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Endogeneity

In the linear regression

yi = x′i β +ui , (1)

if E [xiui ] 6= 0, there is endogeneity.

In this case, the LSE will be asymptotically biased.

Here, β in (1) is the structural parameter rather than the linear projection coefficient

of y on span (x) since from Chapter 2 we can always find a β such that E [xiui ] = 0.

- Example: in the return to schooling, if x is the education level and u is the ability,

then given the i th individual’s education level xi and ability ui , we can determine

his/her wage level from equation (1). That is, equation (1) describes an economic

reality for each individual rather than only a statistical relationship.

The analysis of data with endogenous regressors is arguably the main contribution

of econometrics to statistical science.
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Five Sources of Endogeneity

Simultaneous causality.

- Example: Do higher hotel prices decrease occupancy rates? Do Cigarette taxes

reduce smoking? Does putting criminals in jail reduce crime? Does declining fertil-

ity explain increasing female labor supply?

- Solution: using instrumental variables (IVs), and designing and implementing a

randomized controlled trial (RCT) in which the reverse causality channel is nullified

Omitted variables.

- Example: in the model on returns to schooling, ability is an important variable that

is correlated to years of education, but is not observable so is included in the error

term.

- Solution: using IVs, using panel data and using RCTs.
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History of RCT

Michael Kremer (1964-, Chicago), Esther Duflo (1972-, MIT)

and Abhijit Banerjee (1961-, MIT), NP2019

They won the Nobel Prize in 2019 because they successfully applies RCT to im-

prove our ability to fight global poverty.
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Continue...

Errors in variables. This term refers to the phenomenon that an otherwise exoge-

nous regressor becomes endogenous when measured with error.

- Example: in the returns-to-schooling model, the records for years of education are

fraught with errors owing to lack of recall, typographical mistakes, or other reasons.

- Solution: using IVs (e.g., exogenous determinants of the error ridden explana-

tory variables, or multiple indicators of the same outcome, i.e., repeated measure-

ments).

Sample selection.

- Example: in the analysis of returns to schooling, only wages for employed workers

are available, but we want to know the effect of education for the general population.

- Solution: Heckman’s control function approach.

Functional form misspecification. E [y |x] may not be linear in x.

- Solution: nonparametric methods.
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Simultaneous Causality

Philip Green Wright (1928) considered to estimate the elasticity of butter demand,

which is critical in the policy decision on the tariff of butter.

Define pi = lnPi and qi = lnQi , and the demand equation is

qi = α0+α1pi +ui , (2)

where ui represents other factors besides price that affect demand, such as income

and consumer taste. But the supply equation is in the same form as (2):

qi = β 0+β 1pi + vi , (3)

where vi represents the factors that affect supply, such as weather conditions, factor

prices, and union status.

So pi and qi are determined "within" the model, and they are endogenous. Rigor-

ously, note that

pi =
β 0−α0

α1−β 1

+
vi −ui

α1−β 1

,

qi =
α1β 0−α0β 1

α1−β 1

+
α1vi −β 1ui

α1−β 1

,

by solving two simultaneous equations (2) and (3).
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continue...

Suppose Cov(ui ,vi ) = 0, then

Cov(pi ,ui ) = −
Var (ui )

α1−β 1

,Cov(pi ,vi ) =
Var (vi )

α1−β 1

,

which are not zero. If α1 < 0 and β 1 > 0, then Cov(pi ,ui ) > 0 and Cov(pi ,vi ) < 0,

which is intuitively right (why?).

If regress qi on pi , then the slope estimator converges to

Cov(pi ,qi )
Var (pi )

= α1+
Cov(pi ,ui )

Var (pi )
= β 1+

Cov(pi ,vi )
Var (pi )

?
= α1Var (vi )+β 1Var (ui )

Var (vi )+Var (ui )
∈ (α1,β 1).

So the LSE is neither α1 nor β 1, but a weighted average of them. Such a bias

is called the simultaneous equations bias. The LSE cannot consistently estimate

α1 or β 1 because both curves are shifted by other factors besides price, and we

cannot tell from data whether the change in price and quantity is due to a demand

shift or a supply shift.
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continue...

If ui = 0, that is, the demand curve stays still, then the equilibrium prices and quanti-

ties will trace out the demand curve and the LSE is consistent to α1.1 The following

figure illustrates the discussion above intuitively.
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Figure: Endogeneity and Identification of Instrument Variables

1When Var (ui ) = 0, then
Cov(pi ,qi )

Var (pi )
= α1. Note that the supply curve is still not identifiable because essentially,

only one point on the supply curve is observed.
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continue...

From above, we can see that pi has one part which is correlated with ui

(
− ui

α1−β 1

)
and one part is not

(
vi

α1−β 1

)
. If we can isolate the second part, then we can focus

on those variations in pi that are uncorrelated with ui and disregard the variations

in pi that bias the LSE.

Take one supply shifter zi , e.g., weather, which can be considered to be uncorre-

lated with the demand shifter ui such as consumer’s tastes, then

Cov(zi ,ui ) = 0, and Cov(zi ,pi ) 6= 0.

So

Cov(zi ,qi ) = α1 ·Cov(zi ,pi ),

and

α1 =
Cov(zi ,qi )

Cov(zi ,pi )
.

A natural estimator is

α̂1 =
Ĉov(zi ,qi )

Ĉov(zi ,pi )
,

which is the IV estimator implicitly defined in Appendix B of Philip (1928).
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History of the Instrumental Variable Regression

Philip G. Wright (1861-1934), Lombard College Sewall G. Wright (1889-1988), Chicago

Sewall Wright is also famous for path analysis (a key step for causal effects evalu-

ation), which will be touched at the end of this chapter.
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continue...

Another method to estimate α1 as suggested above is to run regression

qi = α0+α1p̂i + ũi ,

where p̂i is the predicted value from the following regression:

pi = γ0+ γ1zi +η i ,

and ũi = α1 (pi − p̂i )+ui .

It is easy to show that Cov(p̂i , ũi ) = 0, so the estimation is consistent.

Such a procedure is called two-stage least squares (2SLS) for an obvious reason.

In this case, the IV estimator and the 2SLS estimator are numerically equivalent.
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Omitted Variables

Mundlak (1961) considered the production function estimation, where the error

term includes factors that are observable to the economic agent under study but

unobservable to the econometrician, and endogeneity arises when regressors are

decisions made by the agent on the basis of such factors.

Suppose that a farmer is producing a product with a Cobb-Douglas technology:

Qi = Ai · (Li )
φ1 ·exp(ν i ), 0< φ1 < 1, (4)

where Qi is the output on the i th farm, Li is a variable input (labor), Ai represents

an input that is fixed over time (soil quality), and ν i represents a stochastic input

(rainfall), which is not under the farmer’s control.

