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Endogeneity



Endogeneity

@ In the linear regression
Yi =XB+uj, (1)
if E[xju;j] # O, there is endogeneity.
@ In this case, the LSE will be asymptotically biased.

@ Here, B in (1) is the structural parameter rather than the linear projection coefficient
of y on span (x) since from Chapter 2 we can always find a § such that E[x;u;] = 0.
- Example: in the return to schooling, if x is the education level and u is the ability,
then given the ith individual’'s education level x; and ability u;, we can determine
his/her wage level from equation (1). That is, equation (1) describes an economic
reality for each individual rather than only a statistical relationship.

@ The analysis of data with endogenous regressors is arguably the main contribution
of econometrics to statistical science.
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Five Sources of Endogeneity

@ Simultaneous causality.
- Example: Do higher hotel prices decrease occupancy rates? Do Cigarette taxes
reduce smoking? Does putting criminals in jail reduce crime? Does declining fertil-
ity explain increasing female labor supply?
- Solution: using instrumental variables (1Vs), and designing and implementing a
randomized controlled trial (RCT) in which the reverse causality channel is nullified
@ Omitted variables.
- Example: in the model on returns to schooling, ability is an important variable that
is correlated to years of education, but is not observable so is included in the error
term.
- Solution: using IVs, using panel data and using RCTs.
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History of RCT

Michael Kremer (1964-, Chicago), Esther Duflo (1972-, MIT)
and Abhijit Banerjee (1961-, MIT), NP2019

@ They won the Nobel Prize in 2019 because they successfully applies RCT to im-
prove our ability to fight global poverty.
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Continue...

@ Errors in variables. This term refers to the phenomenon that an otherwise exoge-
nous regressor becomes endogenous when measured with error.
- Example: in the returns-to-schooling model, the records for years of education are
fraught with errors owing to lack of recall, typographical mistakes, or other reasons.
- Solution: using IVs (e.g., exogenous determinants of the error ridden explana-
tory variables, or multiple indicators of the same outcome, i.e., repeated measure-
ments).

@ Sample selection.
- Example: in the analysis of returns to schooling, only wages for employed workers
are available, but we want to know the effect of education for the general population.
- Solution: Heckman'’s control function approach.

@ Functional form misspecification. E [y|x] may not be linear in x.
- Solution: nonparametric methods.
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Simultaneous Causality

@ Philip Green Wright (1928) considered to estimate the elasticity of butter demand,
which is critical in the policy decision on the tariff of butter.

@ Define p; =InP; and g; = InQ;, and the demand equation is
i = 0tp + o1 pj + Ui, (2)

where u; represents other factors besides price that affect demand, such as income
and consumer taste. But the supply equation is in the same form as (2):

i = Bo+B1Pi +Vi, ()
where v; represents the factors that affect supply, such as weather conditions, factor
prices, and union status.

@ So p; and q; are determined "within" the model, and they are endogenous. Rigor-
ously, note that

[30—050Jr Vi — U

ar—B;  ar1—Pq’

alﬁo*aoﬁ1+0‘1Vi*ﬁ1Ui
a1 — B, a1 —B1

by solving two simultaneous equations (2) and (3).

pi =

q =

7186



continue...

@ Suppose Cov (uj,v;) =0, then

Var (u;)

Cov(pj,uj) = — 1-[31 OV(pi,vi):Var(Vi)

a1 —B;’

which are not zero. If a; <0 and 3; > 0, then Cov (p;,u;) > 0 and Cov(p;,Vv;) <O,
which is intuitively right (why?).
@ If regress g; on pj, then the slope estimator converges to

C i, i C i Ui Cov (pi
S = o *7%? P =B+ Sty
2 aiVar(vi)+B,Var(uy;
- O ey € (@1, By).

@ So the LSE is neither ay nor B4, but a weighted average of them. Such a bias
is called the simultaneous equations bias. The LSE cannot consistently estimate
oy or B; because both curves are shifted by other factors besides price, and we
cannot tell from data whether the change in price and quantity is due to a demand
shift or a supply shift.



continue...

@ Ifu; =0, thatis, the demand curve stays still, then the equilibrium prices and quanti-
ties will trace out the demand curve and the LSE is consistent to «;.1 The following
figure illustrates the discussion above intuitively.

Demand and Supply in Three Time Periods Equilibria when Only the Supply Curve Shifts

S5 S5
8 8
= Period 3 T
o Equili%rium &
“D,
Quantity Quantity

Figure: Endogeneity and Identification of Instrument Variables

1when Var (u;) =0, then C%‘;E’("pg') = a;. Note that the supply curve is still not identifiable because essentially,

only one point on the supply curve is observed.
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continue...

@ From above, we can see that p; has one part which is correlated with u; (— aﬁﬁl)
Vi

and one part is not (al—ﬁ ) If we can isolate the second part, then we can focus
1

on those variations in p; that are uncorrelated with u; and disregard the variations

in p; that bias the LSE.

@ Take one supply shifter z;, e.g., weather, which can be considered to be uncorre-
lated with the demand shifter u; such as consumer’s tastes, then

Cov(zj,u;) =0, and Cov (zj,p;) # 0.

So
Cov(z,qi) = ar-Cov(z,p),
and
oy = SOV(#.G)
Cov(z;,p;)

@ A natural estimator is _
g, — SV(@.a)
Cov(zi,pi)
which is the 1V estimator implicitly defined in Appendix B of Philip (1928).
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History of the Instrumental Variable Regression

Philip G. Wright (1861-1934), Lombard College  Sewall G. Wright (1889-1988), Chicago

@ Sewall Wright is also famous for path analysis (a key step for causal effects evalu-
ation), which will be touched at the end of this chapter.
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continue...

@ Another method to estimate o, as suggested above is to run regression
i = oo+ o1 p; + Ui,
where p; is the predicted value from the following regression:
Pi =Y +71Zi + N,

and U; = oty (pi — i) +Uj.
@ ltis easy to show that Cov (p;,U;) = 0, so the estimation is consistent.
@ Such a procedure is called two-stage least squares (2SLS) for an obvious reason.
@ In this case, the IV estimator and the 2SLS estimator are humerically equivalent.
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Omitted Variables

@ Mundlak (1961) considered the production function estimation, where the error
term includes factors that are observable to the economic agent under study but
unobservable to the econometrician, and endogeneity arises when regressors are
decisions made by the agent on the basis of such factors.

@ Suppose that a farmer is producing a product with a Cobb-Douglas technology:
Qi =A (L)% -exp(vi), 0< 91 <1, 4)

where Q; is the output on the ith farm, L; is a variable input (labor), A; represents
an input that is fixed over time (soil quality), and v; represents a stochastic input
(rainfall), which is not under the farmer’s control.

