
Chapter 4. Maximum Theorem, Implicit Function Theorem

and Envelope Theorem�

This chapter will cover three key theorems: the maximum theorem (or the theorem of maxi-

mum), the implicit function theorem, and the envelope theorem. The maximum theorem studies

the continuity of the optimizer and optimum, the implicit function theorem studies the di¤eren-

tiablity of the optimizer, and the envelope theorem studies the di¤erentiablity of the optimum,

all with respect to a group of parameters. The maximum theorem was �rst stated and proven by

Claude Berge (1959; 1963, p. 116). Augustin-Louis Cauchy is credited with the �rst rigorous form

of the implicit function theorem. As to the envelope theorem, the clues of inventors are not very

clear; see Löfgren (2011) for a summary of its history.

In the previous two chapters, we are "moving along a curve", that is, the objective function
f and the feasible set G are given (or the parameter value is given) and we are searching over x

along f to �nd the optimal x�. On the contrary, we are "shifting a curve" in this chapter, i.e., we
change the parameter values to shift f and G, and check how the optimizer and optimum respond

to such shifting.

Related materials of this chapter can be found in Chapter 19.1, 19.2 and 19.4 of Simon and

Blume (1994) and Chapter 9 of Sundaram (1996).

1 The Maximum Theorem

Often in economics we are not so much interested in what the solution to a particular maximization

problem is but rather wish to know how the solution to a parameterized problem depends on the

parameters. Thus in our example of utility maximization in Section 1.1 of Chapter 2 we might be

interested not so much in what the solution to the maximization problem is when p1 = 2, p2 = 7,

and y = 25, but rather in how the solution depends on p1, p2, and y. (That is, we might be

interested in the demand function.) Sometimes we shall also be interested in how the maximized

function depends on the parameters - in the example how the maximized utility depends on p1, p2,

and y.

This raises a number of questions. In order for us to speak meaningfully of a demand function

it should be the case that the maximization problem has a unique solution. Further, we would like

to know if the �demand�function is continuous - or even if it is di¤erentiable. Consider again the
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equality-constrained maximization problem, but this time let us explicitly add some parameters.

max
x1;��� ;xn

f(x1; � � � ; xn; a1; � � � ; ak)

s.t. g1(x1; � � � ; xn; a1; � � � ; ak) = c1;
...

gm(x1; � � � ; xn; a1; � � � ; ak) = cm:

(1)

The uniqueness problem is studied in the last chapter. Now let v(a1; � � � ; ak) be the maximized
value of f when the parameters are (a1; � � � ; ak). Let us suppose that the problem is such that the

solution is unique and that (x�1(a1; � � � ; ak); � � � ; x�n(a1; � � � ; ak)) are the values that maximize the
function f when the parameters are a � (a1; � � � ; ak)0; then

v(a1; � � � ; ak) = f(x�1(a1; � � � ; ak); � � � ; x�n(a1; � � � ; ak); a1; � � � ; ak):

(Notice however that the function v is uniquely de�ned even if there is not a unique maximizer.)

The Maximum Theorem gives conditions on the problem under which the function v and the

functions x�1; � � � ; x�n are continuous in a. The constraints in the problem (1) de�ne a set of feasible

vectors x over which the function f is to be maximized. Let us call this set G(a1; � � � ; ak), i.e.,

G(a1; � � � ; ak) = f(x1; � � � ; xn) j gj(x1; � � � ; xn; a1; � � � ; ak) = cj , 8 jg:

Now we can restate the problem as

max
x1;��� ;xn

f(x1; � � � ; xn; a1; � � � ; ak)

s.t. (x1; � � � ; xn) 2 G(a1; � � � ; ak):
(2)

Notice that both the function f and the feasible set G depend on the parameters a, i.e., both

may change as a changes. The Maximum Theorem requires both that the function f be continuous

as a function of x and a and that the feasible set G(a1; � � � ; ak) change continuously as a changes.
We already know what it means for f to be continuous but the notion of what it means for a set to

change continuously is less elementary. We call G a set valued function or a correspondence.
G associates with any vector (a1; � � � ; ak) a subset of the vectors (x1; � � � ; xn). The following two
de�nitions de�ne what we mean by a correspondence being continuous. First we de�ne what it

means for two sets to be close.

