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General Information on the Math Camp

Instructor: Ping Yu

Email: pingyu@hku.hk

Time: 06:45-8:00pm and 8:15-9:30pm, Tuesday

Location: ATC-B4 (Sept 4, 11&18)/KK315 (Oct 2)/ATC-B12 (Oct 9&16)

Office Hour: 11:00-12:00pm, Tuesday, KK1108
- I will not answer questions in email if the answer is long or is not easy to explain
exactly by words. Please stop by during my office hour.

Tutor: TBA

Email: TBA

Time/Location: TBA

Office Hour: TBA
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Information on the Content and Evaluation of Math Camp

Textbook: My lecture notes (LNs) posted on Moodle.
- Others: Rudin (1976) for Chapter 1, Simon and Blume (1994) and Sundaram
(1996) for Chapter 2-4, and Casella and Berger (2002) for Chapter 5-6.

Exercises in LNs: no need to turn in, and for practice only, so no answer key will
be posted.

Evaluation: One Assignment (40%) and One Exam (60%)/only materials in slides
- Assignment: six problems/Chapter 1 contributes two and Chapter 2-5 each
contributes one.
- Exam: four problems and each of Chapter 2-5 contributes one/closed-book and
closed-note and mimic the assignment.

Time and Location of the Exam: TBA
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Course Policy

In Class: (i) turn off your cell phone and keep quiet; (ii) come to class and return
from the break on time; (iii) you can ask me freely in class, but if your question is
far out of the course or will take a long time to answer, I will answer you after class.

Assignment: The assignment must be typed. Turn in your assignment online
through moodle before the due day (5:30pm of October 26 - Friday). Late
assignment is not acceptable for whatever reasons. To avoid any risk, start your
assignment early.

Tutorial: The answer key to the assignment would NOT be posted on moodle and
will be taught by the tutor. Two tutorial classes would be provided before the exam.
- Time and Location of the Tutorials: TBA

Ping Yu (HKU) Topology and Calculus 4 / 51



Overview This Course

Chapter 1: Set, Function, Point-Set Topology, Single and Multivariable Calculus
- too long, so we will only cover the topics that are necessary for future chapters.

Chapter 2: Existence of Optimizer, Equality- and Inequality-Constrained
Optimization/Necessary Conditions

Chapter 3: Convex Set, Concave and Convex Function, Uniqueness of Optimizer,
Sufficient Conditions

Chapter 4: Maximum Theorem, Implicit Function Theorem, Envelope Theorem

Chapter 5: Basics for Probability Theory

Chapter 6: Basics for Statistics
- This chapter would be detailed in Econ6001 and Econ6005, so no lecture note is
posted, no exercises are given in the assignment, and it will not be tested. Just
follow the slides!

Order of Learning Process: slides in class �! the lecture notes �! the references

Benefit Future Students: check typos of LNs and suggest topics to be taught in the
future after finishing Econ6001 and Econ6021.
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Sets and Set Operations

Sets and Set Operations

Ping Yu (HKU) Topology and Calculus 6 / 51



Sets and Set Operations

Sets

Examples: the consumption set and production set will be used in the optimizing
decisions of consumers and firms.

A set A is a collection of distinct objects.
- Elements in a set are not ordered and must be distinct , so the following three
sets are the same: f1,2g= f2,1g= f1,2,1g.
Notations: An element x in A is denoted as x 2 A. An empty set is often denoted
as /0.
- Sets are represented by uppercase italic, e.g., X , and their elements by lower
case italic, e.g., x .

Terms: In mathematics, "collection ", "class " and "family " all mean "set". An
"object" in a set is often called a "point " although it can be a function defined in
the following section or any mathematical object.
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Sets and Set Operations

Set Operations

1 Subset: set A is contained in B.
A� B: set A is contained in B, and A 6= B.
A� B: set A is contained in B, and A and B may be equal.

- Quite often, � means �. To emphasize A 6= B, & is often used. We will use the
convention of � and �.

2 Union: A[B = fx jx 2 A or x 2 Bg. All points in either A or B.
- "j" is read as "such that", and is often used exchangeably with ":" in this course.

