
Chapter 5. Introduction to Probability Theory�

This chapter introduces some elementary probability theory which is the base of statistical

inference in the next chapter. The foundations of modern probability theory were laid by Andrey

Nikolaevich Kolmogorov (1903-1987) in 1933. Related materials are Chapter 1-5 of Casella and

Berger (2002) and Appendix B of Hansen (2016). More advanced references include Ash (1972),

Feller (1968, 1970), Billingsley (1995), Chung (2001), Dudley (2002) and Durrett (2010) among

others.

1 Foundations

The set 
 of all possible outcomes of an experiment is called the sample space for the experiment.
Take the simple example of tossing a coin. There are two outcomes, heads and tails, so we can

write 
 = fH;Tg. If two coins are tossed in sequence, we can write the four outcomes as 
 =

fHH;HT; TH; TTg.
An event A is any collection of possible outcomes of an experiment. An event is a subset of 
,

including 
 itself and the null set ;. Continuing the two coin example, one event is A = fHH;HTg,
the event that the �rst coin is heads. We say that A and B are disjoint or mutually exclusive
if A \B = ;. For example, the sets fHH;HTg and fTHg are disjoint.

A probability function P assigns probabilities (numbers between 0 and 1) to events A in 
.
This is straightforward when 
 is countable; when 
 is uncountable we must be somewhat more

careful. A collection of sets, F , is called a sigma algebra (or �-�eld) if ; 2 F , A 2 F implies

Ac 2 F , and A1; A2; � � � 2 F implies [1i=1Ai 2 F . We only de�ne probabilities for events contained
in F . A simple example of F is f;;
g which is known as the trivial �-algebra. For any sample
space 
, let F be the smallest sigma algebra which contains all of the open sets in 
. When 
 is

countable, F is simply the collection of all subsets of F , including ; and 
. When 
 is the real line,
then F is the collection of all open and closed intervals. We call such an F the Borel �-algebra
associated with 
, and a set A 2 F a Borel (measurable) set.

We now can give the axiomatic de�nition of probability. Given 
 and F , a probability function
P satis�es P (
) = 1, P (A) � 0 for all A 2 F , and if A1; A2; � � � 2 F are pairwise disjoint, then

P ([1i=1Ai) =
Pn
i=1 P (Ai).

Some important properties of the probability function include the following

1. P (;) = 0
�Email: pingyu@hku.hk
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2. P (A) � 1

3. P (Ac) = 1� P (A)

4. P (B \Ac) = P (B)� P (A \B)

5. P (A [B) = P (A) + P (B)� P (A \B)

6. If A � B then P (A) � P (B)

7. Bonferroni�s Inequality: P (A \B) � P (A) + P (B)� 1

8. Boole�s Inequality: P (A [B) � P (A) + P (B)

2 Random Variables

A random variable (r.v.) X is a measurable function from a sample space 
 into the real line,

i.e., for any Borel set A in R, the inverse image of A is in F . This induces a new sample space - the
real line - and a new probability function on the real line. Typically, we denote r.v.�s by uppercase

letters such as X, and use lowercase letters such as x for potential values and realized values. For

a r.v. X we de�ne its cumulative distribution function (cdf) as

F (x) = P (X � x):

Sometimes we write this as FX(x) to denote that it is the cdf of X.

We say that the r.v. X is discrete if F (x) is a step function. In this case, X can take only a

countable set of real numbers x1; � � � ; xJ , where J can be 1. The probability function for X takes

the form of the probability mass function (pmf)

P (X = xj) = pj , j = 1; � � � ; J; (1)

where 0 � pj � 1 and
PJ
j=1 pj = 1. The cdf of X is F (x) =

PJ
j=1 pj1(xj � x), where 1(�) is the

indicator function which equals one when the event in the parenthesis is true and zero otherwise.

A famous discrete r.v. is the Bernoulli r.v., where J = 2, x1 = 0, x2 = 1, p2 = p and p1 = 1 � p.
We say that the r.v. X is continuous if F (x) is continuous in x. In this case P (X = x) = 0 for

all x 2 R so the representation (1) is unavailable. Instead, we represent the relative probabilities
by the probability density function (pdf)

f(x) =
d

dx
F (x)

so that

F (x) =

Z x

�1
f(u)du
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and

P (a � X � b) =
Z b

a
f(u)du:

These expressions make sense only if F (x) is di¤erentiable. While there are examples of continuous

r.v.�s which do not possess a pdf, these cases are unusual and are typically ignored. A function

f(x) is a pdf i¤ f(x) � 0 for all x 2 R and
R1
�1 f(x)dx = 1. One famous continuous r.v. is

the normal r.v. which will be discussed in Section 6. Another famous continuous r.v. is the

standard uniform r.v. whose pdf is f(x) = 1 (0 � x � 1), i.e., X can occur only on [0; 1] and

occurs uniformly. We denote X � U [0; 1]. A generalization is the uniform r.v. on [a; b], a < b,

whose pdf is f(x) = 1 (a � x � b) =(b� a). We denote X � U [a; b].

