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Endogeneity

Endogeneity

In the linear regression
yi = x0i β +ui , (1)

if E [x iui ] 6= 0, there is endogeneity.

In this case, the LSE will be asymptotically biased.

The analysis of data with endogenous regressors is arguably the main contribution
of econometrics to statistical science.
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Endogeneity

Five Sources of Endogeneity

Simultaneous causality.
- Example: Does computer usage increase the income? Do Cigarette taxes
reduce smoking? Does putting criminals in jail reduce crime?
- Solution: using instrumental variables (IVs), and designing and implementing a
randomizing controlled experiment in which the reverse causality channel is
nullified

Omitted variables.
- Example: in the model on returns to schooling, ability is an important variable
that is correlated to years of education, but is not observable so is included in the
error term.
- Solution: using IVs, using panel data and using randomizing controlled
experiments.
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Endogeneity

Continue...

Errors in variables. This term refers to the phenomenon that an otherwise
exogenous regressor becomes endogenous when measured with error.
- Example: in the returns-to-schooling model, the records for years of education
are fraught with errors owing to lack of recall, typographical mistakes, or other
reasons.
- Solution: using IVs (e.g., exogenous determinants of the error ridden explanatory
variables, or multiple indicators of the same outcome).

Sample selection.
- Example: in the analysis of returns to schooling, only wages for employed
workers are available, but we want to know the effect of education for the general
population.
- Solution: Heckman’s control function approach.

Functional form misspecification. E [y jx] may not be linear in x. Solution:
nonparametric methods.
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Endogeneity

Simultaneous Causality

Wright (1928) considered to estimate the elasticity of butter demand, which is
critical in the policy decision on the tariff of butter.
Define pi = lnPi and qi = lnQi , and the demand equation is

qi = α0+α1pi +ui , (2)

where ui represents other factors besides price that affect demand, such as
income and consumer taste. But the supply equation is in the same form as (2):

qi = β 0+β 1pi + vi , (3)

where vi represents the factors that affect supply, such as weather conditions,
factor prices, and union status.
So pi and qi are determined "within" the model, and they are endogenous.
Rigorously, note that

pi =
β 0�α0

α1�β 1
+

vi �ui

α1�β 1
,

qi =
α1β 0�α0β 1

α1�β 1
+

α1vi �β 1ui

α1�β 1
,

by solving two simultaneous equations (2) and (3).
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Endogeneity

continue...

Suppose Cov(ui ,vi ) = 0, then

Cov(pi ,ui ) = �
Var (ui )

α1�β 1
,Cov(pi ,vi ) =

Var (vi )

α1�β 1
,

which are not zero. If α1 < 0 and β 1 > 0, then Cov(pi ,ui )> 0 and Cov(pi ,vi )< 0,
which is intuitively right (why?).

If regress qi on pi , then the slope estimator converges to

Cov(pi ,qi )
Var (pi )

= α1+
Cov(pi ,ui )

Var (pi )
= β 1+

Cov(pi ,vi )
Var (pi )

why?
= α1Var (vi )+β 1Var (ui )

Var (vi )+Var (ui )
2 (α1,β 1).

So the LSE is neither α1 nor β 1, but a weighted average of them. Such a bias is
called the simultaneous equations bias. The LSE cannot consistently estimate α1
or β 1 because both curves are shifted by other factors besides price, and we
cannot tell from data whether the change in price and quantity is due to a demand
shift or a supply shift.
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Endogeneity

continue...

If ui = 0; that is, the demand curve stays still, then the equilibrium prices and
quantities will trace out the demand curve and the LSE is consistent to α1. Figure
1 illustrates the discussion above intuitively.
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Figure: Endogeneity and Identification of Instrument Variables
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Endogeneity

continue...

From above, we can see that pi has one part which is correlated with ui

�
� ui

α1�β 1

�
and one part is not

�
vi

α1�β 1

�
. If we can isolate the second part, then we can focus

on those variations in pi that are uncorrelated with ui and disregard the variations
in pi that bias the LSE.

Take one supply shifter zi , e.g., weather, which can be considered to be
uncorrelated with the demand shifter ui such as consumer’s tastes, then

Cov(zi ,ui ) = 0, and Cov(zi ,pi ) 6= 0.

So
Cov(zi ,qi ) = α1 �Cov(zi ,pi ),

and

α1 =
Cov(zi ,qi )

Cov(zi ,pi )
.

