
Chapter 3. Convex Sets and Concave Functions�

Convexity is one of the most important mathematical properties in economics. For example,

without convexity of preferences, demand and supply functions are not continuous, and so com-

petitive markets generally do not have equilibrium points. The economic interpretation of convex

preference sets in consumer theory is diminishing marginal rates of substitution; the interpretation

of convex production sets is constant or decreasing returns to scale. Considerably less is known

about general equilibrium models that allow non-convex production sets (e.g., economies of scale)

or non-convex preferences (e.g., the consumer prefers a pint of beer or a shot of vodka alone to any

mixture of the two). We refer to Nikaido (1968), Rockafellar (1970) and Boyd and Vandenberghe

(2004) for more general discussions on convexity; see Hiriart-Urruty and Lemaréchal (2001) for an

introduction.

The emphasis of this chapter is to show uniqueness of the optimizer and su¢ cient conditions

for optimization through convexity. Related materials can be found in Chapter 21 of Simon and

Blume (1994) and Chapter 7-8 of Sundaram (1996). In this chapter, lowercase bold letters such as

x = (x1; : : : ; xn)
0 represent column vectors.

1 Convex Sets

Given two points x;y 2 Rn, a point z = tx + (1� t)y, where 0 � t � 1, is called a convex
combination of x and y. The set of all possible convex combinations of x and y, denoted by
[x;y], is called the interval with endpoints x and y (or, the line segment connecting x and y),
i.e.,

[x;y] = ftx+ (1� t)y j 0 � t � 1g :

This de�nition is an extension of the interval in R1.

De�nition 1 A set S � Rn is convex i¤ for any points x and y in S the interval [x;y] � S.

In words: a set is convex if it contains the line segment connecting any two of its points; or, more

loosely speaking, a set is convex if for any two points in the set it also contains all points between

them.

Convex sets in R2 include triangles, squares, circles, ellipses, and hosts of other sets. Note also
that, for example in R3, while a cube is a convex set, its boundary is not. (Of course, the same is
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true of the square in R2.) The quintessential convex set in Euclidean space Rn for any n > 1 is the
n-dimensional open ball Br(a) of radius r > 0 about point a 2 Rn, where recall from Chapter 1

that

Br(a) = fx 2 Rn j kx� ak < rg:

Example 1 Prove that the budget constraint B = fx 2 X : p0x � yg is convex.

Proof. For any two points x1;x2 2 B, we have p0x1 � y and p0x2 � y. Then for any t 2 [0; 1], we
must have tx1 + (1 � t)x2 � y. This is equivalent to say that tx1 + (1 � t)x2 2 B. So the budget
constraint B is convex.

Exercise 1 Is the empty set convex? Is a singleton convex? Is Rn convex? Is the intersection of
arbitrarily many convex sets is convex? In each case prove that the set is convex or prove that it is

not.

2 Convex Functions

In order to be able to say whether or not the optimization problem has a unique solution it is

useful to know something about the shape or curvature of the functions f and (g;h). Also, the

curvature of f and (g;h) is related to whether the Kuhn-Tucker conditions are su¢ cient to identify

the maximizers.

2.1 Basics

We say a function is concave if for any two points in the domain of the function the value of function

at a weighted average of the two points is greater than the weighted average of the values of the

function at the two points. We say the function is convex if the value of the function at the average

is less than the average of the values. The following de�nition makes this a little more explicit.

De�nition 2 A function f : S ! R de�ned on a convex set S is concave if for any x;x0 2 S with
x 6= x0 and for any t such that 0 < t < 1 we have f(tx + (1 � t)x0) � tf(x) + (1 � t)f(x0). The
function is strictly concave if f(tx+ (1� t)x0) > tf(x) + (1� t)f(x0).

A function f : S ! R de�ned on a convex set S is convex if for any x;x0 2 S with x 6= x0 and
for any t such that 0 < t < 1 we have f(tx + (1 � t)x0) � tf(x) + (1 � t)f(x0). The function is
strictly convex if f(tx+ (1� t)x0) < tf(x) + (1� t)f(x0).

Exercise 2 Why don�t we check t = 0 and 1 in the de�nition? Why the domain of f must be a

convex set?

Exercise 3 We say that the function f(x1; � � � ; xn) is nondecreasing if x0i � xi for each i implies
that f(x01; � � � ; x0n) � f(x1; � � � ; xn), is increasing if x0i > xi for each i implies that f(x01; � � � ; x0n) >
f(x1; � � � ; xn) and is strictly increasing if x0i � xi for each i and x0j > xj for at least one j implies
that f(x01; � � � ; x0n) > f(x1; � � � ; xn). Show that if f is nondecreasing and strictly concave then it
must be strictly increasing. [Hint: This is very easy.]
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Figure 1: Concave Function

Figures 1 and 2 show a typical concave and convex function intuitively. Note that although

there are both concave and convex functions, there are only convex sets, no concave sets!

