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Overview of This Chapter

The maximum theorem: the continuity of the optimizer and optimum with respect
to (w.r.t.) a group of parameters.

The implicit function theorem: the differentiablity of the optimizer w.r.t. a group of
parameters.

The envelope theorem: the differentiablity of the optimum w.r.t. a group of
parameters.

In the previous two chapters, we are "moving along a curve", that is, f and G are
given (or the parameter value is given) and we are searching over x along f to find
the optimal x�.

In this chapter, we are "shifting a curve", i.e., we change the parameter values to
shift f and G, and check how the optimizer and optimum respond to such shifting.
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The Maximum Theorem

The Maximum Theorem
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The Maximum Theorem

History of the Maximum Theorem

Claude J. Berge (1926-2002), French

Ping Yu (HKU) MIFE 4 / 27



The Maximum Theorem

The Problem

Problem: We want to know how x� (or the maximized function) depends on the
exogenous parameters a, rather than what x� is for a particular a.
- For example, in consumer’s problem max

x1,x2
u(x1,x2) s.t. p1x1+p2x2 = y , how

(x�1 ,x
�
2) or (u(x�1 ,x

�
2)) depends on (p1,p2,y) rather than what (x�1 ,x

�
2) is when

p1 = 2, p2 = 7, and y = 25, i.e., we are interested in what the demand function is.

Mathematically,
max

x1,��� ,xn
f (x1, � � � ,xn,a1, � � � ,ak )

s.t. g1(x1, � � � ,xn,a1, � � � ,ak ) = c1,
...

gm(x1, � � � ,xn,a1, � � � ,ak ) = cm.

When is the "demand" function continuous?
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The Maximum Theorem

Continuous Correspondence

Define the maximized value of f when the parameters are (a1, � � � ,ak ) as

v(a1, : : : ,ak ) = f (x�1(a1, : : : ,ak ), : : : ,x
�
n(a1, : : : ,ak ),a1, : : : ,ak ).

Using the feasible set, the problem can be restated as

max
x1,��� ,xn

f (x1, � � � ,xn,a1, � � � ,ak )

s.t. (x1, � � � ,xn) 2G(a1, � � � ,ak ),

where G(a1, � � � ,ak )� f(x1, � � � ,xn) j gj (x1, � � � ,xn,a1, � � � ,ak ) = cj , 8 jg is a set
valued function or a correspondence.

Two sets of vectors A and B are within ε of each other if for any vector x in one set
there is a vector x 0 in the other set such that x 0 2 Bε (x).

The correspondence G is continuous at (a1, : : : ,ak ) if 8 ε > 0, 9 δ > 0 such that if
(a01, � � � ,a

0
k ) is within δ of (a1, � � � ,ak ) then G(a01, � � � ,a

0
k ) is within ε of

G(a1, � � � ,ak ). [Figure here]
- If G is a function, then the continuity of G as a correspondence is equivalent to
the continuity as a function.
- The continuity of the functions gj does not necessarily imply the continuity of the
feasible set. (Exercise)
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The Maximum Theorem

Figure: Continuous and Discontinuous Correspondence
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The Maximum Theorem

The Maximum Theorem

Theorem

Suppose that f (x1, � � � ,xn,a1, � � � ,ak ) is continuous (in (x1, � � � ,xn,a1, � � � ,ak )), that
G(a1, � � � ,ak ) is a continuous correspondence, and that for any (a1, � � � ,ak ) the set
G(a1, � � � ,ak ) is compact. Then

(i) v(a1, � � � ,ak ) is continuous, and

(ii) if (x�1(a1, � � � ,ak ), � � � ,x�n(a1, � � � ,ak )) are (single valued) functions then
they are also continuous.

Compactness of G(a1, � � � ,ak ) and continuity of f w.r.t. x guarantees the existence
of x� for any a by the Weierstrass Theorem.

