
Chapter 2. Constrained Optimization�

We in this chapter study the �rst order necessary conditions for an optimization problem with

equality and/or inequality constraints. The former is often called the Lagrange problem and the

latter is called the Kuhn-Tucker problem. We will not discuss the unconstrained optimization
problem separately but treat it as a special case of the constrained problem because the uncon-

strained problem is rare in economics. Related materials of this chapter can be found in Chapter

17-19 of Simon and Blume (1994) and Chapter 4-6 of Sundaram (1996). Other useful references

include Peressini et al. (1988), Bazaraa et al. (2006), Bertsekas (2016) and Luenberger and Ye

(2016).

For an optimization problem, we �rst de�ne what maximum/minimum and maximizer/minimizer

mean.

Figure 1: Local and Global Maxima and Minima for cos(3�x)=x, 0:1 � x � 1:1

De�nition 1 A function f : X ! R has a global maximizer at x� if f(x�) � f(x) for all

x 2 X and x 6= x�. Similarly, the function has a global minimizer at x� if f(x�) � f(x) for

all x 2 X and x 6= x�. If the domain X is a metric space, usually a subset of Rn, then f is said
�Email: pingyu@hku.hk
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to have a local maximizer at the point x� if there exists r > 0 such that f(x�) � f(x) for all

x 2 Br (x�) \Xn fx�g. Similarly, the function has a local minimizer at x� if f(x�) � f(x) for
all x 2 Br (x�) \Xn fx�g.

De�nition 2 In both the global and local cases, the value of the function at a maximum point is

called the maximum (value) of the function and the value of the function at a minimum point is

called the minimum (value) of the function.

Remark 1 The maxima and minima (the respective plurals of maximum and minimum) are called

optima (the plural of optimum), and the maximizer and minimizer are called the optimizer.
Figure 1 shows local and global extrema. Usually, the optimizer and optimum without any quali�er

means the global ones.

Remark 2 Note that a global optimizer is always a local optimizer but the converse is not correct.

Remark 3 In both the global and local cases, the concept of a strict optimum and a strict
optimizer can be de�ned by replacing weak inequalities by strict inequalities. The global strict
optimizer and optimum, if exist, are unique.

The problem of maximization is usually stated as

max
x
f(x)

s.t. x 2 X;

where "s.t." is a short for "subject to",1 and X is called the constraint set or feasible set. The
maximizer is denoted as

argmax ff(x)jx 2 Xg or argmax
x2X

f(x),

where "arg" is a short for "arguments". The di¤erence between the Lagrange problem and Kuhn-

Tucker problem lies in the de�nition of X.

1 Equality-Constrained Optimization

1.1 Lagrange Multipliers

Consider the problem of a consumer who seeks to distribute her income across the purchase of the

two goods that she consumes, subject to the constraint that she spends no more than her total

income. Let us denote the amount of the �rst good that she buys x1 and the amount of the second

good x2, the prices of the two goods p1 and p2, and the consumer�s income y. The utility that the

consumer obtains from consuming x1 units of good 1 and x2 of good two is denoted u(x1; x2). Thus

the consumer�s problem is to maximize u(x1; x2) subject to the constraint that p1x1 + p2x2 � y.

(We shall soon write p1x1+p2x2 = y, i.e., we shall assume that the consumer must spend all of her

1"s.t." is also a short for "such that" in some books.
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Figure 2: Utility Maximization Problem in Consumer Theory

income.) Before discussing the solution of this problem let us write it in a more �mathematical�

way:
max
x1;x2

u(x1; x2)

s.t. p1x1 + p2x2 = y:
(1)

We read this �Choose x1 and x2 to maximize u(x1; x2) subject to the constraint that p1x1+p2x2 =

y.�

Let us assume, as usual, that the indi¤erence curves (i.e., the sets of points (x1; x2) for which

u(x1; x2) is a constant) are convex to the origin. Let us also assume that the indi¤erence curves are

nice and smooth. Then the point (x�1; x
�
2) that solves the maximization problem (1) is the point at

which the indi¤erence curve is tangent to the budget line as given in Figure 2.

