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Overview of This Chapter

We will study the first order necessary conditions for an optimization problem with
equality and/or inequality constraints.

The former is often called the Lagrange problem and the latter is called the
Kuhn-Tucker problem (or nonlinear programming).

We will not discuss the unconstrained optimization problem separately but treat it
as a special case of the constrained problem because the unconstrained problem
is rare in economics.
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Maximum/Minimum and Maximizer/Minimizer

A function f : X !R has a global maximizer at x� if f (x�)� f (x) for all x 2 X and
x 6= x�. Similarly, the function has a global minimizer at x� if f (x�)� f (x) for all
x 2 X and x 6= x�.

If the domain X is a metric space, usually a subset of Rn, then f is said to have a
local maximizer at the point x� if there exists r > 0 such that f (x�)� f (x) for all
x 2 Br (x�)\Xnfx�g, where Br (x�) is an open ball with center x� and radius r .
Similarly, the function has a local minimizer at x� if f (x�)� f (x) for all
x 2 Br (x�)\Xnfx�g.
In both the global and local cases, the value of the function at a maximizer is
called the maximum of the function and the value of the function at a minimizer is
called the minimum of the function.
- The maxima and minima (the respective plurals of maximum and minimum) are
called optima (the plural of optimum), and the maximizer and minimizer are called
the optimizer. The optimizer and optimum without any qualifier means the global
ones. [Figure here]
- A global optimizer is always a local optimizer but the converse is not correct.

In both the global and local cases, the concept of a strict optimum and a strict
optimizer can be defined by replacing weak inequalities by strict inequalities.
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Figure: Local and Global Maxima and Minima for cos(3πx)/x , 0.1� x � 1.1
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Notations

The problem of maximization is usually stated as

max
x

f (x)

s.t. x 2 X ,

where "s.t." is a short for "subject to",1 and X is called the constraint set or feasible
set.

The maximizer is denoted as

argmaxff (x)jx 2 Xg or argmax
x2X

f (x),

where "arg" is a short for "arguments".

The difference between the Lagrange problem and Kuhn-Tucker problem lies in
the definition of X .

1"s.t." is also a short for "such that" in some books.
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Equality-Constrained Optimization

Equality-Constrained Optimization
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Equality-Constrained Optimization Lagrange Multipliers

Consumer’s Problem

In microeconomics, a consumer faces the problem of maximizing her utility subject
to the income constraint:

max
x1,x2

u(x1,x2)

s.t. p1x1+p2x2�y = 0

If the indifference curves (i.e., the sets of points (x1,x2) for which u(x1,x2) is a
constant) are convex to the origin, and the indifference curves are nice and
smooth, then the point (x�1 ,x

�
2) that solves the maximization problem is the point at

which the indifference curve is tangent to the budget line as given in the following
figure.
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Equality-Constrained Optimization Lagrange Multipliers

Figure: Utility Maximization Problem in Consumer Theory
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Equality-Constrained Optimization Lagrange Multipliers

Economic Condition for Maximization

At the point (x�1 ,x
�
2) it must be true that the marginal utility with respect to good 1

divided by the price of good 1 must equal the marginal utility with respect to good
2 divided by the price of good 2.

For if this were not true then the consumer could, by decreasing the consumption
of the good for which this ratio was lower and increasing the consumption of the
other good, increase her utility.

Thus we have
∂u
∂x1
(x�1 ,x

�
2)

p1
=

∂u
∂x2
(x�1 ,x

�
2)

p2
,

or
p1

p2
=

∂u
∂x1
(x�1 ,x

�
2)

∂u
∂x2
(x�1 ,x

�
2)
.

What does this mean in the figure? See below.
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Equality-Constrained Optimization Lagrange Multipliers

Mathematical Arguments

Let xu
2 be the function that defines the indifference curve through the point

(x�1 ,x
�
2), i.e.,

u(x1,x
u
2 (x1))� ū � u(x�1 ,x

�
2).

Now, totally differentiating this identity gives

∂u
∂x1

(x1,x
u
2 (x1))+

∂u
∂x2

(x1,x
u
2 (x1))

dxu
2

dx1
(x1) = 0.

That is,
dxu

2
dx1

(x1) = �
∂u
∂x1
(x1,xu

2 (x1))

∂u
∂x2
(x1,xu

2 (x1))
.