3 Expectation

For any real function g, we de�ne the mean or expectation E [g(X)] as follows. If X is discrete,

E [g(X)] =

JX
j=1

g(xj)pj ;

and if X is continuous

E [g(X)] =

Z 1

�1
g(x)f(x)dx:

To cover both the discrete and continuous case (and even more general cases), we often write

E [g(X)] as a Riemann-Stieltjes integral
R
g(x)dF (x) (why intuitively correct? see Chapter 1).

Since E [a+ bX] = a+ b � E [X], we say that expectation is a linear operator.
For m > 0, we de�ne the mth moment of X as E [Xm], the mth central moment as

E [(X � E[X])m], the mth absolute moment of X as E [jXjm], and the mth absolute central
moment as E [jX � E[X]jm].

Two special moments are themean � = E[X] and variance �2 = E
h
(X � �)2

i
= E

�
X2
�
��2.

We call � =
p
�2 the standard deviation of X. We can also write �2 = V ar(X). For example,

this allows the convenient expression V ar(a+ bX) = b2V ar(X).

For a r.v. X, the standardized r.v. is de�ned as

Z =
X � �
�

=
X

�
� �
�
:

Let a = ��=� anb b = 1=�, we have

E [Z] = ��
�
+
1

�
� = 0;

and

V ar (Z) =
V ar (X)

�2
= 1:

This transformation is frequently used in statistical inference.

3



Skewness is a measure of asymmetry of a distribution. For a r.v. X, its skewness is de�ned as

E
�
Z3
�
=

E[(X��)3]
�3

. If X has a symmetric distribution about �, then its skewness is zero. If X has

a long right tail, then its skewness is positive, and X is called positive- (or right-) skewed. If
X has a long left tail, then its skewness is negative, and X is called negative- (or left-) skewed.
Kurtosis is a measure of the heavy-tailedness of a distribution. For a r.v. X, its kurtosis is de�ned

as E
�
Z4
�
=

E[(X��)4]
�4

. The normal distribution has kurtosis 3: E
�
Z4
�
= 3. If the kurtosis of a

distribution is greater than 3, then it is called heavy-tailed or leptokurtoic.

4 Multivariate Random Variables

A pair of bivariate r.v.�s (X;Y ) is a function from the sample space into R2. The joint cdf of (X;Y )
is

F (x; y) = P (X � x; Y � y) :

If F is continuous, the joint probability density function is

f(x; y) =
@2

@x@y
F (x; y):

For a Borel measurable set A � R2,

P ((X;Y ) 2 A) =
Z Z

A
f(x; y)dxdy:

For any measurable function g(x; y),

E [g(X;Y )] =

Z 1

�1

Z 1

�1
g(x; y)f(x; y)dxdy:

The marginal distribution of X is

FX(x) = P (X � x) = lim
y!1

F (x; y) =

Z x

�1

Z 1

�1
f(x; y)dydx;

so the marginal density of X is

fX(x) =
d

dx
FX(x) =

Z 1

�1
f(x; y)dy:

Similarly, the marginal density of Y is

fY (y) =

Z 1

�1
f(x; y)dx:

The r.v.�s X and Y are de�ned to be independent if f(x; y) = fX(x)fY (y). If X and Y are
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independent, then

E [g(X)h(Y )] =

Z 1

�1

Z 1

�1
g(x)h(y)f(x; y)dxdy (2)

=

Z 1

�1

Z 1

�1
g(x)h(y)fX(x)fY (y)dxdy

=

Z 1

�1
g(x)fX(x)dx

Z 1

�1
h(y)fY (y)dy

= E [g(X)]E [h(Y )] ;

if the expectations exist. For example, if X and Y are independent then

E [XY ] = E [X]E [Y ] :

The covariance between X and Y is

Cov(X;Y ) = �XY = E [(X � E [X]) (Y � E [Y ])] = E [XY ]� E [X]E [Y ] ;

whose unit is the unit of X times the unit of Y . The correlation between X and Y is

Corr(X;Y ) = �XY =
�XY
�X�Y

:

The Cauchy-Schwarz Inequality implies that

j�XY j � 1:

The correlation is a measure of linear dependence, free of units of measurement.

If X and Y are independent, then �XY = 0 and �XY = 0. The reverse, however, is not true.

For example, if E [X] = 0 and E
�
X3
�
= 0, then Cov(X;X2) = 0.

A useful fact is that

V ar(X + Y ) = V ar(X) + V ar(Y ) + 2Cov(X;Y ):

An implication is that if X and Y are independent, then

V ar(X + Y ) = V ar(X) + V ar(Y );

the variance of the sum is the sum of the variances.