A natural estimator is bα1 =
dCov(zi ,qi )dCov(zi ,pi )

,

which is the IV estimator.
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Endogeneity

continue...

Another method to estimate α1 as suggested above is to run regression

qi = α0+α1bpi + eui ,

where bpi is the predicted value from the following regression:

pi = γ0+ γ1zi +η i ,

and eui = α1 (pi �bpi )+ui .

It is easy to show that Cov(bpi ,eui ) = 0, so the estimation is consistent.

Such a procedure is called two-stage least squares (2SLS) for an obvious reason.

In this case, the IV estimator and the 2SLS estimator are numerically equivalent.

Ping Yu (HKU) Endogeneity and IV 10 / 44



Endogeneity

Omitted Variables

Mundlak (1961) considered the production function estimation, where the error
term includes factors that are observable to the economic agent under study but
unobservable to the econometrician, and endogeneity arises when regressors are
decisions made by the agent on the basis of such factors.
Suppose that a farmer is producing a product with a Cobb-Douglas technology:

Qi = Ai � (Li )
φ1 �exp(ν i ), 0< φ1 < 1, (4)

where Qi is the output on the i th farm, Li is a variable input (labor), Ai represents
an input that is fixed over time (soil quality), and ν i represents a stochastic input
(rainfall), which is not under the farmer’s control.
We shall assume that the farmer knows the product price p and input price w ,
which do not depend on his decisions, and that he knows Ai but econometricians
do not.
The factor input decision is made before knowing ν i , and so Li is chosen to
maximize expected profits. The factor demand equation is

Li =

�
w
p

� 1
φ1�1

(AiBφ1)
1

1�φ1 , (5)

so a better farm induces more labors on it.
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Endogeneity

continue...

We assume that (Ai , ν i ) is i.i.d. over farms, and Ai is independent of ν i for each i ,
so B = E [exp(ν i )] is the same for all i , and the level of output the farm expects
when it chooses Li is Ai � (Li )

φ1 �B.

Take logarithm on both sides of (4), we have a log-linear production function:

logQi = logAi +φ1 � log(Li )+ν i .

logAi is an omitted variable. Equivalently, each farm has a different intercept.

The LSE of φ1 will converge to

Cov(logQi , log(Li ))

Var (log(Li ))
= φ1+

Cov(logAi , log(Li ))

Var (log(Li ))
,

which is not φ1 since there is correlation between logAi and log(Li ) as shown in
(5).

Figure 2 shows the effect of logAi on φ1 by drawing E [logQj logL, logA] for two
farms. In Figure 2, the OLS regression line passes through points AB with slope
logQ1�logQ2
logL1�logL2

, but the true φ1 is D�C
logL1�logL2

. Their difference is
A�D

logL1�logL2
= logA1�logA2

logL1�logL2
, which is the bias introduced by the endogeneity of logAi .
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Endogeneity
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Figure: Effect of Soil Quality on Labor Input
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Endogeneity

continue...

Rigorously, let ui = log(Ai )�E [log(Ai )], and φ0 = E [log(Ai )], then E [ui ] = 0 and
Ai = exp (φ0+ui ).
(4) and (5) can be written as

logQi = φ0+φ1 � log(Li )+ν i +ui , (6)

logLi = β 0+
1

1�φ1
ui , (7)

where β 0 =
1

1�φ1

�
φ0+ log(Bφ1)� log

�
w
p

��
is a constant for all farms.

It is obvious that logLi is correlated with (ν i +ui ). Thus, the LSE of φ1 in the
estimation of log-linear production function confounds the contribution to output of
ui with the contribution of labor. Actually,bφ1,OLS

p�! 1,

because substituting (7) into (6), we get

logQi = φ0� (1�φ1)β 0+1 � log(Li )+ν i .

The lesson from this example is that a variable chosen by the agent taking into
account some error component unobservable to the econometrician can induce
endogeneity.
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Endogeneity

Errors in Variables

The cross-section version of M. Friedman’s (1957) Permanent Income Hypothesis
can be formulated as an errors-in-variables problem.
The hypothesis states that "permanent consumption" C�i for household i is
proportional to "permanent income" Y �

i :

C�i = kY �
i with 0< k < 1.