De�nition 1 Two sets of vectors A and B are within � of each other if for any vector x in one
set there is a vector x0 in the other set such that x0 2 B� (x).

We can now de�ne the continuity of the correspondence G in essentially the same way that we

de�ne the continuity of a single valued function.

De�nition 2 The correspondence G is continuous at (a1; � � � ; ak) if 8 � > 0, 9 � > 0 such that
if (a01; � � � ; a0k) is within � of (a1; � � � ; ak) then G(a01; � � � ; a0k) is within � of G(a1; � � � ; ak).
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Figure 1: Continuous and Discontinuous Correspondence

Remark 1 If G is a function, then the continuity of G as a correspondence is equivalent to the

continuity as a function. Figure 1 shows some cases where G is continuous and discontinuous.

It is, unfortunately, not the case that the continuity of the functions gj necessarily implies the

continuity of the feasible set. (Exercise 1 asks you to construct a counterexample.)

We are now in a position to state the Maximum Theorem. We assume that f is a continuous

function, that G is a continuous correspondence, and that for any (a1; � � � ; ak) the set G(a1; � � � ; ak)
is compact. The Weierstrass Theorem thus guarantees that there is a solution to the maximization

problem (2) for any (a1; � � � ; ak).

Theorem 1 (The Maximum Theorem) Suppose that f(x1; � � � ; xn; a1; � � � ; ak) is continuous
(in (x1; � � � ; xn; a1; � � � ; ak)), that G(a1; � � � ; ak) is a continuous correspondence, and that for any
(a1; � � � ; ak) the set G(a1; � � � ; ak) is compact. Then

(i) v(a1; � � � ; ak) is continuous, and

(ii) if (x�1(a1; � � � ; ak); � � � ; x�n(a1; � � � ; ak)) are (single valued) functions then they are also contin-
uous.

Our maximum theorem assumes x�(a1; � � � ; ak) to be single valued, which can be achieved by our
uniqueness theorem from Chapter 3. If x�(a1; � � � ; ak) is set valued, then we can show x�(a1; � � � ; ak)
is a upper hemicontinuous correspondence, where the concept of upper hemicontinuity is not
introduced to avoid further complication. Nevertheless, a single-valued upper hemicontinuous cor-

respondence must be a continuous function; this is the second result of the maximum theorem.
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Exercise 1 Show by example that even if the functions gj are continuous the correspondence G
may not be continuous. [Hint: Use the case n = m = k = 1.]

2 The Implicit Function Theorem

In Chapter 2 we said things like: �Now we have three equations in x�1; x
�
2, and the new arti�cial or

auxiliary variable �. Again we can, perhaps, solve these equations for x�1; x
�
2, and �.�In this section

we examine the question of when we can solve a system of n equations to give n of the variable in

terms of the others. Let us suppose that we have n endogenous variables x1; : : : ; xn, m exogenous

variables or parameters, b1; : : : ; bm, and n equations or equilibrium conditions

f1(x1; � � � ; xn; b1; � � � ; bm) = 0;
f2(x1; � � � ; xn; b1; � � � ; bm) = 0;

...

fn(x1; � � � ; xn; b1; � � � ; bm) = 0;

(3)

or, using vector notation,

f(x;b) = 0;

where f : Rn+m ! Rn, x 2 Rn, b 2 Rm, and 0 2 Rn.
When can we solve this system to obtain functions giving each xi as a function of b1; : : : ; bm?

As we�ll see below we only give an incomplete answer to this question, but �rst let�s look at the

case that the function f is a linear function. Suppose that our equations are

a11x1 + � � �+ a1nxn + c11b1 + � � �+ c1mbm = 0;
a21x1 + � � �+ a2nxn + c21b1 + � � �+ c2mbm = 0;

...

an1x1 + � � �+ annxn + cn1b1 + � � �+ cnmbm = 0:

We can write this, in matrix notation, as

[A j C]
 
x

b

!
= 0;

where A is an n�n matrix, C is an n�m matrix, x is an n�1 (column) vector, and b is an m�1
vector. This we can rewrite as

