence Intervals

Confidence Intervals
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Confidence Intervals

Confidence Intervals

A (1�α) confidence interval (CI) for a parameter is a random interval (as a
function of a sample) that covers the true value of the parameter in 100(1�α)%
of repeated samples. 1�α is called the confidence level.

In the two-sided test, suppose n is large. Given the true value µ,

0.95 = P

 ����� Y �µ

se
�
Y
� ������ 1.96

!
= P

�
Y �1.96 �se

�
Y
�
� µ � Y +1.96 �se

�
Y
��
,

so
�
Y �1.96 �se

�
Y
�
,Y +1.96 �se

�
Y
��

covers µ in 95% of repeated samples and
is a 95% CI for µ.

A rule of thumb for an approximate 95% CI is
�
Y �2 �se

�
Y
��

.
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Confidence Intervals

continue

What is random here? The values of the sample fY1, � � � ,Yng and thus functions of
them, including the CI, are random.

The population parameter, µ, is not random; we just don’t know it. We never know
for sure if any estimated CI covers µ or not.

If we compute CIs from repeated samples in the same way, then µ will be
contained in 95% of them.

The probability that
�
Y �1.96 �se

�
Y
��

contains the true value of µ is 95%. BUT
we don’t know its estimate, say, [1.05�1.96�0.2] contains the true value of µ or
not.

The best way is to associate the CI with hypothesis testing. Any values inside a
95% CI cannot be rejected at the 5% significance level by a two-sided hypothesis
test.
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