
Chapter 1. Point-Set Topology and Calculus�

This course will review basic mathematical tools used in microeconomics, macroeconomics and

econometrics. Some popular resources on the materials in this course include Rudin (1976), Dixit

(1990), Novshek (1993), Simon and Blume (1994), Sundaram (1996), de la Fuente (2000), Chiang

and Wainwright (2005), Osborne (2016), the mathematical appendix of Mas-Colell et al. (1995)

and the references therein. Books designed especially for econometrics include Davidson (1994)

and Dhrymes (2013) among others. Our main reference books are Rudin (1976) for Chapter 1,

Simon and Blume (1994) and Sundaram (1996) for Chapter 2-4, and Casella and Berger (2002) for

Chapter 5-6.

In this chapter, we will review some basics for point-set topology in the the Euclidean space and

single and multivariable calculus. Key concepts in point-set topology include open, compactness,

etc. In calculus, we will de�ne limits, continuity and di¤erentiability, and also de�ne the Riemann

integral and the related Riemann-Stieltjes integral.

Since we use this chapter only as a prerequisite for the optimization theory in the coming

chapters, we will only cover the topics that are necessary for future developments. Throughout

the course, I will emphasize understanding of basic concepts and intuition and application of basic

theorems rather than rigorous proofs; you can study the materials in the following order: slides

in class, the lecture notes, and the references. Our assignment and exam are based only on the

materials in the slides.

We collect some popular notations here for future reference. "8" means "Any", 9means "Exist",
"viz." or "i.e." means "that is", "e.g." means "for example", "i¤" means "if and only if", "�" (or ,
or :=) means "de�ned as", "=)" means "implies" and "()" means "is equivalent to". � is used
to signal the end of an example, and � the end of a proof. Real numbers are written using lower

case italics, e.g., x. Vectors are de�ned as column vectors and represented using lowercase bold,

e.g., x. Matrices are represented using uppercase bold, e.g., X. Sets are represented by uppercase

italic, e.g., X, and their elements by lower case italic, e.g., x.

1 Sets and Set Operations

This section reviews some basic concepts about set and set operation. We will use them to de�ne

the consumption set and production set. We will also use them in the optimizing decisions of

consumers and �rms.
�Email: pingyu@hku.hk
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De�nition 1.1 (Set) A set A is a collection of distinct objects.

An element x in A is denoted as x 2 A. An empty set is often denoted as ;. Elements in a set are not
ordered and must be distinct, so the following three sets are the same: f1; 2g = f2; 1g = f1; 2; 1g.

Remark 1.1 In mathematics, "collection", "class" and "family" all mean "set". An "object" in
a set is often called a "point" although it can be a function de�ned in the following section or any

mathematical object.

The following are elementary set operations:

1. Subset: set A is contained in B.

� A � B: set A is contained in B, and A 6= B.

� A � B: set A is contained in B, and A and B may be equal.

Remark 1.2 Quite often, � means �. To emphasize A 6= B, & is often used. We will use

the convention of � and �.

Remark 1.3 To prove A = B, we need only to show A � B and B � A.

2. Union: A [B = fxjx 2 A or x 2 Bg. All points in either A or B.

Remark 1.4 "j" is read as "such that", and is often used exchangeably with ":" in the liter-
ature and this course.

3. Intersection: A \B = fxjx 2 A and x 2 Bg. All points in both A and B.

4. Complement: Ac = fxjx =2 Ag. All points not in A. Here, a total set is implicitly de�ned.

5. Relative Complement: B nA = fx 2 Bjx =2 Ag = B \Ac: all points that are in B, but not in
A.

Remark 1.5 B nA is often denoted as B �A, but we will the convention B nA.

The following are useful properties of set operations.

1. Commutatitivity: A [B = B [A and A \B = B \A

2. Associativity: A [ (B [ C) = (A [B) [ C and A \ (B \ C) = (A \B) \ C

3. Distributive Laws: A \ (B [ C) = (A \B) [ (A \ C) and A [ (B \ C) = (A [B) \ (A [ C)

4. De Morgan�s Law: (A [B)c = Ac \Bc and (A \B)c = Ac [Bc.
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2 Functions

A function (or transformation or mapping) is about relationships between the elements of two sets.

De�nition 2.1 (Function) A function f : X 7�! Y is a rule that associates each element of X

with a unique element of Y ; in other words, for each x 2 X there exists a speci�ed element y 2 Y ,
denoted as f(x). x is called the argument or the (independent) variable of f , and f(x) is called
the value of f at x. X is called the domain of f , and Y the codomain. The set

Gf = f(x; y) jx 2 X; y = f(x)g � X � Y

is called the graph of f , where X � Y � f(x; y) jx 2 X; y 2 Y g is the Cartesian product of X
and Y .1 For A � X, the set

f (A) = ff (x) jx 2 Ag � Y

is called the image of A under f , and for B � Y , the set

f�1 (B) = fxjf (x) 2 Bg � X

is called the inverse image (or pre-image) of B under f . The set f (X) is called the range of
f .