One thing we can say about the solution is that at the point (x�1; x
�
2) it must be true that the

marginal utility with respect to good 1 divided by the price of good 1 must equal the marginal

utility with respect to good 2 divided by the price of good 2. For if this were not true then the

consumer could, by decreasing the consumption of the good for which this ratio was lower and

increasing the consumption of the other good, increase her utility. Marginal utilities are, of course,

just the partial derivatives of the utility function. Thus we have

@u
@x1
(x�1; x

�
2)

p1
=

@u
@x2
(x�1; x

�
2)

p2
: (2)

The argument we have just made seems very �economic.� It is easy to give an alternate argument

that does not explicitly refer to the economic intuition. Let xu2 be the function that de�nes the
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indi¤erence curve through the point (x�1; x
�
2), i.e.,

u(x1; x
u
2(x1)) � �u � u(x�1; x�2):

Now, totally di¤erentiating this identity gives

@u

@x1
(x1; x

u
2(x1)) +

@u

@x2
(x1; x

u
2(x1))

dxu2
dx1

(x1) = 0:

That is,
dxu2
dx1

(x1) = �
@u
@x1
(x1; x

u
2(x1))

@u
@x2
(x1; xu2(x1))

:

Now xu2(x
�
1) = x

�
2. Thus the slope of the indi¤erence curve at the point (x

�
1; x

�
2)

dxu2
dx1

(x�1) = �
@u
@x1
(x�1; x

�
2)

@u
@x2
(x�1; x

�
2)
:

Also, the slope of the budget line is �p1
p2
. Combining these two results again gives result (2).

Since we also have another equation that (x�1; x
�
2) must satisfy, viz.,

p1x
�
1 + p2x

�
2 = y; (3)

we have two equations in two unknowns and we can (if we know what the utility function is and

what p1, p2, and y are) go happily away and solve the problem. (This isn�t quite true but we shall

not go into that at this point.) What we shall develop is a systemic and useful way to obtain the

conditions (2) and (3). Let us �rst denote the common value of the ratios in (2) by �. That is,

@u
@x1
(x�1; x

�
2)

p1
= � =

@u
@x2
(x�1; x

�
2)

p2

and we can rewrite this and (3) as

@u
@x1

(x�1; x
�
2)� �p1 = 0;

@u
@x2

(x�1; x
�
2)� �p2 = 0;

y � p1x�1 � p2x�2 = 0:
(4)

Now we have three equations in x�1; x
�
2, and the new arti�cial or auxiliary variable �. Again we can,

perhaps, solve these equations for x�1; x
�
2, and �. Consider the following function

L(x1; x2; �) = u(x1; x2) + �(y � p1x1 � p2x2)

This function is known as the Lagrangian. Now, if we calculate @L
@x1
, @L
@x2
, and @L

@� , and set the

results equal to zero we obtain exactly the equations given in (4). We now describe this technique

in a somewhat more general way.
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Suppose that we have the following maximization problem

max
x1;��� ;xn

f(x1; � � � ; xn)

s.t. g (x1; � � � ; xn) = c;
(5)

and we let

L(x1; : : : ; xn; �) = f(x1; : : : ; xn) + �(c� g(x1; : : : ; xn));

then if (x�1; : : : ; x
�
n) solves (5) there is a value of �, say �

� such that

@L
@xi

(x�1; : : : ; x
�
n; �

�) = 0; i = 1; : : : ; n; (6)

@L
@�
(x�1; : : : ; x

�
n; �

�) = 0: (7)

Notice that the conditions (6) are precisely the �rst order conditions for choosing x1; : : : ; xn to

maximize L, once �� has been chosen. This provides an intuition into this method of solving the
constrained maximization problem. In the constrained problem we have told the decision maker

that she must satisfy g(x1; : : : ; xn) = c and that she should choose among all points that satisfy

this constraint the point at which f(x1; : : : ; xn) is greatest. We arrive at the same answer if we

tell the decision maker to choose any point she wishes but that for each unit by which she violates

the constraint g(x1; : : : ; xn) = c we shall take away � units from her payo¤. Of course we must

be careful to choose � to be the correct value. If we choose � too small the decision maker may

choose to violate her constraint, e.g., if we made the penalty for spending more than the consumer�s

income very small the consumer would choose to consume more goods than she could a¤ord and

to pay the penalty in utility terms. On the other hand if we choose � too large the decision maker

may violate her constraint in the other direction, e.g., the consumer would choose not to spend any

of her income and just receive � units of utility for each unit of her income.

It is possible to give a more general statement of this technique, allowing for multiple constraints.