@ We shall assume that the farmer knows the product price p and input price w, which
do not depend on his decisions, and that he knows A; but econometricians do not.

@ The factor input decision is made before knowing v;, and so L; is chosen to maxi-
mize expected profits. The factor demand equation is

L= (%)r (ABoy) T 5)

so a better farm induces more labors on it.
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continue...

@ We assume that (A;, v;) is i.i.d. over farms, and A; is independent of v; for each
i, so B =E[exp(vj)] is the same for all i, and the level of output the farm expects

when it chooses L; is A; - (Li)q’1 -B.
@ Take logarithm on both sides of (4), we have a log-linear production function:
logQ; = logA; + ¢4 -log(L;) + v;.

logA; is an omitted variable. Equivalently, each farm has a different intercept.
@ The LSE of ¢, will converge to

Cov (logQ;,log(L))
Var (log(L;))

Cov (logA;, log(L;))
Var(log(Li))

=01+

which is not ¢, since there is correlation between logA; and log(L;) as shown in
®).

@ The following figure shows the effect of log A; on ¢4 by drawing E [logQ|logL,logA]
for two farms. In the figure, the OLS regression line passes through points AB with
slope %, but the true ¢, is ﬁ. Their difference is ﬁ =
logA; —logA,
logL; —logL; ’

which is the bias introduced by the endogeneity of logA,.
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log @,

Figure: Effect of Soil Quality on Labor Input
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continue...

@ Rigorously, let u; = log(A;j) — E[log(A;)], and ¢, = E[log(A;)], then E[u;] = 0 and
A = exp(¢g +Uj).
@ (4) and (5) can be written as
logQ;j = ¢o + ¢ -log(Li) + vi +uj, (6)
1
1-¢,
where B = 1%% ((po +1log(B¢,) —log (%)) is a constant for all farms.

@ It is obvious that logL; is correlated with (v; +u;j). Thus, the LSE of ¢, in the
estimation of log-linear production function confounds the contribution to output of
u; with the contribution of labor. Actually,

IOgLi :ﬁo+

Ui, (7)

- p
¢10s — 1,
because substituting (7) into (6), we get
logQi = ¢o — (1 —¢1)Bo+1-log(Li) + vi.

@ The lesson from this example is that a variable chosen by the agent taking into
account some error component unobservable to the econometrician can induce
endogeneity.
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History of the Hidden Information

EE - 4 T

Yair Mundlak (1927-2015), Chicago
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Errors in Variables

@ Measurement errors are embodied in regression analysis from the beginning. Gal-
ton (1889) analyzed the relationship between the height of sons and the height of
fathers. More specifically,

S =a+BF +u;, (8)
where S; and F;* are the heights of sons and fathers, respectively.

@ Evenif S should perfectly match F* (thatis, ap =0, Bo =1and u; =0, or S; =F"),
the OLS estimator would be smaller than 1 if there are environmental factors or
measurement errors that affect S and F/*.

@ Suppose the observables are S; = S/ +s;, and F; = F;* +f;, where s; and f; are the
mean-zero environmental factors; then our regression becomes

Si=a+p (Fi —fi)+Si = o+ BF +s; — Bf;.
@ The OLS estimator of 8 will converge to

COV(Fi,Si) B Var(Fi*) 1
Var(Fj)  Var(F)+ Var(f;) <

Var (F*) o o - , .
where Var(F)-Var(f) = p is called the reliability coefficient. In Galton’s analysis,

this coefficient is about 2/3. He termed this phenomenon as "regression towards
mediocrity". [intuition here]
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Figure: Relationship Between the Height of Sons and Fathers
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History of "Regression”

Sir Francis Galton (1822-1911), English?

2Galton was Charles Darwin (1809-1882)’s half-cousin, sharing the common grandparent. He was also the
advisor of Karl Pearson, (South West) African explorer, and inventor of fingerprinting.
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Instrumental Variables



Instrumental Variables

@ y; =Xx{B +u; is called the structural equation or primary equation. In matrix notation,
it can be written as
y=XB+u. 9)

@ Any solution to the problem of endogeneity requires additional information which
we call instrumental variables (or simply instruments).

@ The | x 1 random vector z; is an instrument for (1) if E [zjuj] = 0. This condition
cannot be tested in practice since u; cannot be observed.

@ In a typical set-up, some regressors in x; will be uncorrelated with u; (for example,
at least the intercept). Thus we make the partition

=) 6 &

where E [x4iuj] = 0 yet E [xpju;] # 0. We call xq; exogenous and Xg; endogenous.
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continue...

@ By the above definition, X, is an instrumental variable, so should be included in z;,
giving the partition
7= ( T ) ki 1)
Zyi I2

where X;; = z4; are the included exogenous variables, and z,; are the excluded
exogenous variables.

@ In other words, z,; are variables which could be included in the equation for y; (in
the sense that they are uncorrelated with u;) yet can be excluded, as they would
have true zero coefficients in the equation which means that certain directions of
causation are ruled out a priori.

@ The model is just-identified if | =k (i.e., if |, = k) and over-identified if | > k (i.e.,
if [, > ky). We have noted that any solution to the problem of endogeneity requires
instruments. This does not mean that valid instruments actually exist.
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Reduced Form



Reduced Form

@ The reduced form relationship between the variables or "regressors" x; and the
instruments z; is found by linear projection. Let
T=E[z2] E [zX]

be the | x k matrix of coefficients from a projection of x; on z;.

@ Define
Vi =Xj — l"’zi

as the projection error. Note that v; must be correlated with u;. (why?)
@ The reduced form linear relationship between x; and z; is the instrumental equation
X; =I'zi +vj. (12)

In matrix notation,
X=ZT' +V, (13)

where Vis a n x k matrix.
@ By construction, E [zivﬂ =0, so (12) is a projection and can be estimated by OLS:

X=2T+V,T = (22) 7" (ZX).



continue...

@ Substituting (13) into (9), we find
y=(Z[+V)B+u=2ZA+e (14)

where A =T and e =u+ V.
@ Observe that
E[ze] =E [zV'| B+ E [zu] = 0. (15)

Thus (14) is a projection equation and may be estimated by OLS. This is
y=2L+81=(22) " (Zy).

@ The equation (14) is the reduced form for y. (13) and (14) together are the reduced
form equations for the system

y = ZA+e,

X = ZT'+V.
@ The system of equations

y = XB+u,

X = ZI'+V,

are called triangular (or recursive) simultaneous equations because the second part
of equations do not depend ony.
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An Economic Example of Triangular Simultaenous Equations

@ LetY denote individual lifetime earnings and X denote level of education, where we
use the capital letters such as X to denote random variables and the corresponding
lower case letters such as x denote the potential values they may take.