Uniqueness of x� is guaranteed by the uniqueness theorem in Chapter 3.

Ping Yu (HKU) MIFE 8 / 27



The Implicit Function Theorem

The Implicit Function Theorem
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The Implicit Function Theorem

History of the IFT

Augustin-Louis Cauchy (1789-1857), French
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The Implicit Function Theorem

The Problem

Problem: How to solve x� 2Rn from n FOCs and how sensitive of x� is to the
parameter?

Suppose that we have n endogenous variables x1, : : : ,xn, m exogenous variables
or parameters, b1, : : : ,bm, and n equations or equilibrium conditions

f1(x1, � � � ,xn,b1, � � � ,bm) = 0,
f2(x1, � � � ,xn,b1, � � � ,bm) = 0,

...
fn(x1, � � � ,xn,b1, � � � ,bm) = 0,

or, using vector notation,
f(x,b) = 0,

where f : Rn+m !Rn, x 2Rn, b 2Rm, and 0 2Rn.

When can we solve this system to obtain functions giving each xi as a function of
b1, : : : ,bm?
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The Implicit Function Theorem

The Case of Linear Functions

Suppose that our equations are

a11x1+ � � �+a1nxn+ c11b1+ � � �+ c1mbm = 0

a21x1+ � � �+a2nxn+ c21b1+ � � �+ c2mbm = 0
...

an1x1+ � � �+annxn+ cn1b1+ � � �+ cnmbm = 0

We can write this, in matrix notation, as

[A j C]
�

x
b

�
= 0 or Ax +Cb = 0,

where A is an n�n matrix, C is an n�m matrix, x is an n�1 (column) vector, and
b is an m�1 vector.

As long as A can be inverted or is of full rank,

x = �A�1Cb or
∂x
∂b0

= �A�1C.
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The Implicit Function Theorem

The General Nonlinear Case

If there are some values (x,b) for which f (x,b) = 0, then a parallel result holds in
the neighborhood of (x,b) if we linearize f in that neighborhood.

Theorem

Suppose that f : Rn+m !Rn is a C1 function on an open set A�Rn+m and that (x,b)
in A is such that f (x,b) = 0. Suppose also that

∂ f(x,b)
∂x0

=

0BBB@
∂ f1(x,b)

∂x1
� � � ∂ f1(x,b)

∂xn
...

. . .
...

∂ fn(x,b)
∂x1

� � � ∂ fn(x,b)
∂xn

1CCCA
is of full rank . Then there are open sets A1 �Rn and A2 �Rm with x 2 A1, b 2 A2 and
A1�A2 � A such that for each b in A2 there is exactly one g(b) in A1 such that
f(g(b),b) = 0. Moreover, g : A2 ! A1 is a C1 function and�

∂g(b)
∂b0

�
n�m

= �
�

∂ f(g(b),b)
∂x0

��1

n�n

�
∂ f(g(b),b)

∂b0

�
n�m

.
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The Implicit Function Theorem

Explanations of the IFT

Intuition: For (x,b) in a neighborhood of (x,b) such that f(x,b) = 0 with x = g(b),
we have

∂ f(g(b),b)
∂x0

∂g(b)
∂b0

+
∂ f(g(b),b)

∂b0
= 0n�m,

so

∂g(b)
∂b0

= �
�

∂ f(g(b),b)
∂x0

��1 �
∂ f(g(b),b)

∂b0

�
��A�1C in the linear case.

This is a local result, rather than a global result.

If b is not close to b we may not be able to solve the system, and that for a
particular value of b there may be many values of x that solve the system, but
there is only one close to x. [Figure here]

For all values of b close to b̄ we can find a unique value of x close to x̄ such that
f (x ,b) = 0. However, (1) for each value of b there are other values of x far away
from x̄ that also satisfy f (x ,b) = 0, and (2) there are values of b, such as b̃ for
which there are no values of x that satisfy f (x ,b) = 0.

