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Overview of This Chapter

We will show uniqueness of the optimizer and sufficient conditions for optimization
through convexity.

To study convex functions, we need to first define convex sets.
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Convex Sets

Convex Sets
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Convex Sets

Convex Combination, Interval and Convex Set

Given two points x,y 2Rn, a point z= tx+(1� t)y, where 0� t � 1, is called a
convex combination of x and y.

The set of all possible convex combinations of x and y, denoted by [x,y], is called
the interval with endpoints x and y (or, the line segment connecting x and y), i.e.,

[x,y] = ftx+(1� t)y j 0� t � 1g .

- This definition is an extension of the interval in R1.

Definition

A set S �Rn is convex iff for any points x and y in S the interval [x,y] � S. [Figure
here]

A set is convex if it contains the line segment connecting any two of its points; or

A set is convex if for any two points in the set it also contains all points between
them.
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Convex Sets

Examples of Convex and Non-Convex Sets

Figure: Convex and Non-Convex Set

Convex sets in R2 include triangles, squares, circles, ellipses, and hosts of other
sets.
The quintessential convex set in Euclidean space Rn for any n > 1 is the
n-dimensional open ball Br (a) of radius r > 0 about point a 2Rn, where recall
from Chapter 1 that

Br (a) = fx 2Rn j kx�ak< rg.
In R3, while a cube is a convex set, its boundary is not. (Of course, the same is
true of the square in R2.)
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Convex Sets

Example

Prove that the budget constraint B = fx 2 X : p0x � yg is convex.

Proof.

For any two points x1,x2 2 B, we have

p0x1 � y and p0x2 � y .

Then for any t 2 [0,1], we must have

p0 [tx1+(1� t)x2] = t
�
p0x1

�
+(1� t)

�
p0x2

�
� y .

This is equivalent to say that tx1+(1� t)x2 2 B. So the budget constraint B is
convex.

Ping Yu (HKU) Convexity 6 / 21



Concave Functions

Concave Functions
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Concave Functions Basics

Concave and Convex Functions

For uniqueness, we need to know something about the shape or curvature of the
functions f and (g,h).

A function f : S !R defined on a convex set S is concave if for any x,x0 2 S with
x 6= x0 and for any t such that 0< t < 1 we have
f (tx+(1� t)x0)� tf (x)+ (1� t)f (x0). The function is strictly concave if
f (tx+(1� t)x0)> tf (x)+ (1� t)f (x0). [Figure here]

A function f : S !R defined on a convex set S is convex if for any x,x0 2 S with
x 6= x0 and for any t such that 0< t < 1 we have
f (tx+(1� t)x0)� tf (x)+ (1� t)f (x0). The function is strictly convex if
f (tx+(1� t)x0)< tf (x)+ (1� t)f (x0). [Figure here]

Why don’t we check t = 0 and 1 in the definition? Why the domain of f must be a
convex set? (Exercise)

The negative of a (strictly) convex function is (strictly) concave. (why?)

There are both concave and convex functions, but only convex sets, no concave
sets!
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Concave Functions Basics

Figure: Concave Function

A function is concave if the value of the function at the average of two points is
greater than the average of the values of the function at the two points.
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Concave Functions Basics

Figure: Convex Function

A function is convex if the value of the function at the average is less than the
average of the values.

Ping Yu (HKU) Convexity 10 / 21



Concave Functions Basics

Calculus Criteria for Concavity and Convexity

Theorem

Let f 2 C2(U), where U �Rn is open and convex. Then f is concave iff the Hessian

D2f (x) =

0BBB@
∂ 2f (x)

∂x2
1

� � � ∂ 2f (x)
∂x1∂xn

...
. . .

...
∂ 2f (x)
∂xn∂x1

� � � ∂ 2f (x)
∂x2

n

1CCCA
is negative semidefinite for all x 2 U. If D2f (x) is negative definite for all x 2 U, then f is
strictly concave on U. Conditions for convexity are obtained by replacing "negative" by
"positive".