De�nition 2.2 If f (X) = Y the mapping is said to be surjective (or onto), i.e., every element
of the codomain is mapped to by at least one element of the domain; otherwise, f is said to be from

X into Y . If f (x1) = f (x2) =) x1 = x2, then the mapping is said to be injective (or one-to-
one/1-1), i.e., every element of the codomain is mapped to by at most one element of the domain.
A mapping is bijective (or one-to-one correspondence) if it is both onto and one-to-one.

Remark 2.1 The term function is usually reserved for cases when the codomain is the set of real

numbers. That is why we term utility functions and production functions. The term correspondence

is used for a rule connecting elements of X to elements of Y where the latter are not necessarily

unique. For example, f�1 is a correspondence, but not a function unless f is one-to-one. If

f�1 : f (X)! X is a function, then we call it the inverse function of f . The "correspondence"
in one-to-one correspondence is an exceptional use of correspondence.

Remark 2.2 The elements in Y that cannot be achieved by f seem not interesting, so we can kick

them out to make f surjective. In this case, range and codomain mean the same thing. This is why

some books use them interchangeably.

De�nition 2.3 (Composite Mapping) Let f : X 7�! Y and g : Y 7�! Z are two mappings.

The composite function (or mapping) g � f : X 7�! Z takes each x 2 X to the element

g (f(x)) 2 Z.
1Cartesian product is named after the French philosopher René Descartes (1596-1650) - from his Latinized name

Cartesius.
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Remark 2.3 For C � Z, (g � f)�1 (C) = f�1
�
g�1 (C)

�
= f�1 � g�1 (C).

3 Point-Set Topology in the Euclidean Space

To de�ne the Euclidean space, we �rst de�ne Rn. Rn is the Cartesian product of R with itself

n times. R1 is the real line; R2 is the plane; R3 is the three-dimensional space. The Euclidean
space is Rn with the Euclidean structure imposed on. To emphasize its Euclidean nature, some
mathematicians denote the n-dimensional Euclidean space by En, but we will still use Rn to denote
it with the understanding that the Euclidean structure has been imposed.

3.1 Euclidean Spaces

The Euclidean structure is best described by the standard inner product (also known as the dot
product or scalar product) on Rn. The inner product of any two real n-vectors x and y is
de�ned by

x � y =
nX
i=1

xiyi = x1y1 + x2y2 + � � �+ xnyn;

where xi and yi are ith coordinates of vectors x and y respectively, and x � y is often written as
x0y with x0 meaning the transpose of x or hx;yi. The result is always a real number. The inner
product of x with itself is always non-negative. This product allows us to de�ne the "length" of a

vector x through square root:

kxk =
p
x � x =

vuut nX
i=1

x2i :

This length function satis�es the required properties of a norm and is called the Euclidean norm
on Rn. Finally, one can use the norm to de�ne a metric (or distance) on Rn by

d (x;y) = kx� yk =

vuut nX
i=1

(xi � yi)2:

This distance function is called the Euclidean metric.

Remark 3.1 A space is a set plus some structure on it. So a set imposed a metric, a norm or

an inner product is called a metric space, a normed space or an inner product space, respectively.

The relationship between these spaces is as follows

Rn � inner product space � normed space � metric space.

Of course, we can naturally de�ne a subspace as a subset of the original space inheriting its
structure.
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Figure 1: Angle in Two-dimensional Euclidean Space

At this moment, we need to clarify one point - what is the di¤erence between a norm and an inner

product? Note that an important inequality in the inner product space is the Cauchy-Schwarz
inequality:

jhx;yij � kxk � kyk :

Due to this inequality, we can de�ne

angle(x;y) = arccos
hx;yi

kxk � kyk ;

see Figure 1. We assume the value of the angle is chosen to be in the interval [0; �]. If hx;yi = 0,
angle(x;y) = �

2 ; we call x is orthogonal to y and denote it as x ? y. Given "orthogonality", we
can de�ne "projection". But in a normed space, we cannot always do it. Similarly, in a normed

space, we can always de�ne distance, but in a metric space, we cannot always de�ne length.

3.2 Open Sets

Open sets are the basic building blocks of the topological structure of Rn. Roughly speaking,
topology is about the properties of open sets, and a topological space is a set plus a collection
of open subsets.2 To de�ne opens sets, we �rst de�ne open balls which form the base for all open
sets in the sense that every open set in Rn can be written as a union of open balls. An n-dimensional
open ball (or open sphere) of radius r is the collection of points of distance less than r from a

2Open sets need not be de�ned from open balls as below, so a topological space is more general than a metric
space.

5



�xed point in Rn. Explicitly, the open ball with center x and radius r is de�ned by

Br (x) = fy 2 Rnjd(x;y) < rg :

The open ball for n = 1 is called an open interval, and the term open disk is sometimes used
for n = 2 and sometimes as a synonym for open ball.