Assume both measured consumption Ci and income Yi are contamined by
measurement error: Ci = C�i + ci and Yi = Y �

i + yi , where ci and yi are
independent of C�i and Y �

i and are independent of each other, then

Ci = kYi +ui with ui = ci �kyi . (8)

E [Yiui ] = �kE
h
y2

i

i
< 0, so the LSE of k converges to

E [YiCi ]

E [Y 2
i ]

=
kE
h�

Y �
i

�2
i

E
h�

Y �
i

�2
i
+E

�
y2

i

� < k .

Taking expectation on both sides of (8), we have E [Ci ] = kE [Yi ]+E [ui ]. So z = 1
is a valid IV if E [yi ] = E [ci ] = 0 and E

�
Y �

i

�
= E [Yi ] 6= 0. The IV estimation using z

as the instrument is C i

Y i
, which is how Friedman estimated k .
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Endogeneity

continue...

Actually, measurement errors are embodied in regression analysis from the
beginning. Galton (1889) analyzed the relationship between the height of sons
and the height of fathers. More specifically,

Si = α+βFi +ui ,

where Si and Fi are the heights of sons and fathers, respectively.
Even if Si should perfectly match Fi (that is, α0 = 0, β 0 = 1, and ui = 0), the OLS
estimator would be smaller than 1 if there are environmental factors or
measurement errors that affect Si .
Suppose Si = Fi + fi , where fi is the environmental factor, then our regression
becomes

Si = α+β (Si � fi )+ui = α+βSi +ui �β fi .

The OLS estimator of β will converge to

Cov(Fi ,Si )

Var (Si )
=

Var (Fi )

Var (Fi )+Var (fi )
< 1,

where Var (Fi )
Var (Fi )+Var (fi )

� ρ is called the reliability coefficient. In Galton’s analysis,

this coefficient is about 2/3. He termed this phenomenon as "regression towards
mediocrity".
The regression line and the true line are shown in Figure 3.
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Figure: Relationship Between the Height of Sons and Fathers
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Instrumental Variables

Instrumental Variables

yi = x0i β +ui is called the structural equation or primary equation. In matrix
notation, it can be written as

y = Xβ +u. (9)

Any solution to the problem of endogeneity requires additional information which
we call instrumental variables (or simply instruments).

The l�1 random vector zi is an instrument for (1) if E [ziui ] = 0. This condition
cannot be tested in practice since ui cannot be observed.

In a typical set-up, some regressors in x i will be uncorrelated with ui (for example,
at least the intercept). Thus we make the partition

x i =

�
x1i
x2i

�
k1
k2

, (10)

where E [x1iui ] = 0 yet E [x2iui ] 6= 0. We call x1i exogenous and x2i endogenous.

Ping Yu (HKU) Endogeneity and IV 19 / 44



Instrumental Variables

continue...

By the above definition, x1i is an instrumental variable, so should be included in zi ,
giving the partition

zi =

�
x1i
z2i

�
k1
l2
, (11)

where x1i = z1i are the included exogenous variables, and z2i are the excluded
exogenous variables.

In other words, z2i are variables which could be included in the equation for yi (in
the sense that they are uncorrelated with ui ) yet can be excluded, as they would
have true zero coefficients in the equation which means that certain directions of
causation are ruled out a priori.

The model is just-identified if l = k (i.e., if l2 = k2) and over-identified if l > k (i.e.,
if l2 = k2). We have noted that any solution to the problem of endogeneity requires
instruments. This does not mean that valid instruments actually exist.
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Reduced Form

Reduced Form

The reduced form relationship between the variables or "regressors" x i and the
instruments zi is found by linear projection. Let

Γ = E
�
ziz

0
i
��1 E

�
zix

0
i
�

be the l�k matrix of coefficients from a projection of x i on zi .

Define
v i = x i �Γ0zi

as the projection error. Note that v i must be correlated with ui . (why?)

The reduced form linear relationship between x i and zi is the instrumental
equation

x i = Γ0zi + v i . (12)

In matrix notation,
X= ZΓ+V, (13)

where V is a n�k matrix.

By construction, E
�
ziv0i

�
= 0, so (12) is a projection and can be estimated by OLS:

X= ZbΓ+ bV,bΓ = �Z0Z��1 �Z0X� .
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Reduced Form

continue...