@ The value of X is chosen first, as a function of expected but not of realized Y. The
value of Y is determined next, as a function of X, as well as of other observable
and unobservable variables.

@ In the simple version of such a model,
X :argm)gx{E [my (x,U)|Z,V]—c(x,2)},

where Y =m; (X,U), U is productivity (or ability), c (X,Z) is the cost of education,
Z determines the cost of a unit of education, and V is an imperfect signal of U (so
correlated with U).

@ The solution X is a function, m,, of Z and V, so we have a recursive model,

Y =my (X,U),

X=m,(Z V). (16)
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Identification



Identification

@ The structural parameter f relates to (1,T) by A =T'8.

@ This relation can be derived directly by using the orthogonal condition E [z; (y; —X!j8)]
0 which is equivalent to

E [ziyi] = E [zix{] B 17)
Multiplying each side by an invertible matrix E [z;Z]] 71, we have A =Tf.

@ The parameter is identified, meaning that it can be uniquely recovered from the
reduced form, if the rank condition

rank (') = k (18)

holds. Intuitively, this condition requires that z can perturb x in all directions.

o Ifrank(E [ziz[]) =1 (this is trivial), and rank(E [zjx{]) =k (this is crucial), this con-
dition is satisfied.

@ Assume that (18) holds. If | =k, then 8 =TtA. If | >k, then for any A >0,
B = (I'AT) 'T'AL.
@ If (18) is not satisfied, then  cannot be uniquely recovered from (1,T).

@ Note that a necessary (although not sufficient) condition for (18) is the order condi-
tion | > k.
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continue...

@ Since Z and X have the common variables X;, we can rewrite some of the expres-
sions.

@ Using (10) and (11) to make the matrix partitions Z = [Z;,Z,] and X = [Z1, X5], we

can partition I as
r:(fn rlZ):(l rlZ)kll
Iy I 0 I ) Ip
Ky ko

@ (13) can be rewritten as

X1 = 24
Xo = Z1T10+2ZoT5+ Vo).

@ S is identified if rank(I') = k, which is true if and only if rank(T,,) = k, (by the
upper-diagonal structure of I'). Thus the key to identification of the model rests on
the I, x ko matrix I'y;.
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(*) What Variable Is Qualified to Be An IV?

@ Itis often suggested to select an instrumental variable that is
(i) uncorrelated with u; (ii) correlated with endogenous variables.3 (29)

@ (i) is the instrument exogeneity condition, which says that the instruments can cor-
relate with the dependent variable only indirectly through the endogenous variable.
@ (ii) intends to repeat the instrument relevance condition which says that X; and
the predicted value of X, from the regression of X, on Z, and X; are not perfectly
multicollinear; in other words, there must be "enough" extra variation in X, that can
not be explained by x;. Such a condition is required in the second stage regression.
@ Sometimes (19) is misleading.

@ Check the following example with only one endogenous variable:

Xlﬁl +X2[32+Uv
0, E[xou] # 0, Cov(xq,X2) # 0.

y
E [xqU]

30f course, we also require the instrument to be excluded from the outcome equation. But mathematically,
if z should be included in the outcome equation but is omitted, then E [zu] = 0 cannot hold. Maybe this is the
most important case of E [zu] # 0 in practice. See below for the difference in DAG representations of violation of
exclusion and exogeneity.
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continue...

@ One may suggest the following instrument for x,, say, z = x; + €, where € is some
computer-generated random variable independent of the system.*

@ Now, E [zu] =0 and Cov (z,Xp) = Cov(Xxy,Xz) # 0. It seems that z is a valid instru-
ment, but intuition tells us that it is NOT, since it includes the same useful informa-
tion as x;.

@ What is missing? We know the right conditions for a random variable to be a valid
instrument are
Efzu] = 0, (20)
Xo = X171 +2Y>+V with y, #0.

In this example, Xp = X171, +2¥, +V = X1 (11 +75) + (€7, +V), 75 is not identified!®

@ The arguments above indicate that (19) is not sufficient, is it necessary? The an-
swer is still NO!

@ For this simple example, can we find some z such that

Yo # 0 but Cov(z,x,) =0?

4WLOG, assume E [x;] = E [¢] = 0 so that E [zu] = Cov (z,u).
5Actually, from the formula of linear projection, y, can be identified as 0.
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continue...

@ Observe that Cov(z,x;) = Cov(z,X17;, +2¥»+V) = Cov(z,Xq)y;, + Var(z)y,, so if

%@X)l) = — 72, this could happen.

@ That is, although z is not correlated with x5, z is correlated with x;, and x; is
correlated with x,. In mathematical language, Cov(z,x;) #0, y; # 0.

@ Insuch acase, z is related to x, only indirectly through x; . If we assume Cov(z,x;) =
0, or y; =0, then the assumption Cov (z,x,) # 0 is the right condition for z to be a
valid instrument.

@ So the right condition should be that z is partially correlated with x, after netting
out the effect of x; .

@ In general, a necessary condition for a set of qualified instruments is that at least
one (need not be the same one) instrument appears in each of the first-stage re-
gression.

- When k =1, each instrument must appear in at least one endogenous regression
(why?).



How to Select Instruments?

Generally speaking, good instruments are not selected based on mathematics, but
based on economic theory.

In the return to schooling example, the usual practice in the literature is to seek
instruments which proxy, or are correlated with, costs of schooling.

- Angrist and Krueger (1991) propose using quarter of birth as an IV for education
in the analysis of returns to schooling because of a mechanical interaction between
compulsory school attendance laws and age at school entry.®

- Butcher and Case (1994) use the sex of siblings, in particular whether a girl has
any sisters, as an IV to estimate the schooling return to women because the gender
of siblings may affect the cost of investing in a child’s human capital through the
existence of borrowing constraints if there are exogenous gender differences in the
return to human capital.”

8Children born earlier in the year enter school at an older age (e.g., for many states, children turning six by
January 1 can enter the primary school on September 1) and are therefore allowed to drop out (on their 16th or
17th birthday) after having completed less schooling than children born later in the year. The exclusion condition
may fail because children born in the first quarter are a few months older than other children, and at vey young
ages a difference of a few months might be an advantage in performance in school. This indicates that the
estimator based on this IV may underestimate the return to schooling (exercise).

“Surprisingly, they find that girls who have any sisters, conditional on the number of siblings, have lower school
attainment than do girls with no sisters; on the other hand, the school attainment of boys is found to be unrelated
to gender composition. This may be because parents prefer a "gender mix".
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continue...