We shall assume that the farmer knows the product price p and input price w , which

do not depend on his decisions, and that he knows Ai but econometricians do not.

The factor input decision is made before knowing ν i , and so Li is chosen to maxi-

mize expected profits. The factor demand equation is

Li =

(
w

p

) 1
φ1−1

(AiBφ1)
1

1−φ1 , (5)

so a better farm induces more labors on it.
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continue...

We assume that (Ai , ν i ) is i.i.d. over farms, and Ai is independent of ν i for each

i , so B = E [exp(ν i )] is the same for all i , and the level of output the farm expects

when it chooses Li is Ai · (Li )
φ1 ·B.

Take logarithm on both sides of (4), we have a log-linear production function:

logQi = logAi +φ1 · log(Li )+ν i .

logAi is an omitted variable. Equivalently, each farm has a different intercept.

The LSE of φ1 will converge to

Cov(logQi , log(Li ))

Var (log(Li ))
= φ1+

Cov(logAi , log(Li ))

Var (log(Li ))
,

which is not φ1 since there is correlation between logAi and log(Li ) as shown in

(5).

The following figure shows the effect of logAi on φ1 by drawing E [logQ| logL, logA]
for two farms. In the figure, the OLS regression line passes through points AB with

slope
logQ1−logQ2

logL1−logL2
, but the true φ1 is D−C

logL1−logL2
. Their difference is A−D

logL1−logL2
=

logA1−logA2

logL1−logL2
, which is the bias introduced by the endogeneity of logAi .
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Figure: Effect of Soil Quality on Labor Input
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continue...

Rigorously, let ui = log(Ai )−E [log(Ai )], and φ0 = E [log(Ai )], then E [ui ] = 0 and

Ai = exp (φ0+ui ).

(4) and (5) can be written as

logQi = φ0+φ1 · log(Li )+ν i +ui , (6)

logLi = β 0+
1

1−φ1

ui , (7)

where β 0 =
1

1−φ1

(
φ0+ log(Bφ1)− log

(
w
p

))
is a constant for all farms.

It is obvious that logLi is correlated with (ν i +ui ). Thus, the LSE of φ1 in the

estimation of log-linear production function confounds the contribution to output of

ui with the contribution of labor. Actually,

φ̂1,OLS

p−→ 1,

because substituting (7) into (6), we get

logQi = φ0− (1−φ1)β 0+1 · log(Li )+ν i .

The lesson from this example is that a variable chosen by the agent taking into

account some error component unobservable to the econometrician can induce

endogeneity.
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History of the Hidden Information

Yair Mundlak (1927-2015), Chicago
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Errors in Variables

Measurement errors are embodied in regression analysis from the beginning. Gal-

ton (1889) analyzed the relationship between the height of sons and the height of

fathers. More specifically,

S∗i = α+βF ∗i +ui , (8)

where S∗i and F ∗i are the heights of sons and fathers, respectively.

Even if S∗i should perfectly match F ∗i (that is, α0 = 0, β 0 = 1 and ui = 0, or S∗i = F ∗i ),

the OLS estimator would be smaller than 1 if there are environmental factors or

measurement errors that affect S∗i and F ∗i .

Suppose the observables are Si = S∗i +si , and Fi = F ∗i + fi , where si and fi are the

mean-zero environmental factors; then our regression becomes

Si = α+β (Fi − fi )+ si = α+βFi + si −β fi .

The OLS estimator of β will converge to

Cov(Fi ,Si )

Var (Fi )
=

Var (F ∗i )

Var (F ∗
i
)+Var (fi )

< 1

where
Var (F ∗i )

Var (F ∗i )+Var (fi )
≡ ρ is called the reliability coefficient. In Galton’s analysis,

this coefficient is about 2/3. He termed this phenomenon as "regression towards

mediocrity". [intuition here]
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True
Regression

Figure: Relationship Between the Height of Sons and Fathers
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History of "Regression"

Sir Francis Galton (1822-1911), English2

2Galton was Charles Darwin (1809-1882)’s half-cousin, sharing the common grandparent. He was also the
advisor of Karl Pearson, (South West) African explorer, and inventor of fingerprinting.
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Instrumental Variables
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Instrumental Variables

yi = x′i β+ui is called the structural equation or primary equation. In matrix notation,

it can be written as

y= Xβ +u. (9)

Any solution to the problem of endogeneity requires additional information which

we call instrumental variables (or simply instruments).

The l × 1 random vector zi is an instrument for (1) if E [ziui ] = 0. This condition

cannot be tested in practice since ui cannot be observed.

In a typical set-up, some regressors in xi will be uncorrelated with ui (for example,

at least the intercept). Thus we make the partition

xi =

(
x1i

x2i

)
k1

k2
, (10)

where E [x1iui ] = 0 yet E [x2iui ] 6= 0. We call x1i exogenous and x2i endogenous.
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continue...

By the above definition, x1i is an instrumental variable, so should be included in zi ,

giving the partition

zi =

(
x1i

z2i

)
k1

l2
, (11)

where x1i = z1i are the included exogenous variables, and z2i are the excluded

exogenous variables.

In other words, z2i are variables which could be included in the equation for yi (in

the sense that they are uncorrelated with ui ) yet can be excluded, as they would

have true zero coefficients in the equation which means that certain directions of

causation are ruled out a priori.

The model is just-identified if l = k (i.e., if l2 = k2) and over-identified if l > k (i.e.,

if l2 > k2). We have noted that any solution to the problem of endogeneity requires

instruments. This does not mean that valid instruments actually exist.
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Reduced Form
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Reduced Form

The reduced form relationship between the variables or "regressors" xi and the

instruments zi is found by linear projection. Let

Γ = E
[
ziz
′
i

]−1
E
[
zix
′
i

]
be the l×k matrix of coefficients from a projection of xi on zi .

Define

vi = xi −Γ′zi

as the projection error. Note that vi must be correlated with ui . (why?)

The reduced form linear relationship between xi and zi is the instrumental equation

xi = Γ′zi +vi . (12)

In matrix notation,

X= ZΓ+V, (13)

where V is a n×k matrix.

By construction, E
[
ziv
′
i

]
= 0, so (12) is a projection and can be estimated by OLS:

X= ZΓ̂+ V̂, Γ̂ =
(
Z′Z
)−1 (

Z′X
)
.

25 / 86



continue...

Substituting (13) into (9), we find

y= (ZΓ+V)β +u= Zλ +e (14)

where λ = Γβ and e= u+Vβ .

Observe that

E [ze] = E
[
zv′
]

β +E [zu] = 0. (15)

Thus (14) is a projection equation and may be estimated by OLS. This is

y= Zλ̂ + ê, λ̂ =
(
Z′Z
)−1 (

Z′y
)
.

The equation (14) is the reduced form for y. (13) and (14) together are the reduced

form equations for the system

y = Zλ +e,

X = ZΓ+V.