Substituting (13) into (9), we find

y = (ZΓ+V)β +u = Zλ +e (14)

where λ = Γβ and e= Vβ +u.
Observe that

E [ze] = E
�
zv0
�

β +E [zu] = 0. (15)

Thus (14) is a projection equation and may be estimated by OLS. This is

y = Zbλ +be, bλ = �Z0Z��1 �Z0y� .
The equation (14) is the reduced form for y. (13) and (14) together are the
reduced form equations for the system

y = Zλ +e,

X = ZΓ+V.

The system of equations

y = Xβ +u,

X = ZΓ+V,

are called triangular simultaneous equations because the second part of
equations do not depend on y.
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Identification

Identification

The structural parameter β relates to (λ ,Γ) by λ = Γβ .
This relation can be derived directly by using the orthogonal condition
E
�
zi
�
yi �x0i β

��
= 0 which is equivalent to

E [ziyi ] = E
�
zix

0
i
�

β . (16)

Multiplying each side by an invertible matrix E
�
ziz0i

��1, we have λ = Γβ .
The parameter is identified, meaning that it can be uniquely recovered from the
reduced form, if the rank condition

rank (Γ) = k (17)

holds.
If rank

�
E
�
ziz0i

��
= l (this is trivial), and rank

�
E
�
zix0i

��
= k (this is crucial), this

condition is satisfied.
Assume that (17) holds. If l = k , then β = Γ�1λ . If l > k , then for any A > 0,
β = (Γ0AΓ)�1 Γ0Aλ .
If (17) is not satisfied, then β cannot be uniquely recovered from (λ ,Γ).
Note that a necessary (although not sufficient) condition for (17) is the order
condition l � k .
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Identification

continue...

Since Z and X have the common variables X1, we can rewrite some of the
expressions.

Using (10) and (11) to make the matrix partitions Z= [Z1,Z2] and X= [Z1,X2], we
can partition Γ as

Γ =
�

Γ11 Γ12
Γ21 Γ22

�
=

�
I Γ12
0 Γ22

�
k1 k2

k1
l2
.

(13) can be rewritten as

X1 = Z1

X2 = Z1Γ12+Z2Γ22+V2.

β is identified if rank(Γ) = k , which is true if and only if rank(Γ22) = k2 (by the
upper-diagonal structure of Γ). Thus the key to identification of the model rests on
the l2�k2 matrix Γ22.
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Identification

What Variable Is Qualified to Be An IV?

It is often suggested to select an instrumental variable that is

(i) uncorrelated with u; (ii) correlated with endogenous variables. (18)

(i) is the instrument exogeneity condition, which says that the instruments can
correlate with the dependent variable only indirectly through the endogenous
variable.

(ii) intends to repeat the instrument relevance condition which says that X1 and the
predicted value of X2 from the regression of X2 on Z and X1 are not perfectly
multicollinear; in other words, there must be "enough" extra variation in bx2 that can
not be explained by x1. Such a condition is required in the second stage
regression.

Sometimes (18) is misleading.

Check the following example with only one endogenous variable:

y = x1β 1+ x2β 2+u,

E [x1u] = 0, E [x2u] 6= 0, Cov(x1,x2) 6= 0.
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Identification

continue...

One may suggest the following instrument for x2, say, z = x1+ ε, where ε is some
computer-generated random variable independent of the system.

Now, E [zu] = 0 and Cov (z,x2) = Cov(x1,x2) 6= 0. It seems that z is a valid
instrument, but intuition tells us that it is NOT, since it includes the same useful
information as x1.

What is missing? We know the right conditions for a random variable to be a valid
instrument are

E [zu] = 0, (19)

x2 = x1γ1+ zγ2+ v with γ2 6= 0.

In this example, x2 = x1γ1+ zγ2+ v = x1 (γ1+ γ2)+ (εγ2+ v), γ2 is not identified!

The arguments above indicate that (18) is not sufficient, is it necessary? The
answer is still NO!

For this simple example, can we find some z such that

γ2 6= 0 but Cov(z,x2) = 0?
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Identification

continue...

Observe that Cov(z,x2) = Cov(z,x1γ1+zγ2+v) = Cov(z,x1)γ1+Var (z)γ2, so if
Cov(z,x1)

Var (z) = � γ2
γ1

, this could happen.

That is, although z is not correlated with x2, z is correlated with x1, and x1 is
correlated with x2. In mathematical language, Cov(z,x1) 6= 0, γ1 6= 0.