3 Intersection: A\B = fx jx 2 A and x 2 Bg. All points in both A and B.
4 Complement: Ac = fx jx /2 Ag. All points not in A. Here, a total set is implicitly

defined.
5 Relative Complement: B nA= fx 2 Bjx /2 Ag= B\Ac : all points that are in B, but

not in A. [Figure here]

De Morgan’s Law: (A[B)c = Ac \Bc and (A\B)c = Ac [Bc .
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Sets and Set Operations

Figure: B nA= B\Ac
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Functions

Functions
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Functions

Functions

A function (or mapping) f : X 7�! Y is a rule that associates each element of X
with a unique element of Y ; in other words, for each x 2 X there exists a specified
element y 2 Y , denoted as f (x).

x is called the argument of f , and f (x) is called the value of f at x .

X is called the domain of f , and Y the codomain.

For A� X , the set
f (A) = ff (x) jx 2 Ag � Y

is called the image of A under f , and for B � Y , the set

f�1 (B) = fx jf (x) 2 Bg � X

is called the inverse image (or pre-image) of B under f . The set f (X ) is called the
range of f .
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Functions

Terms on Functions

The term function is usually reserved for cases when the codomain is the set of
real numbers. That is why we term utility functions and production functions.

The term correspondence is used for a rule connecting elements of X to
elements of Y where the latter are not necessarily unique. For example, f�1 is a
correspondence, but not a function in general. If f�1 : f (X )! X is a function, then
we call it the inverse function of f .

Let f : X 7�! Y and g : Y 7�! Z are two mappings. The composite function (or
mapping) g � f : X 7�! Z takes each x 2 X to the element g (f (x)) 2 Z .
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Point-Set Topology in the Euclidean Space

Point-Set Topology in the Euclidean Space
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Point-Set Topology in the Euclidean Space Euclidean Spaces

History of Euclidean Spaces

Euclid (325-265, B.C.), Greek, "father of geometry"
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Point-Set Topology in the Euclidean Space Euclidean Spaces

Euclidean Spaces

Rn is the Cartesian product of R with itself n times.
- For two sets X and Y , the Cartesian product of X and Y is
X �Y � f(x ,y) jx 2 X ,y 2 Yg, where "�" is read as "defined as". [Figure here]
- R1 is the real line; R2 is the plane; R3 is the three-dimensional space.

The Euclidean space is Rn with the Euclidean structure imposed on.
- We will still use Rn to denote the Euclidean space.

The Euclidean structure is best described by the standard inner product on Rn.

The inner product (or dot product) of any two real n-vectors x and y is defined by

x �y =
n

∑
i=1

xiyi = x1y1+ x2y2+ � � �+ xnyn [a real number],

where xi and yi are i th coordinates of vectors x and y respectively, and x �y is
often written as x0y with x0 meaning the transpose of x or hx,yi.
Notations: Real numbers (or scalars) are written using lower case italics, e.g., x .
Vectors are defined as column vectors and represented using lowercase bold,
e.g., x.
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Point-Set Topology in the Euclidean Space Euclidean Spaces

History of Cartesian Product

René Descartes (1596-1650), French

The Cartesian product is named after the French philosopher Descartes - from his
Latinized name Cartesius.
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Point-Set Topology in the Euclidean Space Euclidean Spaces

Inner Product, Norm and Metric on Rn

Length of x - the Euclidean norm:

kxk=
p

x �x =
s

n

∑
i=1

x2
i � 0 [nonnegative].

Metric (or distance) on Rn:

d (x,y) = kx�yk=
s

n

∑
i=1
(xi �yi )

2 [nonnegative].