The system of equations

y = Xβ +u,

X = ZΓ+V,

are called triangular (or recursive) simultaneous equations because the second part

of equations do not depend on y.
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An Economic Example of Triangular Simultaenous Equations

Let Y denote individual lifetime earnings and X denote level of education, where we

use the capital letters such as X to denote random variables and the corresponding

lower case letters such as x denote the potential values they may take.

The value of X is chosen first, as a function of expected but not of realized Y . The

value of Y is determined next, as a function of X , as well as of other observable

and unobservable variables.

In the simple version of such a model,

X = argmax
x
{E [m1 (x ,U) |Z ,V ]−c (x ,Z )} ,

where Y =m1 (X ,U), U is productivity (or ability), c (X ,Z ) is the cost of education,

Z determines the cost of a unit of education, and V is an imperfect signal of U (so

correlated with U).

The solution X is a function, m2, of Z and V , so we have a recursive model,

Y =m1 (X ,U) ,
X =m2 (Z ,V ) .

(16)
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Identification

28 / 86



Identification

The structural parameter β relates to (λ ,Γ) by λ = Γβ .

This relation can be derived directly by using the orthogonal condition E
[
zi

(
yi −x′i β

)]
=

0 which is equivalent to

E [ziyi ] = E
[
zix
′
i

]
β . (17)

Multiplying each side by an invertible matrix E
[
ziz
′
i

]−1
, we have λ = Γβ .

The parameter is identified, meaning that it can be uniquely recovered from the

reduced form, if the rank condition

rank (Γ) = k (18)

holds. Intuitively, this condition requires that z can perturb x in all directions.

If rank
(
E
[
ziz
′
i

])
= l (this is trivial), and rank

(
E
[
zix
′
i

])
= k (this is crucial), this con-

dition is satisfied.

Assume that (18) holds. If l = k , then β = Γ−1
λ . If l > k , then for any A > 0,

β = (Γ′AΓ)
−1

Γ′Aλ .

If (18) is not satisfied, then β cannot be uniquely recovered from (λ ,Γ).

Note that a necessary (although not sufficient) condition for (18) is the order condi-

tion l ≥ k .
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continue...

Since Z and X have the common variables X1, we can rewrite some of the expres-

sions.

Using (10) and (11) to make the matrix partitions Z= [Z1,Z2] and X= [Z1,X2], we

can partition Γ as

Γ =

(
Γ11 Γ12

Γ21 Γ22

)
=

(
I Γ12

0 Γ22

)
k1 k2

k1

l2
.

(13) can be rewritten as

X1 = Z1

X2 = Z1Γ12+Z2Γ22+V2.

β is identified if rank(Γ) = k , which is true if and only if rank(Γ22) = k2 (by the

upper-diagonal structure of Γ). Thus the key to identification of the model rests on

the l2×k2 matrix Γ22.
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(*) What Variable Is Qualified to Be An IV?

It is often suggested to select an instrumental variable that is

(i) uncorrelated with u; (ii) correlated with endogenous variables.3 (19)

(i) is the instrument exogeneity condition, which says that the instruments can cor-

relate with the dependent variable only indirectly through the endogenous variable.

(ii) intends to repeat the instrument relevance condition which says that X1 and

the predicted value of X2 from the regression of X2 on Z2 and X1 are not perfectly

multicollinear; in other words, there must be "enough" extra variation in x̂2 that can

not be explained by x1. Such a condition is required in the second stage regression.

Sometimes (19) is misleading.

Check the following example with only one endogenous variable:

y = x1β 1+ x2β 2+u,

E [x1u] = 0, E [x2u] 6= 0, Cov(x1,x2) 6= 0.

3Of course, we also require the instrument to be excluded from the outcome equation. But mathematically,
if z should be included in the outcome equation but is omitted, then E [zu] = 0 cannot hold. Maybe this is the
most important case of E [zu] 6= 0 in practice. See below for the difference in DAG representations of violation of
exclusion and exogeneity.
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continue...

One may suggest the following instrument for x2, say, z = x1+ ε, where ε is some

computer-generated random variable independent of the system.4

Now, E [zu] = 0 and Cov (z,x2) = Cov(x1,x2) 6= 0. It seems that z is a valid instru-

ment, but intuition tells us that it is NOT, since it includes the same useful informa-

tion as x1.

What is missing? We know the right conditions for a random variable to be a valid

instrument are

E [zu] = 0, (20)

x2 = x1γ1+ zγ2+ v with γ2 6= 0.

In this example, x2 = x1γ1+zγ2+v = x1 (γ1+ γ2)+(εγ2+ v), γ2 is not identified!5

The arguments above indicate that (19) is not sufficient, is it necessary? The an-

swer is still NO!

For this simple example, can we find some z such that

γ2 6= 0 but Cov(z,x2) = 0?

4WLOG, assume E [x1] = E [ε ] = 0 so that E [zu] = Cov (z,u).
5Actually, from the formula of linear projection, γ2 can be identified as 0.
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continue...

Observe that Cov(z,x2) = Cov(z,x1γ1+zγ2+v) = Cov(z,x1)γ1+Var (z)γ2, so if
Cov(z,x1)

Var (z)
= − γ2

γ1
, this could happen.

That is, although z is not correlated with x2, z is correlated with x1, and x1 is

correlated with x2. In mathematical language, Cov(z,x1) 6= 0, γ1 6= 0.

In such a case, z is related to x2 only indirectly through x1. If we assume Cov(z,x1) =
0, or γ1 = 0, then the assumption Cov(z,x2) 6= 0 is the right condition for z to be a

valid instrument.

So the right condition should be that z is partially correlated with x2 after netting

out the effect of x1.

In general, a necessary condition for a set of qualified instruments is that at least

one (need not be the same one) instrument appears in each of the first-stage re-

gression.

- When k = l , each instrument must appear in at least one endogenous regression

(why?).
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How to Select Instruments?

Generally speaking, good instruments are not selected based on mathematics, but

based on economic theory.

In the return to schooling example, the usual practice in the literature is to seek

instruments which proxy, or are correlated with, costs of schooling.

- Angrist and Krueger (1991) propose using quarter of birth as an IV for education

in the analysis of returns to schooling because of a mechanical interaction between

compulsory school attendance laws and age at school entry.6

- Butcher and Case (1994) use the sex of siblings, in particular whether a girl has

any sisters, as an IV to estimate the schooling return to women because the gender

of siblings may affect the cost of investing in a child’s human capital through the

existence of borrowing constraints if there are exogenous gender differences in the

return to human capital.7

6Children born earlier in the year enter school at an older age (e.g., for many states, children turning six by
January 1 can enter the primary school on September 1) and are therefore allowed to drop out (on their 16th or
17th birthday) after having completed less schooling than children born later in the year. The exclusion condition
may fail because children born in the first quarter are a few months older than other children, and at vey young
ages a difference of a few months might be an advantage in performance in school. This indicates that the
estimator based on this IV may underestimate the return to schooling (exercise).