In such a case, z is related to x2 only indirectly through x1. If we assume
Cov(z,x1) = 0, or γ1 = 0, then the assumption Cov(z,x2) 6= 0 is the right
condition for z to be a valid instrument.

So the right condition should be that z is partially correlated with x2 after netting
out the effect of x1.

In general, a necessary condition for a set of qualified instruments is that at least
one instrument appears in each of the first-stage regression.
- When k = `, each instrument must appear in at least one endogenous
regression (why?).
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Identification

How to Select Instruments?

Generally speaking, good instruments are not selected based on mathematics, but
based on economic theory.

Some popular examples are listed:

- Angrist and Krueger (1991) propose using quarter of birth as an IV for education
in the analysis of returns to schooling because of a mechanical interaction
between compulsory school attendance laws and age at school entry.

- Card (1995) uses college proximity1 as an instrument to identify the returns to
schooling, noting that living close to a college during childhood may induce some
children to go to college but is unlikely to directly affect the wages earned in their
adulthood.

- Acemoglu et al. (2001) use the mortality rates (of soldiers, bishops, and sailors)
as an IV to estimate the effect of property rights and institutions on economic
development.

1Parental education is another popular IV to identify the returns to schooling.
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Estimation: Two-Stage Least Squares
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Estimation: Two-Stage Least Squares

IV Estimator

If l = k , then the moment condition is E
�
zi
�
yi �x0i β

��
= 0, and the corresponding

IV estimator is a MoM estimator:bβ IV =
�
Z0X

��1 �Z0y� .
Another interpretation stems from the fact that since β = Γ�1λ , we can construct
the Indirect Least Squares (ILS) estimator:

bβ = bΓ�1bλ = ��Z0Z��1 Z0X
��1��

Z0Z
��1 Z0y

�
=
�
Z0X

��1 �Z0y� .
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Estimation: Two-Stage Least Squares

2SLS Estimator as An IV Estimator

When l > k , the two-stage least squares (2SLS) estimator can be used.

Given any k instruments out of z or its linear combinations can be used to identify
β , the 2SLS chooses those that are most highly (linearly) correlated with x.

It is the sample analog of the following implication of E [zu] = 0:

0= E [E� [xjz]u] = E
�
Γ0zu

�
= E

�
Γ0z(y �x0β )

�
, (20)

where E� [xjz] is the linear projection of x on z.

Replacing population expectations with sample averages in (20) yields

bβ 2SLS =
�bX0X��1 bX0y,

where bX= ZbΓ � PX with bΓ = (Z0Z)�1 (Z0X) and P= PZ = Z (Z0Z)�1 Z0. In other
words, the 2SLS estimator is an IV estimator with the IVs being bx i .

When l = k , the 2SLS estimator and the IV estimator are numerically equivalent
(why?).
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Estimation: Two-Stage Least Squares

Theil (1953)’s Formulation of 2SLS

The source of the name "two-stage" is from Theil (1953)’s formulation of 2SLS.

From (15),
0= E

�
E�[xjz](u+ v0β )

�
= E

��
Γ0z
�
(y �z0Γβ )

�
,

i.e., β is the least squares regression coefficients of the regression of y on fitted
values of Γ0z, so this method is often called the fitted-value method.

The sample analogue is the following two-step procedure:

1 First, regress X on Z to get bX.
2 Second, regress y on bX to get

bβ 2SLS =
�bX0bX��1 bX0y = (X0PX)�1

(X0Py) . (21)
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Estimation: Two-Stage Least Squares

Basmann (1957)’s and Telser (1964)’s version of 2SLS

Basmann (1957)’s version of 2SLS is motivated by observing that E [zu] = 0
implies

0= E� [ujz] = E� [y jz]�E�[xjz]0β ,
so bβ 2SLS =

�bX0bX��1 bX0by.
Equivalently, bβ 2SLS = argminβ (y�Xβ )0PZ (y�Xβ ), which is a GLS estimator.
Telser (1964)’s control function formulation:� bβ 2SLSbρ2SLS

�
=
� bW0 bW��1 bW0y, (22)

where bW= [X,bV].
This construction exploits another implication of E [zu] = 0:

E�[ujx,z] = E�[ujΓ0z+ v,z] = E� [ujv,z] = E�[ujv] � v0ρ

for some coefficient vector ρ, where the third equality follows from the
orthogonality of both error terms u and v with z (why?).
Thus, this particular linear combination of the first-stage errors v is a function that
controls for the endogeneity of the regressors x.
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Estimation: Two-Stage Least Squares

Scrutinizing bX

Recall that Z= [X1,Z2] and X= [X1,X2], so

bX= [PX1,PX2] = [X1,PX2] =
h
X1,bX2

i
,

since X1 lies in the span of X.