De�nition 3.1 (Open Sets) A subset U of Rn is called open if for every x in U there exists an

r > 0 such that Br (x) is contained in U . A neighborhood of the point x is any subset N of Rn

that contains an open ball about x as a subset.

Remark 3.2 A set is open i¤ it contains an open ball around each of its points, i.e., open balls

are indeed the base of all open sets.3 Intuitively, an open set is "fat" and does not contain its own

"boundary".

Remark 3.3 The complement of an open set is called closed. Intuitively, a closed set contains its
own "boundary".

Remark 3.4 Intuitively speaking, a neighborhood of a point is a set of points containing that point
where one can move some amount away from that point without leaving the set. Note that the

neighborhood N need not be an open set itself. If N is open it is called an open neighborhood.
Some books require that neighborhoods be open; we will follow this convention.

Example 3.1 (0; 1) is open, [0; 1] is closed, and [0; 1) is neither open nor closed.

Other important concepts that are releted to open sets include limit points, isolated points,

closure, interior, bounary, etc, but we will not disucss them in this course.

3.3 Compactness

We will use a key concept in the �rst-year courses - compactness. Other concepts such as com-

pleteness, separability, connectness, etc, are left for future occasions.

De�nition 3.2 (Compactness) A set E in a metric space (M;d) is called compact if each of
its open covers has a �nite subcover. Otherwise, it is called non-compact. Explicitly, this means
that for every arbitrary collection

fU�g�2A

of open subsets of M such that

E �
S
�2A

U�;

3 It is not hard to show that if U is open, then U = [
x2U

Brx(x), where we use rx to indicate that the radius depends
on x.

6



there is a �nite subset J of A such that

E �
S
i2J
Ui:

If M is itself compact, (M;d) is said to be a compact space.

Remark 3.5 A closed subset of a compact space is compact, and a �nite union of compact sets is
compact.

De�nition 3.3 (Boundedness) A set E is bounded if there is real number r and a point q 2 E
such that d (p; q) < r for all p 2 E.

Remark 3.6 E is bounded means it can be covered by an open ball Br (q) of �nite radius.

Theorem 3.1 (Heine-Borel Theorem) A set E � Rn is compact i¤ it is bounded and closed.

Example 3.2 [0;1) and (0; 1) are not compact by the Heine-Borel theorem, but [0; 1] is.

4 Single Variable Calculus

In calculus, we study functions with domain being a subset of Rn. The �rst-year economic analysis
is typically based on �marginal e¤ect analysis", which is usually captured by the derivative of a

particular function (e.g., marginal utility, marginal cost, marginal revenue, etc.). This is why we

would review properties of continuous and "smooth" functions. The foundation and starting point

of calculus is the concept "limit".

4.1 Limits

We �rst de�ne the limit of a sequence and then the limit of a function.

De�nition 4.1 (Sequence and Subsequence) A sequence fxng1n=1 is a mapping from N, the
set of natural numbers, to some range space. Given a sequence fxng, a subsequence of fxng is
de�ned as fxnig

1
i=1, where n1 < n2 < � � � .

Remark 4.1 A sequence is automatically ordered, but its terms need not be distinct (like a set).
Typically the range space is R although can be extended to any other space.

De�nition 4.2 (Convergence and Limit of a Sequence) A sequence fxng1n=1 is said to con-
verge if there is a value x 2 R such that 8 " > 0, 9 n0 2 N which may depend on ", such that for
all n > n0, jxn � xj < ". x is called the limit of fxng1n=1, and we write xn ! x or lim

n!1
xn = x. If

fxng1n=1 does not converge, it is said to diverge.

Remark 4.2 Intuitively, lim
n!1

xn = x means that for n large enough, xn will stay in an arbitrary

small neighborhood of x.
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Example 4.1 Does the sequence fxng1n=1 with xn = 1 + (�1)n=n converge?

The limit of a function is similarly de�ned as the limit of sequence.

De�nition 4.3 (Limit of a Function) Let f : [a; b] ! R. For any x 2 [a; b], we claim lim
t!x

f(t) = y if 8 " > 0, 9 � > 0 which may depend on ", such that jf(t)� yj < " for all t with

jt� xj < �.

Remark 4.3 lim
t!x

f(t) = y is equivalent to that for all sequences ftng (with tn not equal to x for
all n) converging to x a the sequence f(tn) converges to y.

4.2 Continuity

De�nition 4.4 (Continuity) Let f : [a; b] ! R. For any x 2 [a; b], f is said to be continuous
at x if lim

t!x
f(t) = f(x). If f is continuous at every point on [a; b], then f is said to be continuous

on [a; b] and denote f 2 C [a; b].

Remark 4.4 Some books de�ne t = x+�, so lim
t!x
f(t) = f(x) is equivalently written as lim

�!0
f(x+

�) = f(x). From the remark after the de�nition of the limit of a function, this can be understood

as for any sequence �n ! 0, f(x +�n) ! f(x). Such a notation system can be applied to other

de�nitions such as the derivative.

An important property of a continuous function is the following intermediate value theorem

(IVT).