7Surprisingly, they find that girls who have any sisters, conditional on the number of siblings, have lower school
attainment than do girls with no sisters; on the other hand, the school attainment of boys is found to be unrelated
to gender composition. This may be because parents prefer a "gender mix".
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continue...

- Card (1995) uses college proximity as an instrument to identify the returns to

schooling, noting that living close to a college during childhood may induce some

children to go to college but is unlikely to directly affect the wages earned in their

adulthood.

In development economics,

- Acemoglu, Johnson and Robinson (2001) use the mortality rates (of soldiers, bish-

ops, and sailors) as an IV to estimate the effect of property rights and institutions

on economic development.

In political economics,

- Levitt (1997) uses the timing of mayoral and gubernatorial elections as an IV to

identify the causal effect of police on crime by arguing that after controlling some

economic variables such as state unemployment rates and spending on public wel-

fare or education this IV does not affect the crime rate but will affect the number of

police officers.

Deaton (2010): Exogeneity is different from externality (not set or caused by the

variables in the model). The former is not guaranteed by the latter.

- The instruments above are external, but exogenous? [see the draft lottery exam-

ple below]
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History of Institutions on Growth

Daron Acemoglu (1967-),

MIT, NP2024

Simon Johnson (1963-),

MIT, NP2024

James A. Robinson (1960-),

Chicago, NP2024

Acemoglu, Johnson and Robinson (2001) is their most cited paper.
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Three Other Nobel Laureates

Joshua D. Angrist (1960-),

MIT, NP2021

David Card (1956-),

Berkeley, NP20218

Angus Deaton (1945-),

Princeton, NP2015

8Both Card and Angrist were supervised by Orley Ashenfelter (1942-) at Princeton. Card has many good
students, e.g., David S. Lee, Justin R. McCrary, Thomas Lemieux, Michael B. Greenstone, Kenneth Chay, and
Kristin Butcher among others; he is also the second advisor of Angrist.
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Authors Except Nobel Laureates

Alan B. Krueger (1960-2019), Princeton Kristin F. Butcher (?-), Fed. of Chicago

Anne Case (1958-), Princeton Steven D. Levitt (1967-), Chicago
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Estimation: Two-Stage Least Squares
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IV Estimator

If l = k , then the moment condition is E
[
zi

(
yi −x′i β

)]
= 0, and the corresponding

IV estimator is a MoM estimator:

β̂ IV =
(
Z′X
)−1 (

Z′y
)
.

Another interpretation stems from the fact that since β = Γ−1
λ , we can construct

the Indirect Least Squares (ILS) estimator:

β̂ = Γ̂
−1

λ̂ =
((

Z′Z
)−1

Z′X
)−1((

Z′Z
)−1

Z′y
)
=
(
Z′X
)−1 (

Z′y
)
.
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History of the ILS

Jan Tinbergen (1903-1994), Dutch, NP1969 Trygve Haavelmo (1911-1999), Oslo, NP1989
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2SLS Estimator as An IV Estimator

When l > k , the two-stage least squares (2SLS) estimator can be used.

Given any k instruments out of z or its linear combinations can be used to identify

β , the 2SLS chooses those that are most highly (linearly) correlated with x.

It is the sample analog of the following implication of E [zu] = 0:

0= E [E∗ [x|z]u] = E
[
Γ′zu

]
= E

[
Γ′z(y −x′β )

]
, (21)

where E∗ [x|z] is the linear projection of x on z.

Replacing population expectations with sample averages in (21) yields

β̂ 2SLS =
(

X̂′X
)−1

X̂′y,

where X̂ = ZΓ̂ ≡ PX with Γ̂ = (Z′Z)−1 (Z′X) and P = PZ = Z (Z′Z)−1
Z′. In other

words, the 2SLS estimator is an IV estimator with the IVs being x̂i .

When l = k , the 2SLS estimator and the IV estimator are numerically equivalent

(why?).
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History of the 2SLS

Henri Theil (1924-2000)

Chicago and Florida

Robert Basmann (1926-2024)

TAMU and Bringhamton

Lester Telser (1931-2022)

Chicago
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Theil (1953)’s Formulation of 2SLS

The source of the name "two-stage" is from Theil (1953)’s formulation of 2SLS.

From (15),

0= E
[
E∗[x|z](u+v′β )

]
= E

[(
Γ′z
)
(y −z′Γβ )

]
,

i.e., β is the least squares regression coefficients of the regression of y on fitted

values of Γ′z, so this method is often called the fitted-value method.

The sample analogue is the following two-step procedure:

1 First, regress X on Z to get X̂.
2 Second, regress y on X̂ to get

β̂ 2SLS =
(

X̂′X̂
)−1

X̂′y= (X′PX)
−1
(X′Py) . (22)
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Basmann (1957)’s version of 2SLS

Basmann (1957)’s version of 2SLS is motivated by observing that E [zu] = 0 implies

0= E∗ [u|z] = E∗ [y |z]−E∗[x|z]′β ,

so

β̂ 2SLS =
(

X̂′X̂
)−1

X̂′ŷ.

Equivalently, β̂ 2SLS = argminβ (y−Xβ )′PZ (y−Xβ ), which is a GLS estimator.

Intuitively, PZ (y−Xβ ) should converge in probability to zero because E [zu] = 0, so

we try to find some β value such that the length of PZ (y−Xβ ) is as close to zero

as possible.
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Telser (1964)’s version of 2SLS

Telser (1964)’s control function formulation:(
β̂ 2SLS

ρ̂2SLS

)
=
(

Ŵ′Ŵ
)−1

Ŵ′y,

where Ŵ= [X, V̂].

This construction exploits another implication of E [zu] = 0:

E∗[u|x,z] = E∗[u|Γ′z+v,z] = E∗ [u|v,z] = E∗[u|v] ≡ v′ρ

for some coefficient vector ρ, where the third equality follows from the orthogonality

of both error terms u and v with z (why? Exercise).

So

E∗[y |x,z] = E∗[x′β +u|x,z] = x′β +E∗[u|x,z] = x′β +v′ρ.

Thus, this particular linear combination of the first-stage errors v is a function that

controls for the endogeneity of the regressors x; one can think of v as proxying for

the factors in u that are correlated with x.

From the FWL theorem, β̂ 2SLS is the effect of the net variation in x on y after

excluding the variation in v̂, while the net variation in x comes from z because

x= Γ̂
′
z+ v̂.
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Scrutinizing X̂ and v̂

Recall that Z= [X1,Z2] and X= [X1,X2], so

X̂= [PX1,PX2] = [X1,PX2] =
[
X1, X̂2

]
,

since X1 lies in the span of Z.