Given that xu
2 (x

�
1) = x�2 , the slope of the indifference curve at the point (x�1 ,x

�
2)

dxu
2

dx1
(x�1) = �

∂u
∂x1
(x�1 ,x

�
2)

∂u
∂x2
(x�1 ,x

�
2)
.

Also, the slope of the budget line is � p1
p2

. Combining these two results again gives
the result in the last slide.
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Equality-Constrained Optimization Lagrange Multipliers

Necessary Conditions for Maximization

Two functions and two unknowns:

∂u
∂x1
(x�1 ,x

�
2)

p1
=

∂u
∂x2
(x�1 ,x

�
2)

p2
,

p1x�1 +p2x�2 = y .

We can solve out (x�1 ,x
�
2) if we know u(�, �), p1, p2 and y .

Reformulation to get general conditions: denote the common value of the ratios in
the first condition by λ ,

∂u
∂x1
(x�1 ,x

�
2)

p1
= λ =

∂u
∂x2
(x�1 ,x

�
2)

p2
,

and we can rewrite the two necessary conditions as

∂u
∂x1

(x�1 ,x
�
2)�λp1 = 0,

∂u
∂x2

(x�1 ,x
�
2)�λp2 = 0,

y �p1x�1 �p2x�2 = 0.
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Equality-Constrained Optimization Lagrange Multipliers

Lagrangian

Define the Lagrangian as

L (x1,x2,λ ) = u(x1,x2)+λ (y �p1x1�p2x2).

Calculate ∂L
∂x1

, ∂L
∂x2

, and ∂L
∂λ

, and set the results equal to zero we obtain exactly the
three equations in the last slide.

Three equations and three unknowns, so we can solve out (x�1 ,x
�
2 ,λ

�) in principle.

λ is the new artificial or auxiliary variable, and is commonly called Lagrange
multiplier.
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Equality-Constrained Optimization Lagrange Multipliers

Joseph-Louis Lagrange (1736-1813), Italian2

2but worked at Berlin and Paris during most of his life.
Ping Yu (HKU) Constrained Optimization 13 / 38



Equality-Constrained Optimization Lagrange Multipliers

General Necessary Conditions for Maximization

Suppose that we have the following maximization problem

max
x1,��� ,xn

f (x1, � � � ,xn)

s.t. g(x1, � � � ,xn) = c

Let
L (x1, : : : ,xn,λ ) = f (x1, : : : ,xn)+λ (c�g(x1, : : : ,xn)).

If (x�1 , : : : ,x
�
n) solves this maximization problem, there is a value of λ , say λ

� such
that

∂L

∂xi
(x�1 , : : : ,x

�
n ,λ

�) = 0, i = 1, : : : ,n, (1)

∂L

∂λ
(x�1 , : : : ,x

�
n ,λ

�) = 0. (2)
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Equality-Constrained Optimization Lagrange Multipliers

More Explanations on the Necessary Conditions

The conditions (1) are precisely the first order conditions for choosing x1, : : : ,xn to
maximize L , once λ

� has been chosen.

From conditions (1), there are two equivalent ways to interpret the constrained
maximization problem.
- The decision maker must satisfy g(x1, : : : ,xn) = c and that she should choose
among all points that satisfy this constraint the point at which f (x1, : : : ,xn) is
greatest.
- The decision maker chooses any point she wishes but that for each unit by which
she violates the constraint g(x1, : : : ,xn) = c we shall take away λ units from her
payoff.

We must be careful to choose λ to be the correct value.

If we choose λ too small, the decision maker may choose to violate her constraint.
E.g., if we made the penalty for spending more than the consumer’s income very
small the consumer would choose to consume more goods than she could afford
and to pay the penalty in utility terms.

On the other hand, if we choose λ too large the decision maker may violate her
constraint in the other direction. E.g., the consumer would choose not to spend
any of her income and just receive λ units of utility for each unit of her income.
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Equality-Constrained Optimization Lagrange Multipliers

Multiple Constraints

The technique above can be extended to multiple constraints case:

max
x1,��� ,xn

f (x1, � � � ,xn)

s.t. g1(x1, � � � ,xn) = c1,

...

gm(x1, � � � ,xn) = cm,

where m � n or m < n (why?).
The Lagrangian

L (x,λ ) = f (x)+λ � (c�g(x)), (3)
where x = (x1, : : : ,xn)0, λ = (λ 1, � � � ,λ m)0, and c and g are similarly defined.
If x� = (x�1 , : : : ,x