Consider the problem
max
x1;��� ;xn

f(x1; � � � ; xn)

s.t. g1 (x1; � � � ; xn) = c1;
...

gm (x1; � � � ; xn) = cm;

(8)

where m � n, i.e., we have fewer constraints than we have variables. Again we construct the

Lagrangian

L(x1; : : : ; xn; �1; � � � ; �m) = f(x1; : : : ; xn)+�1(c1� g1(x1; : : : ; xn))+ � � �+�m(cm� gm(x1; : : : ; xn))
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and again if x� � (x�1; : : : ; x�n)0 solves (8) there are values of �, say ��1; : : : ; ��m, such that

@L
@xi

(x�1; : : : ; x
�
n; �

�
1; � � � ; ��m) = 0; i = 1; : : : ; n;

@L
@�j

(x�1; : : : ; x
�
n; �

�
1; � � � ; ��m) = 0; j = 1; � � � ;m:

These conditions are often labeled as "�rst order conditions" or "FOCs" for the corresponding
maximization problem.

1.2 Caveats and Extensions

Notice that we have been referring to the set of conditions which a solution to the maximization

problem must satisfy. (We call such conditions necessary conditions, so the FOCs usually mean
the �rst order necessary conditions) So far we have not even claimed that there necessarily is a

solution to the maximization problem. There are many examples of maximization problems which

have no solution. One example of an unconstrained problem with no solution is

max
x

2x;

maximizing over the choice of x the function 2x. Clearly the greater we make x the greater is 2x,

and so, since there is no upper bound on x there is no maximum. Thus we might want to restrict

maximization problems to those in which we choose x from some bounded set. Again, this is not

enough. Consider the problem

max
0�x�1

1=x :

The smaller we make x the greater is 1=x and yet at zero 1=x is not even de�ned. We could de�ne

the function to take on some value at zero, say 7. But then the function would not be continuous.

Or we could leave zero out of the feasible set for x, say 0 < x � 1. Then the set of feasible x is not
closed. Since there would obviously still be no solution to the maximization problem in these cases

we shall want to restrict maximization problems to those in which we choose x to maximize some

continuous function from some closed (and because of the previous example) bounded set. (Recall

from the Heine-Borel Theorem that a set of numbers, or more generally a set of vectors, that is

both closed and bounded is a compact set.) Is there anything else that could go wrong? No. The
following result says that if the function to be maximized is continuous and the set over which we

are choosing is compact, then there is a solution to the maximization problem.

Theorem 1 (The Weierstrass Theorem) Let S be a compact set and f : S ! R be continuous.
Then there is some x� in S at which the function is maximized. More precisely, there is some x�

in S such that f(x�) � f(x) for any x 2 S.

Notice that in de�ning such compact sets we typically use inequalities, such as x � 0. However
in Section 1 we did not consider such constraints, but rather considered only equality constraints.
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However, even in the example of utility maximization at the beginning of Section 1.1, there were

implicitly constraints on x1 and x2 of the form

x1 � 0; x2 � 0:

A truly satisfactory treatment would make such constraints explicit. It is possible to explicitly treat

the maximization problem with inequality constraints, at the price of a little additional complexity.

We shall return to this question later in this chapter.

Also, notice that had we wished to solve a minimization problem we could have transformed the

problem into a maximization problem by simply multiplying the objective function by �1. That
is, if we wish to minimize f(x) we could do so by maximizing �f(x). From the following exercise,

we know that if x�1, x
�
2, and �

� satisfy the FOCs for maxx1;x2 u(x1; x2) s.t. p1x1 + p2x2 = y, then

x�1, x
�
2, and ��� satisfy the FOCs for minx1;x2 u(x1; x2) s.t. p1x1 + p2x2 = y. Thus we cannot tell

whether there is a maximum at (x�1, x
�
2) or a minimum. This corresponds to the fact that in the

case of a function of a single variable over an unconstrained domain at a maximum we require the

�rst derivative to be zero, but that to know for sure that we have a maximum we must look at the

second derivative. We shall not develop the analogous conditions for the constrained problem with

many variables here. However, again, we shall return to it in the next chapter.

Finally, the unconstrained problem is a special case of the constrained problem where �� is set

at zero. In other words, since no constraints exist, no penalty is imposed on constraints.

Exercise 1 Write out the FOCs for minx1;x2 u(x1; x2) s.t. p1x1 + p2x2 = y. Show that if x
�
1, x

�
2,

and �� satisfy (3), then x�1, x
�
2, and ��� satisfy the new FOCs.