@ - Card (1995) uses college proximity as an instrument to identify the returns to
schooling, noting that living close to a college during childhood may induce some
children to go to college but is unlikely to directly affect the wages earned in their
adulthood.

@ In development economics,
- Acemoglu, Johnson and Robinson (2001) use the mortality rates (of soldiers, bish-
ops, and sailors) as an IV to estimate the effect of property rights and institutions
on economic development.

@ In political economics,
- Levitt (1997) uses the timing of mayoral and gubernatorial elections as an IV to
identify the causal effect of police on crime by arguing that after controlling some
economic variables such as state unemployment rates and spending on public wel-
fare or education this IV does not affect the crime rate but will affect the number of
police officers.

@ Deaton (2010): Exogeneity is different from externality (not set or caused by the
variables in the model). The former is not guaranteed by the latter.
- The instruments above are external, but exogenous? [see the draft lottery exam-
ple below]
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History of Institutions on Growth

« i 4\
Daron Acemoglu (1967-), Simon Johnson (1963-), James A. Robinson (1960-),
MIT, NP2024 MIT, NP2024 Chicago, NP2024

@ Acemoglu, Johnson and Robinson (2001) is their most cited paper.
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Three Other Nobel Laureates

Joshua D. Angrist (1960-), David Card (1956-), Angus Deaton (1945-),
MIT, NP2021 Berkeley, NP20218 Princeton, NP2015

8Both Card and Angrist were supervised by Orley Ashenfelter (1942-) at Princeton. Card has many good
students, e.g., David S. Lee, Justin R. McCrary, Thomas Lemieux, Michael B. Greenstone, Kenneth Chay, and
Kristin Butcher among others; he is also the second advisor of Angrist.
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Authors Except Nobel Laureates

Anne Case (1958-), Princeton Steven D. Levitt (1967-), Chicago
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Estimation: Two-Stage Least Squares



IV Estimator

@ If I =k, then the moment condition is E [z (y; —x/f)] = 0, and the corresponding
IV estimator is a MoM estimator:

B =(ZX) " (ZYy).

@ Another interpretation stems from the fact that since § = I' 1A, we can construct
the Indirect Least Squares (ILS) estimator:

B=T ‘A= ((z’z)*lz’x)f1 (@2)tzy) = @0t @y).
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History of the ILS

Jan Tinbergen (1903-1994), Dutch NP1969 Trygve Haavelmo (1911-1999), Oslo, NP1989
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2SLS Estimator as An IV Estimator

@ When | > k, the two-stage least squares (2SLS) estimator can be used.

@ Given any k instruments out of z or its linear combinations can be used to identify
B, the 2SLS chooses those that are most highly (linearly) correlated with x.

@ Itis the sample analog of the following implication of E [zu] = O:
0=E[E*[x|zJu] =E [I'zu] =E [I'z(y - X'B)], (21)
where E* [X|z] is the linear projection of x on z.
@ Replacing population expectations with sample averages in (21) yields
~ ~ N1~
Basis = (X'X) X'y,

where X = ZT = PX with T = (22) *(Z/X) and P = P, = Z(Z'2) *Z. In other
words, the 2SLS estimator is an IV estimator with the IVs being X;.

@ When | =k, the 2SLS estimator and the IV estimator are numerically equivalent
(why?).
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History of the 2SLS

o P & P
P £ o ! g £
Henri Theil (1924-2000) Robert Basmann (1926-2024) Lester Telser (1931-2022)
Chicago and Florida TAMU and Bringhamton Chicago
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Theil (1953)'s Formulation of 2SLS

@ The source of the name "two-stage"” is from Theil (1953)’s formulation of 2SLS.
@ From (15),
0=E [E*[X|zJ(u+V'B)] =E[(I'z) (y —ZTB)],
i.e., B is the least squares regression coefficients of the regression of y on fitted
values of Iz, so this method is often called the fitted-value method.
@ The sample analogue is the following two-step procedure:

@ First, regress X on Z to get X.
@ Second, regress y on X to get

2 oo\ Lo ’ =1y
Basis = (X X) X'y = (X'PX) ~ (X'Py). (22)
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Basmann (1957)’s version of 2SLS

@ Basmann (1957)'s version of 2SLS is motivated by observing that E[zu] = 0 implies
0=E"[ulz] =E"[y|z] -E"[x|2]'B,
o)
BZSLS = (R';Q o Xy.
@ Equivalently, BZSLS =argming (y — XB)'Pz (y — XB), which is a GLS estimator.

@ Intuitively, Pz (y — XB) should converge in probability to zero because E [zu] =0, so
we try to find some B value such that the length of Pz (y — XB) is as close to zero
as possible.
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Telser (1964)'s version of 2SLS

@ Telser (1964)’s control function formulation:
B N1
( Pasis ) = (W’w) Wy,
PasLs
where W = [X, V].
@ This construction exploits another implication of E[zu] = 0:

E*[ulx,z] =E*[u|l’z+V,z] =E*[u

v,z =E*[ulv]=Vv/p

for some coefficient vector p, where the third equality follows from the orthogonality
of both error terms u and v with z (why? Exercise).

@ So

E*ly|x,z] = E*[X'B +u|x,z] = X'B+E*[u|x,z] =x'B +V/p.

@ Thus, this particular linear combination of the first-stage errors v is a function that
controls for the endogeneity of the regressors x; one can think of v as proxying for
the factors in u that are correlated with x.

@ From the FWL theorem, st,_s is the effect of the net variation in x on y after
excluding the variation in v, while the net variation in x comes from z because

X=T2z+V.
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Scrutinizing X and v

@ Recall that Z = [X1,Z;] and X = [Xq,X3], so

X = [PX1,PXa] = [X1,PXa] = [X1. %],
since X, lies in the span of Z.

@ Thus in the second stage, we regress y on X; and )A<2. So only the endogenous
variables X, are replaced by their fitted values:

Xo =Z1T1p+ 25T .

@ Note that as a linear combination of z, X, is not correlated with u and it is often
interpreted as the part of x, that is uncorrelated with u.

@ In the control function formulation of 2SLS, only V, = X, — X, should be added to
the regression since V, = X; — X1 = X —X; = 0.

@ Xy =T,21 +T),25 + vy implies v, = xp — I'},2; — 5,25, so the rank condition that
_rank(rzz) = k_2 guarantees that there is separate variation in v, from x = (z’l,x’z)'
in the regression of y on x and v,.