The conditions for strict concavity in the theorem are only sufficient, not necessary.
- if D2f (x) is not negative semidefinite for all x 2 U, then f is not concave;
- if D2f (x) is not negative definite for all x 2 U, then f may or may not be strictly
concave (see the example below).

Notations: For a matrix A, A > 0 means it is positive definite, A � 0 means it is
positive semidefinite. Similarly for A < 0 and A � 0.

Ping Yu (HKU) Convexity 11 / 21



Concave Functions Basics

Positive (Negative) Definiteness of A Matrix

An n�n matrix H is positive definite iff v0Hv > 0 for all v 6= 0 in Rn; H is negative
definite iff v0Hv < 0 for all v 6= 0 in Rn.

Replacing the strict inequalities above by weak ones yields the definitions of
positive semidefinite and negative semidefinite.
- Usually, positive (negative) definiteness is only defined for a symmetric matrix, so
we restrict our discussions on symmetric matrices below. Fortunately, the
Hessian is symmetric by Young’s theorem.

The positive definite matrix is an extension of the positive number. To see why,
note that for any positive number H, and any real number v 6= 0, v 0Hv = v2H > 0.
Similarly, the positive semidefinite matrix, negative definite matrix, negative
semidefinite matrix are extensions of the nonnegative number, negative number
and nonpositive number, respectively.
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Concave Functions Basics

Identifying Definiteness and Semidefiniteness

For an n�n matrix H, a k �k submatrix formed by picking out k columns and the
same k rows is called a k th order principal submatrix of H; the determinant of a
k th order principal submatrix is called a k th order principal minor.

The k �k submatrix formed by picking out the first k columns and the first k rows
is called a k th order leading principal submatrix of H; its determinant is called the
k th order leading principal minor.

A matrix is positive definite iff its n leading principal minors are all > 0.

A matrix is negative definite iff its n leading principal minors alternate in sign with
the odd order ones being < 0 and the even order ones being > 0.

A matrix is positive semidefinite iff its 2n�1 principal minors are all � 0.

A matrix is negative semidefinite iff its 2n�1 principal minors alternate in sign so
that the odd order ones are � 0 and the even order ones are � 0.
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Concave Functions Basics

Examples

f (x) = �x4 is strictly concave, but its Hessian is not negative definite for all x 2R

since D2f (0) = 0.
The particular Cobb-Douglas utility function u(x1,x2) =

p
x1
p

x2, (x1,x2) 2R2
+, is

concave but not strictly concave. First check that it is concave.

D2f (x) =

0B@ 1
2

�
� 1

2

� p
x2p
x3

1

1
2

1
2

1p
x1
p

x2

1
2

1
2

1p
x1
p

x2

1
2

�
� 1

2

� p
x1p
x3

2

1CA .
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� 0,
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= 0

for (x1,x2) 2R2
+, u(x1,x2) is concave.

Let x2 = x 02 = 0, x1 6= x 01; then u(tx1+(1� t)x 01,0) = 0= tu(x1,0)+ (1� t)u(x 01,0),
so u(x1,x2) is not strictly concave.
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Concave Functions The Uniqueness Theorem

Local Maximum is Global Maximum

Consider the mixed constrained maximization problem, i.e.,

max
x

f (x) s.t. x 2G �
�

x 2Rnjg(x)� 0,h(x) = 0
	
.

Theorem

If f is concave , and the feasible set G is convex, then

(i) Any local maximum of f is a global maximum of f .

(ii) The set argmaxff (x)jx 2Gg is convex.

In concave optimization problems, all local optima must also be global optima;
therefore, to find a global optimum, it always suffices to locate a local optimum.

Ping Yu (HKU) Convexity 15 / 21



Concave Functions The Uniqueness Theorem

The Uniqueness Theorem

Theorem

If f is strictly concave , and the feasible set G is convex, then the maximizer x� is
unique.

Proof.

Suppose f has two maximizers, say, x and x0; then tx+(1� t)x0 2G, and by the
definition of strict concavity, for 0< t < 1,

f (tx+(1� t)x0)> tf (x)+ (1� t)f (x0) = f (x) = f (x0).

A contradiction.