Thus in the second stage, we regress y on X1 and X̂2. So only the endogenous

variables X2 are replaced by their fitted values:

X̂2 = Z1Γ̂12+Z2Γ̂22.

Note that as a linear combination of z, x̂2 is not correlated with u and it is often

interpreted as the part of x2 that is uncorrelated with u.

In the control function formulation of 2SLS, only v̂2 = x2− x̂2 should be added to

the regression since v̂1 = x1− x̂1 = x1−x1 = 0.

x2 = Γ′12z1+Γ′22z2+v2 implies v2 = x2−Γ′12z1−Γ′22z2, so the rank condition that

rank(Γ22) = k2 guarantees that there is separate variation in v2 from x =
(
z′1,x

′
2

)′
in the regression of y on x and v2.
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The Wald (1940) Estimator - A Special IV Estimator

The Wald estimator is a special IV estimator when the single instrument z is binary.

Suppose we have the model

y = β 0+β 1x +u, Cov(x ,u) 6= 0,

x = γ0+ γ1z+ v .

The identification conditions are

Cov(z,x) 6= 0,Cov(z,u) = 0.(why?) (23)

It can be shown that the IV estimator is

β̂ 1 =

n

∑
i=1
(zi −z) (yi −y)

n

∑
i=1
(zi −z) (xi −x)

.
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History of the Wald Estimator

Abraham Wald (1902-1950), Columbia
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continue...

If z is binary that takes the value 1 for n1 of the n observations and 0 for the re-

maining n0 observations, then it can be shown that β̂ 1 is equivalent to

β̂ Wald =
y1−y0

x1−x0

p−→ E [y |z = 1]−E [y |z = 0]

E [x |z = 1]−E [x |z = 0]
,

where y1 is mean of y across the n1 observations with z = 1, y0 is the mean of y

across the n0 observations with z = 0, and analogously for x .

Note that the numerator and denomator of plim
(

β̂ Wald

)
are exactly the slope coef-

ficients in the reduced form equations:

y = λ 0+λ 1z+e,

x = γ0+ γ1z+ v ,

so the form of β̂ Wald is a direct application of ILS.

A simple interpretation of this estimator is to take the effect of z on y and divide by

the effect of z on x .

The following figure provides some intuition for the identification scheme of the Wald

estimator in the linear demand/supply system - the shift in p by z devided by the

shift in q by z is indeed a reasonable slope estimator of the demand curve.
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Figure: Intuition for the Wald Estimator in the Linear Demand/Supply System
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Some Popular Examples of the Wald Estimator

In Card (1995), y is the log weekly wage, x is years of schooling S, and z is a

dummy which equals 1 if born in the neighborhood of an university and 0 otherwise.

In studying the returns to schooling in China, Giles et al. (2003) used a dummy

indicator of living through the Cultural Revolution or not as z.

Angrist and Evans (1998) use the dummy of whether the sexes of the first two

children are the same, which indicates the parental preferences for a mixed sibling-

sex composition, (and also a twin second birth) as the instrument to study the effect

of a third child on employment, hours worked and labor income.

Angrist (1990) uses the Vietnam era draft lottery as an instrument for veteran sta-

tus to identify the effects of mandatory military conscription on subsequent civilian

mortality and earnings (via college deferment).9

9See Heckman (1997) for a critique on the validity of this instrument. Suppose z 6= x is because x = 0
although z = 1, i.e., draft evaders (x = 1 while z = 0, the volunteers, seem fine with exclusion although they may
anticipate high earnings gains from military service). If this is for medical reasons, or more generally reasons
that make these candidates ineligible to serve, then the exclusion assumption seems plausible. If, on the other
hand these are individuals fit but unwilling to serve, they may have had to take actions to stay out of the military
that could have affected their subsequent civilian labor market careers. Such actions may include extending their
educational career, or temporarily leaving the country. Note that these issues are not addressed by the random
assignment of the instrument.
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Examples of the Wald Estimator

Joshua D. Angrist (1960-), MIT, NP2021 William N. Evans (?-), Notre Dame
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Critique of Usual IV Identification

James J. Heckman (1944-), Chicago, NP2000 Angus Deaton (1945-), Princeton, NP2015
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Interpretation of the IV Estimator
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The IV Estimation as a Projection

For simplicity,

- assume k = k2 = 1 and l = l2 = 1;

- discuss the population version of the IV estimator instead of the sample version

and denote plim
(

β̂ IV

)
as β IV .

In this simple case, xβ IV is the projection of y onto span(x) along span⊥(z); this

can be easily seen from xβ IV = xE [zx ]−1E [zy ] ≡ Px⊥z (y)

Since z ⊥u, this is also the projection of y onto span(x) along u if dim
(
span⊥(z)

)
=

1 as in the following figure.

In the following figure, Px⊥z (y) is very different from the orthogonal projection of y

onto span(x) - Px (y) ≡ xE [x2]−1E [xy ], because z is different from x (otherwise,

E [zu] 6= 0 since E [xu] > 0 in the figure).

On the other hand, z cannot be orthogonal to x in the figure (which corresponds to

the rank condition); otherwise, Px⊥z (y) is not well defined.

So z must stay between x and x⊥, just as shown in the figure.
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Figure: Projection Interpretation of the IV Estimator
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(*) What is the IV Estimator Estimating?

In the linear model, the IV estimator is estimating β , the constant effect of x on y .

In a generally nonseparable model (e.g., the equations (16), or x and y are both

binary),

y = m(x,u),

x = h(z,v),

the effect of x on y is heterogenous.10

What is the IV estimator estimating? The local average treatment effect (LATE).

- Imbens and Angrist (1994) show that the IV estimator is estimating the average

treatment effect for those individuals whose x status is affected by z.

- This implies that the interpretation of the IV estimator depends on the choice of

instruments.

10From the discussions below, you will see that the "heterogeneity" here means that the effect of x on y depends
on v.
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History of the LATE

Joshua D. Angrist (1960-), MIT, NP2021 Guido W. Imbens (1963-), Stanford, NP202111

11Imbens is a Dutch econometrician who won the Nobel prize in 2021. Famous Dutch econometricians include
Tinbergen, who won the Nobel prize in 1969, Tjalling C. Koopmans (1910-1985), who won the Nobel prize in
1975, Theil, who invented R̄2, 2SLS, k -class estimators, and the multinomial logit model, Herman K. van Dijk,
Frank Kleibergen, and Paul Bekker.
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Three Traditions of Treatment Effects Evaluation

Statistics: Potential Outcomes (PO) Approach.

Economics: Simultaneous Equation Model.12

Computer Science: Structural Causal Models (SCMs) based on path diagrams or

graphs especially directed acyclic graphs (DAGs).

- I will use the LATE to show the differences in the three languages.

Among econometricians:

Fresh water: Heckman and his co-authors; emphasizes "causes of effects"; more

structural (combining PO and Simultaenous Equation).