2 Inequality-Constrained Optimization

Up until now we have been concerned with solving optimization problems where the variable could

be any real number and where the constraints were of the form that some function should take on

a particular value. However, for many optimization problems, and particularly in economics, the

more natural formulation of the problem has some inequality restriction on the variables, such as

the requirement that the amount consumed of any good should be non-negative. And it is often the

case that the constraints on the problem are more naturally thought of as inequality constraints.

For example, rather than thinking of the budget constraint as requiring that a consumer consume

a bundle exactly equal to what she can a¤ord the requirement perhaps should be that she consume

no more than she can a¤ord. The theory of such optimization problems is called nonlinear
programming. We give here an introduction to the most basic elements of this theory.

2.1 Kuhn-Tucker Conditions

We start by considering one of the very simplest optimization problems, namely the maximization

of a continuously di¤erentiable function of a single real variable:
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max
x
f(x): (9)

We read this as �Choose x to maximize f(x).�As mentioned at the end of Section 1.2, the �rst

order necessary condition for x� to be a solution to this maximization problem is that

df

dx
(x�) = 0:

Suppose now we add the constraint that x � 0. How does this changes the problem and its

solution? We can write the problem as follows:

max
x
f(x)

s.t. x � 0:
(10)

We read this as �Choose x to maximize f(x) subject to the constraint that x � 0.�
How does it change the conditions for x� to be a solution? Well, if there is a solution to the

maximization problem, there are two possibilities. Either the solution could occur when x� > 0 or

it could occur when x� = 0. In the �rst case then x� will also be (at least a local) maximum of the

unconstrained problem and a necessary condition for this is that df
dx(x

�) = 0. In the second case

it is not necessary that df
dx(x

�) = 0 since we are in any case not permitted to decrease x�. (It�s

already 0 which is as low as it can go.) However, it should not be the case that we increase the

value of f(x) when we increase x from x�. A necessary condition for this is that

df

dx
(x�) � 0:

Figure 3 illustrates the intuition why df
dx(x

�) � 0 when x� = 0. The solution x� = 0 is called a

corner solution.
So, our FOCs for a solution to this maximization problem are that df

dx(x
�) � 0, that x� � 0

and that either x� = 0 or that df
dx(x

�) = 0. We can express this last by the equivalent requirement

that x� dfdx(x
�) = 0, that is that the product of the two is equal to zero. A pair of inequalities,

not both of which can be strict (or slack) (i.e., at least one of them is e¤ective), is said to show

complementary slackness. We state this as a (very small and trivial) theorem.

Theorem 2 Suppose that f : R! R is continuously di¤erentiable (or a C1 function). Then, if x�

maximizes f(x) over all x � 0, x� satis�es

df
dx(x

�) � 0;
x� dfdx(x

�) = 0;

x� � 0:
(11)

Exercise 2 Give a version of Theorem 2 for minimization problems.
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Figure 3: Illustration of Why df
dx(x

�) � 0 When x� = 0

How to understand these FOCs? If we form the Lagrangian

L(x; �) = f(x) + �x;

then we can express these FOCs as

@L
@x
(x�; ��) =

df

dx
(x�) + �� = 0;

@L
@�
(x�; ��) = x� � 0;

�� � 0; ��
@L
@�
(x�; ��) = ��x� = 0:

For the general inequality-constrained problem,

max
x1;��� ;xn

f(x1; � � � ; xn)

s.t. gj(x1; � � � ; xn) � 0; j = 1; � � � ; J;

or more compactly,
max
x

f(x)

s.t. g(x) � 0;

we can form the Lagrangian

L(x;�) = f(x) + � � g(x):
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and express the FOCs as

@L
@x
(x�;��) =

@f

@x
(x�) +

@g(x�)0

@x
�� = 0;

@L
@�
(x�;��) = g(x�) � 0;

�� � 0;�� � @L
@�
(x�;��) = �� � g(x�) = 0;

where � is the element-by-element product. These FOCs are called theKuhn-Tucker conditions
due to Kuhn and Tucker2 (1951).3 For more intuitions on the Kuhn-Tucker conditions when n = 2,

J = 1, see Section 18.3 of Simon and Blume (1994), and when n = 2, J = 2, see the Appendix of

Dixit (1990).

We summarize the discussions on the equality-constrained and inequality-constrained problem

in the following theorem; a rigorous proof can be found in Section 19.6 of Simon and Blume (1994).