�
n)
0 solves (3), there are values of λ , say λ

� = (λ �1, : : : ,λ
�
m)
0 such

that
∂L

∂xi
(x�,λ �) = 0, i = 1, : : : ,n

∂L

∂λ j
(x�,λ �) = 0, j = 1, � � � ,m,

which are labeled as "first order conditions" or "FOCs" for the corresponding
maximization problem.
The FOCs are the set of conditions which a solution to the maximization problem
must satisfy, so are actually the first order necessary conditions .
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Equality-Constrained Optimization Caveats and Extensions

Existence of Maximizer

We have not even claimed that there necessarily is a solution to the maximization
problem.

One example of an unconstrained problem with no solution is

max
x

2x ,

maximizing over the choice of x the function 2x . Clearly the greater we make x the
greater is 2x , and so, since there is no upper bound on x there is no maximum.

Thus we might want to restrict maximization problems to those in which we
choose x from some bounded set. Again, this is not enough.

Consider the problem
max

0�x�1
1/x .

The smaller we make x the greater is 1/x and yet at zero 1/x is not even defined.

We could define the function to take on some value at zero, say 7. But then the
function would not be continuous. Or we could leave zero out of the feasible set for
x , say 0< x � 1. Then the set of feasible x is not closed.
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Equality-Constrained Optimization Caveats and Extensions

Weierstrass Theorem

We shall restrict maximization problems to those in which we choose x to
maximize some continuous function from some closed and bounded set (which is
compact from the Heine-Borel Theorem).

Is there anything else that could go wrong? No. The following result says that if
the function to be maximized is continuous and the set over which we are
choosing is both closed and bounded, i.e., is compact, then there is a solution to
the maximization problem.

Theorem (The Weierstrass Theorem)

Let S be a compact set and f : S !R be continuous. Then there is some x� in S at
which the function is maximized. More precisely, there is some x� in S such that
f (x�)� f (x) for any x in S.

We will give an example later.
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Equality-Constrained Optimization Caveats and Extensions

Karl T.W. Weierstrass (1815-1897), German3

3cited as the "father of modern analysis", leaving university without a degree.
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Equality-Constrained Optimization Caveats and Extensions

Extension to Nonequality Constraints

In defining the compact sets in the Weierstrass theorem, we typically use
inequalities, such as x � 0.

However, we did not consider such constraints in the above discussion, but rather
considered only equality constraints.

However, even in the example of utility maximization at the beginning of this
section, there were implicitly constraints on x1 and x2 of the form

x1 � 0, x2 � 0.

We shall return to this question in the next section.
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Equality-Constrained Optimization Caveats and Extensions

Extension to Minimization Problem and Unconstrained Problem

We could have transformed the minimization problem into a maximization problem
by simply multiplying the objective function by �1.

That is, if we wish to minimize f (x) we could do so by maximizing �f (x).

As an exercise write out the necessary conditions for the case that we wanted to
minimize u(x) in the consumer’s problem.

Notice that if x�1 , x�2 , and λ satisfy the original equations then x�1 , x�2 , and �λ

satisfy the new equations. Thus we cannot tell whether there is a maximum at (x�1 ,
x�2) or a minimum.

This corresponds to the fact that in the case of a function of a single variable over
an unconstrained domain at a maximum we require the first derivative to be zero,
but that to know for sure that we have a maximum we must look at the second
derivative which will be discussed in the next chapter.

For the unconstrained problem, set λ
� = 0, i.e., since no constraints exist, no

penalty is imposed on constraints.
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Inequality-Constrained Optimization

Inequality-Constrained Optimization
(Nonlinear Programming)
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Inequality-Constrained Optimization Kuhn-Tucker Conditions

Introduction to Nonlinear Programming

Formulation of a simple nonlinear programming problem:

max
x

f (x)

s.t. x � 0,

where dim(x) = 1 for simplicity.

Without the constraint x � 0, the FOC for the maximization problem is df
dx (x

�) = 0.

When the inequality constraint is added in, either the solution could occur when
x� > 0 or it could occur when x� = 0.