Salt water: Imbens, Card, Angrist, Abandie, · · · ; emphasizes "effects of causes";

more reduced-formed (mainly PO).

12In sociology, this is termed as Structural Equation Model (SEM) which considers only the linear case. Note
also that different from SEMs, simultaneous equations are nondirectional, so are not causal relationships. This
is why econometricians have to borrow potential outcome notations from statistics to represent causality.
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History of the Potential Outcome Approach

The potential outcome framework was proposed in Neyman (1923) and Fisher

(1925) in experimental studies and was extended to observational studies by Rubin

(1974).

Holland (1986) called this framework as the Rubin Causal Model (RCM).

For an introduction of RCM, see Rubin (2005, 2008), and for more details, see

Imbens and Rubin (2015):

For the fresh water tradition, see Heckman and Vytlacil (2007a, b) in Handbook of

Econometrics.
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History of Path Analysis

Judea Pearl (1936-), UCLA, Turing2011 Pearl (2009)

Pearl, J. and D. Mackenzie, 2018, The Book of Why: The New Science of Cause and Effect,

New York: Basic Books.

Pearl, J, M. Glymour, and N.P. Jewell, 2016, Causal Inference in Statistics: A Primer, West

Sussex, England : Wiley.

Hernán M.A. and J. M. Robins, 2020, Causal Inference: What If, Boca Raton: Chapman &

Hall/CRC.

Morgan, S.L. and C. Winship, 2015, Counterfactuals and Causal Inference: Methods and

Principles for Social Research, 2nd edition, New York: Cambridge. [Social Science]

Peters, J., D. Janzing, and B. Schölkopf, 2017, Elements of Causal Inference: Foundations

and Learning Algorithms, Cambridge, MA: MIT Press. [Machine Learning]
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Econometric Literature on Path Analysis

Cunningham (2021)

Heckman, J.J., and R. Pinto, 2015, Causal Analysis after Haavelmo, Econometric Theory, 31,

115-151.

Imbens, G.W., 2020, Potential Outcome and Directed Acyclic Graph Approaches to Causality:

Relevance for Empirical Practice in Economics, Journal of Economic Literature, 58, 1129-

1179.
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Notations

Following the literature, we use Y for y , D (sometimes, T or W ) for the treatment x

(like the endogenous variable), X for the confounders (like the included IVs), Z for

the instruments, and the corresponding lower case letters such as y ,d ,x and z for

the values they may potentially take.

- In the PO framework, the difference between D and X is that D is manipulable

while X is some noncausal attributes. Which variable is D and which is X depends

on your purpose, e.g., gender or race is D or X?13

Treatment means Ceteris Paribus, i.e., with all other factors fixed, D changes from

0 to 1 (or generally, increases by one unit).

13Instead of changing gender or race, econometricians study the causal effects of interventions like hiding
the gender of the job candidate at the time of interview, e.g., Goldin and Rouse (2000) study the effect of blind
audition (behind curtains) for orchestras on the hiring of female musicians, or manipulation of the perception of
race by changing names from Caucasian-sounding (like Emily and Greg) to African American-sounding ones
(like Lakisha and Jamal), e.g., Bertrand and Mullainathan (2004).
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How to express the treatment or intervention of D?

Define Yd (or Y (d)) as potential outcomes as D is assigned d ; Y1 and Y0 are

potential outcomes for the treated group (D = 1) and control group (D = 0).

- Y (d) are sometimes called counterfactuals. A value is counterfactual if it cannot

be observed, that is, if it is entirely hypothetical. In this sense, the term "counterfac-

tual" here is not very appropriate since which of Y (0) and Y (1) is counterfactual

is not predetermined.

- The observed outcome Y = DY1+ (1−D)Y0, so only one of Y1 and Y0 can be

observed. In other words, causal inference is basically a missing data problem,

which is referred to as "the fundamental problem of causal inference" in Holland

(1986).

- The average treatment effect (ATE) or average causal effect (ACE) [see more

discussions below] is

E [Y1−Y0] = E [Y1]−E [Y0] .
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Continued

Remove the defining equation of D (i.e., the equation with D on the left side), and

change the the value of D in all other equations from 0 to 1.

- Assume Y = fY (D,X ,UY ); then the ATE equals the following burdensome ex-

pression

E [fY (1,X ,UY )]−E [fY (0,X ,UY )] .

- This is why econometricians borrow the potential outcome notation and write

Y1 = µ1(X ,U1) and Y0 = µ0(X ,U0), (24)

where µd (·, ·) = fY (d , ·, ·).14

Remove all edges directed into D, and change the value of D from 0 to 1.

- The ATE is equal to

E [Y |do (D = 1)]−E [Y |do (D = 0)] .

14The distribution of (X ,UY ) may depend on D = d , so we explicitly write out this dependence for UY , and
implicitly assume P (X1 = X0) = 1; often, X includes some pretreatment variables, or some characteristics which
are not affected by the treatment, like age, sex, etc.
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Three Tenets of RCM

The estimands of causal effects are comparison of potential outcomes on one com-

mon set of units, not the treatment potential outcomes for one set of units and the

control potential outcomes for a different set.

- Take {Xi ,Yi (0) ,Yi (1)} as the "science", and the estimands can be E [Yi (1)−Yi (0)]
above, med (Yi (1)−Yi (0)), {med (Yi (1))−med (Yi (0))}|Xi =male, or E [logYi (1)
− logYi (0)], etc.

- In the notations above, we implicitly assume stable unit treatment value assump-

tion (SUTVA) which comprises (i) no interference between units, i.e., Yi (D) =
Yi (D

′) as long as Di = D′i , where D= (D1, · · · ,Dn)
′
, (ii) no hidden versions of treat-

ments, i.e., Yi (D,V) = Yi (D
′,V′) as long as Di = D′i , where V= (V1, · · · ,Vn)

′
is the

versions of treatments for these n units.
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Continued

We need to posit an assignment mechanism, a model for how units were assigned

the treatments they received, i.e., P (D|X ,Y (0) ,Y (1)).
- For inference of treatment effects, this assignment mechanism is enough, and

a model for the underlying data, P (X ,Y (0) ,Y (1)) is not required. Of course,

if P (X ,Y (0) ,Y (1)) is assumed, we can do more, e.g., derive the distribution of

P (Ymis|X ,Yobs,D) and make Bayesian prediction on the distribution of causal ef-

fects.

- For inference of treatment effects, {Xi ,Yi (0) ,Yi (1)}ni=1 are treated as fixed, and

only {Di}ni=1 are random.

- Some popular assignment mechanisms include (i) completely randomized exper-

iments with n units among which n1 treated:

P (D|X,Y (0) ,Y (1)) =
{

1/Cn
n1
,

0,
if ∑

n
i=1 Di = n1,

otherwise.