Thus in the second stage, we regress y on X1 and bX2. So only the endogenous
variables X2 are replaced by their fitted values:bX2 = Z1

bΓ12+Z2
bΓ22.

Note that as a linear combination of z, bx2 is not correlated with u and it is often
interpreted as the part of x2 that is uncorrelated with u.
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Estimation: Two-Stage Least Squares

The Wald (1940) Estimator - A Special IV Estimator

The Wald estimator is a special IV estimator when the single instrument z is
binary.

Suppose we have the model

y = β 0+β 1x +u, Cov(x ,u) 6= 0,

x = γ0+ γ1z+u.

The identification conditions are

Cov(z,x) 6= 0,Cov(z,u) = 0.(Why?) (23)

It can be shown that the IV estimator is

bβ 1 =

n
∑

i=1
(zi �z) (yi �y)

n
∑

i=1
(zi �z) (xi �x)

.
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Estimation: Two-Stage Least Squares

continue...

If z is binary that takes the value 1 for n1 of the n observations and 0 for the
remaining n0 observations, then it can be shown that bβ 1 is equivalent to

bβ Wald =
y1�y0
x1�x0

p�! E [y jz = 1]�E [y jz = 0]
E [x jz = 1]�E [x jz = 0]

,

where y1 is mean of y across the n1 observations with z = 1, y0 is the mean of y
across the n0 observations with z = 0, and analogously for x .

A simple interpretation of this estimator is to take the effect of z on y and divide by
the effect of z on x .

Figure 4 provides some intuition for the identification scheme of the Wald
estimator in the linear demand/supply system - the shift in p by z devided by the
shift in q by z is indeed a reasonable slope estimator of the demand curve.

Ping Yu (HKU) Endogeneity and IV 38 / 44



Estimation: Two-Stage Least Squares

Figure: Intuition for the Wald Estimator in the Linear Demand/Supply System
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Some Popular Examples of the Wald Estimator

In Card (1995), y is the log weekly wage, x is years of schooling S, and z is a
dummy which equals 1 if born in the neighborhood of an university and 0
otherwise.

In studying the returns to schooling in China, someone ever used a dummy
indicator of living through the Cultural Revolution or not as z.

Angrist and Evans (1998) use the dummy of whether the sexes of the first two
children are the same, which indicates the parental preferences for a mixed
sibling-sex composition, (and also a twin second birth) as the instrument to study
the effect of a third child on employment, hours worked and labor income.

Angrist (1990) use the Vietnam era draft lottery as an instrument for veteran status
to identify the effects of mandatory military conscription on subsequent civilian
mortality and earnings.

Imbens et al. (2001) use "winning a prize in the lottery" as an instrument to identify
the effects of unearned income on subsequent labor supply, earnings, savings and
consumption behavior.
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Interpretation of the IV Estimator

Ping Yu (HKU) Endogeneity and IV 41 / 44



Interpretation of the IV Estimator

The IV Estimation as a Projection

For simplicity,
- assume k = k2 = 1 and l = l2 = 1;
- discuss the population version of the IV estimator instead of the sample version

and denote plim
�bβ IV

�
as β IV .

In this simple case, xβ IV is the projection of y onto span(x) along span?(z); this
can be easily seen from xβ IV = xE [zx ]�1E [zy ] � Px?z (y)

Since z ? u, this is also the projection of y onto span(x) along u.

In figure 5, Px?z (y) is very different from the orthogonal projection of y onto
span(x) - Px (y)� xE [x2]�1E [xy ], because z is different from x (otherwise,
E [zu] 6= 0 since E [xu] > 0 in the figure).

On the other hand, z cannot be orthogonal to x in the figure (which corresponds to
the rank condition); otherwise, Px?z (y) is not well defined.

So z must be between x and x?, just as shown in the figure.
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Figure: Projection Interpretation of the IV Estimator
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Interpretation of the IV Estimator

What is the IV Estimator Estimating?

The local average treatment effect estimator (LATE)
- the average treatment effect for those individuals whose x status is affected by z.

See Imbens and Angrist (1994).
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