Theorem 4.1 (Intermediate Value Theorem) Let f : [a; b] ! R be continuous with f(a) <

f(b). Then for any value M 2 (f(a); f(b)), there is a c 2 (a; b) such that f(c) =M .

Remark 4.5 The case with f(a) > f(b) can be similarly stated. Note that c need not be unique;
see Figure 2.

Remark 4.6 The intuition of the intermediate value theorem is that the graph of a continuous

function on a closed interval can be drawn without lifting your pencil from the paper.

4.3 Di¤erentiability

De�nition 4.5 (Di¤erentiability) Let f : [a; b]! R. For any x 2 [a; b] form the quotient

�(t) =
f(t)� f(x)
t� x (a < t < b; t 6= x) ;

and de�ne the derivative of f at x as

f 0(x) = lim
t!x

�(t)
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Figure 2: Intermediate Value Theorem

provided this limit exists. If f 0 is de�ned at a point x, we say f is di¤ erentiable at x. If f 0 is
de�ned at every point of [a; b], we say f is di¤ erentiable on [a; b]. If f 0 is further continuous on
[a; b], we say f is continuously di¤ erentiable or smooth on [a; b] and denote f 2 C1 [a; b].

Remark 4.7 From this de�nition, the derivative is the limit of local slopes.

Remark 4.8 The notation of f 0(x) is attributed to Newton. The corresponding Leibniz�s notation
is dydx or

df
dx(x), where y � f(x). One advantage of Leibniz�s notation is that we can intuitively write

dy = f 0(x)dx. If we want to emphasize that the derivative is taken at a speci�c point, say x0, then

we may write f 0(x0) as
dy
dx

���
x=x0

.

Remark 4.9 A function can be continuous, but not di¤erentiable (easy to �nd), or di¤erentiable

but not continuously di¤erentiable (Exercise).

Example 4.2 Suppose f(x) = x2. We want to calculate its derivative at point x = 2. Using the
de�nition of derivative, we have

f 0(2) = lim
t!2

f(t)� f(2)
t� 2 = lim

t!2

t2 � 22
t� 2 = lim

t!2

(t+ 2)(t� 2)
t� 2 = lim

t!2
(t+ 2) = 4:

While it is useful to use the de�nition of derivative to verify the di¤erentiability of a function

at a point, it is time-consuming to compute derivatives using the de�nition. For particular forms

of functions, it is easier to remember the formula to compute derivatives. The following table

summarizes the derivatives of popular functions.
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f(x) f 0(x) f(x) f 0(x)

c 0 exp(x) exp(x)

cx c ax ax ln(a)

x2 2x ln(x) 1=x

xn nxn�1 loga (x) 1= (x ln a)

x�1 �1=x2 sin(x) cos(x)
p
x 1

2
1p
x

cos(x) � sin(x)

Table: Derivatives of Popular Functions

Theorem 4.2 Suppose f and g are de�ned on [a; b] and are di¤erentiable at a point x 2 (a; b).
Then f + g, fg, and f=g are di¤erentiable at x, and

(i) (Sum Rule) (f + g)0 (x) = f 0(x) + g0(x);

(ii) (Product Rule) (fg)0 (x) = f 0(x)g (x) + f(x)g0(x);

(iii) (Quotient Rule)
�
f
g

�0
(x) = f 0(x)g(x)�g0(x)f(x)

g(x)2
:

Remark 4.10 In the quotient rule, if f = 1, then we get the reciprocal rule: (1=g)0 (x) =
�g0(x)=g(x)2.

The sign of the derivative of a function can be used to check whether it is monotone.

De�nition 4.6 (Monotone Functions) A function f is said to be non-decreasing (or in-
creasing) if f(y) � f(x) whenever y > x. It is non-increasing (or decreasing) if �f is
nondecreasing (increasing). A strictly increasing (strictly decreasing) function changes the
above inequality to be strict. A monotone (or monotonic) function is either non-decreasing or
non-increasing. A strictly monotone function is either strictly increasing or strictly decreasing.

Remark 4.11 Some books use "increasing" for our "strictly increasing".

Example 4.3 f(x) = 2x is monotone on R. f(x) = x2 is not monotone on R, but is monotone
on R+ � [0;1).

Theorem 4.3 Let f : [a; b]! R be continuous on [a; b] and di¤erentiable on (a; b).

(i) f 0(x) � 0 for x 2 (a; b) i¤ f(x) is non-decreasing;

(ii) f 0(x) � 0 for x 2 (a; b) i¤ f(x) is non-increasing;

(iii) if f 0(x) > 0 for x 2 (a; b), then f(x) is strictly increasing;

(iv) if f 0(x) < 0 for x 2 (a; b), then f(x) is strictly decreasing.
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Figure 3: Mean Value Theorem

Remark 4.12 A strictly increasing function f need not have f 0(x) > 0 for any x 2 (a; b), e.g., for
f(x) = x3 on R, f 0(0) = 0.

The following theorem, known as the "chain rule" for di¤erentiation. It deals with di¤erentiation

of composite functions and is probably the most important theorem about derivatives.

