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Generalized Method of Moments Estimator

Linear GMM Estimator

Suppose

yi = x0i β +ui

E [x iui ] 6= 0,E [ziui ] = 0,

then the moment conditions are

E [g(w i ,β )] = E
�
zi
�
yi �x0i β

��
= 0, (1)

where g(�, �) is a set of moment conditions, and w i =
�
yi ,x0i ,z

0
i

�0.
Define the sample analog of (1)

gn(β ) =
1
n

n

∑
i=1

gi (β ) =
1
n

n

∑
i=1

zi
�
yi �x0i β

�
=

1
n

�
Z0y�Z0Xβ

�
.

When l > k , we cannot solve gn(β ) = 0 exactly as intuitively shown in Figure 1.

The idea of the GMM is to define an estimator which sets gn(β ) "close" to zero.
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Generalized Method of Moments Estimator

0

Figure: gn(β ) = 0 Can Not Hold Exactly for Any β : k = 1, l = 2
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Generalized Method of Moments Estimator

continue...

For some l� l weight matrix Wn > 0, let

Jn (β ) = n �gn(β )
0Wngn(β ).

This is a non-negative measure of the "length" of the vector gn(β ) under the inner
product h�, �iWn

.

- If Wn = Il , then, Jn (β ) = n �gn(β )
0gn(β ) = nkgn(β )k

2, the square of the
Euclidean length.

The GMM estimator minimizes Jn (β ).

The first order conditions for the GMM estimator are

0 =
∂

∂β
Jn

�bβ�= 2n
∂

∂β
g0n(bβ )Wngn(

bβ )
= �2n

�
1
n

X0Z
�

Wn

�
1
n

�
Z0y�Z0Xbβ�� ,

so bβ GMM =
��

X0Z
�

Wn
�
Z0X
���1 ��X0Z�Wn

�
Z0y
��
. (2)
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Generalized Method of Moments Estimator

More on Wn and the GMM Estimator

If l = k , then gn(β ) = 0. The GMM estimator reduces to the MoM estimator (the IV
estimator) and Wn is not required.

While the estimator depends on Wn, the dependence is only up to scale, for if Wn

is replaced by cWn for some c > 0, bβ GMM does not change.

In Section 4 of Chapter 7, β is identified as (Γ0AΓ)�1 Γ0Aλ =�
E
�
x iz0i

�
E [ziz0i ]

�1AE [ziz0i ]
�1E

�
zix0i

���1
E
�
x iz0i

�
E [ziz0i ]

�1AE [ziz0i ]
�1E [ziyi ], so

there, Wn is the sample analog of E [zizi ]
�1AE [zizi ]

�1.

When A = E [zizi ], we obtain the 2SLS estimator, that is, Wn = (Z0Z)
�1.

From the FOCs of GMM estimation, we can see that although we cannot make
gn(β ) = 0 exactly, we could let some of its linear combinations, say Bngn(β ), be
zero, where Bn is a k � l matrix.

For a weight matrix Wn, Bn =
�

1
n X0Z

�
Wn. If Wn

p�!W> 0, and

1
n X0Z

p�! E
�
x iz0i

�
= G0, Bn converges to B = G0W. So bβ is as if defined by a MoM

estimator such that Bgn(
bβ ) = 0.
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Distribution of the GMM Estimator

Distribution of the GMM Estimator

Note that �
1
n

X0Z
�

Wn

�
1
n

Z0X
�

p�!G0WG

and �
1
n

X0Z
�

Wn

�
1p
n

Z0u
�

d�!G0WN (0,Ω) ,

where Ω= E
h
ziz0iu

2
i

i
= E

�
gig0i

�
with gi = ziui .

So p
n
�bβ GMM �β

�
d�! N (0,V) ,

where
V=

�
G0WG

��1 �G0WΩWG
��

G0WG
��1

. (3)

In general, GMM estimators are asymptotically normal with "sandwich form"
asymptotic variances.