Ax+Cb = 0;

and solve this to give

x = �A�1Cb:

And we can do this as long as the matrix A can be inverted, that is, as long as the matrix A is of
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Figure 2: Intuition for the Implicit Function Theorem

full rank. As a result,
@x

@b0
= �A�1C:

Our answer to the general question in which the function f may not be linear is that if there

are some values (�x; �b) for which f(�x; �b) = 0 then if, when we take a linear approximation to f

we can solve the approximate linear system as we did above, then we can solve the true nonlinear

system, at least in a neighborhood of (�x; �b). By this last phrase we mean that if b is not close to
�b we may not be able to solve the system, and that for a particular value of b there may be many

values of x that solve the system, but there is only one close to �x.

To see why we can�t, in general, do better than this consider the equation f : R2 ! R given by
f(x; b) = g(x)� b, where the function g is graphed in Figure 2. Notice that the values (�x;�b) satisfy
the equation f(x; b) = 0. For all values of b close to �b we can �nd a unique value of x close to �x

such that f(x; b) = 0. However, (1) for each value of b there are other values of x far away from �x

that also satisfy f(x; b) = 0, and (2) there are values of b, such as ~b for which there are no values

of x that satisfy f(x; b) = 0.

Let us consider again the system of equations (3).

Theorem 2 (Implicit Function Theorem) Suppose that f : Rn+m ! Rn is a C1 function on
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an open set A � Rn+m and that (�x; �b) in A is such that f(�x; �b) = 0. Suppose also that

@f(�x; �b)

@x0
=

0BB@
@f1(�x;�b)
@x1

� � � @f1(�x;�b)
@xn

...
. . .

...
@fn(�x;�b)
@x1

� � � @fn(�x;�b)
@xn

1CCA
is of full rank. Then there are open sets A1 � Rn and A2 � Rm with x 2 A1, b 2 A2 and

A1 � A2 � A such that for each b in A2 there is exactly one g(b) in A1 such that f(g(b);b) = 0.
Moreover, g : A2 ! A1 is a C1 function and�

@g(b)

@b0

�
n�m

= �
�
@f(g(b);b)

@x0

��1
n�n

�
@f(g(b);b)

@b0

�
n�m

;

or more compactly,

Dbg(b) = � [Dxf(g(b);b)]�1Dbf(g(b);b):

How to understand this theorem? For (x;b) in a neighborhood of (x;b) such that f(x;b) = 0

with x = g(b), by totally di¤erentiating the system of equations with respect to b, we have

@f(g(b);b)

@x0
@g(b)

@b0
+
@f(g(b);b)

@b0
= 0n�m;

so
@g(b)

@b0
= �

�
@f(g(b);b)

@x0

��1 �@f(g(b);b)
@b0

�
:

In summary, the implicit function theorem (IFT) is a local result, rather than a global result.1

The IFT does not provide conditions to guarantee the existence of (x;b) such that f(x;b) = 0;

rather, it provides conditions such that if such an (x;b) exists, then we can also uniquely solve

f(x;b) = 0 in its neighborhood. So the most important application of the IFT is to obtain @g(b)
@b0

rather than guarantee the existence or uniqueness of the solution; this is so-called comparative
statics.

Suppose the equality-constrained problem we are considering is

max
x

f(x; c)

s.t. h(x;d) = 0;

where x 2 Rn, c 2 RL, d 2 RM , and h 2 RK . We can also assume there is some overlap between
c and d. Form the Lagrangian

L(x;�; c;d) = f(x; c) + � � h(x;d);
1For a global result, see Gale and Nikaido (1965) and Berry et al. (2013).
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then the FOCs are

@L
@x
(x�;��; c;d) =

@f

@x
(x�; c) +

@h(x�;d)0

@x
�� = 0;

@L
@�
(x�;��; c;d) = h(x�;d) = 0:

Casting in the notation of the IFT,

f(x;b) =

 
@f
@x(x; c) +

@h(x;d)0

@x �

h(x;d)

!
= Dx;�L(x�;��; c;d)0;

where x � (x;�), b � (c;d), n � n + K, and m � (L+M), i.e., there are (n + K) unknowns