Angle between x and y in Rn: inner product implies the Cauchy-Schwarz
inequality :

jhx,yij � kxk � kyk ,

so we can define

angle(x,y) = arccos
hx,yi
kxk � kyk ,

where the value of the angle is chosen to be in the interval [0,π ].
- If hx,yi= 0, angle(x,y) = π

2 ; we call x is orthogonal to y and denote it as x ? y.
[Figure here]
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Point-Set Topology in the Euclidean Space Euclidean Spaces

Figure: Angle in R2
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Point-Set Topology in the Euclidean Space Euclidean Spaces

Inner Product Space, Normed Space and Metric Space

A space is a set plus some structure on it. So a set imposed a metric, a norm or
an inner product is called a metric space, a normed space or an inner product
space, respectively.
- We will not study such general spaces in this course but only Rn.
- The relationship between these spaces is as follows

Rn � inner product space � normed space � metric space
hx ,yi kxk=

p
hx ,xi d(x ,y) = kx �yk

angle length distance
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Point-Set Topology in the Euclidean Space Open Sets

Open Sets

Open sets are the basic building blocks of the topological structure of Rn.
Roughly speaking, topology is about the properties of open sets.

An n-dimensional open ball (or open sphere) with center x and radius r is defined
by

Br (x) =
�

y 2Rnjd(x,y)< r
	
,

which is the collection of points of distance less than r from a fixed point in Rn.
- The open ball for n = 1 is called an open interval.

A subset U of Rn is called open if for every x in U there exists an r > 0 such that
Br (x) is contained in U.
- A set is open iff it contains an open ball around each of its points, i.e., open balls
are the base of all open sets,1 where "iff" is read as "if and only if".
- Intuitively, an open set is "fat" and does not contain its own "boundary".

1It is not hard to show that if U is open, then U =
S

x2U
Brx (x), where we use rx to indicate that the radius

depends on x.
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Point-Set Topology in the Euclidean Space Open Sets

Neighborhoods and Closed Sets

A neighborhood of the point x is any subset N of Rn that contains an open ball
about x as a subset.
- Intuitively speaking, a neighborhood of a point is a set of points containing that
point where one can move some amount away from that point without leaving the
set.
- The neighborhood N need not be an open set itself. If N is open it is called an
open neighborhood. Some books require that neighborhoods be open; we will
follow this convention.

The complement of an open set is called closed.
- Intuitively, a closed set contains its own "boundary".

Example

(0,1) is open, [0,1] is closed, and [0,1) is neither open nor closed.
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Point-Set Topology in the Euclidean Space Compact Sets

Compact Sets

We will not state the general definition of compactness, but only state the famous
Heine-Borel theorem.

Theorem (Heine-Borel Theorem)

A set E �Rn is compact iff it is bounded and closed.

A set E is bounded if there is real number r and a point q 2 E such that
d (p,q)< r for all p 2 E .
- E is bounded means it can be covered by an open ball Br (q) of finite radius.

Example

[0,∞) and (0,1) are not compact by the Heine-Borel theorem, but [0,1] is.
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Point-Set Topology in the Euclidean Space Compact Sets

History of the Heine-Borel Theorem

H.E. Heine (1821 - 1881), German Émile Borel (1881-1956), French
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Single Variable Calculus

Single Variable Calculus
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Single Variable Calculus

Calculus

In calculus, we study functions with domain being a subset of Rn.

The “marginal effect analysis" in economics is usually captured by the derivative of
a particular function (e.g., marginal utility, marginal cost, marginal revenue, etc.).

This is why we would review properties of continuous and "smooth" functions.

The foundation and starting point of calculus is the concept "limit".

We first define the limit of a sequence and then the limit of a function.

A sequence fxng∞
n=1 is a mapping from N, the set of natural numbers, to some

range space.
- A sequence is automatically ordered, but its terms need not be distinct (like a
set). Typically the range space is R although can be extended to any other space.
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Single Variable Calculus Limits

Limit of a Sequence and Limit of a Function

A sequence fxng∞
n=1 is said to converge if there is a value x 2 R such that 8 ε > 0,

9 n0 2N which may depend on ε, such that for all n > n0, jxn�x j< ε, where "8"
means "Any", and 9 means "Exist". x is called the limit of fxng∞

n=1, and we write
xn ! x or lim

n!∞
xn = x .

- Intuitively, lim
n!∞

xn = x means that for n large enough, xn will stay in an arbitrary

small neighborhood of x .