Theorem 4.4 (Chain Rule) If g is a function that is di¤erentiable at a point c and f is a function
that is di¤erentiable at g(c), then the composite function f�g is di¤erentiable at c, and the derivative
is

(f � g)0 (c) = f 0(g(c)) � g0(c);

or in short, (f � g)0 = (f 0 � g) � g0.

Another important theorem about di¤erentiation is the mean value theorem (MVT). The mean

value theorem states, roughly, that given a planar arc between two endpoints, there is at least one

point at which the tangent to the arc is parallel to the secant through its endpoints; see Figure 3.

Theorem 4.5 (Mean Value Theorem) Let f : [a; b] ! R be continuous on [a; b] and di¤eren-
tiable on (a; b). Then there exists some c 2 (a; b) such that

f 0(c) =
f(b)� f(a)
b� a :

We de�ne derivatives using limits. Actually, we can also �nd limits using derivatives particularly

when the limits involve indeterminate forms.
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Theorem 4.6 (L�Hôital�s Rule) Suppose functions f and g are di¤erentiable on an open interval
I except possibly at a point c 2 I. If

lim
x!c

f(x) = lim
x!c

g(x) = 0 or �1;

g0(x) 6= 0 for all x 2 I and x 6= c, and lim
x!c

f 0(x)
g0(x) exists, then

lim
x!c

f(x)

g(x)
= lim
x!c

f 0(x)

g0(x)
:

Remark 4.13 The di¤erentiation of the numerator and denominator often simpli�es the quotient
or converts it to a limit that can be evaluated directly.

Example 4.4 lim
x!0

sinx
x = lim

x!0
cosx
1 = 1.

4.4 Higher-order Derivatives

If f has a derivative f 0 on an interval, and if f 0 is itself di¤erentiable, we denote the derivative of

f 0 by f 00 and call f 00 the second derivative of f . Continuing in this manner, we obtain functions

f; f 0; f 00; f (3); � � � ; f (k);

each of which is the derivative of the preceding one. f (k) is called the kth derivative, or the
derivative of order k, of f . In Leibniz�s notation, f (k)(x) = dky

dxk
, where y � f(x). For a curve, f 0

means its slope and f 00 mean its curvature; that is why monotonicity and concavity of a function

(which will be de�ned in Chapter 3) are related to its �rst and second order derivatives, respectively.

In order for f (k)(x) to exist at a point x, f (k�1)(t) must exist in a neighborhood for x, and

f (k�1) must be di¤erentiable at x. Since f (k�1) must exist in a neighborhood of x, f (k�2) must be

di¤erentiable in that neighborhood.

Theorem 4.7 (Taylor�s Theorem) Suppose f : [a; b] ! R, k 2 N, f (k�1) 2 C [a; b], f (k)(t)

exists for any t 2 (a; b). Let �, � be distinct points of [a; b], and de�ne

Pk�1(t) =
k�1X
j=0

f (j)(�)

j!
(t� �)j :

Then there exists x 2 (�; �)

f(�) = Pk�1 (�) +
f (k)(x)

k!
(� � �)k:

Remark 4.14 Taylor�s theorem gives an approximation of a k times di¤erentiable function around
a given point by a k-th order Taylor polynomial. The form of the remainder term is attributed
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to Lagrange and is called the Lagrange form (or the mean-value form). Another form of the

remainder term takes the integral form:

Rk(�) =

Z �

�

f (k)(t)

(k � 1)!(� � t)
k�1dt:

Yet another form is the Peano form of the remainder which writes f
(k)(x)
k! (���)k as

h
f (k)(�)
k! + hk(�)

i
(��

�)k, where hk(�) satis�es lim�!� hk(�) = 0.

Remark 4.15 Note that Taylor�s theorem does not require � close to � although we typically use

it in such a way. Also note that when k = 1, Taylor�s theorem reduces to the mean value theorem.

4.5 Integrability

Intuitively, the integral of a function is the area "under" the curve de�ned by the function. Let

f : [a; b]! R. A partition of [a; b] is a �nite sequence P = fxjgnj=0 such that a = x0 < x1 < � � � <
xn = b. Each [xi; xi+1] is called a subinterval of the partition. The mesh or norm of a partition

is de�ned to be the length of the longest subinterval, that is,

max fxi � xi�1ji = 1; � � � ; ng :

A tagged partition P (x; t) of an interval [a; b] is a partition together with a �nite sequence of
numbers t0; � � � ; tn�1 subject to the conditions that for each i, ti 2 [xi; xi+1]. In other words, it is a
partition together with a distinguished point of every subinterval. The mesh of a tagged partition

is the same as that of an ordinary partition. The Riemann sum of f with respect to the tagged

partition x0; : : : ; xn together with t0; : : : ; tn�1 is

n�1X
i=0

f(ti) (xi+1 � xi) :

Each term in the sum is the product of the value of the function at a given point and the length of

an interval. Consequently, each term represents the (signed) area of a rectangle with height f(ti)

and width xi+1 � xi. The Riemann sum is the (signed) area of all the rectangles. The Riemann
integral is the limit of the Riemann sums of a function as the partitions get �ner, and is often
denoted as

R b
a f(x)dx. If the limit exists then the function is said to be Riemann integrable. The

Riemann sum can be made as close as desired to the Riemann integral by making the partition �ne

enough.