(ii) unconfounded assignment mechanism: P (D|X ,Y (0) ,Y (1)) = P (D|X ). (iii)

ignorable assignment mechanism: P (D|X ,Y (0) ,Y (1)) = P (D|X ,Yobs).
15

We need to be explicit about assumptions because human beings are very bad at

dealing with uncertainty (which is why there are many paradoxes).

15In LATE, D depends on both Y (0) and Y (1) given X , but in a special way. Heckman terms the bias of OLS
resulting from Cov (D,Y (0) |X ) 6= 0 as selection bias and Cov (D,Y (1)−Y (0) |X ) 6= 0 as essential heterogene-
ity.
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Comparison of Weaknesses of the Three Traditions

Treat counterfactuals as abstract mathematical objects that are managed by al-

gebraic machinery but not derived from a model (i.e., model-free): view causal

inference as a missing-data problem (which is misleading?); hard to explain and

test the assumptions, e.g., the unconfoundedness assumption16 is expressed as

D ⊥⊥ (Y1,Y0) |X , which means that for any d ,yd ,y
′
d and x ,

P (D = d |Y1 = y1,Y0 = y0,X = x) = P
(
D = d |Y1 = y ′1,Y0 = y ′0,X = x

)
,

where ⊥⊥ is read as "is independent of", and | is read as "conditional on".

- The unconfounedness assumptions are usually made because they justify the use

of available statistical methods, not because they are truly believed.

- In the simultaneous equation tradition, assume D = µD(X ,UD); then unconfound-

edness means UD ⊥⊥ (U1,U0) |X , which is easier to understand.

In complicated models, it is hard to identify the causal effects as in SCMs through

backdoor and frontdoor criteria in the following slides (or more rigorously, the do-

calculus).

Some information is not easy to be embodied in a graph, e.g., linearity, mean inde-

pendence (rather than conditional independence), simultaneity, shape restrictions

like monotonicity and concavity, etc. [I will provide an example at the end of this

chapter]
16Other names for unconfoundedness include exogeneity, selection-on-observables, ignorability, or simply con-

ditional independence.
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Comparison of Strengths of the Three Traditions

PO and Simultaneous Equation: (i) Weakness of DAG is the strength of PO. (ii)

Connect easily to traditional approaches to economic models, such as supply and

demand settings where potential outcome functions are the natural primitives. (iii)

Many of currently popular identification strategies focus on models with relatively

few (sets of) variables, where identification questions have been worked out once

and for all. (iv) Account well for treatment effect heterogeneity and incorporate such

heterogeneity in estimation and design of optimal policy functions. (v) Connect well

with questions of study design, estimation of causal effects, and inference for such

effects.

DAG: (i) Pedagogical: formulating the critical assumptions in a form that captures

the way some researchers think of causal relationships, and being a powerful way

of illustrating the key assumptions underlying causal models. (ii) Mathematical:

the do-calculus developed by Pearl can be used to answer causal identification

questions in a novel way, particularly for questions in complex models with a large

number of variables.

- The DAG is assumed, but how to create it and is it an accurate description on how

this world works (e.g., why is an arrow absent instead of present?)?

Why is DAG lack of adoption in economics? (i) The merits of PO. (ii) Although DAG

is potentially powerful, it lacks substantive empirical examples.
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Path Diagram for Unconfoundedness

Figure: Causal Diagram for Unconfoundedness

Solid dot: observable; circle: unobservable.

UD and UY are independent, and the presence of them does not affect any conclu-

sions, so often omitted.
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Assumptions Implied by the Path Diagram

The DAGs are usually imposed the conditional independence assumptions implied

by the so-called d-separation, where d stands for "directional".

d-separation: A path p is blocked by a set of nodes Z if and only if (i) p contains a

chain of nodes A→ B→ C or a fork A← B→ C such that the middle node B is in

Z (i.e., B is conditioned on), or (ii) p contains a collider A→ B← C such that the

collision node B is not in Z , and no descendant of B is in Z . If Z blocks every path

between two nodes X and Y , then X and Y are d-separated, conditional on Z , and

thus are independent conditional on Z .

- These assumptions are equivalent to the rule of recursive product decomposition, which

simplifies the expression of the joint distribution of the variables in the model.

In the DAG of last slide, the d-separation implies that UD ⊥⊥ UY and (UD ,UY )⊥⊥ X ,

which imply UD ⊥⊥ UY |X , i.e., the graph implies some stronger relationships than

the conditional independence.

- No differentiation of Y1 vs. Y0 or U1 vs. U0, but only Y and UY ; anyway, the

messages intended to deliver are the same.

D ⊥⊥ (Y1,Y0) |X , in combination with the auxiliary assumption that 0 < p (X ) :=
E [D|X ]< 1 (i.e., probabilistic assignment), is referred to as strong ignorability (i.e.,

probabilistic unconfounded), and D is named "conditionally ignorable given X " in

Rosenbaum and Rubin (1983), where p (X ) is called the propensity score.
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History of Ignorability

Paul R. Rosenbaum (1953-), UPenn Donald B. Rubin (1943-), Harvard17

17Rubin has many famous students including Rosenbaum.
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Five Weapons in Treatment Effects Evaluation

1 Randomized Controlled Trial (RCT): is the most scientifically rigorous method of

hypothesis testing (so-called A/B testing) available, and is regarded as the gold

standard trial for evaluating the effectiveness of interventions.

2 Backdoor and Frontdoor Criteria: X satisfying the backdoor criterion is exactly the

X in the unconfoundedness assumption.

- Popular estimators under unconfoundedness include, inter alia, the matching,

subclassification, propensity score weighting and double robust estimators.

3 Instrumental Variables.

4 Difference in Differences (DID): a special panel data solution.

5 Regression Discontinuity Designs (RDDs): a special natural experiment or quasi-

experiment.

Recent New Problems:

Interactions, Spillovers and Peer Effects. [SUTVA fails]

Big Data: searching for needles in a haystack.

Recent New Tools:

Machine Learning.

Synthetic Control.
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History of Natural Experiment

David Card (1956-), Berkeley, NP2021

75 / 86



LATE: Assumptions

Suppose for simplicity that Z is a binary assignment. The treatment status D 6= Z

is due to noncompliance.

Assumptions:

1 Instrument Exclusion: P(Yd1 = Yd0|X ) = 1 for d = 1,0, where Ydz is the potential

outcome of Y when Z = z and D = d .

2 Random Assignment: (Y00,Y01,Y10,Y11,D0,D1)⊥⊥Z |X , where Dz is the potential

treatment status when Z = z.

3 Monotonicity (or Uniformity): P(D1 ≥ D0|X ) = 1 (or P(D1 ≤ D0|X ) = 1). [see the

table in the next slide]

These three assumptions strengthens the instrument exclusion, instrument exo-

geneity and instrument relevance conditions in linear models.