It is easy to check this asymptotic distribution is the same as the MoM estimator
defined by Bgn(

bβ ) = 0.
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Distribution of the GMM Estimator

Optimal Weight Matrix

A natural question is what is the optimal weight matrix W0 that minimizes V. This
turns out to be Ω�1 (exercise).

This yields the efficient GMM estimator:

bβ = �X0ZΩ�1Z0X
��1

X0ZΩ�1Z0y,

which has the asymptotic variance V0 =
�

G0Ω�1G
��1

. This corresponds to the

linear combination matrix B = G0Ω�1.

W0 =Ω�1 is usually unknown in practice, but it can be estimated consistently.

In the homoskedastic case, E
h
u2

i jzi

i
= σ2, then Ω = E

�
ziz0i

�
σ2 ∝ E

�
ziz0i

�
suggesting the weight matrix Wn = (Z0Z)

�1, which generates the 2SLS estimator.

So the 2SLS estimator is the efficient GMM estimator under homoskedasticity
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Distribution of the GMM Estimator

Optimal Weight Matrix - An Illustration

Suppose E [xi ] = E [yi ] = µ and Cov(xi ,yi ) = 0. We try to find an efficient GMM
estimator for µ - the common mean of x and y .

The moment conditions are E [g(w i ,µ)] = 0, where w i = (xi ,yi )
0:

g(w i ,µ) =

�
xi �µ

yi �µ

�
.

Since µ appears in both moment conditions, we hope to find a better estimator
than x or y which uses only one moment condition.

Suppose bµ = ωx +(1�ω)y ; then the asymptotic distribution of bµ is

p
n (bµ�µ)

d�! N
�

0,ω2
σ

2
x +(1�ω)2 σ

2
y

�
.

Minimizing the asymptotic variance, we have

ω =
σ2

y

σ2
x +σ2

y
.

The sample (of x and y ) with a larger variance is given a smaller weight, and the
sample with a smaller variance is given a larger weight.
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Distribution of the GMM Estimator

continue...

The asymptotic variance under this optimal weight is
σ2

x σ2
y

σ2
x+σ2

y
�min

n
σ2

x ,σ
2
y

o
.

Note that

W0 = E [g(w i ,µ)g(w i ,µ)
0]�1

=

 
E [(xi �µ)2] E [(xi �µ) (yi �µ)]

E [(xi �µ) (yi �µ)] E [(yi �µ)2]

!�1

=

 
σ
�2
x 0
0 σ

�2
y

!
.

So

Jn(µ) = n �gn(µ)
0W0gn(µ) = n

 
(x �µ)2

σ2
x

+
(y �µ)2

σ2
y

!
,

and bµ = ωx +(1�ω)y

is the same as the weighted average above.

In practice, σ2
x and σ2

y are unknown. In this simple example, they can be
substituted by their sample analog. The next section deals with the general case.
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Estimation of the Optimal Weight Matrix

Estimation of the Optimal Weight Matrix

Given any weight matrix Wn > 0, the GMM estimator bβ GMM is consistent yet
inefficient.

For example, we can set Wn = Il . In the linear model, a better choice is
Wn = (Z0Z)

�1 which corresponds to the 2SLS estimator.

Given any such fist-step estimator, we can define the residuals bui = yi �x0i
bβ GMM

and moment equations bgi = zibui = g
�

w i ,
bβ GMM

�
. Construct

gn = gn(
bβ GMM ) =

1
n

n

∑
i=1

bgi ,

bg�i = bgi �gn,

and define

Wn =

 
1
n

n

∑
i=1

bg�i bg�0i

!�1

=

 
1
n

n

∑
i=1

bgibg0i �gng0n

!�1

. (4)

Wn
p�!Ω�1, and GMM using Wn as the weight matrix is asymptotically efficient.
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Estimation of the Optimal Weight Matrix

An Alternative Estimator

A common alternative choice is to set

Wn =

 
1
n

n

∑
i=1

bgibg0i
!�1

, (5)

which uses the uncentered moment conditions.

Since E [gi ] = 0, these two estimators are asymptotically equivalent under the
hypothesis of correct specification.

However, Alastair Hall (2000) has shown that the uncentered estimator is a poor
choice.