De�nition 4.7 (Antiderivative or Inde�nite Integral) Antiderivative or inde�nite inte-
gral of a function f is a di¤erentiable function F whose derivative is equal to the original function
f . This can be stated symbolically as F 0 = f .

The fundamental theorem of calculus is a theorem that links the concept of the derivative

of a function with the concept of the function�s integral. Brie�y, di¤erentiation and integration

13



Figure 4: Fundamental Theorem of Calculus: Part I

are inverse operations. There are two parts to the theorem. Loosely put, the �rst part deals

with the derivative of an antiderivative, while the second part deals with the relationship between

antiderivatives and de�nite integrals.

Theorem 4.8 (Fundamental Theorem of Calculus) Part I: Let f : [a; b]! R be continuous,
and F : [a; b]! R be de�ned, for all x 2 [a; b], by

F (x) =

Z x

a
f(t)dt:

Then, F is uniformly continuous on [a; b], di¤erentiable on the open interval (a; b), and

F 0(x) = f(x)

for all x 2 (a; b).
Part II (Newton�Leibniz Axiom): Let f : [a; b] ! R be Riemann integrable, and F : [a; b] ! R

be continuous and F 0(x) = f(x) for all x 2 (a; b). ThenZ b

a
f(t)dt = F (b)� F (a):

Remark 4.16 Compared with Part I, Part II does not assume that f is continuous. Actually, if we
assume f is continuous, Part II is a straightforward corollary of Part I. Part II is often employed

to compute the de�nite integral of a function f for which an antiderivative F is known.

14



Remark 4.17 When an antiderivative F exists, then there are in�nitely many antiderivatives for

f , obtained by adding an arbitrary constant to F . Also, by Part I of the theorem, antiderivatives

of f always exist when f is continuous.

Remark 4.18 The �rst part of the theorem, sometimes called the �rst fundamental theorem of

calculus, is that the de�nite integration of a function is related to its antiderivative, and can be

reversed by di¤erentiation. This part of the theorem is important also because it guarantees the

existence of antiderivatives for continuous functions. Its intuition is illustrated in Figure 4. The

second part of the theorem, sometimes called the second fundamental theorem of calculus, is that

the de�nite integral of a function can be computed by using any one of its in�nitely-many antideriv-

atives. This part of the theorem has key practical applications because it markedly simpli�es the

computation of de�nite integrals.

Integration by parts or partial integration relates the integral of a product of functions
to the integral of their derivative and antiderivative. It is frequently used to transform the anti-

derivative of a product of functions into an antiderivative for which a solution can be more easily

found.

Theorem 4.9 (Integration by Parts) Suppose both F and G : [a; b] ! R are di¤erentiable

functions, F 0 = f , and G0 = g. Then

R b
aF (x)g(x)dx = F (x)G(x)jba �

R b
a f(x)G(x)dx:

Some books write
R b
aF (x)g(x)dx as

R b
aF (x)dG(x) and

R b
a f(x)G(x)dx as

R b
aG(x)dF (x). To

understand such notations, we need to de�ne the so-called Riemann-Stieltjes integral. The
Riemann-Stieltjes integral is closely related to the Riemann integral. The Riemann-Stieltjes
integral of a function f : [a; b]! R with respect to a function g : [a; b]! R is denoted byZ b

a
f(x)dg(x)

and de�ned to be the limit, as the norm of the partition

P = fa = x0 < x1 < � � � < xn = bg

of the interval [a; b] approaches zero, of the approximating sum

S (P; f; g) =
n�1X
i=0

f(ti) (g (xi+1)� g (xi)) ;

where ti 2 [xi; xi+1]. The two functions f and g are respectively called the integrand and the
integrator. When g(x) = x, this is exactly the Riemann integral. We will use the Riemann-

Stieltjes integral in Chapter 5 to de�ne the expectation of a random variable.
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5 Multivariable Calculus

When f : E ! Rm, where E is an open set in Rn, we can similarly de�ne whether f is di¤erentiable
at a point x 2 E. To understand the derivative of such a general function, note that the derivative
f 0(x) in De�nition 4.5 can be equivalently reexpressed as follows: there exists a linear function

f 0(x)h such that

lim
h!0

r(h)

h
� lim
h!0

f(x+ h)� f(x)� f 0(x)h
h

= 0;

where r is for "remainder".

De�nition 5.1 (Di¤erentiability) A function f : E ! Rm is said to be di¤ erentiable at x if
there exists a linear map J : Rn ! Rm such that

lim
h!0

kr(h)kRm
khkRn

� lim
h!0

kf(x+ h)� f(x)� J (h)k
khk = 0;

where J (h) = Jh, and the m�n matrix J is called the Jacobian matrix at x. We write f 0(x) = J.
If f is di¤erentiable at every x 2 E, we say f is di¤ erentiable in E.