- Strictly speaking, the instrument relevance condition if monotonicity is imposed

should be P(D1 > D0|X ) > 0.

D = Z ·D1+(1−Z ) ·D0 = D0+(D1−D0)Z , and similarly, Y = Y0+(Y1−Y0)D.
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LATE: Identification

D0

0 1

D1
0

Y0−Y0 = 0

Never-taker

Y0−Y1 = − (Y1−Y0)
Defier

1
Y1−Y0

Complier

Y1−Y1 = 0

Always-taker

Table: Causal Effect of Z on Y , YD1
−YD0

Classified by D0 and D1

Suppress the dependence on X for simplicity.

What is the IV estimator (in this case, the Wald estimator,
E [Y |Z=1]−E [Y |Z=0]
E [D|Z=1]−E [D|Z=0]

) esti-

mating?

The denominator is

E [D|Z = 1]−E [D|Z = 0] = E [D1|Z = 1]−E [D0|Z = 0]
A2
= E [D1−D0] =∑∆=−1,0,1

∆ ·P (D1−D0 = ∆) A3
= P (D1−D0 = 1) ,

which is the probability of compliers.

- Note that we can figure out the probability of compliers, but cannot tell whether a

specific individual is a complier or not since we can only observe either D1 or D0.

If excluding defiers, then from the table, Z have effects on Y only for compliers.
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continue...

The numerator is the intention-to-treat (ITT) effect:

E [Y |Z = 1]−E [Y |Z = 0]

= E [Y0+(Y1−Y0)D1|Z = 1]−E [Y0+(Y1−Y0)D0|Z = 0]

A2
= E [Y0+(Y1−Y0)D1]−E [Y0+(Y1−Y0)D0]

= E [(Y1−Y0) · (D1−D0)]

= ∑
∆=−1,0,1

E [(Y1−Y0) · (D1−D0) |D1−D0 = ∆]P (D1−D0 = ∆)

A3
= E [Y1−Y0|D1−D0 = 1]P (D1−D0 = 1) .

In summary, the Wald estimator converges to

E [Y1−Y0|D1−D0 = 1]P (D1−D0 = 1)

P (D1−D0 = 1)
= E [Y1−Y0|Compliers] ,

the treatment effect for the compliers, which is called the LATE.

- "local" in LATE is relative to the "global" treatment effect of ATE.
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Three Assumptions of LATE in Equation Form

1 Y1 = µ1(X ,U1) and Y0 = µ0(X ,U0).

2 (U1,U0,UD) ⊥⊥ Z |X .

3 The participation decision

D = 1(UD ≤ p(X ,Z )),18 (25)

where UD |X ,Z ∼ U(0,1) and the propensity score p(X ,Z ) satisfies p(X ,1) ≥
p(X ,0) a.s. PX .

- Vytlacil (2002) shows that (25) is equivalent to the monotonicity assumption.

The three groups of individuals are re-expressed (after suppressing X ) as

Complier = {p(0) < UD ≤ p(1)} ,
Never-taker = {UD > p(1)} ,

Always-taker = {UD ≤ p(0)} .

18Recall that the most general specifiation of D should be D = µD(X ,Z ,UD).
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Marginal Treatment Effect (MTE)

MTE (uD) = E [Y1−Y0|UD = uD ] is the treatment effect for individuals who would

be indifferent between treatment or not if they were exogenously assigned a value

of Z , say z, such that p(z) = uD .

The MTE can unify all kinds of treatment effects. For example,

LATE =
1

p(1)−p (0)

∫ p(1)

p(0)
MTE (uD)duD

and

ATE =
∫ 1

0
MTE (uD)duD .

The average treatment effect on the treated (ATT) can also be expressed in the

MTE:

ATT = E [Y1−Y0|D = 1] =
∫ 1

0
MTE (uD)ω (uD)duD ,

where

ω (uD) =
1−Fp(Z ) (uD)∫ 1

0

(
1−Fp(Z ) (t)

)
dt
.

- Only if p (Z ) ≥ UD , D = 1, so ω (uD) = P (p (Z ) ≥ uD)/P (D = 1), which over-

weights those individuals with low values of uD that make them more likely to par-

ticipate in the program.
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MTE: Identification by Local IV

From the expression of LATE as a function of MTE, we can see

MTE (uD) = lim
u′

D
↑uD

1

uD−u′
D

∫ uD

u′
D

MTE (u)du ≡ lim
u′

D
↑uD

LATE (u′D ,uD) .

Alternatively, since

E [Y |p (Z ) = p] = E [Y1|p (Z ) = p,D = 1]P (D = 1|P (Z ) = p)

+E [Y0|p (Z ) = p,D = 0]P (D = 0|P (Z ) = p)

=
∫ p

0
E [Y1|UD = u]du+

∫ 1

p
E [Y0|UD = u]du,

where the second equality is because

E [Y1|p (Z ) = p,D = 1]
A3
= E [Y1|p (Z ) = p,UD ≤ p (Z )]
A2
= E [Y1|UD ≤ p] = 1

p

∫ p
0

E [Y1|UD = u]du,

and similarly for E [Y0|p (Z ) = p,D = 0], we have

MTE (uD) =
∂E [Y |p (Z ) = p]

∂p

∣∣∣∣
p=uD

.

- This implies that MTE (uD) can be identified only for uD ∈supp(p (Z )) , the support

of p (Z ).
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Figure: Comparison of MTE (uD) Under Unconfoundedness and Essential Heterogeneity

E [Y |p (Z ) = p] is a straight line for linear IV.

MTE (uD) is increasing because a smaller UD need only a smaller treatment effect

to induce participation.
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History of the MTE

James J. Heckman (1944-), Chicago, NP200019 Edward J. Vytlacil (1971-), Yale

19Heckman has many famous students including Vytlacil.
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Path Diagram for LATE

Figure: Causal Diagram for an RCT with Noncompliance
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Assumptions Implied by the Path Diagram

Instrument Exclusion: no edge from node Z to node Y .

Random Assignment: the d-separation implies (UD ,UY ) ⊥⊥ Z , and even X ⊥⊥
(Z ,UD ,UY ), so (UD ,UY ) ⊥⊥ Z |X hold.

- (UD ,UY ) are unobserved confounders for D and Y , which implies UD and UY

may be correlated.

- D ⊥⊥ Y |X does not hold, so popular estimators under unconfoundedness cannot

apply.

Monotonicity: although we can claim Z affects D, the path diagram cannot express

Z affects D in the way of D = 1(UD ≤ p(X ,Z )).

In the linear case, suppose the ATE of Z on D is a, and that of D on Y is b, then

the ITT of Z on Y is ab. In other words, b can be identified by the ITT of Z on Y

divided by the ATE of Z on D, which is exactly the Wald estimator when Z is binary.

85 / 86



Violation of Exclusion and Exogeneity Assumptions

Violation of Exclusion Violation of Exogeneity
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