First, de�ne the mixed constrained problem as follows,

max
x1;��� ;xn

f(x1; � � � ; xn)

s.t. gj(x1; � � � ; xn) � 0; j = 1; � � � ; J;
hk(x1; � � � ; xn) = 0; k = 1; � � � ;K;

or more compactly,
max
x

f(x)

s.t. g(x) � 0;
h(x) = 0;

where K � n. The term "mixed constrained problem" is only for convenience because any equality

constraint can be transformed to two inequality constraints, e.g., hk(x) = 0 is equivalent to hk(x) �
0 and hk(x) � 0. Form the Lagrangian

L(x;�;�) = f(x) + � � g(x) + � � h(x):

Theorem 3 (Theorem of Kuhn-Tucker) Suppose that f : Rn ! R, g : Rn ! RJ and h : Rn !
RK are C1 functions. Then, if x� maximizes f(x) over all x satisfying the constraints g(x) � 0

and h(x) = 0, and if x� satis�es the nondegenerate constraint quali�cation (NDCQ) as will
be speci�ed in the next subsection, then there exists a vector (��;��) such that (x�;��;��) satis�es

2Albert W. Tucker (1905-1995) is the supervisor of John Nash, the Nobel Prize winner in Economics in 1994, and
Lloyd Shapley, the Nobel Prize winner in Economics in 2012.

3The Kuhn-Tucker conditions were originally named after Harold W. Kuhn, and Albert W. Tucker. Later scholars
discovered that the necessary conditions for this problem had been stated by William Karush in his master�s thesis
in 1939, so this group of conditions is also labeled as the Karush-Kuhn-Tucker (KKT) conditions.
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the Kuhn-Tucker conditions given as follows:

@L
@x (x

�;��;��) = 0; @L
@�(x

�;��;��) = h(x�) = 0;
@L
@�(x

�;��;��) = g(x�) � 0; �� � 0;
�� � @L

@�(x
�;��;��) = �� � g(x�) = 0:

(12)

Remark 4 Rigorously speaking, the Kuhn-Tucker conditions are necessary conditions for "local"
optima, and of course are also necessary conditions for global optima.

The x��s that satisfy the Kuhn-Tucker conditions are called the critical points of L. Usually,
critical points mean the points that satisfy the FOCs; the Kuhn-Tucker conditions are a special

group of FOCs. Parallel to Lagrange multipliers in the Lagrange problem, (��;��) are called

Kuhn-Tucker multipliers.

Exercise 3 Write out the Kuhn-Tucker conditions given in (12) in the long form without using

vector and matrix notation.

Exercise 4 Give a version of the Kuhn-Tucker conditions such as in (12) for a constrained mini-
mization problem.

Exercise 5 Show that the Kuhn-Tucker conditions for the maximization problem, max
x

f(x) s.t.

x � 0 and g(x) � 0, can be expressed as

@L
@x
(x�;��) � 0;

x� � @L
@x
(x�;��) = 0;

x� � 0;

@L
@�
(x�;��) � 0;

�� � @L
@�
(x�;��) = 0;

�� � 0;

where the Lagrangian is de�ned as

L(x;�) = f(x)� � � g(x):

2.2 The Constraint Quali�cation

We in this subsection describe the NDCQ in the Theorem of Kuhn-Tucker. A constraint gj(x) � 0
is binding (or e¤ective, or active, or tight) at x� if gj(x�) = 0. Suppose the �rst J0 inequality
constraints are binding at x�; then the NDCQ states that the rank at x� of the Jacobian matrix of
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the equality constraints and the binding inequality constraints

J �

0BBBBBBBBBB@

@g1
@x1
(x�) � � � @g1

@xn
(x�)

...
. . .

...
@gJ0
@x1

(x�) � � � @gJ0
@xn

(x�)
@h1
@x1
(x�) � � � @h1

@xn
(x�)

...
. . .

...
@hK
@x1

(x�) � � � @hK
@xn

(x�)

1CCCCCCCCCCA
is J0 +K - as large as it can be. When for some x�s the NDCQ does not hold, compare the values

of f(�) at critical points and also these x�s to determine the ultimate maximizer.

Exercise 6 Write out the Kuhn-Tucker conditions and the NDCQ in the unconstrained problem

and the equality-constrained problem.

Exercise 7 Show that NDCQ in Theorem 2 holds.