(x;�) and (L+M) parameters. Suppose f and h are C2 functions; then f(x;b) is a C1 function

as required by the IFT. Suppose that (x�;��) satis�es 
@f
@x(x

�; c) + @h(x�;d)0

@x ��

h(x�;d)

!
= 0;

and  
D2xf(x

�; c) +D2x (h(x
�;d)0��) (Dxh(x

�;d))0

Dxh(x
�;d) 0K�K

!

is of full rank, where D2x (h(x
�;d)0��) =

PK
k=1 �

�
k

�
D2xhk(x

�;d)
�
. Then the assumptions of the IFT

are satis�ed, and we can apply the theorem to have

@
�
x�0;��0

�0
@ (c0;d0)

= �
 
D2xf(x

�; c) +D2x (h(x
�;d)0��) (Dxh(x

�;d))0

Dxh(x
�;d) 0K�K

!�1 @2f
@x@c0 (x

�; c) @h(x�;d)0��

@x@d0

0K�L
@h(x�;d)
@d0

!
;

where (x�;��) are treated as functions of (c;d). It is interesting to observe that D2xf(x
�; c) +

D2x (h(x
�;d)0��) is exactly D2xL(x�;��; c;d) in Section 3 of Chapter 3, the �rst matrix on the right

hand side is D2x;�L(x�;�
�; c;d), and the second matrix is @2L(x�;��;c;d)

@(x0;�0)0@(c0;d0)
.

We use the following example to illustrate the application of the IFT in the comparative static

analysis.

Example 1 The seller of a product pays a proportional tax at a �at rate � 2 (0; 1). Hence, the
e¤ective price received by the seller is (1� �)P , where P is the market price for the good. Market

supply and demand are given by the di¤erentiable functions

Qd = D(P ), with D0(�) < 0
Qs = S((1� �)P ), with S0(�) > 0

and equilibrium requires market clearing, that is, Qs = Qd. Analyze, graphically and analytically,

the e¤ects of a decrease in the tax rate on the quantity transacted and the equilibrium price.
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Solution: Market clearing requires

S((1� �)P ) = D(P ): (4)

This equation implicitly de�nes the equilibrium price as a function P � = P (�) of the parameter �.

Substituting the solution function P (�) back into (4), we have the identity

S [(1� �)P (�)] = D [P (�)] :

Applying the IFT directly with f(P; �) = D [P (�)]� S [(1� �)P (�)], we have

P 0 (�) =
�PS0 (�)

D0 (�)� (1� �)S0 (�) =
(�)
(�) > 0:

Next, the quantity transacted in equilibrium is given by Q� = D [P (�)], and therefore

dQ�

d�
= D0 (P �)P 0 (�) < 0:

Graphically, a reduction in the tax rate increases the e¤ective price received by sellers for any given

market price; these are therefore willing to sell any given quantity at a lower market price. Hence

the supply curve shifts down. The equilibrium price falls, and the equilibrium quantity increases,

as shown in Figure 3. �

Quantity

Pr
ic

e

Figure 3: E¤ect of a Tax Reduction
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Exercise 2 Consider the general utility maximization problem

max
x1;��� ;xn

u(x1; � � � ; xn)

s.t. p1x1 + � � �+ pnxn = w:

Suppose that for some price vector �p the maximization problem has a utility maximizing bundle �x.

Find conditions on the utility function such that in a neighborhood of (�x; �p) we can solve for the

demand functions x(p). Find the derivatives of the demand functions, @x=@p0.

Exercise 3 Now suppose that there are only two goods and the utility function is given by

u(x1; x2) = (x1)
1
3 (x2)

2
3 :

Solve this utility maximization problem, as you learned to do in Chapter 2, and then di¤erentiate

the demand functions that you �nd to �nd the partial derivative with respect to p1, p2, and w of

each demand function. Also �nd the same derivatives using the method of the previous exercise.