When constructing hypothesis tests, under the alternative hypothesis the moment
conditions are violated, i.e. E [gi ] 6= 0, so the uncentered estimator will contain an
undesirable bias term and the power of the test will be adversely affected.
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Estimation of the Optimal Weight Matrix

Routine to Compute the Linear Efficient GMM Estimator

1 set Wn = (Z0Z)
�1, estimate bβ using this weight matrix, and construct the residualbui = yi �x0i

bβ .
2 set bgi = zibui , and let bg be the associated n� l matrix.
3 the efficient GMM estimator1 is

bβ = �X0Z
�bg0bg�ngng0n

��1 Z0X
��1

X0Z
�bg0bg�ngng0n

��1 Z0y.

4 set bV= n
�

X0Z
�bg0bg�ngng0n

��1 Z0X
��1

,

and asymptotic standard errors are given by the square roots of the diagonal
elements of bV/n.

Iterative Estimator : Given the efficient estimator bβ , we can continue to

reestimate V by replacing bgi by g
�

w i ,
bβ� and construct a new estimator of β . This

is repeated until the β estimator converges or enough iterations are conducted.

1In most cases, when we say "GMM" we actually mean "efficient GMM". There is little point in using an
inefficient GMM estimator when the efficient estimator is easy to compute.
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Nonlinear GMM

Nonlinear GMM

Suppose the moment conditions are

E [g(w i ,θ0)] = 0,

where g(�, �) 2Rl is a general nonlinear function of θ2Rk , l � k .

The GMM estimator bθ minimizes

Jn (θ ) = n �gn(θ )
0Wngn(θ ),

where Wn is a consistent estimator of Ω�1 � E [gi (θ0)gi (θ0)
0]�1.

Define G= E [∂gi (θ0)/∂θ
0],

p
n
�bθ �θ0

�
d�! N

�
0,
�

G0Ω�1G
��1

�
� N (0,V) . (6)

bV� �bG0 bΩ�1 bG��1
, where bΩ = n�1 ∑n

i=1 g�i (
bθ )g�i (bθ )0 with g�i (θ ) = gi (θ )�gn (θ ),

and bG= n�1 ∑n
i=1 ∂gi (bθ )/∂θ

0.
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Hypothesis Testing

Testing Overidentifying Restrictions: The J Test

The hypotheses are
H0 : 9 β 0 s.t. E [g(w i ,β 0)] = 0 (7)

versus
H1 : 8 β 2B, E [g(w i ,β )] 6= 0,

where B is the parameter space.

When l = k , there always exists a β 0 2B such that E [g(w i ,β 0)] = 0. So only if
l > k , we need this test - to test whether the overidentifying restrictions are valid.

For example, take the linear model yi = x01i β 1+ x02i β 2+ui with E [x1iui ] = 0 and
E [x2iui ] = 0. It is possible that β 2 = 0, so that the linear equation may be written
as yi = x01i β 1+ui . However, it is possible that β 2 6= 0, and in this case it would be
impossible to find a value of β 1 so that E [x1i

�
yi �x01i β 1

�
] = 0 and

E [x2i
�
yi �x01i β 1

�
] = 0 hold simultaneously. In this sense an exclusion restriction

(β 2 = 0) can be seen as an overidentifying restriction.
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Hypothesis Testing

continue...

Note that gn(
bβ ) p�! E [gi (β 0)], and thus gn(

bβ ) can be used to assess whether or
not the hypothesis that E [gi (β 0)] = 0 is true or not.

The test statistic is the criterion function at the parameter estimates

Jn = Jn

�bβ�= ngn(
bβ )0Wngn(

bβ ) = n2gn(
bβ )0 �bg0bg�ngng0n

��1 gn(
bβ ).

Under the hypothesis of correct specification,

Jn
d�! χ

2
l�k .

The degrees of freedom of the asymptotic distribution are the number of
over-identifying restrictions.