In practice, we need some calculus criteria for concavity and convexity.

Theorem 1 Let f 2 C2(U), where U � Rn is open and convex. Then f is concave i¤ the Hessian

D2f(x) =

0BB@
@2f(x)
@x21

� � � @2f(x)
@x1@xn

...
. . .

...
@2f(x)
@xn@x1

� � � @2f(x)
@x2n

1CCA
is negative semide�nite for all x 2 U . If D2f(x) is negative de�nite for all x 2 U , then f is

strictly concave on U . Conditions for convexity are obtained by replacing "negative" by "positive".

Remark 1 The conditions for strict concavity in the theorem are only su¢ cient, not necessary.

In other words, if D2f(x) is not negative semide�nite for all x 2 U , then f is not concave; while
if D2f(x) is not negative de�nite for all x 2 U , then f may or may not be strictly concave (see the
example below).

Remark 2 For a matrix A, we often use A > 0 to denote it is positive de�nite and A � 0 to

denote it is positive semide�nite. A < 0 and A � 0 can be similarly understood.

We now de�ne and characterize positive/negative (semi)de�nite matrices.

De�nition 3 An n � n matrix H is positive de�nite i¤ v0Hv > 0 for all v 6= 0 in Rn; H is

negative de�nite i¤ v0Hv < 0 for all v 6= 0 in Rn. Replacing the strict inequalities above by
weak ones yields the de�nitions of positive semide�nite and negative semide�nite.
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Figure 2: Convex Function

Remark 3 Usually, positive (negative) de�niteness is only de�ned for a symmetric matrix, so we
restrict our discussions on symmetric matrices below. Fortunately, the Hessian is symmetric by

Young�s theorem.

Remark 4 The positive de�nite matrix is an extension of the positive number. To see why, note
that for any positive number H, and any real number v 6= 0, v0Hv = v2H > 0. Similarly, the

positive semide�nite matrix, negative de�nite matrix, negative semide�nite matrix are extensions

of the nonnegative number, negative number and nonpositive number, respectively.

Remark 5 Just like that a function can be neither increasing or decreasing, a matrix can be neither

positive (semi)de�nite or negative (semi)de�nite, e.g., H =

 
0 1

1 0

!
. (why? Let v = (1; 1)0 and

(�1; 1)0)

Exercise 4 Show that the diagonal elements of a positive de�nite matrix must be positive, while
the o¤-diagonal elements need not be.

We now provide some criteria to judge the positive/negative (semi)de�niteness. For this purpose,

we �rst de�ne some terms.

De�nition 4 For an n � n matrix H, a k � k submatrix formed by picking out k columns and
the same k rows is called a kth order principal submatrix of H; the determinant of a kth order
principal submatrix is called a kth order principal minor. The k�k submatrix formed by picking
out the �rst k columns and the �rst k rows is called a kth order leading principal submatrix of
H; its determinant is called the kth order leading principal minor.
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Theorem 2 A matrix is positive de�nite i¤ its n leading principal minors are all positive. A
matrix is negative de�nite i¤ its n leading principal minors alternate in sign with the odd order

ones being negative and the even order ones being positive. A matrix is positive semide�nite i¤

its 2n � 1 principal minors are all nonnegative. A matrix is negative semide�nite i¤ its 2n � 1
principal minors alternate in sign so that the odd order ones are nonpositive and the even order

ones are nonnegative.

Example 2 (i) A linear function f(x) = a1x1 + � � �+ anxn is both concave and convex.
(ii) f(x) = �x4 is strictly concave, but its Hessian is not negative de�nite for all x 2 R since

D2f(0) = 0.

(iii) The particular Cobb-Douglas utility function u(x1; x2) =
p
x1
p
x2, (x1; x2) 2 R2+, is concave

but not strictly concave. First check that it is concave.

D2f(x) =

0@ 1
2
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�2
= 0

for (x1; x2) 2 R2+, u(x1; x2) is concave. Now, let x2 = x02 = 0, x1 6= x01; then u(tx1+(1� t)x01; 0) =
0 = tu(x1; 0) + (1� t)u(x01; 0), so u(x1; x2) is not strictly concave.

2.2 The Uniqueness Theorem

We present two results which indicate the importance of convexity in optimization theory. The

�rst result establishes that in concave optimization problems, all local optima must also be global

optima; and, therefore, to �nd a global optimum in such problems, it always su¢ ces to locate a

local optimum. The second result shows that if a strictly concave optimization problem admits

a solution, the solution must be unique. We state the two theorem in the context of the mixed

constrained maximization problem, i.e.,

max
x

f(x)

s.t. g(x) � 0;
h(x) = 0;

and suppose the maximizer exists. Recall also that the feasible setG = fx 2 Rnjg(x) � 0;h(x) = 0g.