Example

Does the sequence fxng∞
n=1 with xn = 1+(�1)n/n converge?

Let f : [a,b]!R. For any x 2 [a,b], we claim lim
t!x

f (t) = y if 8 ε > 0, 9 δ > 0 which

may depend on ε, such that jf (t)�y j< ε for all t with jt�x j< δ .
- lim

t!x
f (t) = y is equivalent to that for any sequence ftng (with tn not equal to x for

all n) converging to x a the sequence f (tn) converges to y .

Ping Yu (HKU) Topology and Calculus 26 / 51



Single Variable Calculus Limits

ε�δ Language

Augustin-Louis Cauchy (1789-1857), French, a pioneer of analysis
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Single Variable Calculus Continuity

Continuity

Let f : [a,b]!R. For any x 2 [a,b], f is said to be continuous at x if
lim
t!x

f (t) = f (x). If f is continuous at every point on [a,b], then f is said to be

continuous on [a,b] and denote f 2 C [a,b].
- Some books define t = x +∆, so lim

t!x
f (t) = f (x) is equivalently written as

lim
∆!0

f (x +∆) = f (x), which can be understood as for any sequence ∆n ! 0,

f (x +∆n)! f (x).

Theorem (Intermediate Value Theorem)

Let f : [a,b]!R be continuous with f (a)< f (b). Then for any value M 2 (f (a), f (b)),
there is a c 2 (a,b) such that f (c) =M.

c need not be unique. [Figure here]

Intuition: the graph of a continuous function on a closed interval can be drawn
without lifting your pencil from the paper.
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Single Variable Calculus Continuity

Figure: Intermediate Value Theorem
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Single Variable Calculus Differentiability

Differentiability

Let f : [a,b]!R. For any x 2 [a,b] form the quotient

φ (t) =
f (t)� f (x)

t�x
(a< t < b, t 6= x) ,

and define the derivative of f at x as

f 0(x) = lim
t!x

φ (t)

provided this limit exists. If f 0 is defined at a point x , we say f is differentiable at x .
If f 0 is defined at every point of [a,b], we say f is differentiable on [a,b]. If f 0 is
further continuous on [a,b], we say f is continuously differentiable or smooth on
[a,b] and denote f 2 C1 [a,b]. (Exercise)

Intuition: the derivative is the limit of local slopes.

The notation of f 0(x) is attributed to Newton. The corresponding Leibniz’s notation
is dy

dx or df
dx (x), where y � f (x).

- One advantage of Leibniz’s notation is that we can intuitively write dy = f 0(x)dx .
- If we want to emphasize that the derivative is taken at a specific point, say x0,

then we may write f 0(x0) as dy
dx

���
x=x0

.
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Single Variable Calculus Differentiability

Derivatives

Example

Suppose f (x) = x2. We want to calculate its derivative at point x = 2. Using the
definition of derivative, we have

f 0(2) = lim
t!2

f (t)� f (2)
t�2

= lim
t!2

t2�22

t�2
= lim

t!2

(t+2)(t�2)
t�2

= lim
t!2
(t+2) = 4.

To avoid the burden of calculating the derivative using its definition, summarize the
derivatives of popular functions in the following table.

f (x) f 0(x) f (x) f 0(x)
c 0 exp(x) exp(x)
cx c ax ax ln(a)
x2 2x ln(x) 1/x
xn nxn�1 loga (x) 1/ (x lna)

x�1 �1/x2 sin(x) cos(x)p
x 1

2
1p
x

cos(x) �sin(x)

Table: Derivatives of Popular Functions

Ping Yu (HKU) Topology and Calculus 31 / 51



Single Variable Calculus Differentiability

Rules of Differentiation

Theorem

Suppose f and g are defined on [a,b] and are differentiable at a point x 2 (a,b). Then
f +g, fg, and f /g are differentiable at x, and

(i) (Sum Rule) (f +g)0 (x) = f 0(x)+g0(x);

(ii) (Product Rule) (fg)0 (x) = f 0(x)g (x)+ f (x)g0(x);

(iii) (Quotient Rule)
�

f
g

�0
(x) = f 0(x)g(x)�g0(x)f (x)

g(x)2 .