The Wald (1940) Estimator - A Special IV Estimator

@ The Wald estimator is a special IV estimator when the single instrument z is binary.
@ Suppose we have the model

y = Bg+Bix+u, Cov(x,u)#D0,
X = Yo+nz+v.

@ The identification conditions are
Cov(z,x) #0,Cov(z,u) = 0.(why?) (23)

@ It can be shown that the IV estimator is

L @-DH-Y)
Bl — Iil .
¥ (@-2)(6 %)
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History of the Wald Estimator

Abraham Wald (1902-1950), Columbia
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continue...
@ If z is binary that takes the value 1 for n; of the n observations and 0 for the re-
maining ng observations, then it can be shown that 3, is equivalent to

5 _Yi-Yo p Elylz=1-E[y[z=0]
BWaId—il_YO_>E[x|z:1]—E[X|Z:0]’

where y, is mean of y across the n; observations with z =1, y is the mean of y
across the ng observations with z = 0, and analogously for x.

@ Note that the numerator and denomator of plim (BWald) are exactly the slope coef-
ficients in the reduced form equations:

y = Aog+i1z+e,
X = }’0+}’12+V,

so the form of B\Wald is a direct application of ILS.

@ A simple interpretation of this estimator is to take the effect of z on y and divide by
the effect of z on x.

@ The following figure provides some intuition for the identification scheme of the Wald
estimator in the linear demand/supply system - the shift in p by z devided by the
shift in q by z is indeed a reasonable slope estimator of the demand curve.
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Figure: Intuition for the Wald Estimator in the Linear Demand/Supply System
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Some Popular Examples of the Wald Estimator

@ In Card (1995), y is the log weekly wage, x is years of schooling S, and z is a
dummy which equals 1 if born in the neighborhood of an university and 0 otherwise.

@ In studying the returns to schooling in China, Giles et al. (2003) used a dummy
indicator of living through the Cultural Revolution or not as z.

@ Angrist and Evans (1998) use the dummy of whether the sexes of the first two
children are the same, which indicates the parental preferences for a mixed sibling-
sex composition, (and also a twin second birth) as the instrument to study the effect
of a third child on employment, hours worked and labor income.

@ Angrist (1990) uses the Vietham era draft lottery as an instrument for veteran sta-
tus to identify the effects of mandatory military conscription on subsequent civilian
mortality and earnings (via college deferment).®

9See Heckman (1997) for a critique on the validity of this instrument. Suppose z # x is because x = 0
although z =1, i.e., draft evaders (x = 1 while z = 0, the volunteers, seem fine with exclusion although they may
anticipate high earnings gains from military service). If this is for medical reasons, or more generally reasons
that make these candidates ineligible to serve, then the exclusion assumption seems plausible. If, on the other
hand these are individuals fit but unwilling to serve, they may have had to take actions to stay out of the military
that could have affected their subsequent civilian labor market careers. Such actions may include extending their
educational career, or temporarily leaving the country. Note that these issues are not addressed by the random
assignment of the instrument.
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Examples of the Wald Estimator

£ s
7 i

Joshua D. Angrist (1960-), MIT, NP2021  William N. Evans (?-), Notre Dame
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Critique of Usual IV Identification

James J. Heckman (1944-), Chicago, NP2000 Angus Deaton (1945-), Princeton, NP2015
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Interpretation of the IV Estimator



The IV Estimation as a Projection

For simplicity,
-assumek =k; =1andl =1, =1,
- discuss the population version of the IV estimator instead of the sample version

and denote pIim(B,V) as By .

In this simple case, X8,y is the projection of y onto span(x) along span(z); this
can be easily seen from x 8, = XE [zx] "*E [zy] =Py, (y)

Since z L u, this is also the projection of y onto span(x) along u if dim (spanl (z)) =
1 as in the following figure.

In the following figure, Py |, (y) is very different from the orthogonal projection of y
onto span(x) - Px(y) = XxE[x?]1E [xy], because z is different from x (otherwise,
E[zu] # 0 since E [xu] > O in the figure).

On the other hand, z cannot be orthogonal to x in the figure (which corresponds to
the rank condition); otherwise, Py |, (y) is not well defined.

So z must stay between x and x=, just as shown in the figure.



1 >
P, (’y) x Pyl (y)

Figure: Projection Interpretation of the IV Estimator

o
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(*) What is the IV Estimator Estimating?

@ In the linear model, the IV estimator is estimating 3, the constant effect of x ony.

@ In a generally nonseparable model (e.g., the equations (16), or x and y are both
binary),

y = m(xu),
x = h(zv),

the effect of x on y is heterogenous.19

@ What is the IV estimator estimating? The local average treatment effect (LATE).
- Imbens and Angrist (1994) show that the IV estimator is estimating the average
treatment effect for those individuals whose x status is affected by z.
- This implies that the interpretation of the IV estimator depends on the choice of
instruments.

10From the discussions below, you will see that the "heterogeneity" here means that the effect of x on y depends

onv.
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History of the LATE

Joshua D. Angrist (1960-), MIT, NP2021  Guido W. Imbens (1963-), Stanford, NP202111

mbens is a Dutch econometrician who won the Nobel prize in 2021. Famous Dutch econometricians include
Tinbergen, who won the Nobel prize in 1969, Tjalling C. Koopmans (1910-1985), who won the Nobel prize in
1975, Theil, who invented R?, 2SLS, k-class estimators, and the multinomial logit model, Herman K. van Dijk,
Frank Kleibergen, and Paul Bekker.
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Three Traditions of Treatment Effects Evaluation

@ Statistics: Potential Outcomes (PO) Approach.
@ Economics: Simultaneous Equation Model.12

@ Computer Science: Structural Causal Models (SCMs) based on path diagrams or
graphs especially directed acyclic graphs (DAGS).
- I will use the LATE to show the differences in the three languages.

Among econometricians:

@ Fresh water: Heckman and his co-authors; emphasizes "causes of effects"; more
structural (combining PO and Simultaenous Equation).

@ Salt water: Imbens, Card, Angrist, Abandie, ---; emphasizes "effects of causes";
more reduced-formed (mainly PO).

121n sociology, this is termed as Structural Equation Model (SEM) which considers only the linear case. Note
also that different from SEMs, simultaneous equations are nondirectional, so are not causal relationships. This
is why econometricians have to borrow potential outcome notations from statistics to represent causality.
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History of the Potential Outcome Approach

@ The potential outcome framework was proposed in Neyman (1923) and Fisher

(1925) in experimental studies and was extended to observational studies by Rubin
(1974).

@ Holland (1986) called this framework as the Rubin Causal Model (RCM).