When x� > 0, the FOC should still be df
dx (x

�) = 0. When x� = 0, the necessary
condition should be

df
dx
(x�)� 0.(why?)
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Inequality-Constrained Optimization Kuhn-Tucker Conditions

Figure: Illustration of Why df
dx (x

�)� 0 When x� = 0
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Inequality-Constrained Optimization Kuhn-Tucker Conditions

Nonlinear Programming with Possible Corner Solution

So the FOC is
df
dx
(x�)

�
� 0,
= 0,

if x� = 0,
if x� > 0,

which can be expressed in a compact form as in the following theorem.

Theorem

Suppose that f : R!R is a C1 function. Then, if x� maximizes f (x) over all x � 0, x�

satisfies

df
dx
(x�) � 0

x�
df
dx
(x�) = 0

x� � 0

A pair of inequalities, not both of which can be strict (or slack ) (i.e., at least one of
them is effective), is said to show complementary slackness.
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Inequality-Constrained Optimization Kuhn-Tucker Conditions

Reformulation of the FOCs

As in the equality-constrained problem, we introduce a Lagrange multiplier.

If we form the Lagrangian
L (x ,λ ) = f (x)+λx ,

then we can express these FOCs as (check!)

∂L

∂x
(x�,λ �) =

df
dx
(x�)+λ

� = 0,

∂L

∂λ
(x�,λ �) = x� � 0,

λ
� � 0,λ �

∂L

∂λ
(x�,λ �) = λ

�x� = 0.
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Inequality-Constrained Optimization Kuhn-Tucker Conditions

General Inequality-Constrained Problem

Suppose we want to

max
x1,��� ,xn

f (x1, � � � ,xn)

s.t. gj (x1, � � � ,xn)� 0, j = 1, � � � ,J,
or more compactly,

max
x

f (x)

s.t. g(x)� 0.
Form the Lagrangian

L (x,λ ) = f (x)+λ �g(x).
and express the FOCs as

∂L

∂x
(x�,λ �) =

∂ f
∂x
(x�)+

∂g(x�)0

∂x
λ
� = 0,

∂L

∂λ
(x�,λ �) = g(x�)� 0,

λ
� � 0,λ �� ∂L

∂λ
(x�,λ �) = λ

��g(x�) = 0,

where � is the element-by-element product.
These FOCs are called the Kuhn-Tucker conditions due to Kuhn and Tucker
(1951).
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Inequality-Constrained Optimization Kuhn-Tucker Conditions

H.W.Kuhn (1925-2014, Princeton) A.W. Tucker (1905-1995, Princeton)4

4Albert W. Tucker is the supervisor of John Nash, the Nobel Prize winner in Economics in 1994, and Lloyd
Shapley, the Nobel Prize winner in Economics in 2012.
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Inequality-Constrained Optimization Kuhn-Tucker Conditions

Mixed Constrained Problem

Combine the equality-constrained and inequality-constrained problem to define
the mixed constrained problem:

max
x1,��� ,xn

f (x1, � � � ,xn)

s.t. gj (x1, � � � ,xn)� 0, j = 1, � � � ,J,
hk (x1, � � � ,xn) = 0, k = 1, � � � ,K ,

or more compactly,
max

x
f (x)

s.t. g(x)� 0,
h(x) = 0,

where K � n.

The term "mixed constrained problem" is only for convenience because any
equality constraint can be transformed to two inequality constraints, e.g.,
hk (x) = 0 is equivalent to hk (x)� 0 and hk (x)� 0.

Form the Lagrangian

L (x,λ ,µ) = f (x)+λ �g(x)+ µ �h(x).
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Inequality-Constrained Optimization Kuhn-Tucker Conditions

Theorem of Kuhn-Tucker

Theorem (Theorem of Kuhn-Tucker)

Suppose that f : Rn !R, g : Rn !RJ and h : Rn !RK are C1 functions. Then, if x�

maximizes f (x) over all x satisfying the constraints g(x)� 0 and h(x) = 0, and if x�

satisfies the nondegenerate constraint qualification (NDCQ) as will be discussed
below, then there exists a vector (λ �,µ�) such that (x�,λ �,µ�) satisfies the
Kuhn-Tucker conditions given as follows:

∂L
∂x (x

�,λ �,µ�) = 0, ∂L
∂ µ
(x�,λ �,µ�) = h(x�) = 0,

∂L
∂λ
(x�,λ �,µ�) = g(x�)� 0, λ

� � 0,
λ
�� ∂L

∂λ
(x�,λ �,µ�) = λ

��g(x�) = 0.

The x�’s that satisfy the Kuhn-Tucker conditions are called the critical points of L .