3 The Envelope Theorem

In this section we examine a theorem that is particularly useful in the study of consumer and

producer theory. There is in fact nothing mysterious about this theorem. You will see that the

proof of this theorem is simply calculation and a number of substitutions. Moreover the theorem

has a very clear intuition. It is this: Suppose we are at a maximum (in an unconstrained problem)

and we change the data of the problem by a very small amount. Now both the solution of the

problem and the value at the maximum will change. However at a maximum the function is �at

(the �rst derivative is zero). Thus when we want to know by how much the maximized value has

changed it does not matter (very much) whether or not we take account of how the maximizer

changes or not. See Figure 4. The intuition for a constrained problem is similar and only a little

more complicated.

To motivate our discussion of the Envelope Theorem we will �rst consider a particular case, viz.,

the relation between short and long run average cost curves. Recall that, in general we assume that

the average cost of producing some good is a function of the amount of the good to be produced.

The short run average cost function is de�ned to be the function which for any quantity, Q, gives

the average cost of producing that quantity, taking as given the scale of operation, i.e., the size

and number of plants and other �xed capital which we assume cannot be changed in the short run

(whatever that is). The long run average cost function on the other hand gives, as a function of Q,

the average cost of producing Q units of the good, with the scale of operation selected to be the

optimal scale for that level of production.

That is, if we let the scale of operation be measured by a single variable k, say, and we let the

short run average cost of producing Q units when the scale is k be given by SRAC(Q; k) and the
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Figure 4: Intuition for the Envelope Theorem

long run average cost of producing Q units by LRAC(Q) then we have

LRAC(Q) = min
k
SRAC(Q; k):

Let us denote, for a given value Q, the optimal level of k by k(Q). That is, k(Q) is the value of k

that minimizes the right hand side of the above equation.

Graphically, for any �xed level of k the short run average cost function can be represented by a

curve (normally assumed to be U-shaped) drawn in two dimensions with quantity on the horizontal

axis and cost on the vertical axis. Now think about drawing one short run average cost curve for

each of the (in�nite) possible values of k. One way of thinking about the long run average cost

curve is as the �bottom� or envelope of these short run average cost curves. Suppose that we

consider a point on this long run or envelope curve. What can be said about the slope of the long

run average cost curve at this point. A little thought should convince you that it should be the

same as the slope of the short run curve through the same point. (If it were not then that short

run curve would come below the long run curve, a contradiction.) That is,

d LRAC(Q)

dQ
=
@ SRAC(Q; k(Q))

@Q
:

See Figure 5.

The envelope theorem is a general statement of the result of which this is a special case. We
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Figure 5: The Relationship Between SRAC and LRAC

will consider not only cases in which Q and k are vectors, but also cases in which the maximization

or minimization problem includes some constraints.

Let us consider again the maximization problem (1). Let L(x1; � � � ; xn; �1; � � � ; �m; a1; � � � ; ak)
be the Lagrangian function:

L(x1; � � � ; xn; �1; � � � ; �m; a1; � � � ; ak) = f(x1; � � � ; xn; a1; � � � ; ak)+
mX
j=1

�j(cj�gj(x1; � � � ; xn; a1; � � � ; ak)):

Let (x�1(a1; � � � ; ak); � � � ; x�n(a1; � � � ; ak)) and (��1(a1; � � � ; ak); � � � ; ��m(a1; � � � ; ak)) be the values of
x and � that solve this problem. Now let

v(a1; � � � ; ak) = f(x�1(a1; � � � ; ak); � � � ; x�n(a1; � � � ; ak); a1; � � � ; ak):

That is, v(a1; � � � ; ak) is the maximized value of the function f when the parameters are (a1; � � � ; ak).
The envelope theorem says that the derivative of v is equal to the derivative of L at the maximizing
values of x and �. Or, more precisely

Theorem 3 (The Envelope Theorem) If all functions are de�ned as above and the problem is
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such that the functions x� and �� are well de�ned, then

@v

@ah
(a1; � � � ; ak) =

@L
@ah

(x�1(a1; � � � ; ak); � � � ; x�n(a1; � � � ; ak); ��1(a1; � � � ; ak); � � � ; ��m(a1; � � � ; ak); a1; � � � ; ak)

=
@f

@ah
(x�1(a1; � � � ; ak); � � � ; x�n(a1; � � � ; ak); a1; � � � ; ak)

�
mX
j=1

��j (a1; � � � ; ak)
@gh
@ah

(x�1(a1; � � � ; ak); � � � ; x�n(a1; � � � ; ak); a1; � � � ; ak)

for all h.