The following example provides a case where the constraint quali�cation fails.

The Constraint Set
�
(x1; x2)jx31 + x22 � 0

	

Example 1 This example follows Example 19.9 of Simon and Blume (1994). We want to maximize
f(x1; x2) = x1 s.t. g(x1; x2) = x31 + x

2
2 � 0. From Figure 2.2, the constraint set is a cusp and it is

easy to see that (x�1; x
�
2) = (0; 0). However, at (x

�
1; x

�
2), there is no �

� satisfying the Kuhn-Tucker

conditions. To see why, set the Lagrangian

L(x; �) = x1 � �
�
x31 + x

2
2

�
;
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and then the Kuhn-Tucker conditions are

1� 3�x21 = 0; 2�x2 = 0;

x31 + x
2
2 � 0; � � 0; �

�
x31 + x

2
2

�
= 0:

It is not hard to see that there is no �� satisfying these conditions when (x�1; x
�
2) = (0; 0).

What can we learn from this example? Note that g(x1; x2) is binding at (0; 0), while (0; 0) is

the critical point of g(x1; x2) (i.e.,
@g1
@x1
(0; 0) = @g1

@x2
(0; 0) = 0), so the constraint quali�cation fails.

If we compare f(�) at the critical values of L (which is empty) and (0; 0), we indeed get the correct
maximizer (0; 0). �

We provide some intuition on why the NDCQ is required. This heuristic discussion is based

on the Appendix of Dixit (1990). Suppose x� maximizes f(x) over all x satisfying the constraints

g(x) � 0, where the �rst J0 constraints are binding at x�, and K = 0. Then there is no neighboring

x such that

gj (x) � gj (x�) = 0; j = 1; � � � ; J0; (13)

and

f(x) > f(x�):

Note that we need not consider the other J �J0 constraints because they hold as strict inequalities
at x�, by continuity they will go on holding for x su¢ ciently near x�. (13) implies

Dgj (x
�) dx � 0; j = 1; � � � ; J0; (14)

and

Df(x�)dx > 0:

This is valid provided the J0 � n submatrix of J, say J0, has rank J0. If it has a smaller rank, too
many vectors dx yield zero when multiplied by this matrix.4 Then many more dx satisfy the linear

approximation (14) than do x� + dx satisfy the true constraints (13). As a result, the FOCs can

fail even though x� is optimum. In the above example, the linear approximation (14) becomes

(0; 0)

 
dx1

dx2

!
� 0;

which is the whole plane. However, only the set f(x1; x2) jx1 � 0; x2 = 0g, i.e., the left half of the
x1 axis, is a linear approximation to the feasible set. So essentially, the NDCQ guarantees that

local to x�, the binding constraints and their �rst order approximations are equivalent.

More straightforwardly, let J = J0 = 1 and K = 0, then that the NDCQ fails implies Dg (x�) =

0 or Df(x�)+��Dg (x�) = Df(x�) = 0, which is the FOCs for the unconstrained problem. In other

words, the binding constraint g (x�) = 0 does not play any role in the Kuhn-Tucker conditions,

4Strictly speaking, the dimension of such dx is n�rank(J0).

13



Figure 4: Intuitive Illustration of Example

which is of course absurd!

We use an example to illustrate how to �nd the maximizer in practice. A caution here is that

"Never blindly apply the Kuhn-Tucker conditions".

Example 2 max x21 + (x2 � 5)2 s.t. x1 � 0, x2 � 0, and 2x1 + x2 � 4.

Solution: First, since the objective function is continuous and the constraint set is compact
(why?), by the Weierstrass theorem, the maximizer exists. We then check the NDCQ. g1(x) = x1,

g2(x) = x2 and g3(x) = 4� 2x1 � x2, so the Jacobian of the constraint functions is0B@ 1 0

0 1

�2 �1

1CA ;
whose any one or two rows are linearly independent. Since at most two of the three constraints can

be binding at any one time, the NDCQ holds at any solution candidate.

The Lagrangian is

L(x; �; �) = x21 + (x2 � 5)2 + �1x1 + �2x2 + �3(4� 2x1 � x2);

and the Kuhn-Tucker conditions are

2x1 + �1 � 2�3 = 0, 2(x2 � 5) + �2 � �3 = 0;
x1 � 0, x2 � 0, 4� 2x1 � x2 � 0; �1 � 0; �2 � 0; �3 � 0;

�1x1 = 0, �2x2 = 0, �3(4� 2x1 � x2) = 0:

14



Totally eight possibilities depending whether �j = 0 or not, j = 1; 2; 3:

(i) �1 > 0; �2 > 0 and �3 > 0 =) x1 = 0; x2 = 0; and 2x1 + x2 = 4. Impossible.