If the statistic Jn exceeds the chi-square critical value, we can reject the model.
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Hypothesis Testing

Alternative Way to Understand the J Test (I)

The J test is actually an F test in the homoskedastic linear model

yi = x01i β 1+ x02i β 2+ui , (8)

E [ziui ] = 0, E [u2
i jzi ] = σ

2,

where zi = (x01i ,z
0
2i )
0.

Exogeneity of the instruments means that they are uncorrelated with ui , which
suggests that the instruments should be approximately uncorrelated with bui , wherebui = yi �x01i

bβ 1�x02i
bβ 2 with bβ = �bβ 01, bβ 02�0 being the 2SLS estimator.

So we expect in the regression

bui = x01i δ 1+ z02i δ 2+ vi , (9)

the estimate of δ �
�
δ
0
1,δ

0
2
�0 is close to zero.

Let F denote the homoskedasticity-only F statistic testing δ 2 = 0; then l2F
converges to χ2

l2�k2
= χ2

l�k .

Ping Yu (HKU) Single-Equation GMM 21 / 36



Hypothesis Testing

Alternative Way to Understand the J Test (II)

In the linear model (8), suppose we have one endogenous variable x2i and two
instruments z2i , and then we can use either instrument to estimate β �

�
β
0
1,β

0
2
�0.

If H0 holds, we expect that these two instruments will generate similar estimates. If
the two estimates are very different, then we suspect H0 fails.

The J test implicitly makes this comparison.

The J test is also called the Sargan-Hansen test due to a special case established
by Sargan (1958) and the general case by Hansen (1982).

The GMM over-identification test is a very useful by-product of the GMM
methodology, and it is advisable to report the statistic Jn as a general test of model
adequacy whenever GMM is used.
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Hypothesis Testing

Three Asymptotically Equivalent Tests (I) - The Wald Test

Suppose we want to test

H0 : r(β )
(q�1)

= 0 vs H1 : r(β )
(q�1)

6= 0.

The Wald statistic:

Wn = n � r
�bβ�0 hbR0bVbRi�1

r
�bβ� ,

where bβ = argmin
β

Jn(β ) is the unrestricted estimator and bR= ∂ r
�bβ�0/∂β .

Advantage: it only requires the unconstrained estimator to compute it.

Disadvantage: it is not invariant to reparametrization.
- When the hypothesis is non-linear, a better approach is to directly use the GMM
criterion function.
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Hypothesis Testing

Three Asymptotically Equivalent Tests (II) - the Distance Test

The idea was first put forward by Newey and West (1987a), so the test is also
called the Newey-West test.

Define the restricted estimator eβ as

eβ = arg min
r(β )=0

Jn(β ).

The two minimizing criterion functions for bβ and eβ are Jn(bβ ) and Jn(eβ ).
The GMM distance statistic is the difference

Dn = Jn(eβ )�Jn(bβ ).
Newey and West (1987a) suggested to use the same weight matrix Wn for both
null and alternative, as this ensures that Dn � 0.

This reasoning is not compelling, however, and some current research suggests
that this restriction is not necessary for good performance of the test.

This test shares the useful feature of likelihood ratio (LR) tests in that it is a natural
by-product of the computation of alternative models.
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Hypothesis Testing

Three Asymptotically Equivalent Tests (III) - the LM Test

Another test is the Lagrange multiplier (LM) test or C.R. Rao’s score test.

Its test statistic is constructed as

LMn = n
�
gn

�eβ�0WnGn

�eβ��eV�Gn

�eβ�0Wngn

�eβ�� ,
where eV= �Gn

�eβ�0WnGn

�eβ���1

,

and Gn

�eβ�0Wngn

�eβ� is the first-order derivative of Jn(�) at eβ and plays the role

of the score function in the likelihood framework.

Advantage: we need only calculate the restricted estimator eβ , while we need to
calculate both bβ and eβ in the distance statistic.
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Hypothesis Testing

The Trinity in GMM

Proposition 1 : Under some regularity conditions, and the local alternatives
β n = β +n�1/2b,

Wn
d�! χ

2
q(λ ),

where λ = b0R (R0VR)�1 Rb. In addition, Wn�Dn = op(1) and Wn�LMn = op(1).