Remark 5.1 More often, we use Dxf (x) or Df (x) to denote f 0(x). Note that J depends on x as
all these notations indicate.

Remark 5.2 When m = n, J is square. Both the matrix and its determinant are referred to as

the Jacobian in literature.

Remark 5.3 The chain rule still holds: If f : E ! Rm is di¤erentiable at x0 2 E, g maps an
open set containing f(E) into Rk, and g is di¤erentiable at f(x0). Then the mapping F of E into

Rk de�ned by
F(x) = g(f(x))

is di¤erentiable at x0, and

F0(x0) = g
0(f(x0))f

0(x0):

The derivative de�ned above is often called the total derivative of f at x. It may be intriguing
how to �nd J in practice. It turns out that it can be calculated through partial derivatives.

De�nition 5.2 (Partial Derivatives) Let f = (f1; � � � ; fm)0. The partial derivative of fi at x
with respect to the j-th variable is de�ned as

@fi
@xj

(x) = lim
h!0

fi(x1; � � � ; xj�1; xj + h; xj+1; � � � ; xn)� fi(x1; � � � ; xj�1; xj ; xj+1; � � � ; xn)
h

provided the limit exists.

Remark 5.4 @fi
@xj

(x) measures how much fi would change when all other variables except xj are

�xed at x and only xj changes a little bit, so it is very useful in economics for "ceteris paribus"

analysis.
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Remark 5.5 Even if all partial derivatives @fi
@xj

(x) exist at a given point x, f need not be (totally)

di¤erentiable, or even continuous in the sense that lim
h!0

f(x+h) = f(x) (Exercise). On the contrary,

if f is di¤erentiable at x, then all the partial derivatives at x exist, and

J =

0BB@
@f1
@x1

(x) � � � @f1
@xn

(x)
...

. . .
...

@fm
@x1

(x) � � � @fm
@xn

(x)

1CCA � @f

@x0
(x);

where J depends on x in general.

Remark 5.6 When m = 1, Df (x) is a 1 � n (row) vector; we may intuitively express the total
derivative in the form of total di¤ erential,

dy =
@f

@x1
(x) dx1 + � � �+

@f

@xn
(x) dxn;

or equivalently,
dy

dx1
=
@f

@x1
(x) +

@f

@x2
(x)

dx2
dx1

+ � � �+ @f

@xn
(x)

dxn
dx1

;

where @f
@xj

(x) is often denoted as fxj (x). Obviously, the total derivative must take into account of

the change of (x2; � � � ; xn) as x1 changes, which is dramatically di¤erent from the partial derivative.
In other words, the path of h! 0 in Rn in the de�nition of total derivative is not restricted while
the path of h ! 0 in the de�nition of partial derivative @fi=@xj (x) is restricted to be along the

axis (i.e., hj ! 0 and hk = 0 if k 6= j); see Figure 5 for an intuitive illustration of di¤erent pathes
of h! 0 in R2 for m = 1.

Remark 5.7 If all partial derivatives exist in a neighborhood of x and are continuous there, then
f is (totally) di¤erentiable in that neighborhood and the total derivative is continuous. In this case,

it is said that f is a C1 function.

In the de�nition of partial derivative, x+ h converges to x along the jth coordinate direction.

In general, we can check the change of f along any direction.

De�nition 5.3 (Directional Derivative) Let f : E ! R, where E is an open set in Rn. The
directional derivative of f along a vector v = (v1; � � � ; vn)0 is the function de�ned by the limit

rvf(x) = lim
h!0

f(x+ hv)� f(x)
h

:

Remark 5.8 If the function f is di¤erentiable at x, then the directional derivative exists along
any vector v, and one has

rvf(x) = rf(x) � v

where rf(x) =
�
@f
@x1

(x) ; � � � ; @f@xn (x)
�0
on the right is called the gradient and � is the dot product.

Note that rf(x) = Df(x)0. Usually, v is normalized such that kvk = 1.
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Figure 5: Total Derivative, Partial Derivtive and Directional Derivative: Red Arrow for Total
Derivative, Blue Arrow for Directional Derivative, Black Arrows along y-axis for @f=@x2 (x) and
Black Arrows along x-axis for @f=@x1 (x)

The partial derivative @fi=@xj can be seen as another function de�ned on E and can again

be partially di¤erentiated. To simplify notations, suppose m = 1, i.e., f : E ! R. One may
wonder whether the order of di¤erentiation matters, that is, whether @2f

@xj@xi
(x) � @

@xj

�
@f
@xi
(x)
�

equals @2f
@xi@xj

(x) � @
@xi

�
@f
@xj
(x)
�
. This problem is solved in Young�s theorem.