That ∂ f (x̄ ,b̄)
∂x is of full rank means jg0(x̄)j 6= 0 in this example.
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The Implicit Function Theorem

Figure: Intuition for the IFT: f (x ,b) = g(x)�b, x ,b 2R
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The Implicit Function Theorem

Comparative Statics

The IFT does not provide conditions to guarantee the existence of (x,b) such that
f (x,b) = 0; rather, it provides conditions such that if such an (x,b) exists, then we
can also uniquely solve f (x,b) = 0 in its neighborhood.

So the most important application of the IFT is to obtain ∂g(b)
∂b0 rather than

guarantee the existence or uniqueness of the solution.

Example

The seller of a product pays a proportional tax at a flat rate θ 2 (0,1). Hence, the
effective price received by the seller is (1�θ )P, where P is the market price for the
good. Market supply and demand are given by the differentiable functions

Qd = D(P), with D0(�)< 0

Qs = S((1�θ )P), with S0(�)> 0

and equilibrium requires market clearing, that is, Qs = Qd . Analyze, graphically and
analytically, the effects of a decrease in the tax rate on the quantity transacted and the
equilibrium price.
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The Implicit Function Theorem

Solution to the Example

Market clearing requires
S((1�θ )P) = D(P). (1)

This equation implicitly defines the equilibrium price as a function P� = P (θ ) of the
parameter θ .

Substituting the solution function P (�) back into (1), we have the identity

S [(1�θ )P (θ )] = D [P (θ )] .

Applying the IFT directly with f (P,θ ) = D [P (θ )]�S [(1�θ )P (θ )], we have

P 0 (θ ) =
�PS0 (�)

D0 (�)� (1�θ )S0 (�) =
(�)
(�) > 0.

The quantity transacted in equilibrium is given by Q� = D [P (θ )], and therefore

dQ�

dθ
= D0 (P�)P 0 (θ ) < 0.

Graphically, a reduction in the tax rate increases the effective price received by sellers for
any given market price; these are therefore willing to sell any given quantity at a lower
market price. Hence the supply curve shifts down. The equilibrium price falls, and the
equilibrium quantity increases. [Figure here]

Ping Yu (HKU) MIFE 17 / 27



The Implicit Function Theorem

Quantity

Pr
ic

e

Figure: Effect of a Tax Reduction
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The Envelope Theorem

The Envelope Theorem
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The Envelope Theorem

Intuition for The Envelope Theorem

Problem: How is v(a1, : : : ,ak ) sensitive to (a1, : : : ,ak )?

Suppose we are at a maximum (in an unconstrained problem) and we change the
data of the problem by a very small amount.

Now both the solution of the problem and the value at the maximum will change.

However at a maximum the function is flat (the first derivative is zero).

Thus when we want to know by how much the maximized value has changed it
does not matter (very much) whether or not we take account of how the maximizer
changes or not.

In the figure in the next slide, f (x�(a0),a0)� f (x�(a),a0), i.e.,

∂v(a)
∂a

=
∂ f (x�(a),a)

∂x| {z }
=0 by FOC

∂x�(a)
∂a

+
∂ f (x�(a),a)

∂a
=

∂ f (x�(a),a)
∂a

.
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The Envelope Theorem

Figure: Intuition for the Envelope Theorem
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The Envelope Theorem

SRAC and LRAC: A Motivating Example

The short run average cost (SRAC) of producing Q units when the scale is k be
given by SRAC(Q,k) and the long run average cost (LRAC) of producing Q units
by LRAC(Q)..

Here, the scale of operation k , i.e., the size and number of plants and other fixed
capital, is assumed not to be changed for some level of production Q in the short
run, but will be selected to be the optimal scale for that level of production in the
long run, so Q is like a and k is like x above.

In other words,
LRAC(Q) =min

k
SRAC(Q,k).

Let us denote, for a given value Q, the optimal level of k by k(Q).