If a strictly concave optimization problem admits a solution, the solution must be
unique. So finding one solution is enough.
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Concave Functions The Uniqueness Theorem

Example: Consumer’s Problem - Revisited

Does the consumer’s problem

max
x1,x2

p
x1
p

x2 s.t. x1+ x2 � 1,x1 � 0,x2 � 0

have a solution? Is the solution unique?
The feasible set G = fx1+ x2 � 1,x1 � 0,x2 � 0g is compact (why?) and

p
x1
p

x2
is continuous, so by the Weierstrass Theorem, there exists a solution.

The solution is unique, (x�1 ,x
�
2) =

�
1
2 ,

1
2

�
. But from the discussion above,

p
x1
p

x2

is not strictly concave for (x1,x2) 2R2
+. Actually, even if we restrict (x1,x2) 2R2

++,
where R++ � fx jx > 0g, px1

p
x2 is NOT strictly concave. Check for

t 2 (0,1),x1 6= x 01 and/or x2 6= x 02,q
tx1+(1� t)x 01

q
tx2+(1� t)x 02 � t

p
x1x2+(1� t)

q
x 01x 02

()
�
tx1+(1� t)x 01

��
tx2+(1� t)x 02

�
�
�

t
p

x1x2+(1� t)
q

x 01x 02

�2

() x1x 02+ x 01x2 � 2
q

x1x2x 01x 02 ()
�q

x1x 02�
q

x 01x2

�2
� 0

with equality holding when x2/x1 = x 02/x 01 (what does this mean?).
In summary, the theorem provides only sufficient (but not necessary) conditions.
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Concave Functions The Uniqueness Theorem

Sufficient Conditions for Convexity of G

Problem: how to guarantee that G is convex?

Given a concave function g, for any a 2R, its upper contour set fxjg(x)� ag is
convex.

Why? Given two poitns x and x0 such that g(x)� a and g(x0)� a, we want to
show that for any t 2 [0,1], g(tx+(1� t)x0)� a. Since g is concave,
g(tx+(1� t)x0)� tg(x)+ (1� t)g(x0)� ta+(1� t)a= a.

Given a function h, to guarantee that fxjh(x) = ag is convex, we require h to be
both concave and convex.
- A function h is both concave and convex iff it is linear (or, more properly, affine),
taking the form h(x) = a+b0x for some constants a and b.

In summary, since

G =
�\J

j=1

�
xjgj (x)� 0

	�\�\K

k=1
fxjhk (x) = 0g

�
,

if gj , j = 1, : : : ,J, is concave, and hk , k = 1, � � � ,K , is affine, then G is convex.1

1It is not hard to show that intersection of arbitrarily many convex sets is convex.
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Concave Functions Sufficient Conditions for Optimization

Theorem (Theorem of Kuhn-Tucker under Concavity)

Suppose f , gj and hk , j = 1, � � � ,J, k = 1, � � � ,K , are all C1 function, f is concave, gj is
concave, and hk is affine. If there exists (λ �,µ�) such that (x�,λ �,µ�) satisfies the
Kuhn-Tucker conditions, then x� solves the mixed constrained maximization problem.

We do not need the NDCQ for this sufficient condition of optimization; the NDCQ
is only required for necessary conditions.

Example

In the consumer’s problem above, g1 (x) = x1,g2 (x) = x2 and g3 (x) = 1�x1�x2 are
all affine, so G is convex. Since u(x1,x2) =

p
x1
p

x2 is concave, the solution to the
Kuhn-Tucker conditions is the global maximizer.
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Second Order Conditions for Optimization

Second Order Conditions for Optimization
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Second Order Conditions for Optimization

Second Order Conditions for Optimization

In the LN, we use the "bordered Hessians" to check a solution to the FOCs is a
local maximizer or a local minimizer.

In practice, this may be quite burdensome.

As an easy (although less general) alternative, we can employ the concavity of the
objective function f to draw the conclusion.
- if f is strictly concave at x� (or more restrictively, if D2f (x�)< 0), then x� is a strict
local maximizer.
- if f is strictly convex at x� (or more restrictively, if D2f (x�)> 0), then x� is a strict
local minimizer.
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