Theorem 5.1 (Young�s Theorem) Let f : E ! R, where E is an open set in Rn. If f has
continuous second partial derivatives at x, then

@2f

@xj@xi
(x) =

@2f

@xi@xj
(x):

Remark 5.9 If all mixed second order partial derivatives are continuous at a point (or on a set),
f is termed a C2 function at that point (or on that set). Young�s theorem implies that for a C2

function f at x, the Hessian matrix f at x, H (x), is symmetric, where

H (x) �

0BBBBB@
@2f
@x21

(x) @2f
@x1@x2

(x) � � � @2f
@x1@xn

(x)

@2f
@x2@x1

(x) @2f
@x22

(x) � � � @2f
@x2@xn

(x)

...
...

. . .
...

@2f
@xn@x1

(x) @2f
@x22

(x) � � � @2f
@x2n

(x)

1CCCCCA =
@2f

@x@x0
(x);

with the (i; j)th element being @2f
@xi@xj

(x). The Hessian matrix of f at x is often denoted as D2xf(x)
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or D2f(x).

Remark 5.10 As in the case of the Jacobian, the term "Hessian" unfortunately appears to be
used both to refer to this matrix and to the determinant of this matrix.

We are now ready to state Taylor�s theorem for multivariate functions. First, we need to

introduce some notations. For � 2 Zn+ and x 2 Rn with Z+ � N [ f0g, de�ne

j�j = �1 + � � �+ �n;�! = �1! � � ��n!;x� = x�11 � � �x�nn :

If all the k-th order partial derivatives of f : Rn ! R are continuous at a 2 Rn, then by Young�s
theorem, one can change the order of mixed derivatives at a, so the notation

D�f =
@j�jf

@x�11 � � � @x�nn
; j�j � k

for the higher order partial derivatives is justi�ed in this situation. The same is true if all the

(k � 1)-th order partial derivatives of f exist in some neighborhood of a and are di¤erentiable at
a. Then we say that f is k times di¤erentiable at the point a.

Theorem 5.2 (Taylor�s Theorem for Multivariate Functions) Let f : E ! R be a k times
di¤erentiable function on an open convex set E � Rn. Then for any two distinct points a and x in
E,

f(x) =
X

j�j�k�1

D�f (a)

�!
(x� a)� +Rk(x);

where

Rk(x) =
X
j�j=k

D�f (ca+ (1� c)x) (x� a)
�

�!

for some c 2 (0; 1).

Remark 5.11 Rk(x) takes the Lagrange form. We can also state the remainder term in the integral
form as

Rk(x) = k
X
j�j=k

(x� a)�

�!

Z 1

0
(1� t)k�1D�f (a+ t (x� a)) dt;

or in the Peano form as Rk(x) =
P
j�j=k

h
D�f(a)
�! + h�(x)

i
(x� a)� with lim

x!a
h�(x) = 0.

Remark 5.12 When k = 1, we get the mean value theorem:

f(x) = f(a) +rf(ca+ (1� c)x) � (x� a)

for some c 2 (0; 1). When k = 2, we can approximate f(x) by a quadratic function in the neigh-
borhood of a:

f(a) +rf(a) � (x� a) + 1
2
(x� a)0H (x� a) ;
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where H is evaluated at ca+ (1� c)x for some c 2 (0; 1).

We can similarly de�ne the multiple integralZ bn

an

� � �
Z b1

a1

f(x)dx1 � � � dxn

as in the single variable case. Now, we need to partition each interval [ai; bi], i = 1; � � � ; n, to
construct subrectangles. In constructing the Riemann sum, replace the width of subintervals by

the volume of subrectangles, and let ti stay in the corresponding subrectangle. Then make the width

of all subintervals uniformly converge to zero and check whether the Riemann sum converges.

Integrals of a function of two variables over a region in R2 are called double integrals, and
integrals of a function of three variables over a region of R3 are called triple integrals. They can
be used to calculate areas and volumes of regions in the plane, respectively.

In single variable calculus, the fundamental theorem of calculus establishes a link between

the derivative and the integral. The link between the derivative and the integral in multivariable

calculus is embodied by the integral theorems of vector calculus: Gradient theorem, Stokes�theorem,

Divergence theorem, and Green�s theorem. In a more advanced study of multivariable calculus, it is

seen that these four theorems are speci�c incarnations of a more general theorem, the generalized
Stokes�theorem. These theorems are rarely used in economics, so are neglected in this course.

We �nally state a very useful result that shows how to di¤erentiate under the integral sign.

Theorem 5.3 (Leibniz�s Rule) Let f(x; t) be a function such that both f(x; t) and its partial
derivative (@=@t) f (x; t) are continuous in t and x in some region of the (x; t)-plane, including

� (t) � x � � (t), t0 � t � t1. Also suppose that the functions � (t) and � (t) are both continuous
and both have continuous derivatives for t0 � t � t1. Then for t0 � t � t1,

F (t) �
Z �(t)

�(t)
f (x; t) dx

is di¤erentiable and

d

dt
F (t) = f (� (t) ; t)�0 (t)� f (� (t) ; t)�0 (t) +

Z �(t)

�(t)
ft (x; t) dx:
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