In the quotient rule, if f = 1, then we get the reciprocal rule :
�

1
g

�0
(x) = � g0(x)

g(x)2 .
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Single Variable Calculus Differentiability

Monotone Functions

The sign of the derivative of a function can be used to check whether it is
monotone.

A function f is said to be non-decreasing (or increasing) if f (y)� f (x) whenever
y > x . It is non-increasing (or decreasing) if �f is nondecreasing (increasing). A
strictly increasing (strictly decreasing) function changes the above inequality to be
strict. A monotone (or monotonic) function is either non-decreasing or
non-increasing. A strictly monotone function is either strictly increasing or strictly
decreasing.
- Some books use "increasing" for our "strictly increasing".

Example

f (x) = 2x is monotone on R. f (x) = x2 is not monotone on R, but is monotone on
R+ � [0,∞).
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Single Variable Calculus Differentiability

Checking Monotonicity by Derivative

Theorem

Let f : [a,b]!R be continuous on [a,b] and differentiable on (a,b).

(i) f 0(x)� 0 for x 2 (a,b) iff f (x) is non-decreasing;

(ii) f 0(x)� 0 for x 2 (a,b) iff f (x) is non-increasing;

(iii) if f 0(x)> 0 for x 2 (a,b), then f (x) is strictly increasing;

(iv) if f 0(x)< 0 for x 2 (a,b), then f (x) is strictly decreasing.

A strictly increasing function f need not have f 0(x)> 0 for any x 2 (a,b), e.g., for
f (x) = x3 on R, f 0(0) = 0.
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Single Variable Calculus Differentiability

Chain Rule and the Mean Value Theorem

Theorem (Chain Rule)

If g is a function that is differentiable at a point c and f is a function that is differentiable
at g(c), then the composite function f �g is differentiable at c, and the derivative is

(f �g)0 (c) = f 0(g(c)) �g0(c),

or in short, (f �g)0 = (f 0 �g) �g0.

Theorem (MVT)

Let f : [a,b]!R be continuous on [a,b] and differentiable on (a,b). Then there exists
some c 2 (a,b) such that

f 0(c) =
f (b)� f (a)

b�a
.

Intuition: given a planar arc between two endpoints, there is at least one point at
which the tangent to the arc is parallel to the secant through its endpoints. [Figure
here]
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Single Variable Calculus Differentiability

Figure: Mean Value Theorem
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Single Variable Calculus Higher-order Derivatives

Higher-order Derivative

If f has a derivative f 0 on an interval, and if f 0 is itself differentiable, we denote the
derivative of f 0 by f 00 and call f 00 the second derivative of f .

Continuing in this manner, we obtain functions

f , f 0, f 00, f (3), � � � , f (k),

each of which is the derivative of the preceding one. f (k) is called the k th
derivative, or the derivative of order k , of f .
- In Leibniz’s notation, f (k)(x) = dk y

dxk , where y � f (x).
- For a curve, f 0 means its slope and f 00 mean its curvature; that is why
monotonicity and concavity of a function (which will be defined in Chapter 3) are
related to its first and second order derivatives, respectively.

Taylor’s theorem gives an approximation of a k times differentiable function around
a given point by a k -th order Taylor polynomial.
- We will not use this theorem in this course.

Ping Yu (HKU) Topology and Calculus 37 / 51



Single Variable Calculus Integrability

History of Riemann Integral

Georg F.B. Riemann (1826 - 1866), German2

2He was a student of Gauss.
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Single Variable Calculus Integrability

Riemann Integral

Let f : [a,b]!R. A partition of [a,b] is a finite sequence P =
�

xj
	n

j=0 such that
a= x0 < x1 < � � �< xn = b.