Drawing one short run average cost curve for each of the (infinite) possible values
of k . One way of thinking about the long run average cost curve is as the “bottom”
or envelope of these short run average cost curves. [Figure here] This implies that

d LRAC(Q)
dQ

=
∂ SRAC(Q,k(Q))

∂Q
.
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The Envelope Theorem

Figure: The Relationship Between SRAC and LRAC
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The Envelope Theorem

The General Problem

Consider again the maximization problem

max
x1,��� ,xn

f (x1, � � � ,xn,a1, � � � ,ak )

s.t. g1(x1, � � � ,xn,a1, � � � ,ak ) = c1,
...

gm(x1, � � � ,xn,a1, � � � ,ak ) = cm.

The Lagrangian

L (x1, � � � ,xn,λ 1, � � � ,λ m;a1, � � � ,ak )

= f (x1, � � � ,xn,a1, � � � ,ak )+
m

∑
j=1

λ j (cj �gj (x1, � � � ,xn,a1, � � � ,ak )).

Suppose the optimal values of xi and λ j are x�i (a1, � � � ,ak ) and λ
�
j (a1, � � � ,ak ),

i = 1, � � � ,n, j = 1, � � � ,k . Then

v(a1, : : : ,ak ) = f (x�1(a1, : : : ,ak ), : : : ,x
�
n(a1, : : : ,ak ),a1, : : : ,ak ).

The envelope theorem says that the derivative of v is equal to the derivative of L
at the maximizing values of x and λ .
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The Envelope Theorem

The Envelope Theorem

Theorem

If all functions are defined as above and the problem is such that the functions x� and
λ
� are well defined, then

∂v
∂ah

(a1, � � � ,ak ) =
∂L

∂ah
(x�1(a1, � � � ,ak ), � � � ,x�n(a1, � � � ,ak ),

λ
�
1(a1, � � � ,ak ), � � � ,λ �m(a1, � � � ,ak );a1, � � � ,ak )

=
∂ f

∂ah
(x�1(a1, � � � ,ak ), � � � ,x�n(a1, � � � ,ak ),a1, � � � ,ak )

�
m

∑
j=1

λ
�
j (a1, � � � ,ak )

∂gh

∂ah
(x�1(a1, � � � ,ak ), � � � ,x�n(a1, � � � ,ak ),a1, � � � ,ak )

for all h = 1, � � � ,k. In matrix and vector notation,

∂v
∂a
(a) =

∂L

∂a
(x�(a),λ �(a);a)

=
∂ f
∂a
(x�(a),a)� ∂g(x�(a),a)0

∂a
λ
�(a).
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The Envelope Theorem

Interpretation of the Lagrange Multiplier

In Chapter 2, we have interpreted the Lagrange multiplier as the penalty on
violating the constraint.

More rigorously, treating cj , j = 1, � � � ,m, also as parameters, then by the envelope
theorem,

∂v
∂cj
(a1, � � � ,ak ,c1, � � � ,cm) = λ

�
j (a1, � � � ,ak ,c1, � � � ,cm).

Intuition: Think of f as the profit function of a firm, the gj equation as the resource
constraint, and cj as the amount of input j available to the firm. In this situation,
∂v
∂cj
(a1, � � � ,ak ,c1, � � � ,cm) represents the change in the optimal profit resulting from

availability of one more unit of input j . Alternatively, it tells the maximum amount
the firm would be willing to pay to get another unit of input j . For this reason, λ

�
j is

often called the internal value, or more frequently, the shadow price of input j . It
may be a more important index to the firm than the external market price of input j .
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The Envelope Theorem

Other Applications in Microeconomics

Consumer Theory:
- Hotelling’s Theorem
- Hicks-Slutsky equations
- Roy’s Theorem
- Shephard’s lemma

Production Theory:
- Hotelling’s lemma
- Shephard’s lemma (again!)
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