(ii) �1 = 0; �2 > 0 and �3 > 0 =) x1 � 0; x2 = 0; and 2x1 + x2 = 4. So (x1; x2) = (2; 0). From
4� 2�3 = 0 and �10 + �2 � �3 = 0, we have (�1; �2; �3) = (0; 12; 2).

(iii) �1 > 0; �2 = 0 and �3 > 0 =) x1 = 0; x2 � 0; and 2x1+ x2 = 4. So (x1; x2) = (0; 4). From
�1 � 2�3 = 0 and �2� �3 = 0, we have (�1; �2; �3) = (�4; 0;�2). Impossible.

(iv) �1 = �2 = 0 and �3 > 0 =) x1 � 0; x2 � 0; and 2x1 + x2 = 4. So from 2x1 � 2�3 =
0; 2(x2 � 5)� �3 = 0; and 2x1 + x2 = 4, we have (x1; x2) = (�2=5; 24=5) : Impossible.

(v) �1 > 0; �2 > 0 and �3 = 0 =) x1 = 0; x2 = 0; and 2x1 + x2 � 4. So (x1; x2) = (0; 0). From
�1 = 0 and �10 + �2 = 0, we have (�1; �2; �3) = (0; 10; 0). Impossible.

(vi) �1 = �3 = 0; �2 > 0 =) x1 � 0; x2 = 0; and 2x1+x2 � 4. From 2x1 = 0 and �10+�2 = 0,
we have (x1; x2) = (0; 0) and (�1; �2; �3) = (0; 10; 0).

(vii) �1 > 0; �2 = �3 = 0 =) x1 = 0; x2 � 0; and 2x1 + x2 � 4. So from �1 = 0 and

2(x2 � 5) = 0, we have (x1; x2) = (0; 5) and (�1; �2; �3) = (0; 0; 0). Impossible.
(viii) �1 = �2 = �3 = 0 =) x1 � 0; x2 � 0; and 2x1+x2 � 4. So from 2x1 = 0 and 2(x2�5) = 0,

we have (x1; x2) = (0; 5). Impossible.

Candidate maximizers are (2; 0) and (0; 0). The objective function values at these two candidates

are 29 and 25, so (2; 0) is the maximizer and the associated Lagrange multipliers are (0; 12; 2). �
From this above example and discussions in this chapter, we summarize a "cookbook" proce-

dure for a constrained optimization problem. First, de�ne the feasible set of the general mixed
constrained maximization problem as

G = fx 2 Rnjg(x) � 0;h(x) = 0g :

Step 1: Apply the Weierstrass theorem to show that the maximum exists. If the feasible set G is

compact, this is usually straightforward; if G is not compact, truncate G to a compact set,

say Go, such that there is a point xo 2 Go and f(xo) > f(x) for all x 2 GnGo.

Step 2: Check whether the constraint quali�cation is satis�ed. If not, denote the set of possible
violation points as Q.

Step 3: Set up the Lagrangian and �nd the critical points. Denote the set of critical points as R.

Step 4: Check the value of f on Q [R to determine the maximizer or maximizers.

It is quite often for practitioners to apply Step 3 directly to �nd the maximizer. Although this

may work in most cases, it is possible to fail in some cases which do not seem bizarre at all. First,

the Lagrangian may fail to have any critical points due to nonexistence of maximizers or failure of

constraint quali�cation. Second, even if the Lagrangian does have one or more critical points, this

set of critical points need not contain the solution still due to these two reasons. Let us repeat our

caveat, "Never blindly apply the Kuhn-Tucker conditions"!
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This cookbook procedure works well in most cases, especially when the set Q[R is small, e.g.,
Q[R includes only a few points. If this set is large, it is better to employ more necessary conditions
(e.g., the second order conditions (SOCs)) to screen the points in Q [ R. Another solution is to
employ su¢ cient conditions, i.e., as long as x� satis�es these conditions, it must be the maximizer.

Su¢ cient conditions are very powerful especially combined with the uniqueness result because as

long as we �nd one solution, it is the solution and we can stop. These topics are the main theme

of the next chapter.
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