Usually, critical points mean the points that satisfy the FOCs; the Kuhn-Tucker
conditions are a special group of FOCs.

Parallel to Lagrange multipliers in the Lagrange problem, (λ �,µ�) are called
Kuhn-Tucker multipliers.

Finally, note that the Kuhn-Tucker conditions are necessary conditions for "local"
optima, and of course are also necessary conditions for global optima.
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Inequality-Constrained Optimization The Constraint Qualification

Nondegenerate Constraint Qualification

A constraint gj (x)� 0 is binding at x� if gj (x�) = 0.

Suppose the first J0 inequality constraints are binding at x�; then the NDCQ states
that the rank at x� of the Jacobian matrix of the equality constraints and the
binding inequality constraints

J �

0BBBBBBBBBBB@

∂g1
∂x1
(x�) � � � ∂g1

∂xn
(x�)

...
. . .

...
∂gJ0
∂x1

(x�) � � � ∂gJ0
∂xn

(x�)
∂h1
∂x1
(x�) � � � ∂h1

∂xn
(x�)

...
. . .

...
∂hK
∂x1
(x�) � � � ∂hK

∂xn
(x�)

1CCCCCCCCCCCA
is J0+K - as large as it can be.

When for some x’s the NDCQ does not hold, compare the values of f (�) at critical
points and also these x’s to determine the ultimate maximizer.
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Inequality-Constrained Optimization The Constraint Qualification

Failure of the Constraint Qualification

Example

Suppose we want to maximize f (x1,x2) = x1 s.t. g(x1,x2) = x3
1 + x2

2 � 0. From the following
figure, the constraint set is a cusp and it is easy to see that

�
x�1 ,x

�
2

�
= (0,0). However, at

�
x�1 ,x

�
2

�
,

there is no λ
� satisfying the Kuhn-Tucker conditions. To see why, set the Lagrangian

L (x,λ ) = x1�λ

�
x3

1 + x2
2

�
,

and then the Kuhn-Tucker conditions are

1�3λx2
1 = 0,2λx2 = 0,

x3
1 + x2

2 � 0,λ � 0,λ
�

x3
1 + x2

2

�
= 0.

It is not hard to see that there is no λ
� satisfying these conditions when

�
x�1 ,x

�
2

�
= (0,0).

What can we learn from this example? Note that g(x1,x2) is binding at (0,0), while (0,0) is the
critical point of g(x1,x2) (i.e., ∂g1

∂x1
(0,0) = ∂g1

∂x2
(0,0) = 0), so the constraint qualification fails. If we

compare f (�) at the critical values of L (which is empty) and (0,0), we indeed get the correct
maximizer (0,0). �

The LN provides some intuition on why the NDCQ is required; essentially, the
NDCQ guarantees that local to x�, the binding constraints and their first order
approximations are equivalent.
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Inequality-Constrained Optimization The Constraint Qualification

The Constraint Set
n
(x1,x2)jx3

1 + x2
2 � 0

o
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Inequality-Constrained Optimization The Constraint Qualification

An Illustrating Example of Finding the Maximizer

Example

max x2
1 +(x2�5)2 s.t. x1 � 0, x2 � 0, and 2x1+ x2 � 4.

Solution

First, since the objective function is continuous and the constraint set is compact (why?), by the
Weierstrass theorem, the maximizer exists. We then check the NDCQ. g1(x) = x1, g2(x) = x2 and
g3(x) = 4�2x1�x2, so the Jacobian of the constraint functions is0@ 1 0

0 1
�2 �1

1A ,
whose any one or two rows are linearly independent. Since at most two of the three constraints
can be binding at any one time, the NDCQ holds at any solution candidate.
The Lagrangian is

L (x ,λ ,µ) = x2
1 +(x2�5)2+λ 1x1+λ 2x2+λ 3(4�2x1�x2),

and the Kuhn-Tucker conditions are

2x1+λ 1�2λ 3 = 0, 2(x2�5)+λ 2�λ 3 = 0,

x1 � 0, x2 � 0, 4�2x1�x2 � 0,λ 1 � 0,λ 2 � 0,λ 3 � 0,

λ 1x1 = 0, λ 2x2 = 0, λ 3(4�2x1�x2) = 0.
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Inequality-Constrained Optimization The Constraint Qualification

Solution (continue)