@ For an introduction of RCM, see Rubin (2005, 2008), and for more details, see
Imbens and Rubin (2015):

CAUSAL

BIOMEDICAL
SCIENCES

@ For the fresh water tradition, see Heckman and Vytlacil (2007a, b) in Handbook of
Econometrics.
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History of Path Analysis

~ SECOND EDITION

MODELS, REASONING
AND INFERENCE

| JUDEA PEARL

Judea Pearl (1936-), UCLA, Turing2011 Pearl (2009)

@ Pearl, J. and D. Mackenzie, 2018, The Book of Why: The New Science of Cause and Effect,
New York: Basic Books.

@ Pearl, J, M. Glymour, and N.P. Jewell, 2016, Causal Inference in Statistics: A Primer, West
Sussex, England : Wiley.

@ Hernan M.A. and J. M. Robins, 2020, Causal Inference: What If, Boca Raton: Chapman &
Hall/CRC.

@ Morgan, S.L. and C. Winship, 2015, Counterfactuals and Causal Inference: Methods and
Principles for Social Research, 2nd edition, New York: Cambridge. [Social Science]

@ Peters, J.,, D. Janzing, and B. Scholkopf, 2017, Elements of Causal Inference: Foundations
and Learning Algorithms, Cambridge, MA: MIT Press. [Machine Learning]
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Econometric Literature on Path Analysis

Causal
Inference

e MIXTAFE.

Scott Cunningham

Cunningham (2021)

@ Heckman, J.J., and R. Pinto, 2015, Causal Analysis after Haavelmo, Econometric Theory, 31,
115-151.

@ Imbens, G.W.,, 2020, Potential Outcome and Directed Acyclic Graph Approaches to Causality:
Relevance for Empirical Practice in Economics, Journal of Economic Literature, 58, 1129-
1179.
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Notations

@ Following the literature, we use Y fory, D (sometimes, T or W) for the treatment x
(like the endogenous variable), X for the confounders (like the included 1Vs), Z for
the instruments, and the corresponding lower case letters such as y,d,x and z for
the values they may potentially take.

- In the PO framework, the difference between D and X is that D is manipulable
while X is some noncausal attributes. Which variable is D and which is X depends
on your purpose, e.g., gender or race is D or X ?13

@ Treatment means Ceteris Paribus, i.e., with all other factors fixed, D changes from
0 to 1 (or generally, increases by one unit).

BInstead of changing gender or race, econometricians study the causal effects of interventions like hiding
the gender of the job candidate at the time of interview, e.g., Goldin and Rouse (2000) study the effect of blind
audition (behind curtains) for orchestras on the hiring of female musicians, or manipulation of the perception of
race by changing names from Caucasian-sounding (like Emily and Greg) to African American-sounding ones
(like Lakisha and Jamal), e.g., Bertrand and Mullainathan (2004).
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How to express the treatment or intervention of D?

@ Define Yy (or Y (d)) as potential outcomes as D is assigned d; Y; and Yq are
potential outcomes for the treated group (D = 1) and control group (D = 0).
- Y (d) are sometimes called counterfactuals. A value is counterfactual if it cannot
be observed, that s, if it is entirely hypothetical. In this sense, the term "counterfac-
tual" here is not very appropriate since which of Y (0) and Y (1) is counterfactual
is not predetermined.
- The observed outcome Y = DY, + (1—D)Yg, so only one of Y; and Yq can be
observed. In other words, causal inference is basically a missing data problem,
which is referred to as "the fundamental problem of causal inference" in Holland
(1986).
- The average treatment effect (ATE) or average causal effect (ACE) [see more
discussions below] is

ElY1—Yo] =E[Y1]-E[Yo].
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Continued

@ Remove the defining equation of D (i.e., the equation with D on the left side), and
change the the value of D in all other equations from 0 to 1.
- Assume Y = fy (D, X,Uy); then the ATE equals the following burdensome ex-
pression
Elfy (1,X,Uy)]—E[fy (0,X,Uy)].

- This is why econometricians borrow the potential outcome notation and write
Y1 =p1(X,Uz) and Yo = p1g(X,Uo), (24)
where uq(-,-) =fy (d,-,-).2

@ Remove all edges directed into D, and change the value of D from O to 1.
- The ATE is equal to

E [Y|do (D = 1)] —E[Y|do (D = 0)].

14The distribution of (X,Uy) may depend on D = d, so we explicitly write out this dependence for Uy, and
implicitly assume P (X1 = Xp) = 1; often, X includes some pretreatment variables, or some characteristics which

are not affected by the treatment, like age, sex, etc.
66/86



Three Tenets of RCM

@ The estimands of causal effects are comparison of potential outcomes on one com-

mon set of units, not the treatment potential outcomes for one set of units and the
control potential outcomes for a different set.

- Take {X;,Y; (0),Y; (1)} as the "science", and the estimands can be E [Y; (1) — Y; (0)]
above, med (Y (1) —Y; (0)), {med (Y; (1)) —med (Y; (0))} |X; = male, or E[logY; (1)
—logY; (0)], etc.

Potential outcomes

Covariates Treatment Control  Unit-level Summary
Units X Y(1) Y(0) Causal effects Causal effects
1 X4 Yi(1) Y1(0)  Yi(1) v. Y4(0) Comparison of
: : : : : Yi(1) v. Yj(0)
: : : . . for a common
i Xi Yi(1) Yi0)  Yi(1) V. Yi(0)  set of units
N Xn Yn(1)  Yn(0)  Ya(1) V. Yn(0)

Figure 1. “Science”—The Causal Estimand.

- In the notations above, we implicitly assume stable unit treatment value assump-
tion (SUTVA) which comprises (i) no interference between units, i.e., Y;(D) =
Y; (D) as long as D; = D, where D = (Dq, - -- ,Dn)’, (i) no hidden versions of treat-
ments, i.e., Y; (D,V) =Y; (D',V') as long as D; = D/, where V = (Vy,---,Vy)" is the
versions of treatments for these n units.
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Continued

@ We need to posit an assignment mechanism, a model for how units were assigned

the treatments they received, i.e., P (D|X,Y (0),Y (1)).

- For inference of treatment effects, this assignment mechanism is enough, and
a model for the underlying data, P (X,Y (0),Y (1)) is not required. Of course,
if P(X,Y (0),Y (1)) is assumed, we can do more, e.g., derive the distribution of
P (YmisIX. Yobs, D) and make Bayesian prediction on the distribution of causal ef-
fects.

- For inference of treatment effects, {X;,Y; (0),Y; (1)}{_, are treated as fixed, and
only {D;}]'; are random.