Theorem 3 If f is concave, and the feasible set G is convex, then

(i) Any local maximum of f is a global maximum of f .

5



(ii) The set argmax ff(x)jx 2 Gg is convex.1

Theorem 4 If f is strictly concave, and the feasible set G is convex, then the maximizer x� is

unique.

Proof. Suppose f has two maximizers, say, x and x0; then tx+(1� t)x0 2 G, and by the de�nition
of strict concavity, for 0 < t < 1,

f(tx+ (1� t)x0) > tf(x) + (1� t)f(x0) = f(x) = f(x0):

A contradiction.

Example 3 (Consumer�s Problem - Revisited) Does the consumer�s problem

max
x1;x2

p
x1
p
x2 s.t. x1 + x2 � 1; x1 � 0; x2 � 0

have a solution? Is the solution unique?

Solution: The feasible set G = fx1 + x2 � 1; x1 � 0; x2 � 0g is compact (why?) and
p
x1
p
x2 is

continuous, so by the Weierstrass Theorem, there exists a solution.

The solution is unique, (x�1; x
�
2) =

�
1
2 ;
1
2

�
. But from the discussion above,

p
x1
p
x2 is not strictly

concave for (x1; x2) 2 R2+. Actually, even if we restrict (x1; x2) 2 R2++, where R++ � fxjx > 0g,
p
x1
p
x2 is NOT strictly concave. Check for t 2 (0; 1); x1 6= x01 and/or x2 6= x02;p

tx1 + (1� t)x01
p
tx2 + (1� t)x02 � t

p
x1x2 + (1� t)

p
x01x

0
2

() (tx1 + (1� t)x01) (tx2 + (1� t)x02) �
�
t
p
x1x2 + (1� t)

p
x01x

0
2

�2
() x1x

0
2 + x

0
1x2 � 2

p
x1x2x01x

0
2 ()

�p
x1x02 �

p
x01x2

�2
� 0

with equality holding when x2=x1 = x02=x
0
1 (what does this mean?).

In summary, the theorem provides only su¢ cient (but not necessary) conditions. �
One key question in the uniqueness theorem is how to guarantee that G is convex. Given a

concave function g, for any a 2 R, its upper contour set fxjg(x) � ag is convex. Why? Given

two poitns x and x0 such that g(x) � a and g(x0) � a, we want to show that for any t 2 [0; 1],
g(tx+(1� t)x0) � a. Since g is concave, g(tx+(1� t)x0) � tg(x)+ (1� t)g(x0) � ta+(1� t)a = a.
Given a function h, to guarantee that fxjh(x) = ag is convex, we require h to be both concave and
convex. A function h is both concave and convex i¤ it is linear (or, more properly, a¢ ne), taking
the form h(x) = a+ b0x for some constants a and b. In summary, since

G =

�\J

j=1
fxjgj(x) � 0g

�\�\K

k=1
fxjhk(x) = 0g

�
;

if gj , j = 1; : : : ; J , is concave, and hk, k = 1; � � � ;K, is a¢ ne, then G is convex.2

1Even if argmax ff(x)jx 2 Gg = ;, this is still correct since ; is convex from Exercise 1.
2From Exercise 1, the intersection of arbitrarily many convex sets is convex.
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2.3 Su¢ cient Conditions for Optimization

We now state the Theorem of Kuhn-Tucker under concavity which especially provides some su¢ -

cient conditions for optimization.

Theorem 5 (Theorem of Kuhn-Tucker under Concavity) Suppose f , gj and hk, j = 1; � � � ; J ,
k = 1; � � � ;K, are all C1 function, f is concave, gj is concave, and hk is a¢ ne. If there exists
(��;��) such that (x�;��;��) satis�es the Kuhn-Tucker conditions, then x� solves the mixed con-

strained maximization problem.

Note that we do not need the NDCQ for this su¢ cient condition of optimization. Combining

with the necessity of Kuhn-Tucker conditions, we can state the necessary and su¢ cient conditions

for optimization which are omitted here to save space.

Example 4 In Example 3, g1 (x) = x1; g2 (x) = x2 and g3 (x) = 1 � x1 � x2 are all a¢ ne, so G
is convex. Since u(x1; x2) =

p
x1
p
x2 is concave, the solution to the Kuhn-Tucker conditions is the

global maximizer.