In order to show the advantages of using matrix and vector notation we shall restate the theorem

in that notation before returning to give a proof of the theorem. (In proving the theorem we shall

return to using mainly scalar notation.)

@v

@a
(a) =

@L
@a
(x�(a);��(a);a)

=
@f

@a
(x�(a);a)� @g(x

�(a);a)0

@a
��(a):

Proof. From the de�nition of the function v we have

v(a1; � � � ; ak) = f(x�1(a1; � � � ; ak); � � � ; x�n(a1; � � � ; ak); a1; � � � ; ak):

Thus
@v

@ah
(a) =

@f

@ah
(x�(a);a) +

nX
i=1

@f

@xi
(x�(a);a)

@x�i
@ah

(a): (5)

Now, from the FOCs we have

@f

@xi
(x�(a);a)�

mX
j=1

�j(a)
@gj
@xi

(x�(a);a) = 0:

Or
@f

@xi
(x�(a);a) =

mX
j=1

�j(a)
@gj
@xi

(x�(a);a): (6)

Also, since x�(a) satis�es the constraints we have, for each j

gj(x
�
1(a); � � � ; x�n(a); a1; � � � ; ak) = cj :

And, since this holds as an identity, we may di¤erentiate both sides with respect to ah giving

nX
i=1

@gj
@xi

(x�(a);a)
@x�i
@ah

(a) +
@gj
@ah

(x�(a);a) = 0:
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Or
nX
i=1

@gj
@xi

(x�(a);a)
@x�i
@ah

(a) = � @gj
@ah

(x�(a);a): (7)

Substituting (6) into (5) gives

@v

@ah
(a) =

@f

@ah
(x�(a);a) +

nX
i=1

24 mX
j=1

�j(a)
@gj
@xi

(x�(a);a)

35 @x�i
@ah

(a):

Changing the order of summation gives

@v

@ah
(a) =

@f

@ah
(x�(a);a) +

mX
j=1

�j(a)

"
nX
i=1

@gj
@xi

(x�(a);a)
@x�i
@ah

(a)

#
: (8)

And now substituting (7) into (8) gives

@v

@ah
(a) =

@f

@ah
(x�(a);a)�

mX
j=1

�j(a)
@gj
@ah

(x�(a);a);

which is the required result.

Exercise 4 Rewrite this proof using matrix notation. Go through your proof and identify the

dimension of each of the vectors or matrices you use. For example, Dxf is a 1 � n vector, and
Dxg is an m� n matrix.

In microeconomics, Hotelling�s Theorem, Hicks-Slutsky equations and Roy�s Theorem in con-

sumer theorem, Hotelling�s lemma in production theory, and Shephard�s lemma in both consumer

and production theory are all straightforward applications of the envelope theorem.

3.1 Interpretation of the Lagrange Multiplier

A straightforward corollary of the envelope theorem is the meaning of the Lagrange multiplier. We

have actually already interpreted the Lagrange multiplier intuitively as the penalty on violating the

constraint in Section 1.1 of Chapter 2; here is a more rigorous statement. Treating cj , j = 1; � � � ;m,
also as parameters, then by the envelope theorem,

@v

@cj
(a1; � � � ; ak; c1; � � � ; cm) = ��j (a1; � � � ; ak; c1; � � � ; cm):

How to understand this result? Think of f as the pro�t function of a �rm, the gj equation as

the resource constraint, and cj as the amount of input j available to the �rm. In this situation,
@v
@cj
(a1; � � � ; ak; c1; � � � ; cm) represents the change in the optimal pro�t resulting from availability of

one more unit of input j. Alternatively, it tells the maximum amount the �rm would be willing to

pay to acquire another unit of input j. For this reason, ��j is often called the internal value or
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imputed value, or more frequently, the shadow price of input j. It may be a more important
index to the �rm than the external market price of input j.

We consider only the equality-constrained problem in this chapter. All the results can be

extended to the inequality-constrained problems. For example, in the envelope theorem, if some

inequality constraint is not binding, then the corresponding multiplier is zero, and we can consider

only the binding constraints without loss of generality.
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