The three tests are asymptotically equivalent even under the local alternatives and
when the moment conditions are nonlinear in β .

It should be emphasized that the optimal weight matrix is used in the construction
of Dn

Otherwise, Dn is not asymptotically chi-squared and is not asymptotically
equivalent to Wn.

Also, the form of the LM statistic would be more complicated, and would in general
involve the Jacobian matrix R of the constraints.

So it is strongly suggested to use the optimal weight matrix in the hypothesis
testing of GMM.

Ping Yu (HKU) Single-Equation GMM 26 / 36



Hypothesis Testing

Numerical Equivalence

Proposition 2 : (i) When the model is just-identified, LMn = Dn. (ii) When
g(w,β ) = g1(w)�g2(w)β , Dn = LMn. (iii) When g(w,β ) = g1(w)�g2(w)β and
r(β ) = R0β �c, Wn = Dn = LMn.

(i) In the just-identified case, gn

�bβ�= 0, so Dn = Jn(eβ ) = n �gn

�eβ�0Wngn

�eβ�.

On the other hand, given Gn

�eβ� is invertible,

LMn = n
�
gn

�eβ�0WnGn

�eβ��eV�Gn

�eβ�0Wngn

�eβ��
= n �gn

�eβ�0WnGn

�eβ��Gn

�eβ��1
W�1

n Gn

�eβ�0�1
�

Gn

�eβ�0Wngn

�eβ�
= n �gn

�eβ�0Wngn

�eβ� .
(ii) does not include Wn because it involves the Jacobian of the constraints when
r(�) is nonlinear. (iii) is an exercise.
The linear projection case: LMn = Dn even if the constraints are nonlinear; when
the constraints are linear, all three are the same.

- Dn = n �gn

�eβ�0Wngn

�eβ� 6= ∑n
i=1(yi �x0i

eβ )2�∑n
i=1(yi �x0i

bβ )2, where

gn

�eβ�= n�1 ∑n
i=1 x i (yi �x0i

eβ ).
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Hypothesis Testing

Figure: Trinity
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Hypothesis Testing

Confidence Region - Inverting the Distance Statistic

Use the distance statistic (rather than the Wald statistic) because of its better
performance in hypothesis testing.

Suppose we want to construct confidence region for θ2, where θ = (θ 01,θ
0
2)
0 2Rk

and θ2 2Rk2 is a subvector of θ .

We need to find θ2 such that

Jn

�eθ1 (θ2) ,θ2

�
�Jn

�bθ�� χ
2
k2,α

,

where eθ1 (θ2) = argmin θ 1 Jn (θ1,θ2) for a given θ2, the df of the χ2 limiting

distribution is k2 because the df of Jn

�eθ1 (θ2) ,θ2

�
is l�k1 and the df of Jn

�bθ� is

l�k so the difference is (l�k1)� (l�k) = k �k1 = k2.

We can also construct confidence region for θ2 by collecting θ2’s such that

Jn

�eθ1 (θ2) ,θ2

�
� χ2

l�k1,α
directly.

However, Jn

�eθ1 (θ2) ,θ2

�
=
h
Jn

�eθ1 (θ2) ,θ2

�
�Jn

�bθ�i+ Jn

�bθ�, so this

confidence region is based on the joint test of overidentification and θ2 = θ20.
- If the model is misspecified so that the overidentifying conditions are invalid, this
confidence region can be null.
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Conditional Moment Restrictions

Ping Yu (HKU) Single-Equation GMM 30 / 36



Conditional Moment Restrictions

Conditional Moment Restrictions

In many cases, the model may imply conditional moment restrictions

E [u (w,β 0) jx] = 0,

where u (w,β ) is some s�1 function of the observation and the parameters.

For example, in linear regression, u (w,β ) = y �x0β , w = (y ,x0)0, and s = 1; in a
joint model of conditional mean and variance,

u (w,β ) =
�

y �x0β
(y �x0β )2� f (x)0γ

�
for a specification Var (y jx) = f (x)0γ, so s = 2.

Conditional moment restrictions imply infinite unconditional moment conditions,
since for any function of x, say φ (x), E [φ (x)ui (w,β 0)] = 0.