- Some popular assignment mechanisms include (i) completely randomized exper-
iments with n units among which n, treated:

1/Ch, i YM,Di=ny,
P(D|X,Y(0).Y(1)):{ o %tﬁérv:/ise.l

(i) unconfounded assignment mechanism: P (D|X,Y (0),Y (1)) = P (D|X). (iii)
ignorable assignment mechanism: P (D|X,Y (0),Y (1)) = P (D|X, Ygps).*°

@ We need to be explicit about assumptions because human beings are very bad at

dealing with uncertainty (which is why there are many paradoxes).

15In LATE, D depends on both Y (0) and Y (1) given X, but in a special way. Heckman terms the bias of OLS
resulting from Cov (D, Y (0) [X) # 0 as selection bias and Cov (D,Y (1) —Y (0)|X) # 0 as essential heterogene-

ity.
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Comparison of Weaknesses of the Three Traditions

@ Treat counterfactuals as abstract mathematical objects that are managed by al-
gebraic machinery but not derived from a model (i.e., model-free): view causal
inference as a missing-data problem (which is misleading?); hard to explain and
test the assumptions, e.g., the unconfoundedness assumptioni® is expressed as
D L (Y1,Yo) |X, which means that for any d,yq,y and x,

P(D:d|Y1:y1,Y0:yO,X :x):P(D:d\leyi,YO:yf),X :X>,

where L is read as "is independent of", and | is read as "conditional on".

- The unconfounedness assumptions are usually made because they justify the use
of available statistical methods, not because they are truly believed.

- In the simultaneous equation tradition, assume D = up (X, Up); then unconfound-
edness means Up L (U, Ug) |X, which is easier to understand.

@ In complicated models, it is hard to identify the causal effects as in SCMs through
backdoor and frontdoor criteria in the following slides (or more rigorously, the do-
calculus).

@ Some information is not easy to be embodied in a graph, e.g., linearity, mean inde-
pendence (rather than conditional independence), simultaneity, shape restrictions
like monotonicity and concavity, etc. [l will provide an example at the end of this
chapter]

160ther names for unconfoundedness include exogeneity, selection-on-observables, ignorability, or simply con-
ditional independence.
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Comparison of Strengths of the Three Traditions

@ PO and Simultaneous Equation: (i) Weakness of DAG is the strength of PO. (ii)
Connect easily to traditional approaches to economic models, such as supply and
demand settings where potential outcome functions are the natural primitives. (iii)
Many of currently popular identification strategies focus on models with relatively
few (sets of) variables, where identification questions have been worked out once
and for all. (iv) Account well for treatment effect heterogeneity and incorporate such
heterogeneity in estimation and design of optimal policy functions. (v) Connect well
with questions of study design, estimation of causal effects, and inference for such
effects.

@ DAG: (i) Pedagogical: formulating the critical assumptions in a form that captures
the way some researchers think of causal relationships, and being a powerful way
of illustrating the key assumptions underlying causal models. (ii) Mathematical:
the do-calculus developed by Pearl can be used to answer causal identification
questions in a novel way, particularly for questions in complex models with a large
number of variables.

- The DAG is assumed, but how to create it and is it an accurate description on how
this world works (e.g., why is an arrow absent instead of present?)?

@ Why is DAG lack of adoption in economics? (i) The merits of PO. (ii) Although DAG
is potentially powerful, it lacks substantive empirical examples.
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Path Diagram for Unconfoundedness

e X

o
Up Uy

Figure: Causal Diagram for Unconfoundedness

@ Solid dot: observable; circle: unobservable.

@ Up and Uy are independent, and the presence of them does not affect any conclu-
sions, so often omitted.
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Assumptions Implied by the Path Diagram

(-]

The DAGs are usually imposed the conditional independence assumptions implied
by the so-called d-separation, where d stands for "directional”.

d-separation: A path p is blocked by a set of nodes Z if and only if (i) p contains a
chain of nodes A — B — C or a fork A — B — C such that the middle node B is in
Z (i.e., B is conditioned on), or (ii) p contains a collider A — B « C such that the
collision node B is not in Z, and no descendant of B is in Z. If Z blocks every path
between two nodes X and Y, then X and Y are d-separated, conditional on Z, and
thus are independent conditional on Z.

- These assumptions are equivalent to the rule of recursive product decomposition, which
simplifies the expression of the joint distribution of the variables in the model.

In the DAG of last slide, the d-separation implies that Up L Uy and (Up,Uy) L X,
which imply Up L Uy |X, i.e., the graph implies some stronger relationships than
the conditional independence.

- No differentiation of Y; vs. Yg or Uy vs. Ug, but only Y and Uy; anyway, the
messages intended to deliver are the same.

D L (Y1,Yp)|X, in combination with the auxiliary assumption that 0 < p(X) :=
E [D|X] < 1 (i.e., probabilistic assignment), is referred to as strong ignorability (i.e.,
probabilistic unconfounded), and D is named "conditionally ignorable given X" in
Rosenbaum and Rubin (1983), where p (X) is called the propensity score.
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History of Ignorability

: w“
Paul R. Rosenbaum (1953-), UPenn  Donald B. Rubin (1943-), Harvard'’

17Rubin has many famous students including Rosenbaum.
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Five Weapons in Treatment Effects Evaluation

@ Randomized Controlled Trial (RCT): is the most scientifically rigorous method of
hypothesis testing (so-called A/B testing) available, and is regarded as the gold
standard trial for evaluating the effectiveness of interventions.

@ Backdoor and Frontdoor Criteria: X satisfying the backdoor criterion is exactly the
X in the unconfoundedness assumption.
- Popular estimators under unconfoundedness include, inter alia, the matching,
subclassification, propensity score weighting and double robust estimators.

© Instrumental Variables.
@ Difference in Differences (DID): a special panel data solution.

@ Regression Discontinuity Designs (RDDs): a special natural experiment or quasi-
experiment.

Recent New Problems:

@ Interactions, Spillovers and Peer Effects. [SUTVA fails]
@ Big Data: searching for needles in a haystack.

Recent New Tools:

@ Machine Learning.
@ Synthetic Control.
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History of Natural Experiment

David Card (1956-), Berkeley, NP2021
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LATE: Assumptions

@ Suppose for simplicity that Z is a binary assignment. The treatment status D # Z
is due to noncompliance.

@ Assumptions:

@ Instrument Exclusion: P(Yg; = Ygo|X) =1ford = 1,0, where Yy, is the potential
outcome of Y whenZ =z and D =d.

@ Random Assignment: (Yqq, Yo1, Y10, Y11,D0,D1) L Z|X, where Dy is the potential
treatment status when Z = z.