Totally eight possibilities depending whether λ j = 0 or not, j = 1,2,3.
(i) λ 1 > 0,λ 2 > 0 and λ 3 > 0=) x1 = 0,x2 = 0, and 2x1+ x2 = 4. Impossible.
(ii) λ 1 = 0,λ 2 > 0 and λ 3 > 0=) x1 � 0,x2 = 0, and 2x1+ x2 = 4. So (x1,x2) = (2,0). From
4�2λ 3 = 0 and �10+λ 2�λ 3 = 0, we have (λ 1,λ 2,λ 3) = (0,12,2).
(iii) λ 1 > 0,λ 2 = 0 and λ 3 > 0=) x1 = 0,x2 � 0, and 2x1+ x2 = 4. So (x1,x2) = (0,4). From
λ 1�2λ 3 = 0 and �2�λ 3 = 0, we have (λ 1,λ 2,λ 3) = (�4,0,�2). Impossible.
(iv) λ 1 = λ 2 = 0 and λ 3 > 0=) x1 � 0,x2 � 0, and 2x1+ x2 = 4. So from
2x1�2λ 3 = 0,2(x2�5)�λ 3 = 0, and 2x1+x2 = 4, we have (x1,x2) = (�2/5,24/5) . Impossible.
(v) λ 1 > 0,λ 2 > 0 and λ 3 = 0=) x1 = 0,x2 = 0, and 2x1+ x2 � 4. So (x1,x2) = (0,0). From
λ 1 = 0 and �10+λ 2 = 0, we have (λ 1,λ 2,λ 3) = (0,10,0). Impossible.
(vi) λ 1 = λ 3 = 0,λ 2 > 0=) x1 � 0,x2 = 0, and 2x1+ x2 � 4. From 2x1 = 0 and �10+λ 2 = 0, we
have (x1,x2) = (0,0) and (λ 1,λ 2,λ 3) = (0,10,0).
(vii) λ 1 > 0,λ 2 = λ 3 = 0=) x1 = 0,x2 � 0, and 2x1+ x2 � 4. So from λ 1 = 0 and 2(x2�5) = 0,
we have (x1,x2) = (0,5) and (λ 1,λ 2,λ 3) = (0,0,0). Impossible.
(viii) λ 1 = λ 2 = λ 3 = 0=) x1 � 0,x2 � 0, and 2x1+ x2 � 4. So from 2x1 = 0 and 2(x2�5) = 0,
we have (x1,x2) = (0,5). Impossible.
Candidate maximizers are (2,0) and (0,0). The objective function values at these two candidates
are 29 and 25, so (2,0) is the maximizer and the associated Lagrange multipliers are (0,12,2). �
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Caution: Never blindly apply the Kuhn-Tucker conditions.

Figure: Intuitive Illustration of Example
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A "Cookbook" Procedure of Optimization

Define the feasible set of the general mixed constrained maximization problem as

G =
�

x 2Rnjg(x)� 0,h(x) = 0
	
.

Step 1: Apply the Weierstrass theorem to show that the maximum exists. If the
feasible set G is compact, this is usually straightforward; if G is not
compact, truncate G to a compact set, say Go, such that there is a
point xo 2Go and f (xo)> f (x) for all x 2GnGo.

Step 2: Check whether the constraint qualification is satisfied. If not, denote the
set of possible violation points as Q.

Step 3: Set up the Lagrangian and find the critical points. Denote the set of
critical points as R.

Step 4: Check the value of f on Q[R to determine the maximizer or
maximizers.
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Caution

It is quite often for practitioners to apply Step 3 directly to find the maximizer.
Although this may work in most cases, it is possible to fail in some cases.

First, the Lagrangian may fail to have any critical points due to nonexistence of
maximizers or failure of constraint qualification.

Second, even if the Lagrangian does have one or more critical points, this set of
critical points need not contain the solution still due to these two reasons.

Let us repeat our caveat, "Never blindly apply the Kuhn-Tucker conditions"!

This cookbook procedure works well in most cases, especially when the set Q[R
is small, e.g., Q[R includes only a few points.

If this set is large, it is better to employ more necessary conditions (e.g., the
second order conditions (SOCs)) to screen the points in Q[R.

Another solution is to employ sufficient conditions, i.e., as long as x� satisfies
these conditions, it must be the maximizer.
- Sufficient conditions are very powerful especially combined with the uniqueness
result because as long as we find one solution, it is the solution and we can stop.

These topics are the main theme of the next chapter.
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