The Riemann sum of f with respect to the partition P is

n�1

∑
i=0

f (ti ) (xi+1�xi ) ,

where ti 2 [xi ,xi+1].
- each term represents the (signed) area of a rectangle with height f (ti ) and width
xi+1�xi . [Figure here]

The Riemann integral is the limit of the Riemann sums of a function as the
partitions get finer, and is often denoted as

R b
a f (x)dx . If the limit exists then the

function is said to be Riemann integrable.
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Single Variable Calculus Integrability

Figure: Riemann Sum
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Single Variable Calculus Integrability

Co-Inventers of Calculus

Isaac Newton (1642-1726), English Gottfried Leibniz (1646-1716), German

We usually say Newton and Leibniz invented calculus because they found the
fundamental theorem of calculus which links the concept of the derivative of a
function with the concept of the function’s integral.
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Single Variable Calculus Integrability

Fundamental Theorem of Calculus

Theorem (Fundamental Theorem of Calculus)

Part I: Let f : [a,b]!R be continuous , and F : [a,b]!R be defined, for all x 2 [a,b],
by

F (x) =
Z x

a
f (t)dt .

Then, F is differentiable on the open interval (a,b), and

F 0(x) = f (x)

for all x 2 (a,b). [Figure here]
Part II: Let f : [a,b]!R be Riemann integrable , and F : [a,b]!R be continuous and
F 0(x) = f (x) for all x 2 (a,b). ThenZ b

a
f (t)dt = F (b)�F (a).

Part I: guarantees the existence of (infinitely-many) antiderivatives (or indefinite
integrals) for continuous functions.
Part II: simplifies the computation of the definite integral of a function by any of its
indefinite integrals.
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Single Variable Calculus Integrability

Figure: Fundamental Theorem of Calculus: Part I

F 0(x) = lim∆x!0
F (x+∆x)�F (x)

∆x = lim∆x!0

R x+∆x
x f (t)dt

∆x = f (x).
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Multivariable Calculus

Multivariable Calculus
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Multivariable Calculus

Differentiability

The derivative f 0(x) when x 2R can be equivalently reexpressed as follows: there
exists a linear function f 0(x)h such that

lim
h!0

r (h)
h

� lim
h!0

f (x +h)� f (x)� f 0(x)h
h

= 0,

where r is for "remainder".

A function f : E !Rm is said to be differentiable at x if there exists a linear map
J : Rn !Rm such that

lim
h!0

kr(h)kRm

khkRn
� lim

h!0

kf(x+h)� f(x)�J (h)k
khk = 0,

where E is an open set in Rn, k�k is the Euclidean norm, J (h) = Jh , and the m�n
matrix J is called the Jacobian matrix at x. We write f0(x) = J. If f is differentiable
at every x 2 E , we say f is differentiable in E .

Notations: Matrices are represented using uppercase bold, e.g., J; Often, f0(x) are
denoted as Dx f (x) or Df (x).
- Note that J depends on x as all these notations indicate.

When m = n, J is square. Both the matrix and its determinant are referred to as
the Jacobian in literature.
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Multivariable Calculus

Partial Derivatives

The derivative defined above is often called the total derivative of f at x.

Problem: how to find J in practice?

Let f = (f1, � � � , fm)0. The partial derivative of fi at x with respect to the j-th variable
is defined as

∂ fi
∂xj

(x) = lim
h!0

fi (x1, � � � ,xj�1,xj +h,xj+1, � � � ,xn)� fi (x1, � � � ,xj�1,xj ,xj+1, � � � ,xn)

h

provided the limit exists.
- ∂ fi

∂xj
(x) measures how much fi would change when all other variables except xj

are fixed at x and only xj changes a little bit, so it is very useful in economics for
"ceteris paribus" analysis.

If f is differentiable at x, then all the partial derivatives at x exist, and

J =

0BB@
∂ f1
∂x1
(x) � � � ∂ f1

∂xn
(x)

...
. . .

...
∂ fm
∂x1
(x) � � � ∂ fm

∂xn
(x)

1CCA� ∂ f
∂x0

(x).
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Multivariable Calculus

Comparison of the Total and Partial Derivative

When m = 1, Df (x) is a 1�n (row) vector; we may intuitively express the total
derivative in the form of total differential,

dy =
∂ f

∂x1
(x)dx1+ � � �+

∂ f
∂xn

(x)dxn,

or equivalently,

dy
dx1

=
∂ f

∂x1
(x)+

∂ f
∂x2

(x)
dx2

dx1
+ � � �+ ∂ f

∂xn
(x)

dxn

dx1
.