@ Monotonicity (or Uniformity): P(Dy > Dg|X) =1 (or P(D; < Dg|X) = 1). [see the
table in the next slide]

@ These three assumptions strengthens the instrument exclusion, instrument exo-
geneity and instrument relevance conditions in linear models.
- Strictly speaking, the instrument relevance condition if monotonicity is imposed
should be P(D; > Dg|X) > 0.

@ D=Z2-D;+(1-2)-Dg=Dg+(D; —Dg)Z, and similarly, Y =Yg+ (Y1 — Yg)D.
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LATE: Identification

Do
0 1
o Yo—Yo=0 Yo—Y1=—(Y1—-Yo)
Dy Never-taker Defier
Y1—Yo Yi—-Y;=0
Complier Always-taker

Table: Causal Effect of Z on'Y, Yp, —Yp, Classified by Dg and D,

@ Suppress the dependence on X for simplicity.
@ What is the IV estimator (in this case, the Wald estimator
mating?
@ The denominator is
E[D|Z =1]-E[D|Z =0]=E[D1|Z =1]-E [Dy|Z = 0]
A:2E [Dl_DO] :ZA:_lio,lA'P(Dl_DO :A)EP(Dl_DO = 1)v

=1]— -0 .
. Elble i -etpz=a)) est-

which is the probability of compliers.

- Note that we can figure out the probability of compliers, but cannot tell whether a

specific individual is a complier or not since we can only observe either D, or Dg.
@ If excluding defiers, then from the table, Z have effects on Y only for compliers.



continue...

@ The numerator is the intention-to-treat (ITT) effect:
E[Y|Z=1]-E[Y|Z =0]
=E[Yo+(Y1—Y0)D1|Z =1] —E[Yo+ (Y1 —Y0)Do|Z = 0]
2 E Yo+ (Y1~ Yo)D1] ~E [Yo+ (Y1~ Yo)Do]
=E[(Y1—Yo)(D1—Do)]

= Y E[(Y1—Yo):(D1—Dg)|D1—Dg = A]P (D; —Dg = A)
A=To1

A3
=E[Y1—Yo/D1—Dg=1]P (D1 -Do=1).
@ In summary, the Wald estimator converges to

E[Y1—Yo|D1 —Dg=1]P(D; —Dg =1)
P(D; Dy=1)

= E [Y1 — Yo|Compliers],

the treatment effect for the compliers, which is called the LATE.
- "local" in LATE is relative to the "global" treatment effect of ATE.
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Three Assumptions of LATE in Equation Form

Q Y1 =p;(X,Up) and Yo = po(X,Uo).
Q (U1,Up,Up) L Z|X.
@ The participation decision

D =1(Up <p(X,2)),® (25)

where Up|X,Z ~ U(0,1) and the propensity score p(X,Z) satisfies p(X,1) >
p(X,0) a.s. Px.
- Vytlacil (2002) shows that (25) is equivalent to the monotonicity assumption.

@ The three groups of individuals are re-expressed (after suppressing X) as

Complier = {p(0)<Up <p(1)},
Never-taker = {Up >p(1)},
Always-taker = {Up <p(0)}.

18Recall that the most general specifiation of D should be D = up (X,Z,Up).
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Marginal Treatment Effect (MTE)

@ MTE (up) = E[Y1 — Yg|Up = up] is the treatment effect for individuals who would
be indifferent between treatment or not if they were exogenously assigned a value
of Z, say z, such that p(z) = up.

@ The MTE can unify all kinds of treatment effects. For example,

LATE = 71 /p(l) MTE (up)dup
P(1) =p(0) Jp(o)
and L
ATE :/o MTE (up) dup.
@ The average treatment effect on the treated (ATT) can also be expressed in the
MTE: 1
ATT =E[Y1 - Yo|D = 1] :/O MTE (up) @ (up) dup,
where
~ 1-Fpz)(up)
B3 (1=Fpz) (©))
-Onlyif p(Z)>Up, D=1, so w(up) =P (p(Z) >up)/P (D =1), which over-

weights those individuals with low values of up that make them more likely to par-
ticipate in the program.

o (up)
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MTE: Identification by Local IV

@ From the expression of LATE as a function of MTE, we can see

u
MTE (up) = lim — [ " MTE (u)du = lim LATE (ub,up).
up Tup Up —Up Juj up Tup

@ Alternatively, since

E[Ylp(Z)=p] = E[Y1lp(Z)=p.D=1]P(D=1|P(Z

)=p)
+E[Yolp(Z) =p.D=0]P (D =0[P(Z)

P)

p 1
- / E [Y1|Up = u]du +/ E [Yo|Up = u]du,
0 p
where the second equality is because
EV1lp(2) =p.D=1]ZE[Vilp(Z) =p.Up <p(2)]
= E[Y1|Up <p]= %fg E[Y1|Up = u]du,
and similarly for E [Yq|p (Z) = p,D = 0], we have

MTE (UD) _ JE [Y ‘%(pz) = p}

pP=Up

- This implies that MTE (up) can be identified only for up esupp(p (Z)), the support
of p(Z).
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MTE (X = x, Up = up)
Selection, LIV, LATE

Linear IV, ATE-IV, TT-IV, Matching

Up =up

Figure: Comparison of MTE (up) Under Unconfoundedness and Essential Heterogeneity

@ E[Y|p(Z) =p] is a straight line for linear IV.

@ MTE (up) is increasing because a smaller Up need only a smaller treatment effect
to induce participation.
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History of the MTE

James J. Heckman (1944-), Chicago, NP2000°  Edward J. Vytlacil (1971-), Yale

19Heckman has many famous students including Vytlacil.
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Path Diagram for LATE

Z A

(Up,Uy)

Figure: Causal Diagram for an RCT with Noncompliance
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Assumptions Implied by the Path Diagram

@ Instrument Exclusion: no edge from node Z to node Y.

@ Random Assignment: the d-separation implies (Up,Uy) L Z, and even X L
(Z,UD,Uy), SO (UD,Uy) JLZ|X hold.
- (Up,Uy) are unobserved confounders for D and Y, which implies Up and Uy
may be correlated.
- D L Y|X does not hold, so popular estimators under unconfoundedness cannot
apply.

@ Monotonicity: although we can claim Z affects D, the path diagram cannot express
Z affects D in the way of D = 1(Up < p(X,2)).

@ In the linear case, suppose the ATE of Z on D is a, and that of D on Y is b, then
the ITT of Z on Y is ab. In other words, b can be identified by the ITT of Z on Y
divided by the ATE of Z on D, which is exactly the Wald estimator when Z is binary.



Violation of Exclusion and Exogeneity Assumptions
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