A k � 1 random vector X = (X1; � � � ; Xk)0 is a function from 
 to Rk. Let x = (x1; � � � ; xk)0

denote a vector in Rk. The vector X has the distribution and density functions

F (x) = P (X � x) ;

f(x) =
@k

@x1 � � � @xk
F (x):

5



For a measurable function g : Rk ! Rs, we de�ne the expectation

E [g(X)] =

Z
Rk
g(x)f(x)dx;

where the symbol dx denotes dx1 � � � dxk. In particular, we have the k � 1 multivariate mean

� = E [X]

and k � k covariance matrix

� = E
�
(X � �) (X � �)0

�
= E

�
XX 0�� ��0:

If the elements of X are mutually independent, then � is a diagonal matrix and

V ar

 
kX
i=1

Xi

!
=

kX
i=1

V ar (Xi) :

5 Conditional Distributions and Expectation

The conditional density of Y given X = x is de�ned as

fY jX(yjx) =
f(x; y)

fX(x)

if fX(x) > 0.

The conditional mean or conditional expectation is the function

m(x) = E [Y jX = x] =

Z 1

�1
yfY jX(yjx)dy:

The conditional mean m(x) is a function, meaning that when X equals x, then the expected value

of Y is m(x). Similarly, we de�ne the conditional variance of Y given X = x as

�2(x) = V ar (Y jX = x)

= E
h
(Y �m(x))2

���X = x
i

= E
�
Y 2
��X = x

�
�m(x)2:

If Y and X are independent, then E [Y jX = x] = E [Y ] and V ar (Y jX = x) = V ar (Y ). (why?)
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6 Normal and Related Distributions

The standard normal density is

�(x) =
1p
2�
exp

�
�x

2

2

�
;�1 < x <1:

It is conventional to write X � N(0; 1), and to denote the standard normal density function by

�(x) and its distribution function by �(x). The latter has no closed-form solution. The normal

density has all moments �nite. Since it is symmetric about zero all odd moments are zero. By

iterated integration by parts, we can also show that E
�
X2
�
= 1 and E

�
X4
�
= 3. In fact, for any

positive integer m, E
�
X2m

�
= (2m�1)!! = (2m�1)(2m�3) � � � 1. Thus E

�
X4
�
= 3, E

�
X6
�
= 15,

E
�
X8
�
= 105, and E

�
X10

�
= 945.

If Z is standard normal and X = �+ �Z, then X has density

f(x) =
1p
2��

exp

 
�(x� �)

2

2�2

!
;�1 < x <1:

which is the univariate normal density. The mean and variance of the distribution are � and
�2, and it is conventional to write X � N(�; �2).

For x 2 Rk, the multivariate normal density is

f(x) =
1

p
2� det (�)1=2

exp

�
�(x� �)

0��1 (x� �)
2

�
;x 2 Rk:

The mean and covariance matrix of the distribution are � and �. When X has the multivariate

normal density, we call X follows the multivariate normal distribution and write X � N(�;�).
If X 2 Rk is multivariate normal and the elements of X are mutually uncorrelated, then � =

diag
n
�2j

o
is a diagonal matrix. In this case the density function can be written as

f(x) =
1p

2��1 � � ��k
exp

 
�(x1 � �1)

2 =�21 + � � �+ (xk � �k)
2 =�2k

2

!

=

kY
j=1

1p
2��j

exp

 
�
�
xj � �j

�2
2�2j

!
;

which is the product of marginal univariate normal densities. This shows that if X is multivariate

normal with uncorrelated elements, then they are mutually independent.

Theorem 1 If X � N (�;�) is a k-dimensional multivariate normal vector, and Y = a +BX,

where B is an m� k matrix with full row rank, then Y � N (a+B�;B�B0) is a m-dimensional
multivariate normal vector.

Theorem 2 LetX � N (0; Ir). Then Q =X 0X is distributed chi-square with r degrees of freedom,

written as �2r.
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Figure 1: Chi-Square Density for r = 1; 2; 3; 4; 6; 9

Theorem 3 If Z � N (0;A) with A > 0, q � q, then Z 0A�1Z � �2q.

Theorem 4 Let Z � N(0; 1) and Q � �2r be independent. Then Tr = Z=
p
Q=r is distributed as

student�s t with r degrees of freedom.

Remark 1 T1 � N(0; 1). E[Tr] = 0 for r > 1 and V ar (Tr) = r=(r � 2) for r > 2.

Theorem 5 Let P � �2q and Q � �2r be independent. Then Fq;r =
P=q
Q=r is distributed as Fisher�s

F distribution with q and r degrees of freedom.

Remark 2 qFq;1 � �2q.
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Figure 2: Density of the t Distribution for r = 1; 2; 5;1
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Figure 3: Density of the F Distribution for (q; r) = (1; 1) ; (2; 1) ; (5; 2) ; (10; 1) ; (100; 100)
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