3 Second Order Conditions for Optimization (*)

As mentioned in Section 1.2 of Chapter 2, the FOCs cannot determine whether their solutions are

(local) maximizers or minimizers. The second order conditions (SOCs) do the job. Also, when the

set of critical points is large, the second order conditions (SOCs) may provide further re�nements.

We will provide both necessary and su¢ cient SOCs. We �rst consider the equality-constrained

problem and then treat the inequality-constrained problem as an extension.

Theorem 6 In the equality-constrained maximization problem, suppose that f : Rn ! R and

h : Rn ! RK are C2 functions, and the FOCs and NDCQ are satis�ed. De�ne C (x�) =
fv 2 RnjDh(x�)v = 0Kg as the linear constraint set and let the n � n matrix D2L� denote the
Hessian matrix of L at (x�;��), i.e., D2L� = D2xL(x�;��) = D2f(x�) +

PK
k=1 �

�
k

�
D2hk(x

�)
�
.

(i) If f has a local maximum on G at x�, then v0
�
D2L�

�
v � 0 for all v 2 C (x�).

(ii) If v0
�
D2L�

�
v < 0 for all v 2 C (x�) with v 6= 0, then x� is a strict local maximizer of f on

G.

Exercise 5 State the SOCs for the equality-constrained minimization problem.

Exercise 6 State the SOCs for the unconstrained problem.

Exercise 7 Show that C (x�) is the tangent space to fh(x) = cg at x�. Hint: Simon and Blume
(1994), pp. 459-460.
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Result (i) is the second order necessary condition and (ii) is the second order su¢ cient conditions.

These conditions are stated in the form of negative de�niteness of a symmetric matrix on the linear

constraint set. How to check these conditions? The following theorem answer this question.

We �rst de�ne some notations. For an n�n symmetric matrix A, Al denotes the l�l submatrix
of A obtained by retaining only the �rst l rows and columns of A. For a K � n matrix B, BKl
denotes the K � l matrix obtained by retaining only the l columns of B; when K = l, denote BKl
as BK . Given any permutation � of the �rst n integers, let A� denote the n�n symmetric matrix
obtained from A by applying the permutation � to both its rows and columns and let B� denote

the K � n matrix obtained by applying the permutation � to only the columns of B. A�l and B�Kl
are the Al and BKl counterpart of A� and B�. Finally, let Cl be the (K + l) � (K + l) matrix

obtained by "bordering" the submatrix Al by the submatrix BKl in the following manner:

Cl =

 
0K BKl

B0Kl Al

!
:

Denote by C�l the obtained similarly when A is replaced by A� and B by B�. For any matrix A,

jAj denotes A�s determinant.

Theorem 7 Let A be a symmetric n � n matrix, and B a K � n matrix such that jBK j 6= 0.

De�ne the bordered matrices Cl as described above. Then,

(i) x0Ax � 0 for every x such that Bx = 0 i¤ for all permutations � of the �rst n integers, and
for all r 2 fK + 1; � � � ; ng, we have (�1)K jC�r j � 0.

(ii) x0Ax � 0 for every x such that Bx = 0 i¤ for all permutations � of the �rst n integers, and
for all r 2 fK + 1; � � � ; ng, we have (�1)r jC�r j � 0.

(iii) x0Ax > 0 for every x such that Bx = 0 i¤ for all r 2 fK + 1; � � � ; ng, we have (�1)K jCrj > 0.

(ii) x0Ax < 0 for every x such that Bx = 0 i¤ for all r 2 fK + 1; � � � ; ng, we have (�1)r jCrj > 0.

When A = D2L� and B = Dh(x�), the matrices Cl are called "bordered Hessians". We assume
jBK j 6= 0 because rank(B) = K by the NDCQ and it is without loss of generality to assume the

�rst K columns of B to be linearly independent.

Exercise 8 Show that the criteria in the above theorem degenerate to those in Theorem 2 when

K = 0.

Exercise 9 Show that when A = D2L� and B = Dh(x�), Cn = D2�;xL(x�;�
�).

In the inequality-constrained problem, we can replace h by the union of h and the binding

constraints at x� in g. Since for the unbinding constraints the corresponding ���s are zero, the

inequality-constrained problem reduces to an equality-constrained problem.
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Using the bordered Hessians to check x� is a local maximizer or a local minimizer may be

burdensome in practice. As an easy (although less general) alternative, we can employ the concavity

of the objective function f to draw the conclusion. Speci�cally, if f is strictly concave at x� (or

more restrictively, D2f(x�) < 0), then x� is a strict local maximizer; if f is strictly convex at x�

(or more restrictively, D2f(x�) > 0), then x� is a strict local minimizer. This is actually the second

order su¢ cient conditions for the unconstrained problem in Exercise 6.
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