So a natural question is which instruments are optimal, or what is the
semiparametric efficiency bound for β 0.

Chamberlain (1987) derived this bound by approximating the CDF F (x) and the
conditional CDF F (wjx) with multinomial distributions.
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Conditional Moment Restrictions

Semiparametric Efficiency Bound

It turns out that the optimal instruments are

A(x) = G(x)0Ω(x)�1,

where G(x) = E
�

∂u (w,β 0)/∂β
0��x�, and Ω(x) = E

�
u (w,β 0)u (w,β 0)

0��x�.
A(x) is similar to the optimal linear combination B in the unconditional moment
case, but now we condition every random variable on x.
Using the optimal instruments, the unconditional moment conditions are

E [A(x)u (w,β 0)] = 0.

Applying the formula of the asymptotic variance for the MoM estimator, we have
the semiparametric efficiency bound for β 0

E
�
A(x)∂u (w,β 0)/∂β

0��1 �E
�
A(x)u (w,β 0)u (w,β 0)

0A(x)0
�
� � � �

= E
h
G(x)0Ω(x)�1G(x)0

i�1
.

In the linear regression case, G(x) = x0, and Ω(x) = σ2(x), so the optimal
instrument is x/σ2(x), which corresponds to the generalized least squares

estimator, and the semiparametric efficiency bound for β 0 is E
h
xx 0/σ2(x)

i
.
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Alternative Inference Procedures and Extensions

Alternative Inference Procedures and Extensions (*)
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Alternative Inference Procedures and Extensions

Underestimation of the Sample Variation and Solutions

Monte Carlo studies have shown that estimated asymptotic standard errors of the
efficient two-step GMM estimator can be severely downward biased in small
samples.

A key observation for the source of this bias is that the weight matrix used in the
calculation of the efficient two-step GMM estimator is based on initial consistent
parameter estimates whose variation is not embodied in the asymptotic
covariance matrix estimation.

Solutions:
- nonlinear procedures: the generalized empirical likelihood (GEL) method.
- linear procedures: incorporate the variation in the first-stage estimator explicitly.
- bootstrap procedures: refine the inferences based on the two-step GMM
estimator.
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Alternative Inference Procedures and Extensions

A Special GEL Estimator - Continuously-Updated Estimator (CUE)

Idea: let the weight matrix be considered as a function of θ .

The criterion function becomes

Jn(θ ) = n �gn (θ )
0
 

1
n

n

∑
i=1

g�i (θ )g
�
i (θ )

0
!�1

gn (θ ) ,

where
g�i (θ ) = gi (θ )�gn (θ ) .

The bθ which minimizes this function is called the CUE of GMM, and was
introduced by Hansen et al. (1996).

The CUE has some better properties (e.g., smaller bias) than traditional GMM, but
can be numerically tricky to obtain in some cases.
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Alternative Inference Procedures and Extensions

Extensions

w i , i = 1, � � � ,n, is a random sample. If w i , i = 1, � � � ,n, are time series wt ,
t = 1, � � � ,T , such that g(wt ,θ ) are correlated, then the optimal

Ω = TE
�
gT (θ0)gT (θ0)

0�
=

∞

∑
v=�∞

E
�
g(wt ,θ0)g(wt�v ,θ0)

0�� ∞

∑
v=�∞

Ωv .

A consistent estimator of Ω is often called the heteroskedasticity and
autocorrelation consistent (HAC) estimator.

g(w,θ ) is smooth in θ . When g is nondifferentiable and/or discontinuous in θ

(e.g., the moment conditions in quantile regression), G is not well defined.

G is full column rank. When G� Cn�1/2, the instruments are weak, and θ cannot
be consistently estimated.

l is fixed. When l can go to infinity, there are many moment conditions which will
increase the bias of the GMM estimator and deteriorates the estimation of Ω.

k is fixed. When k can go to infinity, there are nonparametric parameters in the
moment conditions. For identification, we need infinite moment conditions.

There are only moment equalities. If there are moment inequalities, θ can only be
partially identified.
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