Obviously, the total derivative must take into account of the change of (x2, � � � ,xn)
as x1 changes, which is dramatically different from the partial derivative.
In other words, the path of h ! 0 in Rn in the definition of total derivative is not
restricted while the path of h ! 0 in the definition of partial derivative ∂ fi /∂xj (x) is
restricted to be along the axis (i.e., hj ! 0 and hk = 0 if k 6= j). [Figure here, m= 1]

Even if all partial derivatives ∂ fi
∂xj
(x) exist at a given point x, f need not be (totally)

differentiable, or even continuous in the sense that lim
h!0

f(x+h) = f(x) (Exercise).

If all partial derivatives exist in a neighborhood of x and are continuous there, then
f is (totally) differentiable in that neighborhood and the total derivative is
continuous. In this case, it is said that f is a C1 function.
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Figure: Total Derivative, Partial Derivtive and Directional Derivative: Red Arrow for Total
Derivative, Blue Arrow for Directional Derivative, Black Arrows along y -axis for ∂ f /∂x2 (x) and
Black Arrows along x-axis for ∂ f /∂x1 (x)
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Multivariable Calculus

Young’s Theorem

The partial derivative ∂ fi /∂xj can be seen as another function defined on E and
can again be partially differentiated.

To simplify notations, suppose m = 1, i.e., f : E !R.

Problem: whether the order of differentiation matters, that is, whether
∂ 2f

∂xj ∂xi
(x)� ∂

∂xj

�
∂ f
∂xi
(x)
�

equals ∂ 2f
∂xi ∂xj

(x)� ∂

∂xi

�
∂ f
∂xj
(x)
�

.

Theorem (Young’s Theorem)

Let f : E !R, where E is an open set in Rn. If f has continuous second partial
derivatives at x, then

∂ 2f
∂xj ∂xi

(x) =
∂ 2f

∂xi ∂xj
(x).

If all mixed second order partial derivatives are continuous at a point (or on a set),
f is termed a C2 function at that point (or on that set).
- Intuition: C∞-plump/fat, C0 but not C1-slim/thin
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Multivariable Calculus

Hessian Matrix

Young’s theorem implies that for a C2 function f at x, the Hessian matrix f at x,
H (x), is symmetric, where

H (x)�

0BBBBBB@

∂ 2f
∂x2

1
(x) ∂ 2f

∂x1∂x2
(x) � � � ∂ 2f

∂x1∂xn
(x)

∂ 2f
∂x2∂x1

(x) ∂ 2f
∂x2

2
(x) � � � ∂ 2f

∂x2∂xn
(x)

...
...

. . .
...

∂ 2f
∂xn∂x1

(x) ∂ 2f
∂xn∂x2

(x) � � � ∂ 2f
∂x2

n
(x)

1CCCCCCA=
∂ 2f

∂x∂x0
(x)

with the (i, j)th element being ∂ 2f
∂xi ∂xj

(x).

The Hessian matrix of f at x is often denoted as D2
x f (x) or D2f (x).

As in the case of the Jacobian, the term "Hessian" unfortunately appears to be
used both to refer to this matrix and to the determinant of this matrix.
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Multivariable Calculus

Higher Order Partial Derivatives and Multiple Integral

As the higher-order derivatives in single variable calculas, we can similarly define
higher-order partial derivatives in multivariate calculus. Also, Taylor’s theorem can
be extended to the multivariate case.

We can also similarly define the multiple integralZ bn

an

� � �
Z b1

a1

f (x)dx1 � � �dxn

as in the single variable case.

Integrals of a function of two variables over a region in R2 are called double
integrals, and integrals of a function of three variables over a region of R3 are
called triple integrals. They can be used to calculate areas and volumes of regions
in the plane, respectively.
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